Simultaneous Inference For The Mean Function Based on Dense Functional Data
Cao, Guanqun; Yang, Lijian; Todem, David
2012-01-01
A polynomial spline estimator is proposed for the mean function of dense functional data together with a simultaneous confidence band which is asymptotically correct. In addition, the spline estimator and its accompanying confidence band enjoy oracle efficiency in the sense that they are asymptotically the same as if all random trajectories are observed entirely and without errors. The confidence band is also extended to the difference of mean functions of two populations of functional data. Simulation experiments provide strong evidence that corroborates the asymptotic theory while computing is efficient. The confidence band procedure is illustrated by analyzing the near infrared spectroscopy data. PMID:22665964
Simultaneous confidence sets for several effective doses.
Tompsett, Daniel M; Biedermann, Stefanie; Liu, Wei
2018-04-03
Construction of simultaneous confidence sets for several effective doses currently relies on inverting the Scheffé type simultaneous confidence band, which is known to be conservative. We develop novel methodology to make the simultaneous coverage closer to its nominal level, for both two-sided and one-sided simultaneous confidence sets. Our approach is shown to be considerably less conservative than the current method, and is illustrated with an example on modeling the effect of smoking status and serum triglyceride level on the probability of the recurrence of a myocardial infarction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simultaneous confidence bands for Cox regression from semiparametric random censorship.
Mondal, Shoubhik; Subramanian, Sundarraman
2016-01-01
Cox regression is combined with semiparametric random censorship models to construct simultaneous confidence bands (SCBs) for subject-specific survival curves. Simulation results are presented to compare the performance of the proposed SCBs with the SCBs that are based only on standard Cox. The new SCBs provide correct empirical coverage and are more informative. The proposed SCBs are illustrated with two real examples. An extension to handle missing censoring indicators is also outlined.
Exact nonparametric confidence bands for the survivor function.
Matthews, David
2013-10-12
A method to produce exact simultaneous confidence bands for the empirical cumulative distribution function that was first described by Owen, and subsequently corrected by Jager and Wellner, is the starting point for deriving exact nonparametric confidence bands for the survivor function of any positive random variable. We invert a nonparametric likelihood test of uniformity, constructed from the Kaplan-Meier estimator of the survivor function, to obtain simultaneous lower and upper bands for the function of interest with specified global confidence level. The method involves calculating a null distribution and associated critical value for each observed sample configuration. However, Noe recursions and the Van Wijngaarden-Decker-Brent root-finding algorithm provide the necessary tools for efficient computation of these exact bounds. Various aspects of the effect of right censoring on these exact bands are investigated, using as illustrations two observational studies of survival experience among non-Hodgkin's lymphoma patients and a much larger group of subjects with advanced lung cancer enrolled in trials within the North Central Cancer Treatment Group. Monte Carlo simulations confirm the merits of the proposed method of deriving simultaneous interval estimates of the survivor function across the entire range of the observed sample. This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. It was begun while the author was visiting the Department of Statistics, University of Auckland, and completed during a subsequent sojourn at the Medical Research Council Biostatistics Unit in Cambridge. The support of both institutions, in addition to that of NSERC and the University of Waterloo, is greatly appreciated.
ATS-5 ranging receiver and L-band experiment. Volume 2: Data reduction and analysis
NASA Technical Reports Server (NTRS)
1971-01-01
The results of ranging and position location experiments performed at the NASA Application Technology Satellite ground station at Mojave California are presented. The experiments are simultaneous C-band and L-band ranging to ATS-5, simultaneous C-band and VHF ranging, simultaneous 24-hour ranging and position location using ATS-1, ATS-3, and ATS-5. The data handling and processing technique is also described.
Photometric Study of the Pulsating, Eclipsing Binary OO Dra
NASA Astrophysics Data System (ADS)
Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Yan, Z. Z.; Luo, Z. Q.; Luo, C. Q.
2014-12-01
We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.
Photometric study of the pulsating, eclipsing binary OO DRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X. B.; Deng, L. C.; Tian, J. F.
We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component.more » A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.« less
FADTTS: functional analysis of diffusion tensor tract statistics.
Zhu, Hongtu; Kong, Linglong; Li, Runze; Styner, Martin; Gerig, Guido; Lin, Weili; Gilmore, John H
2011-06-01
The aim of this paper is to present a functional analysis of a diffusion tensor tract statistics (FADTTS) pipeline for delineating the association between multiple diffusion properties along major white matter fiber bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these white matter tract properties in various diffusion tensor imaging studies. The FADTTS integrates five statistical tools: (i) a multivariate varying coefficient model for allowing the varying coefficient functions in terms of arc length to characterize the varying associations between fiber bundle diffusion properties and a set of covariates, (ii) a weighted least squares estimation of the varying coefficient functions, (iii) a functional principal component analysis to delineate the structure of the variability in fiber bundle diffusion properties, (iv) a global test statistic to test hypotheses of interest, and (v) a simultaneous confidence band to quantify the uncertainty in the estimated coefficient functions. Simulated data are used to evaluate the finite sample performance of FADTTS. We apply FADTTS to investigate the development of white matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment. FADTTS can be used to facilitate the understanding of normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles. The advantages of FADTTS compared with the other existing approaches are that they are capable of modeling the structured inter-subject variability, testing the joint effects, and constructing their simultaneous confidence bands. However, FADTTS is not crucial for estimation and reduces to the functional analysis method for the single measure. Copyright © 2011 Elsevier Inc. All rights reserved.
Dobolyi, David G; Dodson, Chad S
2013-12-01
Confidence judgments for eyewitness identifications play an integral role in determining guilt during legal proceedings. Past research has shown that confidence in positive identifications is strongly associated with accuracy. Using a standard lineup recognition paradigm, we investigated accuracy using signal detection and ROC analyses, along with the tendency to choose a face with both simultaneous and sequential lineups. We replicated past findings of reduced rates of choosing with sequential as compared to simultaneous lineups, but notably found an accuracy advantage in favor of simultaneous lineups. Moreover, our analysis of the confidence-accuracy relationship revealed two key findings. First, we observed a sequential mistaken identification overconfidence effect: despite an overall reduction in false alarms, confidence for false alarms that did occur was higher with sequential lineups than with simultaneous lineups, with no differences in confidence for correct identifications. This sequential mistaken identification overconfidence effect is an expected byproduct of the use of a more conservative identification criterion with sequential than with simultaneous lineups. Second, we found a steady drop in confidence for mistaken identifications (i.e., foil identifications and false alarms) from the first to the last face in sequential lineups, whereas confidence in and accuracy of correct identifications remained relatively stable. Overall, we observed that sequential lineups are both less accurate and produce higher confidence false identifications than do simultaneous lineups. Given the increasing prominence of sequential lineups in our legal system, our data argue for increased scrutiny and possibly a wholesale reevaluation of this lineup format. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Analyzing shear band formation with high resolution X-ray diffraction
Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang; ...
2018-01-10
Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of ‘signatures’ of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientationmore » within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation.« less
VizieR Online Data Catalog: Visible colors of Centaurs and KBOs (Peixinho+, 2015)
NASA Astrophysics Data System (ADS)
Peixinho, N.; Delsanti, A.; Doressoundiram, A.
2015-02-01
Table 2: significant Spearman-rho correlations detected between all colors and all orbital parameters of Centaurs, scattered disk objects, scattered or detached objects, Plutinos, other resonants, classical KBOs, binary or multiple KBOs, KBOs (without Haumea family and retrograde orbits), all objects (also without Haumea family and retrograde orbits), and KBOs except classical KBOs (also without Haumea family and retrograde orbits). First and second columns indicate the variables, third column the number of objects with both variables measured, forth column indicate the correlation value and its 68.2% error interval, fifth column indicates the p-value of the correlation, sixth column indicate the equivalent confidence level of the p-value in Gaussian sigmas, columns seven to nine indicate the detail of the False Discovery Correction for confidence levels of 2.5σ and 3σ (see Sect. 3.4), tenth column indicates the maximum detectable rho at a 2.5σ confidence level with a 10% risk of missing it, eleventh column indicates the maximum detectable rho at a 3σ confidence level with a 10% risk of missing it (see Sect. 3.2) Table 5: Compilation of R-band absolute magnitude, not corrected for the phase-angle, of Spectral gradient, B-V, V-R, R-I, V-I, B-I, B-R, and corresponding orbital and orbital related parameters of 366 Centaurs and KBOs. For each object/observation, we computed the reflectance spectrum using equation (3) from Delsanti et al. (2001A&A...380..347D), when 2 or more filters were available. The resulting spectra were manually checked, and obviously deviant data from a given filter were removed from the dataset. Color indexes are computed within one given epoch, leading to colors obtained from "simultaneous" photometry (the different bands were observed over a maximum timespan of 2 hours). Then the average colors indexes and their one σ errors from different papers and epochs are computed for each object using equations (1) and (2) from Hainaut and Delsanti (2002A&A...389..641H), providing more accurate estimates when multiple measurements are available. Absolute magnitude in R band (HR) are computed for each object/epoch whenever a R-band magnitude is available, using: HR=R-5log(rΔ), where R is the R-band magnitude, r and Δ the helio- and geocentric distances at the time of observations, respectively.Different values for a given object were also averaged using the aforementioned equations (1) and (2). We did not correct for any phase effect. (5 data files).
Investigation of several aspects of LANDSAT-4 data quality
NASA Technical Reports Server (NTRS)
Wrigley, R. C. (Principal Investigator)
1983-01-01
No insurmountable problems in change detection analysis were found when portions of scenes collected simultaneously by LANDSAT 4 MSS and either LANDSAT 2 or 3. The cause of the periodic noise in LANDSAT 4 MSS images which had a RMS value of approximately 2DN should be corrected in the LANDSAT D instrument before its launch. Analysis of the P-tape of the Arkansas scene shows bands within the same focal plane very well registered except for the thermal band which was misregistered by approximately three 28.5 meter pixels in both directions. It is possible to derive tight confidence bounds for the registration errors. Preliminary analyses of the Sacramento and Arkansas scenes reveals a very high degree of consistency with earlier results for bands 3 vs 1, 3 vs 4, and 3 vs 5. Results are presented in table form. It is suggested that attention be given to the standard deviations of registrations errors to judge whether or not they will be within specification once any known mean registration errors are corrected. Techniques used for MTF analysis of a Washington scene produced noisy results.
Simultaneous Multi-band Detection of Low Surface Brightness Galaxies with Markovian Modeling
NASA Astrophysics Data System (ADS)
Vollmer, B.; Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch.; van Driel, W.; Bonnarel, F.; Louys, M.; Sabatini, S.; MacArthur, L. A.
2013-02-01
We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings—typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg2 in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered ~20% more mock LSB galaxies and ~40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of 90% is reached for sources with r e > 3'' at a mean surface brightness level of μg = 27.7 mag arcsec-2 and a central surface brightness of μ0 g = 26.7 mag arcsec-2. About 10% of the false positives are artifacts, the rest being background galaxies. We have found our proposed Markovian LSB galaxy detection method to be complementary to the application of matched filters and an optimized use of SExtractor, and to have the following advantages: it is scale free, can be applied simultaneously to several bands, and is well adapted for crowded regions on the sky. .
Dual-excitation wavelength resonance Raman explosives detector
NASA Astrophysics Data System (ADS)
Yellampalle, Balakishore; Sluch, Mikhail; Wu, Hai-Shan; Martin, Robert; McCormick, William; Ice, Robert; Lemoff, Brian E.
2013-05-01
Deep-ultraviolet resonance Raman spectroscopy (DUVRRS) is a promising approach to stand-off detection of explosive traces due to: 1) resonant enhancement of Raman cross-section, 2) λ-4-cross-section enhancement, and 3) fluorescence and solar background free signatures. For trace detection, these signal enhancements more than offset the small penetration depth due to DUV absorption. A key challenge for stand-off sensors is to distinguish explosives, with high confidence, from a myriad of unknown background materials that may have interfering spectral peaks. To address this, we are developing a stand-off explosive sensor using DUVRRS with two simultaneous DUV excitation wavelengths. Due to complex interplay of resonant enhancement, self-absorption and laser penetration depth, significant amplitude variation is observed between corresponding Raman bands with different excitation wavelengths. These variations with excitation wavelength provide an orthogonal signature that complements the traditional Raman signature to improve specificity relative to single-excitation-wavelength techniques. As part of this effort, we are developing two novel CW DUV lasers, which have potential to be compact, and a compact dual-band high throughput DUV spectrometer, capable of simultaneous detection of Raman spectra in two spectral windows. We have also developed a highly sensitive algorithm for the detection of explosives under low signal-to-noise situations.
Simultaneous dual-band radar development
NASA Technical Reports Server (NTRS)
Liskow, C. L.
1974-01-01
Efforts to design and construct an airborne imaging radar operating simultaneously at L band and X band with an all-inertial navigation system in order to form a dual-band radar system are described. The areas of development include duplex transmitters, receivers, and recorders, a control module, motion compensation for both bands, and adaptation of a commercial inertial navigation system. Installation of the system in the aircraft and flight tests are described. Circuit diagrams, performance figures, and some radar images are presented.
Analyzing shear band formation with high resolution X-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang
Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of 'signatures' of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientationmore » within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
NASA Astrophysics Data System (ADS)
Biller, Beth A.; Vos, Johanna; Buenzli, Esther; Allers, Katelyn; Bonnefoy, Mickaël; Charnay, Benjamin; Bézard, Bruno; Allard, France; Homeier, Derek; Bonavita, Mariangela; Brandner, Wolfgang; Crossfield, Ian; Dupuy, Trent; Henning, Thomas; Kopytova, Taisiya; Liu, Michael C.; Manjavacas, Elena; Schlieder, Joshua
2018-02-01
We present simultaneous Hubble Space Telescope (HST) WFC3+Spitzer IRAC variability monitoring for the highly variable young (∼20 Myr) planetary-mass object PSO J318.5‑22. Our simultaneous HST + Spitzer observations covered approximately two rotation periods with Spitzer and most of a rotation period with the HST. We derive a period of 8.6 ± 0.1 hr from the Spitzer light curve. Combining this period with the measured v\\sin i for this object, we find an inclination of 56.°2 ± 8.°1. We measure peak-to-trough variability amplitudes of 3.4% ± 0.1% for Spitzer Channel 2 and 4.4%–5.8% (typical 68% confidence errors of ∼0.3%) in the near-IR bands (1.07–1.67 μm) covered by the WFC3 G141 prism—the mid-IR variability amplitude for PSO J318.5‑22 is one of the highest variability amplitudes measured in the mid-IR for any brown dwarf or planetary-mass object. Additionally, we detect phase offsets ranging from 200° to 210° (typical error of ∼4°) between synthesized near-IR light curves and the Spitzer mid-IR light curve, likely indicating depth-dependent longitudinal atmospheric structure in this atmosphere. The detection of similar variability amplitudes in wide spectral bands relative to absorption features suggests that the driver of the variability may be inhomogeneous clouds (perhaps a patchy haze layer over thick clouds), as opposed to hot spots or compositional inhomogeneities at the top-of-atmosphere level.
NASA Astrophysics Data System (ADS)
Takalo, Leo O.; Sillanpaa, Aimo
1993-08-01
We present the first ever simultaneous optical linear and circular polarization observations of blazars. These polarizations have been measured simultaneously in UBVRI-bands in three blazars; 3C 66A, OJ 287 and Markarian 421. Measured linear polarization in 3C 66A was the largest ever observed, at PR equals 33.1 plus/minus .5%. In 3C 66A we detected small circular polarization on the other bands, except U. In OJ 287 we detected variable circular polarization in the U-band.
Simultaneous localization of photons and phonons in defect-free dodecagonal phoxonic quasicrystals
NASA Astrophysics Data System (ADS)
Xu, Bihang; Wang, Zhong; Tan, Yixiang; Yu, Tianbao
2018-03-01
In dodecagonal phoxonic quasicrytals (PhXQCs) with a very high rotational symmetry, we demonstrate numerically large phoxonic band gaps (PhXBGs, the coexistence of photonic and phononic band gaps). By computing the existence and dependence of PhXBGs on the choice of radius of holes, we find that PhXQCs can possess simultaneous photonic and phononic band gaps over a rather wide range of geometric parameters. Furthermore, localized modes of THz photons and tens of MHz phonons may exist inside and outside band gaps in defect-free PhXQCs. The electromagnetic and elastic field can be confined simultaneously around the quasicrytals center and decay in a length scale of several basic cells. As a kind of quasiperiodic structures, 12-fold PhXQCs provide a good candidate for simultaneously tailoring electromagnetic and elastic waves. Moreover, these structures exhibit some interesting characteristics due to the very high symmetry.
Yu, Tianbao; Wang, Zhong; Liu, Wenxing; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua
2016-04-18
We report numerically large and complete photonic and phononic band gaps that simultaneously exist in eight-fold phoxonic quasicrystals (PhXQCs). PhXQCs can possess simultaneous photonic and phononic band gaps over a wide range of geometric parameters. Abundant localized modes can be achieved in defect-free PhXQCs for all photonic and phononic polarizations. These defect-free localized modes exhibit multiform spatial distributions and can confine simultaneously electromagnetic and elastic waves in a large area, thereby providing rich selectivity and enlarging the interaction space of optical and elastic waves. The simulated results based on finite element method show that quasiperiodic structures formed of both solid rods in air and holes in solid materials can simultaneously confine and tailor electromagnetic and elastic waves; these structures showed advantages over the periodic counterparts.
NASA Astrophysics Data System (ADS)
Bell, A.; Tang, G.; Yang, P.; Wu, D.
2017-12-01
Due to their high spatial and temporal coverage, cirrus clouds have a profound role in regulating the Earth's energy budget. Variability of their radiative, geometric, and microphysical properties can pose significant uncertainties in global climate model simulations if not adequately constrained. Thus, the development of retrieval methodologies able to accurately retrieve ice cloud properties and present associated uncertainties is essential. The effectiveness of cirrus cloud retrievals relies on accurate a priori understanding of ice radiative properties, as well as the current state of the atmosphere. Current studies have implemented information content theory analyses prior to retrievals to quantify the amount of information that should be expected on parameters to be retrieved, as well as the relative contribution of information provided by certain measurement channels. Through this analysis, retrieval algorithms can be designed in a way to maximize the information in measurements, and therefore ensure enough information is present to retrieve ice cloud properties. In this study, we present such an information content analysis to quantify the amount of information to be expected in retrievals of cirrus ice water path and particle effective diameter using sub-millimeter and thermal infrared radiometry. Preliminary results show these bands to be sensitive to changes in ice water path and effective diameter, and thus lend confidence their ability to simultaneously retrieve these parameters. Further quantification of sensitivity and the information provided from these bands can then be used to design and optimal retrieval scheme. While this information content analysis is employed on a theoretical retrieval combining simulated radiance measurements, the methodology could in general be applicable to any instrument or retrieval approach.
Thielens, Arno; Agneessens, Sam; Van Torre, Patrick; Van den Bossche, Matthias; Eeftens, Marloes; Huss, Anke; Vermeulen, Roel; de Seze, René; Mazet, Paul; Cardis, Elisabeth; Röösli, Martin; Martens, Luc; Joseph, Wout
2018-01-01
A multi-band Body-Worn Distributed exposure Meter (BWDM) calibrated for simultaneous measurement of the incident power density in 11 telecommunication frequency bands, is proposed. The BDWM consists of 22 textile antennas integrated in a garment and is calibrated on six human subjects in an anechoic chamber to assess its measurement uncertainty in terms of 68% confidence interval of the on-body antenna aperture. It is shown that by using multiple antennas in each frequency band, the uncertainty of the BWDM is 22 dB improved with respect to single nodes on the front and back of the torso and variations are decreased to maximum 8.8 dB. Moreover, deploying single antennas for different body morphologies results in a variation up to 9.3 dB, which is reduced to 3.6 dB using multiple antennas for six subjects with various body mass index values. The designed BWDM, has an improved uncertainty of up to 9.6 dB in comparison to commercially available personal exposure meters calibrated on body. As an application, an average incident power density in the range of 26.7–90.8 μW·m−2 is measured in Ghent, Belgium. The measurements show that commercial personal exposure meters underestimate the actual exposure by a factor of up to 20.6. PMID:29346280
The diagnostic value of narrow-band imaging for early and invasive lung cancer: a meta-analysis.
Zhu, Juanjuan; Li, Wei; Zhou, Jihong; Chen, Yuqing; Zhao, Chenling; Zhang, Ting; Peng, Wenjia; Wang, Xiaojing
2017-07-01
This study aimed to compare the ability of narrow-band imaging to detect early and invasive lung cancer with that of conventional pathological analysis and white-light bronchoscopy. We searched the PubMed, EMBASE, Sinomed, and China National Knowledge Infrastructure databases for relevant studies. Meta-disc software was used to perform data analysis, meta-regression analysis, sensitivity analysis, and heterogeneity testing, and STATA software was used to determine if publication bias was present, as well as to calculate the relative risks for the sensitivity and specificity of narrow-band imaging vs those of white-light bronchoscopy for the detection of early and invasive lung cancer. A random-effects model was used to assess the diagnostic efficacy of the above modalities in cases in which a high degree of between-study heterogeneity was noted with respect to their diagnostic efficacies. The database search identified six studies including 578 patients. The pooled sensitivity and specificity of narrow-band imaging were 86% (95% confidence interval: 83-88%) and 81% (95% confidence interval: 77-84%), respectively, and the pooled sensitivity and specificity of white-light bronchoscopy were 70% (95% confidence interval: 66-74%) and 66% (95% confidence interval: 62-70%), respectively. The pooled relative risks for the sensitivity and specificity of narrow-band imaging vs the sensitivity and specificity of white-light bronchoscopy for the detection of early and invasive lung cancer were 1.33 (95% confidence interval: 1.07-1.67) and 1.09 (95% confidence interval: 0.84-1.42), respectively, and sensitivity analysis showed that narrow-band imaging exhibited good diagnostic efficacy with respect to detecting early and invasive lung cancer and that the results of the study were stable. Narrow-band imaging was superior to white light bronchoscopy with respect to detecting early and invasive lung cancer; however, the specificities of the two modalities did not differ significantly.
Confidence bands for measured economically optimal nitrogen rates
USDA-ARS?s Scientific Manuscript database
While numerous researchers have computed economically optimal N rate (EONR) values from measured yield – N rate data, nearly all have neglected to compute or estimate the statistical reliability of these EONR values. In this study, a simple method for computing EONR and its confidence bands is descr...
Modeling of a Robust Confidence Band for the Power Curve of a Wind Turbine.
Hernandez, Wilmar; Méndez, Alfredo; Maldonado-Correa, Jorge L; Balleteros, Francisco
2016-12-07
Having an accurate model of the power curve of a wind turbine allows us to better monitor its operation and planning of storage capacity. Since wind speed and direction is of a highly stochastic nature, the forecasting of the power generated by the wind turbine is of the same nature as well. In this paper, a method for obtaining a robust confidence band containing the power curve of a wind turbine under test conditions is presented. Here, the confidence band is bound by two curves which are estimated using parametric statistical inference techniques. However, the observations that are used for carrying out the statistical analysis are obtained by using the binning method, and in each bin, the outliers are eliminated by using a censorship process based on robust statistical techniques. Then, the observations that are not outliers are divided into observation sets. Finally, both the power curve of the wind turbine and the two curves that define the robust confidence band are estimated using each of the previously mentioned observation sets.
Modeling of a Robust Confidence Band for the Power Curve of a Wind Turbine
Hernandez, Wilmar; Méndez, Alfredo; Maldonado-Correa, Jorge L.; Balleteros, Francisco
2016-01-01
Having an accurate model of the power curve of a wind turbine allows us to better monitor its operation and planning of storage capacity. Since wind speed and direction is of a highly stochastic nature, the forecasting of the power generated by the wind turbine is of the same nature as well. In this paper, a method for obtaining a robust confidence band containing the power curve of a wind turbine under test conditions is presented. Here, the confidence band is bound by two curves which are estimated using parametric statistical inference techniques. However, the observations that are used for carrying out the statistical analysis are obtained by using the binning method, and in each bin, the outliers are eliminated by using a censorship process based on robust statistical techniques. Then, the observations that are not outliers are divided into observation sets. Finally, both the power curve of the wind turbine and the two curves that define the robust confidence band are estimated using each of the previously mentioned observation sets. PMID:27941604
SIMULTANEOUS LINEAR AND CIRCULAR OPTICAL POLARIMETRY OF ASTEROID (4) VESTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiktorowicz, Sloane J.; Nofi, Larissa A., E-mail: sloanew@ucolick.org
From a single 3.8 hr observation of the asteroid (4) Vesta at 13.°7 phase angle with the POlarimeter at Lick for Inclination Studies of Hot jupiters 2 (POLISH2) at the Lick Observatory Shane 3 m telescope, we confirm rotational modulation of linear polarization in the B and V bands. We measure the peak-to-peak modulation in the degree of linear polarization to be ΔP = (294 ± 35) × 10{sup −6} (ppm) and time-averaged ΔP/P = 0.0575 ± 0.0069. After rotating the plane of linear polarization to the scattering plane, asteroidal rotational modulation is detected with 12σ confidence and observed solelymore » in Stokes Q/I. POLISH2 simultaneously measures Stokes I, Q, U (linear polarization), and V (circular polarization), but we detect no significant circular polarization with a 1σ upper limit of 78 ppm in the B band. Circular polarization is expected to arise from multiple scattering of sunlight by rough surfaces, and it has previously been detected in nearly all other classes of solar system bodies except for asteroids. Subsequent observations may be compared with surface albedo maps from the Dawn Mission, which may allow the identification of compositional variation across the asteroidal surface. These results demonstrate the high accuracy achieved by POLISH2 at the Lick 3 m telescope, which is designed to directly detect scattered light from spatially unresolvable exoplanets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hainline, Laura J.; Morgan, Christopher W.; MacLeod, Chelsea L.
2013-09-01
We present three complete seasons and two half-seasons of Sloan Digital Sky Survey (SDSS) r-band photometry of the gravitationally lensed quasar SBS 0909+532 from the U.S. Naval Observatory, as well as two seasons each of SDSS g-band and r-band monitoring from the Liverpool Robotic Telescope. Using Monte Carlo simulations to simultaneously measure the system's time delay and model the r-band microlensing variability, we confirm and significantly refine the precision of the system's time delay to {Delta}t{sub AB} = 50{sub -4}{sup +2} days, where the stated uncertainties represent the bounds of the formal 1{sigma} confidence interval. There may be a conflictmore » between the time delay measurement and a lens consisting of a single galaxy. While models based on the Hubble Space Telescope astrometry and a relatively compact stellar distribution can reproduce the observed delay, the models have somewhat less dark matter than we would typically expect. We also carry out a joint analysis of the microlensing variability in the r and g bands to constrain the size of the quasar's continuum source at these wavelengths, obtaining log {l_brace}(r{sub s,r}/cm)[cos i/0.5]{sup 1/2}{r_brace} = 15.3 {+-} 0.3 and log {l_brace}(r{sub s,g}/cm)[cos i/0.5]{sup 1/2}{r_brace} = 14.8 {+-} 0.9, respectively. Our current results do not formally constrain the temperature profile of the accretion disk but are consistent with the expectations of standard thin disk theory.« less
Corrected confidence bands for functional data using principal components.
Goldsmith, J; Greven, S; Crainiceanu, C
2013-03-01
Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. Copyright © 2013, The International Biometric Society.
Corrected Confidence Bands for Functional Data Using Principal Components
Goldsmith, J.; Greven, S.; Crainiceanu, C.
2014-01-01
Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. PMID:23003003
NASA Technical Reports Server (NTRS)
Ackleson, S. G.; Klemas, V.
1985-01-01
LANDSAT Thematic Mapper (TM) and Multispectral Scanner (MSS) imagery generated simultaneously over Guinea Marsh, Virginia, are assessed in the ability to detect submerged aquatic, bottom-adhering plant canopies (SAV). An unsupervised clustering algorithm is applied to both image types and the resulting classifications compared to SAV distributions derived from color aerial photography. Class confidence and accuracy are first computed for all water areas and then only shallow areas where water depth is less than 6 feet. In both the TM and MSS imagery, masking water areas deeper than 6 ft. resulted in greater classification accuracy at confidence levels greater than 50%. Both systems perform poorly in detecting SAV with crown cover densities less than 70%. On the basis of the spectral resolution, radiometric sensitivity, and location of visible bands, TM imagery does not offer a significant advantage over MSS data for detecting SAV in Lower Chesapeake Bay. However, because the TM imagery represents a higher spatial resolution, smaller SAV canopies may be detected than is possible with MSS data.
NASA Technical Reports Server (NTRS)
Dunham, R. S.
1976-01-01
FORTRAN coded out-of-core equation solvers that solve using direct methods symmetric banded systems of simultaneous algebraic equations. Banded, frontal and column (skyline) solvers were studied as well as solvers that can partition the working area and thus could fit into any available core. Comparison timings are presented for several typical two dimensional and three dimensional continuum type grids of elements with and without midside nodes. Extensive conclusions are also given.
Zhou, Lei; Wang, Rui; Yao, Chi; Li, Xiaomin; Wang, Chengli; Zhang, Xiaoyan; Xu, Congjian; Zeng, Aijun; Zhao, Dongyuan; Zhang, Fan
2015-04-24
The identification of potential diagnostic markers and target molecules among the plethora of tumour oncoproteins for cancer diagnosis requires facile technology that is capable of quantitatively analysing multiple biomarkers in tumour cells and tissues. Diagnostic and prognostic classifications of human tumours are currently based on the western blotting and single-colour immunohistochemical methods that are not suitable for multiplexed detection. Herein, we report a general and novel method to prepare single-band upconversion nanoparticles with different colours. The expression levels of three biomarkers in breast cancer cells were determined using single-band upconversion nanoparticles, western blotting and immunohistochemical technologies with excellent correlation. Significantly, the application of antibody-conjugated single-band upconversion nanoparticle molecular profiling technology can achieve the multiplexed simultaneous in situ biodetection of biomarkers in breast cancer cells and tissue specimens and produce more accurate results for the simultaneous quantification of proteins present at low levels compared with classical immunohistochemical technology.
Spatial correlations of interdecadal variation in global surface temperatures
NASA Technical Reports Server (NTRS)
Mann, Michael E.; Park, Jeffrey
1993-01-01
We have analyzed spatial correlation patterns of interdecadal global surface temperature variability from an empirical perspective. Using multitaper coherence estimates from 140-yr records, we find that correlations between hemispheres are significant at about 95 percent confidence for nonrandomness for most of the frequency band in the 0.06-0.24 cyc/yr range. Coherence estimates of pairs of 100-yr grid-point temperature data series near 5-yr period reveal teleconnection patterns consistent with known patterns of ENSO variability. Significant correlated variability is observed near 15 year period, with the dominant teleconnection pattern largely confined to the Northern Hemisphere. Peak-to-peak Delta-T is at about 0.5 deg, with simultaneous warming and cooling of discrete patches on the earth's surface. A global average of this pattern would largely cancel.
Confidence-Accuracy Calibration in Absolute and Relative Face Recognition Judgments
ERIC Educational Resources Information Center
Weber, Nathan; Brewer, Neil
2004-01-01
Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced…
0.5-45GHz Simultaneous Transmit and Receive (STAR) Antenna System for Electronic Attack
2016-03-17
0.5-45GHz Simultaneous Transmit and Receive (STAR) Antenna System for Electronic Attack Mohamed Elmansouri, Prathap Valaleprasannakumar, Elie...Colorado, US, 80309 Abstract: A shared antenna aperture for simultaneous transmit and receive (STAR) operating from 0.5 to 45GHz with isolation...50dB over the entire band is discussed. The co-located antenna aperture system is designed across 4 overlapping bands: 0.5-2.5GHz, 2-7GHz, 6-19GHz
Occurrence features of simultaneous H+- and He+-band EMIC emissions in the outer radiation belt
NASA Astrophysics Data System (ADS)
Fu, Song; He, Fengming; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Liu, Jiang
2018-04-01
As an important loss mechanism of radiation belt electrons, electromagnetic ion cyclotron (EMIC) waves show up as three distinct frequency bands below the hydrogen (H+), helium (He+), and oxygen (O+) ion gyrofrequencies. Compared to O+-band EMIC waves, H+- and He+-band emissions generally occur more frequently and result in more efficient scattering removal of <∼5 MeV relativistic electrons. Therefore, knowledge about the occurrence of these two bands is important for understanding the evolution of the relativistic electron population. To evaluate the occurrence pattern and wave properties of H+- and He+-band EMIC waves when they occur concurrently, we investigate 64 events of multi-band EMIC emissions identified from high quality Van Allen Probes wave data. Our quantitative results demonstrate a strong occurrence dependence of the multi-band EMIC emissions on magnetic local time (MLT) and L-shell to mainly concentrate on the dayside region of L = ∼4-6. We also find that the average magnetic field amplitude of H+-band waves is larger than that of He+-band waves only when L < 4.5 and AE∗ < 300 nT, and He+-band emissions are more intense under all other conditions. In contrast to 5 events that have average H+-band amplitude over 2 nT, 19 events exhibit >2 nT He+-band amplitude, indicating that the He+-band waves can be more easily amplified than the H+-band waves under the same circumstances. For simultaneous occurrences of the two EMIC wave bands, their frequencies vary with L-shell and geomagnetic activity: the peak wave frequency of H+-band emissions varies between 0.25 and 0.8 fcp with the average between 0.25 and 0.6 fcp, while that of He+-band emissions varies between 0.03 and 0.23 fcp with the average between 0.05 and 0.15 fcp. These newly observed occurrence features of simultaneous H+- and He+-band EMIC emissions provide improved information to quantify the overall contribution of multi-band EMIC waves to the loss processes of radiation belt electrons.
Phase Grating Design for a Dual-Band Snapshot Imaging Spectrometer
NASA Astrophysics Data System (ADS)
Scholl, James F.; Dereniak, Eustace L.; Descour, Michael R.; Tebow, Christopher P.; Volin, Curtis E.
2003-01-01
Infrared spectral features have proved useful in the identification of threat objects. Dual-band focal-plane arrays (FPAs) have been developed in which each pixel consists of superimposed midwave and long-wave photodetectors [Dyer and Tidrow, Conference on Infrared Detectors and Focal Plane Arrays (SPIE, Bellingham, Wash., 1999), pp. 434 -440 . Combining dual-band FPAs with imaging spectrometers capable of interband hyperspectral resolution greatly improves spatial target discrimination. The computed-tomography imaging spectrometer (CTIS) ] [Descour and Dereniak, Appl. Opt. 34, 4817 -4826 (1995) has proved effective in producing hyperspectral images in a single spectral region. Coupling the CTIS with a dual-band detector can produce two hyperspectral data cubes simultaneously. We describe the design of two-dimensional, surface-relief, computer-generated hologram dispersers that permit image information in these two bands simultaneously.
Demonstration of 1024x1024 pixel dual-band QWIP focal plane array
NASA Astrophysics Data System (ADS)
Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.; Rafol, S. B.
2010-04-01
QWIPs are well known for their stability, high pixel-pixel uniformity and high pixel operability which are quintessential parameters for large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). The dual-band QWIP device was developed by stacking two multi-quantum-well stacks tuned to absorb two different infrared wavelengths. The full width at half maximum (FWHM) of the mid-wave infrared (MWIR) band extends from 4.4 - 5.1 μm and FWHM of the long-wave infrared (LWIR) band extends from 7.8 - 8.8 μm. Dual-band QWIP detector arrays were hybridized with direct injection 30 μm pixel pitch megapixel dual-band simultaneously readable CMOS read out integrated circuits using the indium bump hybridization technique. The initial dual-band megapixel QWIP FPAs were cooled to 68K operating temperature. The preliminary data taken from the first megapixel QWIP FPA has shown system NE▵T of 27 and 40 mK for MWIR and LWIR bands respectively.
Inference for local autocorrelations in locally stationary models.
Zhao, Zhibiao
2015-04-01
For non-stationary processes, the time-varying correlation structure provides useful insights into the underlying model dynamics. We study estimation and inferences for local autocorrelation process in locally stationary time series. Our constructed simultaneous confidence band can be used to address important hypothesis testing problems, such as whether the local autocorrelation process is indeed time-varying and whether the local autocorrelation is zero. In particular, our result provides an important generalization of the R function acf() to locally stationary Gaussian processes. Simulation studies and two empirical applications are developed. For the global temperature series, we find that the local autocorrelations are time-varying and have a "V" shape during 1910-1960. For the S&P 500 index, we conclude that the returns satisfy the efficient-market hypothesis whereas the magnitudes of returns show significant local autocorrelations.
The V3, V4 and V6 bands of formaldehyde: A spectral catalog from 900 cm(-1) to 1580 cm(-1)
NASA Technical Reports Server (NTRS)
Nadler, Shachar; Reuter, D. C.; Daunt, S. J.; Johns, J. W. C.
1988-01-01
The results of a complete high resolution study of the three vibration-rotation bands v sub 3, v sub 4, and V sub 6 using both TDLs and FT-IR spectroscopy are presented. The reults are given in terms of a table of over 8000 predicted transition frequencies and strengths. A plot of the predicted and calculated spectra is shown. Over 3000 transitions were assigned and used in the simultaneous analysis of the three bands. The simultaneous fit permitted a rigorous study of Coriolis and other type iterations among bands yielding improved molecular constants. Line intensities of 28 transitions measured by a TDL and 20 transitions from FTS data were used, along with the eigenvectors from the frequency fitting, in a least squares analysis to evaluate the band strengths.
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele
2012-06-01
Using diffractive micro-lenses configured in an array and placed in close proximity to the focal plane array will enable a small compact simultaneous multispectral imaging camera. This approach can be applied to spectral regions from the ultraviolet (UV) to the long-wave infrared (LWIR). The number of simultaneously imaged spectral bands is determined by the number of individually configured diffractive optical micro-lenses (lenslet) in the array. Each lenslet images at a different wavelength determined by the blaze and set at the time of manufacturing based on application. In addition, modulation of the focal length of the lenslet array with piezoelectric or electro-static actuation will enable spectral band fill-in allowing hyperspectral imaging. Using the lenslet array with dual-band detectors will increase the number of simultaneous spectral images by a factor of two when utilizing multiple diffraction orders. Configurations and concept designs will be presented for detection application for biological/chemical agents, buried IED's and reconnaissance. The simultaneous detection of multiple spectral images in a single frame of data enhances the image processing capability by eliminating temporal differences between colors and enabling a handheld instrument that is insensitive to motion.
Estimating the reliability of eyewitness identifications from police lineups
Wixted, John T.; Mickes, Laura; Dunn, John C.; Clark, Steven E.; Wells, William
2016-01-01
Laboratory-based mock crime studies have often been interpreted to mean that (i) eyewitness confidence in an identification made from a lineup is a weak indicator of accuracy and (ii) sequential lineups are diagnostically superior to traditional simultaneous lineups. Largely as a result, juries are increasingly encouraged to disregard eyewitness confidence, and up to 30% of law enforcement agencies in the United States have adopted the sequential procedure. We conducted a field study of actual eyewitnesses who were assigned to simultaneous or sequential photo lineups in the Houston Police Department over a 1-y period. Identifications were made using a three-point confidence scale, and a signal detection model was used to analyze and interpret the results. Our findings suggest that (i) confidence in an eyewitness identification from a fair lineup is a highly reliable indicator of accuracy and (ii) if there is any difference in diagnostic accuracy between the two lineup formats, it likely favors the simultaneous procedure. PMID:26699467
Estimating the reliability of eyewitness identifications from police lineups.
Wixted, John T; Mickes, Laura; Dunn, John C; Clark, Steven E; Wells, William
2016-01-12
Laboratory-based mock crime studies have often been interpreted to mean that (i) eyewitness confidence in an identification made from a lineup is a weak indicator of accuracy and (ii) sequential lineups are diagnostically superior to traditional simultaneous lineups. Largely as a result, juries are increasingly encouraged to disregard eyewitness confidence, and up to 30% of law enforcement agencies in the United States have adopted the sequential procedure. We conducted a field study of actual eyewitnesses who were assigned to simultaneous or sequential photo lineups in the Houston Police Department over a 1-y period. Identifications were made using a three-point confidence scale, and a signal detection model was used to analyze and interpret the results. Our findings suggest that (i) confidence in an eyewitness identification from a fair lineup is a highly reliable indicator of accuracy and (ii) if there is any difference in diagnostic accuracy between the two lineup formats, it likely favors the simultaneous procedure.
Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D.; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-kwang
2016-01-01
The organic–inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley–Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon–electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance. PMID:27444014
Debnath, Mithu; Iungo, Giacomo Valerio; Brewer, W. Alan; ...
2017-03-29
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were carried out with scanning wind lidars and Ka-band radars. Specifically, step–stare measurements were collected simultaneously with three scanning Doppler lidars, while two scanning Ka-band radars carried out simultaneous range height indicator (RHI) scans. The XPIA experiment provided the unique opportunity to compare directly virtual-tower measurements performed simultaneously with Ka-band radars and Doppler wind lidars. Furthermore, multiple-Doppler measurements were assessed against sonic anemometer data acquired from the meteorological tower (met-tower) present at the BAOmore » site and a lidar wind profiler. As a result, this survey shows that – despite the different technologies, measurement volumes and sampling periods used for the lidar and radar measurements – a very good accuracy is achieved for both remote-sensing techniques for probing horizontal wind speed and wind direction with the virtual-tower scanning technique.« less
An ultra-thin compact polarization-independent hexa-band metamaterial absorber
NASA Astrophysics Data System (ADS)
Munaga, Praneeth; Bhattacharyya, Somak; Ghosh, Saptarshi; Srivastava, Kumar Vaibhav
2018-04-01
In this paper, an ultra-thin compact hexa-band metamaterial absorber has been presented using single layer of dielectric. The proposed design is polarization independent in nature owing to its fourfold symmetry and exhibits high angular stability up to 60° angles of incidences for both TE and TM polarizations. The structure is ultrathin in nature with 2 mm thickness, which corresponds to λ/11.4 ( λ is the operating wavelength with respect to the highest frequency of absorption). Six distinct absorption frequencies are obtained from the design, which can be distributed among three regions, namely lower band, middle band and higher band; each region consists of two closely spaced frequencies. Thereafter, the dimensions of the proposed structure are adjusted in such a way that bandwidth enhancement occurs at each region separately. Simultaneous bandwidth enhancements at middle and higher bands have also been achieved by proper optimization of the geometrical parameters. The structure with simultaneous bandwidth enhancements at X- and Ku-bands is later fabricated and the experimental absorptivity response is in agreement with the simulated one.
Functional Nonlinear Mixed Effects Models For Longitudinal Image Data
Luo, Xinchao; Zhu, Lixing; Kong, Linglong; Zhu, Hongtu
2015-01-01
Motivated by studying large-scale longitudinal image data, we propose a novel functional nonlinear mixed effects modeling (FN-MEM) framework to model the nonlinear spatial-temporal growth patterns of brain structure and function and their association with covariates of interest (e.g., time or diagnostic status). Our FNMEM explicitly quantifies a random nonlinear association map of individual trajectories. We develop an efficient estimation method to estimate the nonlinear growth function and the covariance operator of the spatial-temporal process. We propose a global test and a simultaneous confidence band for some specific growth patterns. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply FNMEM to investigate the spatial-temporal dynamics of white-matter fiber skeletons in a national database for autism research. Our FNMEM may provide a valuable tool for charting the developmental trajectories of various neuropsychiatric and neurodegenerative disorders. PMID:26213453
Trend Extraction in Functional Data of Amplitudes of R and T Waves in Exercise Electrocardiogram
NASA Astrophysics Data System (ADS)
Cammarota, Camillo; Curione, Mario
The amplitudes of R and T waves of the electrocardiogram (ECG) recorded during the exercise test show both large inter- and intra-individual variability in response to stress. We analyze a dataset of 65 normal subjects undergoing ambulatory test. We model the dataset of R and T series in the framework of functional data, assuming that the individual series are realizations of a non-stationary process, centered at the population trend. We test the time variability of this trend computing a simultaneous confidence band and the zero crossing of its derivative. The analysis shows that the amplitudes of the R and T waves have opposite responses to stress, consisting respectively in a bump and a dip at the early recovery stage. Our findings support the existence of a relationship between R and T wave amplitudes and respectively diastolic and systolic ventricular volumes.
Band excitation method applicable to scanning probe microscopy
Jesse, Stephen; Kalinin, Sergei V.
2015-08-04
Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.
Band excitation method applicable to scanning probe microscopy
Jesse, Stephen; Kalinin, Sergei V.
2017-01-03
Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.
A dual-polarized broadband planar antenna and channelizing filter bank for millimeter wavelengths
NASA Astrophysics Data System (ADS)
O'Brient, Roger; Ade, Peter; Arnold, Kam; Edwards, Jennifer; Engargiola, Greg; Holzapfel, William L.; Lee, Adrian T.; Myers, Michael J.; Quealy, Erin; Rebeiz, Gabriel; Richards, Paul; Suzuki, Aritoki
2013-02-01
We describe the design, fabrication, and testing of a broadband log-periodic antenna coupled to multiple cryogenic bolometers. This detector architecture, optimized here for astrophysical observations, simultaneously receives two linear polarizations with two octaves of bandwidth at millimeter wavelengths. The broad bandwidth signal received by the antenna is divided into sub-bands with integrated in-line frequency-selective filters. We demonstrate two such filter banks: a diplexer with two sub-bands and a log-periodic channelizer with seven contiguous sub-bands. These detectors have receiver efficiencies of 20%-40% and percent level polarization isolation. Superconducting transition-edge sensor bolometers detect the power in each sub-band and polarization. We demonstrate circularly symmetric beam patterns, high polarization isolation, accurately positioned bands, and high optical efficiency. The pixel design is applicable to astronomical observations of intensity and polarization at millimeter through sub-millimeter wavelengths. As compared with an imaging array of pixels measuring only one band, simultaneous measurements of multiple bands in each pixel has the potential to result in a higher signal-to-noise measurement while also providing spectral information. This development facilitates compact systems with high mapping speeds for observations that require information in multiple frequency bands.
Powell, L.A.; Conroy, M.J.; Hines, J.E.; Nichols, J.D.; Krementz, D.G.
2000-01-01
Biologists often estimate separate survival and movement rates from radio-telemetry and mark-recapture data from the same study population. We describe a method for combining these data types in a single model to obtain joint, potentially less biased estimates of survival and movement that use all available data. We furnish an example using wood thrushes (Hylocichla mustelina) captured at the Piedmont National Wildlife Refuge in central Georgia in 1996. The model structure allows estimation of survival and capture probabilities, as well as estimation of movements away from and into the study area. In addition, the model structure provides many possibilities for hypothesis testing. Using the combined model structure, we estimated that wood thrush weekly survival was 0.989 ? 0.007 ( ?SE). Survival rates of banded and radio-marked individuals were not different (alpha hat [S_radioed, ~ S_banded]=log [S hat _radioed/ S hat _banded]=0.0239 ? 0.0435). Fidelity rates (weekly probability of remaining in a stratum) did not differ between geographic strata (psi hat=0.911 ? 0.020; alpha hat [psi11, psi22]=0.0161 ? 0.047), and recapture rates ( = 0.097 ? 0.016) banded and radio-marked individuals were not different (alpha hat [p_radioed, p_banded]=0.145 ? 0.655). Combining these data types in a common model resulted in more precise estimates of movement and recapture rates than separate estimation, but ability to detect stratum or mark-specific differences in parameters was week. We conducted simulation trials to investigate the effects of varying study designs on parameter accuracy and statistical power to detect important differences. Parameter accuracy was high (relative bias [RBIAS] <2 %) and confidence interval coverage close to nominal, except for survival estimates of banded birds for the 'off study area' stratum, which were negatively biased (RBIAS -7 to -15%) when sample sizes were small (5-10 banded or radioed animals 'released' per time interval). To provide adequate data for useful inference from this model, study designs should seek a minimum of 25 animals of each marking type observed (marked or observed via telemetry) in each time period and geographic stratum.
USDA-ARS?s Scientific Manuscript database
The design and calibration of a three-band image acquisition system was reported. The prototype system developed in this research was a three-band spectral imaging system that acquired two visible (510 and 568 nm) images and a near-infrared (NIR) (800 nm) image simultaneously. The system was proto...
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-31
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles methodmore » can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.« less
NASA Astrophysics Data System (ADS)
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-01
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X =N ,P ,As ,Sb , and II-VI compounds, (Zn or Cd)X , with X =O ,S ,Se ,Te . By correcting (1) the binary band gaps at high-symmetry points Γ , L , X , (2) the separation of p -and d -orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles method can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeong Ae; Sohn, Bong Won; Jung, Taehyun
We present the catalog of the KVN Calibrator Survey (KVNCS). This first part of the KVNCS is a single-dish radio survey simultaneously conducted at 22 ( K band) and 43 GHz ( Q band) using the Korean VLBI Network (KVN) from 2009 to 2011. A total of 2045 sources are selected from the VLBA Calibrator Survey with an extrapolated flux density limit of 100 mJy at the K band. The KVNCS contains 1533 sources in the K band with a flux density limit of 70 mJy and 553 sources in the Q band with a flux density limit of 120more » mJy; it covers the whole sky down to −32.°5 in decl. We detected 513 sources simultaneously in the K and Q bands; ∼76% of them are flat-spectrum sources (−0.5 ≤ α ≤ 0.5). From the flux–flux relationship, we anticipated that most of the radiation of many of the sources comes from the compact components. The sources listed in the KVNCS therefore are strong candidates for high-frequency VLBI calibrators.« less
RRI-GBT MULTI-BAND RECEIVER: MOTIVATION, DESIGN, AND DEVELOPMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maan, Yogesh; Deshpande, Avinash A.; Chandrashekar, Vinutha
2013-01-15
We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bandsmore » pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debnath, Mithu; Iungo, Giacomo Valerio; Brewer, W. Alan
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were carried out with scanning wind lidars and Ka-band radars. Specifically, step–stare measurements were collected simultaneously with three scanning Doppler lidars, while two scanning Ka-band radars carried out simultaneous range height indicator (RHI) scans. The XPIA experiment provided the unique opportunity to compare directly virtual-tower measurements performed simultaneously with Ka-band radars and Doppler wind lidars. Furthermore, multiple-Doppler measurements were assessed against sonic anemometer data acquired from the meteorological tower (met-tower) present at the BAOmore » site and a lidar wind profiler. As a result, this survey shows that – despite the different technologies, measurement volumes and sampling periods used for the lidar and radar measurements – a very good accuracy is achieved for both remote-sensing techniques for probing horizontal wind speed and wind direction with the virtual-tower scanning technique.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
... relating to Auction 92. A. Auction Structure i. Simultaneous Multiple-Round Auction Design 7. The Bureau proposes to auction all licenses included in Auction 92 using the Commission's standard simultaneous... competitiveness and economic efficiency of a simultaneous multiple-round auction may be enhanced if such...
A Ka-band (32 GHz) beacon link experiment (KABLE) with Mars Observer
NASA Technical Reports Server (NTRS)
Riley, A. L.; Hansen, D. M.; Mileant, A.; Hartop, R. W.
1987-01-01
A proposal for a Ka-Band (32 GHz) Link Experiment (KABLE) with the Mars Observer mission was submitted to NASA. The experiment will rely on the fourth harmonic of the spacecraft X-band transmitter to generate a 33.6 GHz signal. The experiment will rely also on the Deep Space Network (DSN) receiving station equipped to simultaneously receive X- and Ka-band signals. The experiment will accurately measure the spacecraft-to-Earth telecommunication link performance at Ka-band and X-band (8.4 GHz).
Simultaneous measurements of L- and S-band tree shadowing for space-Earth communications
NASA Technical Reports Server (NTRS)
Vogel, Wolfhard J.; Torrence, Geoffrey W.; Lin, Hsin P.
1995-01-01
We present results from simultaneous L- and S-Band slant-path fade measurements through trees. One circularly-polarized antenna was used at each end of the dual-frequency link to provide information on the correlation of tree shadowing at 1620 and 2500 MHz. Fades were measured laterally in the shadow region with 5 cm spacing. Fade differences between L- and S-Band had a normal distribution with low means and standard deviations from 5.2 to 7.5 dB. Spatial variations occurred with periods larger than 1-2 wavelengths. Swept measurements over 160 MHz spans showed that the stdv. of power as function of frequency increased from approximately 1-6 dB at locations with mean fades of 4 and 20 dB, respectively. At a 5 dB fade, the central 90% of fade slopes were within a range of 0.7 (1.9) dB/MHz at L-(S-) Band.
NASA Technical Reports Server (NTRS)
Morabito, D. D.
2002-01-01
Simultaneous dual-frequency Ka-band (32 GHz) and X-band (8.4 GHz) carrier signal data have been acquired during the superior conjunction of the Cassini spacecraft June 2001, using the NASA Deep Space Network's facilities located in Goldstone, California. The solar elongation angle of the observations varied from -4.1 degrees (-16 solar radii) to -0.6 degrees (-2.3 solar radii). The observed coronal and solar effects on the signals include spectral broadening, amplitude scintillation, phase scintillation, and increased noise. The measurements were generally consistent with existing solar models, except during solar transient events when the signatures of the measurements were observed to increase significantly above the quiet background levels. This is the second solar conjunction of Cassini for which simultaneous X/Ka data were acquired. Both solar conjunctions, conducted in May 2000 and June 2001, occurred near the peak of the current 11 year solar cycle.
Bustamante, Javier; Pacios, Fernando; Díaz-Delgado, Ricardo; Aragonés, David
2009-05-01
We have used Landsat-5 TM and Landsat-7 ETM+ images together with simultaneous ground-truth data at sample points in the Doñana marshes to predict water turbidity and depth from band reflectance using Generalized Additive Models. We have point samples for 12 different dates simultaneous with 7 Landsat-5 and 5 Landsat-7 overpasses. The best model for water turbidity in the marsh explained 38% of variance in ground-truth data and included as predictors band 3 (630-690 nm), band 5 (1550-1750 nm) and the ratio between bands 1 (450-520 nm) and 4 (760-900 nm). Water turbidity is easier to predict for water bodies like the Guadalquivir River and artificial ponds that are deep and not affected by bottom soil reflectance and aquatic vegetation. For the latter, a simple model using band 3 reflectance explains 78.6% of the variance. Water depth is easier to predict than turbidity. The best model for water depth in the marsh explains 78% of the variance and includes as predictors band 1, band 5, the ratio between band 2 (520-600 nm) and band 4, and bottom soil reflectance in band 4 in September, when the marsh is dry. The water turbidity and water depth models have been developed in order to reconstruct historical changes in Doñana wetlands during the last 30 years using the Landsat satellite images time series.
A low-power current-reuse dual-band analog front-end for multi-channel neural signal recording.
Sepehrian, H; Gosselin, B
2014-01-01
Thoroughly studying the brain activity of freely moving subjects requires miniature data acquisition systems to measure and wirelessly transmit neural signals in real time. In this application, it is mandatory to simultaneously record the bioelectrical activity of a large number of neurons to gain a better knowledge of brain functions. However, due to limitations in transferring the entire raw data to a remote base station, employing dedicated data reduction techniques to extract the relevant part of neural signals is critical to decrease the amount of data to transfer. In this work, we present a new dual-band neural amplifier to separate the neuronal spike signals (SPK) and the local field potential (LFP) simultaneously in the analog domain, immediately after the pre-amplification stage. By separating these two bands right after the pre-amplification stage, it is possible to process LFP and SPK separately. As a result, the required dynamic range of the entire channel, which is determined by the signal-to-noise ratio of the SPK signal of larger bandwidth, can be relaxed. In this design, a new current-reuse low-power low-noise amplifier and a new dual-band filter that separates SPK and LFP while saving capacitors and pseudo resistors. A four-channel dual-band (SPK, LFP) analog front-end capable of simultaneously separating SPK and LFP is implemented in a TSMC 0.18 μm technology. Simulation results present a total power consumption per channel of 3.1 μw for an input referred noise of 3.28 μV and a NEF for 2.07. The cutoff frequency of the LFP band is fc=280 Hz, and fL=725 Hz and fL=11.2 KHz for SPK, with 36 dB gain for LFP band 46 dB gain for SPK band.
Prestimulus alpha-band power biases visual discrimination confidence, but not accuracy.
Samaha, Jason; Iemi, Luca; Postle, Bradley R
2017-09-01
The magnitude of power in the alpha-band (8-13Hz) of the electroencephalogram (EEG) prior to the onset of a near threshold visual stimulus predicts performance. Together with other findings, this has been interpreted as evidence that alpha-band dynamics reflect cortical excitability. We reasoned, however, that non-specific changes in excitability would be expected to influence signal and noise in the same way, leaving actual discriminability unchanged. Indeed, using a two-choice orientation discrimination task, we found that discrimination accuracy was unaffected by fluctuations in prestimulus alpha power. Decision confidence, on the other hand, was strongly negatively correlated with prestimulus alpha power. This finding constitutes a clear dissociation between objective and subjective measures of visual perception as a function of prestimulus cortical excitability. This dissociation is predicted by a model where the balance of evidence supporting each choice drives objective performance but only the magnitude of evidence supporting the selected choice drives subjective reports, suggesting that human perceptual confidence can be suboptimal with respect to tracking objective accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
Martí, A; Antolín, E; Stanley, C R; Farmer, C D; López, N; Díaz, P; Cánovas, E; Linares, P G; Luque, A
2006-12-15
We present intermediate-band solar cells manufactured using quantum dot technology that show for the first time the production of photocurrent when two sub-band-gap energy photons are absorbed simultaneously. One photon produces an optical transition from the intermediate-band to the conduction band while the second pumps an electron from the valence band to the intermediate-band. The detection of this two-photon absorption process is essential to verify the principles of operation of the intermediate-band solar cell. The phenomenon is the cornerstone physical principle that ultimately allows the production of photocurrent in a solar cell by below band gap photon absorption, without degradation of its output voltage.
NASA Astrophysics Data System (ADS)
Kovalskyy, V.; Roy, D. P.
2014-12-01
The successful February 2013 launch of the Landsat 8 satellite is continuing the 40+ year legacy of the Landsat mission. The payload includes the Operational Land Imager (OLI) that has a new 1370 mm band designed to monitor cirrus clouds and the Thermal Infrared Sensor (TIRS) that together provide 30m low, medium and high confidence cloud detections and 30m low and high confidence cirrus cloud detections. A year of Landsat 8 data over the Conterminous United States (CONUS), composed of 11,296 acquisitions, was analyzed comparing the spatial and temporal incidence of these cloud and cirrus states. This revealed (i) 36.5% of observations were detected with high confidence cloud with spatio-temporal patterns similar to those observed by previous Landsat 7 cloud analyses, (ii) 29.2% were high confidence cirrus, (iii) 20.9% were both high confidence cloud and high confidence cirrus, (iv) 8.3% were detected as high confidence cirrus but not as high confidence cloud. The results illustrate the value of the cirrus band for improved Landsat 8 terrestrial monitoring but imply that the historical CONUS Landsat archive has a similar 8% of undetected cirrus contaminated pixels. The implications for long term Landsat time series records, including the global Web Enabled Landsat Data (WELD) product record, are discussed.
ERIC Educational Resources Information Center
Olson, Catherine Applefeld
2009-01-01
In this article, the author shares the background of James Daugherty in music education, a band director who was elected to serve as president of the North Carolina Bandmasters Association, the highest leadership role for a band director in the state. His passion for music only grew in high school, where he gleaned both musical and life lessons…
NASA Astrophysics Data System (ADS)
Liu, Yanyu; Zhou, Wei; Wu, Ping
2017-02-01
A systematic study has been carried out to research the effect of Ta monodoping and (Ta, N)-codoping on the electronic structure and optical properties of SrTiO3. The results indicate that the incorporation of N into the SrTiO3 lattice is in favor of the substitution of Ta at a Ti site, which is the most favorable structure with respect to both the energetic stability and high photocatalytic activity. Furthermore, the carrier recombination centers induced by Ta monodoping are passivated in the (Ta, N)-codoped SrTiO3 system with Ta at a Ti site. Simultaneous incorporation of N and Ta results in a band gap decreasing about 0.7 eV due to the appearance of the new states hybridized by N-p states with the O-p states above the valence band. The band alignment verifies that the (Ta, N)-codoped SrTiO3 simultaneously meets the criteria of band-edge energetic positions and band gap for the overall water splitting under visible light.
[Comparison of band ligation with sclerotherapy for the treatment of bleeding esophageal varices].
Ríos, Eddy; Sierralta, Armando; Abarzúa, Marigraciela; Bastías, Joaquín; Barra, María Inés
2012-06-01
Endoscopic band ligation is the treatment of choice for bleeding esophageal varices. However it is not clear if this procedure is associated with less early and late mortality than sclerotherapy. To assess rates of re-bleeding and mortality in cohorts of patients with bleeding esophageal varices treated with endoscopic injection or band ligation. Analysis of medical records and endoscopy reports of two cohorts of patients with bleeding esophageal varices, treated between 1990 and 2010. Of these, 54 patients were treated with sclerotherapy and 90 patients with band ligation. A third cohort of 116 patients that did not require endoscopic treatment, was included. The mean analyzed follow up period was 2.5 years (range 1-16). Collection of data was retrospective for patients treated with sclerotherapy and prospective for patients treated with band ligation. Rates of re-bleeding and medium term mortality were assessed. During the month ensuing the first endoscopic treatment, re-bleeding was recorded in 39 and 72% of patients treated with band ligation and sclerotherapy, respectively (p < 0.01). The relative risk of bleeding after band ligation was 0.53 (95% confidence limits 0.390.73). Death rates until the end of follow up were 20 and 48% among patients with treated with band ligation and sclerotherapy, respectively (p < 0.01), with a relative risk of dying for patients subjected to band ligation of 0.41 (95% confidence limits 0.25-0.68). Band ligation was associated with lower rates of re-bleeding and mortality in these cohorts of patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Jianghua; He Xiangtao; Boettcher, Markus
We present the results of our optical monitoring of the BL Lac object S5 0716+714 over seven nights in 2006 December. The monitoring was carried out simultaneously at three optical wavelengths with a novel photometric system. The object did not show large-amplitude internight variations during this period. Intranight variations were observed on four nights and probably on one more. Strong bluer-when-brighter chromatism was detected on both intranight and internight timescales. The intranight variation amplitude decreases in the wavelength sequence of B', R', and V'. Cross-correlation analyses revealed that the variability at the B' and V' bands leads that at themore » R' band by about 30 minutes on one night.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... issues relating to the conduct of Auction 96. A. Auction Design i. Simultaneous Multiple-Round Auction--With or Without Package Bidding 14. The Bureau proposes to conduct Auction 96 using a simultaneous... incorporate provisions for a simple form of package bidding into the simultaneous multiple-round auction. In...
Confidence-accuracy calibration in absolute and relative face recognition judgments.
Weber, Nathan; Brewer, Neil
2004-09-01
Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced negligibly different CA calibration, whereas no significant difference was observed for simultaneous and sequential mini-lineups. Further, the effect of difficulty on CA calibration was equivalent across judgment and mini-lineup types. It is interesting to note that positive (i.e., old) recognition judgments demonstrated strong CA calibration whereas negative (i.e., new) judgments evidenced little or no CA association. Implications for eyewitness identification are discussed. (c) 2004 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.
2018-01-01
We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.
Narrow-band generation in random distributed feedback fiber laser.
Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V
2013-07-15
Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.
Simultaneous S- and X-band uplink-downlink performance at DSS 13
NASA Technical Reports Server (NTRS)
Freiley, A. J.
1988-01-01
The Deep Space Station 13 26-meter antenna with the second generation S/X feedcone was tested to determine the dual S- and X-band (2.1 to 2.3 GHz and 7.1 to 8.5 GHz) transmit and receive performance. Measurements were conducted using the 20 kW transmitters at S- and X-band while simultaneously receiving S- and X-band. This system proved to be very quiet compared with the other DSN antennas. Under normal tracking configurations, no noise burst or intermodulation product (IMP) activity was detectable to the -175 dBm level. To prove the instrumentation's ability to detect such phenomena, an IMP generator was introduced onto the system with positive, verifiable results. The IMP occurred at the -162 dBm level, accompanied by moderate noise burst activity, and was readily repeatable. The measurement also showed the possible need for additional fourth channel filtering in the system to reduce the effect of the transmitter power on the low noise amplifiers.
Wen, Xuanyuan; Wang, Baoju; Wu, Ruitao; Li, Nana; He, Sailing; Zhan, Qiuqiang
2016-06-01
Simultaneous deep macroscopic imaging and microscopic imaging is in urgent demand, but is challenging to achieve experimentally due to the lack of proper fluorescent probes. Herein, we have designed and successfully synthesized simplex Er(3+)-doped upconversion nanoparticles (UCNPs) with double excitation bands for simultaneous deep macroscopic and microscopic imaging. The material structure and the excitation wavelength of Er(3+)-singly doped UCNPs were further optimized to enhance the upconversion emission efficiency. After optimization, we found that NaYF4:30%Er(3+)@NaYF4:2%Er(3+) could simultaneously achieve efficient two-photon excitation (2PE) macroscopic tissue imaging and three-photon excitation (3PE) deep microscopic when excited by 808 nm continuous wave (CW) and 1480 nm CW lasers, respectively. In vitro cell imaging and in vivo imaging have also been implemented to demonstrate the feasibility and potential of the proposed simplex Er(3+)-doped UCNPs as bioprobe.
NASA Astrophysics Data System (ADS)
Cvetkovic, Sascha D.; Schirris, Johan; de With, Peter H. N.
2009-01-01
For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are unacceptable. Compression of the dynamic range is therefore a compulsory part of any high-end video processing chain because standard monitors are inherently Low- Dynamic Range (LDR) devices with maximally two orders of display dynamic range. In real-time camera processing, many complex scenes are improved with local contrast enhancements, bringing details to the best possible visibility. In this paper, we show how a multi-scale high-frequency enhancement scheme, in which gain is a non-linear function of the detail energy, can be used for the dynamic range compression of HDR real-time video camera signals. We also show the connection of our enhancement scheme to the processing way of the Human Visual System (HVS). Our algorithm simultaneously controls perceived sharpness, ringing ("halo") artifacts (contrast) and noise, resulting in a good balance between visibility of details and non-disturbance of artifacts. The overall quality enhancement, suitable for both HDR and LDR scenes, is based on a careful selection of the filter types for the multi-band decomposition and a detailed analysis of the signal per frequency band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Hongyi, E-mail: h.zhan@uq.edu.au; Zeng, Weidong; Wang, Gui
2015-04-15
The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentationmore » of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.« less
Elastic superlattices with simultaneously negative effective mass density and shear modulus
NASA Astrophysics Data System (ADS)
Solís-Mora, I. S.; Palomino-Ovando, M. A.; Pérez-Rodríguez, F.
2013-03-01
We investigate the vibrational properties of superlattices with layers of rubber and polyurethane foam, which can be either conventional or auxetic. Phononic dispersion calculations show a second pass band for transverse modes inside the lowest band gap of the longitudinal modes. In such a band, the superlattices behave as a double-negative elastic metamaterial since the effective dynamic mass density and shear modulus are both negative. The pass band is associated to a Fabry-Perot resonance band which turns out to be very narrow as a consequence of the high contrast between the acoustic impedances of the superlattice components.
Tri-band optical coherence tomography for lipid and vessel spectroscopic imaging
NASA Astrophysics Data System (ADS)
Yu, Luoqin; Kang, Jiqiang; Wang, Xie; Wei, Xiaoming; Chan, Kin-Tak; Lee, Nikki P.; Wong, Kenneth K. Y.
2016-03-01
Optical coherence tomography (OCT) has been utilized for various functional imaging applications. One of its highlights comes from spectroscopic imaging, which can simultaneously obtain both morphologic and spectroscopic information. Assisting diagnosis and therapeutic intervention of coronary artery disease is one of the major directions in spectroscopic OCT applications. Previously Tanaka et al. have developed a spectral domain OCT (SDOCT) to image lipid distribution within blood vessel [1]. In the meantime, Fleming et al. have demonstrated optical frequency domain imaging (OFDI) by a 1.3-μm swept source and quadratic discriminant analysis model [2]. However, these systems suffered from burdensome computation as the optical properties' variation was calculated from a single-band illumination that provided limited contrast. On the other hand, multi-band OCT facilitates contrast enhancement with separated wavelength bands, which further offers an easier way to distinguish different materials. Federici and Dubois [3] and Tsai and Chan [4] have demonstrated tri-band OCT systems to further enhance the image contrast. However, these previous work provided under-explored functional properties. Our group has reported a dual-band OCT system based on parametrically amplified Fourier domain mode-locked (FDML) laser with time multiplexing scheme [5] and a dual-band FDML laser OCT system with wavelength-division multiplexing [6]. Fiber optical parametric amplifier (OPA) can be ideally incorporated in multi-band spectroscopic OCT system as it has a broad amplification window and offers an additional output range at idler band, which is phase matched with the signal band. The sweeping ranges can thus overcome traditional wavelength bands that are limited by intra-cavity amplifiers in FDML lasers. Here, we combines the dual-band FDML laser together with fiber OPA, which consequently renders a simultaneous tri-band output at 1.3, 1.5, and 1.6 μm, for intravascular applications. Lipid and blood vessel distribution can be subsequently visualized with the tri-band OCT system by ex vivo experiments using porcine artery model with artificial lipid plaques.
Blanche, Paul; Proust-Lima, Cécile; Loubère, Lucie; Berr, Claudine; Dartigues, Jean-François; Jacqmin-Gadda, Hélène
2015-03-01
Thanks to the growing interest in personalized medicine, joint modeling of longitudinal marker and time-to-event data has recently started to be used to derive dynamic individual risk predictions. Individual predictions are called dynamic because they are updated when information on the subject's health profile grows with time. We focus in this work on statistical methods for quantifying and comparing dynamic predictive accuracy of this kind of prognostic models, accounting for right censoring and possibly competing events. Dynamic area under the ROC curve (AUC) and Brier Score (BS) are used to quantify predictive accuracy. Nonparametric inverse probability of censoring weighting is used to estimate dynamic curves of AUC and BS as functions of the time at which predictions are made. Asymptotic results are established and both pointwise confidence intervals and simultaneous confidence bands are derived. Tests are also proposed to compare the dynamic prediction accuracy curves of two prognostic models. The finite sample behavior of the inference procedures is assessed via simulations. We apply the proposed methodology to compare various prediction models using repeated measures of two psychometric tests to predict dementia in the elderly, accounting for the competing risk of death. Models are estimated on the French Paquid cohort and predictive accuracies are evaluated and compared on the French Three-City cohort. © 2014, The International Biometric Society.
DOT National Transportation Integrated Search
1975-06-01
Several L-band satellite communications tests with the NASA ATS-6 spacecraft and the U.S. Coast Guard Cutter SHERMAN are described. The tests included 1200 bit per second digital data, voice, simultaneous data and voice, ranging, multipath and antenn...
Bias Selective Operation of Sb-Based Two-Color Photodetectors
NASA Technical Reports Server (NTRS)
Abedin, M. N.; Refaat, Tamer F.; Bhat, Ishwara B.; Xiao, Yegao; Johnson, David G.
2006-01-01
Multicolor detectors have a strong potential to replace conventional single-color detectors in application dealing with the simultaneous detection of more than one wavelength. This will lead to the reduction of heavy and complex optical components now required for spectral discrimination for multi-wavelengths applications. This multicolor technology is simpler, lighter, compact and cheaper with respect to the single-color ones. In this paper, Sb-based two-color detectors fabrication and characterization are presented. The color separation is achieved by fabricating dual band pn junction on a GaSb substrate. The first band consists of an InGaAsSb pn junction for long wavelength detection, while the second band consists of a GaSb pn junction for shorter wavelength detection. Three metal contacts were deposited to access the individual junctions. Surface morphology of multi-layer thin films and also device characteristics of quasi-dual band photodetector were characterized using standard optical microscope and electro-optic techniques respectively. Dark current measurements illustrated the diode behavior of both lattice-matched detector bands. Spectral response measurements indicated either independent operation of both detectors simultaneously, or selective operation of one detector, by the polarity of the bias voltage, while serially accessing both devices.
FOUR WAVE MIXING SPECTROSCOPY OF THE NO_3 tilde{B} ^2E' - tilde{X} ^2A_2' transition
NASA Astrophysics Data System (ADS)
Fukushima, Masaru; Ishiwata, Takashi
2014-06-01
The tilde{B} ^2E' - tilde{X} ^2A_2' electronic transition of NO_3 generated in a supersonic free jet expansion was investigated by four wave mixing ( 4WM ) spectroscopy. The degenerated 4WM and laser induced fluorescence ( LIF ) spectra around the 0_0^0 band region were measured simultaneously. The D4WM spectrum shows broad band features for the 0_0^0 band similar to that of the LIF spectrum. The broad 0_0^0 band does not consist of one sub-band, but of several bands. The intensity distribution of the sub-bands of the D4WM spectrum is similar, but not identical to that of the LIF spectrum.
Nondestructive detection of pork quality based on dual-band VIS/NIR spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Wenxiu; Peng, Yankun; Li, Yongyu; Tang, Xiuying; Liu, Yuanyuan
2015-05-01
With the continuous development of living standards and the relative change of dietary structure, consumers' rising and persistent demand for better quality of meat is emphasized. Colour, pH value, and cooking loss are important quality attributes when evaluating meat. To realize nondestructive detection of multi-parameter of meat quality simultaneously is popular in production and processing of meat and meat products. The objectives of this research were to compare the effectiveness of two bands for rapid nondestructive and simultaneous detection of pork quality attributes. Reflectance spectra of 60 chilled pork samples were collected from a dual-band visible/near-infrared spectroscopy system which covered 350-1100 nm and 1000-2600 nm. Then colour, pH value and cooking loss were determined by standard methods as reference values. Standard normal variables transform (SNVT) was employed to eliminate the spectral noise. A spectrum connection method was put forward for effective integration of the dual-band spectrum to make full use of the whole efficient information. Partial least squares regression (PLSR) and Principal component analysis (PCA) were applied to establish prediction models using based on single-band spectrum and dual-band spectrum, respectively. The experimental results showed that the PLSR model based on dual-band spectral information was superior to the models based on single band spectral information with lower root means quare error (RMSE) and higher accuracy. The PLSR model based on dual-band (use the overlapping part of first band) yielded the best prediction result with correlation coefficient of validation (Rv) of 0.9469, 0.9495, 0.9180, 0.9054 and 0.8789 for L*, a*, b*, pH value and cooking loss, respectively. This mainly because dual-band spectrum can provide sufficient and comprehensive information which reflected the quality attributes. Data fusion from dual-band spectrum could significantly improve pork quality parameters prediction performance. The research also indicated that multi-band spectral information fusion has potential to comprehensively evaluate other quality and safety attributes of pork.
Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook
2018-05-14
Simultaneous multiple access (MA) within a single wavelength can increase the data rate and split ratio in a passive optical network while optical beat interference (OBI) becomes serious in the uplink. Previous techniques to reduce OBI were limited by their complexity and lack of extendibility; as well, bandwidth allocation among MA signals is needed for single photo diode (PD) detection. We proposed and experimentally demonstrated full-band optical pulse division multiplexing-based MA (OPDMA) in an optical access network, which can effectively reduce OBI with extendibility and fully utilize frequency resources of optical modulator without bandwidth allocation in a single-wavelength MA.
Chandrayaan-2 dual-frequency SAR: Further investigation into lunar water and regolith
NASA Astrophysics Data System (ADS)
Putrevu, Deepak; Das, Anup; Vachhani, J. G.; Trivedi, Sanjay; Misra, Tapan
2016-01-01
The Space Applications Centre (SAC), one of the major centers of the Indian Space Research Organization (ISRO), is developing a high resolution, dual-frequency Synthetic Aperture Radar as a science payload on Chandrayaan-2, ISRO's second moon mission. With this instrument, ISRO aims to further the ongoing studies of the data from S-band MiniSAR onboard Chandrayaan-1 (India) and the MiniRF of Lunar Reconnaissance Orbiter (USA). The SAR instrument has been configured to operate with both L- and S-bands, sharing a common antenna. The S-band SAR will provide continuity to the MiniSAR data, whereas L-band is expected to provide deeper penetration of the lunar regolith. The system will have a selectable slant-range resolution from 2 m to 75 m, along with standalone (L or S) and simultaneous (L and S) modes of imaging. Various features of the instrument like hybrid and full-polarimetry, a wide range of imaging incidence angles (∼10° to ∼35°) and the high spatial resolution will greatly enhance our understanding of surface properties especially in the polar regions of the Moon. The system will also help in resolving some of the ambiguities in interpreting high values of Circular Polarization Ratio (CPR) observed in MiniSAR data. The added information from full-polarimetric data will allow greater confidence in the results derived particularly in detecting the presence (and estimating the quantity) of water-ice in the polar craters. Being a planetary mission, the L&S-band SAR for Chandrayaan-2 faced stringent limits on mass, power and data rate (15 kg, 100 W and 160 Mbps respectively), irrespective of any of the planned modes of operation. This necessitated large-scale miniaturization, extensive use of on-board processing, and devices and techniques to conserve power. This paper discusses the scientific objectives which drive the requirement of a lunar SAR mission and presents the configuration of the instrument, along with a description of a number of features of the system, designed to meet the science goals with optimum resources.
Microwave time delays for the dual L-C-band feed system
NASA Technical Reports Server (NTRS)
Chen, J.
1989-01-01
A new dual-frequency feed system at Goldstone is designed to receive the Phobos spacecraft signal at L-band (1668 + or - 40 MHz) and transmit to the spacecraft at C-band (5008.75 + or - 5.00 MHz) simultaneously. Hence, calculations of the time delay from the C-band range calibration coupler to the phase center of the L-C dual feed and back to the L-band range calibration coupler are required to correct the range measurements. Time delays of the elements in the dual-frequency feed system are obtained mostly from computer calculations and partly from experimental measurements. The method used and results obtained are described.
A new three-band, two beam astronomical photo-polarimeter
NASA Astrophysics Data System (ADS)
Srinivasulu, G.; Raveendran, A. V.; Muneer, S.; Mekkaden, M. V.; Jayavel, N.; Somashekar, M. R.; Sagayanathan, K.; Ramamoorthy, S.; Rosario, M. J.; Jayakumar, K.
2014-09-01
We designed and built a new astronomical photo-polarimeter that can measure linear polarization simultaneously in three spectral bands. It has a Calcite beam-displacement prism as the analyzer. The ordinary and extra-ordinary emerging beams in each spectral bands are quasi-simultaneously detected by the same photomultiplier by using a high speed rotating chopper. A rotating superachromatic Pancharatnam halfwave plate is used to modulate the light incident on the analyzer. The spectral bands are isolated using appropriate dichroic and glass filters. We show that the reduction of 50% in the efficiency of the polarimeter because of the fact that the intensities of the two beams are measured alternately is partly compensated by the reduced time to be spent on the observation of the sky background. The use of a beam-displacement prism as the analyzer completely removes the polarization of background skylight, which is a major source of error during moonlit nights, especially, in the case of faint stars. The field trials that were carried out by observing several polarized and unpolarized stars show the performance of the polarimeter to be satisfactory.
NASA Astrophysics Data System (ADS)
Pahari, Mayukh; Gandhi, Poshak; Charles, Philip A.; Kotze, Marissa M.; Altamirano, Diego; Misra, Ranjeev
2017-07-01
We present results from simultaneous optical [South African Large Telescope (SALT)] and X-ray (Swift and INTEGRAL) observations of GS 1354-64/BW Cir during the 2015 hard state outburst. During the rising phase, optical/X-ray time series shows a strong anti-correlation with X-ray photons lagging optical. Optical and X-ray power spectra show quasi-periodic oscillations (QPOs) at a frequency of ˜18 mHz with a confidence level of at least 99 per cent. Simultaneous fitting of Swift/XRT and INTEGRAL spectra in the range 0.5-1000.0 keV shows non-thermal, power-law-dominated (>90 per cent) spectra with a hard power-law index of 1.48 ± 0.03, inner disc temperature of 0.12 ± 0.01 keV and an inner disc radius of ˜3000 km. All evidence is consistent with cyclo-synchrotron radiation in a non-thermal, hot electron cloud extending to ˜100 Schwarzschild radii being a major physical process for the origin of optical photons. At outburst peak about one month later, when the X-ray flux rises and the optical drops, the apparent features in the optical/X-ray correlation vanish and the optical auto correlation widens. Although ˜0.19 Hz QPO is observed from the X-ray power spectra, the optical variability is dominated by the broad-band noise, and the inner disc temperature increases. These results support a change in the dominant optical emission source between outburst rise and peak, consistent with a weakening of hot flow as the disc moves in.
Davelois, Kelly; Escalante, Hermes; Jara, César
2016-01-01
. To determine the diagnostic yield using western blotting to simultaneously detect antibodies in patients with human cysticercosis, hydatidosis, and human fascioliasis. Materials and methods . Cross-sectional study of diagnostic yield assessment. Excretory/secretory antigens were obtained from Taenia solium larvae, Echinococcus granulosus cysts, and the adult flukes of Fasciola hepática, which were then separated using the polyacrylamide gel electrophoresis technique, transferred, and attached to a nitrocellulose membrane to be probed with sera from the patient infected with the three parasites. The sensitivity of the technique was assessed using 300 individual serum samples, 60 pools of two parasites, and 20 pools of three parasites with 75 sera from patients with other parasites, 10 from patients with other diseases, and 15 from patients without parasites. Results . The technique revealed 13 glycoproteins (GP): GP 35, 31, 24, 23, 18, 17, 14, and 13 kDa for cysticercosis; GP 8, 16, and 21 kDa for hydatidosis; and GP 17 and 23 kDa for fascioliasis. The test detected the presence of antibodies with a sensitivity of 96% (95% confidence interval [CI] = 94.62-98.54%) in the detection of one or the thirteen bands, a specificity of 100% (95% CI = 99.50-100.00%); individually, there was a sensitivity for cysticercosis of 97% (95% CI = 93.16-100.00%), for hydatidosis of 94% (95% CI = 88.85-99.15%) and for fascioliasis of 96% (95% CI = 91.66-100.00%). Conclusions . Western blotting is effective in the simultaneous detection of antibodies in patients with human cysticercosis, hydatidosis, and fascioliasis, and it can be used as a diagnostic test to either rule out or confirm the presence of antibodies in endemic areas.
Shirai, Tomoyuki; Wang, Jianqing; Kawabe, Mayumi; Wake, Kanako; Watanabe, So-ichi; Takahashi, Satoru; Fujiwara, Osamu
2017-01-01
In everyday life, people are exposed to radiofrequency (RF) electromagnetic fields (EMFs) with multiple frequencies. To evaluate the possible adverse effects of multifrequency RF EMFs, we performed an experiment in which pregnant rats and their delivered offspring were simultaneously exposed to eight different communication signal EMFs (two of 800 MHz band, two of 2 GHz band, one of 2.4 GHz band, two of 2.5 GHz band and one of 5.2 GHz band). Thirty six pregnant Sprague-Dawley (SD) 10-week-old rats were divided into three groups of 12 rats: one control (sham exposure) group and two experimental (low- and high-level RF EMF exposure) groups. The whole body of the mother rats was exposed to the RF EMFs for 20 h per day from Gestational Day 7 to weaning, and F1 offspring rats (46–48 F1 pups per group) were then exposed up to 6 weeks of age also for 20 h per day. The parameters evaluated included the growth, gestational condition and organ weights of the dams; the survival rates, development, growth, physical and functional development, memory function, and reproductive ability of the F1 offspring; and the embryotoxicity and teratogenicity in the F2 rats. No abnormal findings were observed in the dams or F1 offspring exposed to the RF EMFs or to the F2 offspring for any of the parameters evaluated. Thus, under the conditions of the present experiment, simultaneous whole-body exposure to eight different communication signal EMFs at frequencies between 800 MHz and 5.2 GHz did not show any adverse effects on pregnancy or on the development of rats. PMID:27694283
Heers, Marcel; Hirschmann, Jan; Jacobs, Julia; Dümpelmann, Matthias; Butz, Markus; von Lehe, Marec; Elger, Christian E; Schnitzler, Alfons; Wellmer, Jörg
2014-09-01
Spike-based magnetoencephalography (MEG) source localization is an established method in the presurgical evaluation of epilepsy patients. Focal cortical dysplasias (FCDs) are associated with focal epileptic discharges of variable morphologies in the beta frequency band in addition to single epileptic spikes. Therefore, we investigated the potential diagnostic value of MEG-based localization of spike-independent beta band (12-30Hz) activity generated by epileptogenic lesions. Five patients with FCD IIB underwent MEG. In one patient, invasive EEG (iEEG) was recorded simultaneously with MEG. In two patients, iEEG succeeded MEG, and two patients had MEG only. MEG and iEEG were evaluated for epileptic spikes. Two minutes of iEEG data and MEG epochs with no spikes as well as MEG epochs with epileptic spikes were analyzed in the frequency domain. MEG oscillatory beta band activity was localized using Dynamic Imaging of Coherent Sources. Intralesional beta band activity was coherent between simultaneous MEG and iEEG recordings. Continuous 14Hz beta band power correlated with the rate of interictal epileptic discharges detected in iEEG. In cases where visual MEG evaluation revealed epileptic spikes, the sources of beta band activity localized within <2cm of the epileptogenic lesion as shown on magnetic resonance imaging. This result held even when visually marked epileptic spikes were deselected. When epileptic spikes were detectable in iEEG but not MEG, MEG beta band activity source localization failed. Source localization of beta band activity has the potential to contribute to the identification of epileptic foci in addition to source localization of visually marked epileptic spikes. Thus, this technique may assist in the localization of epileptic foci in patients with suspected FCD. Copyright © 2014 Elsevier B.V. All rights reserved.
Design and analysis of coplanar waveguide triple-band antenna based on defected ground structure
NASA Astrophysics Data System (ADS)
Lv, Hong; Chen, Wanli; Xia, Xinsheng; Qi, Peng; Sun, Quanling
2017-11-01
A kind of coplanar waveguide triple-band antenna based on defected ground structure is proposed, which has novel structure. Three batches with different frequency band are constructed by utilizing line combination, overlapping, and symmetry method. Stop band signals among three frequency bands are effectively suppressed by slots with different structures. More satisfactory impedance matching is realized by means of changing slot structure and improving return-loss. The presented antenna can operates simultaneously in various systems such as 3G / 4G wireless communication, Bluetooth, Worldwide Interoperability for Microwave Access, Wireless LAN. Test results show that the antenna has good radiation and gain in its working frequency band, and that it has great application potentials.
NASA Astrophysics Data System (ADS)
Martin, A. C. H.; Boutin, J.; Hauser, D.; Dinnat, E. P.
2014-08-01
The impact of the ocean surface roughness on the ocean L-band emissivity is investigated using simultaneous airborne measurements from an L-band radiometer (CAROLS) and from a C-band scatterometer (STORM) acquired in the Gulf of Biscay (off-the French Atlantic coasts) in November 2010. Two synergetic approaches are used to investigate the impact of surface roughness on the L-band brightness temperature (Tb). First, wind derived from the scatterometer measurements is used to analyze the roughness contribution to Tb as a function of wind and compare it with the one simulated by SMOS and Aquarius roughness models. Then residuals from this mean relationship are analyzed in terms of mean square slope derived from the STORM instrument. We show improvement of new radiometric roughness models derived from SMOS and Aquarius satellite measurements in comparison with prelaunch models. Influence of wind azimuth on Tb could not be evidenced from our data set. However, we point out the importance of taking into account large roughness scales (>20 cm) in addition to small roughness scale (5 cm) rapidly affected by wind to interpret radiometric measurements far from nadir. This was made possible thanks to simultaneous estimates of large and small roughness scales using STORM at small (7-16°) and large (30°) incidence angles.
Aleksić, J.; Antonelli, L. A.; Antoranz, P.; ...
2013-07-31
Here, BL Lacertae objects are variable at all energy bands on time scales down to minutes. To construct and interpret their spectral energy distribution (SED), simultaneous broad-band observations are mandatory. Up to now, the number of objects studied during such campaigns is very limited and biased towards high flux states. Furthermore, we present the results of a dedicated multi-wavelength study of the high-frequency peaked BL Lacertae (HBL) object and known TeV emitter 1ES 2344+514 by means of a pre-organised campaign. The observations were conducted during simultaneous visibility windows of MAGIC and AGILE in late 2008. The measurements were complemented bymore » Metsähovi, RATAN-600, KVA+Tuorla, Swift and VLBA pointings. Additional coverage was provided by the ongoing long-term F-GAMMA and MOJAVE programs, the OVRO 40-m and CrAO telescopes as well as the Fermi satellite. The obtained SEDs are modelled using a one-zone as well as a self-consistent two-zone synchrotron self-Compton model. As a result, 1ES 2344+514 was found at very low flux states in both X-rays and very high energy gamma rays. Variability was detected in the low frequency radio and X-ray bands only, where for the latter a small flare was observed. The X-ray flare was possibly caused by shock acceleration characterised by similar cooling and acceleration time scales. MOJAVE VLBA monitoring reveals a static jet whose components are stable over time scales of eleven years, contrary to previous findings. There appears to be no significant correlation between the 15 GHz and R-band monitoring light curves. The observations presented here constitute the first multi-wavelength campaign on 1ES 2344+514 from radio to VHE energies and one of the few simultaneous SEDs during low activity states. The quasi-simultaneous Fermi-LAT data poses some challenges for SED modelling, but in general the SEDs are described well by both applied models. The resulting parameters are typical for TeV emitting HBLs. Consequently it remains unclear whether a so-called quiescent state was found in this campaign.« less
Multifrequency observations of the BL Lacertae object PKS 0537 - 441
NASA Technical Reports Server (NTRS)
Maraschi, L.; Treves, A.; Schwartz, D. A.; Tanzi, E. G.
1985-01-01
PKS 0537 - 441 was repeatedly observed in the UV band with the International Ultraviolet Explorer and in the X-ray with the Einstein Observatory. On September 27, 1980, simultaneous observations in the two bands were obtained. Near-infrared photometry preceding and following the simultaneous observations by about one month is available from the literature, as is radio monitoring at 408 and 5000 MHz. Comparison of the observed X-ray flux with that predicted by the standard synchrotron self-Compton formalism, with a source dimension deduced from radio variability at 5 GHz, indicates that this component of the radio emission must be moving at relativistic speed with an effective projected Doppler beaming factor of about 10.
An 'X-banded' Tidbinbilla interferometer
NASA Technical Reports Server (NTRS)
Batty, Michael J.; Gardyne, R. G.; Gay, G. J.; Jauncy, David L.; Gulkis, S.; Kirk, A.
1986-01-01
The recent upgrading of the Tidbinbilla two-element interferometer to simultaneous S-band (2.3 GHz) and X-band (8.4 GHz) operation has provided a powerful new astronomical facility for weak radio source measurement in the Southern Hemisphere. The new X-band system has a minimum fringe spacing of 38 arcsec, and about the same positional measurement capability (approximately 2 arcsec) and sensitivity (1 s rms noise of 10 mJy) as the previous S-band system. However, the far lower confusion limit will allow detection and accurate positional measurements for sources as weak as a few millijanskys. This capability will be invaluable for observations of radio stars, X-ray sources and other weak, compact radio sources.
Longitudinal Associations between Keeping a Secret and Psychosocial Adjustment in Adolescence
ERIC Educational Resources Information Center
Frijns, Tom; Finkenauer, Catrin
2009-01-01
Increasing bodies of evidence suggest that keeping secrets may be detrimental to well-being and adjustment, whereas confiding secrets may alleviate the detriments of secrecy and benefit well-being and adjustment. However, few studies have addressed the consequences of keeping and confiding secrets simultaneously, and even fewer have done so…
A common mechanism underlies changes of mind about decisions and confidence.
van den Berg, Ronald; Anandalingam, Kavitha; Zylberberg, Ariel; Kiani, Roozbeh; Shadlen, Michael N; Wolpert, Daniel M
2016-02-01
Decisions are accompanied by a degree of confidence that a selected option is correct. A sequential sampling framework explains the speed and accuracy of decisions and extends naturally to the confidence that the decision rendered is likely to be correct. However, discrepancies between confidence and accuracy suggest that confidence might be supported by mechanisms dissociated from the decision process. Here we show that this discrepancy can arise naturally because of simple processing delays. When participants were asked to report choice and confidence simultaneously, their confidence, reaction time and a perceptual decision about motion were explained by bounded evidence accumulation. However, we also observed revisions of the initial choice and/or confidence. These changes of mind were explained by a continuation of the mechanism that led to the initial choice. Our findings extend the sequential sampling framework to vacillation about confidence and invites caution in interpreting dissociations between confidence and accuracy.
EMI survey for maritime satellite, L-band, shipboard terminal
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Brandel, D. L.; Hill, J. S.
1975-01-01
The paper presents results of an onboard EMI survey of an L-band shipboard terminal for operation with two geostationary maritime satellites. Significant EMC results include: (1) antenna noise temperature measurements indicate a maximum of 70 K steady background component at 1.6 GHz at sea for elevation angles of 5 degrees and higher; (2) field intensity measurements from 1-10 GHz show that a L-band terminal can operate simultaneously with onboard S-band and X-band navigation radar; (3) radar transmitter case emissions, below deck, in-band from 1535-1660 MHz, at 1 m distance from the cabinet, are equivalent, or greater than above-deck emissions in the same frequency range; and (4) conducted-emission tests of a ship's power lines to both radars show both narrow band and broad band emissions are 15 dB to 50 dB higher than equivalent U.S. commercial power lines from 150 kHz to 32 MHz.
Treatment selection in a randomized clinical trial via covariate-specific treatment effect curves.
Ma, Yunbei; Zhou, Xiao-Hua
2017-02-01
For time-to-event data in a randomized clinical trial, we proposed two new methods for selecting an optimal treatment for a patient based on the covariate-specific treatment effect curve, which is used to represent the clinical utility of a predictive biomarker. To select an optimal treatment for a patient with a specific biomarker value, we proposed pointwise confidence intervals for each covariate-specific treatment effect curve and the difference between covariate-specific treatment effect curves of two treatments. Furthermore, to select an optimal treatment for a future biomarker-defined subpopulation of patients, we proposed confidence bands for each covariate-specific treatment effect curve and the difference between each pair of covariate-specific treatment effect curve over a fixed interval of biomarker values. We constructed the confidence bands based on a resampling technique. We also conducted simulation studies to evaluate finite-sample properties of the proposed estimation methods. Finally, we illustrated the application of the proposed method in a real-world data set.
NASA Technical Reports Server (NTRS)
Wu, Aisheng; Xiong, Xiaoxiong; Angal, A.; Barnes, W.
2011-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the five Earth-observing instruments on-board the National Aeronautics and Space Administration (NASA) Earth-Observing System(EOS) Terra spacecraft, launched in December 1999. It has 36 spectral bands with wavelengths ranging from 0.41 to 14.4 mm and collects data at three nadir spatial resolutions: 0.25 km for 2 bands with 40 detectors each, 0.5 km for 5 bands with 20 detectors each and 1 km for the remaining 29 bands with 10 detectors each. MODIS bands are located on four separate focal plane assemblies (FPAs) according to their spectral wavelengths and aligned in the cross-track direction. Detectors of each spectral band are aligned in the along-track direction. MODIS makes observations using a two-sided paddle-wheel scan mirror. Its on-board calibrators (OBCs) for the reflective solar bands (RSBs) include a solar diffuser (SD), a solar diffuser stability monitor (SDSM) and a spectral-radiometric calibration assembly (SRCA). Calibration is performed for each band, detector, sub-sample (for sub-kilometer resolution bands) and mirror side. In this study, a ratio approach is applied to MODIS observed Earth scene reflectances to track the detector-to-detector and mirror side differences. Simultaneous observed reflectances from the Multi-angle Imaging Spectroradiometer (MISR), also onboard the Terra spacecraft, are used with MODIS observed reflectances in this ratio approach for four closely matched spectral bands. Results show that the detector-to-detector difference between two adjacent detectors within each spectral band is typically less than 0.2% and, depending on the wavelengths, the maximum difference among all detectors varies from 0.5% to 0.8%. The mirror side differences are found to be very small for all bands except for band 3 at 0.44 mm. This is the band with the shortest wavelength among the selected matching bands, showing a time-dependent increase for the mirror side difference. This study is part of the effort by the MODIS Characterization Support Team (MCST) in order to track the RSB on-orbit performance for MODIS collection 5 data products. To support MCST efforts for future data re-processing, this analysis will be extended to include more spectral bands and temporal coverage.
Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence
NASA Technical Reports Server (NTRS)
Rana, Vikram; Loh, Alan; Corbel, Stephane; Tomsick, John A.; Chakrabarty, Deepto; Walton, Dominic J.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William;
2016-01-01
We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3-30 keV) quiescent luminosity of the source is 8.9 x 10(exp 32) erg per sec for a distance of 2.4 kpc. The source shows clear variability on short timescales (an hour to a couple of hours) in the radio, soft X-ray, and hard X-ray bands in the form of multiple flares. The broadband X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having a photon index of gamma = 2.12 +/- 0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3 sigma confidence level with the e-folding energy of the cutoff as 20(sub -7)(sup +20) keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the VLA reveal that the spectral index evolves on very fast timescales (as short as 10 minutes), switching between optically thick and thin synchrotron emission, possibly due to instabilities in the compact jet or stochastic instabilities in the accretion rate. We explore different scenarios to explain this very fast variability.
A Poisson process approximation for generalized K-5 confidence regions
NASA Technical Reports Server (NTRS)
Arsham, H.; Miller, D. R.
1982-01-01
One-sided confidence regions for continuous cumulative distribution functions are constructed using empirical cumulative distribution functions and the generalized Kolmogorov-Smirnov distance. The band width of such regions becomes narrower in the right or left tail of the distribution. To avoid tedious computation of confidence levels and critical values, an approximation based on the Poisson process is introduced. This aproximation provides a conservative confidence region; moreover, the approximation error decreases monotonically to 0 as sample size increases. Critical values necessary for implementation are given. Applications are made to the areas of risk analysis, investment modeling, reliability assessment, and analysis of fault tolerant systems.
The Upgraded Kharkiv V. N. Karazin National University Radiophysical Observatory
NASA Astrophysics Data System (ADS)
Chernogor, L. F.; Garmash, K. P.; Podnos, V. A.; Rozumenko, V. T.; Tsymbal, A. M.; Tyrnov, O. F.
2012-11-01
The Kharkiv V. N. Karazin National University Radiophysical Observatory clustered instruments are located at two sites, Gaidary (49°37'51'' N; 36°19'40.1'' E) and Grakovo (49°38'49'' N; 36°56'07'' E), where sample clock synchronization is accomplished by using GPS receivers. It is a powerful tool for identifying hidden linkages between different altitudes from the D region to GPS orbits. The findings from some experimental studies are illustrated. The MF-HF radar (Gaidary) simultaneously employs the differential absorption, spaced antenna, and the ionosonde techniques. HF Doppler sounding system comprises an HF Doppler radar at vertical incidence at Gaidary (it simultaneously makes soundings at three frequencies) and a passive radar system at Grakovo (it simultaneously observes four frequencies in the 30 kHz - 3 MHz band and eight frequencies in the 1 - 31 MHz band with a velocity resolution of a few m s-1 in most cases). Low-Earth orbit Cicada/Cicada-M and GPS/GLONASS navigation satellite TEC observations are made at Gaidary and Kharkiv City. Since 2001, the fluxgate magnetometer (Grakovo) has acquired measurements in the south-north (H component) and west-east (D) directions at half-second intervals in the 0.001 - 1Hz frequency band within which the internal noise varies from 0.5 pT at f = 1 Hz to 50 pT at f = 0.01Hz. The three-axis saturable-core magnetometer (Gaidary) acquires measurements in the two frequency bands, 0.01 - 0.1 Hz and 0.1 - 5 Hz, where the internal noise level does not exceed 0.075 nT.
DSS 13 phase 2 pedestal room microwave layout
NASA Technical Reports Server (NTRS)
Cwik, T.; Chen, J. C.
1991-01-01
The design and predicted performance is described of the microwave layout for three band operation of the beam waveguide antenna Deep Space Station 13. Three pedestal room microwave candidate layout designs were produced for simultaneous X/S and X/Ka band operation. One of the three designs was chosen based on given constraints, and for this design the microwave performance was estimated.
47 CFR 95.207 - (R/C Rule 7) On what channels may I operate?
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Your R/C station may not transmit simultaneously on more than one channel in the 72-76 MHz band when... band; or (2) Television reception on TV Channels 4 or 5. (e) [Reserved] (f) Stations in the 26-27 MHz..., scientific of medical devices. Such stations also operate on a shared basis with other stations in the...
Photonic and phononic surface and edge modes in three-dimensional phoxonic crystals
NASA Astrophysics Data System (ADS)
Ma, Tian-Xue; Wang, Yue-Sheng; Zhang, Chuanzeng
2018-04-01
We investigate the photonic and phononic surface and edge modes in finite-size three-dimensional phoxonic crystals. By appropriately terminating the phoxonic crystals, the photons and phonons can be simultaneously guided at the two-dimensional surface and/or the one-dimensional edge of the terminated crystals. The Bloch surface and edge modes show that the electromagnetic and acoustic waves are highly localized near the surface and edge, respectively. The surface and edge geometries play important roles in tailoring the dispersion relations of the surface and edge modes, and dual band gaps for the surface or edge modes can be simultaneously achieved by changing the geometrical configurations. Furthermore, as the band gaps for the bulk modes are the essential prerequisites for the realization of dual surface and edge modes, the photonic and phononic bulk-mode band gap properties of three different types of phoxonic crystals with six-connected networks are revealed. It is found that the geometrical characteristic of the crystals with six-connected networks leads to dual large bulk-mode band gaps. Compared with the conventional bulk modes, the surface and edge modes provide a new approach for the photon and phonon manipulation and show great potential for phoxonic crystal devices and optomechanics.
NASA Astrophysics Data System (ADS)
Turkulets, Yury; Shalish, Ilan
2018-01-01
Modern bandgap engineered electronic devices are typically made of multi-semiconductor multi-layer heterostructures that pose a major challenge to silicon-era characterization methods. As a result, contemporary bandgap engineering relies mostly on simulated band structures that are hardly ever verified experimentally. Here, we present a method that experimentally evaluates bandgap, band offsets, and electric fields, in complex multi-semiconductor layered structures, and it does so simultaneously in all the layers. The method uses a modest optical photocurrent spectroscopy setup at ambient conditions. The results are analyzed using a simple model for electro-absorption. As an example, we apply the method to a typical GaN high electron mobility transistor structure. Measurements under various external electric fields allow us to experimentally construct band diagrams, not only at equilibrium but also under any other working conditions of the device. The electric fields are then used to obtain the charge carrier density and mobility in the quantum well as a function of the gate voltage over the entire range of operating conditions of the device. The principles exemplified here may serve as guidelines for the development of methods for simultaneous characterization of all the layers in complex, multi-semiconductor structures.
A High-resolution Multi-wavelength Simultaneous Imaging System with Solar Adaptive Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Changhui; Zhu, Lei; Gu, Naiting
A high-resolution multi-wavelength simultaneous imaging system from visible to near-infrared bands with a solar adaptive optics system, in which seven imaging channels, including the G band (430.5 nm), the Na i line (589 nm), the H α line (656.3 nm), the TiO band (705.7 nm), the Ca ii IR line (854.2 nm), the He i line (1083 nm), and the Fe i line (1565.3 nm), are chosen, is developed to image the solar atmosphere from the photosphere layer to the chromosphere layer. To our knowledge, this is the solar high-resolution imaging system with the widest spectral coverage. This system wasmore » demonstrated at the 1 m New Vaccum Solar Telescope and the on-sky high-resolution observational results were acquired. In this paper, we will illustrate the design and performance of the imaging system. The calibration and the data reduction of the system are also presented.« less
A risk-adjusted O-E CUSUM with monitoring bands for monitoring medical outcomes.
Sun, Rena Jie; Kalbfleisch, John D
2013-03-01
In order to monitor a medical center's survival outcomes using simple plots, we introduce a risk-adjusted Observed-Expected (O-E) Cumulative SUM (CUSUM) along with monitoring bands as decision criterion.The proposed monitoring bands can be used in place of a more traditional but complicated V-shaped mask or the simultaneous use of two one-sided CUSUMs. The resulting plot is designed to simultaneously monitor for failure time outcomes that are "worse than expected" or "better than expected." The slopes of the O-E CUSUM provide direct estimates of the relative risk (as compared to a standard or expected failure rate) for the data being monitored. Appropriate rejection regions are obtained by controlling the false alarm rate (type I error) over a period of given length. Simulation studies are conducted to illustrate the performance of the proposed method. A case study is carried out for 58 liver transplant centers. The use of CUSUM methods for quality improvement is stressed. Copyright © 2013, The International Biometric Society.
Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim
2016-03-01
Recent studies have demonstrated that prestimulus alpha-band activity substantially influences perception of near-threshold stimuli. Here, we studied the influence of prestimulus alpha power fluctuations on temporal perceptual discrimination of suprathreshold tactile stimuli and subjects' confidence regarding their perceptual decisions. We investigated how prestimulus alpha-band power influences poststimulus decision-making variables. We presented electrical stimuli with different stimulus onset asynchronies (SOAs) to human subjects, and determined the SOA for which temporal perceptual discrimination varied on a trial-by-trial basis between perceiving 1 or 2 stimuli, prior to recording brain activity with magnetoencephalography. We found that low prestimulus alpha power in contralateral somatosensory and occipital areas predicts the veridical temporal perceptual discrimination of 2 stimuli. Additionally, prestimulus alpha power was negatively correlated with confidence ratings in correctly perceived trials, but positively correlated for incorrectly perceived trials. Finally, poststimulus event-related fields (ERFs) were modulated by prestimulus alpha power and reflect the result of a decisional process rather than physical stimulus parameters around ∼150 ms. These findings provide new insights into the link between spontaneous prestimulus alpha power fluctuations, temporal perceptual discrimination, decision making, and decisional confidence. The results suggest that prestimulus alpha power modulates perception and decisions on a continuous scale, as reflected in confidence ratings. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Simultaneous retrieval of daytime O(3P) and O3 concentrations in the altitude interval 80 - 100 km.
NASA Astrophysics Data System (ADS)
Yankovsky, Valentine; Manuilova, Rada; Koval, Andrey
2017-04-01
We propose methods of simultaneously independent retrievals of the key components of Mesosphere and Lower Thermosphere (MLT) [O3] and [O(3P)]. The altitude profile of ozone concentration, [O3], can be measured by direct method of the measurement of absorbing radiation from the Sun or the stars in the UV range of the spectrum. However, this method is most often realized in twilight. Retrieval of daytime [O3] depends on a prior information about the O(3P) altitude profile. Vice versa, atomic oxygen concentration, [O(3P)], is usually retrieved from the measured values of [O3]. The problem of independent and simultaneous retrieval of [O3] and [O(3P)] can be solved by using individual proxy for each of the target component. Using a sensitivity study and uncertainty analysis of the contemporary model of O3 and O2 photolysis in the MLT, YM2011, we determined that populations of three excited electronic-vibrational levels O2(b1, v = 0, 1, 2) and of metastable O(1D) atom depend on [O(3P)] and [O3] concentrations. For [O(3P)] retrieval the following transitions should be used: O2(b1, v') -> O2(X3, v") which produce emissions: (a) at 780.4 nm in the band (v' = 2, v" = 2) and at 697.0 nm in the band (2, 1) with the uncertainty of retrieval smaller than 30% for the whole altitude range 80 - 100 km; (b) at 771.0 nm in the band (1, 1), 688.4 nm in the band (1, 0) and at 874.4 nm in the band (1, 2) with the uncertainty of retrieval about 30% above 90 km. For [O3] retrieval the following transitions should be used: O2(b1, v') -> O2(X3, v") which produce emissions: (c) at 762.1 nm in the band (0, 0) and at 864.7 nm in the band (0, 1) with the uncertainty of retrieval 20 - 25% for the altitude range 80 - 85 km and smaller than 20% in the interval 85 - 95 km; (d) in the line of O(1D) 630.0 nm with the uncertainty of retrieval 10 - 15% in the interval 80 - 95 km. Above 95 km the uncertainty of [O3] retrieval grows and reaches up to 80% at 100 km for all suggested proxies. For simultaneously [O3] and [O(3P)] retrievals the observations of above mentioned emissions (a) or (b) and (c) or (d) could be used.
Stable L-band multi-wavelength SOA fiber laser based on polarization rotation.
Liu, Tonghui; Jia, Dongfang; Yang, Tianxin; Wang, Zhaoying; Liu, Ying
2017-04-01
We propose and experimentally demonstrate a stable multi-wavelength fiber ring laser operating in the L-band with wavelength spacing of 25 GHz. The mechanism is induced by a polarization rotation intensity equalizer consisting of a semiconductor optical amplifier and polarization devices. A Fabry-Perot filter is inserted into the cavity to serve as a multi-wavelength selection device. Stable L-band multi-wavelength lasing with 3 dB uniformity of 21.2 nm, and simultaneous oscillation of 101 lines with wavelength spacing of 25 GHz, is obtained.
NIMBUS: A Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA
NASA Technical Reports Server (NTRS)
McElwain, Michael W.; Mandell, Avi; Woodgate, Bruce E.; Spiegel, David S.; Madhusudhan, Nikku; Amatucci, Edward; Blake, Cullen; Budinoff, Jason; Burgasser, Adam; Burrows, Adam;
2012-01-01
We present a new and innovative near-infrared multi-band ultraprecise spectroimager (NIMBUS) for SOFIA. This instrument will enable many exciting observations in the new age of precision astronomy. This optical design splits the beam into 8 separate spectral bandpasses, centered around key molecular bands from 1 to 4 microns. Each spectral channel has a wide field of view for simultaneous observations of a reference star that can decorrelate time-variable atmospheric and optical assembly effects, allowing the instrument to achieve ultraprecise photometry for a wide variety of astrophysical sources
Spot temperatures and area coverages on active dwarf stars
NASA Technical Reports Server (NTRS)
Sarr, Steven H.; Neff, James E.
1990-01-01
Two active K dwarfs are examined to determine the temperatures of the stars and to estimate the locations and sizes of cool spots on the stellar surfaces. Two wavelength regions with TiO absorption bands at different temperature sensitivities are modeled simultaneously using the method developed by Huenemoerder and Ramsey (1987). The spectrum of BD +26deg730 shows excess absorption in the TiO band, and the absence of the 8860 A band in HD 82558 indicates that its spots are warmer than those of BD +26deg730.
NASA Technical Reports Server (NTRS)
1976-01-01
Remote sensor systems operating in the microwave region of the frequency spectrum provide information unobtainable with basic imaging techniques such as photography, television, or multispectral imaging. The frequency allocation requirements for passive microwave sensors used in the earth exploration satellite and space research services are presented for: (1) agriculture, forestry, and range resources; (2) land use survey and mapping: (3) water resources; (4) weather and climate; (5) environmental quality; and (6) marine resources, estuarine and oceans. Because measurements are required simultaneously in multiple frequency bands to adequately determine values of some phenomena, the relationships between frequency bands are discussed. The various measurement accuracies, dynamic range, resolutions and frequency needs are examined. A band-by-band summary of requirements, unique aspects, and sharing analyses of the required frequency bands is included.
Laser a balayage spectral double-bande pour l'imagerie biomedicale multimodale
NASA Astrophysics Data System (ADS)
Goulamhoussen, Nadir
A novel swept laser providing simultaneous dual-band (780nm and 1 300 nm) wavelength scanning has been designed for use in multimodal imaging systems. The swept laser is based on two gain media : a fibered semiconductor optical amplifier (SOA) centered at 1 300nm and a free-space laser diode centered at 780 nm. Simultaneous wavelength tuning for both bands is obtained by separate wavelength filters set up around the same rotating polygonal mirror. For each band, a telescope in an infinite conjugate setup converges the wavelengths dispersed by a grating on the polygon. The polygon reflects back a narrow band of wavelengths for amplification in the gain medium. Rotating the polygon enables wavelength tuning and imaging at a rate of 6 000 to 30 000 spectral lines/s, or A-lines/s in Optical Coherence Tomography (OCT). The 780nm source has a bandwidth of 37 nm, a fibered output power of 54 mW and a coherence length of 11 mm. The 1 300nm source has a bandwidth of 75 nm, a fibered output power of 17mW and a coherence length of 7.2 mm. Three multimodal systems were designed to test the potential of the swept laser in biomedical imaging. A two color OCT which allows three-dimensional in depth imaging of biological tissues with good morphological contrast was first designed, including a novel arrangement for balanced detection in both bands. A simultaneous OCT and SECM instrument was also built in which spectrally encoded confocal microscopy (SECM) provides en face images of subcellular features with high resolution on top of the 3D high penetration image obtained by OCT. Finally, a system combining OCT with fluorescence was designed, thus adding functional imaging to structural OCT images. There are many prospective paths for these three modalities, first among them the adaptation of the systems such that they may be used with imaging probes. One potential solution would be the development of novel fiber components to combine the illumination of theses modalities while demultiplexing their detection, and as would be the development of new optomechanics to enable 3D real-time in vivo imaging.
Shirai, Tomoyuki; Wang, Jianqing; Kawabe, Mayumi; Wake, Kanako; Watanabe, So-Ichi; Takahashi, Satoru; Fujiwara, Osamu
2017-01-01
In everyday life, people are exposed to radiofrequency (RF) electromagnetic fields (EMFs) with multiple frequencies. To evaluate the possible adverse effects of multifrequency RF EMFs, we performed an experiment in which pregnant rats and their delivered offspring were simultaneously exposed to eight different communication signal EMFs (two of 800 MHz band, two of 2 GHz band, one of 2.4 GHz band, two of 2.5 GHz band and one of 5.2 GHz band). Thirty six pregnant Sprague-Dawley (SD) 10-week-old rats were divided into three groups of 12 rats: one control (sham exposure) group and two experimental (low- and high-level RF EMF exposure) groups. The whole body of the mother rats was exposed to the RF EMFs for 20 h per day from Gestational Day 7 to weaning, and F 1 offspring rats (46-48 F1 pups per group) were then exposed up to 6 weeks of age also for 20 h per day. The parameters evaluated included the growth, gestational condition and organ weights of the dams; the survival rates, development, growth, physical and functional development, memory function, and reproductive ability of the F 1 offspring; and the embryotoxicity and teratogenicity in the F 2 rats. No abnormal findings were observed in the dams or F 1 offspring exposed to the RF EMFs or to the F 2 offspring for any of the parameters evaluated. Thus, under the conditions of the present experiment, simultaneous whole-body exposure to eight different communication signal EMFs at frequencies between 800 MHz and 5.2 GHz did not show any adverse effects on pregnancy or on the development of rats. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
A common mechanism underlies changes of mind about decisions and confidence
van den Berg, Ronald; Anandalingam, Kavitha; Zylberberg, Ariel; Kiani, Roozbeh; Shadlen, Michael N; Wolpert, Daniel M
2016-01-01
Decisions are accompanied by a degree of confidence that a selected option is correct. A sequential sampling framework explains the speed and accuracy of decisions and extends naturally to the confidence that the decision rendered is likely to be correct. However, discrepancies between confidence and accuracy suggest that confidence might be supported by mechanisms dissociated from the decision process. Here we show that this discrepancy can arise naturally because of simple processing delays. When participants were asked to report choice and confidence simultaneously, their confidence, reaction time and a perceptual decision about motion were explained by bounded evidence accumulation. However, we also observed revisions of the initial choice and/or confidence. These changes of mind were explained by a continuation of the mechanism that led to the initial choice. Our findings extend the sequential sampling framework to vacillation about confidence and invites caution in interpreting dissociations between confidence and accuracy. DOI: http://dx.doi.org/10.7554/eLife.12192.001 PMID:26829590
NASA Astrophysics Data System (ADS)
Victory Devi, Ch.; Rajmuhon Singh, N.
2011-10-01
The interaction of uracil with Nd(III) has been explored in presence and absence of Zn(II) using the comparative absorption spectroscopy involving the 4f-4f transitions in different solvents. The complexation of uracil with Nd(III) is indicated by the change in intensity of 4f-4f bands expressing in terms of significant change in oscillator strength and Judd-Ofelt parameters. Intensification of this bands became more prominent in presence of Zn(II) suggesting the stimulative effect of Zn(II) towards the complexation of Nd(III) with uracil. Other spectral parameters namely Slator-Condon ( Fk's), nephelauxetic effect ( β), bonding ( b1/2) and percent covalency ( δ) parameters are computed to correlate their simultaneous binding of metal ions with uracil. The sensitivities of the observed 4f-4f transitions towards the minor coordination changes around Nd(III) has been used to monitor the simultaneous coordination of uracil with Nd(III) and Zn(II). The variation of intensities (oscillator strengths and Judd-Ofelt parameters) of 4f-4f bands during the complexation has helped in following the heterobimetallic complexation of uracil. Rate of complexation with respect to hypersensitive transition was evaluated. Energy of activation and thermodynamic parameters for the complexation reaction were also determined.
Marques, Manuel J; Bradu, Adrian; Podoleanu, Adrian Gh
2014-05-01
We report a Talbot bands-based optical coherence tomography (OCT) system capable of producing longitudinal B-scan OCT images and en-face scanning laser ophthalmoscopy (SLO) images of the human retina in-vivo. The OCT channel employs a broadband optical source and a spectrometer. A gap is created between the sample and reference beams while on their way towards the spectrometer's dispersive element to create Talbot bands. The spatial separation of the two beams facilitates collection by an SLO channel of optical power originating exclusively from the retina, deprived from any contribution from the reference beam. Three different modes of operation are presented, constrained by the minimum integration time of the camera used in the spectrometer and by the galvo-scanners' scanning rate: (i) a simultaneous acquisition mode over the two channels, useful for small size imaging, that conserves the pixel-to-pixel correspondence between them; (ii) a hybrid sequential mode, where the system switches itself between the two regimes and (iii) a sequential "on-demand" mode, where the system can be used in either OCT or SLO regimes for as long as required. The two sequential modes present varying degrees of trade-off between pixel-to-pixel correspondence and independent full control of parameters within each channel. Images of the optic nerve and fovea regions obtained in the simultaneous (i) and in the hybrid sequential mode (ii) are presented.
Marques, Manuel J.; Bradu, Adrian; Podoleanu, Adrian Gh.
2014-01-01
We report a Talbot bands-based optical coherence tomography (OCT) system capable of producing longitudinal B-scan OCT images and en-face scanning laser ophthalmoscopy (SLO) images of the human retina in-vivo. The OCT channel employs a broadband optical source and a spectrometer. A gap is created between the sample and reference beams while on their way towards the spectrometer’s dispersive element to create Talbot bands. The spatial separation of the two beams facilitates collection by an SLO channel of optical power originating exclusively from the retina, deprived from any contribution from the reference beam. Three different modes of operation are presented, constrained by the minimum integration time of the camera used in the spectrometer and by the galvo-scanners’ scanning rate: (i) a simultaneous acquisition mode over the two channels, useful for small size imaging, that conserves the pixel-to-pixel correspondence between them; (ii) a hybrid sequential mode, where the system switches itself between the two regimes and (iii) a sequential “on-demand” mode, where the system can be used in either OCT or SLO regimes for as long as required. The two sequential modes present varying degrees of trade-off between pixel-to-pixel correspondence and independent full control of parameters within each channel. Images of the optic nerve and fovea regions obtained in the simultaneous (i) and in the hybrid sequential mode (ii) are presented. PMID:24877006
Measurement of Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array
NASA Technical Reports Server (NTRS)
Dawson, K. S.; Holzapfel, W. L.; Carlstrom, J. E.; Joy, M.; LaRoque, S. J.; Miller, A.; Nagai, D.; Six, N. Frank (Technical Monitor)
2002-01-01
We report the results of our continued study of arcminute scale anisotropy in the Cosmic Microwave Background (CMB) with the Berkeley-Illinois-Maryland Association (BIMA) array. The survey consists of ten independent fields selected for low infrared dust emission and lack of bright radio point sources. With observations from the VLA (Very Large Array) at 4.8 GHz, we have identified point sources which could act as contaminants in estimates of the CMB power spectrum and removed them in the analysis. Modeling the observed power spectrum with a single. flat band power with average multipole of l(sub eff) = 6864, we find Delta T = 14.2((sup +4.8)(sub -6.0)) micro K at 68% confidence. The signal in the visibility data exceeds the expected contribution from instrumental noise with 96.5% confidence. We have also divided the data into two bins corresponding to different spatial resolutions in the power spectrum. We find Delta T(sub 1) = 16.6((sup +5.3)(sub -5.9)) micro K at 68% confidence for CMB flat band power described by an average multipole of l(sub eff) = 5237 and Delta T(sub 2) is less than 26.5 micro K at 95% confidence for l(sub eff) = 8748.
Reflectance of vegetation, soil, and water
NASA Technical Reports Server (NTRS)
Wiegand, C. L. (Principal Investigator); Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Gerbermann, A. H.; Torline, R. J.; Gautreaux, M. R.; Everitt, J. H.; Guellar, J. A.; Rodriguez, R. R.
1974-01-01
The author has identified the following significant results. Bands 4, 5, and 7 and 5, 6, and 7 were best for distinguishing among crop and soil categories in ERTS-1 SCENES 1182-16322 (1-21-73) and 1308-16323 (5-21-73) respectively. Chlorotic sorghum areas 2.8 acres or larger in size were identified on a computer printout of band 5 data. Reflectance of crop residues was more often different from bare soil in band 4 than in bands 5, 6, and 7. Simultaneously acquired aircraft and spacecraft MSS data indicated that spacecraft surveys are as reliable as aircraft surveys. ERTS-1 data were successfully used to estimate acreage of citrus, cotton, and sorghum as well as idle crop land.
Guilbaud, Olivier
2011-11-01
In their review of challenges to multiple testing in clinical trials, Hung and Wang (2010) considered the situation where a treatment is to be compared with an active comparator and the aim is to show non-inferiority and (if possible) superiority with respect to a primary and a secondary endpoint. This note extends their discussion of this particular situation, taking the sequentially rejective procedure they used for illustration as a starting point. Some alternative multiple testing procedures (MTPs) are considered, and corresponding simultaneous confidence regions are discussed that provide additional information "for free". The choice may then be based on the properties of these MTPs and corresponding confidence regions. 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct observation of strain-induced orbital valence band splitting in HfSe2 by sodium intercalation
NASA Astrophysics Data System (ADS)
Eknapakul, T.; Fongkaew, I.; Siriroj, S.; Jindata, W.; Chaiyachad, S.; Mo, S.-K.; Thakur, S.; Petaccia, L.; Takagi, H.; Limpijumnong, S.; Meevasana, W.
2018-05-01
By using angle-resolved photoemission spectroscopy (ARPES), the variation of the electronic structure of HfSe2 has been studied as a function of sodium intercalation. We observe how this drives a band splitting of the p -orbital valence bands and a simultaneous reduction of the indirect band gap by values of up to 400 and 280 meV, respectively. Our calculations indicate that such behavior is driven by the band deformation potential, which is a result of our observed strain induced by sodium intercalation. The applied uniaxial strain calculations based on density functional theory agree strongly with the experimental ARPES data. These findings should assist in studying the physical relationship between intercalation and strain, as well as for large-scale two-dimensional straintronics.
NASA Technical Reports Server (NTRS)
Menzel, Paul W.; Jedlovec, Gary; Wilson, Gregory
1986-01-01
The Multispectral Atmospheric Mapping Sensor (MAMS), a modification of NASA's Airborne Thematic Mapper, is described, and radiances from the MAMS and the VISSR Atmospheric Sounder (VAS) are compared which were collected simultaneously on May 18, 1985. Thermal emission from the earth atmosphere system in eight visible and three infrared spectral bands (12.3, 11.2 and 6.5 microns) are measured by the MAMS at up to 50 m horizontal resolution, and the infrared bands are similar to three of the VAS infrared bands. Similar radiometric performance was found for the two systems, though the MAMS showed somewhat less attenuation from water vapor than VAS because its spectral bands are shifted to shorter wavelengths away from the absorption band center.
NASA Astrophysics Data System (ADS)
Qi, Wenyuan; Zhang, Yuyin
2018-04-01
A three-color imaging technique was proposed for simultaneous measurements on distributions of fuel/air mixture temperature and fuel vapor/liquid concentrations in evaporating sprays. The idea is based on that the vapor concentration is proportional to the absorption of vapor to UV light, the liquid-phase concentration is related to the light extinction due to scattering of droplet to visible light, and the mixture temperature can be correlated to the absorbance ratio at two absorbing wavelengths or narrow bands. For verifying the imaging system, the molar absorption coefficients of p-xylene at the three narrow bands, which were centered respectively at 265, 289, and 532 nm with FWHM of 10 nm, were measured in a specially designed calibration chamber at different temperatures (423-606 K) and pressure of 3.6 bar. It was found that the ratio of the molar absorption coefficients of p-xylene at the two narrow bands centered at the two UV wavelengths is sensitive to the mixture temperature. On the other hand, the distributions of fuel vapor/liquid concentrations can be obtained by use of absorbance due to ultraviolet absorption of vapor and visible light scattering of droplets. Combining these two methods, a simultaneous measurement on distributions of mixture temperature and fuel vapor/liquid concentrations can be realized. In addition, the temperature field obtained from the ratio of the two absorbing narrow bands can be further used to improve the measurement accuracy of vapor/liquid concentrations, because the absorption coefficients depend on temperature. This diagnostic was applied to an evaporating spray inside a high-temperature and high-pressure constant volume chamber.
Harel, Elad; Long, Phillip D; Engel, Gregory S
2011-05-01
Here we present two-dimensional (2D) electronic spectra of the light-harvesting complex LH2 from purple bacteria using coherent pulses with bandwidth of over 100 nm FWHM. This broadband excitation and detection has allowed the simultaneous capture of both the B800 and B850 bands using a single light source. We demonstrate that one laser pulse is sufficient to capture the entire 2D electronic spectrum with a high signal-to-noise ratio. At a waiting time of 800 fs, we observe population transfer from the B800 to B850 band as manifested by a prominent cross peak. These results will enable observation of the dynamics of biological systems across both ultrafast (<1 ps) and slower (>1 ms) timescales simultaneously.
Full colorless transmission of millimeter-wave band gigabit data over WDM-PON using sideband routing
NASA Astrophysics Data System (ADS)
Won, Yong-Yuk; Kim, Hyun-Seung; Son, Yong-Hwan; Han, Sang-Kook
2011-12-01
A new wavelength division multiplexed-radio over fiber (WDM-RoF) access network scheme supporting the simultaneous transmission of a 1.25-Gb/s wired data as well as a 1.25-Gb/s wireless data is proposed in this paper. An optical carrier suppression effect and sideband routing using the multiplexing of arrayed waveguide grating (AWG) with 50-GHz channel spacing are utilized to generate a millimeter wave band carrier. These techniques make the proposed architecture transmit both a wired data and a wireless one at the same time. A reflective semiconductor optical amplifier (RSOA) is employed at both central office and base station so that this architecture is operated colorlessly. Error free transmissions (BER of 10-9) of both downlink and uplink are achieved simultaneously.
NASA Astrophysics Data System (ADS)
Dvorak, Steven L.; Sternberg, Ben K.; Feng, Wanjie
2017-03-01
In this paper we discuss the design and verification of wide-band, multi-frequency, tuning circuits for large-moment Transmitter (TX) loops. Since these multi-frequency, tuned-TX loops allow for the simultaneous transmission of multiple frequencies at high-current levels, they are ideally suited for frequency-domain geophysical systems that collect data while moving, such as helicopter mounted systems. Furthermore, since multi-frequency tuners use the same TX loop for all frequencies, instead of using separate tuned-TX loops for each frequency, they allow for the use of larger moment TX loops. In this paper we discuss the design and simulation of one- and three-frequency tuned TX loops and then present measurement results for a three-frequency, tuned-TX loop.
Quantitative and simultaneous non-invasive measurement of skin hydration and sebum levels
Ezerskaia, Anna; Pereira, S. F.; Urbach, H. Paul; Verhagen, Rieko; Varghese, Babu
2016-01-01
We report a method on quantitative and simultaneous non-contact in-vivo hydration and sebum measurements of the skin using an infrared optical spectroscopic set-up. The method utilizes differential detection with three wavelengths 1720, 1750, and 1770 nm, corresponding to the lipid vibrational bands that lay “in between” the prominent water absorption bands. We have used an emulsifier containing hydro- and lipophilic components to mix water and sebum in various volume fractions which was applied to the skin to mimic different oily-dry skin conditions. We also measured the skin sebum and hydration values on the forehead under natural conditions and its variations to external stimuli. Good agreement was found between our experimental results and reference values measured using conventional biophysical methods such as Corneometer and Sebumeter. PMID:27375946
Multiwavelength Spectral Variability of Mkn 501 in Outburst
NASA Astrophysics Data System (ADS)
Hempfling, Christina
2012-10-01
We propose simultaneous multiwavelength observations of the blazar Mrk501 in flaring state with XMM-Newton, FACT and Swift. Bright TeV gamma-ray flares have been detected repeatedly from Mrk501. Leptonic blazar models predict an simultaneous increase in the gamma-ray and X-ray bands. However, Mrk 501 also showed so-called orphan flares, as well as flares featuring time lags that are hard to explain by current models. Available data lack detailed light curves and hence are not sufficient to make strong statements on the nature of the responsible processes. These observations of a flare of Mrk501 in the gamma-ray and X-ray band with high spectral sensitivity and time resolution will yield a big contribution to the comprehension of blazar emission processes.
NASA Technical Reports Server (NTRS)
Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng
2016-01-01
On December 18, 2015, the Terra spacecraft completed 16 years of successful operation in space. Terra has five instruments designed to facilitate scientific measurements of the earths land, ocean, and atmosphere. The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging Spectroradiometer (MISR) instruments provide information for the temporal studies of the globe. After providing over 16 years of complementary measurements, a synergistic use of the measurements obtained from these sensors is beneficial for various science products. The 20 reflective solar bands (RSBs) of MODIS are calibrated using a combination of solar diffuser and lunar measurements, supplemented by measurements from pseudoinvariant desert sites. MODIS views the on-board calibrators and the earth via a two-sided scan mirror at three spatial resolutions: 250 m using 40 detectors in bands 1 and 2, 500 m using 20 detectors in bands 3 and 4, and 1000 m using 10 detectors in bands 819 and 26. Simultaneous measurements of the earths surface are acquired in a push-broom fashion by MISR at nine view angles spreading out in the forward and backward directions along the flight path. While the swath width for MISR acquisitions is 360 km, MODIS scans a wider swath of 2330 km via its two-sided scan mirror. The reflectance of the MODIS scan mirror has an angle dependence characterized by the response versus scan angle (RVS). Its on-orbit change is derived using the gain from a combination of on-board and earth-view measurements. The on-orbit RVS for MODIS has experienced a significant change, especially for the short-wavelength bands. The on-orbit RVS change for the short-wavelength bands (bands 3, 8, and 9) at nadir is observed to be greater than 10 over the mission lifetime. Due to absence of a scanning mechanism, MISR can serve as an effective tool to evaluate and monitor the on-orbit performance of the MODIS RVS. Furthermore, it can also monitor the detector and scan-mirror differences for the MODIS bands using simultaneous measurements from earth-scene targets, e.g., North Atlantic Ocean and North African desert. Simultaneous measurements provide the benefit of minimizing the impact of earth-scene features while comparing the radiometric performance using vicarious techniques. Long-term observations of both instruments using select ground targets also provide an evaluation of the long-term calibration stability. The goal of this paper is to demonstrate the use of MISR to monitor and enhance the on-orbit calibration of the MODIS RSB. The radiometric calibration requirements for the MODIS RSB are +/- 2% in reflectance and +/- 5% in radiance at typical radiance levels within +/- 45 deg. of nadir. The results show that the long-term changes in the MODIS reflectance at nadir frames are generally within 1. The MODIS level 1B calibrated products, generated after correcting for the on-orbit changes in the gain and RVS, do not have any correction for changes in the instruments polarization sensitivity. The mirror-side-dependent polarization sensitivity exhibits an on-orbit change, primarily in the blue bands, that manifests in noticeable mirror side differences in the MODIS calibrated products. The mirror side differences for other RSB are observed to be less than 1%, therefore demonstrating an excellent on-orbit performance. The detector differences in the blue bands of MODIS exhibit divergence in recent years beyond 1%, and a calibration algorithm improvement has been identified to mitigate this effect. Short-term variations in the recent year caused by the forward updates were identified in bands 1 and 2 and are planned to be corrected in the next reprocess.
Proposal for the measuring molecular velocity vector with single-pulse coherent Raman spectroscopy
NASA Technical Reports Server (NTRS)
She, C. Y.
1983-01-01
Methods for simultaneous measurements of more than one flow velocity component using coherent Raman spectroscopy are proposed. It is demonstrated that using a kilowatt broad-band probe pulse (3-30 GHz) along with a megawatt narrow-band pump pulse (approximately 100 MHz), coherent Raman signal resulting from a single laser pulse is sufficient to produce a high-resolution Raman spectrum for a velocity measurement.
On localization and void coalescence as a precursor to ductile fracture.
Tekoğlu, C; Hutchinson, J W; Pardoen, T
2015-03-28
Two modes of plastic flow localization commonly occur in the ductile fracture of structural metals undergoing damage and failure by the mechanism involving void nucleation, growth and coalescence. The first mode consists of a macroscopic localization, usually linked to the softening effect of void nucleation and growth, in either a normal band or a shear band where the thickness of the band is comparable to void spacing. The second mode is coalescence with plastic strain localizing to the ligaments between voids by an internal necking process. The ductility of a material is tied to the strain at macroscopic localization, as this marks the limit of uniform straining at the macroscopic scale. The question addressed is whether macroscopic localization occurs prior to void coalescence or whether the two occur simultaneously. The relation between these two modes of localization is studied quantitatively in this paper using a three-dimensional elastic-plastic computational model representing a doubly periodic array of voids within a band confined between two semi-infinite outer blocks of the same material but without voids. At sufficiently high stress triaxiality, a clear separation exists between the two modes of localization. At lower stress triaxialities, the model predicts that the onset of macroscopic localization and coalescence occur simultaneously. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Tunable dual-band nearly perfect absorption based on a compound metallic grating
NASA Astrophysics Data System (ADS)
Gao, Hua; Zheng, Zhi-Yuan; Feng, Juan
2017-02-01
Traditional metallic gratings and novel metamaterials are two basic kinds of candidates for perfect absorption. Comparatively speaking, metallic grating is the preferred choice for the same absorption effect because it is structurally simpler and more convenient to fabricate. However, to date, most of the perfect absorption effects achieved based on metamaterials are also available using an metallic grating except the tunable dual(multi)-band perfect absorption. To fill this gap, in this paper, by adding subgrooves on the rear surface as well as inside the grating slits to a free-standing metallic grating, tunable dual-band perfect absorption is also obtained for the first time. The grooves inside the slits is to tune the frequency of the Cavity Mode(CM) resonance which enhances the transmission and suppresses the reflectance simultaneously. The grooves on the rear surface give rise to the phase resonance which not only suppresses the transmission but also reinforces the reflectance depression effect. Thus, when the phase resonance and the frequency tunable CM resonance occur together, transmission and reflection can be suppressed simultaneously, dual-band nearly perfect absorption with tunable frequencies is obtained. To our knowledge, this perfect absorption phenomenon is achieved for the first time in a designed metallic grating structure.
Forces directing germ-band extension in Drosophila embryos.
Kong, Deqing; Wolf, Fred; Großhans, Jörg
2017-04-01
Body axis elongation by convergent extension is a conserved developmental process found in all metazoans. Drosophila embryonic germ-band extension is an important morphogenetic process during embryogenesis, by which the length of the germ-band is more than doubled along the anterior-posterior axis. This lengthening is achieved by typical convergent extension, i.e. narrowing the lateral epidermis along the dorsal-ventral axis and simultaneous extension along the anterior-posterior axis. Germ-band extension is largely driven by cell intercalation, whose directionality is determined by the planar polarity of the tissue and ultimately by the anterior-posterior patterning system. In addition, extrinsic tensile forces originating from the invaginating endoderm induce cell shape changes, which transiently contribute to germ-band extension. Here, we review recent progress in understanding of the role of mechanical forces in germ-band extension. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
FTIR Spectrum of the ν 4Band of DCOOD
NASA Astrophysics Data System (ADS)
Tan, T. L.; Goh, K. L.; Ong, P. P.; Teo, H. H.
1999-06-01
The FTIR spectrum of the ν4band of deuterated formic acid (DCOOD) has been measured with a resolution of 0.004 cm-1in the frequency range of 1120 to 1220 cm-1. A total of 1866 assigned transitions have been analyzed and fitted using a Watson'sA-reduced Hamiltonian in theIrrepresentation to derive rovibrational constants for the upper state (v4= 1) with a standard deviation of 0.00036 cm-1. In the course of the analysis, the constants for the ground state were improved by a simultaneous fit of microwave frequencies and combination differences from the infrared measurements. Due to the relatively unperturbed nature of the band, the constants can be used to accurately calculate the infrared line positions for the whole band. Although the band is a hybrid typeAandB, onlya-type transitions were strong enough to be observed. The band center is at 1170.79980 ± 0.00002 cm-1.
High resolution FTIR spectrum of the ν 6 band of deuterated formic acid (DCOOH)
NASA Astrophysics Data System (ADS)
Goh, K. L.; Ong, P. P.; Tan, T. L.; Teo, H. H.
1999-07-01
The high resolution FTIR spectrum of the ν 6 band of DCOOH has been measured with a resolution of 0.004 cm -1 in the spectral range of 920-1020 cm -1. The ν 6 band was found to be perturbed by the neighbouring ν 8 band situated at about 100 cm -1 lower. Using a Watson's A-reduced Hamiltonian in the Ir representation, and with the inclusion of a-, and b-Coriolis coupling constants, a simultaneous fit of ν 6 and ν 8 was performed, fitting a total of 1656 infrared transitions of ν 6 with an rms uncertainty of 0.00038 cm -1. A set of accurate rovibrational constants for ν 6 were obtained. The ν 6 band was analysed to be primarily A-typed with a band centre at 970.88931±0.00003 cm -1.
Reducing support loss in micromechanical ring resonators using phononic band-gap structures
NASA Astrophysics Data System (ADS)
Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin
2011-09-01
In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.
European Scientific Notes. Volume 36, Number 6,
1982-06-30
densities. The temperature scribed cross-relaxation between F centers in dependence of different emission bands was CaO observed via the spin-echo decay...both modes were accomplished via the display shown in Figure 1. The three the same basic signal to threshold manipu- adjacent rectangular sectors cover...Confidence Bands - --- Around Target Vector Detectability 1.4. __ _(Shown in Orange) Measure 1.6 . probably %.--- no taraet 1.2 - - .0" " 1ure no Fig. 2 The
Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data.
Montesinos-López, Osval A; Montesinos-López, Abelardo; Crossa, José; de Los Campos, Gustavo; Alvarado, Gregorio; Suchismita, Mondal; Rutkoski, Jessica; González-Pérez, Lorena; Burgueño, Juan
2017-01-01
Modern agriculture uses hyperspectral cameras to obtain hundreds of reflectance data measured at discrete narrow bands to cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra, depending on the camera. This information is used to construct vegetation indices (VI) (e.g., green normalized difference vegetation index or GNDVI, simple ratio or SRa, etc.) which are used for the prediction of primary traits (e.g., biomass). However, these indices only use some bands and are cultivar-specific; therefore they lose considerable information and are not robust for all cultivars. This study proposes models that use all available bands as predictors to increase prediction accuracy; we compared these approaches with eight conventional vegetation indexes (VIs) constructed using only some bands. The data set we used comes from CIMMYT's global wheat program and comprises 1170 genotypes evaluated for grain yield (ton/ha) in five environments (Drought, Irrigated, EarlyHeat, Melgas and Reduced Irrigated); the reflectance data were measured in 250 discrete narrow bands ranging between 392 and 851 nm. The proposed models for the simultaneous analysis of all the bands were ordinal least square (OLS), Bayes B, principal components with Bayes B, functional B-spline, functional Fourier and functional partial least square. The results of these models were compared with the OLS performed using as predictors each of the eight VIs individually and combined. We found that using all bands simultaneously increased prediction accuracy more than using VI alone. The Splines and Fourier models had the best prediction accuracy for each of the nine time-points under study. Combining image data collected at different time-points led to a small increase in prediction accuracy relative to models that use data from a single time-point. Also, using bands with heritabilities larger than 0.5 only in Drought as predictor variables showed improvements in prediction accuracy.
Effects of aerodynamic heating and TPS thermal performance uncertainties on the Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Goodrich, W. D.; Derry, S. M.; Maraia, R. J.
1980-01-01
A procedure for estimating uncertainties in the aerodynamic-heating and thermal protection system (TPS) thermal-performance methodologies developed for the Shuttle Orbiter is presented. This procedure is used in predicting uncertainty bands around expected or nominal TPS thermal responses for the Orbiter during entry. Individual flowfield and TPS parameters that make major contributions to these uncertainty bands are identified and, by statistical considerations, combined in a manner suitable for making engineering estimates of the TPS thermal confidence intervals and temperature margins relative to design limits. Thus, for a fixed TPS design, entry trajectories for future Orbiter missions can be shaped subject to both the thermal-margin and confidence-interval requirements. This procedure is illustrated by assessing the thermal margins offered by selected areas of the existing Orbiter TPS design for an entry trajectory typifying early flight test missions.
RATIR Follow-up of LIGO/Virgo Gravitational Wave Events
NASA Astrophysics Data System (ADS)
Golkhou, V. Zach; Butler, Nathaniel R.; Strausbaugh, Robert; Troja, Eleonora; Kutyrev, Alexander; Lee, William H.; Román-Zúñiga, Carlos G.; Watson, Alan M.
2018-04-01
We have recently witnessed the first multi-messenger detection of colliding neutron stars through gravitational waves (GWs) and electromagnetic (EM) waves (GW 170817) thanks to the joint efforts of LIGO/Virgo and Space/Ground-based telescopes. In this paper, we report on the RATIR follow-up observation strategies and show the results for the trigger G194575. This trigger is not of astrophysical interest; however, it is of great interest to the robust design of a follow-up engine to explore large sky-error regions. We discuss the development of an image-subtraction pipeline for the six-color, optical/NIR imaging camera RATIR. Considering a two-band (i and r) campaign in the fall of 2015, we find that the requirement of simultaneous detection in both bands leads to a factor ∼10 reduction in false alarm rate, which can be further reduced using additional bands. We also show that the performance of our proposed algorithm is robust to fluctuating observing conditions, maintaining a low false alarm rate with a modest decrease in system efficiency that can be overcome utilizing repeat visits. Expanding our pipeline to search for either optical or NIR detections (three or more bands), considering separately the optical riZ and NIR YJH bands, should result in a false alarm rate ≈1% and an efficiency ≈90%. RATIR’s simultaneous optical/NIR observations are expected to yield about one candidate transient in the vast 100 deg2 LIGO error region for prioritized follow-up with larger aperture telescopes.
Optimization of Ocean Color Algorithms: Application to Satellite Data Merging
NASA Technical Reports Server (NTRS)
Ritorena, Stephane; Siegel, David A.; Morel, Andre
2004-01-01
The objective of the program is to develop and validate a procedure for ocean color data merging, which is one of the major goals of the SIMBIOS project. As part of the SIMBIOS Program, we have developed a merging method for ocean color data. Conversely to other methods our approach does not combine end-products like the subsurface chlorophyll concentration (chl) from different sensors to generate a unified product. Instead, our procedure uses the normalized water-leaving radiances L((sub wN)(lambda)) from single or multiple sensors and uses them in the inversion of a semi-analytical ocean color model that allows the retrieval of several ocean color variables simultaneously. Beside ensuring simultaneity and consistency of the retrievals (all products are derived from a single algorithm), this model-based approach has various benefits over techniques that blend end-products (e.g. chlorophyll): 1) It works with single or multiple data sources regardless of their specific bands; 2) It exploits band redundancies and band differences; 3) It accounts for uncertainties in the L((sub wN)(lambda)) data; 4) It provides uncertainty estimates for the retrieved variables.
A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain
NASA Astrophysics Data System (ADS)
Ullah, M. Habib; Islam, M. T.
2014-08-01
A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < -10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart.
Simultaneous Photometric and Spectroscopic Solution for AW Cam
NASA Astrophysics Data System (ADS)
Frey, J. R.; Angione, R. J.; Sievers, J. R.
2010-07-01
We present the first four color Stromgren uvby photometric observations of the eclipsing binary system AW Cam along with the first simultaneous photometric and spectroscopic solution. This solution produced a detached system with a mass ratio of 0.45 consisting of an A1 primary and an F8 secondary, both in the main sequence band. The Hipparcos/Tycho Catalogue gives V = 8.24 and a parallax = 2.17 mas.
de Sá, Amanda Regina Nichi; Steindel, Mário; Demeu, Lara Maria Kalempa; Lückemeyer, Débora Denardin; Grisard, Edmundo Carlos; Neto, Quirino Alves de Lima; de Araújo, Silvana Marques; Toledo, Max Jean de Ornelas; Gomes, Mônica Lúcia
2013-12-23
The parasites Trypanosoma rangeli and Trypanosoma cruzi share vectors and hosts over a wide geographical area in Latin America. In this study, we propose a single molecular approach for simultaneous detection and typing of T. rangeli and T. cruzi. A restriction fragment length polymorphism analysis of the mitochondrial cytochrome oxidase II gene (COII-RFLP) using enzyme AluI and different amounts of DNA from the major genetic groups of T. rangeli and T. cruzi (KP1+/KP1- and DTU-I/DTU-II) was carried out. The same marker was tested on the other T. cruzi DTUs (DTU-III to DTU-VI) and on DNA extracted from gut contents of experimentally infected triatomines. The COII PCR generates a ~400 bp fragment, which after digestion with AluI (COII-RFLP) can be used to distinguish T. rangeli from T. cruzi and simultaneously differentiate the major genetic groups of T. rangeli (KP1+ and KP1-) and T. cruzi (DTU-I and DTU-II). The COII-RFLP generated bands of ~120 bp and ~280 bp for KP1+, whereas for KP1- no amplicon cleavage was observed. For T. cruzi, digestion of COII revealed a ~300 bp band for DTU-I and a ~250 bp band for DTU-II. For DTU-III to DTU-VI, COII-RFLP generated bands ranging from ~310 to ~330 bp, but the differentiation of these DTUs was not as clear as the separation between DTU-I and DTU-II. After AluI digestion, a species-specific fragment of ~80 bp was observed for all DTUs of T. cruzi. No cross-amplification was observed for Leishmania spp., T. vivax or T. evansi. The COII-RFLP allowed simultaneous detection and typing of T. rangeli and T. cruzi strains according to their major genetic groups (KP1+/KP1- and DTU-I/DTU-II) in vitro and in vivo, providing a reliable and sensitive tool for epidemiological studies in areas where T. rangeli and T. cruzi coexist.
2013-01-01
Background The parasites Trypanosoma rangeli and Trypanosoma cruzi share vectors and hosts over a wide geographical area in Latin America. In this study, we propose a single molecular approach for simultaneous detection and typing of T. rangeli and T. cruzi. Methods A restriction fragment length polymorphism analysis of the mitochondrial cytochrome oxidase II gene (COII-RFLP) using enzyme AluI and different amounts of DNA from the major genetic groups of T. rangeli and T. cruzi (KP1+/KP1- and DTU-I/DTU-II) was carried out. The same marker was tested on the other T. cruzi DTUs (DTU-III to DTU-VI) and on DNA extracted from gut contents of experimentally infected triatomines. Results The COII PCR generates a ~400 bp fragment, which after digestion with AluI (COII-RFLP) can be used to distinguish T. rangeli from T. cruzi and simultaneously differentiate the major genetic groups of T. rangeli (KP1+ and KP1-) and T. cruzi (DTU-I and DTU-II). The COII-RFLP generated bands of ~120 bp and ~280 bp for KP1+, whereas for KP1- no amplicon cleavage was observed. For T. cruzi, digestion of COII revealed a ~300 bp band for DTU-I and a ~250 bp band for DTU-II. For DTU-III to DTU-VI, COII-RFLP generated bands ranging from ~310 to ~330 bp, but the differentiation of these DTUs was not as clear as the separation between DTU-I and DTU-II. After AluI digestion, a species-specific fragment of ~80 bp was observed for all DTUs of T. cruzi. No cross-amplification was observed for Leishmania spp., T. vivax or T. evansi. Conclusions The COII-RFLP allowed simultaneous detection and typing of T. rangeli and T. cruzi strains according to their major genetic groups (KP1+/KP1- and DTU-I/DTU-II) in vitro and in vivo, providing a reliable and sensitive tool for epidemiological studies in areas where T. rangeli and T. cruzi coexist. PMID:24360167
Multi-Band Received Signal Strength Fingerprinting Based Indoor Location System
NASA Astrophysics Data System (ADS)
Sertthin, Chinnapat; Fujii, Takeo; Ohtsuki, Tomoaki; Nakagawa, Masao
This paper proposes a new multi-band received signal strength (MRSS) fingerprinting based indoor location system, which employs the frequency diversity on the conventional single-band received signal strength (RSS) fingerprinting based indoor location system. In the proposed system, the impacts of frequency diversity on the enhancements of positioning accuracy are analyzed. Effectiveness of the proposed system is proved by experimental approach, which was conducted in non line-of-sight (NLOS) environment under the area of 103m2 at Yagami Campus, Keio University. WLAN access points, which simultaneously transmit dual-band signal of 2.4 and 5.2GHz, are utilized as transmitters. Likewise, a dual-band WLAN receiver is utilized as a receiver. Signal distances calculated by both Manhattan and Euclidean were classified by K-Nearest Neighbor (KNN) classifier to illustrate the performance of the proposed system. The results confirmed that Frequency diversity attributions of multi-band signal provide accuracy improvement over 50% of the conventional single-band.
D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J
2006-08-01
In the spectral region where the refractive index of the negative index material is approximately zero, at oblique incidence, the linear transmission of a finite structure composed of alternating layers of negative and positive index materials manifests the formation of a new type of band gap with exceptionally narrow band-edge resonances. In particular, for TM-polarized (transverse magnetic) incident waves, field values that can be achieved at the band edge may be much higher compared to field values achievable in standard photonic band-gap structures. We exploit the unique properties of these band-edge resonances for applications to nonlinear frequency conversion, second-harmonic generation, in particular. The simultaneous availability of high field localization and phase matching conditions may be exploited to achieve second-harmonic conversion efficiencies far better than those achievable in conventional photonic band-gap structures. Moreover, we study the role played by absorption within the negative index material, and find that the process remains efficient even for relatively high values of the absorption coefficient.
Yu, Yaoguang; Yang, Xu; Zhao, Yanling; Zhang, Xiangbin; An, Liang; Huang, Miaoyan; Chen, Gang; Zhang, Ruiqin
2018-04-19
Introducing band gap states to TiO 2 photocatalysts is an efficient strategy for expanding the range of accessible energy available in the solar spectrum. However, few approaches are able to introduce band gap states and improve photocatalytic performance simultaneously. Introducing band gap states by creating surface disorder can incapacitate reactivity where unambiguous adsorption sites are a prerequisite. An alternative method for introduction of band gap states is demonstrated in which selected heteroatoms are implanted at preferred surface sites. Theoretical prediction and experimental verification reveal that the implanted heteroatoms not only introduce band gap states without creating surface disorder, but also function as active sites for the Cr VI reduction reaction. This promising approach may be applicable to the surfaces of other solar harvesting materials where engineered band gap states could be used to tune photophysical and -catalytic properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Localization Performance of Multiple Vibrotactile Cues on Both Arms.
Wang, Dangxiao; Peng, Cong; Afzal, Naqash; Li, Weiang; Wu, Dong; Zhang, Yuru
2018-01-01
To present information using vibrotactile stimuli in wearable devices, it is fundamental to understand human performance of localizing vibrotactile cues across the skin surface. In this paper, we studied human ability to identify locations of multiple vibrotactile cues activated simultaneously on both arms. Two haptic bands were mounted in proximity to the elbow and shoulder joints on each arm, and two vibrotactile motors were mounted on each band to provide vibration cues to the dorsal and palmar side of the arm. The localization performance under four conditions were compared, with the number of the simultaneously activated cues varying from one to four in each condition. Experimental results illustrate that the rate of correct localization decreases linearly with the increase in the number of activated cues. It was 27.8 percent for three activated cues, and became even lower for four activated cues. An analysis of the correct rate and error patterns show that the layout of vibrotactile cues can have significant effects on the localization performance of multiple vibrotactile cues. These findings might provide guidelines for using vibrotactile cues to guide the simultaneous motion of multiple joints on both arms.
Ha, Na Young; Ohtsuka, Youko; Jeong, Soon Moon; Nishimura, Suzushi; Suzaki, Goroh; Takanishi, Yoichi; Ishikawa, Ken; Takezoe, Hideo
2008-01-01
A cholesteric liquid crystal (CLC) is a self-assembled photonic crystal formed by rodlike molecules, including chiral molecules, that arrange themselves in a helical fashion. The CLC has a single photonic bandgap and an associated one-colour reflection band for circularly polarized light with the same handedness as the CLC helix (selective reflection). These optical characteristics, particularly the circular polarization of the reflected light, are attractive for applications in reflective colour displays without using a backlight, for use as polarizers or colour filters and for mirrorless lasing. Recently, we showed by numerical simulation that simultaneous multicolour reflection is possible by introducing fibonaccian phase defects. Here, we design and fabricate a CLC system consisting of thin isotropic films and of polymeric CLC films, and demonstrate experimentally simultaneous red, green and blue reflections (multiple photonic bandgaps) using the single-pitched polymeric CLC films. The experimental reflection spectra are well simulated by calculations. The presented system can extend applications of CLCs to a wide-band region and could give rise to new photonic devices, in which white or multicolour light is manipulated.
Xing, P; Chen, G F R; Zhao, X; Ng, D K T; Tan, M C; Tan, D T H
2017-08-22
Ring resonators on silicon rich nitride for potential use as rare-earth doped amplifiers pumped at 1310 nm with amplification at telecommunications-band are designed and characterized. The ring resonators are fabricated on 300 nm and 400 nm silicon rich nitride films and characterized at both 1310 nm and 1550 nm. We demonstrate ring resonators exhibiting similar quality factors exceeding 10,000 simultaneously at 1310 nm and 1550 nm. A Dysprosium-Erbium material system exhibiting photoluminescence at 1510 nm when pumped at 1310 nm is experimentally demonstrated. When used together with Dy-Er co-doped particles, these resonators with similar quality factors at 1310 nm and 1550 nm may be used for O-band pumped amplifiers for the telecommunications-band.
Nazari, Tavakol; Khazaeinezhad, Reza; Jung, Woohyun; Joo, Boram; Kong, Byung-Joo; Oh, Kyunghwan
2015-07-13
Dual resonant bands in UV and the visible range were simultaneously observed in the enhanced optical transmission (EOT) through star-shaped plasmonic structures. EOTs through four types of polygonal bull's eyes with a star aperture surrounded by the concentric star grooves were analyzed and compared for 3, 4, 5, and 6 corners, using finite difference time domain (FDTD) method. In contrast to plasmonic resonances in the visible range, the UV-band resonance intensity was found to scale with the number of corners, which is related with higher order multipole interactions. Spectral positions and relative intensities of the dual resonances were analyzed parametrically to find optimal conditions to maximize EOT in UV-visible dual bands.
Fatigue failure of materials under broad band random vibrations
NASA Technical Reports Server (NTRS)
Huang, T. C.; Lanz, R. W.
1971-01-01
The fatigue life of material under multifactor influence of broad band random excitations has been investigated. Parameters which affect the fatigue life are postulated to be peak stress, variance of stress and the natural frequency of the system. Experimental data were processed by the hybrid computer. Based on the experimental results and regression analysis a best predicting model has been found. All values of the experimental fatigue lives are within the 95% confidence intervals of the predicting equation.
The State and Development Direction of the Geodetic VLBI Station in Korea
NASA Technical Reports Server (NTRS)
Ju, Hyunhee; Kim, Myungho; Kim, Suchul; Park, Jinsik; Kondo, Tetsuro; Kim, Tuhwan; Oh, Hongjong; Yi, Sangoh
2010-01-01
A permanent geodetic VLBI station with a 22-m diameter antenna will be newly constructed in Korea by the National Geographic Information Institute (NGII) under the project Korea VLBI system for Geodesy (KVG) that aims at maintaining the Korean geodetic datum accurately on the International Terrestrial Reference Frame (ITRF). KVG can receive 2, 8, 22, and 43 GHz bands simultaneously in order to conduct geodetic and astronomical VLBI observations with Korea astronomical VLBI stations along with geodetic observations with IVS stations. This simultaneous four-band receiving capability is a unique feature of the KVG system. The KVG has started officially in October 2008. A new geodetic VLBI station will be constructed at Sejong city (about 120 km south of Seoul and about 20 km north-northwest of Daejeon) and construction of all systems will be completed in 2011.
Simultaneous use of geological, geophysical, and LANDSAT digital data in uranium exploration. [Libya
DOE Office of Scientific and Technical Information (OSTI.GOV)
Missallati, A.; Prelat, A.E.; Lyon, R.J.P.
1979-08-01
The simultaneous use of geological, geophysical and Landsat data in uranium exploration in southern Libya is reported. The values of 43 geological, geophysical and digital data variables, including age and type of rock, geological contacts, aeroradio-metric and aeromagnetic values and brightness ratios, were used as input into a geomathematical model. Stepwise discriminant analysis was used to select grid cells most favorable for detailed mineral exploration and to evaluate the significance of each variable in discriminating between the anomalous (radioactive) and nonanomalous (nonradioactive) areas. It is found that the geological contact relationships, Landsat Bands 6 and Band 7/4 ratio values weremore » most useful in the discrimination. The procedure was found to be statistically and geologically reliable, and applicable to similar regions using only the most important geological and Landsat data.« less
Quantum well infrared photodetector simultaneously working in the two atmospheric windows
NASA Astrophysics Data System (ADS)
Huo, Y. H.; Ma, W. Q.; Zhang, Y. H.; Chong, M.; Yang, T.; Chen, L. H.; Shi, Y. L.
2009-07-01
We have demonstrated a dual-band quantum well infrared photodetector (QWIP) exhibiting simultaneous photoresponse both in the mid and the long wavelength atmospheric windows of 3-5 μm and of 8-12 μm, but the device only has two ohmic contacts. The structure of the device was achieved by sequentially growing a mid wavelength part (MWQWIP) followed by a long wavelength part (LWQWIP) separated by an n+ layer. Comparing with the conventional dual-band QWIP device utilizing three ohmic contacts, our QWIP is promising to greatly facilitate the two-color focal plane array (FPA) fabrication by reducing the number of the indium bump per pixel from three to one just like a monochromatic FPA fabrication; another advantage may be that this QWIP FAP boasts two-color detection capability while only using a monochromatic readout integrated circuit.
Effect of interfacial lattice mismatch on bulk carrier concentration and band gap of InN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuyyalil, Jithesh; Tangi, Malleswararao; Shivaprasad, S. M.
The issue of ambiguous values of the band gap (0.6 to 2 eV) of InN thin film in literature has been addressed by a careful experiment. We have grown wurtzite InN films by PA-MBE simultaneously on differently modified c-plane sapphire substrates and characterized by complementary structural and chemical probes. Our studies discount Mie resonances caused by metallic In segregation at grain boundaries as the reason for low band gap values ( Almost-Equal-To 0.6 eV) and also the formation of Indium oxides and oxynitrides as the cause for high band gap value ( Almost-Equal-To 2.0 eV). It is observed that polycrystallinitymore » arising from azimuthal miss-orientation of c-oriented wurtzite InN crystals increases the carrier concentration and the band gap values. We have reviewed the band gap, carrier concentration, and effective mass of InN in literature and our own measurements, which show that the Moss-Burstein relation with a non-parabolic conduction band accounts for the observed variation of band gap with carrier concentration.« less
Decreasing patient identification band errors by standardizing processes.
Walley, Susan Chu; Berger, Stephanie; Harris, Yolanda; Gallizzi, Gina; Hayes, Leslie
2013-04-01
Patient identification (ID) bands are an essential component in patient ID. Quality improvement methodology has been applied as a model to reduce ID band errors although previous studies have not addressed standardization of ID bands. Our specific aim was to decrease ID band errors by 50% in a 12-month period. The Six Sigma DMAIC (define, measure, analyze, improve, and control) quality improvement model was the framework for this study. ID bands at a tertiary care pediatric hospital were audited from January 2011 to January 2012 with continued audits to June 2012 to confirm the new process was in control. After analysis, the major improvement strategy implemented was standardization of styles of ID bands and labels. Additional interventions included educational initiatives regarding the new ID band processes and disseminating institutional and nursing unit data. A total of 4556 ID bands were audited with a preimprovement ID band error average rate of 9.2%. Significant variation in the ID band process was observed, including styles of ID bands. Interventions were focused on standardization of the ID band and labels. The ID band error rate improved to 5.2% in 9 months (95% confidence interval: 2.5-5.5; P < .001) and was maintained for 8 months. Standardization of ID bands and labels in conjunction with other interventions resulted in a statistical decrease in ID band error rates. This decrease in ID band error rates was maintained over the subsequent 8 months.
Validating a biometric authentication system: sample size requirements.
Dass, Sarat C; Zhu, Yongfang; Jain, Anil K
2006-12-01
Authentication systems based on biometric features (e.g., fingerprint impressions, iris scans, human face images, etc.) are increasingly gaining widespread use and popularity. Often, vendors and owners of these commercial biometric systems claim impressive performance that is estimated based on some proprietary data. In such situations, there is a need to independently validate the claimed performance levels. System performance is typically evaluated by collecting biometric templates from n different subjects, and for convenience, acquiring multiple instances of the biometric for each of the n subjects. Very little work has been done in 1) constructing confidence regions based on the ROC curve for validating the claimed performance levels and 2) determining the required number of biometric samples needed to establish confidence regions of prespecified width for the ROC curve. To simplify the analysis that address these two problems, several previous studies have assumed that multiple acquisitions of the biometric entity are statistically independent. This assumption is too restrictive and is generally not valid. We have developed a validation technique based on multivariate copula models for correlated biometric acquisitions. Based on the same model, we also determine the minimum number of samples required to achieve confidence bands of desired width for the ROC curve. We illustrate the estimation of the confidence bands as well as the required number of biometric samples using a fingerprint matching system that is applied on samples collected from a small population.
Colloff, Melissa F.; Karoğlu, Nilda; Zelek, Katarzyna; Ryder, Hannah; Humphries, Joyce E.; Takarangi, Melanie K.T.
2017-01-01
Summary Acute alcohol intoxication during encoding can impair subsequent identification accuracy, but results across studies have been inconsistent, with studies often finding no effect. Little is also known about how alcohol intoxication affects the identification confidence–accuracy relationship. We randomly assigned women (N = 153) to consume alcohol (dosed to achieve a 0.08% blood alcohol content) or tonic water, controlling for alcohol expectancy. Women then participated in an interactive hypothetical sexual assault scenario and, 24 hours or 7 days later, attempted to identify the assailant from a perpetrator present or a perpetrator absent simultaneous line‐up and reported their decision confidence. Overall, levels of identification accuracy were similar across the alcohol and tonic water groups. However, women who had consumed tonic water as opposed to alcohol identified the assailant with higher confidence on average. Further, calibration analyses suggested that confidence is predictive of accuracy regardless of alcohol consumption. The theoretical and applied implications of our results are discussed.© 2017 The Authors Applied Cognitive Psychology Published by John Wiley & Sons Ltd. PMID:28781426
NASA Astrophysics Data System (ADS)
Bell, R.; Labovitz, M. L.
1982-07-01
A Barnes field spectral reflectometer which collected information in 373 channels covering the region from 0.4 to 2.5 micrometers was assessed for signal utility. A band was judged unsatisfactory if the probability was 0.1 or greater than its signal to noise ratio was less than eight to one. For each of the bands the probability of a noisy observation was estimated under a binomial assumption from a set of field crop spectra covering an entire growing season. A 95% confidence interval was calculated about each estimate and bands whose lower confidence limits were greater than 0.1 were judged unacceptable. As a result, 283 channels were deemed statistically satisfactory. Excluded channels correspond to portions of the electromagnetic spectrum (EMS) where high atmospheric absorption and filter wheel overlap occur. In addition, the analyses uncovered intervals of unsatisfactory detection capability within the blue, red and far infrared regions of vegetation spectra. From the results of the analysis it was recommended that 90 channels monitored by the instrument under consideration be eliminated from future studies. These channels are tabulated and discussed.
NASA Technical Reports Server (NTRS)
Bell, R.; Labovitz, M. L.
1982-01-01
A Barnes field spectral reflectometer which collected information in 373 channels covering the region from 0.4 to 2.5 micrometers was assessed for signal utility. A band was judged unsatisfactory if the probability was 0.1 or greater than its signal to noise ratio was less than eight to one. For each of the bands the probability of a noisy observation was estimated under a binomial assumption from a set of field crop spectra covering an entire growing season. A 95% confidence interval was calculated about each estimate and bands whose lower confidence limits were greater than 0.1 were judged unacceptable. As a result, 283 channels were deemed statistically satisfactory. Excluded channels correspond to portions of the electromagnetic spectrum (EMS) where high atmospheric absorption and filter wheel overlap occur. In addition, the analyses uncovered intervals of unsatisfactory detection capability within the blue, red and far infrared regions of vegetation spectra. From the results of the analysis it was recommended that 90 channels monitored by the instrument under consideration be eliminated from future studies. These channels are tabulated and discussed.
Superconductivity and the periodic table: from elements to materials.
Simon, Arndt
2015-03-13
Based on the normal-state electronic band structure, the necessary condition for a metal to become a superconductor is the simultaneous occurrence of flat and steep bands at the Fermi level. The sufficient condition at least for conventional superconductors is a strong enough coupling of the flat band states to the lattice, e.g. via phonons. Selected elements (Te) and compounds of the rare earth metals (RE(2)C(3), REC(2), RE(2)X(2)C(2) with X=halogen) and MgB(2) serve as examples to illustrate the idea. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Paintable band-edge liquid crystal lasers.
Gardiner, Damian J; Morris, Stephen M; Hands, Philip J W; Mowatt, Carrie; Rutledge, Rupert; Wilkinson, Timothy D; Coles, Harry J
2011-01-31
In this paper we demonstrate photonic band-edge laser emission from emulsion-based polymer dispersed liquid crystals. The lasing medium consists of dye-doped chiral nematic droplets dispersed within a polymer matrix that spontaneously align as the film dries. Such lasers can be easily formed on single substrates with no alignment layers. The system combines the self-organizing periodic structure of chiral nematic liquid crystals with the simplicity of the emulsion procedure so as to produce a material that retains the emission characteristics of band-edge lasers yet can be readily coated. Sequential and stacked layers demonstrate the possibility of achieving simultaneous multi-wavelength laser output from glass, metallic, and flexible substrates.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng
2014-05-01
In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30-70 mA. In addition, the output stabilities of the power and wavelength are also discussed.
Gas-phase broadband spectroscopy using active sources: progress, status, and applications
Cossel, Kevin C.; Waxman, Eleanor M.; Finneran, Ian A.; Blake, Geoffrey A.; Ye, Jun; Newbury, Nathan R.
2017-01-01
Broadband spectroscopy is an invaluable tool for measuring multiple gas-phase species simultaneously. In this work we review basic techniques, implementations, and current applications for broadband spectroscopy. We discuss components of broad-band spectroscopy including light sources, absorption cells, and detection methods and then discuss specific combinations of these components in commonly-used techniques. We finish this review by discussing potential future advances in techniques and applications of broad-band spectroscopy. PMID:28630530
Spectroradiometric calibration of the thematic mapper and multispectral scanner system
NASA Technical Reports Server (NTRS)
Slater, P. N. (Principal Investigator); Palmer, J. M.
1983-01-01
The results obtained for the absolute calibration of TM bands 2, 3, and 4 are presented. The results are based on TM image data collected simultaneously with ground and atmospheric data at White Sands, New Mexico. Also discussed are the results of a moments analysis to determine the equivalent bandpasses, effective central wavelengths and normalized responses of the TM and MSS spectral bands; the calibration of the BaSO, plate used at White Sands; and future plans.
Dual-band QWIP MWIR/LWIR focal plane array test results
NASA Astrophysics Data System (ADS)
Goldberg, Arnold C.; Fischer, Theodore; Kennerly, Stephen; Wang, Samuel C.; Sundaram, Mani; Uppal, Parvez; Winn, Michael L.; Milne, Gregory L.; Stevens, Mark A.
2000-07-01
We report on the results of laboratory and field tests on a pixel-registered, 2-color MWIR/LWIR 256 X 256 QWIP FPA with simultaneous integrating capability. The FPA studied contained stacked QWIP structures with spectral peaks at 5.1 micrometer and 9.0 micrometer. Normally incident radiation was coupled into the devices using a diffraction grating designed to operate in both spectral bands. Each pixel is connected to the read-out integrated circuit by three bumps to permit the application of separate bias levels to each QWIP stack and allow simultaneous integration of the signal current in each band. We found the FPA to have high pixel operability, well balanced response, good imaging performance, high optical fill factor, and low spectral crosstalk. We present data on measurements of the noise-equivalent temperature difference of the FPA in both bands as functions of temperature and bias. The FPA data are compared to single-pixel data taken on devices from the same wafer. We also present data on the sensitivity of this FPA to polarized light. It is found that the LWIR portion of the device is very sensitive to the direction of polarization of the incident light. The MWIR part of the device is relatively insensitive to the polarization. In addition, imagery was taken with this FPA of military targets in the field. Image fusion techniques were applied to the resulting images.
NASA Technical Reports Server (NTRS)
Dawson, K. S.; Holzapfel, W. L.; Carlstrom, J. E.; Joy, M.; LaRoque, S. J.; Reese, E. D.; Rose, M. Franklin (Technical Monitor)
2001-01-01
We have used the Berkeley-Illinois-Maryland-Association (BIMA) array outfitted with sensitive cm-wave receivers to expand our search for minute scale anisotropy of the Cosmic Microwave Background (CMB). The interferometer was placed in a compact configuration to obtain high brightness sensitivity on arcminute scales over its 6.6' FWHM field of view. The sensitivity of this experiment to flat band power peaks at a multipole of 1 = 5530 which corresponds to an angular scale of -2'. We present the analysis of a total of 470 hours of on-source integration time on eleven independent fields which were selected based on their low IR contrast and lack of bright radio sources. Applying a Bayesian analysis to the visibility data, we find CMB anisotropy flat band power Q_flat = 6.1(+2.8/-4.8) microKelvin at 68% confidence. The confidence of a nonzero signal is 76% and we find an upper limit of Q_flat < 12.4 microKelvin at 95% confidence. We have supplemented our BIMA observations with concurrent observations at 4.8 GHz with the VLA to search for and remove point sources. We find the point sources make an insignificant contribution to the observed anisotropy.
Amniotic Band Syndrome: A Review of 2 Cases.
Madan, Siddharth; Chaudhuri, Zia
2018-04-03
Amniotic band syndrome is a rare congenital disorder caused by entrapment of fetal parts (usually a limb or digits) in fibrous amniotic bands while in utero that presents with complex multisystem anomalies. The authors report 2 children with amniotic band syndrome who presented to the ophthalmic unit of the authors' pediatric hospital. One of them presented with telecanthus, syndactyly, amputated toes, and unilateral epiphora diagnosed as congenital nasolacrimal duct obstruction. She was managed conservatively with lacrimal sac massage and provided with refractive correction while she simultaneously underwent multiple surgeries for correction of clubfoot and craniosynostosis. The second patient presented with cleft lip, cleft palate, multiple constriction bands in upper limbs and fingers with unilateral microphthalmos, microcornea, typical iris coloboma, and retinochoroidal coloboma, very similar to a case reported in literature. These 2 cases provide an overview of the clinical spectrum of ophthalmic manifestations along with their staged optimum rehabilitation.
The application of airborne imaging radars (L and X-band) to earth resources problems
NASA Technical Reports Server (NTRS)
Drake, B.; Shuchman, R. A.; Bryan, M. L.; Larson, R. W.; Liskow, C. L.; Rendleman, R. A.
1974-01-01
A multiplexed synthetic aperture Side-Looking Airborne Radar (SLAR) that simultaneously images the terrain with X-band (3.2 cm) and L-band (23.0 cm) radar wavelengths was developed. The Feasibility of using multiplexed SLAR to obtain useful information for earth resources purposes. The SLAR imagery, aerial photographs, and infrared imagery are examined to determine the qualitative tone and texture of many rural land-use features imaged. The results show that: (1) Neither X- nor L-band SLAR at moderate and low depression angles can directly or indirectly detect pools of water under standing vegetation. (2) Many of the urban and rural land-use categories present in the test areas can be identified and mapped on the multiplexed SLAR imagery. (3) Water resources management can be done using multiplexed SLAR. (4) Drainage patterns can be determined on both the X- and L-band imagery.
Optical frequency comb based multi-band microwave frequency conversion for satellite applications.
Yang, Xinwu; Xu, Kun; Yin, Jie; Dai, Yitang; Yin, Feifei; Li, Jianqiang; Lu, Hua; Liu, Tao; Ji, Yuefeng
2014-01-13
Based on optical frequency combs (OFC), we propose an efficient and flexible multi-band frequency conversion scheme for satellite repeater applications. The underlying principle is to mix dual coherent OFCs with one of which carrying the input signal. By optically channelizing the mixed OFCs, the converted signal in different bands can be obtained in different channels. Alternatively, the scheme can be configured to generate multi-band local oscillators (LO) for widely distribution. Moreover, the scheme realizes simultaneous inter- and intra-band frequency conversion just in a single structure and needs only three frequency-fixed microwave sources. We carry out a proof of concept experiment in which multiple LOs with 2 GHz, 10 GHz, 18 GHz, and 26 GHz are generated. A C-band signal of 6.1 GHz input to the proposed scheme is successfully converted to 4.1 GHz (C band), 3.9 GHz (C band) and 11.9 GHz (X band), etc. Compared with the back-to-back (B2B) case measured at 0 dBm input power, the proposed scheme shows a 9.3% error vector magnitude (EVM) degradation at each output channel. Furthermore, all channels satisfy the EVM limit in a very wide input power range.
NASA Astrophysics Data System (ADS)
Efremova, Boryana; Wu, Aisheng; Xiong, Xiaoxiong
2014-09-01
The S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is built with strong heritage from EOS MODIS, and has very similar thermal emissive bands (TEB) calibration algorithm and on-board calibrating source - a V-grooved blackbody. The calibration of the two instruments can be assessed by comparing the brightness temperatures retrieved from VIIRS and Aqua MODIS simultaneous nadir observations (SNO) from their spectrally matched TEB. However, even though the VIIRS and MODIS bands are similar there are still relative spectral response (RSR) differences and thus some differences in the retrieved brightness temperatures are expected. The differences depend on both the type and the temperature of the observed scene, and contribute to the bias and the scatter of the comparison. In this paper we use S-NPP Cross-track Infrared Sounder (CrIS) data taken simultaneously with the VIIRS data to derive a correction for the slightly different spectral coverage of VIIRS and MODIS TEB bands. An attempt to correct for RSR differences is also made using MODTRAN models, computed with physical parameters appropriate for each scene, and compared to the value derived from actual CrIS spectra. After applying the CrIS-based correction for RSR differences we see an excellent agreement between the VIIRS and Aqua MODIS measurements in the studied band pairs M13-B23, M15-B31, and M16- B32. The agreement is better than the VIIRS uncertainty at cold scenes, and improves with increasing scene temperature up to about 290K.
NASA Astrophysics Data System (ADS)
Zhou, L.; Xu, S.; Liu, J.
2017-12-01
The retrieval of sea ice thickness mainly relies on satellite altimetry, and the freeboard measurements are converted to sea ice thickness (hi) under certain assumptions over snow loading. The uncertain in snow depth (hs) is a major source of uncertainty in the retrieved sea ice thickness and total volume for both radar and laser altimetry. In this study, novel algorithms for the simultaneous retrieval of hi and hs are proposed for the data synergy of L-band (1.4 GHz) passive remote sensing and both types of active altimetry: (1) L-band (1.4GHz) brightness temperature (TB) from Soil Moisture Ocean Salinity (SMOS) satellite and sea ice freeboard (FBice) from radar altimetry, (2) L-band TB data and snow freeboard (FBsnow) from laser altimetry. Two physical models serve as the forward models for the retrieval: L-band radiation model, and the hydrostatic equilibrium model. Verification with SMOS and Operational IceBridge (OIB) data is carried out, showing overall good retrieval accuracy for both sea ice parameters. Specifically, we show that the covariability between hs and FBsnow is crucial for the synergy between TB and FBsnow. Comparison with existing algorithms shows lower uncertainty in both sea ice parameters, and that the uncertainty in the retrieved sea ice thickness as caused by that of snow depth is spatially uncorrelated, with the potential reduction of the volume uncertainty through spatial sampling. The proposed algorithms can be applied to the retrieval of sea ice parameters at basin-scale, using concurrent active and passive remote sensing data based on satellites.
NASA Technical Reports Server (NTRS)
Withington, J. R.; Williams, W. F.
1982-01-01
Williams and Withington (1979) have considered a prototype X-S-band feedhorn which enabled simultaneous X- and S-band reception from a Cassegrain antenna. This feedhorn has quite successfully demonstrated an alternate method to the standard Deep Space Network (DSN) system of multiple subreflectors and dichroic plate for dual-band reception. In connection with a Network Consolidation Program, involving centralized control of existing antennas and construction of new reflector antennas, a second-generation feedhorn/combiner was conceived to show that this common-aperture feedhorn system was capable of performing all necessary functions the DSN would be called upon to perform with existing and future X-S-band spacecraft. Attention is given to the feedhorn concept, the combiner concept, the first and the second generation of the horn, Sand X-band tuning, and planned capabilities. The feedhorn greatly extends the state of the art in DSN performance and will enhance DSN capabilities in the future.
Bora, Kaustubh; Das, Umesh; Barman, Bhupen; Ruram, Alice Abraham
2017-01-01
Monoclonal gammopathies, such as multiple myeloma, typically exhibit high levels of a monoclonal immunoglobulin (M-protein), produced by a clone of abnormally proliferating B-lymphocytes and/or plasma cells. The M-protein can be evaluated by serum protein electrophoresis (SPEP), which yields a single discrete band (M-band), usually in the γ-globulin region. Rarely, two M-bands appear simultaneously at different positions during SPEP - a condition known as biclonal gammopathy, which is a result of clonal expansion of two different neoplastic cell lines. Here, we describe an atypical case of IgA-λ multiple myeloma, where double M-bands (one in β- and the other in γ-globulin region) were found during SPEP simulating biclonal gammopathy, although it was monoclonal in nature. This peculiar presentation of double M-bands in monoclonal gammopathy was attributed to polymeric forms of IgA by systematic workup. Further, we discuss how true and apparent biclonality can be distinguished by inexpensive analytical techniques in resource-constrained settings.
Coexistence of type-II Dirac point and weak topological phase in Pt 3 Sn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Minsung; Wang, Cai -Zhuang; Ho, Kai -Ming
Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt 3Sn, where the two topological features appear simultaneously. Based on first-principles calculations, we show that Pt 3Sn is a three-dimensional weak topological semimetal with topologically nontrivial band inversion between the valence and conduction bands, where the band structure also possesses type-II Dirac points at the boundary of two electron pockets. The formation of the Dirac points can be understood in terms of the representationsmore » of relevant symmetry groups and the compatibility relations. The topological surface states appear in accordance with the nontrivial bulk band topology. As a result, the unique coexistence of the two distinct topological features in Pt 3Sn enlarges the material scope in topological physics, and is potentially useful for spintronics.« less
Coexistence of type-II Dirac point and weak topological phase in Pt 3 Sn
Kim, Minsung; Wang, Cai -Zhuang; Ho, Kai -Ming
2017-11-06
Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt 3Sn, where the two topological features appear simultaneously. Based on first-principles calculations, we show that Pt 3Sn is a three-dimensional weak topological semimetal with topologically nontrivial band inversion between the valence and conduction bands, where the band structure also possesses type-II Dirac points at the boundary of two electron pockets. The formation of the Dirac points can be understood in terms of the representationsmore » of relevant symmetry groups and the compatibility relations. The topological surface states appear in accordance with the nontrivial bulk band topology. As a result, the unique coexistence of the two distinct topological features in Pt 3Sn enlarges the material scope in topological physics, and is potentially useful for spintronics.« less
Horschig, Jörn M; Smolders, Ruud; Bonnefond, Mathilde; Schoffelen, Jan-Mathijs; van den Munckhof, Pepijn; Schuurman, P Richard; Cools, Roshan; Denys, Damiaan; Jensen, Ole
2015-01-01
Here, we report evidence for oscillatory bi-directional interactions between the nucleus accumbens and the neocortex in humans. Six patients performed a demanding covert visual attention task while we simultaneously recorded brain activity from deep-brain electrodes implanted in the nucleus accumbens and the surface electroencephalogram (EEG). Both theta and alpha oscillations were strongly coherent with the frontal and parietal EEG during the task. Theta-band coherence increased during processing of the visual stimuli. Granger causality analysis revealed that the nucleus accumbens was communicating with the neocortex primarily in the theta-band, while the cortex was communicating the nucleus accumbens in the alpha-band. These data are consistent with a model, in which theta- and alpha-band oscillations serve dissociable roles: Prior to stimulus processing, the cortex might suppress ongoing processing in the nucleus accumbens by modulating alpha-band activity. Subsequently, upon stimulus presentation, theta oscillations might facilitate the active exchange of stimulus information from the nucleus accumbens to the cortex.
NASA Astrophysics Data System (ADS)
Kim, Wonhee; Chen, Xu; Lee, Youngwoo; Chung, Chung Choo; Tomizuka, Masayoshi
2018-05-01
A discrete-time backstepping control algorithm is proposed for reference tracking of systems affected by both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. A discrete time DOB, which is constructed based on infinite impulse response filters is applied to compensate for narrow band disturbances at high frequencies. A discrete-time nonlinear damping backstepping controller with an augmented observer is proposed to track the desired output and to compensate for low frequency broadband disturbances along with a disturbance observer, for rejecting narrow band high frequency disturbances. This combination has the merit of simultaneously compensating both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. The performance of the proposed method is validated via experiments.
NASA Astrophysics Data System (ADS)
Paetzold, M.; Andert, T.; Bird, M. K.; Häusler, B.; Hinson, D. P.; Peter, K.; Tellmann, S.
2017-12-01
Planetary ionospheres are usually sounded at single frequency, e.g. S-band or X-band, or at dual-frequencies, e.g. simultaneous S-band and X-band frequencies. The differential Doppler is computed from the received dual-frequency sounding and it has the advantage that any residual motion by the spaceraft body is compensated. The electron density profile is derived from the propagation of the two radio signals through the ionospheric plasma. Vibrational motion of small amplitude by the spacecraft body may still be contained in the single frequency residuals and may be translated into electron densities. Examples from Mars Express and Venus Express shall be presented. Cases from other missions shall be presented where wave-like structures in the upper ionosphere may be a misinterpretation.
Infrared Analysis of the Anharmonic Resonance between ν 8+ ν 9and the Dark State ν 6+ ν 7of HNO 3
NASA Astrophysics Data System (ADS)
Wang, W. F.; Ong, P. P.; Tan, T. L.; Looi, E. C.; Teo, H. H.
1997-06-01
The high-resolution FTIR spectrum of the ν8+ ν9band of HNO3around 1205 cm-1has been measured and analyzed. The bright state was found to be strongly perturbed by its neighboring dark state ν6+ ν7at the coincident levels. Taking account of the ΔK= ±2 anharmonic resonance, a simultaneous fit of ν8+ ν9and ν6+ ν7was performed leading to a good reproduction of the ν8+ ν9band with a rms uncertainty of 0.00046 cm-1. A set of rovibrational constants for ν8+ ν9were accurately determined, while for ν6+ ν7the rotational constantBand the band origin were obtained.
Correlated photometric and polarimetric phenomena in AM Herculis
NASA Technical Reports Server (NTRS)
Priedhorsky, W. C.; Krzeminski, W.; Tapia, S.
1978-01-01
Via simultaneous multicolor photometry and polarimetry of AM Herculis, we find correlations among polarization, flux, and color in the V and I bands in periodic and nonperiodic (i.e., flickering) activity. The primary minimum observed in both bands is accompanied by a blueward shift of the (B - R) color and a decrease in the absolute value of the percent circular polarization in the V band. Outside primary minimum, peaks of flickering activity tend to be associated with an increase in the absolute value of the circular polarization and the concurrent reddening of the (B - R) and (R - I) colors. The visual light curve of AM Her can be explained by a flickering, circularly polarized light source which is obscured at primary minimum, and is redder than the total system color in the URVRI bands.
First deep space operational experience with simultaneous X- and Ka-bands coherent tracking
NASA Technical Reports Server (NTRS)
Asmar, S.; Herrera, R.; Armstrong, J.; Barbinis, E.; Fleischman, D.; Gatti, M.; Goltz, G.
2002-01-01
This paper describes the new DSN science capability and highlights of the engineering work that lead to its development. It will also discuss experience with operations along with statistics and data quality.
Madeira, Jose Valdo; Macedo, Juliana Alves; Macedo, Gabriela Alves
2011-08-01
In this work, we introduce a biological detoxification method that converts toxic waste from castor beans into animal feed material. This method simultaneously induces the production of tannase and phytase by Paecilomyces variotii; both enzymes have high levels of activity and have the potential to be used in feedstuffs because they decrease overall anti-nutritional factors. The maximum tannase and phytase activities obtained were 2600 and 260 U/g after 48 and 72 h, respectively. SDS-PAGE electrophoresis of the fermented castor cake extracts revealed a reduction in ricin bands during fermentation, and the bands were no longer visible after 48 h. The cytotoxicity of the extracts was evaluated by MTT testing on RAW cells, and a progressive increase in cellular viability was obtained, reaching almost 100% after 72 h of fermentation. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jia; Song, Huaibing; Zeng, Dawen; Wang, Hao; Qin, Ziyu; Xu, Keng; Pang, Aimin; Xie, Changsheng
2016-08-01
Recently, graphene nanomesh (GNM) has attracted great attentions due to its unique porous structure, abundant active sites, finite band gap and possesses potential applications in the fields of electronics, gas sensor/storage, catalysis, etc. Therefore, diverse GNMs with different physical and chemical properties are required urgently to meet different applications. Herein we demonstrate a facile synthetic method based on the famous Fenton reaction to prepare GNM, by using economically fabricated graphene oxide (GO) as a starting material. By precisely controlling the reaction time, simultaneous regulation of pore size from 2.9 to 11.1 nm and surface structure can be realized. Ultimately, diverse GNMs with tunable band gap and work function can be obtained. Specially, the band gap decreases from 4.5-2.3 eV for GO, which is an insulator, to 3.9-1.24 eV for GNM-5 h, which approaches to a semiconductor. The dual nature of electrophilic addition and oxidizability of HO• is responsible for this controllable synthesis. This efficient, low-cost, inherently scalable synthetic method is suitable for provide diverse and optional GNMs, and may be generalized to a universal technique.
Zhang, Jia; Song, Huaibing; Zeng, Dawen; Wang, Hao; Qin, Ziyu; Xu, Keng; Pang, Aimin; Xie, Changsheng
2016-08-26
Recently, graphene nanomesh (GNM) has attracted great attentions due to its unique porous structure, abundant active sites, finite band gap and possesses potential applications in the fields of electronics, gas sensor/storage, catalysis, etc. Therefore, diverse GNMs with different physical and chemical properties are required urgently to meet different applications. Herein we demonstrate a facile synthetic method based on the famous Fenton reaction to prepare GNM, by using economically fabricated graphene oxide (GO) as a starting material. By precisely controlling the reaction time, simultaneous regulation of pore size from 2.9 to 11.1 nm and surface structure can be realized. Ultimately, diverse GNMs with tunable band gap and work function can be obtained. Specially, the band gap decreases from 4.5-2.3 eV for GO, which is an insulator, to 3.9-1.24 eV for GNM-5 h, which approaches to a semiconductor. The dual nature of electrophilic addition and oxidizability of HO(•) is responsible for this controllable synthesis. This efficient, low-cost, inherently scalable synthetic method is suitable for provide diverse and optional GNMs, and may be generalized to a universal technique.
Demonstration of Space Optical Transmitter Development for Multiple High Frequency Bands
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon
2013-01-01
As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.
Analysis of the Coriolis Interaction between ν 6 and ν 8 Bands of HCOOH
NASA Astrophysics Data System (ADS)
Tan, T. L.; Goh, K. L.; Ong, P. P.; Teo, H. H.
2000-08-01
The Fourier transform infrared (FTIR) spectrum of the ν6 band of formic acid (HCOOH) has been recorded with a resolution of 0.0024 cm-1 in the spectral range 1050-1160 cm-1. The ν6 band was found to be strongly perturbed by the nearby ν8 band centered at about 1033.5 cm-1. Using a Watson's A-reduced Hamiltonian in the Ir representation, and with the inclusion of a-type Coriolis coupling constant, a simultaneous fit of ν6 and ν8 was performed. A total of 2485 infrared transitions including about 700 perturbed transitions of ν6 and 19 transitions of ν8 was fitted with an rms uncertainty of 0.0006 cm-1. Accurate rovibrational constants up to sextic order for both ν6 and ν8 were obtained. The ν6 band was analyzed to be a type AB hybrid with a band center at 1104.852109 ± 0.000050 cm-1. The band center for ν8 was found to be 1033.4647 ± 0.0021 cm-1.
Structure of the Odd-Odd Nucleus {sup 188}Re
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balodis, M.; Berzins, J.; Simonova, L.
2009-01-28
Thermal neutron capture gamma-ray spectra for {sup 187}Re(n,{gamma}){sup 188}Re reaction were measured. Singles and coincidence spectra were detected in order to develop the level scheme. The evaluation is in progress, of which the first results are obtained from the analysis of coincidence spectra, allowing to check the level scheme below 500 keV excitation energy. Seven low-energy negative parity bands are developed in order to find better energies for rotational levels. With a good confidence, a few positive parity bands are developed as well. Rotor plus two quasiparticle model calculations, employing effective matrix element method are performed for the system ofmore » six negative parity rotational bands.« less
NASA Astrophysics Data System (ADS)
Maitra, Dipankar; Scarpaci, John F.; Grinberg, Victoria; Reynolds, Mark T.; Markoff, Sera; Maccarone, Thomas J.; Hynes, Robert I.
2017-12-01
We present results of multiband optical photometry of the black hole X-ray binary system V404 Cyg obtained using Wheaton College Observatory’s 0.3 m telescope, along with strictly simultaneous INTEGRAL and Swift observations during 2015 June 25.15–26.33 UT, and 2015 June 27.10–27.34 UT. These observations were made during the 2015 June outburst of the source when it was going through an epoch of violent activity in all wavelengths ranging from radio to γ-rays. The multiwavelength variability timescale favors a compact emission region, most likely originating in a jet outflow, for both observing epochs presented in this work. The simultaneous INTEGRAL/Imager on Board the Integral Satellite (IBIS) 20–40 keV light curve obtained during the June 27 observing run correlates very strongly with the optical light curve, with no detectable delay between the optical bands as well as between the optical and hard X-rays. The average slope of the dereddened spectral energy distribution was roughly flat between the {I}C- and V-bands during the June 27 run, even though the optical and X-ray flux varied by >25× during the run, ruling out an irradiation origin for the optical and suggesting that the optically thick to optically thin jet synchrotron break during the observations was at a frequency larger than that of V-band, which is quite extreme for X-ray binaries. These observations suggest that the optical emission originated very close to the base of the jet. A strong {{H}}α emission line, probably originating in a quasi-spherical nebula around the source, also contributes significantly in the R C -band. Our data, in conjunction with contemporaneous data at other wavelengths presented by other groups, strongly suggest that the jet-base was extremely compact and energetic during this phase of the outburst.
Improvement of band gap profile in Cu(InGa)Se{sub 2} solar cells through rapid thermal annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, D.S.; College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 200090; Yang, J.
Highlights: • Proper RTA treatment can effectively optimize band gap profile to more expected level. • Inter-diffusion of atoms account for the improvement of the graded band gap profile. • The variation of the band gap profile created an absolute gain in the efficiency by 1.22%. - Abstract: In the paper, the effect of rapid thermal annealing on non-optimal double-graded band gap profiles was investigated by using X-ray photoelectron spectroscopy and capacitance–voltage measurement techniques. Experimental results revealed that proper rapid thermal annealing treatment can effectively improve band gap profile to more optimal level. The annealing treatment could not only reducemore » the values of front band gap and minimum band gap, but also shift the position of the minimum band gap toward front electrode and enter into space charge region. In addition, the thickness of Cu(InGa)Se{sub 2} thin film decreased by 25 nm after rapid thermal annealing treatment. All of these modifications were attributed to the inter-diffusion of atoms during thermal treatment process. Simultaneously, the variation of the band gap profile created an absolute gain in the efficiency by 1.22%, short-circuit current density by 2.16 mA/cm{sup 2} and filled factor by 3.57%.« less
A New Two-Color Infrared Photodetector Design Using INGAAS/INALAS Coupled Quantum Wells
1999-08-01
that spans the mid-wave infrared (MWIR) and the long-wave infrared ( LWIR ) atmospheric transmission windows of 3 to 5 and 8 to 12 µm, respectively...This leads to natural pixel registration in an FPA application. QWIP FPAs operating in two LWIR bands have been demonstrated,2 and, recently, the...Abstract unlimited Number of Pages 15 color FPA with simultaneous readout of an LWIR (9-µm peak) and an MWIR (5.1-µm peak) band was tested3 and shown to
NASA Technical Reports Server (NTRS)
Shepherd, Kevin P.; Willshire, William L., Jr.; Hubbard, Harvey H.
1989-01-01
Results are reported from a large number of simultaneous acoustic measurements around a large horizontal axis downwind configuration wind turbine generator. In addition, comparisons are made between measurements and calculations of both the discrete frequency rotational harmonics and the broad band noise components. Sound pressure time histories and noise radiation patterns as well as narrow band and broadband noise spectra are presented for a range of operating conditions. The data are useful for purposes of environmental impact assessment.
VizieR Online Data Catalog: YSOs in California Molecular Cloud (Lada+, 2017)
NASA Astrophysics Data System (ADS)
Lada, C. J.; Lewis, J. A.; Lombardi, M.; Alves, J.
2018-01-01
The CMC was observed by the all-sky Planck observatory and by the Herschel Space Observatory as part of the "Auriga-California" program (Harvey et al. 2013, Cat J/ApJ/764/133). The Herschel data we used consisted of observations obtained in parallel mode simultaneously using the PACS and SPIRE instruments. For the purposes of this study we use Herschel observations made in the PACS 160um band, and the SPIRE 250um, 350um and 500um bands. (1 data file).
Apparatus And Methods For Launching And Receiving A Broad Wavelength Range Source
Von Drasek, William A.; Sonnenfroh, David; Allen, Mark G.; Stafford-Evans, Joy
2006-02-28
An apparatus and method for simultaneous detection of N gas species through laser radiation attenuation techniques is disclosed. Each of the N species has a spectral absorption band. N laser sources operate at a wavelength ?N in a spectral absorption band separated by the cutoff wavelength for single-mode transmission. Each laser source corresponds to a gas species and transmits radiation through an optical fiber constructed and arranged to provide single-mode transmission with minimal power loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaoming; Lan, Chuwen; Li, Bo
We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric “atom” with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric “atom” and copper plate. Mie resonances of dielectric “atom” provide a simple way to design metamaterial perfect absorbers with high symmetry.
Shih, Wei-Chuan; Santos, Greggy M; Zhao, Fusheng; Zenasni, Oussama; Arnob, Md Masud Parvez
2016-07-13
Near-infrared (NIR) absorption spectroscopy provides molecular and chemical information based on overtones and combination bands of the fundamental vibrational modes in the infrared wavelengths. However, the sensitivity of NIR absorption measurement is limited by the generally weak absorption and the relatively poor detector performance compared to other wavelength ranges. To overcome these barriers, we have developed a novel technique to simultaneously obtain chemical and refractive index sensing in 1-2.5 μm NIR wavelength range on nanoporous gold (NPG) disks, which feature high-density plasmonic hot-spots of localized electric field enhancement. For the first time, surface-enhanced near-infrared absorption (SENIRA) spectroscopy has been demonstrated for high sensitivity chemical detection. With a self-assembled monolayer (SAM) of octadecanethiol (ODT), an enhancement factor (EF) of up to ∼10(4) has been demonstrated for the first C-H combination band at 2400 nm using NPG disk with 600 nm diameter. Together with localized surface plasmon resonance (LSPR) extinction spectroscopy, simultaneous sensing of sample refractive index has been achieved for the first time. The performance of this technique has been evaluated using various hydrocarbon compounds and crude oil samples.
Synergistic Measurement of Ice Cloud Microphysics using C- and Ka-Band Radars
NASA Astrophysics Data System (ADS)
Ewald, F.; Gross, S.; Hagen, M.; Li, Q.; Zinner, T.
2017-12-01
Ice clouds play an essential role in the climate system since they have a large effect on the Earth's radiation budget. Uncertainties associated with their spatial and temporal distribution as well as their optical and microphysical properties still account for large uncertainties in climate change predictions. Substantial improvement of our understanding of ice clouds was achieved with the advent of cloud radars into the field of ice cloud remote sensing. Here, highly variable ice crystal size distributions are one of the key issues remaining to be resolved. With radar reflectivity scaling with the sixth moment of the particle size, the assumed ice crystal size distribution has a large impact on the results of microphysical retrievals. Different ice crystal sizes distributions can, however, be distinguished, when cloud radars of different wavelength are used simultaneously.For this study, synchronous RHI scans were performed for a common measurement range of about 30 km between two radar instruments using different wavelengths: the dual-polarization C-band radar POLDIRAD operated at DLR and the Mira-36 Ka-band cloud radar operated at the University of Munich. For a measurement period over several months, the overlapping region for ice clouds turned out to be quite large. This gives evidence on the presence of moderate-sized ice crystals for which the backscatter is sufficient high to be visible in the C-band as well. In the range between -10 to +10 dBz, reflectivity measurements from both radars agreed quite well indicating the absence of large ice crystals. For reflectivities above +10 dBz, we observed differences with smaller values at the Ka-band due to Mie scattering effects at larger ice crystals.In this presentation, we will show how this differential reflectivity can be used to gain insight into ice cloud microphysics on the basis of electromagnetic scattering calculations. We will further explore ice cloud microphysics using the full polarization agility of the C-band radar and compare the results to simultaneous linear depolarization measurements with the Ka-band radar. In summary, we will explore if the scientific understanding of ice cloud microphysics can be advanced by the combination of C- and Ka-band radars.
Farkas, Viktor; Jákli, Imre; Tóth, Gábor K; Perczel, András
2016-09-19
Both far- and near-UV electronic circular dichroism (ECD) spectra have bands sensitive to thermal unfolding of Trp and Tyr residues containing proteins. Beside spectral changes at 222 nm reporting secondary structural variations (far-UV range), L b bands (near-UV range) are applicable as 3D-fold sensors of protein's core structure. In this study we show that both L b (Tyr) and L b (Trp) ECD bands could be used as sensors of fold compactness. ECD is a relative method and thus requires NMR referencing and cross-validation, also provided here. The ensemble of 204 ECD spectra of Trp-cage miniproteins is analysed as a training set for "calibrating" Trp↔Tyr folded systems of known NMR structure. While in the far-UV ECD spectra changes are linear as a function of the temperature, near-UV ECD data indicate a non-linear and thus, cooperative unfolding mechanism of these proteins. Ensemble of ECD spectra deconvoluted gives both conformational weights and insight to a protein folding↔unfolding mechanism. We found that the L b 293 band is reporting on the 3D-structure compactness. In addition, the pure near-UV ECD spectrum of the unfolded state is described here for the first time. Thus, ECD folding information now validated can be applied with confidence in a large thermal window (5≤T≤85 °C) compared to NMR for studying the unfolding of Trp↔Tyr residue pairs. In conclusion, folding propensities of important proteins (RNA polymerase II, ubiquitin protein ligase, tryptase-inhibitor etc.) can now be analysed with higher confidence. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Acute toxicity of chlorpyrifos to embryo and larvae of banded gourami Trichogaster fasciata.
Sumon, Kizar Ahmed; Saha, Sampa; van den Brink, Paul J; Peeters, Edwin T H M; Bosma, Roel H; Rashid, Harunur
2017-02-01
This study elucidated the acute toxicity of chlorpyrifos on the early life stages of banded gourami (Trichogaster fasciata). To determine the acute effects of chlorpyrifos on their survival and development, we exposedthe embryos and two-day-old larvae to six concentrations (0, 0.01, 0.10, 1.0, 10 and 100 µg L -1 ) of chlorpyrifos in plastic bowls. Log-logistic regression was used to calculate LC10 and LC50 values. Results showed that embryo mortality significantly increased with increasing chlorpyrifos concentrations. The 24-h LC10 and LC50 values (with 95% confidence limits) of chlorpyrifos for embryos were 0.89 (0.50-1.58) and 11.8 (9.12-15.4) µg L -1 , respectively. Hatching success decreased and mortality of larvae significantly increased with increasing concentrations of chlorpyrifos. The 24-h LC10 and LC50 values (with 95% confidence limits) of chlorpyrifos for larvae were 0.53 (0.27-1.06) and 21.7 (15.9-29.4) µg L -1 , respectively; the 48-h LC10 and LC50 for larvae were 0.04 (0.02-0.09) and 5.47 (3.77-7.94) µg L -1 , respectively. The results of this study suggest that 1 µg L -1 of chlorpyrifos in the aquatic environment may adversely affect the development and the reproduction of banded gourami. Our study also suggests that banded gourami fish can serve as an ideal model species for evaluating developmental toxicity of environmental contaminants.
Measurements and Simulations of Nadir-Viewing Radar Returns from the Melting Layer at X- and W-Bands
NASA Technical Reports Server (NTRS)
Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.
2010-01-01
Simulated radar signatures within the melting layer in stratiform rain, namely the radar bright band, are checked by means of comparisons with simultaneous measurements of the bright band made by the EDOP (X-band) and CRS (W-band) airborne Doppler radars during the CRYSTAL-FACE campaign in 2002. A stratified-sphere model, allowing the fractional water content to vary along the radius of the particle, is used to compute the scattering properties of individual melting snowflakes. Using the effective dielectric constants computed by the conjugate gradient-fast Fourier transform (CGFFT) numerical method for X and W bands, and expressing the fractional water content of melting particle as an exponential function in particle radius, it is found that at X band the simulated radar bright-band profiles are in an excellent agreement with the measured profiles. It is also found that the simulated W-band profiles usually resemble the shapes of the measured bright-band profiles even though persistent offsets between them are present. These offsets, however, can be explained by the attenuation caused by cloud water and water vapor at W band. This is confirmed by the comparisons of the radar profiles made in the rain regions where the un-attenuated W-band reflectivity profiles can be estimated through the X- and W band Doppler velocity measurements. The bright-band model described in this paper has the potential to be used effectively for both radar and radiometer algorithms relevant to the TRMM and GPM satellite missions.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Wind, Galina; Arnold, George T.; Ackerman, Steven A.; Frey, Richard
2007-01-01
The MODIS Airborne Simulator (MAS) and MODIS/ASTER Airborne Simulator (MASTER) were used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds at 50 discrete wavelengths between 0.47 and 14.3 (12.9 m for MASTER). These observations were obtained from the NASA ER-2 aircraft as part of the Tropical Composition, Clouds and Climate Coupling Experiment (TC4) conducted over Central America and surrounding Pacific and Atlantic Oceans between July 17 and August 8, 2007. Multispectral images in eight distinct bands were used to derive a confidence in clear sky (or alternatively the probability of cloud) over land and ocean ecosystems. Based on the results of individual tests run as part of this cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). Finally, the cloud optical thickness and effective radius were derived for both liquid water and ice clouds that were detected during each flight, using a nearly identical algorithm as that implemented operationally to process MODIS cloud data from the Aqua and Terra satellites (Collection 5). This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS and MASTER date in TC4, is quite capable of distinguishing both liquid water and ice clouds during daytime conditions over both land and ocean. The cloud optical thickness and effective radius retrievals used three distinct bands of the MAS (or MASTER), and these results were compared with nearly simultaneous retrievals of MODIS on the Terra spacecraft. Finally, this MODIS-based algorithm was adapted to MISR data to infer the cloud optical thickness of liquid water clouds from MISR. Results of this analysis will be presented and discussed.
MAGIC detection of very high energy γ-ray emission from the low-luminosity blazar 1ES 1741+196
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; ...
2017-02-23
Here, we present the first detection of the nearby (z = 0.084) low-luminosity BL Lac object 1ES 1741+196 in the very high energy (E > 100 GeV) band. This object lies in a triplet of interacting galaxies. Early predictions had suggested 1ES 1741+196 to be, along with several other high-frequency BL Lac sources, within the reach of MAGIC detectability. Its detection by MAGIC, later confirmed by VERITAS, helps to expand the small population of known TeV BL Lacs. The source was observed with the MAGIC telescopes between 2010 April and 2011 May, collecting 46 h of good quality data. Thesemore » observations led to the detection of the source at 6.0 σ confidence level, with a steady flux F(>100 GeV) = (6.4 ± 1.7stat ± 2.6syst) × 10–12 ph cm–2s–1 and a differential spectral photon index Γ = 2.4 ± 0.2stat ± 0.2syst in the range of ~80 GeV–3 TeV. To study the broad-band spectral energy distribution (SED) simultaneous with MAGIC observations, we use KVA, Swift/UVOT and XRT and Fermi/LAT data. One-zone synchrotron-self-Compton (SSC) modelling of the SED of 1ES 1741+196 suggests values for the SSC parameters that are quite common among known TeV BL Lacs except for a relatively low Doppler factor and slope of electron energy distribution. A thermal feature seen in the SED is well matched by a giant elliptical's template. As a result, this appears to be the signature of thermal emission from the host galaxy, which is clearly resolved in optical observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, P.; Engler, O.; Luecke, K.
1995-10-01
Microstructural and textural evolution during rolling were investigated in (112)[11{bar 1}] single crystals of Al, Cu, and homogeneous supersaturated Al1.8wt%Cu. After a rolling degree of 30% the initial C-orientation (112)[11{bar 1}] of all three materials has rotated towards the so called D-orientation (4411)[1111{bar 8}]. While in the non-shear banding Al the D-orientation remains stable up to high rolling degrees, in the shear banding materials Cu and Al-Cu it rotates back to the initial C-orientation simultaneously with the formation of shear bands. This orientation change is explained by a rigid body rotation due to the special geometry of a deformation withmore » unidirectional shear bands. With the onset of shear band formation also strong orientation scatterings about the transverse direction appear in the pole figures. These scatterings are located inside the shear bands as well as their vicinity. They are due to the strong shear deformation and the resulting reaction stresses occurring in the shear bands and in their vicinity, respectively.« less
Demonstration of KHILS two-color IR projection capability
NASA Astrophysics Data System (ADS)
Jones, Lawrence E.; Coker, Jason S.; Garbo, Dennis L.; Olson, Eric M.; Murrer, Robert Lee, Jr.; Bergin, Thomas P.; Goldsmith, George C., II; Crow, Dennis R.; Guertin, Andrew W.; Dougherty, Michael; Marler, Thomas M.; Timms, Virgil G.
1998-07-01
For more than a decade, there has been considerable discussion about using different IR bands for the detection of low contrast military targets. Theory predicts that a target can have little to no contrast against the background in one IR band while having a discernible signature in another IR band. A significant amount of effort has been invested towards establishing hardware that is capable of simultaneously imaging in two IR bands to take advantage of this phenomenon. Focal plane arrays (FPA) are starting to materialize with this simultaneous two-color imaging capability. The Kinetic Kill Vehicle Hardware-in-the-loop Simulator (KHILS) team of the Air Force Research Laboratory and the Guided Weapons Evaluation Facility (GWEF), both at Eglin AFB, FL, have spent the last 10 years developing the ability to project dynamic IR scenes to imaging IR seekers. Through the Wideband Infrared Scene Projector (WISP) program, the capability to project two simultaneous IR scenes to a dual color seeker has been established at KHILS. WISP utilizes resistor arrays to produce the IR energy. Resistor arrays are not ideal blackbodies. The projection of two IR colors with resistor arrays, therefore, requires two optically coupled arrays. This paper documents the first demonstration of two-color simultaneous projection at KHILS. Agema cameras were used for the measurements. The Agema's HgCdTe detector has responsivity from 4 to 14 microns. A blackbody and two IR filters (MWIR equals 4.2 t 7.4 microns, LWIR equals 7.7 to 13 microns) were used to calibrate the Agema in two bands. Each filter was placed in front of the blackbody one at a time, and the temperature of the blackbody was stepped up in incremental amounts. The output counts from the Agema were recorded at each temperature. This calibration process established the radiance to Agema output count curves for the two bands. The WISP optical system utilizes a dichroic beam combiner to optically couple the two resistor arrays. The transmission path of the beam combiner provided the LWIR (6.75 to 12 microns), while the reflective path produced the MWIR (3 to 6.5 microns). Each resistor array was individually projected into the Agema through the beam combiner at incremental output levels. Once again the Agema's output counts were recorded at each resistor array output level. These projections established the resistor array output to Agema count curves for the MWIR and LWIR resistor arrays. Using the radiance to Agema counts curves, the MWIR and LWIR resistor array output to radiance curves were established. With the calibration curves established, a two-color movie was projected and compared to the generated movie radiance values. By taking care to correctly account for the spectral qualities of the Agema camera, the calibration filters, and the diachroic beam combiner, the projections matched the theoretical calculations. In the near future, a Lockheed- Martin Multiple Quantum Well camera with true two-color IR capability will be tested.
Increasing capacity of baseband digital data communication networks
Frankel, Robert S.; Herman, Alexander
1985-01-01
This invention provides broadband network capabilities for baseband digital collision detection transceiver equipment for communication between a plurality of data stations by affording simultaneous transmission of multiple channels over a broadband pass transmission link such as a coaxial cable. Thus, a fundamental carrier wave is transmitted on said link, received at local data stations and used to detect signals on different baseband channels for reception. For transmission the carrier wave typically is used for segregating a plurality of at least two transmission channels into typically single sideband upper and lower pass bands of baseband bandwidth capability adequately separated with guard bands to permit simple separation for receiving by means of pass band filters, etc.
Increasing capacity of baseband digital data communication networks
Frankel, R.S.; Herman, A.
This invention provides broadbank network capabilities for baseband digital collision detection transceiver equipment for communication between a plurality of data stations by affording simultaneous transmission of multiple channels over a broadband pass transmission link such as a coaxial cable. Thus, a fundamental carrier wave is transmitted on said link, received at local data stations and used to detect signals on different baseband channels for reception. For transmission the carrier wave typically is used for segregating a plurality of at least two transmission channels into typically single sideband upper and lower pass bands of baseband bandwidth capability adequately separated with guard bands to permit simple separation for receiving by means of pass band filters, etc.
Meteorological and ecological monitoring of the stratosphere and mesosphere
NASA Technical Reports Server (NTRS)
Newell, R. E.; Gray, C. R.
1972-01-01
A concept for determining the constituent densities of ozone, atomic oxygen, aerosols, and neutral density in the 20 to 1000 km region of the atmosphere from a satellite was developed. The concept includes the daytime measurement of solar scattering at the earth's limb in selected narrow spectral bands of the ultraviolet and visible regions, and the measurement of selected (dayglow) emissions. Nighttime measurements of the atmospheric extinction of stellar energy in selected bands are also considered as are simultaneous measurements of the 5577 airglow and molecular oxygen emission in the Herzberg band. Radiative-transfer models and recursive inversion algorithms are developed for the measurements, and the accuracy of the concept is assessed.
Dual S and Ku-band tracking feed for a TDRS reflector antenna
NASA Technical Reports Server (NTRS)
Pullara, J. C.; Bales, C. W.; Kefalas, G. P.; Uyehara, M.
1974-01-01
The results are presented of a trade study designed to identify a synchronous satellite antenna system suitable for receiving and transmitting data from lower orbiting satellites at both S- and K sub u-bands simultaneously as part of the Tracking and Data Relay Satellite System. All related problems associated with maintaining a data link between two satellites with a K sub u-band half-power beamwidth of 0.4 db are considered including data link maintenance techniques, beam pointing accuracies, gimbal and servo errors, solar heating, angle tracking schemes, acquisition problems and aids, tracking accuracies versus SNR, antenna feed designs, equipment designs, weight and power budgets, and detailed candidate antenna system designs.
An Updated TRMM Composite Climatology of Tropical Rainfall and Its Validation
NASA Technical Reports Server (NTRS)
Wang, Jian-Jian; Adler, Robert F.; Huffman, George; Bolvin, David
2013-01-01
An updated 15-yr Tropical Rainfall Measuring Mission (TRMM) composite climatology (TCC) is presented and evaluated. This climatology is based on a combination of individual rainfall estimates made with data from the primaryTRMMinstruments: theTRMM Microwave Imager (TMI) and the precipitation radar (PR). This combination climatology of passive microwave retrievals, radar-based retrievals, and an algorithm using both instruments simultaneously provides a consensus TRMM-based estimate of mean precipitation. The dispersion of the three estimates, as indicated by the standard deviation sigma among the estimates, is presented as a measure of confidence in the final estimate and as an estimate of the uncertainty thereof. The procedures utilized by the compositing technique, including adjustments and quality-control measures, are described. The results give a mean value of the TCC of 4.3mm day(exp -1) for the deep tropical ocean beltbetween 10 deg N and 10 deg S, with lower values outside that band. In general, the TCC values confirm ocean estimates from the Global Precipitation Climatology Project (GPCP) analysis, which is based on passive microwave results adjusted for sampling by infrared-based estimates. The pattern of uncertainty estimates shown by sigma is seen to be useful to indicate variations in confidence. Examples include differences between the eastern and western portions of the Pacific Ocean and high values in coastal and mountainous areas. Comparison of the TCC values (and the input products) to gauge analyses over land indicates the value of the radar-based estimates (small biases) and the limitations of the passive microwave algorithm (relatively large biases). Comparison with surface gauge information from western Pacific Ocean atolls shows a negative bias (16%) for all the TRMM products, although the representativeness of the atoll gauges of open-ocean rainfall is still in question.
Comparison of preliminary results from Airborne Aster Simulator (AAS) with TIMS data
NASA Technical Reports Server (NTRS)
Kannari, Yoshiaki; Mills, Franklin; Watanabe, Hiroshi; Ezaka, Teruya; Narita, Tatsuhiko; Chang, Sheng-Huei
1992-01-01
The Japanese Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), being developed for a NASA EOS-A satellite, will have 3 VNIR, 6 SWIR, and 5 TIR (8-12 micron) bands. An Airborne ASTER Simulator (AAS) was developed for Japan Resources Observation System Organization (JAROS) by the Geophysical Environmental Research Group (GER) Corp. to research surface temperature and emission features in the MWIR/TIR, to simulate ASTER's TIR bands, and to study further possibility of MWIR/TIR bands. ASTER Simulator has 1 VNIR, 3 MWIR (3-5 microns), and 20 (currently 24) TIR bands. Data was collected over 3 sites - Cuprite, Nevada; Long Valley/Mono Lake, California; and Death Valley, California - with simultaneous ground truth measurements. Preliminary data collected by AAS for Cuprite, Nevada is presented and AAS data is compared with Thermal Infrared Multispectral Scanner (TIMS) data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Lingping; Liu, Gang; Gong, Jue
The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to -100% increase) under mild pressures at -0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing anymore » adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullet, M.; Guillemin, Y.; Ruby, C.
X-ray photoelectron spectroscopy (XPS) was used to investigate chemical bonding and distribution of iron and oxygen species at the surface of Green Rusts (GRs). GRs with variable composition, i.e. Fe{sup II}{sub 6(1-x)}Fe{sup III}{sub 6x}O{sub 12}H{sub 2(7-3x)} CO{sub 3}.3H{sub 2}O where the Fe{sup III} molar fraction of the positively charged hydroxide sheets, x=[Fe(III)]/[Fe(total)] belongs to [1/3, 1], were synthesised under an inert atmosphere. The broadened Fe(2p{sub 3/2}) spectra were fitted using Gupta and Sen multiplets peaks and additional satellite and surface features. The [Fe(III)]/[Fe(total)] surface atomic ratios closely agree with the x ratios expected from the bulk composition, which gives amore » high degree of confidence on the validity of the proposed fitting procedure. The valence band spectra are also reported and show dependencies on iron speciation. The O(1s) spectra revealed the presence of O{sup 2-}, OH{sup -} species and adsorbed water. The hydroxyl component decreases with increasing x values, i.e. with the amount of ferric iron, while the oxide component increases. This study provides direct spectroscopic evidence of the deprotonation of hydroxyl groups that occurs simultaneously with the oxidation of ferrous iron within the GR structure. - Graphical abstract: X-ray photoelectron spectroscopy (XPS) is used to investigate chemical bonding and distribution of iron and oxygen species at the surface of Green Rust (GR) compounds. First spectroscopic evidence of the deprotonation of hydroxyls groups occurring simultaneously to the oxidation of Fe(II) into Fe(III) species is provided.« less
Multiwavelength variability properties of Fermi blazar S5 0716+714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, N. H.; Bai, J. M.; Liu, H. T.
S5 0716+714 is a typical BL Lacertae object. In this paper we present the analysis and results of long-term simultaneous observations in the radio, near-infrared, optical, X-ray, and γ-ray bands, together with our own photometric observations for this source. The light curves show that the variability amplitudes in γ-ray and optical bands are larger than those in the hard X-ray and radio bands and that the spectral energy distribution (SED) peaks move to shorter wavelengths when the source becomes brighter, which is similar to other blazars, i.e., more variable at wavelengths shorter than the SED peak frequencies. Analysis shows thatmore » the characteristic variability timescales in the 14.5 GHz, the optical, the X-ray, and the γ-ray bands are comparable to each other. The variations of the hard X-ray and 14.5 GHz emissions are correlated with zero lag, and so are the V band and γ-ray variations, which are consistent with the leptonic models. Coincidences of γ-ray and optical flares with a dramatic change of the optical polarization are detected. Hadronic models do not have the same natural explanation for these observations as the leptonic models. A strong optical flare correlating a γ-ray flare whose peak flux is lower than the average flux is detected. The leptonic model can explain this variability phenomenon through simultaneous SED modeling. Different leptonic models are distinguished by average SED modeling. The synchrotron plus synchrotron self-Compton (SSC) model is ruled out because of the extreme input parameters. Scattering of external seed photons, such as the hot-dust or broad-line region emission, and the SSC process are probably both needed to explain the γ-ray emission of S5 0716+714.« less
Yang, Shuai; Liu, Ying
2018-08-01
Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.
Bastos, Andre M; Briggs, Farran; Alitto, Henry J; Mangun, George R; Usrey, W Martin
2014-05-28
Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex. Copyright © 2014 the authors 0270-6474/14/347639-06$15.00/0.
Heterogeneous wireless/wireline optical access networks with the R-EAT as backend component
NASA Astrophysics Data System (ADS)
Hagedorn, Klaus; Gindera, Ralf; Stohr, Andreas; Jager, Dieter
2004-09-01
A heterogeneous wireless/wireline optical transmission link using a reflection type electroabsorption transceiver (R-EAT) is presented. Simultaneous transmission of full-duplex broadband wireless LAN (WLAN) channels and 1Gb/s base band data is experimentally demonstrated. The system link employs sub-carrier multiplexing (SCM) and two optical channels for full duplex transmission of various analog WLAN channels and downlink digital base band data. The developed link architecture is suitable for simultaneous transmission of broadband wireline and wireless signals, it enables the coexistence and interoperability between wireline and wireless access technologies. The developed R-EAT component employed in this wireline/wireless access system, features "single-chip-component" base stations in access networks with star type topology where only a single optical fiber is used for bidirectional optical transmission. The R-EAT can be used within the optical C-band (1530- 1560nm) and is suitable for (D)WDM networks. Bit error rate measurements demonstrate the capabilities of the R-EAT for 1Gb/s base band transmission. The analog performance for WLAN transmission is characterised by a spurious free dynamic range (SFDR) of more than 75dB and 90dB for uplink and downlink transmission, respectively. The link gain for uplink and downlink transmission is -42dB and -37dB, respectively. The demonstrates the analog performances of the R-EAT for being used in wireless access networks such as W-LAN.
Emission coefficients for the OH Meinel band system; calculations and nightglow comparisons
NASA Astrophysics Data System (ADS)
Slanger, T. G.
2016-12-01
The OH Meinel band system is an extensive series of bands that are transitions between the vibrational levels of the X2Π ground-state of the molecule. The exothermicity of the source reaction is sufficient to populate up to OH(v = 9), and in fact the nascent reaction puts most of the product into that level. Subsequently, relaxation of the population to lower levels takes place via collisions with the ambient atmosphere and radiation within the OH(v) manifold. Considerable effort has been spent in determining the emission coefficients of the OH Meinel band system. This emission is a prominent feature of the terrestrial nightglow, and because it is relatively intense, there have been numerous investigations, generally based on ground-based instrumentation. The very exothermic source reaction, H + O3 → OH(v) + O2, results in the production of vibrationally and rotationally hot OH(v), and leads to a great number of OH emission lines, covering a wide spectral range, 500-2000 nm. The full range of energy-accessible OH vibrational levels, up to v = 9, is produced in the reaction, and in this presentation we make the case that it is essential to simultaneously measure as many OH bands as possible, to retrieve the maximum amount of spectroscopic and dynamic information. In order to do so, we must agree on the emission coefficients (A-factors) associated with the individual OH bands, and this determination has presented problems in the past. A major advance in the study of atmospheric OH Meinel band emission took place when astronomical sky spectra were utilized to record all accessible OH bands simultaneously, from Mauna Kea [Cosby and Slanger, 2007]. Subsequently, similar studies were undertaken at the VLT [Noll et al. 2015 a,b], and at the GIANO-TNG [Oliva et al., 2015]. With these intensity-calibrated spectra, it becomes possible to compare the OH optical data with sets of A-factor calculations that have been presented over the years [Mies, 1974; Turnbull and Lowe, 1989; Langhoff et al., 1986; Goldman et al., 1998; Pendleton and Taylor, 2002; van der Loo and Groenenboom, 2007; Brooke et al., 2016] and others. We conclude that the most recent determinations provide the best representation of the Meinel band A-factors. AcknowledgementsThis work has been supported by NSF Aeronomy grants, with the participation of Dr. Philip Cosby.
Fast integration-based prediction bands for ordinary differential equation models.
Hass, Helge; Kreutz, Clemens; Timmer, Jens; Kaschek, Daniel
2016-04-15
To gain a deeper understanding of biological processes and their relevance in disease, mathematical models are built upon experimental data. Uncertainty in the data leads to uncertainties of the model's parameters and in turn to uncertainties of predictions. Mechanistic dynamic models of biochemical networks are frequently based on nonlinear differential equation systems and feature a large number of parameters, sparse observations of the model components and lack of information in the available data. Due to the curse of dimensionality, classical and sampling approaches propagating parameter uncertainties to predictions are hardly feasible and insufficient. However, for experimental design and to discriminate between competing models, prediction and confidence bands are essential. To circumvent the hurdles of the former methods, an approach to calculate a profile likelihood on arbitrary observations for a specific time point has been introduced, which provides accurate confidence and prediction intervals for nonlinear models and is computationally feasible for high-dimensional models. In this article, reliable and smooth point-wise prediction and confidence bands to assess the model's uncertainty on the whole time-course are achieved via explicit integration with elaborate correction mechanisms. The corresponding system of ordinary differential equations is derived and tested on three established models for cellular signalling. An efficiency analysis is performed to illustrate the computational benefit compared with repeated profile likelihood calculations at multiple time points. The integration framework and the examples used in this article are provided with the software package Data2Dynamics, which is based on MATLAB and freely available at http://www.data2dynamics.org helge.hass@fdm.uni-freiburg.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kim, Moon Sung; Lee, Kangjin; Chao, Kaunglin; Lefcourt, Alan; Cho, Byung-Kwan; Jun, Won
We developed a push-broom, line-scan imaging system capable of simultaneous measurements of reflectance and fluorescence. The system allows multitasking inspections for quality and safety attributes of apples due to its dynamic capabilities in simultaneously capturing fluorescence and reflectance, and selectivity in multispectral bands. A multitasking image-based inspection system for online applications has been suggested in that a single imaging device that could perform a multitude of both safety and quality inspection needs. The presented multitask inspection approach in online applications may provide an economically viable means for a number of food processing industries being able to adapt to operate and meet the dynamic and specific inspection and sorting needs.
The Default Mode Network and EEG Regional Spectral Power: A Simultaneous fMRI-EEG Study
Werner, Cornelius J.; Hitz, Konrad; Boers, Frank; Kawohl, Wolfram; Shah, N. Jon
2014-01-01
Electroencephalography (EEG) frequencies have been linked to specific functions as an “electrophysiological signature” of a function. A combination of oscillatory rhythms has also been described for specific functions, with or without predominance of one specific frequency-band. In a simultaneous fMRI-EEG study at 3 T we studied the relationship between the default mode network (DMN) and the power of EEG frequency bands. As a methodological approach, we applied Multivariate Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) and dual regression analysis for fMRI resting state data. EEG power for the alpha, beta, delta and theta-bands were extracted from the structures forming the DMN in a region-of-interest approach by applying Low Resolution Electromagnetic Tomography (LORETA). A strong link between the spontaneous BOLD response of the left parahippocampal gyrus and the delta-band extracted from the anterior cingulate cortex was found. A positive correlation between the beta-1 frequency power extracted from the posterior cingulate cortex (PCC) and the spontaneous BOLD response of the right supplementary motor cortex was also established. The beta-2 frequency power extracted from the PCC and the precuneus showed a positive correlation with the BOLD response of the right frontal cortex. Our results support the notion of beta-band activity governing the “status quo” in cognitive and motor setup. The highly significant correlation found between the delta power within the DMN and the parahippocampal gyrus is in line with the association of delta frequencies with memory processes. We assumed “ongoing activity” during “resting state” in bringing events from the past to the mind, in which the parahippocampal gyrus is a relevant structure. Our data demonstrate that spontaneous BOLD fluctuations within the DMN are associated with different EEG-bands and strengthen the conclusion that this network is characterized by a specific electrophysiological signature created by combination of different brain rhythms subserving different putative functions. PMID:24505434
Thermospheric nitric oxide from the ATLAS 1 and Spacelab 1 missions
NASA Technical Reports Server (NTRS)
Torr, Marsha R.; Torr, D. G.; Chang, T.; Richards, P.; Swift, W.; Li, N.
1995-01-01
Spectral and spatial images obtained with the Imaging Spectrometric Observatory on the ATLAS 1 and Spacelab 1 missions are used to study the ultraviolet emissions of nitric oxide in the thermosphere. By synthetically fitting the measured NO gamma bands, intensities are derived as a function of altitude and latitude. We find that the NO concentrations inferred from the ATLAS 1 measurements are higher than predicted by our thermospheric airglow model and tend to lie to the high side of a number of earlier measurements. By comparison with synthetic spectral fits, the shape of the NO gamma bands is used to derive temperature as a function of altitude. Using the simultaneous spectral and spatial imaging capability of the instrument, we present the first simultaneously acquired altitude images of NO gamma band temperature and intensity in the thermosphere. The lower thermospheric temperature images show structure as a function of altitude. The spatial imaging technique appears to be a viable means of obtaining temperatures in the middle and lower thermosphere, provided that good information is also obtained at the higher altitudes, as the contribution of the overlying, hotter NO is nonnegligible. By fitting both self-absorbed and nonabsorbed bands of the NO gamma system, we show that the self absorption effects are observable up to 200 km, although small above 150 km. The spectral resolution of the instrument (1.6 A) allows separation of the N(+)(S-5) doublet, and we show the contribution of this feature to the combination of the NO gamma (1, 0) band and the N(+)(S-5) doublet as a function of altitude (less than 10% below 200 km). Spectral images including the NO delta bands support previous findings that the fluorescence efficiency is much higher than that determined from laboratory measurements. The Spacelab 1 data indicate the presence of a significant population of hot NO in the vehicle environment of that early shuttle mission.
Double Bright Band Observations with High-Resolution Vertically Pointing Radar, Lidar, and Profiles
NASA Technical Reports Server (NTRS)
Emory, Amber E.; Demoz, Belay; Vermeesch, Kevin; Hicks, Michael
2014-01-01
On 11 May 2010, an elevated temperature inversion associated with an approaching warm front produced two melting layers simultaneously, which resulted in two distinct bright bands as viewed from the ER-2 Doppler radar system, a vertically pointing, coherent X band radar located in Greenbelt, MD. Due to the high temporal resolution of this radar system, an increase in altitude of the melting layer of approximately 1.2 km in the time span of 4 min was captured. The double bright band feature remained evident for approximately 17 min, until the lower atmosphere warmed enough to dissipate the lower melting layer. This case shows the relatively rapid evolution of freezing levels in response to an advancing warm front over a 2 h time period and the descent of an elevated warm air mass with time. Although observations of double bright bands are somewhat rare, the ability to identify this phenomenon is important for rainfall estimation from spaceborne sensors because algorithms employing the restriction of a radar bright band to a constant height, especially when sampling across frontal systems, will limit the ability to accurately estimate rainfall.
Structure of the low-lying positive parity states in the proton-neutron symplectic model
NASA Astrophysics Data System (ADS)
Ganev, H. G.
2018-05-01
The proton-neutron symplectic model with Sp(12, R) dynamical symmetry is applied for the simultaneous description of the microscopic structure of the low-lying states of the ground state, γ and β bands in 166 Er. For this purpose, the model Hamiltonian is diagonalized in the space of stretched states by exploiting the SUp (3) ⊗ SUn (3) symmetry-adapted basis. The theoretical predictions are compared with experiment and some other microscopic collective models, like the one-component Sp(6, R) symplectic and pseudo-SU(3) models. A good description of the energy levels of the three bands under consideration, as well as the enhanced intraband B(E2) transition strengths between the states of the ground and γ bands is obtained without the use of effective charges. The results show the presence of a good SU(3) dynamical symmetry. It is also shown that, in contrast to the Sp(6, R) case, the lowest excited bands, e.g., the β and γ bands, naturally appear together with the ground state band within a single Sp(12, R) irreducible representation.
Double bright band observations with high-resolution vertically pointing radar, lidar, and profilers
NASA Astrophysics Data System (ADS)
Emory, Amber E.; Demoz, Belay; Vermeesch, Kevin; Hicks, Micheal
2014-07-01
On 11 May 2010, an elevated temperature inversion associated with an approaching warm front produced two melting layers simultaneously, which resulted in two distinct bright bands as viewed from the ER-2 Doppler radar system, a vertically pointing, coherent X band radar located in Greenbelt, MD. Due to the high temporal resolution of this radar system, an increase in altitude of the melting layer of approximately 1.2 km in the time span of 4 min was captured. The double bright band feature remained evident for approximately 17 min, until the lower atmosphere warmed enough to dissipate the lower melting layer. This case shows the relatively rapid evolution of freezing levels in response to an advancing warm front over a 2 h time period and the descent of an elevated warm air mass with time. Although observations of double bright bands are somewhat rare, the ability to identify this phenomenon is important for rainfall estimation from spaceborne sensors because algorithms employing the restriction of a radar bright band to a constant height, especially when sampling across frontal systems, will limit the ability to accurately estimate rainfall.
Kupssinskü, Lucas S.; T. Guimarães, Tainá; Koste, Emilie C.; da Silva, Juarez M.; de Souza, Laís V.; Oliverio, William F. M.; Jardim, Rogélio S.; Koch, Ismael É.; de Souza, Jonas G.; Mauad, Frederico F.
2018-01-01
Water quality monitoring through remote sensing with UAVs is best conducted using multispectral sensors; however, these sensors are expensive. We aimed to predict multispectral bands from a low-cost sensor (R, G, B bands) using artificial neural networks (ANN). We studied a lake located on the campus of Unisinos University, Brazil, using a low-cost sensor mounted on a UAV. Simultaneously, we collected water samples during the UAV flight to determine total suspended solids (TSS) and dissolved organic matter (DOM). We correlated the three bands predicted with TSS and DOM. The results show that the ANN validation process predicted the three bands of the multispectral sensor using the three bands of the low-cost sensor with a low average error of 19%. The correlations with TSS and DOM resulted in R2 values of greater than 0.60, consistent with literature values. PMID:29315219
Aquarius Active-Passive RFI Environment at L-Band
NASA Technical Reports Server (NTRS)
Le Vine, David M.; De Matthaeis, Paolo
2014-01-01
Active/Passive instrument combinations (i.e., radiometer and radar) are being developed at L-band for remote sensing of sea surface salinity and soil moisture. Aquarius is already in orbit and SMAP is planned for launch in the Fall of 2014. Aquarius has provided for the first time a simultaneous look at the Radio Frequency Interference (RFI) environment from space for both active and passive instruments. The RFI environment for the radiometer observations is now reasonably well known and examples from Aquarius are presented in this manuscript that show that RFI is an important consideration for the scatterometer as well. In particular, extensive areas of the USA, Europe and Asia exhibit strong RFI in both the radiometer band at 1.41 GHz and in the band at 1.26 GHz employed by the Aquarius scatterometer. Furthermore, in areas such as the USA, where RFI at 1.4 GHz is relatively well controlled, RFI in the scatterometer band maybe the limiting consideration for the operation of combination active/passive instruments.
Real-time dual-band haptic music player for mobile devices.
Hwang, Inwook; Lee, Hyeseon; Choi, Seungmoon
2013-01-01
We introduce a novel dual-band haptic music player for real-time simultaneous vibrotactile playback with music in mobile devices. Our haptic music player features a new miniature dual-mode actuator that can produce vibrations consisting of two principal frequencies and a real-time vibration generation algorithm that can extract vibration commands from a music file for dual-band playback (bass and treble). The algorithm uses a "haptic equalizer" and provides plausible sound-to-touch modality conversion based on human perceptual data. In addition, we present a user study carried out to evaluate the subjective performance (precision, harmony, fun, and preference) of the haptic music player, in comparison with the current practice of bass-band-only vibrotactile playback via a single-frequency voice-coil actuator. The evaluation results indicated that the new dual-band playback outperforms the bass-only rendering, also providing several insights for further improvements. The developed system and experimental findings have implications for improving the multimedia experience with mobile devices.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Shu, Haisheng; Liang, Shanjun; Shi, Xiaona; An, Shuowei; Ren, Wanyue; Zhu, Jie
2018-05-01
The torsional wave band gap properties of a two-dimensional generalized phononic crystal (GPC) are investigated in this paper. The GPC structure considered is consisted of two different materials being arranged with radial and circumferential periodicities simultaneously. Based on the viewpoint of energy distribution and the finite element method, the power flow, energy density, sound intensity vector together with the stress field of the structure excited by torsional load are numerically calculated and discussed. Our results show that, the band gap of Bragg type exists in these two-dimensional composite structures, and the band gap range is mainly determined by radial periodicity while the circumferential periodicity would result in some transmission peaks within the band gap. These peaks are mainly produced by two different mechanisms, the energy leakage occurred in circumferential channels and the excitation of the local eigenmodes of certain scatterers. These results may be useful in torsional vibration control for various rotational parts and components, and in the application of energy harvesting, etc.
Integrative interactive visualization of crystal structure, band structure, and Brillouin zone
NASA Astrophysics Data System (ADS)
Hanson, Robert; Hinke, Ben; van Koevering, Matthew; Oses, Corey; Toher, Cormac; Hicks, David; Gossett, Eric; Plata Ramos, Jose; Curtarolo, Stefano; Aflow Collaboration
The AFLOW library is an open-access database for high throughput ab-initio calculations that serves as a resource for the dissemination of computational results in the area of materials science. Our project aims to create an interactive web-based visualization of any structure in the AFLOW database that has associate band structure data in a way that allows novel simultaneous exploration of the crystal structure, band structure, and Brillouin zone. Interactivity is obtained using two synchronized JSmol implementations, one for the crystal structure and one for the Brillouin zone, along with a D3-based band-structure diagram produced on the fly from data obtained from the AFLOW database. The current website portal (http://aflowlib.mems.duke.edu/users/jmolers/matt/website) allows interactive access and visualization of crystal structure, Brillouin zone and band structure for more than 55,000 inorganic crystal structures. This work was supported by the US Navy Office of Naval Research through a Broad Area Announcement administered by Duke University.
Composition dependent band offsets of ZnO and its ternary alloys
NASA Astrophysics Data System (ADS)
Yin, Haitao; Chen, Junli; Wang, Yin; Wang, Jian; Guo, Hong
2017-01-01
We report the calculated fundamental band gaps of wurtzite ternary alloys Zn1-xMxO (M = Mg, Cd) and the band offsets of the ZnO/Zn1-xMxO heterojunctions, these II-VI materials are important for electronics and optoelectronics. Our calculation is based on density functional theory within the linear muffin-tin orbital (LMTO) approach where the modified Becke-Johnson (MBJ) semi-local exchange is used to accurately produce the band gaps, and the coherent potential approximation (CPA) is applied to deal with configurational average for the ternary alloys. The combined LMTO-MBJ-CPA approach allows one to simultaneously determine both the conduction band and valence band offsets of the heterojunctions. The calculated band gap data of the ZnO alloys scale as Eg = 3.35 + 2.33x and Eg = 3.36 - 2.33x + 1.77x2 for Zn1-xMgxO and Zn1-xCdxO, respectively, where x being the impurity concentration. These scaling as well as the composition dependent band offsets are quantitatively compared to the available experimental data. The capability of predicting the band parameters and band alignments of ZnO and its ternary alloys with the LMTO-CPA-MBJ approach indicate the promising application of this method in the design of emerging electronics and optoelectronics.
Dexter, Franklin; Marcon, Eric; Aker, John; Epstein, Richard H
2009-09-01
More personnel are needed to turn over operating rooms (ORs) promptly when there are more simultaneous turnovers. Anesthesia and/or OR information management system data can be analyzed statistically to quantify simultaneous turnovers to evaluate whether to add an additional turnover team. Data collected for each case at a six OR facility were room, date of surgery, time of patient entry into the OR, and time of patient exit from the OR. The number of simultaneous turnovers was calculated for each 1 min of 122 4-wk periods. Our end point was the reduction in the daily minutes of simultaneous turnovers exceeding the number of teams caused by the addition of a team. Increasing from two turnover teams to three teams reduced the mean daily minutes of simultaneous turnovers exceeding the numbers of teams by 19 min. The ratio of 19 min to 8 h valued the time of extra personnel as 4.0% of the time of OR staff, surgeons, and anesthesia providers. Validity was suggested by other methods of analyses also suggesting staffing for three simultaneous turnovers. Discrete-event simulation showed that the reduction in daily minutes of turnover times from the addition of a team would likely match or exceed the reduction in the daily minutes of simultaneous turnovers exceeding the numbers of teams. Confidence intervals for daily minutes of turnover times achieved by increasing from two to three teams were calculated using successive 4-wk periods. The distribution was sufficiently close to normal that accurate confidence intervals could be calculated using Student's t distribution (Lilliefors' test P = 0.58). Analysis generally should use 13 4-wk periods as increasing the number of periods from 6 to 13 significantly reduced the coefficient of variation of the averages but not increasing the number of periods from 6 to 9 or from 9 to 13. The number of simultaneous turnovers can be calculated for each 1 min over 1 yr. The reduction in the daily minutes of simultaneous turnovers exceeding the number of teams achieved by the addition of a turnover team can be averaged over the year's 13 4-wk periods to provide insight as to the value (or not) of adding an additional team.
Reflectance of vegetation, soil, and water
NASA Technical Reports Server (NTRS)
Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Gerbermann, A. H. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Iron deficient and normal grain sorghum plants were sufficiently different spectrally in ERTS-1 band 5 CCT data to detect chlorotic sorghum areas 2.8 acres (1.1 hectares) or larger in size in computer printouts of the MSS data. The ratio of band 5 to band 7 or band 7 minus band 5 relates to vegetation ground cover conditions and helps to select training samples representative of differing vegetation maturity or vigor classes and to estimate ground cover or green vegetation density in the absence of ground information. The four plant parameters; leaf area index, plant population, plant cover, and plant height explained 87 to 93% of the variability in band 6 digital counts and from 59 to 90% of the variation in bands 4 and 5. A ground area 2244 acres in size was classified on a pixel by pixel basis using simultaneously acquired aircraft support and ERTS-1 data. Overall recognition for vegetables, immature crops and mixed shrubs, and bare soil categories was 64.5% for aircraft and 59.6% for spacecraft data, respectively. Overall recognition results on a per field basis were 61.8% for aircraft and 62.8% for ERTS-1 data.
Optical flickering of the symbiotic star CH Cyg
NASA Astrophysics Data System (ADS)
Stoyanov, K. A.; Martí, J.; Zamanov, R.; Dimitrov, V. V.; Kurtenkov, A.; Sánchez-Ayaso, E.; Bujalance-Fernández, I.; Latev, G. Y.; Nikolov, G.
2018-02-01
Here we present quasi-simultaneous observations of the flickering of the symbiotic binary star CH Cyg in U, B and V bands. We calculate the flickering source parameters and discuss the possible reason for the flickering cessation in the period 2010-2013.
Doubly Bayesian Analysis of Confidence in Perceptual Decision-Making.
Aitchison, Laurence; Bang, Dan; Bahrami, Bahador; Latham, Peter E
2015-10-01
Humans stand out from other animals in that they are able to explicitly report on the reliability of their internal operations. This ability, which is known as metacognition, is typically studied by asking people to report their confidence in the correctness of some decision. However, the computations underlying confidence reports remain unclear. In this paper, we present a fully Bayesian method for directly comparing models of confidence. Using a visual two-interval forced-choice task, we tested whether confidence reports reflect heuristic computations (e.g. the magnitude of sensory data) or Bayes optimal ones (i.e. how likely a decision is to be correct given the sensory data). In a standard design in which subjects were first asked to make a decision, and only then gave their confidence, subjects were mostly Bayes optimal. In contrast, in a less-commonly used design in which subjects indicated their confidence and decision simultaneously, they were roughly equally likely to use the Bayes optimal strategy or to use a heuristic but suboptimal strategy. Our results suggest that, while people's confidence reports can reflect Bayes optimal computations, even a small unusual twist or additional element of complexity can prevent optimality.
NASA Technical Reports Server (NTRS)
Hasell, P. G., Jr.
1974-01-01
The development and characteristics of a multispectral band scanner for an airborne mapping system are discussed. The sensor operates in the ultraviolet, visual, and infrared frequencies. Any twelve of the bands may be selected for simultaneous, optically registered recording on a 14-track analog tape recorder. Multispectral imagery recorded on magnetic tape in the aircraft can be laboratory reproduced on film strips for visual analysis or optionally machine processed in analog and/or digital computers before display. The airborne system performance is analyzed.
Negative index of refraction in metallic metamaterial comprising split-ring resonators.
Dong, Zheng-Gao; Lei, Shuang-Ying; Xu, Ming-Xiang; Liu, Hui; Li, Tao; Wang, Fu-Ming; Zhu, Shi-Ning
2008-05-01
We numerically investigate the negative index of refraction in a metamaterial composed of metallic split-ring resonators, which exhibits simultaneously negative permittivity and permeability without resorting to additional metallic wires. It is confirmed that, in the left-handed band, negative permittivity is generated in analogy to the cut-wire metamaterial and negative permeability comes from the antisymmetric resonant mode, which occurs at a frequency band about 3 times higher than the fundamental magnetic resonance proposed by Pendry [IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)].
Multi-wavelength laser emission in dye-doped photonic liquid crystals.
Wang, Chun-Ta; Lin, Tsung-Hsien
2008-10-27
Multi-wavelength lasing in a dye-doped cholesteric liquid crystal (CLC) cell is demonstrated. By adding oversaturated chiral dopant, the multi-photonic band CLC structure can be obtained with non-uniform chiral solubility. Under appropriate excitation, multi-wavelength lasing can be achieved with a multi-photonic band edge CLC structure. The number of lasing wavelengths can be controlled under various temperature processes. Nine wavelength CLC lasings were observed simultaneously. The wavelength range covers around 600-675nm. Furthermore, reversible tuning of multi-wavelength lasing was achieved by controlling CLC device temperature.
A dual-band near-field focused reflectarray antenna for RFID applications at 0.9 and 2.4 GHz
NASA Astrophysics Data System (ADS)
Chou, Hsi-Tseng; Hsueh, Pai-Han; Hung, Tso-Ming; Kuo, Li-Ruei; Chou, Hsi-Hsir
2011-12-01
This paper presents a dual-band reflectarray antenna which operates at 0.915 and 2.4 GHz to radiate electromagnetic fields focused in the near-zone of array aperture. The design uses two stacked feed antennas operated at 0.915 and 2.4 GHz, respectively, so that the currently available RFID systems in the market can be simultaneously used in an independent fashion. Numerical investigations on the radiation characteristics of this reflectarray, as well as an experimental validation, are presented to demonstrate its feasibility.
Conversion of laser energy to gas kinetic energy
NASA Technical Reports Server (NTRS)
Caledonia, G. E.
1977-01-01
Techniques for the gas-phase absorption of laser energy with ultimate conversion to heat or directed kinetic energy are reviewed. It is shown that the efficiency of resonance absorption by the vibration/rotation bands of the working gas can be enhanced by operating at sufficiently high pressures so that the linewidths of the absorbing transition exceed the line spacing. Within this limit, the gas can absorb continuously over the full spectral region of the band, and bleaching can be minimized since the manifold of molecular vibrational levels can simultaneously absorb the laser radiation.
Reflective electroabsorption modular for compact base station radio-over-fiber systems
NASA Astrophysics Data System (ADS)
Wu, Yang; Chang, Wei-Xi; Yu, Paul K. L.
2003-07-01
A Radio-over-Fiber system with simplified Base Station (BS) is proposed in which a single chip DBR Reflective Electro-absorption Modulator (REAM) serves both as an optical transceiver and as a mixer at the BS. It enables full duplex optical transmission for base band and RF band services simultaneously due to good isolation between uplink and downlink at the same chip. Grating structure is incorporated into the EA modulator for the sake of system design. It also improves yield and efficiency of high-speed devices.
NASA Astrophysics Data System (ADS)
Roberto, N.; Baldini, L.; Facheris, L.; Chandrasekar, V.
2014-07-01
Several satellite missions employing X-band synthetic aperture radar (SAR) have been activated to provide high-resolution images of normalized radar cross-sections (NRCS) on land and ocean for numerous applications. Rainfall and wind affect the sea surface roughness and consequently the NRCS from the combined effects of corrugation due to impinging raindrops and surface wind. X-band frequencies are sensitive to precipitation: intense convective cells result in irregularly bright and dark patches in SAR images, masking changes in surface NRCS. Several works have modeled SAR images of intense precipitation over land; less adequately investigated is the precipitation effect over the sea surface. These images are analyzed in this study by modeling both the scattering and attenuation of radiation by hydrometeors in the rain cells and the NRCS surface changes using weather radar precipitation estimates as input. The reconstruction of X-band SAR returns in precipitating clouds is obtained by the joint utilization of volume reflectivity and attenuation, the latter estimated by coupling ground-based radar measurements and an electromagnetic model to predict the sea surface NRCS. Radar signatures of rain cells were investigated using X-band SAR images collected from the COSMO-SkyMed constellation of the Italian Space Agency. Two case studies were analyzed. The first occurred over the sea off the coast of Louisiana (USA) in summer 2010 with COSMO-SkyMed (CSK®) ScanSar mode monitoring of the Deepwater Horizon oil spill. Simultaneously, the NEXRAD S-band Doppler radar (KLIX) located in New Orleans was scanning the same portion of ocean. The second case study occurred in Liguria (Italy) on November 4, 2011, during an extraordinary flood event. The same events were observed by the Bric della Croce C-band dual polarization radar located close to Turin (Italy). The polarimetric capability of the ground radars utilized allows discrimination of the composition of the precipitation volume, in particular distinguishing ice from rain. Results shows that for space-borne SAR at X-band, effects due to precipitation on water surfaces can be modeled using coincident ground-based weather radar measurements.
Limb Spicules from the Ground and from Space
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Jacobson, William A.; Sterling, Alphonse C.
2009-11-01
We amassed statistics for quiet-sun chromosphere spicules at the limb using ground-based observations from the Swedish 1-m Solar Telescope on La Palma and simultaneously from NASA’s Transition Region and Coronal Explorer (TRACE) spacecraft. The observations were obtained in July 2006. With the 0.2 arcsecond resolution obtained after maximizing the ground-based resolution with the Multi-Object Multi-Frame Blind Deconvolution (MOMFBD) program, we obtained specific statistics for sizes and motions of over two dozen individual spicules, based on movies compiled at 50-second cadence for the series of five wavelengths observed in a very narrow band at Hα, on-band and at ± 0.035 nm and ± 0.070 nm (10 s at each wavelength) using the SOUP filter, and had simultaneous observations in the 160 nm EUV continuum from TRACE. The MOMFBD restoration also automatically aligned the images, facilitating the making of Dopplergrams at each off-band pair. We studied 40 Hα spicules, and 14 EUV spicules that overlapped Hα spicules; we found that their dynamical and morphological properties fit into the framework of several previous studies. From a preliminary comparison with spicule theories, our observations are consistent with a reconnection mechanism for spicule generation, and with UV spicules being a sheath region surrounding the Hα spicules.
GRB 050117: Simultaneous Gamma-ray and X-ray Observations with the Swift Satellite
NASA Technical Reports Server (NTRS)
Hill, J. E.; Morris, D. C.; Sakamoto, T.; Sato, G.; Burrows, D. N.; Angelini, L.; Pagani, C.; Moretti, A.; Abbey, A. F.; Barthelmy, S.
2005-01-01
The Swift Gamma-Ray Burst Explorer performed its first autonomous, X-ray follow-up to a newly detected GRB on 2005 January 17, within 193 seconds of the burst trigger by the Swift Burst Alert Telescope. While the burst was still in progress, the X-ray Telescope obtained a position and an image for an un-catalogued X-ray source; simultaneous with the gamma-ray observation. The XRT observed flux during the prompt emission was 1.1 x 10(exp -8) ergs/sq cm/s in the 0.5-10 keV energy band. The emission in the X-ray band decreased by three orders of magnitude within 700 seconds, following the prompt emission. This is found to be consistent with the gamma-ray decay when extrapolated into the XRT energy band. During the following 6.3 hours, the XRT observed the afterglow in an automated sequence for an additional 947 seconds, until the burst became fully obscured by the Earth limb. A faint, extremely slowly decaying afterglow, alpha=-0.21, was detected. Finally, a break in the lightcurve occurred and the flux decayed with alpha<-1.2. The X-ray position triggered many follow-up observations: no optical afterglow could be confirmed, although a candidate was identified 3 arcsecs from the XRT position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abeysekara, A. U.; Flinders, A.; Archambault, S.
Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three “target-of-opportunity” observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering the X-ray and optical/ultraviolet bands) and VERITAS (covering the TeV gamma-ray band), along with contemporaneous observationsmore » from other gamma-ray facilities (MAGIC and Fermi -Large Area Telescope) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g., the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at ≳4 × 10{sup −4} Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.« less
Multi-spectral Metasurface for Different Functional Control of Reflection Waves.
Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang
2016-03-22
Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band.
NASA Astrophysics Data System (ADS)
Yoshitake, Michiko; Nemšák, Slavomír; Skála, Tomáš; Tsud, Nataliya; Matolín, Vladimír; Prince, Kevin C.
2018-06-01
The influence of a small amount of Si in a Ni single crystal on the interface formation between aluminum oxide and Ni has been investigated. The interface was formed by in-situ growth of the oxide by simultaneous supply of Al and oxygen onto Ni(1 1 1) in an ultrahigh vacuum chamber equipped with XPS apparatus. The oxide growth and the interface formation were compared between Si-containing Ni(1 1 1) and pure Ni(1 1 1). It was revealed that Si segregated on the surface of Ni and oxidized, forming an epitaxial thin alumino-silicate film. Valence band spectra demonstrated that the band offset between the oxide and Ni (energy level difference between the valence band top and the Fermi level) is different due to the oxidized Si segregation at the interface.
Spatial Structure of Multimode Oscillations in a Solar Flare on 14 May 2013 in EUV and Radio Bands
NASA Astrophysics Data System (ADS)
Kolotkov, Dmitry; Nakariakov, Valery; Nisticò, Giuseppe; Shibasaki, Kiyoto; Kupriyanova, Elena
Quasi-periodic pulsations and coronal loop oscillations in an X-class solar flare on 14 May 2013 are considered. Rapidly decaying kink oscillations of coronal loops with periods of several minutes in the flaring active region detected in the EUV band with SDO/AIA after the impulsive phase of the flare. Oscillations of neighbouring loops are excited simultaneously, but get rapidly out of phase. In the impulsive phase, observations in the radio band with the Nobeyama Radioheliograph and Radiopolarimeter show quasi-periodic pulsations that are most pronounced in the 17 GHz band. In the correlation plots and the integrated flux the pulsations have a symmetric triangular shape. The period of pulsations is about 1 min. Analysis of the spatial locations of the radio sources reveal that the triangularity is likely to be caused by superposition of several harmonic modes.
Multi-spectral Metasurface for Different Functional Control of Reflection Waves
Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang
2016-01-01
Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band. PMID:27001206
Dynamical generation of Floquet Majorana flat bands in s-wave superconductors
NASA Astrophysics Data System (ADS)
Poudel, A.; Ortiz, G.; Viola, L.
2015-04-01
We present quantum control techniques to engineer flat bands of symmetry-protected Majorana edge modes in s-wave superconductors. Specifically, we show how periodic control may be employed for designing time-independent effective Hamiltonians, which support Floquet Majorana flat bands, starting from equilibrium conditions that are either topologically trivial or only support a Majorana pair per edge. In the first approach, a suitable modulation of the chemical potential simultaneously induces Majorana flat bands and dynamically activates a pre-existing chiral symmetry which is responsible for their protection. In the second approach, the application of effective parity kicks dynamically generates a desired chiral symmetry by suppressing chirality-breaking terms in the static Hamiltonian. Our results demonstrate how the use of time-dependent control enlarges the range of possibilities for realizing gapless topological superconductivity, potentially enabling access to topological states of matter that have no known equilibrium counterpart.
Spin-polarized surface resonances accompanying topological surface state formation
Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; Kemper, Alexander F.; Rotundu, Costel R.; Birgeneau, Robert J.; Hussain, Zahid; Lee, Dung-Hai; Shen, Zhi-Xun; Lanzara, Alessandra
2016-01-01
Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi2Se3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states can emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. This work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure. PMID:27739428
NASA Technical Reports Server (NTRS)
Estep, L.; Davis, B.
2001-01-01
A remote sensing campaign was conducted over a U.S. Department of Agriculture test farm at Shelton, Nebraska. An experimental field was set off in plots that were differentially treated with anhydrous ammonia. Four replicates of 0-kg/ha to 200-kg/ha plots, in 50-kg/ha increments, were set out in a random block design. Low-altitude (GSD of 3 m) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data were collected over the site in 224 bands. Simultaneously, ground data were collected to support the airborne imagery. In an effort to reduce data load while maintaining or enhancing algorithm performance for vegetation stress detection, band-moment compression and analysis was applied to the AVIRIS image cube. The results indicated that band-moment techniques compress the AVIRIS dataset significantly while retaining the capability of detecting environmentally induced vegetation stress.
Hilbert-Curve Fractal Antenna With Radiation- Pattern Diversity
NASA Technical Reports Server (NTRS)
Nessel, James A.; Miranda, Felix A.; Zaman, Afroz
2007-01-01
A printed, folded, Hilbert-curve fractal microwave antenna has been designed and built to offer advantages of compactness and low mass, relative to other antennas designed for the same operating frequencies. The primary feature of the antenna is that it offers the advantage of radiation-pattern diversity without need for electrical or mechanical switching: it can radiate simultaneously in an end-fire pattern at a frequency of 2.3 GHz (which is in the S-band) and in a broadside pattern at a frequency of 16.8 GHz (which is in the Ku-band). This radiation-pattern diversity could be utilized, for example, in applications in which there were requirements for both S-band ground-to-ground communications and Ku-band ground-to-aircraft or ground-to-spacecraft communications. The lack of switching mechanisms or circuitry makes this antenna more reliable, easier, and less expensive to fabricate than it otherwise would be.
Psarouli, A; Salapatas, A; Botsialas, A; Petrou, P S; Raptis, I; Makarona, E; Jobst, G; Tukkiniemi, K; Sopanen, M; Stoffer, R; Kakabakos, S E; Misiakos, K
2015-12-02
Protein detection and characterization based on Broad-band Mach-Zehnder Interferometry is analytically outlined and demonstrated through a monolithic silicon microphotonic transducer. Arrays of silicon light emitting diodes and monomodal silicon nitride waveguides forming Mach-Zehnder interferometers were integrated on a silicon chip. Broad-band light enters the interferometers and exits sinusoidally modulated with two distinct spectral frequencies characteristic of the two polarizations. Deconvolution in the Fourier transform domain makes possible the separation of the two polarizations and the simultaneous monitoring of the TE and the TM signals. The dual polarization analysis over a broad spectral band makes possible the refractive index calculation of the binding adlayers as well as the distinction of effective medium changes into cover medium or adlayer ones. At the same time, multi-analyte detection at concentrations in the pM range is demonstrated.
Frequency-domain nonlinear regression algorithm for spectral analysis of broadband SFG spectroscopy.
He, Yuhan; Wang, Ying; Wang, Jingjing; Guo, Wei; Wang, Zhaohui
2016-03-01
The resonant spectral bands of the broadband sum frequency generation (BB-SFG) spectra are often distorted by the nonresonant portion and the lineshapes of the laser pulses. Frequency domain nonlinear regression (FDNLR) algorithm was proposed to retrieve the first-order polarization induced by the infrared pulse and to improve the analysis of SFG spectra through simultaneous fitting of a series of time-resolved BB-SFG spectra. The principle of FDNLR was presented, and the validity and reliability were tested by the analysis of the virtual and measured SFG spectra. The relative phase, dephasing time, and lineshapes of the resonant vibrational SFG bands can be retrieved without any preset assumptions about the SFG bands and the incident laser pulses.
Observations of LHR noise with banded structure by the sounding rocket S29 barium-GEOS
NASA Technical Reports Server (NTRS)
Koskinen, H. E. J.; Holmgren, G.; Kintner, P. M.
1983-01-01
The measurement of electrostatic noise near the lower hybrid frequency made by the sounding rocket S29 barium-GEOS is reported. The noise is related to the spin of the rocket and reaches well below the local lower hybrid resonance frequency. Above the altitude of 300 km the noise shows banded structure roughly organized by the hydrogen cyclotron frequency. Simultaneously with the banded structure a signal near the hydrogen cyclotron frequency is detected. This signal is also spin modulated. The character of the noise strongly suggests that it is locally generated by the rocket payload disturbing the plasma. If this interpretation is correct, plasma wave experiments on other spacecrafts are expected to observe similar phenomena.
NASA Technical Reports Server (NTRS)
Evans, Diane L. (Editor); Plaut, Jeffrey (Editor)
1996-01-01
The Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is the most advanced imaging radar system to fly in Earth orbit. Carried in the cargo bay of the Space Shuttle Endeavour in April and October of 1994, SIR-C/X-SAR simultaneously recorded SAR data at three wavelengths (L-, C-, and X-bands; 23.5, 5.8, and 3.1 cm, respectively). The SIR-C/X-SAR Science Team consists of 53 investigator teams from more than a dozen countries. Science investigations were undertaken in the fields of ecology, hydrology, ecology, and oceanography. This report contains 44 investigator team reports and several additional reports from coinvestigators and other researchers.
Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor
NASA Technical Reports Server (NTRS)
Kurtz, Joe; Huffman, Donald R.
1989-01-01
Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.
Andersen, Gary L.; DeSantis, Todd D.
2014-07-08
The present embodiments relate to an array system for detecting and identifying biomolecules and organisms. More specifically, the present embodiments relate to an array system comprising a microarray configured to simultaneously detect a plurality of organisms in a sample at a high confidence level.
NASA Technical Reports Server (NTRS)
Brown, D. C.
1971-01-01
The simultaneous adjustment of very large nets of overlapping plates covering the celestial sphere becomes computationally feasible by virtue of a twofold process that generates a system of normal equations having a bordered-banded coefficient matrix, and solves such a system in a highly efficient manner. Numerical results suggest that when a well constructed spherical net is subjected to a rigorous, simultaneous adjustment, the exercise of independently established control points is neither required for determinancy nor for production of accurate results.
Cross calibration of the Landsat-7 ETM+ and EO-1 ALI sensor
Chander, G.; Meyer, D.J.; Helder, D.L.
2004-01-01
As part of the Earth Observer 1 (EO-1) Mission, the Advanced Land Imager (ALI) demonstrates a potential technological direction for Landsat Data Continuity Missions. To evaluate ALI's capabilities in this role, a cross-calibration methodology has been developed using image pairs from the Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) and EO-1 (ALI) to verify the radiometric calibration of ALI with respect to the well-calibrated L7 ETM+ sensor. Results have been obtained using two different approaches. The first approach involves calibration of nearly simultaneous surface observations based on image statistics from areas observed simultaneously by the two sensors. The second approach uses vicarious calibration techniques to compare the predicted top-of-atmosphere radiance derived from ground reference data collected during the overpass to the measured radiance obtained from the sensor. The results indicate that the relative sensor chip assemblies gains agree with the ETM+ visible and near-infrared bands to within 2% and the shortwave infrared bands to within 4%.
Reconnaissance of marine resources
NASA Technical Reports Server (NTRS)
Szekielda, K.-H.; Suszkowski, D. J.; Tabor, P. S.
1975-01-01
A test area along the NW Coast of Africa was used during the Skylab mission to study the distribution of temperature and plankton. The S190B Earth Terrain Camera with a spectral film response of 0.4-0.7 micrometers allowed qualitative estimates of the distribution patterns of suspended material. Differentiation between inorganic particles and phytoplankton could be made by comparing the green band and the red band of the S190A Camera System. The pictorial display of data obtained from the S191 scanning radiometer in the 10-11 micrometer atmospheric window allowed a detailed interpretation of the temperature distribution in the area where cold upwelled water reaches the euphotic zone. The comparison between infrared data and the imageries taken simultaneously indicated the origin of the cold water as well as the pathway within the Canary current. A fish survey carried out almost simultaneously in the area, by echosounding, showed high correlation between the position of good fishing grounds and the distribution of plankton as detected by remote sensing detectors on Skylab.
Stetsovych, Oleksandr; Todorović, Milica; Shimizu, Tomoko K.; Moreno, César; Ryan, James William; León, Carmen Pérez; Sagisaka, Keisuke; Palomares, Emilio; Matolín, Vladimír; Fujita, Daisuke; Perez, Ruben; Custance, Oscar
2015-01-01
Anatase is a pivotal material in devices for energy-harvesting applications and catalysis. Methods for the accurate characterization of this reducible oxide at the atomic scale are critical in the exploration of outstanding properties for technological developments. Here we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), supported by first-principles calculations, for the simultaneous imaging and unambiguous identification of atomic species at the (101) anatase surface. We demonstrate that dynamic AFM-STM operation allows atomic resolution imaging within the material's band gap. Based on key distinguishing features extracted from calculations and experiments, we identify candidates for the most common surface defects. Our results pave the way for the understanding of surface processes, like adsorption of metal dopants and photoactive molecules, that are fundamental for the catalytic and photovoltaic applications of anatase, and demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap materials. PMID:26118408
Line drawing titled 'TDRS Spacecraft On-Orbit Configuration'
NASA Technical Reports Server (NTRS)
1988-01-01
Line drawing titled 'TDRS Spacecraft On-Orbit Configuration' identifies the various tracking and data relay satellite (TDRS) components (solar arrays, C-Band antenna, K-Band antenna, space ground link (SGL) antenna, single access antennas, multiple access antenna, omni antenna, solar sail). A TDRS will be deployed during the STS-26 mission. Including the space shuttle, the TDRS will be equipped to support up to 26 user spacecraft simultaneously. It will provide two types of service: 1) multiple access which can relay data from as many as 20 low data rate (100 bits per second to 50 kilobits per second) user satellites simultaneously and; 2) single access which will provide two high data rate (to 300 megabits per second) communication relays. The TDRS is three-axis stabilizrd with the body fixed antennas pointing constantly at the Earth while the solar arrays track the Sun. TDR satellites do no processing of user traffic in either direction. Rather, they operate as 'bent pipe' repeaters,
Simultaneous observation of the gamma-ray binary LS I+61 303 with GLAST and Suzaku
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Takuya; Fukazawa, Yasushi; Mizuno, Tsunefumi
2007-07-12
The gamma-ray binary LS I+61 303 is a bright gamma-ray source, and thus an attracting object for GLAST. We proposed to observe this object with the X-ray satellite Suzaku (AO-2), simultaneously with GLAST, radio wave, and optical spectro-polarimetry, in order to probe the geometrical state of the binary system emitting the gamma-ray radiation, as a function of the binary orbital phase for the first time. This is essential to understand the mechanism of jet production and gamma-ray emission. The idea is not only to measure the multi-band overall continuum shape, but also to make use of continuous monitoring capability ofmore » GLAST, wide X-ray band of Suzaku, and good accessibility of the Kanata optical/NIR telescope (Hiroshima University) with the sensitive optical spectro-polarimetry. Further collaboration with TeV gamma-ray telescopes is also hoped to constrain the jet constitution.« less
Improved target detection by IR dual-band image fusion
NASA Astrophysics Data System (ADS)
Adomeit, U.; Ebert, R.
2009-09-01
Dual-band thermal imagers acquire information simultaneously in both the 8-12 μm (long-wave infrared, LWIR) and the 3-5 μm (mid-wave infrared, MWIR) spectral range. Compared to single-band thermal imagers they are expected to have several advantages in military applications. These advantages include the opportunity to use the best band for given atmospheric conditions (e. g. cold climate: LWIR, hot and humid climate: MWIR), the potential to better detect camouflaged targets and an improved discrimination between targets and decoys. Most of these advantages have not yet been verified and/or quantified. It is expected that image fusion allows better exploitation of the information content available with dual-band imagers especially with respect to detection of targets. We have developed a method for dual-band image fusion based on the apparent temperature differences in the two bands. This method showed promising results in laboratory tests. In order to evaluate its performance under operational conditions we conducted a field trial in an area with high thermal clutter. In such areas, targets are hardly to detect in single-band images because they vanish in the clutter structure. The image data collected in this field trial was used for a perception experiment. This perception experiment showed an enhanced target detection range and reduced false alarm rate for the fused images compared to the single-band images.
Hyperspectral imaging for simultaneous measurements of two FRET biosensors in pancreatic β-cells.
Elliott, Amicia D; Bedard, Noah; Ustione, Alessandro; Baird, Michelle A; Davidson, Michael W; Tkaczyk, Tomasz; Piston, David W
2017-01-01
Fluorescent protein (FP) biosensors based on Förster resonance energy transfer (FRET) are commonly used to study molecular processes in living cells. There are FP-FRET biosensors for many cellular molecules, but it remains difficult to perform simultaneous measurements of multiple biosensors. The overlapping emission spectra of the commonly used FPs, including CFP/YFP and GFP/RFP make dual FRET measurements challenging. In addition, a snapshot imaging modality is required for simultaneous imaging. The Image Mapping Spectrometer (IMS) is a snapshot hyperspectral imaging system that collects high resolution spectral data and can be used to overcome these challenges. We have previously demonstrated the IMS's capabilities for simultaneously imaging GFP and CFP/YFP-based biosensors in pancreatic β-cells. Here, we demonstrate a further capability of the IMS to image simultaneously two FRET biosensors with a single excitation band, one for cAMP and the other for Caspase-3. We use these measurements to measure simultaneously cAMP signaling and Caspase-3 activation in pancreatic β-cells during oxidative stress and hyperglycemia, which are essential components in the pathology of diabetes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croll, Bryce; Jayawardhana, Ray; Albert, Loic
We use the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope to observe four transits of the super-Earth planet GJ 1214b in the near-infrared. For each transit, we observe GJ 1214 in two bands nearly simultaneously by rapidly switching the WIRCam filter wheel back and forth for the duration of the observations. By combining all our J-band ({approx}1.25 {mu}m) observations we find a transit depth, analogous to the planet-to-star radius ratio squared, in this band of (R{sub PJ} /R{sub *}){sup 2} = (1.338 {+-} 0.013)%-a value consistent with the optical transit depth reported by Charbonneau and collaborators. However, our best-fitmore » combined K{sub s}-band ({approx}2.15 {mu}m) transit depth is deeper: (R{sub PKs} /R{sub *}){sup 2} = (1.438 {+-} 0.019)%. Formally, our K{sub s}-band transits are deeper than the J-band transits observed simultaneously by a factor of (R{sub PKs} /R{sub PJ}){sup 2} = 1.072 {+-} 0.018-a 4{sigma} discrepancy. The most straightforward explanation for our deeper K{sub s}-band transit depth is a spectral absorption feature from the limb of the atmosphere of the planet; for the spectral absorption feature to be this prominent, the atmosphere of GJ 1214b must have a large-scale height and a low mean molecular weight. That is, its atmosphere would have to be hydrogen/helium dominated and this planet would be better described as a mini-Neptune. However, recently published observations from 0.78 to 1.0 {mu}m, by Bean and collaborators, show a lack of spectral features and transit depths consistent with those obtained by Charbonneau and collaborators. The most likely atmospheric composition for GJ 1214b that arises from combining all these observations is less clear; if the atmosphere of GJ 1214b is hydrogen/helium dominated, then it must have either a haze layer that is obscuring transit-depth differences at shorter wavelengths or significantly different spectral features from what current models predict. Our observations disfavor a water-world composition, but such a composition will remain a possibility for GJ 1214b until observations reconfirm our deeper K{sub s}-band transit depth or detect features at other wavelengths.« less
Simultaneous chromatic dispersion, polarization-mode-dispersion and OSNR monitoring at 40Gbit/s.
Baker-Meflah, Lamia; Thomsen, Benn; Mitchell, John; Bayvel, Polina
2008-09-29
A novel method for independent and simultaneous monitoring of chromatic dispersion (CD), first-order PMD and OSNR in 40Gbit/s systems is proposed and demonstrated. This is performed using in-band tone monitoring of 5GHz, optically down-converted to a low intermediate-frequency (IF) of 10kHz. The measurement provides a large monitoring range with good accuracies for CD (4742+/-100ps/nm), differential group delay (DGD) (200+/-4ps) and OSNR (23+/-1dB), independently of the bit-rate. In addition, the use of electro-absorption modulators (EAM) for the simultaneous down-conversion of all channels and the use of low-speed detectors makes it cost effective for multi-channel operation.
Inverse modeling with RZWQM2 to predict water quality
USDA-ARS?s Scientific Manuscript database
Agricultural systems models such as RZWQM2 are complex and have numerous parameters that are unknown and difficult to estimate. Inverse modeling provides an objective statistical basis for calibration that involves simultaneous adjustment of model parameters and yields parameter confidence intervals...
High prevalence of simultaneous rib and vertebral fractures in patients with hip fracture.
Lee, Bong-Gun; Sung, Yoon-Kyoung; Kim, Dam; Choi, Yun Young; Kim, Hunchul; Kim, Yeesuk
2017-02-01
The purpose was to evaluate the prevalence and location of simultaneous fracture using bone scans in patients with hip fracture and to determine the risk factors associated with simultaneous fracture. One hundred eighty two patients with hip fracture were reviewed for this study. Clinical parameters and bone mineral density (BMD) of the lumbar vertebra and femoral neck were investigated. To identify acute simultaneous fracture, a bone scan was performed at 15.4±4.1days after hip fracture. The prevalence and location of simultaneous fracture were evaluated, and multivariate logistic regression analysis was performed to determine the risk factors. Simultaneous fracture was observed in 102 of 182 patients, a prevalence of 56.0%. Rib fracture was the most common type of simultaneous fracture followed by rib with vertebral fracture. The BMD of the lumbar vertebra was significantly lower in patients with simultaneous fracture (p=0.044) and was identified as an independent risk factor (odds ratio: OR 0.05, 95% confidence interval: CI 0.01-0.57). The prevalence of simultaneous fracture was relatively high among patients with hip fracture, and BMD was significantly lower in patients with simultaneous fracture than in patients without it. Surgeons should be aware of the possibility of simultaneous fracture in patients with hip fracture. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bhatt, Rajendra; Doelling, David R.; Wu, Aisheng; Xiong, Xiaoxiong (Jack); Scarino, Benjamin R.; Haney, Conor O.; Gopalan, Arun
2014-01-01
The latest CERES FM-5 instrument launched onboard the S-NPP spacecraft will use the VIIRS visible radiances from the NASA Land Product Evaluation and Analysis Tool Elements (PEATE) product for retrieving the cloud properties associated with its TOA flux measurement. In order for CERES to provide climate quality TOA flux datasets, the retrieved cloud properties must be consistent throughout the record, which is dependent on the calibration stability of the VIIRS imager. This paper assesses the NASA calibration stability of the VIIRS reflective solar bands using the Libya-4 desert and deep convective clouds (DCC). The invariant targets are first evaluated for temporal natural variability. It is found for visible (VIS) bands that DCC targets have half of the variability of Libya-4. For the shortwave infrared (SWIR) bands, the desert has less variability. The brief VIIRS record and target variability inhibits high confidence in identifying any trends that are less than 0.6yr for most VIS bands, and 2.5yr for SWIR bands. None of the observed invariant target reflective solar band trends exceeded these trend thresholds. Initial assessment results show that the VIIRS data have been consistently calibrated and that the VIIRS instrument stability is similar to or better than the MODIS instrument.
Risk of Band Keratopathy in Patients with End-Stage Renal Disease.
Weng, Shih-Feng; Jan, Ren-Long; Chang, Chun; Wang, Jhi-Joung; Su, Shih-Bin; Huang, Chien-Cheng; Tseng, Sung-Huei; Chang, Yuh-Shin
2016-06-27
This study is a retrospective, nationwide, matched cohort study to investigate the risk of band keratopathy following end-stage renal disease (ESRD). The study cohort included 94,039 ESRD on-dialysis patients identified by the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM), code 585 and registered between January 2000 to December 2009 at the Taiwan National Health Insurance Research Database. An age- and sex-matched control group comprised 94,039 patients selected from the Taiwan Longitudinal Health Insurance Database 2000. Information for each patient was collected from the index date until December 2011. In total, 230 ESRD patients and 26 controls had band keratopathy (P < 0.0001) during the follow-up period, indicating a significantly elevated risk of band keratopathy in the ESRD patients compared with controls (incidence rate ratio = 12.21, 95% confidence interval [CI] = 8.14-18.32). After adjustment for potential confounders including sarcoidosis, hyperparathyroidism, iridocyclitis, and phthisis bulbi, ESRD patients were 11.56 times more likely to develop band keratopathy in the full cohort (adjusted HR = 11.56, 95% CI = 7.70-17.35). In conclusion, ESRD increases the risk of band keratopathy. Close interdisciplinary collaboration between nephrologists and ophthalmologists is important to deal with band keratopathy following ESRD and prevent visual acuity impairments.
New excitations in Ba 142 and Ce 144 : Evolution of γ bands in the N = 86 isotones
Naidja, H.; Nowacki, F.; Bounthong, B.; ...
2017-06-02
New excited states in 142Ba and 144Ce are investigated by means of prompt γ-ray spectroscopy of the radiation following spontaneous fission of 252Cf. Measurements of angular correlations and the observed branchings allowed the assignment of spins and parities with confidence. The new measurements are reinforced by shell-model calculations where energy levels, electric transitions, and magnetic moments are consistent with experimental data. Lastly, the presence of collectivity in the N = 86 isotones is confirmed by clear signatures of soft triaxial γ bands in both nuclei.
Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.
Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan
2016-08-01
In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zeng, Wei; Zhao, Qing-Jiang; Dai, Ben-Zhong; Jiang, Ze-Jun; Geng, Xiong-Fei; Yang, Shen-Bang; Liu, Zhen; Wang, Dong-Dong; Feng, Zhang-Jing; Zhang, Li
2018-02-01
We present long-term optical multi-band photometric monitoring of blazar 3C 273, from 2006 May 19 to 2015 March 31 with high temporal resolution in the BVRI bands. The source is in a steady state and showed very small variability, with the values of the fractional variability amplitude of {F}{var}=0.457+/- 0.014 % , 0.391+/- 0.012 % , 0.264+/- 0.043 % and 0.460+/- 0.014 % in B, V, R and I, respectively. The intra-night point-to-point fractional variability (F pp ) in each band is below 1.0%, and the F pp variation amplitude increase from the B-band to the I-band. We find a variability with the timescale of 5.8 ± 2.9 minutes in the I-band on 2009 March 11. This fast variability requires the comoving magnetic field strength in the jet above 18 G with a Doppler factor {δ }D∼ 10. Using the discrete correlation function (DCF), the B- and I-band light curves are examined for correlation on whole campaign. Low significance (∼99.73 percent confidence) correlations with the I-band lags the B-band variations are observed. The spectral behaviors in the different variability episodes are studied. “Bluer-when-brighter” spectral behavior is presented for the whole campaign, while there is an opposite tendency when {{{F}}}V> 30.2 {mJy}. The weak of the correlation between B- and I-band and the spectrum analysis indicate that the optical radiation consists of two variable components.
Optimization of Ocean Color Algorithms: Application to Satellite Data Merging
NASA Technical Reports Server (NTRS)
Maritorena, Stephane; Siegel, David A.; Morel, Andre
2003-01-01
The objective of our program is to develop and validate a procedure for ocean color data merging which is one of the major goals of the SIMBIOS project. The need for a merging capability is dictated by the fact that since the launch of MODIS on the Terra platform and over the next decade, several global ocean color missions from various space agencies are or will be operational simultaneously. The apparent redundancy in simultaneous ocean color missions can actually be exploited to various benefits. The most obvious benefit is improved coverage. The patchy and uneven daily coverage from any single sensor can be improved by using a combination of sensors. Beside improved coverage of the global Ocean the merging of Ocean color data should also result in new, improved, more diverse and better data products with lower uncertainties. Ultimately, ocean color data merging should result in the development of a unified, scientific quality, ocean color time series, from SeaWiFS to NPOESS and beyond. Various approaches can be used for ocean color data merging and several have been tested within the frame of the SIMBIOS program. As part of the SIMBIOS Program, we have developed a merging method for ocean color data. Conversely to other methods our approach does not combine end-products like the subsurface chlorophyll concentration (chl) from different sensors to generate a unified product. Instead, our procedure uses the normalized water-leaving radiances (L(sub WN)(lambda)) from single or multiple sensors and uses them in the inversion of a semi-analytical ocean color model that allows the retrieval of several ocean color variables simultaneously. Beside ensuring simultaneity and consistency of the retrievals (all products are derived from a single algorithm), this model-based approach has various benefits over techniques that blend end-products (e.g. chlorophyll): 1) it works with single or multiple data sources regardless of their specific bands, 2) it exploits band redundancies and band differences, 3) it accounts for uncertainties in the (L(sub WN)(lambda)) data and, 4) it provides uncertainty estimates for the retrieved variables.
The Benefits of Using Time-Frequency Analysis with Synthetic Aperture Focusing Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, Austin P; Clayton, Dwight A
2015-01-01
Improvements in detection and resolution are always desired and needed. There are various instruments available for the inspection of concrete structures that can be used with confidence for detecting different defects. However, more often than not that confidence is heavily dependent on the experience of the operator rather than the clear, objective discernibility of the output of the instrument. The challenge of objective discernment is amplified when the concrete structures contain multiple layers of reinforcement, are of significant thickness, or both, such as concrete structures in nuclear power plants. We seek to improve and extend the usefulness of results producedmore » using the synthetic aperture focusing technique (SAFT) on data collected from thick, complex concrete structures. A secondary goal is to improve existing SAFT results, with regards to repeatedly and objectively identifying defects and/or internal structure of concrete structures. Towards these goals, we are applying the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band s interaction with the contents of the concrete structure. We apply our technique to data sets collected using a commercial, ultrasonic linear array (MIRA) from two 1.5m x 2m x 25cm concrete test specimens. One specimen contains multiple layers of rebar. The other contains honeycomb, crack, and rebar bonding defect analogs. This approach opens up a multitude of possibilities for improved detection, readability, and overall improved objectivity. We will focus on improved defect/reinforcement isolation in thick and multilayered reinforcement environments. Additionally, the ability to empirically explore the possibility of a frequency-band-defect-type relationship or sensitivity becomes available.« less
The benefits of using time-frequency analysis with synthetic aperture focusing technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, Austin, E-mail: albrightap@ornl.gov, E-mail: claytonda@ornl.gov; Clayton, Dwight, E-mail: albrightap@ornl.gov, E-mail: claytonda@ornl.gov
2015-03-31
Improvements in detection and resolution are always desired and needed. There are various instruments available for the inspection of concrete structures that can be used with confidence for detecting different defects. However, more often than not that confidence is heavily dependent on the experience of the operator rather than the clear, objective discernibility of the output of the instrument. The challenge of objective discernment is amplified when the concrete structures contain multiple layers of reinforcement, are of significant thickness, or both, such as concrete structures in nuclear power plants. We seek to improve and extend the usefulness of results producedmore » using the synthetic aperture focusing technique (SAFT) on data collected from thick, complex concrete structures. A secondary goal is to improve existing SAFT results, with regards to repeatedly and objectively identifying defects and/or internal structure of concrete structures. Towards these goals, we are applying the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. We apply our technique to data sets collected using a commercial, ultrasonic linear array (MIRA) from two 1.5m × 2m × 25cm concrete test specimens. One specimen contains multiple layers of rebar. The other contains honeycomb, crack, and rebar bonding defect analogs. This approach opens up a multitude of possibilities for improved detection, readability, and overall improved objectivity. We will focus on improved defect/reinforcement isolation in thick and multilayered reinforcement environments. Additionally, the ability to empirically explore the possibility of a frequency-band-defect-type relationship or sensitivity becomes available.« less
The benefits of using time-frequency analysis with synthetic aperture focusing technique
NASA Astrophysics Data System (ADS)
Albright, Austin; Clayton, Dwight
2015-03-01
Improvements in detection and resolution are always desired and needed. There are various instruments available for the inspection of concrete structures that can be used with confidence for detecting different defects. However, more often than not that confidence is heavily dependent on the experience of the operator rather than the clear, objective discernibility of the output of the instrument. The challenge of objective discernment is amplified when the concrete structures contain multiple layers of reinforcement, are of significant thickness, or both, such as concrete structures in nuclear power plants. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on data collected from thick, complex concrete structures. A secondary goal is to improve existing SAFT results, with regards to repeatedly and objectively identifying defects and/or internal structure of concrete structures. Towards these goals, we are applying the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. We apply our technique to data sets collected using a commercial, ultrasonic linear array (MIRA) from two 1.5m × 2m × 25cm concrete test specimens. One specimen contains multiple layers of rebar. The other contains honeycomb, crack, and rebar bonding defect analogs. This approach opens up a multitude of possibilities for improved detection, readability, and overall improved objectivity. We will focus on improved defect/reinforcement isolation in thick and multilayered reinforcement environments. Additionally, the ability to empirically explore the possibility of a frequency-band-defect-type relationship or sensitivity becomes available.
Optical study of the counterpart to GRB 990712
NASA Astrophysics Data System (ADS)
Gorosabel, J.; Castro-Tirado, A. J.; Saizar, P.; Rattenbury, N. J.; Bond, I. A.; Yock, P.; Hearnshaw, J.; Kilmartin, P. M.; Muraki, Y.; Nakamura, T.; Ohnishi, K.; Reid, M.; Saito, To; Noda, S.
2000-09-01
Quasi-simultaneous BVR-band observations performed from New Zealand and Argentina ~16 hr after the burst clearly detected the optical counterpart to GR-B 990712. Based on these measurements we construct the optical multi-band spectrum. We report that the spectrum between the R and B bands follows a power law Fv~νβ with index β=-0.50+/-0.16. The spectrum is consistent with a stretch of an afterglow spectrum between the peak frequency, νm, and the cooling break, νc. The photon index derived following the model of Sari et al. (1998), p=2.36+/-0.08 is compatible with β and the power law decay, α, only if no absorption is introduced. Thus, our results support that GRB 990712 occurred in a low density region, resembling GRB 970508. .
An observation of LHR noise with banded structure by the sounding rocket S29 Barium-GEOS
NASA Technical Reports Server (NTRS)
Koskinen, H. E. J.; Holmgren, G.; Kintner, P. M.
1982-01-01
The measurement of electrostatic and obviously locally produced noise near the lower hybrid frequency made by the sounding rocket S29 Barium-GEOS is reported. The noise is strongly related to the spin of the rocket and reaches well below the local lower hybrid resonance frequency. Above the altitude of 300 km the noise shows banded structure roughly organized by the hydrogen cyclotron frequency. Simultaneously with the banded structure, a signal near the hydrogen cyclotron frequency is detected. This signal is also spin related. The characteristics of the noise suggest that it is locally generated by the rocket payload disturbing the plasma. If this interpretation is correct we expect plasma wave experiments on other spacecrafts, e.g., the space shuttle to observe similar phenomena.
Fang, Yuan; Yu, Jianjun; Chi, Nan; Xiao, Jiangnan
2014-01-27
We experimentally demonstrated full-duplex bidirectional transmission of 10-Gb/s millimeter-wave (mm-wave) quadrature phase shift keying (QPSK) signal in E-band (71-76 GHz and 81-86 GHz) optical wireless link. Single-mode fibers (SMF) are connected at both sides of the antenna for uplink and downlink which realize 40-km SMF and 2-m wireless link for bidirectional transmission simultaneously. We utilized multi-level modulation format and coherent detection in such E-band optical wireless link for the first time. Mm-wave QPSK signal is generated by photonic technique to increase spectrum efficiency and received signal is coherently detected to improve receiver sensitivity. After the coherent detection, digital signal processing is utilized to compensate impairments of devices and transmission link.
Designing Phononic Crystals with Wide and Robust Band Gaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Zian; Chen, Yanyu; Yang, Haoxiang
Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less
Assessment of the Collection 6 Terra and Aqua MODIS bands 1 and 2 calibration performance
NASA Astrophysics Data System (ADS)
Wu, A.; Chen, X.; Angal, A.; Li, Y.; Xiong, X.
2015-09-01
MODIS (Moderate Resolution Imaging Spectroradiometer) is a key sensor aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. MODIS collects data in 36 spectral bands and generates over 40 data products for land, atmosphere, cryosphere and oceans. MODIS bands 1 and 2 have nadir spatial resolution of 250 m, compared with 500 m for bands 3 to 7 and 1000 m for all the remaining bands, and their measurements are crucial to derive key land surface products. This study evaluates the calibration performance of the Collection-6 L1B for both Terra and Aqua MODIS bands 1 and 2 using three vicarious approaches. The first and second approaches focus on stability assessment using data collected from two pseudo-invariant sites, Libya 4 desert and Antarctic Dome C snow surface. The third approach examines the relative stability between Terra and Aqua in reference to a third sensor from a series of NOAA 15-19 Advanced Very High Resolution Radiometer (AVHRR). The comparison is based on measurements from MODIS and AVHRR Simultaneous Nadir Overpasses (SNO) over a thirteen-year period from 2002 to 2015. Results from this study provide a quantitative assessment of Terra and Aqua MODIS bands 1 and 2 calibration stability and the relative calibration differences between the two sensors.
Designing Phononic Crystals with Wide and Robust Band Gaps
Jia, Zian; Chen, Yanyu; Yang, Haoxiang; ...
2018-04-16
Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less
Band gap engineering for graphene by using Na{sup +} ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, S. J.; Lee, P. R.; Kim, J. G.
2014-08-25
Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E{sub g}) at DP in a controlled way by depositing positively charged Na{sup +} ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na{sup +} ions is found to deplete the π* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E{sub g}.more » The band gap increases with increasing Na{sup +} coverage with a maximum E{sub g}≥0.70 eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na{sup +} ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na{sup +} ions, which may play a vital role in utilizing graphene in future nano-electronic devices.« less
Designing Phononic Crystals with Wide and Robust Band Gaps
NASA Astrophysics Data System (ADS)
Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng
2018-04-01
Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.
NASA Astrophysics Data System (ADS)
Padermshoke, Adchara; Katsumoto, Yukiteru; Sato, Harumi; Ekgasit, Sanong; Noda, Isao; Ozaki, Yukihiro
2005-02-01
The melting behavior of a bacterially synthesized biodegradable polymer, poly(3-hydroxybutyrate) (PHB), was investigated by using generalized two-dimensional infrared (2D IR) correlation spectroscopy. Temperature-dependent spectral variations in the regions of the CH stretching (3100-2850 cm -1), CO stretching (1800-1680 cm -1), and COC stretching (1320-1120 cm -1) bands were monitored during the melting process. The asynchronous 2D correlation spectrum for the CO stretching band region resolved two crystalline bands at 1731 and 1723 cm -1. The intense band at 1723 cm -1 may be due to the highly ordered crystalline part of PHB, and the weak band at 1731 cm -1 possibly arises from the crystalline part with a less ordered structure. These crystalline bands at 1731 and 1723 cm -1 share asynchronous cross peaks with a band at around 1740 cm -1 assignable to the CO band due to the amorphous component. This observation indicates that the decreases in the crystalline components do not proceed simultaneously with the increase in the amorphous component. In the 3020-2915 cm -1 region where bands due to the asymmetric CH 3 stretching and antisymmetric CH 2 stretching modes are expected to appear, eight bands are identified at 3007, 2995, 2985, 2975, 2967, 2938, 2934, and 2929 cm -1. The bands at 2985 and 2938 cm -1 are ascribed to the amorphous part while the rest come from crystal field splitting, which is a characteristic of polymers with a helical structure.
Aqua and Terra MODIS RSB Calibration Comparison Using BRDF Modeled Reflectance
NASA Technical Reports Server (NTRS)
Chang, Tiejun; Xiong, Xiaoxiong; Angal, Amit; Wu, Aisheng; Geng, Xu
2017-01-01
The inter-comparison of MODIS reflective solar bands onboard Aqua and Terra is very important for assessment of each instrument's calibration. One of the limitations is the lack of simultaneous nadir overpasses. Their measurements over a selected Earth view target have significant differences in solar and view angles, which magnify the effects of atmospheric scattering and Bidirectional Reflectance Distribution Function (BRDF). In this work, an intercomparison technique is formulated after correction for site's BRDF and atmospheric effects. The reflectance measurements over Libya desert sites 1, 2, and 4 from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for calibration difference. The ratio between Aqua and Terra reflectance measurements are derived for bands 1 to 9 and the results from different sites show good agreement. For year 2003, the ratios are in the range of 0.985 to1.010 for band 1 to 9. Band 3 shows the lowest ratio 0.985 and band 1 shows the highest ratio 1.010. For the year 2014, the ratio ranges from approximately 0.983 for bands 2 and 1.012 for band 8. The BRDF corrected reflectance for the two instruments are also derived for every year from 2003 to 2014 for stability assessment. Bands 1 and 2 show greater than 1 differences between the two instruments. Aqua bands 1 and 2 show downward trends while Terra bands 1 and 2 show upward trends. Bands 8 and 9 of both Aqua and Terra show large variations of reflectance measurement over time.
Spectral definition of the ArTeMiS instrument
NASA Astrophysics Data System (ADS)
Haynes, Vic; Maffei, Bruno; Pisano, Giampaolo; Dubreuil, Didier; Delisle, Cyrille; Le Pennec, Jean; Hurtado, Norma
2014-07-01
ArTeMiS is a sub-millimetre camera to be operated, on the Atacama Pathfinder Experiment Telescope (APEX). The ultimate goal is to observe simultaneously in three atmospheric spectral windows in the region of 200, 350 and 450 microns. We present the filtering scheme, which includes the cryostat window, thermal rejection elements, band separation and spectral isolation, which has been adopted for this instrument. This was achieved using a combination of scattering, Yoshinaga filters, organic dyes and Ulrich type embedded metallic mesh devices. Design of the quasi-optical mesh components has been developed by modelling with an in-house developed code. For the band separating dichroics, which are used with an incidence angle of 35 deg, further modelling has been performed with HFSS (Ansoft). Spectral characterization of the components for the 350 and 450 bands have been performed with a Martin-Puplett Polarizing Fourier Transform Spectrometer. While for the first commissioning and observation campaign, one spectral band only was operational (350 microns), we report on the design of the 200, 350 and 450 micron bands.
Shuttle program: Ground tracking data program document shuttle OFT launch/landing
NASA Technical Reports Server (NTRS)
Lear, W. M.
1977-01-01
The equations for processing ground tracking data during a space shuttle ascent or entry, or any nonfree flight phase of a shuttle mission are given. The resulting computer program processes data from up to three stations simultaneously: C-band station number 1; C-band station number 2; and an S-band station. The C-band data consists of range, azimuth, and elevation angle measurements. The S-band data consists of range, two angles, and integrated Doppler data in the form of cycle counts. A nineteen element state vector is used in Kalman filter to process the measurements. The acceleration components of the shuttle are taken to be independent exponentially-correlated random variables. Nine elements of the state vector are the measurement bias errors associated with range and two angles for each tracking station. The biases are all modeled as exponentially-correlated random variables with a typical time constant of 108 seconds. All time constants are taken to be the same for all nine state variables. This simplifies the logic in propagating the state error covariance matrix ahead in time.
Perceiving the Intensity of Light
ERIC Educational Resources Information Center
Purves, Dale; Williams, S. Mark; Nundy, Surajit; Lotto, R. Beau
2004-01-01
The relationship between luminance (i.e., the photometric intensity of light) and its perception (i.e., sensations of lightness or brightness) has long been a puzzle. In addition to the mystery of why these perceptual qualities do not scale with luminance in any simple way, "illusions" such as simultaneous brightness contrast, Mach bands,…
Electromagnetic Characterization of Materials Using a Dual Chambered High Temperature Waveguide
to just one day through simultaneous measurement of the sample and the empty second chamber. A vector network analyzer (VNA) will be used to run X-band...calculated from the Nicolson-Ross-Weir inversion algorithm for computing permittivity and permeability using VNA measured S-parameters at increasing temperatures.
Mars Global Surveyor Ka-Band Frequency Data Analysis
NASA Astrophysics Data System (ADS)
Morabito, D.; Butman, S.; Shambayati, S.
2000-01-01
The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4 GHz) downlink. The signals are simultaneously transmitted from a 1.5-in diameter parabolic high gain antenna (HGA) on MGS and received by a beam-waveguide (BWG) R&D 34-meter antenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. The projected 5-dB link advantage of Ka-band relative to X-band was confirmed in previous reports using measurements of MGS signal strength data acquired during the first two years of the link experiment from December 1996 to December 1998. Analysis of X-band and Ka-band frequency data and difference frequency (fx-fka)/3.8 data will be presented here. On board the spacecraft, a low-power sample of the X-band downlink from the transponder is upconverted to 32 GHz, the Ka-band frequency, amplified to I-W using a Solid State Power Amplifier, and radiated from the dual X/Ka HGA. The X-band signal is amplified by one of two 25 W TWTAs. An upconverter first downconverts the 8.42 GHz X-band signal to 8 GHz and then multiplies using a X4 multiplier producing the 32 GHz Ka-band frequency. The frequency source selection is performed by an RF switch which can be commanded to select a VCO (Voltage Controlled Oscillator) or USO (Ultra-Stable Oscillator) reference. The Ka-band frequency can be either coherent with the X-band downlink reference or a hybrid combination of the USO and VCO derived frequencies. The data in this study were chosen such that the Ka-band signal is purely coherent with the X-band signal, that is the downconverter is driven by the same frequency source as the X-band downlink). The ground station used to acquire the data is DSS-13, a 34-meter BWG antenna which incorporates a series of mirrors inside beam waveguide tubes which guide the energy to a subterranean pedestal room, providing a stable environment for the feed and electronics equipment. A dichroic plate is used to reflect the X-band energy and pass the Ka-band energy to another mirror. The RF energy for each band is then focused onto a feed horn and low-noise amplifier package. After amplification and RF/IF downconversion, the IF signals are sent to the Experimental Tone Tracker (ETT), a digital phase-lock-loop receiver, which simultaneously tracks both X-band and Ka-band carrier signals. Once a signal is detected, the ETT outputs estimates of the SNR in a I -Hz bandwidth (Pc/No), baseband phase and frequency of the signals every I -sec. Between December 1996 and December 1998, the Ka-band and X-band signals from MGS were tracked on a regular basis using the ETT. The Ka-band downlink frequencies described here were referenced to the spacecraft's on-board USO which was also the X-band frequency reference (fka= 3.8 fx). The ETT estimates of baseband phase at I -second sampled time tags were converted to sky frequency estimates. Frequency residuals were then generated for each band by removing a model frequency from each observable frequency at each time tag. The model included Doppler and other effects derived from spacecraft trajectory files obtained from the MGS Navigation Team. A simple troposphere correction was applied to the data. In addition to residuals, the USO frequencies emitted by the spacecraft were estimated. For several passes, the USO frequencies were determined from X-band data and from Ka-band data (referred to X-band by dividing by 3.8) and were found to be in good agreement. In addition, X-band USO frequency estimates from MGS Radio Science data acquired from operational DSN stations were available for comparison and were found to agree within the I Hz level. The remaining sub-Hertz differences were attributed to the different models and software algorithms used by MGS Radio Science and KaBLE-11. A summary of the results of a linear fit of the USO frequency versus time (day of year) is presented in Table I for an initial segment of passes.
III-V infrared research at the Jet Propulsion Laboratory
NASA Astrophysics Data System (ADS)
Gunapala, S. D.; Ting, D. Z.; Hill, C. J.; Soibel, A.; Liu, John; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Nguyen, J.; Bandara, S. V.; Tidrow, M. Z.
2009-08-01
Jet Propulsion Laboratory is actively developing the III-V based infrared detector and focal plane arrays (FPAs) for NASA, DoD, and commercial applications. Currently, we are working on multi-band Quantum Well Infrared Photodetectors (QWIPs), Superlattice detectors, and Quantum Dot Infrared Photodetector (QDIPs) technologies suitable for high pixel-pixel uniformity and high pixel operability large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). In addition, we will present the latest advances in QDIPs and Superlattice infrared detectors at the Jet Propulsion Laboratory.
Thermal Imaging with Novel Infrared Focal Plane Arrays and Quantitative Analysis of Thermal Imagery
NASA Technical Reports Server (NTRS)
Gunapala, S. D.; Rafol, S. B.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Soibel, A.; Ting, D. Z.; Tidrow, Meimei
2012-01-01
We have developed a single long-wavelength infrared (LWIR) quantum well infrared photodetector (QWIP) camera for thermography. This camera has been used to measure the temperature profile of patients. A pixel coregistered simultaneously reading mid-wavelength infrared (MWIR)/LWIR dual-band QWIP camera was developed to improve the accuracy of temperature measurements especially with objects with unknown emissivity. Even the dualband measurement can provide inaccurate results due to the fact that emissivity is a function of wavelength. Thus we have been developing a four-band QWIP camera for accurate temperature measurement of remote object.
Hyperspectral remote sensing for terrestrial applications
Thenkabail, Prasad S.; Teluguntla, Pardhasaradhi G.; Murali Krishna Gumma,; Venkateswarlu Dheeravath,
2015-01-01
Remote sensing data are considered hyperspectral when the data are gathered from numerous wavebands, contiguously over an entire range of the spectrum (e.g., 400–2500 nm). Goetz (1992) defines hyperspectral remote sensing as “The acquisition of images in hundreds of registered, contiguous spectral bands such that for each picture element of an image it is possible to derive a complete reflectance spectrum.” However, Jensen (2004) defines hyperspectral remote sensing as “The simultaneous acquisition of images in many relatively narrow, contiguous and/or non contiguous spectral bands throughout the ultraviolet, visible, and infrared portions of the electromagnetic spectrum.
NASA Astrophysics Data System (ADS)
Cortes-Medellin, German; Parshley, Stephen; Campbell, Donald B.; Warnick, Karl F.; Jeffs, Brian D.; Ganesh, Rajagopalan
2016-08-01
This paper presents the current concept design for ALPACA (Advanced L-Band Phased Array Camera for Arecibo) an L-Band cryo-phased array instrument proposed for the 305 m radio telescope of Arecibo. It includes the cryogenically cooled front-end with 160 low noise amplifiers, a RF-over-fiber signal transport and a digital beam former with an instantaneous bandwidth of 312.5 MHz per channel. The camera will digitally form 40 simultaneous beams inside the available field of view of the Arecibo telescope optics, with an expected system temperature goal of 30 K.
Final Results from the BIMA CMB Anisotropy Survey and Search for Signature of the SZ Effect
NASA Technical Reports Server (NTRS)
Dawson, K. S.; Holzapfel, W. L.; Carlstrom, J. E.; Joy, M.; LaRoque, S. J.
2006-01-01
We report the final results of our study of the cosmic microwave background (CMB) with the BIMA array. Over 1000 hours of observation were dedicated to this project exploring CMB anisotropy on scales between 1' and 2' in eighteen 6'.6 FWHM fields. In the analysis of the CMB power spectrum, the visibility data is divided into two bins corresponding to different angular scales. Modeling the observed excess power as a flat band of average multipole l(sub eff)= 5237, we find deltaT(sup 2)(sub 1) = 220(sup +140)(sub -120) mu K(sup 2) at 68% confidence and deltaT(sup 2)(sub 1) greater than 0 muK(sup 2) with 94.7% confidence. In a second band with average multipole of l(sub eff) = 8748, we find deltaT(sup 2)(sub 2) consistent with zero, and an upper limit 880 muK(sup 2) at 95% confidence. An extensive series of tests and supplemental observations with the VLA provide strong evidence against systematic errors or radio point sources being the source of the observed excess power. The dominant source of anisotropy on these scales is expected to arise from the Sunyaev-Zel'dovich (SZ) effect in a population of distant galaxy clusters. If the excess power is due to the SZ effect, we can place constraints on the normalization of the matter power spectrum sigma(sub 8) = 1.03(sup +0.20)(sub -0.29) at 68% confidence. The distribution of pixel fluxes in the BIMA images are found to be consistent with simulated observations of the expected SZ background and rule out instrumental noise or radio sources as the source of the observed excess power with similar confidence to the detection of excess power. Follow-up optical observations to search for galaxy over-densities anti-correlated with flux in the BIMA images, as might be expected from the SZ effect, proved to be inconclusive.
NASA Astrophysics Data System (ADS)
Krumpe, M.; Miyaji, T.; Brunner, H.; Hanami, H.; Ishigaki, T.; Takagi, T.; Markowitz, A. G.; Goto, T.; Malkan, M. A.; Matsuhara, H.; Pearson, C.; Ueda, Y.; Wada, T.
2015-01-01
We present data products from the 300 ks Chandra survey in the AKARI North Ecliptic Pole Deep Field. This field has a unique set of nine-band infrared photometry covering 2-24 μm from the AKARI Infrared Camera, including mid-infrared (MIR) bands not covered by Spitzer. The survey is one of the deepest ever achieved at ˜15 μm, and is by far the widest among those with similar depths in the MIR. This makes this field unique for the MIR-selection of AGN at z ˜ 1. We design a source detection procedure, which performs joint maximum likelihood PSF (point spread function) fits on all of our 15 mosaicked Chandra pointings covering an area of 0.34 deg2. The procedure has been highly optimized and tested by simulations. We provide a point source catalogue with photometry and Bayesian-based 90 per cent confidence upper limits in the 0.5-7, 0.5-2, 2-7, 2-4, and 4-7 keV bands. The catalogue contains 457 X-ray sources and the spurious fraction is estimated to be ˜1.7 per cent. Sensitivity and 90 per cent confidence upper flux limits maps in all bands are provided as well. We search for optical-MIR counterparts in the central 0.25 deg2, where deep Subaru Suprime-Cam multiband images exist. Among the 377 X-ray sources detected there, ˜80 per cent have optical counterparts and ˜60 per cent also have AKARI MIR counterparts. We cross-match our X-ray sources with MIR-selected AGN from Hanami et al. Around 30 per cent of all AGN that have MIR SEDs purely explainable by AGN activity are strong Compton-thick AGN candidates.
Reflectivity retrieval in a networked radar environment
NASA Astrophysics Data System (ADS)
Lim, Sanghun
Monitoring of precipitation using a high-frequency radar system such as X-band is becoming increasingly popular due to its lower cost compared to its counterpart at S-band. Networks of meteorological radar systems at higher frequencies are being pursued for targeted applications such as coverage over a city or a small basin. However, at higher frequencies, the impact of attenuation due to precipitation needs to be resolved for successful implementation. In this research, new attenuation correction algorithms are introduced to compensate the attenuation impact due to rain medium. In order to design X-band radar systems as well as evaluate algorithm development, it is useful to have simultaneous X-band observation with and without the impact of path attenuation. One way to obtain that data set is through theoretical models. Methodologies for generating realistic range profiles of radar variables at attenuating frequencies such as X-band for rain medium are presented here. Fundamental microphysical properties of precipitation, namely size and shape distribution information, are used to generate realistic profiles of X-band starting with S-band observations. Conditioning the simulation from S-band radar measurements maintains the natural distribution of microphysical parameters associated with rainfall. In this research, data taken by the CSU-CHILL radar and the National Center for Atmospheric Research S-POL radar are used to simulate X-band radar variables. Three procedures to simulate the radar variables at X-band and sample applications are presented. A new attenuation correction algorithm based on profiles of reflectivity, differential reflectivity, and differential propagation phase shift is presented. A solution for specific attenuation retrieval in rain medium is proposed that solves the integral equations for reflectivity and differential reflectivity with cumulative differential propagation phase shift constraint. The conventional rain profiling algorithms that connect reflectivity and specific attenuation can retrieve specific attenuation values along the radar path assuming a constant intercept parameter of the normalized drop size distribution. However, in convective storms, the drop size distribution parameters can have significant variation along the path. In this research, a dual-polarization rain profiling algorithm for horizontal-looking radars incorporating reflectivity as well as differential reflectivity profiles is developed. The dual-polarization rain profiling algorithm has been evaluated with X-band radar observations simulated from drop size distribution derived from high-resolution S-band measurements collected by the CSU-CHILL radar. The analysis shows that the dual-polarization rain profiling algorithm provides significant improvement over the current algorithms. A methodology for reflectivity and attenuation retrieval for rain medium in a networked radar environment is described. Electromagnetic waves backscattered from a common volume in networked radar systems are attenuated differently along the different paths. A solution for the specific attenuation distribution is proposed by solving the integral equation for reflectivity. The set of governing integral equations describing the backscatter and propagation of common resolution volume are solved simultaneously with constraints on total path attenuation. The proposed algorithm is evaluated based on simulated X-band radar observations synthesized from S-band measurements collected by the CSU-CHILL radar. Retrieved reflectivity and specific attenuation using the proposed method show good agreement with simulated reflectivity and specific attenuation.
Ursino, Mauro; Magosso, Elisa; Cuppini, Cristiano
2009-02-01
Synchronization of neural activity in the gamma band is assumed to play a significant role not only in perceptual processing, but also in higher cognitive functions. Here, we propose a neural network of Wilson-Cowan oscillators to simulate recognition of abstract objects, each represented as a collection of four features. Features are ordered in topological maps of oscillators connected via excitatory lateral synapses, to implement a similarity principle. Experience on previous objects is stored in long-range synapses connecting the different topological maps, and trained via timing dependent Hebbian learning (previous knowledge principle). Finally, a downstream decision network detects the presence of a reliable object representation, when all features are oscillating in synchrony. Simulations performed giving various simultaneous objects to the network (from 1 to 4), with some missing and/or modified properties suggest that the network can reconstruct objects, and segment them from the other simultaneously present objects, even in case of deteriorated information, noise, and moderate correlation among the inputs (one common feature). The balance between sensitivity and specificity depends on the strength of the Hebbian learning. Achieving a correct reconstruction in all cases, however, requires ad hoc selection of the oscillation frequency. The model represents an attempt to investigate the interactions among topological maps, autoassociative memory, and gamma-band synchronization, for recognition of abstract objects.
NASA Astrophysics Data System (ADS)
Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen
2016-08-01
The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.
NPP VIIRS and Aqua MODIS RSB Comparison Using Observations from Simultaneous Nadir Overpasses (SNO)
NASA Technical Reports Server (NTRS)
Xiong, X.; Wu, A.
2012-01-01
Suomi NPP (National Polar-orbiting Partnership) satellite (http://npp.gsfc.nasa.gov/viirs.html) began to daily collect global data following its successful launch on October 28, 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key NPP sensor. Similar to the design of the OLS, SeaWiFS and MODIS instruments, VIIRS has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. Immediately after the VIIRS nadir door s opening on November 21, 2011, anomalously large degradation in the SD response was identified in the near-IR wavelength region, which was unexpected as decreases in the SD reflectance usually occur gradually in the blue (0.4 m) wavelength region based on past experience. In this study, we use a well-calibrated Aqua MODIS as reference to track and evaluate VIIRS RSB stability and performance. Reflectances observed by both sensors from simultaneous nadir overpasses (SNO) are used to determine VIIRS to MODIS reflectance ratios for their spectral matching bands. Results of this study provide an immediate post-launch assessment, independent validation of the anomalous degradation observed in SD measurements at near-IR wavelengths and initial analysis of calibration stability and consistency.
Multiple Waveband Temperature Sensor (MWTS)
NASA Technical Reports Server (NTRS)
Bandara, Sumith V.; Gunapala, Sarath; Wilson, Daniel; Stirbl, Robert; Blea, Anthony; Harding, Gilbert
2006-01-01
This slide presentation reviews the development of Multiple Waveband Temperature Sensor (MWTS). The MWTS project will result in a highly stable, monolithically integrated, high resolution infrared detector array sensor that records registered thermal imagery in four infrared wavebands to infer dynamic temperature profiles on a laser-irradiated ground target. An accurate surface temperature measurement of a target in extreme environments in a non-intrusive manner is required. The development challenge is to: determine optimum wavebands (suitable for target temperatures, nature of the targets and environments) to measure accurate target surface temperature independent of the emissivity, integrate simultaneously readable multiband Quantum Well Infrared Photodetectors (QWIPs) in a single monolithic focal plane array (FPA) sensor and to integrate the hardware/software and system calibration for remote temperature measurements. The charge was therefore to develop and demonstrate a multiband infrared imaging camera with the detectors simultaneously sensitive to multiple distinct color bands for front surface temperature measurements Wavelength ( m) measurements. Amongst the requirements are: that the measurement system will not affect target dynamics or response to the laser irradiation and that the simplest criterion for spectral band selection is to choose those practically feasible spectral bands that create the most contrast between the objects or scenes of interest in the expected environmental conditions. There is in the presentation a review of the modeling and simulation of multi-wave infrared temperature measurement and also a review of the detector development and QWIP capacities.
Extending Participation in Standard Setting: An Online Judging Proposal
ERIC Educational Resources Information Center
MacCann, Robert G.; Stanley, Gordon
2010-01-01
In order for standard setting to retain public confidence, it will be argued there are two important requirements. One is that the judges' allocation of students to performance bands would yield results broadly consistent with the expectation of the wider educational community. Secondly, in the absence of any change in educational performance,…
ERIC Educational Resources Information Center
Pek, Jolynn; Chalmers, R. Philip; Kok, Bethany E.; Losardo, Diane
2015-01-01
Structural equation mixture models (SEMMs), when applied as a semiparametric model (SPM), can adequately recover potentially nonlinear latent relationships without their specification. This SPM is useful for exploratory analysis when the form of the latent regression is unknown. The purpose of this article is to help users familiar with structural…
NASA Technical Reports Server (NTRS)
Tai, M. H.; Harwit, M.; Melnick, G.; Dain, F. W.; Stasavage, G.; Briotta, D. A., Jr.; King, L. W.; Kameth, M.
1977-01-01
Infrared observations at different latitudes were studied in order to obtain spectra in the 10 micrometers region to understand differences in chemical composition or physical structure of the optical features. In order to receive such spectra of a rotating planet, simultaneous observations at different latitudes were made. A Hadamard transform spectrometer with 15 entrance slits was used to obtain 15 simultaneous spectra, at a resolution of 0.01 micrometers. The spectral band covered contained 255 spectral elements.
Simultaneous two-dimensional laser-induced-fluorescence measurements of argon ions.
Hansen, A K; Galante, Matthew; McCarren, Dustin; Sears, Stephanie; Scime, E E
2010-10-01
Recent laser upgrades on the Hot Helicon Experiment at West Virginia University have enabled multiplexed simultaneous measurements of the ion velocity distribution function at a single location, expanding our capabilities in laser-induced fluorescence diagnostics. The laser output is split into two beams, each modulated with an optical chopper and injected perpendicular and parallel to the magnetic field. Light from the crossing point of the beams is transported to a narrow-band photomultiplier tube filtered at the fluorescence wavelength and monitored by two lock-in amplifiers, each referenced to one of the two chopper frequencies.
Resolution enhancement using simultaneous couple illumination
NASA Astrophysics Data System (ADS)
Hussain, Anwar; Martínez Fuentes, José Luis
2016-10-01
A super-resolution technique based on structured illumination created by a liquid crystal on silicon spatial light modulator (LCOS-SLM) is presented. Single and simultaneous pairs of tilted beams are generated to illuminate a target object. Resolution enhancement of an optical 4f system is demonstrated by using numerical simulations. The resulting intensity images are recorded at a charged couple device (CCD) and stored in the computer memory for further processing. One dimension enhancement can be performed with only 15 images. Two dimensional complete improvement requires 153 different images. The resolution of the optical system is extended three times compared to the band limited system.
Visual Speech-Training Aid for the Deaf
NASA Technical Reports Server (NTRS)
Miller, Robert J.
1987-01-01
Teaching deaf to speak aided by electronic system provides striking colored, pictorial representation of sound; energy at different frequencies as function of time. Other modalities, such as nasality, intra-oral pressure, and lip-muscle contraction, pictorialized simultaneously. Use of standard components, including personal microcomputer, helps reduce cost below prior voice-training systems. Speech-training system, microphone output separated by filters into narrow frequency bands, changed into digital signals, formatted by computer, and displayed on television screen. Output from other sensors displayed simultaneously or screen split to allow sound produced by student to be compared with that of teacher.
Interpreting Methanol v(sub 2)-Band Emission in Comets Using Empirical Fluorescence g-Factors
NASA Technical Reports Server (NTRS)
DiSanti, Michael; Villanueva, G. L.; Bonev, B. P.; Mumma, M. J.; Paganini, L.; Gibb, E. L.; Magee-Sauer, K.
2011-01-01
For many years we have been developing the ability, through high-resolution spectroscopy targeting ro-vibrational emission in the approximately 3 - 5 micrometer region, to quantify a suite of (approximately 10) parent volatiles in comets using quantum mechanical fluorescence models. Our efforts are ongoing and our latest includes methanol (CH3OH). This is unique among traditionally targeted species in having lacked sufficiently robust models for its symmetric (v(sub 3) band) and asymmetric (v(sub 2) and v(sub 9) bands) C-H3 stretching modes, required to provide accurate predicted intensities for individual spectral lines and hence rotational temperatures and production rates. This has provided the driver for undertaking a detailed empirical study of line intensities, and has led to substantial progress regarding our ability to interpret CH3OH in comets. The present study concentrates on the spectral region from approximately 2970 - 3010 per centimeter (3.367 - 3.322 micrometer), which is dominated by emission in the (v(sub 7) band of C2H6 and the v(sub 2) band of CH3OH, with minor contributions from CH3OH (v(sub 9) band), CH4 (v(sub 3)), and OH prompt emissions (v(sub 1) and v(sub 2)- v(sub 1)). Based on laboratory jet-cooled spectra (at a rotational temperature near 20 K)[1], we incorporated approximately 100 lines of the CH3OH v(sub 2) band, having known frequencies and lower state rotational energies, into our model. Line intensities were determined through comparison with several comets we observed with NIRSPEC at Keck 2, after removal of continuum and additional molecular emissions and correcting for atmospheric extinction. In addition to the above spectral region, NIRSPEC allows simultaneous sampling of the CH3OH v(sub 3) band (centered at 2844 per centimeter, or 3.516 micrometers and several hot bands of H2O in the approximately 2.85 - 2.9 micrometer region, at a nominal spectral resolving power of approximately 25,000 [2]. Empirical g-factors for v(sub 2) lines were based on the production rate as determined from the v(sub 3) Q-branch intensity; application to comets spanning a range of rotational temperatures (approximately 50 - 90 K) will be reported. This work represents an extension of that presented for comet 21P/Giacobini-Zinner at the 2010 Division for Planetary Sciences meeting [3]. Our empirical study also allows for quantifying CH3OH in comets using IR spectrometers for which the v(sub 3) and v(sub 2) bands are not sampled simultaneously, for example CSHELL/NASA IRTF or CRIRES/VLT.
Estimation of Soil Moisture Under Vegetation Cover at Multiple Frequencies
NASA Astrophysics Data System (ADS)
Jadghuber, Thomas; Hajnsek, Irena; Weiß, Thomas; Papathanassiou, Konstantinos P.
2015-04-01
Soil moisture under vegetation cover was estimated by a polarimetric, iterative, generalized, hybrid decomposition and inversion approach at multiple frequencies (X-, C- and L-band). Therefore the algorithm, originally designed for longer wavelength (L-band), was adapted to deal with the short wavelength scattering scenarios of X- and C-band. The Integral Equation Method (IEM) was incorporated together with a pedo-transfer function of Dobson et al. to account for the peculiarities of short wavelength scattering at X- and C-band. DLR's F-SAR system acquired fully polarimetric SAR data in X-, C- and L-band over the Wallerfing test site in Lower Bavaria, Germany in 2014. Simultaneously, soil and vegetation measurements were conducted on different agricultural test fields. The results indicate a spatially continuous inversion of soil moisture in all three frequencies (inversion rates >92%), mainly due to the careful adaption of the vegetation volume removal including a physical constraining of the decomposition algorithm. However, for X- and C-band the inversion results reveal moisture pattern inconsistencies and in some cases an incorrectly high inversion of soil moisture at X-band. The validation with in situ measurements states a stable performance of 2.1- 7.6vol.% at L-band for the entire growing period. At C- and X-band a reliable performance of 3.7-13.4vol.% in RMSE can only be achieved after distinct filtering (X- band) leading to a loss of almost 60% in spatial inversion rate. Hence, a robust inversion for soil moisture estimation under vegetation cover can only be conducted at L-band due to a constant availability of the soil signal in contrast to higher frequencies (X- and C-band).
Design and experimental verification of a dual-band metamaterial filter
NASA Astrophysics Data System (ADS)
Zhu, Hong-Yang; Yao, Ai-Qin; Zhong, Min
2016-10-01
In this paper, we present the design, simulation, and experimental verification of a dual-band free-standing metamaterial filter operating in a frequency range of 1 THz-30 THz. The proposed structure consists of periodically arranged composite air holes, and exhibits two broad and flat transmission bands. To clarify the effects of the structural parameters on both resonant transmission bands, three sets of experiments are performed. The first resonant transmission band shows a shift towards higher frequency when the side width w 1 of the main air hole is increased. In contrast, the second resonant transmission band displays a shift towards lower frequency when the side width w 2 of the sub-holes is increased, while the first resonant transmission band is unchanged. The measured results indicate that these resonant bands can be modulated individually by simply optimizing the relevant structural parameters (w 1 or w 2) for the required band. In addition, these resonant bands merge into a single resonant band with a bandwidth of 7.7 THz when w 1 and w 2 are optimized simultaneously. The structure proposed in this paper adopts different resonant mechanisms for transmission at different frequencies and thus offers a method to achieve a dual-band and low-loss filter. Project supported by the Doctorate Scientific Research Foundation of Hezhou University, China (Grant No. HZUBS201503), the Promotion of the Basic Ability of Young and Middle-aged Teachers in Universities Project of Guangxi Zhuang Autonomous Region, China (Grant No. KY2016YB453), the Guangxi Colleges and Universities Key Laboratory Symbolic Computation, China, Engineering Data Processing and Mathematical Support Autonomous Discipline Project of Hezhou University, China (Grant No. 2016HZXYSX01).
2013-01-01
Background There is an accumulating body of evidence indicating that neuronal functional specificity to basic sensory stimulation is mutable and subject to experience. Although fMRI experiments have investigated changes in brain activity after relative to before perceptual learning, brain activity during perceptual learning has not been explored. This work investigated brain activity related to auditory frequency discrimination learning using a variational Bayesian approach for source localization, during simultaneous EEG and fMRI recording. We investigated whether the practice effects are determined solely by activity in stimulus-driven mechanisms or whether high-level attentional mechanisms, which are linked to the perceptual task, control the learning process. Results The results of fMRI analyses revealed significant attention and learning related activity in left and right superior temporal gyrus STG as well as the left inferior frontal gyrus IFG. Current source localization of simultaneously recorded EEG data was estimated using a variational Bayesian method. Analysis of current localized to the left inferior frontal gyrus and the right superior temporal gyrus revealed gamma band activity correlated with behavioral performance. Conclusions Rapid improvement in task performance is accompanied by plastic changes in the sensory cortex as well as superior areas gated by selective attention. Together the fMRI and EEG results suggest that gamma band activity in the right STG and left IFG plays an important role during perceptual learning. PMID:23316957
Widely bandwidth-tunable silicon filter with an unlimited free-spectral range.
St-Yves, Jonathan; Bahrami, Hadi; Jean, Philippe; LaRochelle, Sophie; Shi, Wei
2015-12-01
Next-generation high-capacity optical networks require flexible allocation of spectrum resources, for which low-cost optical filters with an ultra-wide bandwidth tunability beyond 100 GHz are desired. We demonstrate an integrated band-pass filter with the bandwidth continuously tuned across 670 GHz (117-788 GHz) which, to the best of our knowledge, is the widest tuning span ever demonstrated on a silicon chip. The filter also features simultaneous wavelength tuning and an unlimited free spectral range. We measured an out-of-band contrast of up to 55 dB, low in-band ripples of less than 0.3 dB, and in-band group delay variation of less than 8 ps. This result was achieved using cascaded Bragg-grating-assisted contra-directional couplers and micro-heaters on the 220 nm silicon-on-insulator platform with a very compact footprint of less than 7000 μm2. Another design with the bandwidth continuously tunable from 50 GHz to 1 THz is also presented.
Spin-polarized surface resonances accompanying topological surface state formation
Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; ...
2016-10-14
Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi 2Se 3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states canmore » emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. As a result, this work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure.« less
Slant path L- and S-Band tree shadowing measurements
NASA Technical Reports Server (NTRS)
Vogel, Wolfhard J.; Torrence, Geoffrey W.
1994-01-01
This contribution presents selected results from simultaneous L- and S-Band slant-path fade measurements through a pecan, a cottonwood, and a pine tree employing a tower-mounted transmitter and dual-frequency receiver. A single, circularly-polarized antenna was used at each end of the link. The objective was to provide information for personal communications satellite design on the correlation of tree shadowing between frequencies near 1620 and 2500 MHz. Fades were measured along 10 m lateral distance with 5 cm spacing. Instantaneous fade differences between L- and S-Band exhibited normal distribution with means usually near 0 dB and standard deviations from 5.2 to 7.5 dB. The cottonwood tree was an exception, with 5.4 dB higher average fading at S- than at L-Band. The spatial autocorrelation reduced to near zero with lags of about 10 lambda. The fade slope in dB/MHz is normally distributed with zero mean and standard deviation increasing with fade level.
Slant path L- and S-Band tree shadowing measurements
NASA Astrophysics Data System (ADS)
Vogel, Wolfhard J.; Torrence, Geoffrey W.
1994-08-01
This contribution presents selected results from simultaneous L- and S-Band slant-path fade measurements through a pecan, a cottonwood, and a pine tree employing a tower-mounted transmitter and dual-frequency receiver. A single, circularly-polarized antenna was used at each end of the link. The objective was to provide information for personal communications satellite design on the correlation of tree shadowing between frequencies near 1620 and 2500 MHz. Fades were measured along 10 m lateral distance with 5 cm spacing. Instantaneous fade differences between L- and S-Band exhibited normal distribution with means usually near 0 dB and standard deviations from 5.2 to 7.5 dB. The cottonwood tree was an exception, with 5.4 dB higher average fading at S- than at L-Band. The spatial autocorrelation reduced to near zero with lags of about 10 lambda. The fade slope in dB/MHz is normally distributed with zero mean and standard deviation increasing with fade level.
Investigation of kinetics and morphology development for polyurethane-urea extended by DMTDA
NASA Astrophysics Data System (ADS)
Li, Zai-feng; Li, Jin-yan; Sun, Jian; Sun, Bao-qun; Wang, Jin-jing; Shen, Qiang
2008-06-01
The relationship between the reactions kinetics and morphology development during the polyurethaneurea (PUU) curing process has been investigated simultaneously by in situ Fourier transform infrared spectroscopy (FTIR). The data of the FTIR spectra showed that with the increase of conversion, the absorbance of NH bands increases and its band sites shifts to lower wavenumbers; the absorbance of free urethane carbonyl kept nearly constant at low conversion, and then decreased much because of the interaction of the formed urea links, and then changed little at high conversion owing to the diffuse control. The band sites of hydrogen bonded urea carbonyl similarly shifted to lower wavenumbers and the absorbance of the hydrogen bonded urea carbonyl, associated with the phase separation of hard segments, became stronger with buildup of hydrogen bond between urea links. The carbonyl bands available during curing process were further assigned. Both interactions, such as hydrogenised effect and phase separation, played a major role in the matrix formation of the PUU polymer.
NASA Astrophysics Data System (ADS)
Molaei Imen Abadi, Rouzbeh; Sedigh Ziabari, Seyed Ali
2016-11-01
In this paper, a first qualitative study on the performance characteristics of dual-work function gate junctionless TFET (DWG-JLTFET) on the basis of energy band profile modulation is investigated. A dual-work function gate technique is used in a JLTFET in order to create a downward band bending on the source side similar to PNPN structure. Compared with the single-work function gate junctionless TFET (SWG-JLTFET), the numerical simulation results demonstrated that the DWG-JLTFET simultaneously optimizes the ON-state current, the OFF-state leakage current, and the threshold voltage and also improves average subthreshold slope. It is illustrated that if appropriate work functions are selected for the gate materials on the source side and the drain side, the JLTFET exhibits a considerably improved performance. Furthermore, the optimization design of the tunnel gate length ( L Tun) for the proposed DWG-JLTFET is studied. All the simulations are done in Silvaco TCAD for a channel length of 20 nm using the nonlocal band-to-band tunneling (BTBT) model.
Standard Observing Bands: Is Now the Time to Replace S/X with X/Ka?
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Lanyi, G. E.; Naudet, C. J.
2004-01-01
In this paper we will argue that the VLBI community should be developing a road map to transition from S/X to simultaneous X and Ka-band (32 GHz) observations. There are both negative and positive reasons for planning such a transition. On the negative side, we will outline concerns that S-band observations may be headed toward obsolescence. On the positive side, we will refer to evidence that X/Ka has potential for providing a more stable reference frame than S/X. We will propose timetables for a transition to X/Ka observing starting from the current status of X/Ka and plans that are now taking shape. First X/Ka fringes were obtained in 2001 with the Deep Space Network. Future plans will be discussed including a proposed X/Ka-band upgrade to the VLBA. Lastly, we will consider the need for a period of overlap between S/X and X/Ka so that the long and rich history of astrometric and geodetic VLBI is not compromised.
Correlation of 1.65 and 2.15 micron airglow emissions
NASA Technical Reports Server (NTRS)
Kieffaber, L. M.
1974-01-01
The intense infrared airglow is due primarily to vibration-rotation bands of the OH molecule. This airglow has been observed with a 24-in. scanning photometer at two wavelengths. Narrow-band interference filters are used to limit observations to the (9,7) band at 2.15 microns and the (4,2) and (5,3) bands at 1.65 microns. If OH emission results from creation of the excited OH molecule in the v = 9 vibrational state and subsequent cascading through lower vibrational levels, the 1.65 and 2.15 micron radiation will be well correlated in space and time. However, if several mechanisms are involved in producing OH in a variety of initial excitation levels, there is no reason to expect good correlation. Sky maps obtained simultaneously at 1.65 and 2.15 microns show strongly correlated intensity fluctuations. Quantitative analysis of these maps and other investigations of smaller areas of the sky yield correlation coefficients typically in excess of 0.8.
NASA Astrophysics Data System (ADS)
Rezaei, G.; Vaseghi, B.; Doostimotlagh, N. A.
2012-03-01
Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/AlxGa1-x As spherical quantum dot are theoretically investigated, using the Luttinger—Kohn effective mass equation. So, electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach, respectively. Finally, effects of an impurity, band edge non-parabolicity, incident light intensity and the dot size on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated. Our results indicate that, the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered. Moreover, incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.
Reorganization of the brain and heart rhythm during autogenic meditation
Kim, Dae-Keun; Rhee, Jyoo-Hi; Kang, Seung Wan
2014-01-01
The underlying changes in heart coherence that are associated with reported EEG changes in response to meditation have been explored. We measured EEG and heart rate variability (HRV) before and during autogenic meditation. Fourteen subjects participated in the study. Heart coherence scores were significantly increased during meditation compared to the baseline. We found near significant decrease in high beta absolute power, increase in alpha relative power and significant increases in lower (alpha) and higher (above beta) band coherence during 3~min epochs of heart coherent meditation compared to 3~min epochs of heart non-coherence at baseline. The coherence and relative power increase in alpha band and absolute power decrease in high beta band could reflect relaxation state during the heart coherent meditation. The coherence increase in the higher (above beta) band could reflect cortico-cortical local integration and thereby affect cognitive reorganization, simultaneously with relaxation. Further research is still needed for a confirmation of heart coherence as a simple window for the meditative state. PMID:24454283
Reorganization of the brain and heart rhythm during autogenic meditation.
Kim, Dae-Keun; Rhee, Jyoo-Hi; Kang, Seung Wan
2014-01-13
The underlying changes in heart coherence that are associated with reported EEG changes in response to meditation have been explored. We measured EEG and heart rate variability (HRV) before and during autogenic meditation. Fourteen subjects participated in the study. Heart coherence scores were significantly increased during meditation compared to the baseline. We found near significant decrease in high beta absolute power, increase in alpha relative power and significant increases in lower (alpha) and higher (above beta) band coherence during 3~min epochs of heart coherent meditation compared to 3~min epochs of heart non-coherence at baseline. The coherence and relative power increase in alpha band and absolute power decrease in high beta band could reflect relaxation state during the heart coherent meditation. The coherence increase in the higher (above beta) band could reflect cortico-cortical local integration and thereby affect cognitive reorganization, simultaneously with relaxation. Further research is still needed for a confirmation of heart coherence as a simple window for the meditative state.
The mass of the black hole in 1A 0620-00, revisiting the ellipsoidal light curve modelling
NASA Astrophysics Data System (ADS)
van Grunsven, Theo F. J.; Jonker, Peter G.; Verbunt, Frank W. M.; Robinson, Edward L.
2017-12-01
The mass distribution of stellar-mass black holes can provide important clues to supernova modelling, but observationally it is still ill constrained. Therefore, it is of importance to make black hole mass measurements as accurate as possible. The X-ray transient 1A 0620-00 is well studied, with a published black hole mass of 6.61 ± 0.25 M⊙, based on an orbital inclination i of 51.0° ± 0.9°. This was obtained by Cantrell et al. (2010) as an average of independent fits to V-, I- and H-band light curves. In this work, we perform an independent check on the value of i by re-analysing existing YALO/SMARTS V-, I- and H-band photometry, using different modelling software and fitting strategy. Performing a fit to the three light curves simultaneously, we obtain a value for i of 54.1° ± 1.1°, resulting in a black hole mass of 5.86 ± 0.24 M⊙. Applying the same model to the light curves individually, we obtain 58.2° ± 1.9°, 53.6° ± 1.6° and 50.5° ± 2.2° for V-, I- and H-band, respectively, where the differences in best-fitting i are caused by the contribution of the residual accretion disc light in the three different bands. We conclude that the mass determination of this black hole may still be subject to systematic effects exceeding the statistical uncertainty. Obtaining more accurate masses would be greatly helped by continuous phase-resolved spectroscopic observations simultaneous with photometry.
SETI with Help from Five Million Volunteers: The Berkeley SETI Efforts
NASA Astrophysics Data System (ADS)
Korpela, E. J.; Anderson, D. P.; Bankay, R.; Cobb, J.; Foster, G.; Howard, A.; Lebofsky, M.; Marcy, G.; Parsons, A.; Siemion, A.; von Korff, J.; Werthimer, D.; Douglas, K. A.
2009-12-01
We summarize radio and optical SETI programs based at the University of California, Berkeley. The ongoing SERENDIP V sky survey searches for radio signals at the 300 meter Arecibo Observatory. The currently installed configuration supports 128 million channels over a 200 MHz bandwidth with 1.6 Hz spectral resolution. Frequency stepping allows the spectrometer to cover the full 300 MHz band of the Arecibo L-band receivers. The final configuration will allow data from all 14 receivers in the Arecibo L-band Focal Array to be monitored simultaneously with over 1.8 billion simultaneous channels. SETI@home uses desktop computers volunteers to analyze over 100 TB of at taken at Arecibo. Over 5 million volunteers have run SETI@home during its 10 year history. The SETI@home sky survey is 10 times more sensitive than SERENDIP V but it covers only a 2.5 MHz band, centered on 1420 MHz. SETI@home searches a much wider parameter space, including 14 octaves of signal bandwidth and 15 octaves of pulse period with Doppler drift corrections from -100 Hz/s to +100 Hz/s. The ASTROPULSE project is the first SETI search for μs time scale pulses in the radio spectrum. Because short pulses are dispersed by the interstellar medium, and amount of dispersion is unknown, ASTROPULSE must search through 30,000 possible dispersions. Substantial computing power is required to conduct this search, so the project will use volunteers and their personal computers to carry out the computation (using distributed computing similar to SETI@home). The SEVENDIP optical pulse search looks for ns time scale pulses at visible wavelengths. It utilizes an automated 30 inch telescope, three ultra fast photo multiplier tubes and a coincidence detector. The target list includes F,G,K and M stars, globular cluster and galaxies.
Tantawiwat, Suwalee; Tansuphasiri, Unchalee; Wongwit, Waranya; Wongchotigul, Varee; Kitayaporn, Dwip
2005-01-01
Multiplex PCR amplification of lacZ, uidA and plc genes was developed for the simultaneous detection of total coliform bacteria for Escherichia coli and Clostridium perfringens, in drinking water. Detection by agarose gel electrophoresis yielded a band of 876 bp for the lacZ gene of all coliform bacteria; a band of 147 bp for the uidA gene and a band of 876 bp for the lacZ gene of all strains of E. coli; a band of 280 bp for the p/c gene for all strains of C. perfringens; and a negative result for all three genes when tested with other bacteria. The detection limit was 100 pg for E. coli and C. perfringens, and 1 ng for coliform bacteria when measured with purified DNA. This assay was applied to the detection of these bacteria in spiked water samples. Spiked water samples with 0-1,000 CFU/ml of coliform bacteria and/or E. coli and/or C. perfringens were detected by this multiplex PCR after a pre-enrichment step to increase the sensitivity and to ensure that the detection was based on the presence of cultivable bacteria. The result of bacterial detection from the multiplex PCR was comparable with that of a standard plate count on selective medium (p=0.62). When using standard plate counts as a gold standard, the sensitivity for this test was 99.1% (95% CI 95.33, 99.98) and the specificity was 90.9 % (95% CI 75.67, 98.08). Multiplex PCR amplification with a pre-enrichment step was shown to be an effective, sensitive and rapid method for the simultaneous detection of these three microbiological parameters in drinking water.
Risk of Band Keratopathy in Patients with End-Stage Renal Disease
Weng, Shih-Feng; Jan, Ren-Long; Chang, Chun; Wang, Jhi-Joung; Su, Shih-Bin; Huang, Chien-Cheng; Tseng, Sung-Huei; Chang, Yuh-Shin
2016-01-01
This study is a retrospective, nationwide, matched cohort study to investigate the risk of band keratopathy following end-stage renal disease (ESRD). The study cohort included 94,039 ESRD on-dialysis patients identified by the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM), code 585 and registered between January 2000 to December 2009 at the Taiwan National Health Insurance Research Database. An age- and sex-matched control group comprised 94,039 patients selected from the Taiwan Longitudinal Health Insurance Database 2000. Information for each patient was collected from the index date until December 2011. In total, 230 ESRD patients and 26 controls had band keratopathy (P < 0.0001) during the follow-up period, indicating a significantly elevated risk of band keratopathy in the ESRD patients compared with controls (incidence rate ratio = 12.21, 95% confidence interval [CI] = 8.14–18.32). After adjustment for potential confounders including sarcoidosis, hyperparathyroidism, iridocyclitis, and phthisis bulbi, ESRD patients were 11.56 times more likely to develop band keratopathy in the full cohort (adjusted HR = 11.56, 95% CI = 7.70–17.35). In conclusion, ESRD increases the risk of band keratopathy. Close interdisciplinary collaboration between nephrologists and ophthalmologists is important to deal with band keratopathy following ESRD and prevent visual acuity impairments. PMID:27346848
Accounting for connectivity and spatial correlation in the optimal placement of wildlife habitat
John Hof; Curtis H. Flather
1996-01-01
This paper investigates optimization approaches to simultaneously modelling habitat fragmentation and spatial correlation between patch populations. The problem is formulated with habitat connectivity affecting population means and variances, with spatial correlations accounted for in covariance calculations. Population with a pre-specifled confidence level is then...
NASA Astrophysics Data System (ADS)
Romero, Gabriela; Rojas, Elena; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio Enrique
2011-06-01
Confocal Raman microscopy as a label-free technique was applied to study the uptake and internalization of poly(lactide- co-glycolide) (PLGA) nanoparticles (NPs) and carbon nanotubes (CNTs) into hepatocarcinoma human HepG2 cells. Spontaneous confocal Raman spectra was recorded from the cells exposed to oxidized CNTs and to PLGA NPs. The Raman spectra showed bands arising from the cellular environment: lipids, proteins, nucleic acids, as well as bands characteristic for either PLGA NPs or CNTs. The simultaneous generation of Raman bands from the cell and nanomaterials from the same spot proves internalization, and also indicates the cellular region, where the nanomaterial is located. For PLGA NPs, it was found that they preferentially co-localized with lipid bodies, while the oxidized CNTs are located in the cytoplasm.
Tunable single-to-dual channel wavelength conversion in an ultra-wideband SC-PPLN.
Ahlawat, Meenu; Bostani, Ameneh; Tehranchi, Amirhossein; Kashyap, Raman
2013-11-18
We experimentally demonstrate tunable dual channel broadcasting of a signal over the C-band for wavelength division multiplexed (WDM) optical networks. This is based on cascaded χ(2) nonlinear mixing processes in a specially engineered, 20-mm-long step-chirped periodically poled lithium niobate with a broad 28-nm second harmonic (SH) bandwidth in the 1.55-μm spectral range. A 10-GHz picosecond mode-locked laser was used as a signal along with a CW pump to generate two pulsed idlers, which are simultaneously tuned across the C-band by detuning of the pump wavelength within the broad SH bandwidth. Variable-input, variable-output scheme of tuned idlers is successfully achieved by tuning the signal wavelength. Pump or signal wavelength tuning of ~10 nm results in the idlers spreading across 30 nm in the C-band.
Contributions of oxygen vacancies and titanium interstitials to band-gap states of reduced titania
NASA Astrophysics Data System (ADS)
Li, Jingfeng; Lazzari, Rémi; Chenot, Stéphane; Jupille, Jacques
2018-01-01
The spectroscopic fingerprints of the point defects of titanium dioxide remain highly controversial. Seemingly indisputable experiments lead to conflicting conclusions in which oxygen vacancies and titanium interstitials are alternately referred to as the primary origin of the Ti 3 d band-gap states. We report on experiments performed by electron energy loss spectroscopy whose key is the direct annealing of only the very surface of rutile TiO2(110 ) crystals and the simultaneous measurement of its temperature via the Bose-Einstein loss/gain ratio. By surface preparations involving reactions with oxygen and water vapor, in particular, under electron irradiation, vacancy- and interstitial-related band-gap states are singled out. Off-specular measurements reveal that both types of defects contribute to a unique charge distribution that peaks in subsurface layers with a common dispersive behavior.
Five different types of spontaneous emission simultaneously observed in Tm 2+ doped CsCaBr 3
NASA Astrophysics Data System (ADS)
Grimm, Judith; Güdel, Hans U.
2005-03-01
CsCaBr 3 doped with 1% Tm 2+ exhibits a rich emission spectrum at 10 K. Five emission bands are identified and characterised: a sharp and long-lived 4f-4f emission at 8796 cm -1. Broad 5d-4f emission bands from the lowest energy (5d) 1(4f) 12 configurations to the groundstate at 13 640 cm -1 ('spin-allowed') and 12 240 cm -1 ('spin-forbidden'). Two broad emission bands from a higher-energy f-d state, one centered at 19 115 cm -1 to the 2F 7/2 groundstate and the other one at 10 400 cm -1 to the first excited 2F 5/2 state. The transitions are identified and the competition between radiative and nonradiative processes characterised from lifetime and temperature dependent measurements.
Bynum, Leo; Gramann, Mark R.; Bacon, Larry D.
2015-06-23
A radio communications device has a modulator that modulates each of a number of different carrier signals with the same message. A combiner combines the modulated carrier signals into a single combined output signal. A radio transmitter receives the single combined output signal and in response simultaneously transmits the modulated carrier signals over the air. Other embodiments are also described.
Simultaneous LOFAR and AMI-LA observations of MAXI J1820+070
NASA Astrophysics Data System (ADS)
Broderick, Jess; Bright, Joe; Russell, Thomas; Rowlinson, Antonia; Fender, Rob; Done, Chris
2018-05-01
We report on the detection of MAXI J1820+070 (e.g. ATel #11399, #11418, #11420) with the Low-Frequency Array (LOFAR). Observations in the high band (115-189 MHz) were carried out from 2018 April 27 02:32:33.0-04:32:33.0 UTC (MJD 58235.106-58235.189).
Sahoo, Madhusmita; Syal, Pratima; Hable, Asawaree A; Raut, Rahul P; Choudhari, Vishnu P; Kuchekar, Bhanudas S
2011-07-01
To develop a simple, precise, rapid and accurate HPTLC method for the simultaneous estimation of Lornoxicam (LOR) and Thiocolchicoside (THIO) in bulk and pharmaceutical dosage forms. The separation of the active compounds from pharmaceutical dosage form was carried out using methanol:chloroform:water (9.6:0.2:0.2 v/v/v) as the mobile phase and no immiscibility issues were found. The densitometric scanning was carried out at 377 nm. The method was validated for linearity, accuracy, precision, LOD (Limit of Detection), LOQ (Limit of Quantification), robustness and specificity. The Rf values (±SD) were found to be 0.84 ± 0.05 for LOR and 0.58 ± 0.05 for THIO. Linearity was obtained in the range of 60-360 ng/band for LOR and 30-180 ng/band for THIO with correlation coefficients r(2) = 0.998 and 0.999, respectively. The percentage recovery for both the analytes was in the range of 98.7-101.2 %. The proposed method was optimized and validated as per the ICH guidelines.
NASA Astrophysics Data System (ADS)
Fissiaux, L.; Földes, T.; Tchana, F. Kwabia; Daumont, L.; Lepère, M.; Vander Auwera, J.
2011-06-01
Formaldehyde (H_2CO) is an important intermediate compound in the degradation of the volatile organic compounds (VOCs), including methane, in the terrestrial troposphere. Its observation using optical remote sensing in the infrared range relies on the 3.6 and 5.7 μm absorption bands. Band and individual line intensities have been reported in both ranges. With the present work, we aim to also derive infrared line intensities for formaldehyde, however relying on pure rotation line intensities and the known electric dipole moment to determine the particle density. Indeed, because formaldehyde polymerizes or degrades easily, the gas phase may contain polymerization or degradation products. Spectra of H_2CO diluted in 10 hPa of N_2 were therefore simultaneously recorded in the 20-60 Cm-1 and 3.6 μm ranges, respectively using a Bruker IFS125HR Fourier transform spectrometer and a tunable diode laser. see A. Perrin, D. Jacquemart, F. Kwabia Tchana, N. Lacome, J. Quant. Spectrosc. Radiat. Transfer 110 (2009) 700-716, and references therein
NASA Astrophysics Data System (ADS)
Pavel, Akeed A.; Khan, Mehjabeen A.; Kirawanich, Phumin; Islam, N. E.
2008-10-01
A methodology to simulate memory structures with metal nanocrystal islands embedded as floating gate in a high-κ dielectric material for simultaneous enhancement of programming speed and retention time is presented. The computational concept is based on a model for charge transport in nano-scaled structures presented earlier, where quantum mechanical tunneling is defined through the wave impedance that is analogous to the transmission line theory. The effects of substrate-tunnel dielectric conduction band offset and metal work function on the tunneling current that determines the programming speed and retention time is demonstrated. Simulation results confirm that a high-κ dielectric material can increase programming current due to its lower conduction band offset with the substrate and also can be effectively integrated with suitable embedded metal nanocrystals having high work function for efficient data retention. A nano-memory cell designed with silver (Ag) nanocrystals embedded in Al 2O 3 has been compared with similar structure consisting of Si nanocrystals in SiO 2 to validate the concept.
Wang, H; Gu, Q; Wei, J; Cao, Z; Liu, Q
2015-05-01
A novel recommendation-based drug repositioning strategy is presented to simultaneously determine novel drug indications and side effects in one integrated framework. This strategy provides a complementary method to medical genetics-based drug repositioning, which reduces the occurrence of false positives in medical genetics-based drug repositioning, resulting in a ranked list of new candidate indications and/or side effects with different confidence levels. Several new drug indications and side effects are reported with high prediction confidences. © 2015 American Society for Clinical Pharmacology and Therapeutics.
NASA Astrophysics Data System (ADS)
Croll, Bryce; Albert, Loic; Jayawardhana, Ray; Miller-Ricci Kempton, Eliza; Fortney, Jonathan J.; Murray, Norman; Neilson, Hilding
2011-08-01
We use the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope to observe four transits of the super-Earth planet GJ 1214b in the near-infrared. For each transit, we observe GJ 1214 in two bands nearly simultaneously by rapidly switching the WIRCam filter wheel back and forth for the duration of the observations. By combining all our J-band (~1.25 μm) observations we find a transit depth, analogous to the planet-to-star radius ratio squared, in this band of (RPJ /R *)2 = (1.338 ± 0.013)%—a value consistent with the optical transit depth reported by Charbonneau and collaborators. However, our best-fit combined K s-band (~2.15 μm) transit depth is deeper: (RPKs /R *)2 = (1.438 ± 0.019)%. Formally, our K s-band transits are deeper than the J-band transits observed simultaneously by a factor of (RPKs /RPJ )2 = 1.072 ± 0.018—a 4σ discrepancy. The most straightforward explanation for our deeper K s-band transit depth is a spectral absorption feature from the limb of the atmosphere of the planet; for the spectral absorption feature to be this prominent, the atmosphere of GJ 1214b must have a large-scale height and a low mean molecular weight. That is, its atmosphere would have to be hydrogen/helium dominated and this planet would be better described as a mini-Neptune. However, recently published observations from 0.78 to 1.0 μm, by Bean and collaborators, show a lack of spectral features and transit depths consistent with those obtained by Charbonneau and collaborators. The most likely atmospheric composition for GJ 1214b that arises from combining all these observations is less clear; if the atmosphere of GJ 1214b is hydrogen/helium dominated, then it must have either a haze layer that is obscuring transit-depth differences at shorter wavelengths or significantly different spectral features from what current models predict. Our observations disfavor a water-world composition, but such a composition will remain a possibility for GJ 1214b until observations reconfirm our deeper K s-band transit depth or detect features at other wavelengths. Based on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, France, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
NASA Astrophysics Data System (ADS)
Chen, Xuexia; Wu, Aisheng; Xiong, Xiaoxiong J.; Chen, Na
2017-09-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key scientific instrument that was launched into Earth orbit by NASA in 1999 on board the Terra (EOS AM) satellite and in 2002 on board the Aqua (EOS PM) satellite. Terra and Aqua MODIS collect the entire Earth's images every 1 to 2 days in 36 spectral bands. MODIS band 1 (0.620- 0.670 μm) and band 2 (0.841-0.876 μm) have nadir spatial resolution of 250 m and their measurements are crucial to derive key land surface products. This study evaluates the performance of the Collection 6 (C6, and C6.1) L1B of both Terra and Aqua MODIS bands 1 and 2 using Simultaneous Nadir Overpass (SNO) data to compare with AVHRR/3 sensors. We examine the relative stability between Terra and Aqua MODIS in reference to NOAA N15 and N19 the Advanced Very High Resolution Radiometer (AVHRR/3). The comparisons for MODIS to AVHRR/3 are over a fifteenyear period from 2002 to 2017. Results from this study provide a quantitative assessment of Terra and Aqua MODIS band 1 and band 2 calibration stability and the relative differences through the NOAA N15 and N19 AVHRR/3 sensors.
NASA Astrophysics Data System (ADS)
Fisher, Mark E.; la Grone, Marcus; Sikes, John
2003-09-01
A sensor (known as Fido) that utilizes amplification of fluorescence quenching as the transduction mechanism for ultra-trace detection of nitroaromatic compounds associated with landmines has been described previously. Previous sensor prototypes utilized a single band of amplifying polymer deployed inside a capillary waveguide to form the sensing element of the detector. A new prototype has been developed that incorporates multiple, discrete bands of different amplifying polymers deployed in a linear array inside the capillary. Vapor-phase samples are introduced into the sensor as a sharp pulse via a gated inlet. As the vapor pulse is swept through the capillary by flow of a carrier gas, the pulse of analyte encounters the bands of polymer sequentially. If the sample contains nitroaromatic explosives, the bands of polymer will respond with a reduction in emission intensity proportional to the mass of analyte in the sample. Because the polymer bands are deployed serially, the analyte pulse does not reach the bands of polymer simultaneously. Hence, a temporal response pattern will be observed as the analyte pulse traverses the length of the capillary. In addition, the intensity of response for each band will vary, producing a ratiometric response. The temporal and ratiometric responses are characteristic of a given analyte, enhancing discrimination of target analytes from potential interferents. This should translate into a reduction in sensor false alarm rates.
NASA Astrophysics Data System (ADS)
An, Youngseo; Mahata, Chandreswar; Lee, Changmin; Choi, Sungho; Byun, Young-Chul; Kang, Yu-Seon; Lee, Taeyoon; Kim, Jiyoung; Cho, Mann-Ho; Kim, Hyoungsub
2015-10-01
Amorphous Ti1-x Al x O y films in the Ti-oxide-rich regime (x < 0.5) were deposited on p-type GaAs via atomic layer deposition with titanium isopropoxide, trimethylaluminum, and H2O precursor chemistry. The electrical properties and energy band alignments were examined for the resulting materials with their underlying substrates, and significant frequency dispersion was observed in the accumulation region of the Ti-oxide-rich Ti1-x Al x O y films. Although a further reduction in the frequency dispersion and leakage current (under gate electron injection) could be somewhat achieved through a greater addition of Al-oxide in the Ti1-x Al x O y film, the simultaneous decrease in the dielectric constant proved problematic in finding an optimal composition for application as a gate dielectric on GaAs. The spectroscopic band alignment measurements of the Ti-oxide-rich Ti1-x Al x O y films indicated that the band gaps had a rather slow increase with the addition of Al-oxide, which was primarily compensated for by an increase in the valance band offset, while a nearly-constant conduction band offset with a negative electron barrier height was maintained.
NASA Astrophysics Data System (ADS)
Zhang, Wuzhong; Xu, Maji; Zhang, Mi; Cheng, Hailing; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Chen, Changqing; He, Yunbin
2018-03-01
In this work, c-axis preferentially oriented BexZn1-xO1-ySy (BeZnOS) quaternary alloy films were prepared successfully on c-plane sapphire by pulsed laser deposition for the first time. By appropriate adjustment of O2 pressure during the deposition, the grown films exhibited a single-phase hexagonal structure and good crystalline quality. The solid solubility of S in BexZn1-xO1-ySy quaternary alloy was significantly expanded (y ≤ 0.17 or y ≥ 0.35) as a result of simultaneous substitution of cation Zn2+ by smaller Be2+ and anion O2- by bigger S2-. Besides, due to the introduction of BeO with a wide band gap, BeZnOS quaternary films exhibited wider band gaps than the ternary ZnOS films with similar S contents. As the O2 pressure increased from 0.05 Pa to 6 Pa, the band gap of BeZnOS displayed an interesting bowing behavior. The variation range of the band gap was between 3.55 eV and 3.10 eV. The BeZnOS films with a wide band gap show potential applications in fabricating optoelectronic devices such as UV-detectors.
A Q-band two-beam cryogenic receiver for the Tianma Radio Telescope
NASA Astrophysics Data System (ADS)
Zhong, Wei-Ye; Dong, Jian; Gou, Wei; Yu, Lin-Feng; Wang, Jin-Qing; Xia, Bo; Jiang, Wu; Liu, Cong; Zhang, Hui; Shi, Jun; Yin, Xiao-Xing; Shi, Sheng-Cai; Liu, Qing-Hui; Shen, Zhi-Qiang
2018-04-01
A Q-band two-beam cryogenic receiver for the Tianma Radio Telescope (TMRT) has been developed, and it uses the independently-developed key microwave and millimeter-wave components operating from 35 to 50GHz with a fractional bandwidth of 35%. The Q-band receiver consists of three parts: optics, cold unit assembly and warm unit assembly, and it can receive simultaneously the left-handed and right-handed circularly polarized waves. The cold unit assembly of each beam is composed of a feed horn, a noise injection coupler, a differential phase shifter, an orthomode transducer and two low-noise amplifiers, and it works at a temperature range near 20 K to greatly improve the detection sensitivity of the receiving system. The warm unit assembly includes four radio-frequency amplifiers, four radio-frequency high-pass filters, four waveguide biased mixers, four 4–12 GHz intermediate-frequency amplifiers and one 31–38 GHz frequency synthesizer. The measured Q-band four-channel receiver noise temperatures are roughly 30–40 K. In addition, the single-dish spectral line and international very long baseline interferometry (VLBI) observations between the TMRT and East Asia VLBI Network at the Q-band have been successfully carried out, demonstrating the advantages of the TMRT equipped with the state-of-the-art Q-band receiver.
ERIC Educational Resources Information Center
Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.
2006-01-01
Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Y. T.; Uemura, M.; Kawabata, K. S.
2016-05-20
We present simultaneous optical and near-infrared (NIR) polarimetric results for the black hole binary V404 Cyg spanning the duration of its seven-day-long optically brightest phase of its 2015 June outburst. The simultaneous R- and K{sub s}-band light curves showed almost the same temporal variation except for the isolated (∼30-minute duration) orphan K{sub s} -band flare observed at MJD 57193.54. We did not find any significant temporal variation of polarization degree (PD) and position angle (PA) in both R and K{sub s} bands throughout our observations, including the duration of the orphan NIR flare. We show that the observed PD andmore » PA are predominantly interstellar in origin by comparing the V404 Cyg polarimetric results with those of the surrounding sources within the 7′ × 7′ field of view. The low intrinsic PD (less than a few percent) implies that the optical and NIR emissions are dominated by either disk or optically thick synchrotron emission, or both. We also present the broadband spectra of V404 Cyg during the orphan NIR flare and a relatively faint and steady state by including quasi-simultaneous Swift /XRT and INTEGRAL fluxes. By adopting a single-zone synchrotron plus inverse-Compton model as widely used in modeling of blazars, we constrained the parameters of a putative jet. Because the jet synchrotron component cannot exceed the Swift /XRT disk/corona flux, the cutoff Lorentz factor in the electron energy distribution is constrained to be <10{sup 2}, suggesting that particle acceleration is less efficient in this microquasar jet outburst compared to active galactic nucleus jets. We also suggest that the loading of the baryon component inside the jet is inevitable based on energetic arguments.« less
Kim, Hyun-Chul; Yoo, Seung-Schik; Lee, Jong-Hwan
2015-01-01
Electroencephalography (EEG) data simultaneously acquired with functional magnetic resonance imaging (fMRI) data are preprocessed to remove gradient artifacts (GAs) and ballistocardiographic artifacts (BCAs). Nonetheless, these data, especially in the gamma frequency range, can be contaminated by residual artifacts produced by mechanical vibrations in the MRI system, in particular the cryogenic pump that compresses and transports the helium that chills the magnet (the helium-pump). However, few options are available for the removal of helium-pump artifacts. In this study, we propose a recursive approach of EEG-segment-based principal component analysis (rsPCA) that enables the removal of these helium-pump artifacts. Using the rsPCA method, feature vectors representing helium-pump artifacts were successfully extracted as eigenvectors, and the reconstructed signals of the feature vectors were subsequently removed. A test using simultaneous EEG-fMRI data acquired from left-hand (LH) and right-hand (RH) clenching tasks performed by volunteers found that the proposed rsPCA method substantially reduced helium-pump artifacts in the EEG data and significantly enhanced task-related gamma band activity levels (p=0.0038 and 0.0363 for LH and RH tasks, respectively) in EEG data that have had GAs and BCAs removed. The spatial patterns of the fMRI data were estimated using a hemodynamic response function (HRF) modeled from the estimated gamma band activity in a general linear model (GLM) framework. Active voxel clusters were identified in the post-/pre-central gyri of motor area, only from the rsPCA method (uncorrected p<0.001 for both LH/RH tasks). In addition, the superior temporal pole areas were consistently observed (uncorrected p<0.001 for the LH task and uncorrected p<0.05 for the RH task) in the spatial patterns of the HRF model for gamma band activity when the task paradigm and movement were also included in the GLM. Copyright © 2014 Elsevier Inc. All rights reserved.
Ahamad, Javed; Amin, Saima; Mir, Showkat R
2015-08-01
Gymnemic acid and charantin are well-established antidiabetic phytosterols found in Gymnema sylvestre and Momordica charantia, respectively. The fact that these plants are often used together in antidiabetic poly-herbal formulations lured us to develop an HPTLC densitometric method for the simultaneous quantification of their bioactive compounds. Indirect estimation of gymnemic acid as gymnemagenin and charantin as β-sitosterol after hydrolysis has been proposed. Aluminum-backed silica gel 60 F254 plates (20 × 10 cm) were used as stationary phase and toluene-ethyl acetate-methanol-formic acid (60 : 20 : 15 : 5, v/v) as mobile phase. Developed chromatogram was scanned at 550 nm after derivatization with modified vanillin-sulfuric acid reagent. Regression analysis of the calibration data showed an excellent linear relationship between peak area versus concentration of the analytes. Linearity was found to be in the range of 500-2,500 and 100-500 ng/band for gymnemagenin and β-sitosterol, respectively. The suitability of the developed HPTLC method for simultaneous estimation of analytes was established by validating it as per the ICH guidelines. The limits of detection and quantification for gymnemagenin were found to be ≈60 and ≈190 ng/band, and those for β-sitosterol ≈30 and ≈90 ng/band, respectively. The developed method was found to be linear (r(2) = 0.9987 and 0.9943), precise (relative standard deviation <1.5 and <2% for intra- and interday precision) and accurate (mean recovery ranged between 98.43-101.44 and 98.68-100.20%) for gymnemagenin and β-sitosterol, respectively. The proposed method was also found specific and robust for quantification of both the analytes and was successfully applied to herbal drugs and in-house herbal formulation without any interference. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Optimal and Miniaturized Strongly Coupled Magnetic Resonant Systems
NASA Astrophysics Data System (ADS)
Hu, Hao
Wireless power transfer (WPT) technologies for communication and recharging devices have recently attracted significant research attention. Conventional WPT systems based either on far-field or near-field coupling cannot provide simultaneously high efficiency and long transfer range. The Strongly Coupled Magnetic Resonance (SCMR) method was introduced recently, and it offers the possibility of transferring power with high efficiency over longer distances. Previous SCMR research has only focused on how to improve its efficiency and range through different methods. However, the study of optimal and miniaturized designs has been limited. In addition, no multiband and broadband SCMR WPT systems have been developed and traditional SCMR systems exhibit narrowband efficiency thereby imposing strict limitations on simultaneous wireless transmission of information and power, which is important for battery-less sensors. Therefore, new SCMR systems that are optimally designed and miniaturized in size will significantly enhance various technologies in many applications. The optimal and miniaturized SCMR systems are studied here. First, analytical models of the Conformal SCMR (CSCMR) system and thorough analysis and design methodology have been presented. This analysis specifically leads to the identification of the optimal design parameters, and predicts the performance of the designed CSCMR system. Second, optimal multiband and broadband CSCMR systems are designed. Two-band, three-band, and four-band CSCMR systems are designed and validated using simulations and measurements. Novel broadband CSCMR systems are also analyzed, designed, simulated and measured. The proposed broadband CSCMR system achieved more than 7 times larger bandwidth compared to the traditional SCMR system at the same frequency. Miniaturization methods of SCMR systems are also explored. Specifically, methods that use printable CSCMR with large capacitors, novel topologies including meandered, SRRs, and spiral topologies or 3-D structures, lower the operating frequency of SCMR systems, thereby reducing their size. Finally, SCMR systems are discussed and designed for various applications, such as biomedical devices and simultaneous powering of multiple devices.
Simultaneous Ka-Band Site Characterization: Goldstone, CA, White Sands, NM, and Guam, USA
NASA Technical Reports Server (NTRS)
Acosta, Roberto; Morse, Jacquelynne; Zemba, Michael; Nessel, James; Morabito, David; Caroglanian, Armen
2011-01-01
To statistically characterize atmospheric effects on Ka-band links at NASA operational sites, NASA has constructed site test interferometers (STI s) which directly measure the tropospheric phase stability and rain attenuation. These instruments observe an unmodulated beacon signal broadcast from a geostationary satellite (e.g., Anik F2) and measure the phase difference between the signals received by the two antennas and its signal attenuation. Three STI s have been deployed so far: the first one at the NASA Deep Space Network Tracking Complex in Goldstone, California (May 2007); the second at the NASA White Sands Complex, in Las Cruses, New Mexico (February 2009); and the third at the NASA Tracking and Data Relay Satellite (TDRS) Remote Ground Terminal (GRGT) complex in Guam (May 2010). Two station-years of simultaneous atmospheric phase fluctuation data have been collected at Goldstone and White Sands, while one year of data has been collected in Guam. With identical instruments operating simultaneously, we can directly compare the phase stability and rain attenuation at the three sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric induced time delay fluctuations over 10 minute blocks. For two years, the time delay fluctuations at the DSN site in Goldstone, CA, have been better than 2.5 picoseconds (ps) for 90% of the time (with reference to zenith), meanwhile at the White Sands, New Mexico site, the time delay fluctuations have been better than 2.2 ps with reference to zenith) for 90% of time. For Guam, the time delay fluctuations have been better than 12 ps (reference to zenith) at 90% of the time, the higher fluctuations are as expected from a high humidity tropical rain zone. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.) will be used to determine the suitability of all the sites for NASA s future communication services at Ka-band.
Two Years of Simultaneous K(sub a)-Band Measurements: Goldstone, CA; White Sands, NM; and Guam, USA
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Zemba, M.; Morse, J.; Nessel, J.
2012-01-01
In order to statistically characterize the effect of the Earth's atmosphere on Ka-Band links, site test interferometers (STIs) have been deployed at three of NASA s operational sites to directly measure each site's tropospheric phase stability and rain attenuation. These STIs are composed of two antennas on a short baseline (less than 1km) that observe the same unmodulated beacon signal broadcast from a geostationary satellite (e.g., Anik F2). The STIs are used to measure the differential phase between the two received signals as well as the individual signal attenuation at each terminal. There are currently three NASA sites utilizing STIs; the Goldstone Deep Space Communications Complex near Barstow, California; the White Sands Complex in Las Cruces, New Mexico; and the Guam Remote Ground Terminal on the island of Guam. The first two sites are both located in desert regions that have highly similar climates in terms of their seasonal temperatures, average humidity, and annual rain fall (the primary factors in determining phase stability). In contrast, Guam is in a tropical region with drastically higher annual rainfall and humidity. Five station years of data have been collected in Goldstone, three in White Sands, and two in Guam, yielding two years of simultaneous data collection across all three sites. During this period of simultaneous data collection, the root-mean-square (RMS) of the time delay fluctuations stayed under 2.40 picoseconds for 90% of the time in Goldstone, under 2.07 picoseconds for 90% of the time in White Sands, and under 10.13 picoseconds for 90% of the time in Guam. For the 99th percentile, the statistics were 6.32 ps, 6.03 ps, and 24.85 ps, respectively. These values, as well as various other site quality characteristics, will be used to determine the suitability of these sites for NASA s future communication services at Ka-Band.
Sung, Jooyoung; Nowak-Król, Agnieszka; Schlosser, Felix; Fimmel, Benjamin; Kim, Woojae; Kim, Dongho; Würthner, Frank
2016-07-27
We have elucidated excimer-mediated intramolecular electron transfer in cofacially stacked PBIs tethered by two phenylene-butadiynylene loops. The electron transfer between energetically equivalent PBIs is revealed by the simultaneous observation of the PBI radical anion and cation bands in the transient absorption spectra. The fluorescence decay time of the excimer states is in good agreement with the rise time of PBI radical bands in transient absorption spectra suggesting that the electron transfer dynamics proceed via the excimer state. We can conclude that the excimer state effectuates the efficient charge transfer in the cofacially stacked PBI dimer.
Rong, R; Rao, S; Scott, S W; Tainter, F H
2001-02-01
DsRNAs were detected in 85/108 isolates of Discula destructiva, the cause of dogwood anthracnose, collected in South Carolina, Idaho, and Alabama. The eastern isolates contained a greater diversity of dsRNA than did Idaho isolates, but most isolates, irrespective of state of origin, contained two small bands (ca. 1.5-2.5 kb) with sequence homology indicated by Northern hybridization. Differences in the banding patterns suggest that genetic diversity of dsRNA in D. destructiva is generated rapidly and that D. destructiva can be simultaneously infected by multiple dsRNA viruses.
Monolithic multi-color light emission/detection device
Wanlass, Mark W.
1995-01-01
A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber.
Asymmetric band diagrams in photonic crystals with a spontaneous nonreciprocal response
NASA Astrophysics Data System (ADS)
Prudêncio, Filipa R.; Matos, Sérgio A.; Paiva, Carlos R.
2015-06-01
We study the propagation of electromagnetic waves in layered photonic crystals formed by materials with a spontaneous nonreciprocal response, such as Tellegen (axion) media or topological insulators. Surprisingly, it is proven that stratified Tellegen photonic crystals that break simultaneously the space inversion and time-reversal symmetries have always symmetric dispersion diagrams. Interestingly, we show that by combining chiral and nonreciprocal materials the photonic band diagrams can exhibit a spectral asymmetry such that ω (k )≠ω (-k ) . Furthermore, it is demonstrated that in some conditions two juxtaposed Tellegen medium layers have an electromagnetic response analogous to that of a biased ferrite slab.
Mori, Akio; Iwadate, Masako; Minakawa, Nahoko T; Kawashima, Satoshi
2015-09-01
The purpose of this article is to analyze the South Korea and China of computer game research, and the current state of research in Japan. Excessive game actions were analyzed by PET-MRI, MRI, fMRI, NIRS, EEG. These results showed that the prefrontal cortical activity decreased during game play. Also, game addiction causes damage to the prefrontal cortex. The NIRS-EEG and simultaneous recording, during game play correspond well with the decrease of β band and oxygen-hemoglobin. The α band did not change with game play. However, oxygen-hemoglobin decreased during game play. South Korea, game addiction measures have been analyzed since 2002, but in Japan the research is recent.
NASA Technical Reports Server (NTRS)
Rodriguez, J. V.; Inan, U. S.; Li, Y. Q.; Holzworth, R. H.; Smith, A. J.; Orville, R. E.; Rosenberg, T. J.
1992-01-01
The relationships among cloud-to-ground (CG) lightning, sferics, whistlers, VLF amplitude perturbations, and other ionospheric phenomena occurring during substorm events were investigated using data from simultaneous ground-based observations of narrow-band and broad-band VLF radio waves and of CG lightning made during the 1987 Wave-Induced Particle Precipitation campaign conducted from Wallops Island (Virginia). Results suggest that the data collected on ionospheric phenomena during this event may represent new evidence of direct coupling of lightning energy to the lower ionosphere, either in conjunction with or in the absence of gyroresonant interactions between whistler mode waves and electrons in the magnetosphere.
Joint distribution approaches to simultaneously quantifying benefit and risk.
Shaffer, Michele L; Watterberg, Kristi L
2006-10-12
The benefit-risk ratio has been proposed to measure the tradeoff between benefits and risks of two therapies for a single binary measure of efficacy and a single adverse event. The ratio is calculated from the difference in risk and difference in benefit between therapies. Small sample sizes or expected differences in benefit or risk can lead to no solution or problematic solutions for confidence intervals. Alternatively, using the joint distribution of benefit and risk, confidence regions for the differences in risk and benefit can be constructed in the benefit-risk plane. The information in the joint distribution can be summarized by choosing regions of interest in this plane. Using Bayesian methodology provides a very flexible framework for summarizing information in the joint distribution. Data from a National Institute of Child Health & Human Development trial of hydrocortisone illustrate the construction of confidence regions and regions of interest in the benefit-risk plane, where benefit is survival without supplemental oxygen at 36 weeks postmenstrual age, and risk is gastrointestinal perforation. For the subgroup of infants exposed to chorioamnionitis the confidence interval based on the benefit-risk ratio is wide (Benefit-risk ratio: 1.52; 90% confidence interval: 0.23 to 5.25). Choosing regions of appreciable risk and acceptable risk in the benefit-risk plane confirms the uncertainty seen in the wide confidence interval for the benefit-risk ratio--there is a greater than 50% chance of falling into the region of acceptable risk--while visually allowing the uncertainty in risk and benefit to be shown separately. Applying Bayesian methodology, an incremental net health benefit analysis shows there is a 72% chance of having a positive incremental net benefit if hydrocortisone is used in place of placebo if one is willing to incur at most one gastrointestinal perforation for each additional infant that survives without supplemental oxygen. If the benefit-risk ratio is presented, the joint distribution of benefit and risk also should be shown. These regions avoid the ambiguity associated with collapsing benefit and risk to a single dimension. Bayesian methods allow even greater flexibility in simultaneously quantifying benefit and risk.
Quantifying suspended solids in small rivers using satellite data.
Isidro, Celso M; McIntyre, Neil; Lechner, Alex M; Callow, Ian
2018-09-01
The management of suspended solids and associated contaminants in rivers requires knowledge of sediment sources. In-situ sampling can only describe the integrated impact of the upstream sources. Empirical models that use surface reflectance from satellite images to estimate total suspended solid (TSS) concentrations can be used to supplement measurements and provide spatially continuous maps. However, there are few examples, especially in narrow, shallow and hydrologically dynamic rivers found in mountainous areas. A case study of the Didipio catchment in Philippines was used to address these issues. Four 5-m resolution RapidEye images, from between the years 2014 and 2016, and near-simultaneous ground measurements of TSS concentrations were used to develop a power law model that approximates the relationship between TSS and reflectance for each of four spectral bands. A second dataset using two 2-m resolution Pleiades-1A and a third using a 6-m resolution SPOT-6 image along with ground-based measurements, were consistent with the model when using the red band data. Using that model, encompassing data from all three datasets, gave an R 2 value of 65% and a root mean square error of 519mgL -1 . A linear relationship between reflectance and TSS exists from 1mgL -1 to approximately 500mgL -1 . In contrast, for TSS measurements between 500mgL -1 and 3580mgL -1 reflectance increases at a generally lower and more variable rate. The results were not sensitive to changing the pixel location within the vicinity of the ground sampling location. The model was used to generate a continuous map of TSS concentration within the catchment. Further ground-based measurements including TSS concentrations that are higher than 3580mgL -1 would allow the model to be developed and applied more confidently over the full relevant range of TSS. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Wind, Galina; Arnold, G. Thomas; Dominguez, Roseanne T.
2010-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (MAS) and MODIS/Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Airborne Simulator (MASTER) were used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds at 50 discrete wavelengths between 0.47 and 14.2 microns (12.9 microns for MASTER). These observations were obtained from the NASA ER-2 aircraft as part of the Tropical Composition, Cloud and Climate Coupling (TC4) experiment conducted over Central America and surrounding Pacific and Atlantic Oceans between 17 July and 8 August 2007. Multispectral images in eleven distinct bands were used to derive a confidence in clear sky (or alternatively the probability Of cloud) over land and ocean ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). The cloud optical thickness and effective radius were derived for both liquid water and ice clouds that were detected during each flight, using a nearly identical algorithm to that implemented operationally to process MODIS Cloud data from the Aqua and Terra satellites (Collection 5). This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS and MASTER data in TC(sup 4), is quite capable of distinguishing both liquid water and ice clouds during daytime conditions over both land and ocean. The cloud optical thickness and effective radius retrievals use five distinct bands of the MAS (or MASTER), and these results were compared with nearly simultaneous retrievals of marine liquid water clouds from MODIS on the Terra spacecraft. Finally, this MODIS-based algorithm was adapted to Multiangle Imaging SpectroRadiometer (MISR) data to infer the cloud optical thickness Of liquid water clouds from MISR. Results of this analysis are compared and contrasted.
A study on multifrequency scintillations near the EIA crest of the Indian zone
NASA Astrophysics Data System (ADS)
Chakraborty, S. K.; Chatterjee, S.; Jana, Debasis
2017-10-01
Occurrence features of ionospheric scintillations at S band (2492.028 MHz) are reported for the first time. The same have been explored in the context of scintillations at VHF (250.650 MHz) and L5 (1176.45 MHz) bands. Observations were carried out during the period April-December, 2015 at Raja Peary Mohan College Centre (RPMC: 22.66° N, 88.4° E), located near the equatorial ionization anomaly (EIA) crest of the Indian longitude zone. Mostly weak (<10 dB), short duration, slow fading rate with shallower slope power spectra characterize the S band scintillations compared to VHF and L5 band. In the severe scintillation conditions of VHF frequent loss of lock in L5 channel is reflected. Fade depth of 4.2 ± 1.3 dB and fade rate ∼9 fades/minute at S band mostly precede the loss of lock at L5 channel. A good correspondence between fade rates at multi frequency band is reflected irrespective of phases of scintillation. Spectral analysis reveals weak scattering is the dominating mechanism for scintillation at S band while VHF and L5 band scintillations are mostly attributed to multiple scattering. The estimated threshold coherence length of <23 m at VHF may be suggested to be a good indicator for occurrence of L5 and S band scintillations. Occurrence of simultaneous multi-satellite multi-frequency scintillations leads to speculation over the failsafe navigation using available IRNSS constellation. The results are discussed in terms of existing theory of evolution, structure and dynamics of electron density irregularities in the low latitude region.
Fireball Observations in Visible and Sodium Bands
NASA Astrophysics Data System (ADS)
Fletcher, Sandra
On November 17th at 1:32am MST, a large Leonid fireball was simultaneously imaged by two experiments, a visible band CCD camera and a 590nm filtered band equi-angle fisheye and telecentric lens assembly. The visible band camera, ROTSE (Robotic Optical Transient Search Experiment) is a two by two f/1.9 telephoto lens array with 2k x2k Thompson CCD and is located at 35.87 N, 106.25 W at an altitude of 2115m. One-minute exposures along the radiant were taken of the event for 30 minutes after the initial explosion. The sodium band experiment was located at 35.29 N,106.46 W at an altitude of 1860m. It took ninety second exposures and captured several events throughout the night. Triangulation from two New Mexico sites resulted in an altitude of 83km over Wagon Mound, NM. Two observers present at the ROTSE site saw a green flash and a persistent glow up to seven minutes after the explosion. Cataloging of all sodium trails for comparison with lidar and infrasonic measurements is in progress. The raw data from both experiments and the atmospheric chemistry interpretation of them will be presented.
Jap, Budi Thomas; Lal, Sara; Fischer, Peter
2010-06-01
The current study investigated the effect of monotonous driving on inter-hemispheric electroencephalography (EEG) coherence. Twenty-four non-professional drivers were recruited to perform a fatigue instigating monotonous driving task while 30 channels of EEG were simultaneously recorded. The EEG recordings were then divided into 5 equal sections over the entire driving period for analysis. Inter-hemispheric coherence was computed from 5 homologous EEG electrode pairs (FP1-FP2, C3-C4, T7-T8, P7-P8, and O1-O2) for delta, theta, alpha and beta frequency bands. Results showed that frontal and occipital inter-hemispheric coherence values were significantly higher than central, parietal, and temporal sites for all four frequency bands (p<0.0001). In the alpha frequency band, significant difference was found between earlier and later driving sections (p=0.02). The coherence values in all EEG frequency bands were slightly increased at the end of the driving session, except for FP1-FP2 electrode pair, which showed no significant change in coherence in the beta frequency band at the end of the driving session. Copyright 2010 Elsevier B.V. All rights reserved.
Core-shifts and proper-motion constraints in the S5 polar cap sample at the 15 and 43 GHz bands
NASA Astrophysics Data System (ADS)
Abellán, F. J.; Martí-Vidal, I.; Marcaide, J. M.; Guirado, J. C.
2018-06-01
We have studied a complete radio sample of active galactic nuclei with the very-long-baseline-interferometry (VLBI) technique and for the first time successfully obtained high-precision phase-delay astrometry at Q band (43 GHz) from observations acquired in 2010. We have compared our astrometric results with those obtained with the same technique at U band (15 GHz) from data collected in 2000. The differences in source separations among all the source pairs observed in common at the two epochs are compatible at the 1σ level between U and Q bands. With the benefit of quasi-simultaneous U and Q band observations in 2010, we have studied chromatic effects (core-shift) at the radio source cores with three different methods. The magnitudes of the core-shifts are of the same order (about 0.1 mas) for all methods. However, some discrepancies arise in the orientation of the core-shifts determined through the different methods. In some cases these discrepancies are due to insufficient signal for the method used. In others, the discrepancies reflect assumptions of the methods and could be explained by curvatures in the jets and departures from conical jets.
Fernández-Zenoff, María V; Estévez, María C; Farías, María E
2014-01-01
Laguna Azul is an oligotrophic lake situated at 4,560 m above sea level and subject to a high level of solar radiation. Bacterioplankton community composition (BCC) was analysed by denaturing gradient gel electrophoresis and the impact of solar ultraviolet radiation was assessed by measuring cyclobutane pyrimidine dimers (CPD). Furthermore, pure cultures of Acinetobacter johnsonii A2 and Rhodococcus sp. A5 were exposed simultaneously and CPD accumulation was studied. Gel analyses generated a total of 7 sequences belonging to Alpha-proteobacteria (1 band), Beta-proteobacteria (1 band), Bacteroidetes (2 bands), Actinobacteria (1 band), and Firmicutes (1 band). DGGE profiles showed minimal changes in BCC and no CPD was detected even though a high level of damage was found in biodosimeters. A. johnsonii A2 showed low level of DNA damage while Rhodococcus sp. A5 exhibited high resistance since no CPD were detected under natural UV-B exposure, suggesting that the bacterial community is well adapted to this highly solar irradiated environment. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.
Do, Tiên T K; Theocharis, Grigorios; Reich, Eike
2015-01-01
An HPTLC method is proposed to permit effective screening for the presence of three phosphodiesterase type 5 inhibitors (PDE5-Is; sildenafil, vardenafil, and tadalafil) and eight of their analogs (hydroxyacetildenafil, homosildenafil, thiohomosildenafil, acetildenafil, acetaminotadalafil, propoxyphenyl hydroxyhomosildenafil, hydroxyhomosildenafil, and hydroxythiohomosildenafil) in finished products, including tablets, capsules, chocolate, instant coffee, syrup, and chewing gum. For all the finished products, the same simple sample preparation may be applied: ultrasound-assisted extraction in 10 mL methanol for 30 min followed by centrifugation. The Rf values of individual HPTLC bands afford preliminary identification of potential PDE5-Is. Scanning densitometry capabilities enable comparison of the unknown UV spectra with those of known standard compounds and allow further structural insight. Mass spectrometric analysis of the material derived from individual zones supplies an additional degree of confidence. Significantly, the proposed screening technique allows focus on the already known PDE5 Is and provides a platform for isolation and chemical categorization of the newly-synthesized analogs. Furthermore, the scope could be expanded to other therapeutic categories (e.g., analgesics, antidiabetics, and anorexiants) that are occasionally coadulterated along with the PDE5-Is. The method was successfully applied to screening of 45 commercial lifestyle products. Of those, 31 products tested positive for at least one illegal component (sildenafil, tadalafil, propoxyphenyl hydroxyhomosildenafil, or dimethylsildenafil).
Achterberg, Peter; de Koster, Willem; van der Waal, Jeroen
2017-08-01
Following up on suggestions that attitudes toward science are multi-dimensional, we analyze nationally representative survey data collected in the United States in 2014 ( N = 2006), and demonstrate the existence of a science confidence gap: some people place great trust in scientific methods and principles, but simultaneously distrust scientific institutions. This science confidence gap is strongly associated with level of education: it is larger among the less educated than among the more educated. We investigate explanations for these educational differences. Whereas hypotheses deduced from reflexive-modernization theory do not pass the test, those derived from theorizing on the role of anomie are corroborated. The less educated are more anomic (they have more modernity-induced cultural discontents), which not only underlies their distrust in scientific institutions, but also fuels their trust in scientific methods and principles. This explains why this science confidence gap is most pronounced among the less educated.
On how the brain decodes vocal cues about speaker confidence.
Jiang, Xiaoming; Pell, Marc D
2015-05-01
In speech communication, listeners must accurately decode vocal cues that refer to the speaker's mental state, such as their confidence or 'feeling of knowing'. However, the time course and neural mechanisms associated with online inferences about speaker confidence are unclear. Here, we used event-related potentials (ERPs) to examine the temporal neural dynamics underlying a listener's ability to infer speaker confidence from vocal cues during speech processing. We recorded listeners' real-time brain responses while they evaluated statements wherein the speaker's tone of voice conveyed one of three levels of confidence (confident, close-to-confident, unconfident) or were spoken in a neutral manner. Neural responses time-locked to event onset show that the perceived level of speaker confidence could be differentiated at distinct time points during speech processing: unconfident expressions elicited a weaker P2 than all other expressions of confidence (or neutral-intending utterances), whereas close-to-confident expressions elicited a reduced negative response in the 330-500 msec and 550-740 msec time window. Neutral-intending expressions, which were also perceived as relatively confident, elicited a more delayed, larger sustained positivity than all other expressions in the 980-1270 msec window for this task. These findings provide the first piece of evidence of how quickly the brain responds to vocal cues signifying the extent of a speaker's confidence during online speech comprehension; first, a rough dissociation between unconfident and confident voices occurs as early as 200 msec after speech onset. At a later stage, further differentiation of the exact level of speaker confidence (i.e., close-to-confident, very confident) is evaluated via an inferential system to determine the speaker's meaning under current task settings. These findings extend three-stage models of how vocal emotion cues are processed in speech comprehension (e.g., Schirmer & Kotz, 2006) by revealing how a speaker's mental state (i.e., feeling of knowing) is simultaneously inferred from vocal expressions. Copyright © 2015 Elsevier Ltd. All rights reserved.
All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN.
Gong, Mingjun; Chen, Yuping; Lu, Feng; Chen, Xianfeng
2010-08-15
We experimentally demonstrate wavelength broadcast based on simultaneous Type I quasi-phase-matched (QPM) broadband sum-frequency generation (SFG) and second-harmonic generation (SHG) in 5 mol.% MgO-doped periodically poled lithium niobate (MgO:PPLN). One signal has been synchronously converted into seven different wavelengths using two pumps at a 1.5 microm band via quadratic cascaded nonlinear wavelength conversion. By selecting different pump regions, i.e., selecting different cascaded chi((2)):chi((2)) interactions, the flexible wavelength conversions with shifting from one signal to single, double, and triple channels were also demonstrated.
Spinal cord ischemia after simultaneous and sequential treatment of multilevel aortic disease.
Piffaretti, Gabriele; Bonardelli, Stefano; Bellosta, Raffaello; Mariscalco, Giovanni; Lomazzi, Chiara; Tolenaar, Jip L; Zanotti, Camilla; Guadrini, Cristina; Sarcina, Antonio; Castelli, Patrizio; Trimarchi, Santi
2014-10-01
The aim of the present study is to report a risk analysis for spinal cord injury in a recent cohort of patients with simultaneous and sequential treatment of multilevel aortic disease. We performed a multicenter study with a retrospective data analysis. Simultaneous treatment refers to descending thoracic and infrarenal aortic lesions treated during the same operation, and sequential treatment refers to separate operations. All descending replacements were managed with endovascular repair. Of 4320 patients, multilevel aortic disease was detected in 77 (1.8%). Simultaneous repair was performed in 32 patients (41.5%), and a sequential repair was performed in 45 patients (58.4%). Postoperative spinal cord injury developed in 6 patients (7.8%). At multivariable analysis, the distance of the distal aortic neck from the celiac trunk was the only independent predictor of postoperative spinal cord injury (odds ratio, 0.75; 95% confidence interval, 0.56-0.99; P=.046); open surgical repair of the abdominal aortic disease was associated with a higher risk of spinal cord injury but did not reach statistical significance (odds ratio, 0.16; 95% confidence interval, 0.02-1.06; P=.057). Actuarial survival estimates at 1, 2, and 5 years after the procedure were 80%±5%, 68%±6%, and 63%±7%, respectively. Spinal cord injury did not impair survival (P=.885). In our experience, the risk of spinal cord injury is still substantial at 8% in patients with multilevel aortic disease. The distance of the distal landing zone from the celiac trunk is a significant predictor of spinal cord ischemia. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Pandya, Jui J; Sanyal, Mallika; Shrivastav, Pranav S
2017-09-01
A new, simple, accurate and precise high-performance thin-layer chromatographic method has been developed and validated for simultaneous determination of an anthelmintic drug, albendazole, and its active metabolite albendazole, sulfoxide. Planar chromatographic separation was performed on aluminum-backed layer of silica gel 60G F 254 using a mixture of toluene-acetonitrile-glacial acetic acid (7.0:2.9:0.1, v/v/v) as the mobile phase. For quantitation, the separated spots were scanned densitometrically at 225 nm. The retention factors (R f ) obtained under the established conditions were 0.76 ± 0.01 and 0.50 ± 0.01 and the regression plots were linear (r 2 ≥ 0.9997) in the concentration ranges 50-350 and 100-700 ng/band for albendazole and albendazole sulfoxide, respectively. The method was validated for linearity, specificity, accuracy (recovery) and precision, repeatability, stability and robustness. The limit of detection and limit of quantitation found were 9.84 and 29.81 ng/band for albendazole and 21.60 and 65.45 ng/band for albendazole sulfoxide, respectively. For plasma samples, solid-phase extraction of analytes yielded mean extraction recoveries of 87.59 and 87.13% for albendazole and albendazole sulfoxide, respectively. The method was successfully applied for the analysis of albendazole in pharmaceutical formulations with accuracy ≥99.32%. Copyright © 2017 John Wiley & Sons, Ltd.
Simultaneous multi-wavelength campaign on PKS 2005-489 in a high state
Abramowski, A.
2011-09-01
The high-frequency peaked BL Lac object PKS 2005-489 was the target of amulti-wavelength campaignwith simultaneous observations in the TeV γ-ray (H.E.S.S.), GeV γ-ray (Fermi/LAT), X-ray (RXTE, Swift), UV (Swift) and optical (ATOM, Swift) bands. This campaign was carried out during a high flux state in the synchrotron regime. The flux in the optical and X-ray bands reached the level of the historical maxima. The hard GeV spectrum observed with Fermi/LAT connects well to the very high energy (VHE, E> 100 GeV) spectrum measured with H.E.S.S. with a peak energy between ~ 5 and 500 GeV. Compared to observations with contemporaneousmore » coverage in the VHE and X-ray bands in 2004, the X-ray flux was ~ 50 times higher during the 2009 campaign while the TeV γ-ray flux shows marginal variation over the years. The spectral energy distribution during this multi-wavelength campaign was fit by a one zone synchrotron self-Compton model with a well determined cutoff in X-rays. The parameters of a one zone SSC model are inconsistent with variability time scales. The variability behaviour over years with the large changes in synchrotron emission and small changes in the inverse Compton emission does not warrant an interpretation within a one-zone SSC model despite an apparently satisfying fit to the broadband data in 2009.« less
Brain networks for confidence weighting and hierarchical inference during probabilistic learning.
Meyniel, Florent; Dehaene, Stanislas
2017-05-09
Learning is difficult when the world fluctuates randomly and ceaselessly. Classical learning algorithms, such as the delta rule with constant learning rate, are not optimal. Mathematically, the optimal learning rule requires weighting prior knowledge and incoming evidence according to their respective reliabilities. This "confidence weighting" implies the maintenance of an accurate estimate of the reliability of what has been learned. Here, using fMRI and an ideal-observer analysis, we demonstrate that the brain's learning algorithm relies on confidence weighting. While in the fMRI scanner, human adults attempted to learn the transition probabilities underlying an auditory or visual sequence, and reported their confidence in those estimates. They knew that these transition probabilities could change simultaneously at unpredicted moments, and therefore that the learning problem was inherently hierarchical. Subjective confidence reports tightly followed the predictions derived from the ideal observer. In particular, subjects managed to attach distinct levels of confidence to each learned transition probability, as required by Bayes-optimal inference. Distinct brain areas tracked the likelihood of new observations given current predictions, and the confidence in those predictions. Both signals were combined in the right inferior frontal gyrus, where they operated in agreement with the confidence-weighting model. This brain region also presented signatures of a hierarchical process that disentangles distinct sources of uncertainty. Together, our results provide evidence that the sense of confidence is an essential ingredient of probabilistic learning in the human brain, and that the right inferior frontal gyrus hosts a confidence-based statistical learning algorithm for auditory and visual sequences.
Brain networks for confidence weighting and hierarchical inference during probabilistic learning
Meyniel, Florent; Dehaene, Stanislas
2017-01-01
Learning is difficult when the world fluctuates randomly and ceaselessly. Classical learning algorithms, such as the delta rule with constant learning rate, are not optimal. Mathematically, the optimal learning rule requires weighting prior knowledge and incoming evidence according to their respective reliabilities. This “confidence weighting” implies the maintenance of an accurate estimate of the reliability of what has been learned. Here, using fMRI and an ideal-observer analysis, we demonstrate that the brain’s learning algorithm relies on confidence weighting. While in the fMRI scanner, human adults attempted to learn the transition probabilities underlying an auditory or visual sequence, and reported their confidence in those estimates. They knew that these transition probabilities could change simultaneously at unpredicted moments, and therefore that the learning problem was inherently hierarchical. Subjective confidence reports tightly followed the predictions derived from the ideal observer. In particular, subjects managed to attach distinct levels of confidence to each learned transition probability, as required by Bayes-optimal inference. Distinct brain areas tracked the likelihood of new observations given current predictions, and the confidence in those predictions. Both signals were combined in the right inferior frontal gyrus, where they operated in agreement with the confidence-weighting model. This brain region also presented signatures of a hierarchical process that disentangles distinct sources of uncertainty. Together, our results provide evidence that the sense of confidence is an essential ingredient of probabilistic learning in the human brain, and that the right inferior frontal gyrus hosts a confidence-based statistical learning algorithm for auditory and visual sequences. PMID:28439014
Optimization Of Ocean Color Algorithms: Application To Satellite And In Situ Data Merging. Chapter 9
NASA Technical Reports Server (NTRS)
Maritorena, Stephane; Siegel, David A.; Morel, Andre
2003-01-01
The objective of our program is to develop and validate a procedure for ocean color data merging which is one of the major goals of the SIMBIOS project (McClain et al., 1995). The need for a merging capability is dictated by the fact that since the launch of MODIS on the Terra platform and over the next decade, several global ocean color missions from various space agencies are or will be operational simultaneously. The apparent redundancy in simultaneous ocean color missions can actually be exploited to various benefits. The most obvious benefit is improved coverage (Gregg et al., 1998; Gregg & Woodward, 1998). The patchy and uneven daily coverage from any single sensor can be improved by using a combination of sensors. Beside improved coverage of the global ocean the merging of ocean color data should also result in new, improved, more diverse and better data products with lower uncertainties. Ultimately, ocean color data merging should result in the development of a unified, scientific quality, ocean color time series, from SeaWiFS to NPOESS and beyond. Various approaches can be used for ocean color data merging and several have been tested within the frame of the SIMBIOS program (see e.g. Kwiatkowska & Fargion, 2003, Franz et al., 2003). As part of the SIMBIOS Program, we have developed a merging method for ocean color data. Conversely to other methods our approach does not combine end-products like the subsurface chlorophyll concentration (chl) from different sensors to generate a unified product. Instead, our procedure uses the normalized waterleaving radiances (LwN( )) from single or multiple sensors and uses them in the inversion of a semianalytical ocean color model that allows the retrieval of several ocean color variables simultaneously. Beside ensuring simultaneity and consistency of the retrievals (all products are derived from a single algorithm), this model-based approach has various benefits over techniques that blend end-products (e.g. chlorophyll): 1) it works with single or multiple data sources regardless of their specific bands, 2) it exploits band redundancies and band differences, 3) it accounts for uncertainties in the LwN( ) data and, 4) it provides uncertainty estimates for the retrieved variables.
THE ABSENCE OF RADIO EMISSION FROM THE GLOBULAR CLUSTER G1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller-Jones, J. C. A.; Wrobel, J. M.; Sivakoff, G. R.
2012-08-10
The detections of both X-ray and radio emission from the cluster G1 in M31 have provided strong support for existing dynamical evidence for an intermediate-mass black hole (IMBH) of mass (1.8 {+-} 0.5) Multiplication-Sign 10{sup 4} M{sub Sun} at the cluster center. However, given the relatively low significance and astrometric accuracy of the radio detection, and the non-simultaneity of the X-ray and radio measurements, this identification required further confirmation. Here we present deep, high angular resolution, strictly simultaneous X-ray and radio observations of G1. While the X-ray emission (L{sub X} = 1.74{sup +0.53}{sub -0.44} Multiplication-Sign 10{sup 36} (d/750 kpc){sup 2}more » erg s{sup -1} in the 0.5-10 keV band) remained fully consistent with previous observations, we detected no radio emission from the cluster center down to a 3{sigma} upper limit of 4.7 {mu}Jy beam{sup -1}. Our favored explanation for the previous radio detection is flaring activity from a black hole low-mass X-ray binary (LMXB). We performed a new regression of the 'Fundamental Plane' of black hole activity, valid for determining black hole mass from radio and X-ray observations of sub-Eddington black holes, finding log M{sub BH} = (1.638 {+-} 0.070)log L{sub R} - (1.136 {+-} 0.077)log L{sub X} - (6.863 {+-} 0.790), with an empirically determined uncertainty of 0.44 dex. This constrains the mass of the X-ray source in G1, if a black hole, to be <9.7 Multiplication-Sign 10{sup 3} M{sub Sun} at 95% confidence, suggesting that it is a persistent LMXB. This annuls what was previously the most convincing evidence from radiation for an IMBH in the Local Group, though the evidence for an IMBH in G1 from velocity dispersion measurements remains unaffected by these results.« less
Quick-Change Optical-Filter Holder
NASA Technical Reports Server (NTRS)
Leone, Peter
1988-01-01
Dark slide and interlock protect against ambient light. Quick-change filter holder contains interlocking mechanism preventing simultaneous removal of both dark slide and filter drawer. Designed for use with Band pass optical filters in 10 channels leading to photomultiplier tubes in water-vapor lidar/ozone instrument, mechanism can be modified to operate in other optical systems requiring optical change in filters.
Portable instant display and analysis reflectance spectrometer
NASA Technical Reports Server (NTRS)
Goetz, Alexander F. H. (Inventor)
1985-01-01
A portable analysis spectrometer (10) for field mineral identification is coupled to a microprocessor (11) and memory (12) through a bus (13) and A/D converter (14) to display (16) a spectrum of reflected radiation in a band selected by an adjustable band spectrometer (20) and filter (23). A detector array (21) provides output signals at spaced frequencies within the selected spectrometer band which are simultaneously converted to digital form for display. The spectrum displayed is compared with a collection of spectra for known minerals. That collection is stored in memory and selectively displayed with the measured spectrum, or stored in a separate portfolio. In either case, visual comparison is made. Alternatively, the microprocessor may use an algorithm to make the comparisons in search for the best match of the measured spectrum with one of the stored spectra to identify the mineral in the target area.
NASA Astrophysics Data System (ADS)
Villa, Enrique; Cano, Juan L.; Aja, Beatriz; Terán, J. Vicente; de la Fuente, Luisa; Mediavilla, Ángel; Artal, Eduardo
2018-03-01
This paper describes the analysis, design and characterization of a polarimetric receiver developed for covering the 35 to 47 GHz frequency band in the new instrument aimed at completing the ground-based Q-U-I Joint Tenerife Experiment. This experiment is designed to measure polarization in the Cosmic Microwave Background. The described high frequency instrument is a HEMT-based array composed of 29 pixels. A thorough analysis of the behaviour of the proposed receiver, based on electronic phase switching, is presented for a noise-like linearly polarized input signal, obtaining simultaneously I, Q and U Stokes parameters of the input signal. Wideband subsystems are designed, assembled and characterized for the polarimeter. Their performances are described showing appropriate results within the 35-to-47 GHz frequency band. Functionality tests are performed at room and cryogenic temperatures with adequate results for both temperature conditions, which validate the receiver concept and performance.
The effect of cation doping on spinel LiMn 2O 4: a first-principles investigation
NASA Astrophysics Data System (ADS)
Shi, Siqi; Ouyang, Chuying; Wang, Ding-sheng; Chen, Liquan; Huang, Xuejie
2003-05-01
The effect of the cation doping on the electronic structure of spinel LiM yMn 2- yO 4 (M=Cr, Mn, Fe, Co and Ni) has been calculated by first-principles. Our calculation shows that new M-3d bands emerge in the density of states compared with that in LiMn 2O 4. Simultaneously, the new O-2p bands appear accordingly in almost the same energy range around the Fermi energy owing to the M-3d/O-2p interaction. It is found that the appearance of new O-2p bands in the lower energy position results in a higher intercalation voltage. Consequently, the origin of higher intercalation voltage in LiM yMn 2- yO 4 can be ascribed to the lower O-2p level introduced by the doping cation M.
A Ka-band radial relativistic backward wave oscillator with GW-class output power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jiaxin; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Dang, Fangchao
A novel radial relativistic backward wave oscillator with a reflector is proposed and designed to generate GW-level high power microwaves at Ka-band. The segmented radial slow wave structure and the reflector are matched to enhance interaction efficiency. We choose the volume wave TM{sub 01} mode as the working mode due to the volume wave characteristic. The main structural parameters of the novel device are optimized by particle-in-cell simulation. High power microwaves with power of 2 GW and a frequency of 29.4 GHz are generated with 30% efficiency when the electron beam voltage is 383 kV, the beam current is 17 kA, and themore » guiding magnetic field is only 0.6 T. Simultaneously, the highest electric field in the novel Ka-band device is just about 960 kV/cm in second slow wave structure.« less
VizieR Online Data Catalog: LOFAR Bootes and 3C295 field sources (van Weeren+, 2014)
NASA Astrophysics Data System (ADS)
van Weeren, R. J.; Williams, W. L.; Tasse, C.; Rottgering, H. J. A.; Rafferty, D. A.; van der Tol, S.; Heald, G.; White, G. J.; Shulevski, A.; Best, P.; Intema, H. T.; Bhatnagar, S.; Reich, W.; Steinmetz, M.; van Velzen, S.; Ensslin, T. A.; Prandoni, I.; de Gasperin, F.; Jamrozy, M.; Brunetti, G.; Jarvis, M. J.; McKean, J. P.; Wise, M. W.; Ferrari, C.; Harwood, J.; Oonk, J. B. R.; Hoeft, M.; Kunert-Bajraszewska, M.; Horellou, C.; Wucknitz, O.; Bonafede, A.; Mohan, N. R.; Scaife, A. M. M.; Klockner, H.-R.; van Bemmel, I. M.; Merloni, A.; Chyzy, K. T.; Engels, D.; Falcke, H.; Pandey-Pommier, M.; Alexov, A.; Anderson, J.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Breitling, F.; Broderick, J.; Brouw, W. N.; Bruggen, M.; Butcher, H. R.; Ciardi, B.; de Geus, E.; de Vos, M.; Deller, A.; Duscha, S.; Eisloffel, J.; Fallows, R. A.; Frieswijk, W.; Garrett, M. A.; Griessmeier, J.; Gunst, A. W.; Hamaker, J. P.; Hassall, T. E.; Horandel, J.; van der Horst, A.; Iacobelli, M.; Jackson, N. J.; Juette, E.; Kondratiev, V. I.; Kuniyoshi, M.; Maat, P.; Mann, G.; McKay-Bukowski, D.; Mevius, M.; Morganti, R.; Munk, H.; Offringa, A. R.; Orru, E.; Paas, H.; Pandey, V. N.; Pietka, G.; Pizzo, R.; Polatidis, A. G.; Renting, A.; Rowlinson, A.; Schwarz, D.; Serylak, M.; Sluman, J.; Smirnov, O.; Stappers, B. W.; Stewart, A.; Swinbank, J.; Tagger, M.; Tang, Y.; Thoudam, S.; Toribio, C.; Vermeulen, R.; Vocks, C.; Zarka, P.
2017-04-01
The Bootes and 3C 295 fields were simultaneously observed on 2012 April 12 as part of a multi-beam observation with the LOFAR LBA stations. The idea behind the multi-beam setup is that we use the 3C 295 observations as a calibrator field to transfer the gain amplitudes to the (target) Bootes field. The total integration time on both fields was 10.25 hr. Complete frequency coverage was obtained between 54 and 70 MHz for both fields, while non-contiguous frequency coverage was obtained between 30 and 54 MHz for the 3C 295 only. All four correlation products were recorded. By default, the frequency band was divided into sub-bands, each 195.3125 kHz wide. Each sub-band was further divided in 64 channels and the integration time was 1 s. (1 data file).
NASA Technical Reports Server (NTRS)
1982-01-01
Model II Multispectral Camera is an advanced aerial camera that provides optimum enhancement of a scene by recording spectral signatures of ground objects only in narrow, preselected bands of the electromagnetic spectrum. Its photos have applications in such areas as agriculture, forestry, water pollution investigations, soil analysis, geologic exploration, water depth studies and camouflage detection. The target scene is simultaneously photographed in four separate spectral bands. Using a multispectral viewer, such as their Model 75 Spectral Data creates a color image from the black and white positives taken by the camera. With this optical image analysis unit, all four bands are superimposed in accurate registration and illuminated with combinations of blue green, red, and white light. Best color combination for displaying the target object is selected and printed. Spectral Data Corporation produces several types of remote sensing equipment and also provides aerial survey, image processing and analysis and number of other remote sensing services.
PFS/Mars Express first results: water vapour and carbon monoxide global distribution
NASA Astrophysics Data System (ADS)
Ignatiev, N. I.; Titov, D. V.; Formisano, V.; Moroz, V. I.; Lellouch, E.; Encrenaz, Th.; Fouchet, T.; Grassi, D.; Giuranna, M.; Atreya, S.; Pfs Team
Planetary Fourier Spectrometer onboard Mars Express, with its wide spectral range (1.2--45 um) and high spectral resolution (1.4 cm-1), makes it possible to study in a self-consistent manner the Martian atmosphere by means of simultaneous analysis of spectral features in several spectral regions. As concerned small species, we observe 30--50, 6.3, 2.56, 1.87 and 1.38 μ m H2O bands, and 4.7 and 2.35 μ m CO bands. The most favourable, with respect to the instrument performance, 2.56 μ m H2O and 4.7 μ m CO bands, are used to study the variations of column abundance of water vapour and carbon monoxide on a global scale from pole to pole. All necessary atmospheric parameters, namely temperature profiles, surface pressure, and dust density are obtained from the same spectra, whenever possible.
Tunable dual-band graphene-based infrared reflectance filter.
Goldflam, Michael D; Ruiz, Isaac; Howell, Stephen W; Wendt, Joel R; Sinclair, Michael B; Peters, David W; Beechem, Thomas E
2018-04-02
We experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm -1 . Electromagnetic simulations verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here is applicable across a broad range of infrared frequencies.
Temperature-Dependence of Air-Broadened Line Widths and Shifts in the nu3 Band of Ozone
NASA Technical Reports Server (NTRS)
Smith, Mary A. H.; Rinsland, Curtis P.; Devi, V. Malathy; Benner, D. Chris; Cox, A. M.
2006-01-01
The 9.6-micron bands of O3 are used by many remote-sensing experiments for retrievals of terrestrial atmospheric ozone concentration profiles. Line parameter errors can contribute significantly to the total errors in these retrievals, particularly for nadir-viewing. The McMath-Pierce Fourier transform spectrometer at the National Solar Observatory on Kitt Peak was used to record numerous high-resolution infrared absorption spectra of O3 broadened by various gases at temperatures between 160 and 300 K. Over 30 spectra were analyzed simultaneously using a multispectrum nonlinear least squares fitting technique to determine Lorentz air-broadening and pressure-induced shift coefficients along with their temperature dependences for selected transitions in the 3 fundamental band of (16)O3. We compare the present results with other measurements reported in the literature and with the ozone parameters on the 2000 and 2004 editions of the HITRAN database.
NASA Technical Reports Server (NTRS)
Swank, Aaron J.; Bakula, Casey J.
2012-01-01
In the Fall of 2011, National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) participated in the Desert Research and Technology Studies (DRATS) field experiments held near Flagstaff, Arizona. The objective of the DRATS outing is to provide analog mission testing of candidate technologies for space exploration, especially those technologies applicable to human exploration of extra- terrestrial rocky bodies. These activities are performed at locations with similarities to extra-terrestrial conditions. This report describes the Extravehicular Activity (EVA) Dual-Band Radio Communication System which was demonstrated during the 2011 outing. The EVA radio system is designed to transport both voice and telemetry data through a mobile ad hoc wireless network and employs a dual-band radio configuration. Some key characteristics of this system include: 1. Dual-band radio configuration. 2. Intelligent switching between two different capability wireless networks. 3. Self-healing network. 4. Simultaneous data and voice communication.
Plasma Switch for High-Power Active Pulse Compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirshfield, Jay L.
2013-11-04
Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ?more » 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.« less
Active and passive microwave measurements of soil moisture in FIFE
NASA Technical Reports Server (NTRS)
Wang, J. R.; Gogineni, S. P.; Ampe, J.
1992-01-01
During the intensive field campaigns of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) in May-October of 1987, several nearly simultaneous measurements were made with low-altitude flights of the L-band radiometer and C- and X-band scatterometers over two transects in the Konza Prairie Natural Research Area, some 8 km south of Manhattan, Kansas. These measurements showed that although the scatterometers were sensitive to soil moisture variations in most regions under the flight path, the L-band radiometer lost most of its sensitivity in regions unburned for many years. The correlation coefficient derived from the regression between the radar backscattering coefficient and the soil moisture was found to improve with the increase in antenna incidence angle. This is attributed to a steeper falloff of the backscattering coefficient as a function of local incidence at angles near nadir than at angles greater than 30 deg.
NASA Astrophysics Data System (ADS)
Mahmood, Q.; Ashraf, A.; Hassan, M.
2018-02-01
We predict the phase dependent electronic properties for elaborating the optical and thermoelectric behaviors of both cubic (Pm-3m) and orthorhombic (Pbnm) Ca3XO (X = Si, Ge) antiperovskites using first-principles density functional theory (DFT) computations. The mBJ functional is employed for computing the most accurate electronic characteristics. A direct band gap semiconducting nature has been found appearing due to hybridization between O and Si/Ge p-states. The calculated band gaps lying in the infrared energy region suggest that the studied anti-perovskites can absorb visible and ultraviolet energy revealing potential optoelectronics device applications. Moreover, the important thermoelectric parameters are computed for illustrating the potential thermoelectric applications. Hence, the studied anti-perovskites can simultaneously exhibit various flexible material properties, which reveal their worth for the devices demonstrating versatile characteristics.
Rachmiel, M; Cohen, M; Heymen, E; Lezinger, M; Inbar, D; Gilat, S; Bistritzer, T; Leshem, G; Kan-Dror, E; Lahat, E; Ekstein, D
2016-02-01
To assess the association between hyperglycemia and electrical brain activity in type 1 diabetes mellitus (T1DM). Nine youths with T1DM were monitored simultaneously and continuously by EEG and continuous glucose monitor system, for 40 h. EEG powers of 0.5-80 Hz frequency bands in all the different brain regions were analyzed according to interstitial glucose concentration (IGC) ranges of 4-11 mmol/l, 11-15.5 mmol/l and >15.5 mmol/l. Analysis of variance was used to examine the differences in EEG power of each frequency band between the subgroups of IGC. Analysis was performed separately during wakefulness and sleep, controlling for age, gender and HbA1c. Mean IGC was 11.49 ± 5.26 mmol/l in 1253 combined measurements. IGC>15.5 mmol/l compared to 4-11 mmol/l was associated during wakefulness with increased EEG power of low frequencies and with decreased EEG power of high frequencies. During sleep, it was associated with increased EEG power of low frequencies in all brain areas and of high frequencies in frontal and central areas. Asymptomatic transient hyperglycemia in youth with T1DM is associated with simultaneous alterations in electrical brain activity during wakefulness and sleep. The clinical implications of immediate electrical brain alterations under hyperglycemia need to be studied and may lead to adaptations of management. Copyright © 2015. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Khodaveisi, Javad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Rohani Moghadam, Masoud; Hormozi-Nezhad, Mohammad Reza
2015-03-01
Spectrophotometric analysis method based on the combination of the principal component analysis (PCA) with the feed-forward neural network (FFNN) and the radial basis function network (RBFN) was proposed for the simultaneous determination of paracetamol (PAC) and p-aminophenol (PAP). This technique relies on the difference between the kinetic rates of the reactions between analytes and silver nitrate as the oxidizing agent in the presence of polyvinylpyrrolidone (PVP) which is the stabilizer. The reactions are monitored at the analytical wavelength of 420 nm of the localized surface plasmon resonance (LSPR) band of the formed silver nanoparticles (Ag-NPs). Under the optimized conditions, the linear calibration graphs were obtained in the concentration range of 0.122-2.425 μg mL-1 for PAC and 0.021-5.245 μg mL-1 for PAP. The limit of detection in terms of standard approach (LODSA) and upper limit approach (LODULA) were calculated to be 0.027 and 0.032 μg mL-1 for PAC and 0.006 and 0.009 μg mL-1 for PAP. The important parameters were optimized for the artificial neural network (ANN) models. Statistical parameters indicated that the ability of the both methods is comparable. The proposed method was successfully applied to the simultaneous determination of PAC and PAP in pharmaceutical preparations.
AgRISTARS. Supporting research: MARS x-band scatterometer
NASA Technical Reports Server (NTRS)
Ulaby, F. T. (Principal Investigator); Gabel, P. F., Jr.; Brunfeldt, D. R.
1981-01-01
The design, construction, and data collection procedures of the mobile agricultural radar sensor (MARS) x band scatterometer are described. This system is an inexpensive, highly mobile, truck mounted FM-CW radar operating at a center frequency of 10.2 GHz. The antennas, which allow for VV and VH polarizations, are configured in a side looking mode that allows for drive by data collection. This configuration shortens fieldwork time considerably while increasing statistical confidence in the data. Both internal calibration, via a delay line, and external calibration with a Luneberg lens are used to calibrate the instrument in terms of sigma(o). The radar scattering cross section per unit area, sigma(o), is found using the radar equation.
The Mars Global Surveyor Ka-Band Link Experiment (MGS/KaBLE-II)
NASA Astrophysics Data System (ADS)
Morabito, D.; Butman, S.; Shambayati, S.
1999-01-01
The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4-GHz) downlink. The signals are simultaneously transmitted from a 1.5-m-diameter parabolic antenna on MGS and received by a beam-waveguide (BWG) research and development (R&D) 34-meter a ntenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. This Ka-band link experiment (KaBLE-II) allows the performances of the Ka-band and X-band signals to be compared under nearly identical conditions. The two signals have been regularly tracked during the past 2 years. This article presents carrier-signal-level data (P_c/N_o) for both X-band and Ka-band acquired over a wide range of station elevation angles, weather conditions, and solar elongation angles. The cruise phase of the mission covered the period from launch (November 7, 1996) to Mars orbit capture (September 12, 1997). Since September 12, 1997, MGS has been in orbit around Mars. The measurements confirm that Ka-band could increase data capacity by at least a factor of three (5 dB) as compared with X-band. During May 1998, the solar corona experiment, in which the effects of solar plasma on the X-band and Ka-band links were studied, was conducted. In addition, frequency and difference frequency (f_x - f_(Ka)/3.8), ranging, and telemetry data results are presented. MGS/KaBLE-II measured signal strengths (for 54 percent of the experiments conducted) that were in reasonable agreement with predicted values based on preflight knowledge, and frequency residuals that agreed between bands and whose statistics were consistent with expected noise sources. For passes in which measured signal strengths disagreed with predicted values, the problems were traced to known deficiencies, for example, equipment operating under certain conditions, such as a cold Ka-band solid-state power amplifier (SSPA) temperature, and a degraded response at higher frequencies in certain modes. These efforts had continued with Deep Space 1 (DS1), launched in October 1998, which also emits Ka-band and X-band signals.
Boulton, David W.; Kasichayanula, Sreeneeranj; Keung, Chi Fung (Anther); Arnold, Mark E.; Christopher, Lisa J.; Xu, Xiaohui (Sophia); LaCreta, Frank
2013-01-01
Aim To determine the absolute oral bioavailability (Fp.o.) of saxagliptin and dapagliflozin using simultaneous intravenous 14C‐microdose/therapeutic oral dosing (i.v.micro + oraltherap). Methods The Fp.o. values of saxagliptin and dapagliflozin were determined in healthy subjects (n = 7 and 8, respectively) following the concomitant administration of single i.v. micro doses with unlabelled oraltherap doses. Accelerator mass spectrometry and liquid chromatography‐tandem mass spectrometry were used to quantify the labelled and unlabelled drug, respectively. Results The geometric mean point estimates (90% confidence interval) Fp.o. values for saxagliptin and dapagliflozin were 50% (48, 53%) and 78% (73, 83%), respectively. The i.v.micro had similar pharmacokinetics to oraltherap. Conclusions Simultaneous i.v.micro + oraltherap dosing is a valuable tool to assess human absolute bioavailability. PMID:22823746
The Relationship Between Eyewitness Confidence and Identification Accuracy: A New Synthesis.
Wixted, John T; Wells, Gary L
2017-05-01
The U.S. legal system increasingly accepts the idea that the confidence expressed by an eyewitness who identified a suspect from a lineup provides little information as to the accuracy of that identification. There was a time when this pessimistic assessment was entirely reasonable because of the questionable eyewitness-identification procedures that police commonly employed. However, after more than 30 years of eyewitness-identification research, our understanding of how to properly conduct a lineup has evolved considerably, and the time seems ripe to ask how eyewitness confidence informs accuracy under more pristine testing conditions (e.g., initial, uncontaminated memory tests using fair lineups, with no lineup administrator influence, and with an immediate confidence statement). Under those conditions, mock-crime studies and police department field studies have consistently shown that, for adults, (a) confidence and accuracy are strongly related and (b) high-confidence suspect identifications are remarkably accurate. However, when certain non-pristine testing conditions prevail (e.g., when unfair lineups are used), the accuracy of even a high-confidence suspect ID is seriously compromised. Unfortunately, some jurisdictions have not yet made reforms that would create pristine testing conditions and, hence, our conclusions about the reliability of high-confidence identifications cannot yet be applied to those jurisdictions. However, understanding the information value of eyewitness confidence under pristine testing conditions can help the criminal justice system to simultaneously achieve both of its main objectives: to exonerate the innocent (by better appreciating that initial, low-confidence suspect identifications are error prone) and to convict the guilty (by better appreciating that initial, high-confidence suspect identifications are surprisingly accurate under proper testing conditions).
Growing Your Musician: A Practical Guide for Band and Orchestra Parents
ERIC Educational Resources Information Center
Bancroft, Tony
2004-01-01
This user-friendly guide covers a variety of issues such as choosing the right instrument, how to set practice guidelines, how parents can talk about music with their children, and ways to inspire children and enhance their creativity and confidence. Includes a list of frequently asked questions, a handy guide to musical terms, and lots of tables…
A Comparison of Seyfert 1 and 2 Host Galaxies
NASA Astrophysics Data System (ADS)
De Robertis, M.; Virani, S.
2000-12-01
Wide-field, R-band CCD data of 15 Seyfert 1 and 15 Seyfert 2 galaxies taken from the CfA survey were analysed in order to compare the properties of their host galaxies. As well, B-band images for a subset of 12 Seyfert 1s and 7 Seyfert 2s were acquired and analysed in the same way. A robust technique for decomposing the three components---nucleus, bulge and disk---was developed in order determine the structural parameters for each galaxy. In effect, the nuclear contribution was removed empirically by using a spatially nearby, high signal-to-noise ratio point source as a template. Profile fits to the bulge+disk ignored data within three seeing disks of the nucleus. Of the many parameters that were compared between Seyfert 1s and 2s, only two distributions differed at greater than the 95% confidence level for the K-S test: the magnitude of the nuclear component, and the radial color gradient outside the nucleus. The former is expected. The latter could be consistent with some proposed evolutionary models. There is some suggestion that other parameters may differ, but at a lower confidence level.
Dang, Mia; Ramsaran, Kalinda D; Street, Melissa E; Syed, S Noreen; Barclay-Goddard, Ruth; Stratford, Paul W; Miller, Patricia A
2011-01-01
To estimate the predictive accuracy and clinical usefulness of the Chedoke-McMaster Stroke Assessment (CMSA) predictive equations. A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from -0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted.
A parametric study of the linear growth of magnetospheric EMIC waves in a hot plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qi; Cao, Xing; Gu, Xudong, E-mail: guxudong@whu.edu.cn, E-mail: bbni@whu.edu.cn
2016-06-15
Since electromagnetic ion cyclotron (EMIC) waves in the terrestrial magnetosphere play a crucial role in the dynamic losses of relativistic electrons and energetic protons and in the ion heating, it is important to pursue a comprehensive understanding of the EMIC wave dispersion relation under realistic circumstances, which can shed significant light on the generation, amplification, and propagation of magnetospheric EMIC waves. The full kinetic linear dispersion relation is implemented in the present study to evaluate the linear growth of EMIC waves in a multi-ion (H{sup +}, He{sup +}, and O{sup +}) magnetospheric plasma that also consists of hot ring currentmore » protons. Introduction of anisotropic hot protons strongly modifies the EMIC wave dispersion surface and can result in the simultaneous growth of H{sup +}-, He{sup +}-, and O{sup +}-band EMIC emissions. Our parametric analysis demonstrates that an increase in the hot proton concentration can produce the generation of H{sup +}- and He{sup +}-band EMIC waves with higher possibility. While the excitation of H{sup +}-band emissions requires relatively larger temperature anisotropy of hot protons, He{sup +}-band emissions are more likely to be triggered in the plasmasphere or plasmaspheric plume where the background plasma is denser. In addition, the generation of He{sup +}-band waves is more sensitive to the variation of proton temperature than H{sup +}-band waves. Increase of cold heavy ion (He{sup +} and O{sup +}) density increases the H{sup +} cutoff frequency and therefore widens the frequency coverage of the stop band above the He{sup +} gyrofrequency, leading to a significant damping of H{sup +}-band EMIC waves. In contrast, O{sup +}-band EMIC waves characteristically exhibit the temporal growth much weaker than the other two bands, regardless of all considered variables, suggesting that O{sup +}-band emissions occur at a rate much lower than H{sup +}- and He{sup +}-band emissions, which is consistent with the observations.« less
Exploration of Force Myography and surface Electromyography in hand gesture classification.
Jiang, Xianta; Merhi, Lukas-Karim; Xiao, Zhen Gang; Menon, Carlo
2017-03-01
Whereas pressure sensors increasingly have received attention as a non-invasive interface for hand gesture recognition, their performance has not been comprehensively evaluated. This work examined the performance of hand gesture classification using Force Myography (FMG) and surface Electromyography (sEMG) technologies by performing 3 sets of 48 hand gestures using a prototyped FMG band and an array of commercial sEMG sensors worn both on the wrist and forearm simultaneously. The results show that the FMG band achieved classification accuracies as good as the high quality, commercially available, sEMG system on both wrist and forearm positions; specifically, by only using 8 Force Sensitive Resisters (FSRs), the FMG band achieved accuracies of 91.2% and 83.5% in classifying the 48 hand gestures in cross-validation and cross-trial evaluations, which were higher than those of sEMG (84.6% and 79.1%). By using all 16 FSRs on the band, our device achieved high accuracies of 96.7% and 89.4% in cross-validation and cross-trial evaluations. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
POST-OUTBURST RADIO OBSERVATIONS OF THE HIGH MAGNETIC FIELD PULSAR PSR J1119-6127
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majid, Walid A.; Pearlman, Aaron B.; Dobreva, Tatyana
We have carried out high-frequency radio observations of the high magnetic field pulsar PSR J1119-6127 following its recent X-ray outburst. While initial observations showed no evidence of significant radio emission, subsequent observations detected pulsed emission across a large frequency band. In this Letter, we report on the initial disappearance of the pulsed emission and its prompt reactivation and dramatic evolution over several months of observation. The periodic pulse profile at S -band (2.3 GHz) after reactivation exhibits a multi-component emission structure, while the simultaneous X -band (8.4 GHz) profile shows a single emission peak. Single pulses were also detected atmore » S -band near the main emission peaks. We present measurements of the spectral index across a wide frequency bandwidth, which captures the underlying changes in the radio emission profile of the neutron star. The high-frequency radio detection, unusual emission profile, and observed variability suggest similarities with magnetars, which may independently link the high-energy outbursts to magnetar-like behavior.« less
Blast investigation by fast multispectral radiometric analysis
NASA Astrophysics Data System (ADS)
Devir, A. D.; Bushlin, Y.; Mendelewicz, I.; Lessin, A. B.; Engel, M.
2011-06-01
Knowledge regarding the processes involved in blasts and detonations is required in various applications, e.g. missile interception, blasts of high-explosive materials, final ballistics and IED identification. Blasts release large amount of energy in short time duration. Some part of this energy is released as intense radiation in the optical spectral bands. This paper proposes to measure the blast radiation by a fast multispectral radiometer. The measurement is made, simultaneously, in appropriately chosen spectral bands. These spectral bands provide extensive information on the physical and chemical processes that govern the blast through the time-dependence of the molecular and aerosol contributions to the detonation products. Multi-spectral blast measurements are performed in the visible, SWIR and MWIR spectral bands. Analysis of the cross-correlation between the measured multi-spectral signals gives the time dependence of the temperature, aerosol and gas composition of the blast. Farther analysis of the development of these quantities in time may indicate on the order of the detonation and amount and type of explosive materials. Examples of analysis of measured explosions are presented to demonstrate the power of the suggested fast multispectral radiometric analysis approach.
Composite 3D-printed metastructures for low-frequency and broadband vibration absorption
NASA Astrophysics Data System (ADS)
Matlack, Kathryn H.; Bauhofer, Anton; Krödel, Sebastian; Palermo, Antonio; Daraio, Chiara
2016-07-01
Architected materials that control elastic wave propagation are essential in vibration mitigation and sound attenuation. Phononic crystals and acoustic metamaterials use band-gap engineering to forbid certain frequencies from propagating through a material. However, existing solutions are limited in the low-frequency regimes and in their bandwidth of operation because they require impractical sizes and masses. Here, we present a class of materials (labeled elastic metastructures) that supports the formation of wide and low-frequency band gaps, while simultaneously reducing their global mass. To achieve these properties, the metastructures combine local resonances with structural modes of a periodic architected lattice. Whereas the band gaps in these metastructures are induced by Bragg scattering mechanisms, their key feature is that the band-gap size and frequency range can be controlled and broadened through local resonances, which are linked to changes in the lattice geometry. We demonstrate these principles experimentally, using advanced additive manufacturing methods, and inform our designs using finite-element simulations. This design strategy has a broad range of applications, including control of structural vibrations, noise, and shock mitigation.
NASA Astrophysics Data System (ADS)
Maamary, Rabih; Fertein, Eric; Fourmentin, Marc; Dewaele, Dorothée; Cazier, Fabrice; Chen, Changshui; Chen, Weidong
2017-07-01
We report on the measurements of the effective line intensities of the ν1 fundamental band of trans-nitrous acid (trans-HONO) in the infrared near 3600 cm-1 (2.78 μm). A home-made widely tunable laser spectrometer based on difference-frequency generation (DFG) was used for this study. The strengths of 28 well-resolved absorption lines of the ν1 band were determined by scaling their absorption intensities to the well referenced absorption line intensity of the ν3 band of trans-HONO around 1250 cm-1 recorded simultaneously with the help of a DFB quantum cascade laser (QCL) spectrometer. The maximum measurement uncertainty of 12% in the line intensities is mainly determined by the uncertainty announced in the referenced line intensities, while the measurement precision in frequency positions of the absorption lines is better than 6×10-4 cm-1. The cross-measurement carried out in the present work allows one to perform intensity calibration using well referenced line parameters.
NASA Technical Reports Server (NTRS)
Orton, G. S.; Robiette, A. G.
1980-01-01
Line parameters (transition frequencies, line strengths, line widths, ground state energies and quantum identifications) for the nu2 and nu4 bands of (C-12)H4 and (C-13)H4 have been calculated for J-prime equal to or less than 25 using the simultaneous coupled fitting procedure of Gray and Robiette. Molecular constants for the nu2 band of (C-13)H4 were estimated from isotopic shifts from (C-12)H4 values. Agreement with laboratory spectra, where available, is always well within 1 kayser over the entire spectral range covered by the list. The most serious problem in comparison with laboratory data is the omission of lines belonging to 'hot' bands in this spectral region. This list is valuable in remote sensing problems for sorting out lines of trace species from weak methane lines and for determining the atmospheric opacity in relatively transparent spectral regions. Applications of the parameter list are demonstrated for remote sounding of the Jovian atmosphere.
Luoma, Jarkko; Pekkonen, Eero; Airaksinen, Katja; Helle, Liisa; Nurminen, Jussi; Taulu, Samu; Mäkelä, Jyrki P
2018-06-22
Advanced Parkinson's disease (PD) is characterized by an excessive oscillatory beta band activity in the subthalamic nucleus (STN). Deep brain stimulation (DBS) of STN alleviates motor symptoms in PD and suppresses the STN beta band activity. The effect of DBS on cortical sensorimotor activity is more ambiguous; both increases and decreases of beta band activity have been reported. Non-invasive studies with simultaneous DBS are problematic due to DBS-induced artifacts. We recorded magnetoencephalography (MEG) from 16 advanced PD patients with and without STN DBS during rest and wrist extension. The strong magnetic artifacts related to stimulation were removed by temporal signal space separation. MEG oscillatory activity at 5-25 Hz was suppressed during DBS in a widespread frontoparietal region, including the sensorimotor cortex identified by the cortico-muscular coherence. The strength of suppression did not correlate with clinical improvement. Our results indicate that alpha and beta band oscillations are suppressed at the frontoparietal cortex by STN DBS in PD. Copyright © 2018. Published by Elsevier B.V.
Edge waves and resonances in two-dimensional phononic crystal plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Jin-Chen, E-mail: hsujc@yuntech.edu.tw; Hsu, Chih-Hsun
2015-05-07
We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. Wemore » design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.« less
Wojnar, P; Szymura, M; Zaleszczyk, W; Kłopotowski, L; Janik, E; Wiater, M; Baczewski, L T; Kret, S; Karczewski, G; Kossut, J; Wojtowicz, T
2013-09-13
The absence of luminescence in the near band edge energy region of Te-anion based semiconductor nanowires grown by gold catalyst assisted molecular beam epitaxy has strongly limited their applications in the field of photonics. In this paper, an enhancement of the near band edge emission intensity from ZnTe/ZnMgTe core/shell nanowires grown on Si substrates is reported. A special role of the use of Si substrates instead of GaAs substrates is emphasized, which results in an increase of the near band edge emission intensity by at least one order of magnitude accompanied by a simultaneous reduction of the defect related luminescence. A possible explanation of this effect relies on the presence of Ga-related deep level defects in structures grown on GaAs substrates, which are absent when Si substrates are used. Monochromatic mapping of the cathodoluminescence clearly confirms that the observed emission originates, indeed, from the ZnTe/ZnMgTe core/shell nanowires, whereas individual objects are studied by means of microphotoluminescence.
Vortex arrays and ciliary tangles underlie the feeding-swimming trade-off in starfish larvae
NASA Astrophysics Data System (ADS)
Gilpin, William; Prakash, Vivek N.; Prakash, Manu
2017-04-01
Many marine invertebrates have larval stages covered in linear arrays of beating cilia, which propel the animal while simultaneously entraining planktonic prey. These bands are strongly conserved across taxa spanning four major superphyla, and they are responsible for the unusual morphologies of many invertebrate larvae. However, few studies have investigated their underlying hydrodynamics. Here, we study the ciliary bands of starfish larvae, and discover a beautiful pattern of slowly evolving vortices that surrounds the swimming animals. Closer inspection of the bands reveals unusual ciliary `tangles' analogous to topological defects that break up and re-form as the animal adjusts its swimming stroke. Quantitative experiments and modelling demonstrate that these vortices create a physical trade-off between feeding and swimming in heterogeneous environments, which manifests as distinct flow patterns or `eigenstrokes' representing each behaviour--potentially implicating neuronal control of cilia. This quantitative interplay between larval form and hydrodynamic function may generalize to other invertebrates with ciliary bands, and illustrates the potential effects of active boundary conditions in other biological and synthetic systems.
Abrams, Daniel A; Nicol, Trent; White-Schwoch, Travis; Zecker, Steven; Kraus, Nina
2017-05-01
Speech perception relies on a listener's ability to simultaneously resolve multiple temporal features in the speech signal. Little is known regarding neural mechanisms that enable the simultaneous coding of concurrent temporal features in speech. Here we show that two categories of temporal features in speech, the low-frequency speech envelope and periodicity cues, are processed by distinct neural mechanisms within the same population of cortical neurons. We measured population activity in primary auditory cortex of anesthetized guinea pig in response to three variants of a naturally produced sentence. Results show that the envelope of population responses closely tracks the speech envelope, and this cortical activity more closely reflects wider bandwidths of the speech envelope compared to narrow bands. Additionally, neuronal populations represent the fundamental frequency of speech robustly with phase-locked responses. Importantly, these two temporal features of speech are simultaneously observed within neuronal ensembles in auditory cortex in response to clear, conversation, and compressed speech exemplars. Results show that auditory cortical neurons are adept at simultaneously resolving multiple temporal features in extended speech sentences using discrete coding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Geng, Xiwen; Wang, Xuenan; Xie, Jinlu; Zhang, Xiao; Wang, Xiusong; Hou, Yabing; Lei, Chengdong; Li, Min; Han, Hongyu; Yao, Xiaomeng; Zhang, Qun; Wang, Min
2016-12-15
Levodopa (l-DOPA) has been proved to reverse the pathologic neuron activities in many brain regions related to Parkinson's disease (PD). But little is known about the effect of l-DOPA on the altered electrophysiological coherent activities between pedunculopontine nucleus (PPN) and motor cortex. To investigate this, local field potentials (LFPs) of PPN and primary motor cortex (M1) were recorded simultaneously in control, 6-hydroxydopamine lesioned and lesioned rats with l-DOPA chronic treatment. The results revealed that in resting state, chronic l-DOPA treatment could correct the suppressed power of LFPs in PPN and M1 in low-frequency band (1-7Hz) and the enhanced power in high-frequency band (7-70Hz in PPN and 12-70Hz in M1) of lesioned rats. In locomotor state, l-DOPA treatment could correct the alterations in most of frequency bands except the δ band in PPN and α band in M1. Moreover, l-DOPA could also reverse the altered coherent relationships caused by dopamine depletion in resting state between PPN and M1 in β band. And in locomotor state, l-DOPA had therapeutic effect on the alterations in δ and β bands but not in the α band. These findings provide evidence that l-DOPA can reverse the altered LFP activities in PPN and M1 and their relationships in a rat model of PD, which contributes to better understanding the electrophysiological mechanisms of the pathophysiology and therapy of PD. Copyright © 2016. Published by Elsevier B.V.
Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes
Shimo, Hanae; Arjunan, Satya Nanda Vel; Machiyama, Hiroaki; Nishino, Taiko; Suematsu, Makoto; Fujita, Hideaki; Tomita, Masaru; Takahashi, Koichi
2015-01-01
Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs. PMID:26046580
Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes.
Shimo, Hanae; Arjunan, Satya Nanda Vel; Machiyama, Hiroaki; Nishino, Taiko; Suematsu, Makoto; Fujita, Hideaki; Tomita, Masaru; Takahashi, Koichi
2015-06-01
Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs.
NASA Technical Reports Server (NTRS)
Stansberry, Gene; Kervin, Paul; Mulrooney, Mark
2010-01-01
The National Aeronautics and Space Administration's (NASA) Orbital Debris Program Office is teaming with the US Air Force Research Laboratory's (AFRL) Maui Optical Site to deploy a moderate field-of-view, 1.3 m aperture, optical telescope for orbital debris applications. The telescope will be located on the island of Legan in the Kwajalein Atoll and is scheduled for completion in the Spring of 2011. The telescope is intended to sample both low inclination/high eccentricity orbits and near geosynchronous orbits. The telescope will have a 1 deg diagonal field-of-view on a 4K x 4K CCD. The telescope is expected to be able to detect 10-cm diameter debris at geosynchronous altitudes (5 sec exposure assuming a spherical specular phase function w/ albedo =0.13). Once operational, the telescope has the potential of conducting simultaneous observations with radars operated by the US Army at Kwajalein Atoll (USAKA) and located on the island of Roi-Namur, approximately 55 km to the north of Legan. Four radars, representing 6 frequency bands, are available for use: ALTAIR (ARPA-Long Range Tracking and Instrumentation Radar) operating at VHF & UHF, TRADEX (Target Resolution and Discrimination Experiment) operating at L-band and S-band, ALCOR (ARPA-Lincoln C-band Observables Radar) operating at S-band, and MMW (Millimeter Wave) Radar operating at Ka-band. Also potentially available is the X-band GBRP (Ground Based Radar-Prototype located 25 km to the southeast of Legan on the main island of Kwajalein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, James E.; Purdue University, West Lafayette, Indiana 47907; Hages, Charles J.
2016-07-11
Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) solar cells typically exhibit high short-circuit current density (J{sub sc}), but have reduced cell efficiencies relative to other thin film technologies due to a deficit in the open-circuit voltage (V{sub oc}), which prevent these devices from becoming commercially competitive. Recent research has attributed the low V{sub oc} in CZTSSe devices to small scale disorder that creates band tail states within the absorber band gap, but the physical processes responsible for this V{sub oc} reduction have not been elucidated. In this paper, we show that carrier recombination through non-mobile band tail states has a strong voltage dependencemore » and is a significant performance-limiting factor, and including these effects in simulation allows us to simultaneously explain the V{sub oc} deficit, reduced fill factor, and voltage-dependent quantum efficiency with a self-consistent set of material parameters. Comparisons of numerical simulations to measured data show that reasonable values for the band tail parameters (characteristic energy, capture rate) can account for the observed low V{sub oc}, high J{sub sc}, and voltage dependent collection efficiency. These results provide additional evidence that the presence of band tail states accounts for the low efficiencies of CZTSSe solar cells and further demonstrates that recombination through non-mobile band tail states is the dominant efficiency limiting mechanism.« less
Zhao, Lei; Liu, Han; He, Zhihong; Dong, Shikui
2018-05-14
Multiband metamaterial perfect absorbers (MPAs) have promising applications in many fields like microbolometers, infrared detection, biosensing, and thermal emitters. In general, the single resonator can only excite a fundamental mode and achieve single absorption band. The multiband MPA can be achieved by combining several different sized resonators together. However, it's still challenging to design the MPA with absorption bands of more than four and average absorptivity of more than 90% due to the interaction between differently sized resonators. In this paper, three absorption bands are successfully achieved with average absorptivity up to 98.5% only utilizing single one our designed ring-strip resonator, which can simultaneously excite a fundamental electric dipole mode, a higher-order electric quadrupole mode, and a higher-order electric octopole mode. As the biosensor, the sensing performance of the higher-order modes is higher than the fundamental modes. Then we try to increase the absorption bands by combining different sized ring-strip resonators together and make the average absorptivity above 90% by optimizing the geometry parameters. A six-band MPA is achieved by combining two different sized ring-strip resonators with average absorptivity up to 98.8%, which can excite two dipole modes, two quadrupole modes, and two octopole modes. A twelve-band MPA is achieved by combining four different sized ring-strip resonators with average absorptivity up to 93.7%, which can excite four dipole modes, four quadrupole modes, and four octopole modes.
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Macdonald, R. B.; Hall, F. G.; Carnes, J. G.
1986-01-01
Results from analysis of a data set of simultaneous measurements of Thematic Mapper band reflectance and leaf area index are presented. The measurements were made over pure stands of Aspen in the Superior National Forest of northern Minnesota. The analysis indicates that the reflectance may be sensitive to the leaf area index of the Aspen early in the season. The sensitivity disappears as the season progresses. Based on the results of model calculations, an explanation for the observed relationship is developed. The model calculations indicate that the sensitivity of the reflectance to the Aspen overstory depends on the amount of understory present.
Accessing quadratic nonlinearities of metals through metallodielectric photonic-band-gap structures.
D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; Scalora, Michael
2006-09-01
We study second harmonic generation in a metallodielectric photonic-band-gap structure made of alternating layers of silver and a generic, dispersive, linear, dielectric material. We find that under ideal conditions the conversion efficiency can be more than two orders of magnitude greater than the maximum conversion efficiency achievable in a single layer of silver. We interpret this enhancement in terms of the simultaneous availability of phase matching conditions over the structure and good field penetration into the metal layers. We also give a realistic example of a nine-period, Si3/N4Ag stack, where the backward conversion efficiency is enhanced by a factor of 50 compared to a single layer of silver.
Monolithic multi-color light emission/detection device
Wanlass, M.W.
1995-02-21
A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber. 5 figs.
Ultra wide-band localization and SLAM: a comparative study for mobile robot navigation.
Segura, Marcelo J; Auat Cheein, Fernando A; Toibero, Juan M; Mut, Vicente; Carelli, Ricardo
2011-01-01
In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work.
Double line groups: structure, irreducible representations and spin splitting of the bands
NASA Astrophysics Data System (ADS)
Lazić, N.; Milivojević, M.; Vuković, T.; Damnjanović, M.
2018-06-01
Double line groups are derived, structurally examined and classified within 13 infinite families. Their irreducible representations, found and tabulated, single out the complete set of conserved quantum numbers in fermionic quasi-one-dimensional systems possessing either translational periodicity or incommensurate helical symmetry. Spin–orbit interaction is analyzed: the induced orbital band splitting and the consequent removal of the spin degeneracy are completely explained. Being incompatible with vertical mirror symmetry, as well as with simultaneous invariance under time-reversal and horizontal (roto)reflections, spin splitting and spin polarized currents may occur only in the systems with the first and the fifth family double line group symmetry. The effects are illustrated on carbon nanotubes.
Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.
Bayram, Ali; Bayraktaroglu, Zubeyir; Karahan, Esin; Erdogan, Basri; Bilgic, Basar; Ozker, Muge; Kasikci, Itir; Duru, Adil D; Ademoglu, Ahmet; Oztürk, Cengizhan; Arikan, Kemal; Tarhan, Nevzat; Demiralp, Tamer
2011-04-01
The stability of the steady-state visual evoked potentials (SSVEPs) across trials and subjects makes them a suitable tool for the investigation of the visual system. The reproducible pattern of the frequency characteristics of SSVEPs shows a global amplitude maximum around 10 Hz and additional local maxima around 20 and 40 Hz, which have been argued to represent resonant behavior of damped neuronal oscillators. Simultaneous electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) measurement allows testing of the resonance hypothesis about the frequency-selective increases in SSVEP amplitudes in human subjects, because the total synaptic activity that is represented in the fMRI-Blood Oxygen Level Dependent (fMRI-BOLD) response would not increase but get synchronized at the resonance frequency. For this purpose, 40 healthy volunteers were visually stimulated with flickering light at systematically varying frequencies between 6 and 46 Hz, and the correlations between SSVEP amplitudes and the BOLD responses were computed. The SSVEP frequency characteristics of all subjects showed 3 frequency ranges with an amplitude maximum in each of them, which roughly correspond to alpha, beta and gamma bands of the EEG. The correlation maps between BOLD responses and SSVEP amplitude changes across the different stimulation frequencies within each frequency band showed no significant correlation in the alpha range, while significant correlations were obtained in the primary visual area for the beta and gamma bands. This non-linear relationship between the surface recorded SSVEP amplitudes and the BOLD responses of the visual cortex at stimulation frequencies around the alpha band supports the view that a resonance at the tuning frequency of the thalamo-cortical alpha oscillator in the visual system is responsible for the global amplitude maximum of the SSVEP around 10 Hz. Information gained from the SSVEP/fMRI analyses in the present study might be extrapolated to the EEG/fMRI analysis of the transient event-related potentials (ERPs) in terms of expecting more reliable and consistent correlations between EEG and fMRI responses, when the analyses are carried out on evoked or induced oscillations (spectral perturbations) in separate frequency bands instead of the time-domain ERP peaks.
He, Ya-xiang; Xue, Yong-quan; Wang, Hong-ying; Yang, Nai-chao; Shao, Xue-jun; Xu, Jun; Ji, Zheng-hua; Huang, Yi-ping; Ding, Yun-fang; Hu, Shao-yan
2012-08-01
To evaluate the clinical and laboratory features of pediatric inv(16) acute myeloid leukemia (AML) retrospectively. Dual color fluorescence in situ hybridization (D-FISH) using a LSI CBFβ inv(16) break apart probe labeled by Spectrum red and Spectrum green was performed in 15 acute myeloid leukemia cases, including 13 cases with or without abnormal eosinophils but with positive core binding factor β (CBFβ)-MYH11 fusion transcript detected by RT-PCR, and 2 cases with trisomy 8 (+8). The results were compared with the morphology, immunophenotype, karyotype and RT-PCR. Morphologically, 12 cases were diagnosed as M(4)EO, 2 as M(4), and 1 as M(2a). Immunophenotypically, all 13 AML cases with inv(16) showed positive expression of CD(13) and CD(33), but without the expression of any lymphoid lineage antigens. Karyotyping analysis with G-banding detected inv(16) in 10 AML cases, including 9 M(4)EO cases and 1 M(2a), but only 5 positive cases were detected using R-banding technique. Among them, 2 cases had simultaneous +8 and trisomy22 (+22), one had +22 only in addition to inv(16). D-FISH revealed a CBFβ-MYH11 rearrangement in 13 cases of AML with positive RT-PCR results, and the mean positive rate of cell detection was 55.15% (range 37.0% - 86.0%). The complete remission rate (CR) and median survival period in this series of inv(16) AML were 81.5%and 11 months, respectively, of whom, 8 cases were still in CR. Relapse and karyotypic evolution were seen in case 5 with +8, +22 in addition to inv(16). AML with inv(16) is a special subtype. Most cases belong to M(4)EO. Its prognosis is good in general, but it seems to be an unfavorable feature for AML with inv(16) and +8, +22 simultaneously, especially with karyotypic evolution. For detection of inv(16), G-banding technique is evidently superior to R-banding technique. D-FISH combined with RT-PCR are more sensitive and reliable than chromosome banding analysis.
Hitomi X-ray studies of giant radio pulses from the Crab pulsar
NASA Astrophysics Data System (ADS)
Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier O.; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Oshimizu, Kenya; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shiníchiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shiníchiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Terasawa, Toshio; Sekido, Mamoru; Takefuji, Kazuhiro; Kawai, Eiji; Misawa, Hiroaki; Tsuchiya, Fuminori; Yamazaki, Ryo; Kobayashi, Eiji; Kisaka, Shota; Aoki, Takahiro
2018-03-01
To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2-300 keV band and the Kashima NICT radio telescope in the 1.4-1.7 GHz band with a net exposure of about 2 ks on 2016 March 25, just before the loss of the Hitomi mission. The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1000 and 100 GRPs were simultaneously observed at the main pulse and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main pulse or inter-pulse phase. All variations are within the 2 σ fluctuations of the X-ray fluxes at the pulse peaks, and the 3 σ upper limits of variations of main pulse or inter-pulse GRPs are 22% or 80% of the peak flux in a 0.20 phase width, respectively, in the 2-300 keV band. The values for main pulse or inter-pulse GRPs become 25% or 110%, respectively, when the phase width is restricted to the 0.03 phase. Among the upper limits from the Hitomi satellite, those in the 4.5-10 keV and 70-300 keV bands are obtained for the first time, and those in other bands are consistent with previous reports. Numerically, the upper limits of the main pulse and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) × 10-11 erg cm-2, respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere. Although the number of photon-emitting particles should temporarily increase to account for the brightening of the radio emission, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a >0.02% brightening of the pulse-peak flux under such conditions.
Backbendings of superdeformed bands in 36;40Ar
NASA Astrophysics Data System (ADS)
Xiang, Xu-Hui; He, Xiao-Tao
2018-05-01
Experimentally observed superdeformed (SD) rotational bands in 36Ar and 40Ar are studied by the cranked shell model (CSM) with the pairing correlations treated by a particle-number-conserving (PNC) method. This is the first time that PNC-CSM calculations have been performed on the light nuclear mass region around A=40. The experimental kinematic moments of inertia J (1) versus rotational frequency are reproduced well. The backbending of the SD band at frequency around ℏω=1.5 MeV in 36Ar is attributed to the sharp rise of the simultaneous alignments of the neutron and proton 1d 5/2[202]5/2 pairs and 1f 7/2[321]3/2 pairs, which is a consequence of the band crossing between the 1d 5/2[202]5/2 and 1f 7/2[321]3/2 configuration states. The gentle upbending at low frequency of the SD band in 40Ar is mainly affected by the alignments of the neutron 1f 7/2[321]3/2 pairs and proton 1d 5/2[202]5/2 pairs. The PNC-CSM calculations show that besides the diagonal parts, the off-diagonal parts of the alignments play an important role in the rotational behavior of the SD bands. Supported by National Natural Science Foundation of China (11775112 and 11275098) and the Priority Academic Program Development of Jiangsu Higher Education Institutions
A Multi-Frequency Wide-Swath Spaceborne Cloud and Precipitation Imaging Radar
NASA Technical Reports Server (NTRS)
Li, Lihua; Racette, Paul; Heymsfield, Gary; McLinden, Matthew; Venkatesh, Vijay; Coon, Michael; Perrine, Martin; Park, Richard; Cooley, Michael; Stenger, Pete;
2016-01-01
Microwave and millimeter-wave radars have proven their effectiveness in cloud and precipitation observations. The NASA Earth Science Decadal Survey (DS) Aerosol, Cloud and Ecosystems (ACE) mission calls for a dual-frequency cloud radar (W band 94 GHz and Ka-band 35 GHz) for global measurements of cloud microphysical properties. Recently, there have been discussions of utilizing a tri-frequency (KuKaW-band) radar for a combined ACE and Global Precipitation Measurement (GPM) follow-on mission that has evolved into the Cloud and Precipitation Process Mission (CaPPM) concept. In this presentation we will give an overview of the technology development efforts at the NASA Goddard Space Flight Center (GSFC) and at Northrop Grumman Electronic Systems (NGES) through projects funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP). Our primary objective of this research is to advance the key enabling technologies for a tri-frequency (KuKaW-band) shared-aperture spaceborne imaging radar to provide unprecedented, simultaneous multi-frequency measurements that will enhance understanding of the effects of clouds and precipitation and their interaction on Earth climate change. Research effort has been focused on concept design and trade studies of the tri-frequency radar; investigating architectures that provide tri-band shared-aperture capability; advancing the development of the Ka band active electronically scanned array (AESA) transmitreceive (TR) module, and development of the advanced radar backend electronics.
Wide field-of-view dual-band multispectral muzzle flash detection
NASA Astrophysics Data System (ADS)
Montoya, J.; Melchor, J.; Spiliotis, P.; Taplin, L.
2013-06-01
Sensor technologies are undergoing revolutionary advances, as seen in the rapid growth of multispectral methodologies. Increases in spatial, spectral, and temporal resolution, and in breadth of spectral coverage, render feasible sensors that function with unprecedented performance. A system was developed that addresses many of the key hardware requirements for a practical dual-band multispectral acquisition system, including wide field of view and spectral/temporal shift between dual bands. The system was designed using a novel dichroic beam splitter and dual band-pass filter configuration that creates two side-by-side images of a scene on a single sensor. A high-speed CMOS sensor was used to simultaneously capture data from the entire scene in both spectral bands using a short focal-length lens that provided a wide field-of-view. The beam-splitter components were arranged such that the two images were maintained in optical alignment and real-time intra-band processing could be carried out using only simple arithmetic on the image halves. An experiment related to limitations of the system to address multispectral detection requirements was performed. This characterized the system's low spectral variation across its wide field of view. This paper provides lessons learned on the general limitation of key hardware components required for multispectral muzzle flash detection, using the system as a hardware example combined with simulated multispectral muzzle flash and background signatures.
Gebre, Samrawit A; Reeber, Stacey L; Sillitoe, Roy V
2012-04-01
The cerebellum receives sensory signals from spinocerebellar (lower limbs) and dorsal column nuclei (upper limbs) mossy fibers. In the cerebellum, mossy fibers terminate in bands that are topographically aligned with stripes of Purkinje cells. While much is known about the molecular heterogeneity of Purkinje cell stripes, little is known about whether mossy fiber compartments have distinct molecular profiles. Here, we show that the vesicular glutamate transporters VGLUT1 and VGLUT2, which mediate glutamate uptake into synaptic vesicles of excitatory neurons, are expressed in complementary bands of mossy fibers in the adult mouse cerebellum. Using a combination of immunohistochemistry and anterograde tracing, we found heavy VGLUT2 and weak VGLUT1 expression in bands of spinocerebellar mossy fibers. The adjacent bands, which are in part comprised of dorsal column nuclei mossy fibers, strongly express VGLUT1 and weakly express VGLUT2. Simultaneous injections of fluorescent tracers into the dorsal column nuclei and lower thoracic-upper lumbar spinal cord revealed that upper and lower limb sensory pathways innervate adjacent VGLUT1/VGLUT2 parasagittal bands. In summary, we demonstrate that VGLUT1 and VGLUT2 are differentially expressed by dorsal column nuclei and spinocerebellar mossy fibers, which project to complementary cerebellar bands and respect common compartmental boundaries in the adult mouse cerebellum.
NASA Astrophysics Data System (ADS)
Robinson, Donald Arthur
1984-06-01
A method is presented to predict airborne and barrier transmission loss of an audible signal as it travels from a corridor based octave band sound source to a room based receiver location. Flanking pathways are not considered in the prediction model. Although the central focus of the research is on the propagation of the signal, a comprehensive review of the source, path and receiver are presented as related to emergency audible signal propagation. Linear attenuation of the signal and end wall reflection is applied along the corridor path incorporating research conducted by T. L. Redmore of Essex, England. Classical room acoustics are applied to establish the onset of linear attenuation beyond the near field. The "coincidence effect" is applied to the transmission loss through the room door barrier. A constant barrier door transmission loss from corridor-to-room is applied throughout the 250 - 8000 Hertz octave bands. In situ measurements were conducted in two separate dormitories on the University of Massachusetts Amherst campus to verify the validity of the approach. All of the experimental data points follow the corresponding points predicted by the model with all correlations exceeding 0.9. The 95 percent confidence intervals for the absolute difference between predicted and measured values ranged from 0.76 dB to 4.5 dB based on five Leq dB levels taken at each octave band along the length of the corridor. For the corridor to room attenuation in the six test rooms, with the door closed and edge sealed, the predicted minus measured levels ranged from an interval of 0.54 to 2.90 dB Leq at octave bands from 250 to 8000 Hertz. Given the inherent difficulty of in situ tests compared to laboratory or modeling approaches the confidence intervals obtained confirm the usefulness of the prediction model presented.
NASA Astrophysics Data System (ADS)
Zhong, Bo; Chen, Wuhan; Wu, Shanlong; Liu, Qinhuo
2016-10-01
Cloud detection of satellite imagery is very important for quantitative remote sensing research and remote sensing applications. However, many satellite sensors don't have enough bands for a quick, accurate, and simple detection of clouds. Particularly, the newly launched moderate to high spatial resolution satellite sensors of China, such as the charge-coupled device on-board the Chinese Huan Jing 1 (HJ-1/CCD) and the wide field of view (WFV) sensor on-board the Gao Fen 1 (GF-1), only have four available bands including blue, green, red, and near infrared bands, which are far from the requirements of most could detection methods. In order to solve this problem, an improved and automated cloud detection method for Chinese satellite sensors called OCM (Object oriented Cloud and cloud-shadow Matching method) is presented in this paper. It firstly modified the Automatic Cloud Cover Assessment (ACCA) method, which was developed for Landsat-7 data, to get an initial cloud map. The modified ACCA method is mainly based on threshold and different threshold setting produces different cloud map. Subsequently, a strict threshold is used to produce a cloud map with high confidence and large amount of cloud omission and a loose threshold is used to produce a cloud map with low confidence and large amount of commission. Secondly, a corresponding cloud-shadow map is also produced using the threshold of near-infrared band. Thirdly, the cloud maps and cloud-shadow map are transferred to cloud objects and cloud-shadow objects. Cloud and cloud-shadow are usually in pairs; consequently, the final cloud and cloud-shadow maps are made based on the relationship between cloud and cloud-shadow objects. OCM method was tested using almost 200 HJ-1/CCD images across China and the overall accuracy of cloud detection is close to 90%.
Device and method for shortening reactor process tubes
Frantz, C.E.; Alexander, W.K.; Lander, W.E.B.
A device and method are described for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.
Zero-phase FIR filters: Blessing or curse?
NASA Astrophysics Data System (ADS)
Scherbaum, Frank
These are exciting times for observational seismology. State-of-the-art broadband seismometers now easily cover a frequency band of more than one hundred seconds to several tens of Hertz in a single sensor. Commonly available data loggers provide a dynamic range exceeding 120 dB. Ground motion amplitudes differing by more than 6 orders of magnitude can be simultaneously recorded without distortion.
A static acoustic signature system for the analysis of dynamic flight information
NASA Technical Reports Server (NTRS)
Ramer, D. J.
1978-01-01
The Army family of helicopters was analyzed to measure the polar octave band acoustic signature in various modes of flight. A static array of calibrated microphones was used to simultaneously acquire the signature and differential times required to mathematically position the aircraft in space. The signature was then reconstructed, mathematically normalized to a fixed radius around the aircraft.
Surface Measurements of Solar Spectral Radiative Flux in the Cloud-Free Atmosphere
NASA Technical Reports Server (NTRS)
Pilewskie, Peter; Goetz, A. F. H.; Bergstrom, R.; Beal, D.; Gore, Warren J. Y. (Technical Monitor)
1997-01-01
Recent studies (Charlock, et al.; Kato, et. al) have indicated a potential discrepancy between measured solar irradiance in the cloud-free atmosphere and model derived downwelling solar irradiance. These conclusions were based primarily on broadband integrated solar flux. Extinction (both absorption and scattering) phenomena, however, typically have spectral characteristics that would be present in moderate resolution (e.g., 10 nm) spectra, indicating the need for such measurements to thoroughly investigate the cause of any discrepancies. The 1996 Department of Energy Atmospheric Radiation Measurement Program (ARM) Intensive Observation Period (IOP), held simultaneously with the NASA Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) Program, provided an opportunity for two simultaneous but independent measurements of moderate resolution solar spectral downwelling irradiance at the surface. The instruments were the NASA Ames Solar Spectral Flux Radiometer and the Analytical Spectral Devices, Inc., FieldSpecT-FR. Spectral and band integrated quantities from both sets of measurements will be presented, along with estimates of the downwelling solar irradiance from band model and line by line calculations, in an effort to determine the compatibility between measured and calculated solar irradiance in the cloud-free atmosphere.
Dell'Omo, Roberto; Mura, Marco; Lesnik Oberstein, Sarit Y; Bijl, Heico; Tan, H Stevie
2012-04-01
To describe fundus autofluorescence and optical coherence tomography (OCT) features of the macula after pars plana vitrectomy for rhegmatogenous retinal detachment. Thirty-three eyes of 33 consecutive patients with repaired rhegmatogenous retinal detachment with or without the involvement of the macula were prospectively investigated with simultaneous fundus autofluorescence and OCT imaging using the Spectralis HRA+OCT (Heidelberg Engineering, Heidelberg, Germany) within a few weeks after the operation. Fundus autofluorescence imaging of the macula showed lines of increased and decreased autofluorescence in 19 cases (57.6%). On OCT, these lines corresponded to the following abnormalities: outer retinal folds, inner retinal folds, and skip reflectivity abnormalities of the photoreceptor inner segment/outer segment band. Other OCT findings, not related to abnormal lines on fundus autofluorescence, consisted of disruption of photoreceptor inner segment/outer segment band and collection of intraretinal or subretinal fluid. The presence of outer retinal folds significantly related to metamorphopsia but did not relate to poor postoperative visual acuity. Partial-thickness retinal folds occur commonly after vitrectomy for rhegmatogenous retinal detachment repair and may represent an important anatomical substrate for postoperative metamorphopsia. Fundus autofluorescence and OCT are both sensitive techniques for the detection of these abnormalities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.
2015-12-14
Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintainingmore » high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.« less
First light from a kilometer-baseline Scintillation Auroral GPS Array.
Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G
2015-05-28
We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.
First light from a kilometer-baseline Scintillation Auroral GPS Array
Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G
2015-01-01
We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100–1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. Key Points A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed PMID:26709318
Trace material detection of surfaces via single-beam femtosecond MCARS
NASA Astrophysics Data System (ADS)
Bowman Pilkington, Sherrie S.; Roberson, Stephen D.; Pellegrino, Paul M.
2016-05-01
There is a significant need for the development of optical diagnostics for rapid and accurate detection of chemical species in convoluted systems. In particular, chemical warfare agents and explosive materials are of interest, however, identification of these species is difficult for a wide variety of reasons. Low vapor pressures, for example, cause traditional Raman scattering to be ineffective due to the incredibly long signal collection times that are required. Multiplex Coherent Anti-Stokes Raman Scattering (MCARS) spectroscopy generates a complete Raman spectrum from the material of interest using a combination of a broadband pulse which drives multiple molecular vibrations simultaneously and a narrow band probe pulse. For most species, the complete Raman spectrum can be detected in milliseconds; this makes MCARS an excellent technique for trace material detection in complex systems. In this paper, we present experimental MCARS results on solid state chemical species in complex systems. The 40fs Ti:Sapphire laser used in this study has sufficient output power to produce both the broadband continuum pulse and narrow band probe pulse simultaneously. A series of explosive materials of interest have been identified and compared with spontaneous Raman spectra, showing the specificity and stability of this system.
NASA Astrophysics Data System (ADS)
Zakšek, K.; Hort, M.; Zaletelj, J.; Langmann, B.
2012-09-01
Volcanic ash cloud top height (ACTH) can be monitored on the global level using satellite remote sensing. Here we propose a photogrammetric method based on the parallax between data retrieved from geostationary and polar orbiting satellites to overcome some limitations of the existing methods of ACTH retrieval. SEVIRI HRV band and MODIS band 1 are a good choice because of their high resolution. The procedure works well if the data from both satellites are retrieved nearly simultaneously. MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. The proposed method was tested for the case of the Eyjafjallajökull eruption in April 2010. The parallax between MODIS and SEVIRI data can reach over 30 km which implies ACTH of more than 12 km in the beginning of the eruption. In the end of April eruption ACTH of 3-4 km is observed. The accuracy of ACTH was estimated to be 0.6 km.
NASA Astrophysics Data System (ADS)
Zakšek, K.; Hort, M.; Zaletelj, J.; Langmann, B.
2013-03-01
Volcanic ash cloud-top height (ACTH) can be monitored on the global level using satellite remote sensing. Here we propose a photogrammetric method based on the parallax between data retrieved from geostationary and polar orbiting satellites to overcome some limitations of the existing methods of ACTH retrieval. SEVIRI HRV band and MODIS band 1 are a good choice because of their high resolution. The procedure works well if the data from both satellites are retrieved nearly simultaneously. MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. The proposed method was tested for the case of the Eyjafjallajökull eruption in April 2010. The parallax between MODIS and SEVIRI data can reach 30 km, which implies an ACTH of approximately 12 km at the beginning of the eruption. At the end of April eruption an ACTH of 3-4 km is observed. The accuracy of ACTH was estimated to be 0.6 km.
Sahoo, Madhusmita; Syal, Pratima; Hable, Asawaree A.; Raut, Rahul P.; Choudhari, Vishnu P.; Kuchekar, Bhanudas S.
2011-01-01
Aim: To develop a simple, precise, rapid and accurate HPTLC method for the simultaneous estimation of Lornoxicam (LOR) and Thiocolchicoside (THIO) in bulk and pharmaceutical dosage forms. Materials and Methods: The separation of the active compounds from pharmaceutical dosage form was carried out using methanol:chloroform:water (9.6:0.2:0.2 v/v/v) as the mobile phase and no immiscibility issues were found. The densitometric scanning was carried out at 377 nm. The method was validated for linearity, accuracy, precision, LOD (Limit of Detection), LOQ (Limit of Quantification), robustness and specificity. Results: The Rf values (±SD) were found to be 0.84 ± 0.05 for LOR and 0.58 ± 0.05 for THIO. Linearity was obtained in the range of 60–360 ng/band for LOR and 30–180 ng/band for THIO with correlation coefficients r2 = 0.998 and 0.999, respectively. The percentage recovery for both the analytes was in the range of 98.7–101.2 %. Conclusion: The proposed method was optimized and validated as per the ICH guidelines. PMID:23781452
NASA Astrophysics Data System (ADS)
Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.
2018-03-01
We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.
Theory-driven design of hole-conducting transparent oxides
NASA Astrophysics Data System (ADS)
Trimarchi, G.; Peng, H.; Im, J.; Freeman, A. J.; Cloet, V.; Raw, A.; Poeppelmeier, K. R.; Biswas, K.; Lany, S.; Zunger, A.
2012-02-01
The design of p-type transparent conducting oxides (TCOs) aims at simultaneously achieving transparency and high hole concentration and hole conductivity in one compound. Such design principles (DPs) define a multi-objective optimization problem that is to be solved by searching a large set of compounds for optimum ones. Here, we screen a large set of ternary compounds, including Ag and Cu oxides and chalcogenides, by calculating via first-principles methods the design properties of each compound, in order to search for optimum p-type TCOs. We first select Ag3VO4 as a case study of the application of ab-initio methods to assess a compound as a candidate p-type TCO. We predict Ag3VO4 (i) to have a hole concentration of 10^14 cm-3 at room temperature, (ii) to be at the verge of transparency, and (iii) to have lower hole effective mass than the prototype p-type TCO CuAlO2. We then map the hole effective mass vs. the band gap in the selected compounds and determine those that best meet the DPs by having simultaneously minimum effective mass and a band gap large enough for transparency.
Katsuki, Hiroyuki; Ohmori, Kenji
2016-09-28
We have experimentally performed the coherent control of delocalized ro-vibrational wave packets (RVWs) of solid para-hydrogen (p-H 2 ) by the wave packet interferometry (WPI) combined with coherent anti-Stokes Raman scattering (CARS). RVWs of solid p-H 2 are delocalized in the crystal, and the wave function with wave vector k ∼ 0 is selectively excited via the stimulated Raman process. We have excited the RVW twice by a pair of femtosecond laser pulses with delay controlled by a stabilized Michelson interferometer. Using a broad-band laser pulse, multiple ro-vibrational states can be excited simultaneously. We have observed the time-dependent Ramsey fringe spectra as a function of the inter-pulse delay by a spectrally resolved CARS technique using a narrow-band probe pulse, resolving the different intermediate states. Due to the different fringe oscillation periods among those intermediate states, we can manipulate their amplitude ratio by tuning the inter-pulse delay on the sub-femtosecond time scale. The state-selective manipulation and detection of the CARS signal combined with the WPI is a general and efficient protocol for the control of the interference of multiple quantum states in various quantum systems.
NASA Astrophysics Data System (ADS)
Ragland, S.; Akeson, R. L.; Armandroff, T.; Colavita, M. M.; Danchi, W. C.; Hillenbrand, L. A.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W. A.; Vasisht, G.; Wizinowich, P. L.
2009-09-01
We present spatially resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85 m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 μm wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br γ emission line. The measured disk size at and around Br γ suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.
Acute toxicity of diazinon is similar for eight stocks of bobwhite
Hill, E.F.; Camardese, M.B.; Heinz, G.H.; Spann, J.W.; DeBevec, A.B.
1984-01-01
Nine-week-old bobwhite (Colinus virginianus) from eight different game farms were tested for their sensitivity to an acute oral exposure of technical-grade diazinon (phosphorothioic acid O, O-diethyl-O-[6-methyl- 2-(1 -methylethy 1)-4-pyrimidinyl]ester). Extraneous variables associated with interlaboratory differences in husbandry were eliminated by incubating eggs and rearing chicks to test age for all stocks simultaneously in the same facilities at the Patuxent Wildlife Research Center. Under this single set of conditions, the responses of the eight stocks of bobwhite to diazinon were statistically inseparable, with LD50 values varying from 13 mg/kg (95% confidence interval, 8-21 mg/kg) to 17 mg/kg (95% confidence interval, 11-25 mg/kg). The pooled LD50 for the eight stocks was 14.7 mg/kg (95% confidence interval,13.1-16.5 mg/kg).
Ito, S; Iwao, H; Sakata, J; Inoue, M; Omori, K; Yanagisawa, Y
2016-09-01
A laboratory experiment was conducted by varying the undersurface area of nesting substratum and the number of females in an experimental tank to elucidate the determinants of the mating pattern in the stream goby, Rhinogobius sp. cross-band type. Males with larger nests tended to attract two or more females to their nest in a tank. Moreover, males spawned simultaneously with multiple females and entire brood cannibalism by males was rarely observed under a female-biased sex ratio. When males spawned with a single female with low fecundity, however, entire brood cannibalism occurred at a high frequency, suggesting that a male guarding a nest with fewer eggs consumes the brood. Therefore, spawning behaviour of females that leads to a large egg mass would decrease the risk of entire brood cannibalism. In this species, simultaneous spawning by multiple females in a nest serves as a female counter-measure against entire brood cannibalism. These results suggest that a conflict of interest between the sexes through brood cannibalism is a major determinant of simultaneous spawning. © 2016 The Fisheries Society of the British Isles.
Li, Min; Zhang, Junying; Dang, Wenqiang; Cushing, Scott K; Guo, Dong; Wu, Nianqiang; Yin, Penggang
2013-10-14
The correlation of the electronic band structure with the photocatalytic activity of AgTaO3 has been studied by simulation and experiments. Doping wide band gap oxide semiconductors usually introduces discrete mid-gap states, which extends the light absorption but has limited benefit for photocatalytic activity. Density functional theory (DFT) calculations show that compensated co-doping in AgTaO3 can overcome this problem by increasing the light absorption and simultaneously improving the charge carrier mobility. N/H and N/F co-doping can delocalize the discrete mid-gap states created by sole N doping in AgTaO3, which increases the band curvature and the electron-to-hole effective mass ratio. In particular, N/F co-doping creates a continuum of states that extend the valence band of AgTaO3. N/F co-doping thus improves the light absorption without creating the mid-gap states, maintaining the necessary redox potentials for water splitting and preventing from charge carrier trapping. The experimental results have confirmed that the N/F-codoped AgTaO3 exhibits a red-shift of the absorption edge in comparison with the undoped AgTaO3, leading to remarkable enhancement of photocatalytic activity toward hydrogen generation from water.
Subthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson’s disease
van Wijk, Bernadette C.M.; Beudel, Martijn; Jha, Ashwani; Oswal, Ashwini; Foltynie, Tom; Hariz, Marwan I.; Limousin, Patricia; Zrinzo, Ludvic; Aziz, Tipu Z.; Green, Alexander L.; Brown, Peter; Litvak, Vladimir
2016-01-01
Objective High-amplitude beta band oscillations within the subthalamic nucleus are frequently associated with Parkinson’s disease but it is unclear how they might lead to motor impairments. Here we investigate a likely pathological coupling between the phase of beta band oscillations and the amplitude of high-frequency oscillations around 300 Hz. Methods We analysed an extensive data set comprising resting-state recordings obtained from deep brain stimulation electrodes in 33 patients before and/or after taking dopaminergic medication. We correlated mean values of spectral power and phase–amplitude coupling with severity of hemibody bradykinesia/rigidity. In addition, we used simultaneously recorded magnetoencephalography to look at functional interactions between the subthalamic nucleus and ipsilateral motor cortex. Results Beta band power and phase–amplitude coupling within the subthalamic nucleus correlated positively with severity of motor impairment. This effect was more pronounced within the low-beta range, whilst coherence between subthalamic nucleus and motor cortex was dominant in the high-beta range. Conclusions We speculate that the beta band might impede pro-kinetic high-frequency activity patterns when phase–amplitude coupling is prominent. Furthermore, results provide evidence for a functional subdivision of the beta band into low and high frequencies. Significance Our findings contribute to the interpretation of oscillatory activity within the cortico-basal ganglia circuit. PMID:26971483
Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI.
Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R
2017-04-01
Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We introduce new algorithms for reducing EEG artifacts due to simultaneous fMRI The algorithms combine a reference layer and adaptive filtering Several evaluation criteria suggest superior effectivity in terms of artifact reduction We demonstrate that physiological EEG components are preserved.
Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI
NASA Astrophysics Data System (ADS)
Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R.
2017-04-01
Objective. Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. Approach. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. Main results. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. Significance. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We introduce new algorithms for reducing EEG artifacts due to simultaneous fMRI The algorithms combine a reference layer and adaptive filtering Several evaluation criteria suggest superior effectivity in terms of artifact reduction We demonstrate that physiological EEG components are preserved
Parameter identification of thermophilic anaerobic degradation of valerate.
Flotats, Xavier; Ahring, Birgitte K; Angelidaki, Irini
2003-01-01
The considered mathematical model of the decomposition of valerate presents three unknown kinetic parameters, two unknown stoichiometric coefficients, and three unknown initial concentrations for biomass. Applying a structural identifiability study, we concluded that it is necessary to perform simultaneous batch experiments with different initial conditions for estimating these parameters. Four simultaneous batch experiments were conducted at 55 degrees C, characterized by four different initial acetate concentrations. Product inhibition of valerate degradation by acetate was considered. Practical identification was done optimizing the sum of the multiple determination coefficients for all measured state variables and for all experiments simultaneously. The estimated values of kinetic parameters and stoichiometric coefficients were characterized by the parameter correlation matrix, the confidence interval, and the student's t-test at 5% significance level with positive results except for the saturation constant, for which more experiments for improving its identifiability should be conducted. In this article, we discuss kinetic parameter estimation methods.
THE Q/U IMAGING EXPERIMENT: POLARIZATION MEASUREMENTS OF RADIO SOURCES AT 43 AND 95 GHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huffenberger, K. M.; Araujo, D.; Zwart, J. T. L.
2015-06-10
We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ∼480 such sources within QUIET’s four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30–40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources inmore » Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%–20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps.« less
Spectral Band Selection for Urban Material Classification Using Hyperspectral Libraries
NASA Astrophysics Data System (ADS)
Le Bris, A.; Chehata, N.; Briottet, X.; Paparoditis, N.
2016-06-01
In urban areas, information concerning very high resolution land cover and especially material maps are necessary for several city modelling or monitoring applications. That is to say, knowledge concerning the roofing materials or the different kinds of ground areas is required. Airborne remote sensing techniques appear to be convenient for providing such information at a large scale. However, results obtained using most traditional processing methods based on usual red-green-blue-near infrared multispectral images remain limited for such applications. A possible way to improve classification results is to enhance the imagery spectral resolution using superspectral or hyperspectral sensors. In this study, it is intended to design a superspectral sensor dedicated to urban materials classification and this work particularly focused on the selection of the optimal spectral band subsets for such sensor. First, reflectance spectral signatures of urban materials were collected from 7 spectral libraires. Then, spectral optimization was performed using this data set. The band selection workflow included two steps, optimising first the number of spectral bands using an incremental method and then examining several possible optimised band subsets using a stochastic algorithm. The same wrapper relevance criterion relying on a confidence measure of Random Forests classifier was used at both steps. To cope with the limited number of available spectra for several classes, additional synthetic spectra were generated from the collection of reference spectra: intra-class variability was simulated by multiplying reference spectra by a random coefficient. At the end, selected band subsets were evaluated considering the classification quality reached using a rbf svm classifier. It was confirmed that a limited band subset was sufficient to classify common urban materials. The important contribution of bands from the Short Wave Infra-Red (SWIR) spectral domain (1000-2400 nm) to material classification was also shown.
A DUAL-BAND MILLIMETER-WAVE KINETIC INDUCTANCE CAMERA FOR THE IRAM 30 m TELESCOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monfardini, A.; Benoit, A.; Bideaud, A.
The Neel IRAM KIDs Array (NIKA) is a fully integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. The instrument includes dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz. The imaging sensors consist of two spatially separated arrays of KIDs. The first array, mounted on the 150 GHz branch, is composed of 144 lumped-element KIDs. The second array (220 GHz) consists of 256 antenna-coupled KIDs. Each of the arrays is sensitive to a single polarization; the band splitting is achieved by using a grid polarizer. The optics and sensors aremore » mounted in a custom dilution cryostat, with an operating temperature of {approx}70 mK. Electronic readout is realized using frequency multiplexing and a transmission line geometry consisting of a coaxial cable connected in series with the sensor array and a low-noise 4 K amplifier. The dual-band NIKA was successfully tested in 2010 October at the Institute for Millimetric Radio Astronomy (IRAM) 30 m telescope at Pico Veleta, Spain, performing in-line with laboratory predictions. An optical NEP was then calculated to be around 2 x 10{sup -16} W Hz{sup -1/2} (at 1 Hz) while under a background loading of approximately 4 pW pixel{sup -1}. This improvement in comparison with a preliminary run (2009) verifies that NIKA is approaching the target sensitivity for photon-noise limited ground-based detectors. Taking advantage of the larger arrays and increased sensitivity, a number of scientifically relevant faint and extended objects were then imaged including the Galactic Center SgrB2 (FIR1), the radio galaxy Cygnus A, and the NGC1068 Seyfert galaxy. These targets were all observed simultaneously in the 150 GHz and 220 GHz atmospheric windows.« less
NASA Astrophysics Data System (ADS)
H.E.S.S. Collaboration; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Behera, B.; Benbow, W.; Bernlöhr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bühler, R.; Bulik, T.; Büsching, I.; Boutelier, T.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Costamante, L.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fiasson, A.; Förster, A.; Fontaine, G.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jung, I.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Kerschhaggl, M.; Khangulyan, D.; Khélifi, B.; Keogh, D.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Lamanna, G.; Lenain, J.-P.; Lohse, T.; Marandon, V.; Martineau-Huynh, O.; Marcowith, A.; Masbou, J.; Maurin, D.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Oña Wilhelmi, E.; Orford, K. J.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Renaud, M.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sikora, M.; Skilton, J. L.; Sol, H.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Superina, G.; Szostek, A.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Venter, L.; Vialle, J. P.; Vincent, P.; Vivier, M.; Völk, H. J.; Volpe, F.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.
2010-02-01
Aims: Our aim is to study the very high energy (VHE; E>100 GeV) γ-ray emission from BL Lac objects and the evolution in time of their broad-band spectral energy distribution (SED). Methods: VHE observations of the high-frequency peaked BL Lac object PKS 2005-489 were made with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Three simultaneous multi-wavelength campaigns at lower energies were performed during the HESS data taking, consisting of several individual pointings with the XMM-Newton and RXTE satellites. Results: A strong VHE signal, ~17σ total, from PKS 2005-489 was detected during the four years of HESS observations (90.3 h live time). The integral flux above the average analysis threshold of 400 GeV is ~3% of the flux observed from the Crab Nebula and varies weakly on time scales from days to years. The average VHE spectrum measured from ~300 GeV to ~5 TeV is characterized by a power law with a photon index, Γ = 3.20± 0.16_stat± 0.10_syst. At X-ray energies the flux is observed to vary by more than an order of magnitude between 2004 and 2005. Strong changes in the X-ray spectrum (ΔΓX ≈ 0.7) are also observed, which appear to be mirrored in the VHE band. Conclusions: The SED of PKS 2005-489, constructed for the first time with contemporaneous data on both humps, shows significant evolution. The large flux variations in the X-ray band, coupled with weak or no variations in the VHE band and a similar spectral behavior, suggest the emergence of a new, separate, harder emission component in September 2005. Supported by CAPES Foundation, Ministry of Education of Brazil.Now at Harvard-Smithsonian Center for Astrophysics, Cambridge, USA.Now at W.W. Hansen Experimental Physics Laboratory & Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, USA.
A simultaneous search for High-z LAEs and LBGs in the SHARDS survey
NASA Astrophysics Data System (ADS)
Haro, P. Arrabal; Espinosa, J. M. Rodríguez; Muñoz-Tuñón, C.; Pérez-González, P. G.; Dannerbauer, H.; Bongiovann, Á.; Barro, G.; Cava, A.; Lumbreras-Calle, A.; Hernán-Caballero, A.; Eliche-Moral, M. C.; Sánchez, H. Dománguez; Conselice, C. J.; Tresse, L.; Pampliega, B. Alcalde; Balcells, M.; Daddi, E.; Rodighiero, G.
2018-05-01
We have undertaken a comprehensive search for both Lyman Alpha Emitters (LAEs) and Lyman Break Galaxies (LBGs) in the SHARDS Survey of the GOODS-N field. SHARDS is a deep imaging survey, made with the 10.4 m Gran Telescopio Canarias (GTC), employing 25 medium band filters in the range from 500 to 941 nm. This is the first time that both LAEs and LBGs are surveyed simultaneously in a systematic way in a large field. We draw a sample of 1558 sources; 528 of them are LAEs. Most of the sources (1434) show rest-frame UV continua. A minority of them (124) are pure LAEs with virtually no continuum detected in SHARDS. We study these sources from z ˜ 3.35 up to z ˜ 6.8, well into the epoch of reionization. Note that surveys done with just one or two narrow band filters lack the possibility to spot the rest-frame UV continuum present in most of our LAEs. We derive redshifts, Star Formation Rates (SFRs), Lyα Equivalent Widths (EWs) and Luminosity Functions (LFs). Grouping within our sample is also studied, finding 92 pairs or groups of galaxies at the same redshift separated by less than 60 comoving kpc. In addition, we relate 87 and 55 UV-selected objects with two known overdensities at z = 4.05 and z = 5.198, respectively. Finally, we show that surveys made with broad band filters are prone to introduce many unwanted sources (˜20% interlopers), which means that previous studies may be overestimating the calculated LFs, specially at the faint end.
Evaluating suitability of Pol-SAR (TerraSAR-X, Radarsat-2) for automated sea ice classification
NASA Astrophysics Data System (ADS)
Ressel, Rudolf; Singha, Suman; Lehner, Susanne
2016-05-01
Satellite borne SAR imagery has become an invaluable tool in the field of sea ice monitoring. Previously, single polarimetric imagery were employed in supervised and unsupervised classification schemes for sea ice investigation, which was preceded by image processing techniques such as segmentation and textural features. Recently, through the advent of polarimetric SAR sensors, investigation of polarimetric features in sea ice has attracted increased attention. While dual-polarimetric data has already been investigated in a number of works, full-polarimetric data has so far not been a major scientific focus. To explore the possibilities of full-polarimetric data and compare the differences in C- and X-bands, we endeavor to analyze in detail an array of datasets, simultaneously acquired, in C-band (RADARSAT-2) and X-band (TerraSAR-X) over ice infested areas. First, we propose an array of polarimetric features (Pauli and lexicographic based). Ancillary data from national ice services, SMOS data and expert judgement were utilized to identify the governing ice regimes. Based on these observations, we then extracted mentioned features. The subsequent supervised classification approach was based on an Artificial Neural Network (ANN). To gain quantitative insight into the quality of the features themselves (and reduce a possible impact of the Hughes phenomenon), we employed mutual information to unearth the relevance and redundancy of features. The results of this information theoretic analysis guided a pruning process regarding the optimal subset of features. In the last step we compared the classified results of all sensors and images, stated respective accuracies and discussed output discrepancies in the cases of simultaneous acquisitions.
NASA Astrophysics Data System (ADS)
Lin, Jia-De; Lin, Hong-Lin; Lin, Hsin-Yu; Wei, Guan-Jhong; Lee, Chia-Rong
2017-02-01
The scientists in the field of liquid crystal (LC) have paid significant attention in the exploration of novel cholesteric LC (CLC) polymer template (simply called template) in recent years. The self-assembling nanostructural template with chirality can effectively overcome the limitation in the optical features of traditional CLCs, such as enhancement of reflectivity over 50%, multiple photonic bandgaps (PBGs), and changeable optical characteristics by flexibly replacing the refilling LC materials, and so on. This work fabricates two gradient-pitched CLC templates with two opposite handednesses, which are then merged as a spatially tunable and highly reflective CLC template sample. This sample can simultaneously reflect right- and left-circularly polarized lights and the tunable spectral range includes the entire visible region. By increasing the temperature of the template sample exceeding the clearing point of the refilling LC, the light scattering significantly decreases and the reflectance effectively increase to exceed 50% in the entire visible region. This device has a maximum reflectance over 85% and a wide-band spatial tunability in PBG between 400 nm and 800 nm which covers the entire visible region. Not only the sample can be employed as a wide-band spatially tunable filter, but also the system doping with two suitable laser dyes which emitted fluorescence can cover entire visible region can develop a low-threshold, mirror-less laser with a spatial tunability at spectral regions including blue to red region (from 484 nm to 634 nm) and simultaneous lasing emission of left- and right-circular polarizations.
Characterizing bars in low surface brightness disc galaxies
NASA Astrophysics Data System (ADS)
Peters, Wesley; Kuzio de Naray, Rachel
2018-05-01
In this paper, we use B-band, I-band, and 3.6 μm azimuthal light profiles of four low surface brightness galaxies (LSBs; UGC 628, F568-1, F568-3, F563-V2) to characterize three bar parameters: length, strength, and corotation radius. We employ three techniques to measure the radius of the bars, including a new method using the azimuthal light profiles. We find comparable bar radii between the I-band and 3.6 μm for all four galaxies when using our azimuthal light profile method, and that our bar lengths are comparable to those in high surface brightness galaxies (HSBs). In addition, we find the bar strengths for our galaxies to be smaller than those for HSBs. Finally, we use Fourier transforms of the B-band, I-band, and 3.6 μm images to characterize the bars as either `fast' or `slow' by measuring the corotation radius via phase profiles. When using the B- and I-band phase crossings, we find three of our galaxies have faster than expected relative bar pattern speeds for galaxies expected to be embedded in centrally dense cold dark matter haloes. When using the B-band and 3.6 μm phase crossings, we find more ambiguous results, although the relative bar pattern speeds are still faster than expected. Since we find a very slow bar in F563-V2, we are confident that we are able to differentiate between fast and slow bars. Finally, we find no relation between bar strength and relative bar pattern speed when comparing our LSBs to HSBs.
What are the factors that affect band 5 nurses' career development and progression?
Balls, Paula
Continuing professional development (CPD) and career progression opportunities have been linked with job satisfaction and intent to remain in nursing. To provide an insight into band 5 registered nurses' perceptions of development opportunities and their ability to change posts. A hermeneutic phenomenological approach was used, collecting data through semi structured interviews with six RNs. Seven themes emerged, including the thirst for knowledge and the importance of structured learning and career advice. Barriers to career development were perceived as the working environment and the trust not enabling and facilitating development through funding and release time. Ward and team culture can inhibit career development and progression by failing to nurture staff and promote self confidence. In addition, organisational changes can facilitate career mobility.
NASA Astrophysics Data System (ADS)
Watanabe, Shin; Noda, Isao; Ozaki, Yukihiro
2008-07-01
The amount of nonplanar gauche bonds was monitored as a function of increasing temperature in three different polyethylene (PE) samples by means of mid-infrared (MIR) and near-infrared (NIR) spectroscopy. The hetero-spectral two-dimensional (2D) correlation analysis was carried out between the NIR spectral region of 4365-4235 cm -1 and the well-established MIR spectral region of 1375-1265 cm -1, where bands due to nonplanar conformer are detected. This approach allowed us to identify the NIR band at 4265 cm -1, which behaves in a way similar to MIR bands originating from conformational-defect sequences. By combining the result of our current study and that of our previous report obtained on different types of PE, it is suggested that the NIR band originates from conformational-defect sequences in PE. This finding opens up a unique and useful way to study the state of conformational disorder in PE crystal by NIR spectroscopy, monitoring the intensity of the NIR band at 4265 cm -1. The use of NIR spectroscopy allows researchers to directly probe the degree in the formation of conformational-defect sequences in thick, real-world PE samples that cannot be studied by conventional MIR spectroscopy. The 2D correlation spectroscopy analysis among the MIR CH 2 wagging conformational-defect-mode bands on linear low-density PE (LLDPE) and low-density PE (LDPE) revealed the formation of nonplanar conformer represented by the band at 1368 cm -1 proceeds prior to those by other band at 1308 cm -1. This result agrees well with our previous finding on high-density PE (HDPE). We therefore propose with strong confidence that the bands at 1368 and 1308 cm -1 arise from different conformational-defect sequences, even though both of the bands have been proposed to arise from the same conformer of gtg' ( kink) + gtg sequence.
Tsuzuki, Takashi; Matsui, Hiroshi; Kikuchi, Manabu
2012-12-01
In multi-attribute decision making, the similarity, attraction, and compromise effects warrant specific investigation as they cause violations of principles in rational choice. In order to investigate these three effects simultaneously, we assigned 145 undergraduates to three context effect conditions. We requested them to solve the same 20 hypothetical purchase problems, each of which had three alternatives described along two attributes. We measured their choices, confidence ratings, and response times. We found that manipulating the third alternative had significant context effects for choice proportions and confidence ratings in all three conditions. Furthermore, the attraction effect was the most prominent with regard to choice proportions. In the compromise effect condition, although the choice proportion of the third alternative was high, the confidence rating was low and the response time was long. These results indicate that the relationship between choice proportions and confidence ratings requires further theoretical investigation. They also suggest that a combination of experimental and modeling studies is imperative to reveal the mechanisms underlying the context effects in multi-attribute, multi-alternative decision making.
Distinctive time-lagged resting-state networks revealed by simultaneous EEG-fMRI.
Feige, Bernd; Spiegelhalder, Kai; Kiemen, Andrea; Bosch, Oliver G; Tebartz van Elst, Ludger; Hennig, Jürgen; Seifritz, Erich; Riemann, Dieter
2017-01-15
Functional activation as evidenced by blood oxygen level-dependent (BOLD) functional MRI changes or event-related EEG is known to closely follow patterns of stimulation or self-paced action. Any lags are compatible with axonal conduction velocities and neural integration times. The important analysis of resting state networks is generally based on the assumption that these principles also hold for spontaneous fluctuations in brain activity. Previous observations using simultaneous EEG and fMRI indicate that slower processes, with delays in the seconds range, determine at least part of the relationship between spontaneous EEG and fMRI. To assess this relationship systematically, we used deconvolution analysis of EEG-fMRI during the resting state, assessing the relationship between EEG frequency bands and fMRI BOLD across the whole brain while allowing for time lags of up to 10.5s. Cluster analysis, identifying similar BOLD time courses in relation to EEG band power peaks, showed a clear segregation of functional subsystems of the brain. Our analysis shows that fMRI BOLD increases commonly precede EEG power increases by seconds. Most zero-lag correlations, on the other hand, were negative. This indicates two main distinct neuromodulatory mechanisms: an "idling" mechanism of simultaneous electric and metabolic network anticorrelation and a "regulatory" mechanism in which metabolic network activity precedes increased EEG power by some seconds. This has to be taken into consideration in further studies which address the causal and functional relationship of metabolic and electric brain activity patterns. Copyright © 2016 Elsevier Inc. All rights reserved.
He, Longwei; Yang, Xueling; Xu, Kaixin; Kong, Xiuqi
2017-01-01
Biothiols, which have a close network of generation and metabolic pathways among them, are essential reactive sulfur species (RSS) in the cells and play vital roles in human physiology. However, biothiols possess highly similar chemical structures and properties, resulting in it being an enormous challenge to simultaneously discriminate them from each other. Herein, we develop a unique fluorescent probe (HMN) for not only simultaneously distinguishing Cys/Hcy, GSH, and H2S from each other, but also sequentially sensing Cys/Hcy/GSH and H2S using a multi-channel fluorescence mode for the first time. When responding to the respective biothiols, the robust probe exhibits multiple sets of fluorescence signals at three distinct emission bands (blue-green-red). The new probe can also sense H2S at different concentration levels with changes of fluorescence at the blue and red emission bands. In addition, the novel probe HMN is able to discriminate and sequentially sense biothiols in biological environments via three-color fluorescence imaging. We expect that the development of the robust probe HMN will provide a powerful strategy to design fluorescent probes for the discrimination and sequential detection of biothiols, and offer a promising tool for exploring the interrelated roles of biothiols in various physiological and pathological conditions. PMID:28989659
Dayglow emissions of the O2 Herzberg bands and the Rayleigh backscattered spectrum of the earth
NASA Technical Reports Server (NTRS)
Frederick, J. E.; Abrams, R. B.
1982-01-01
It is pointed out that numerous fluorescent emissions from the Herzberg bands of molecular oxygen lie in the spectral region 242-300 nm. This coincides with the wavelength range used by orbiting spectrometers that observe the Rayleigh backscattered spectrum of the earth for the purpose of monitoring the vertical distribution of stratospheric ozone. Model calculations suggest that Herzberg band emissions in the dayglow could provide significant contamination of the ozone measurements if the quenching rate of O2(A3Sigma) is sufficiently small. It is noted that this is especially true near 255 nm, where the most intense fluorescent emissions relative to the Rayleigh scattered signal are located and where past satellite measurements have shown a persistent excess radiance above that expected for a pure ozone absorbing and molecular scattering atmosphere. Very small quenching rates, however, are adequate to reduce the dayglow emission to negligible levels. Noting that available laboratory data have not definitely established the quenching on the rate of O2(A3Sigma) as a function of vibration level, it is emphasized that such information is required before the Herzberg band contributions can be evaluated with confidence.
Testing the existence of optical linear polarization in young brown dwarfs
NASA Astrophysics Data System (ADS)
Manjavacas, E.; Miles-Páez, P. A.; Zapatero-Osorio, M. R.; Goldman, B.; Buenzli, E.; Henning, T.; Pallé, E.; Fang, M.
2017-07-01
Linear polarization can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases with the degree of oblateness, which is inversely proportional to the surface gravity. We aimed to test the existence of optical linear polarization in a sample of bright young brown dwarfs, with spectral types between M6 and L2, observable from the Calar Alto Observatory, and cataloged previously as low gravity objects using spectroscopy. Linear polarimetric images were collected in I and R band using CAFOS at the 2.2-m telescope in Calar Alto Observatory (Spain). The flux ratio method was employed to determine the linear polarization degrees. With a confidence of 3σ, our data indicate that all targets have a linear polarimetry degree in average below 0.69 per cent in the I band, and below 1.0 per cent in the R band, at the time they were observed. We detected significant (I.e. P/σ ≥ 3) linear polarization for the young M6 dwarf 2MASS J04221413+1530525 in the R band, with a degree of p* = 0.81 ± 0.17 per cent.
High resolution emission Fourier transform infrared spectra of the 4p-5s and 5p-6s bands of ArH.
Baskakov, O I; Civis, S; Kawaguchi, K
2005-03-15
In the 2500-8500 cm(-1) region several strong emission bands of (40)ArH were observed by Fourier transform spectroscopy through a dc glow discharge in a mixture of argon and hydrogen. Rotational-electronic transitions of the two previously unstudied 4p-5s and 5p-6s,v = 0-0, bands of (40)ArH were measured and assigned in the 6060 and 3770 cm(-1) regions, respectively. A simultaneous fit of the emission transitions of the 4p-5s and 5p-6s bands and an extended set of transitions of the 6s-4p band observed by Dabrowski, Tokaryk, and Watson [J. Mol. Spectrosc. 189, 95 (1998)] and remeasured in the present work yielded consistent values of the spectroscopic parameters of the electronic states under investigation. In the branch of the 4p-5s band with transitions of type (Q)Q(f(3)e) we observed a narrowing in the linewidths with increasing rotational quantum number N. The rotational dependence of the linewidth is caused by predissociation of the 5s state by the repulsive ground 4s state through homogeneous coupling and changes in overlap integrals of the vibrational wave functions with the rotational level. Analysis was based on the Fermi's golden rule approximation model. In the 4p-5s band region a vibrational sequence ofv(')-v(")=1-1, 2-2, and 3-3 were recorded and a number of transitions belonging to the strongest (Q)Q(f(3)e) form branch of the 1-1 band were analyzed.
Mansour, Jamal K; Beaudry, Jennifer L; Bertrand, Michelle I; Kalmet, Natalie; Melsom, Elisabeth I; Lindsay, Roderick C L
2012-12-01
Prior research indicates that disguise negatively affects lineup identifications, but the mechanisms by which disguise works have not been explored, and different disguises have not been compared. In two experiments (Ns = 87 and 91) we manipulated degree of coverage by two different types of disguise: a stocking mask or sunglasses and toque (i.e., knitted hat). Participants viewed mock-crime videos followed by simultaneous or sequential lineups. Disguise and lineup type did not interact. In support of the view that disguise prevents encoding, identification accuracy generally decreased with degree of disguise. For the stocking disguise, however, full and 2/3 coverage led to approximately the same rate of correct identifications--which suggests that disrupting encoding of specific features may be as detrimental as disrupting a whole face. Accuracy was most affected by sunglasses and we discuss the role metacognitions may have played. Lineup selections decreased more slowly than accuracy as coverage by disguise increased, indicating witnesses are insensitive to the effect of encoding conditions on accuracy. We also explored the impact of disguise and lineup type on witnesses' confidence in their lineup decisions, though the results were not straightforward.
NASA Technical Reports Server (NTRS)
Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Wu, Aisheng
2016-01-01
The inter-comparison of reflective solar bands (RSB) between Terra MODIS, Aqua MODIS, and SNPP VIIRS is very important for assessment of each instrument's calibration and to identify calibration improvements. One of the limitations of using their ground observations for the assessment is a lack of the simultaneous nadir overpasses (SNOs) over selected pseudo-invariant targets. In addition, their measurements over a selected Earth view target have significant difference in solar and view angles, and these differences magnify the effects of Bidirectional Reflectance Distribution Function (BRDF). In this work, an inter-comparison technique using a semi-empirical BRDF model is developed for reflectance correction. BRDF characterization requires a broad coverage of solar and view angles in the measurements over selected pseudo-invariant targets. Reflectance measurements over Libya 1, 2, and 4 desert sites from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for the calibration difference between the two instruments. The BRDF coefficients for three desert sites for MODIS bands 1 to 9 are derived and the wavelength dependencies are presented. The analysis and inter-comparison are for MODIS bands 1 to 9 and VIIRS moderate resolution radiometric bands (M bands) M1, M2, M4, M5, M7, M8, M10 and imaging bands (I bands) I1-I3. Results show that the ratios from different sites are in good agreement. The ratios between Terra and Aqua MODIS from year 2003 to 2014 are presented. The inter-comparison between MODIS and VIIRS are analyzed for year 2014.
Device and method for shortening reactor process tubes
Frantz, Charles E.; Alexander, William K.; Lander, Walter E. B.
1980-01-01
This disclosure describes a device and method for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.
Zotev, Vadim; Yuan, Han; Misaki, Masaya; Phillips, Raquel; Young, Kymberly D.; Feldner, Matthew T.; Bodurka, Jerzy
2016-01-01
Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging approach for studies and novel treatments of major depressive disorder (MDD). EEG performed simultaneously with an rtfMRI-nf procedure allows an independent evaluation of rtfMRI-nf brain modulation effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been directly related to simultaneously acquired fMRI data. We report the first study investigating electrophysiological correlates of the rtfMRI-nf procedure, by combining the rtfMRI-nf with simultaneous and passive EEG recordings. In this pilot study, MDD patients in the experimental group (n = 13) learned to upregulate BOLD activity of the left amygdala using an rtfMRI-nf during a happy emotion induction task. MDD patients in the control group (n = 11) were provided with a sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper alpha band and BOLD activity across the brain were examined. Average individual changes in frontal EEG asymmetry during the rtfMRI-nf task for the experimental group showed a significant positive correlation with the MDD patients' depression severity ratings, consistent with an inverse correlation between the depression severity and frontal EEG asymmetry at rest. The average asymmetry changes also significantly correlated with the amygdala BOLD laterality. Temporal correlations between frontal EEG asymmetry and BOLD activity were significantly enhanced, during the rtfMRI-nf task, for the amygdala and many regions associated with emotion regulation. Our findings demonstrate an important link between amygdala BOLD activity and frontal EEG asymmetry during emotion regulation. Our EEG asymmetry results indicate that the rtfMRI-nf training targeting the amygdala is beneficial to MDD patients. They further suggest that EEG-nf based on frontal EEG asymmetry in the alpha band would be compatible with the amygdala-based rtfMRI-nf. Combination of the two could enhance emotion regulation training and benefit MDD patients. PMID:26958462
The fabrication of a multi-spectral lens array and its application in assisting color blindness
NASA Astrophysics Data System (ADS)
Di, Si; Jin, Jian; Tang, Guanrong; Chen, Xianshuai; Du, Ruxu
2016-01-01
This article presents a compact multi-spectral lens array and describes its application in assisting color-blindness. The lens array consists of 9 microlens, and each microlens is coated with a different color filter. Thus, it can capture different light bands, including red, orange, yellow, green, cyan, blue, violet, near-infrared, and the entire visible band. First, the fabrication process is described in detail. Second, an imaging system is setup and a color blindness testing card is selected as the sample. By the system, the vision results of normal people and color blindness can be captured simultaneously. Based on the imaging results, it is possible to be used for helping color-blindness to recover normal vision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiaotong; Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn
We carefully examine the depolarization feature of blazars in the optical and near-infrared bands using the sample of Mead et al. Magnetohydrodynamics turbulence could be one possible reason for the depolarization of optical/infrared blazars when we apply the theoretical analysis of Lazarian and Pogosyan. We further identify in the sample that the depolarization results shown in most blazars roughly obey the form of the three-dimensional anisotropic Kolmogorov scaling. The effective Faraday rotation window length scale is not small enough to resolve the polarization correlation length scale in the blazar sample. The depolarization and the related turbulent features show diversities inmore » different blazar sources. We suggest more simultaneous observations in both the optical/infrared and the high-energy bands for the study of the blazar polarization.« less
NASA Technical Reports Server (NTRS)
Yost, E. F. (Principal Investigator); Hollman, R.; Alexander, J.; Nuzzi, R.
1974-01-01
The author has identified the following significant results. Photo-optical additive color quantitative measurements were made of ERTS-1 reprocessed positives of New York Bight and Block Island Sound. Regression of these data on almost simultaneous ship sample data of water's physical, chemical, biological, and optical properties showed that ERTS bands 5 and 6 can be used to predict the absolute value of the total number of particles and bands 4 and 5 to predict the relative extinction coefficient in New York Bight. Water masses and mixing patterns in Block Island Sound heretofore considered transient were found to be persistent phenomena requiring revision of existing mathematical and hydraulic models.
Hennig, Georg; Brittenham, Gary M; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert
2013-04-01
An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms∕nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.
C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widener, K; Bharadwaj, N
2012-11-13
The C-band scanning ARM precipitation radar (C-SAPR) is a scanning polarimetric Doppler radar transmitting simultaneously in both H and V polarizations. With a 350-kW magnetron transmitter, this puts 125 kW of transmitted power for each polarization. The receiver for the C-SAPR is a National Center for Atmospheric Research (NCAR) -developed Hi-Q system operating in a coherent-on-receive mode. The ARM Climate Research Facility operates two C-SAPRs; one of them is deployed near the Southern Great Plains (SGP) Central Facility near the triangular array of X-SAPRs, and the second C-SAPR is deployed at ARM’s Tropical Western Pacific (TWP) site on Manus Islandmore » in Papua New Guinea.« less
NASA Astrophysics Data System (ADS)
Zhou, Wenhan; Guo, Shiying; Liu, Xuhai; Cai, Bo; Song, Xiufeng; Zhu, Zhen; Zhang, Shengli
2018-01-01
We propose a family of hydrogenated- and halogenated-SbIV (SbIVX-2) materials that simultaneously have two-dimensional (2D) structures, high stability and appealing electronic properties. Based on first-principles total-energy and vibrational-spectra calculations, SbIVX-2 monolayers are found both thermally and dynamically stable. Varying IV and X elements can rationally tune the electronic properties of SbIVX-2 monolayers, effectively modulating the band gap from 0 to 3.42 eV. Regarding such superior stability and broad band-gap range, SbIVX-2 monolayers are expected to be synthesized in experiments and taken as promising candidates for low-dimensional electronic and optoelectronic devices, such as blue-to-ultraviolet light-emitting diodes (LED) and photodetectors.
Ultra Wide-Band Localization and SLAM: A Comparative Study for Mobile Robot Navigation
Segura, Marcelo J.; Auat Cheein, Fernando A.; Toibero, Juan M.; Mut, Vicente; Carelli, Ricardo
2011-01-01
In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work. PMID:22319397
The new Wide-band Solar Neutrino Trigger for Super-Kamiokande
NASA Astrophysics Data System (ADS)
Carminati, Giada
Super-Kamiokande observes low energy electrons induced by the elastic scattering of 8B solar neutrinos. The transition region between vacuum and matter oscillations, with neutrino energy near 3 MeV, is still partially unexplored by any detector. Super-Kamiokande can study this intermediate regime adding a new software trigger. The Wide-band Intelligent Trigger (WIT) has been developed to simultaneously trigger and reconstruct very low energy electrons (above 2.49 kinetic MeV) with an e_ciency close to 100%. The WIT system, comprising 256-Hyperthreaded CPU cores and one 10-Gigabit Ethernet network switch, has been recently installed and integrated in the online DAQ system of SK and the complete system is currently in an advanced status of online data testing.
Global search and rescue - A new concept. [orbital digital radar system with passive reflectors
NASA Technical Reports Server (NTRS)
Sivertson, W. E., Jr.
1976-01-01
A new terrestrial search and rescue concept is defined embodying the use of simple passive radiofreqeuncy reflectors in conjunction with a low earth-orbiting, all-weather, synthetic aperture radar to detect, identify, and position locate earth-bound users in distress. Users include ships, aircraft, small boats, explorers, hikers, etc. Airborne radar tests were conducted to evaluate the basic concept. Both X-band and L-band, dual polarization radars were operated simultaneously. Simple, relatively small, corner-reflector targets were successfully imaged and digital data processing approaches were investigated. Study of the basic concept and evaluation of results obtained from aircraft flight tests indicate an all-weather, day or night, global search and rescue system is feasible.
A high resolution soil moisture radiometer
NASA Technical Reports Server (NTRS)
Dod, L. R.
1980-01-01
The design of an L-band high resolution soil moisture radiometer is described. The selected system is a planar slotted waveguide array at L-band frequencies. The square aperture is 74.75 m by 74.75 m subdivided into 8 tilted subarrays. The system has a 290 km circular orbit and provides a spatial resolution of 1 km. The aperture forms 230 simultaneous beams in a cross-track pattern which covers a swath 420 km wide. A revisit time of 6 days is provided for an orbit inclination of 50 deg. The 1 km resolution cell allows an integration time of 1/7 second and sharing this time period sequentially between two orthogonal polarization modes can provide a temperature resolution of 0.7 K.
Shuttle-based measurements: GLO ultraviolet earthlimb view
NASA Astrophysics Data System (ADS)
Gardner, James A.; Murad, Edmond; Viereck, Rodney A.; Knecht, David J.; Pike, Charles P.; Broadfoot, A. Lyle
1996-11-01
The GLO experiment is an on-going shuttle-based spectrograph/imager project that has returned ultraviolet (100 - 400 nm) limb views. High spectral (0.35 nm FWHM) and temporal (4 s) resolution spectra include simultaneous altitude profiles (in the range of 80 - 400 km tangent height with 10 km resolution) of dayglow and nightglow features. Measured emissions include the NO gamma, N2 Vegard-Kaplan and second positive, N2+ first negative, and O2 Herzberg I band systems and both atomic and cation lines of N, O, and Mg. This data represents a low solar activity benchmark for future observations. We report on the status of the GLO project, which included three space flights in 1995, and present spectral data on important ultraviolet band systems.
NASA Astrophysics Data System (ADS)
Verba, Roman; Lisenkov, Ivan; Krivorotov, Ilya; Tiberkevich, Vasil; Slavin, Andrei
2018-06-01
Surface acoustic waves (SAWs) propagating in a piezoelectric substrate covered with a thin ferromagnetic-heavy-metal bilayer are found to exhibit a substantial degree of nonreciprocity, i.e., the frequencies of these waves are nondegenerate with respect to the inversion of the SAW propagation direction. The simultaneous action of the magnetoelastic interaction in the ferromagnetic layer and the interfacial Dzyaloshinskii-Moriya interaction in the ferromagnetic-heavy-metal interface results in the openings of magnetoelastic band gaps in the SAW spectrum, and the frequency position of these band gaps is different for opposite SAW propagation directions. The band-gap widths and the frequency separation between them can be controlled by a proper selection of the magnetization angle and the thickness of the ferromagnetic layer. Using numerical simulations, we demonstrate that the isolation between SAWs propagating in opposite directions in such a system can exceed the direct SAW propagation losses by more than 1 order of magnitude.