NASA Technical Reports Server (NTRS)
Sloss, J. M.; Kranzler, S. K.
1972-01-01
The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Anirban; Ganguly, Anindita; Chatterjee, Saumya Deep
2018-04-01
In this paper the authors have dealt with seven kinds of non-linear Volterra and Fredholm classes of equations. The authors have formulated an algorithm for solving the aforementioned equation types via Hybrid Function (HF) and Triangular Function (TF) piecewise-linear orthogonal approach. In this approach the authors have reduced integral equation or integro-differential equation into equivalent system of simultaneous non-linear equation and have employed either Newton's method or Broyden's method to solve the simultaneous non-linear equations. The authors have calculated the L2-norm error and the max-norm error for both HF and TF method for each kind of equations. Through the illustrated examples, the authors have shown that the HF based algorithm produces stable result, on the contrary TF-computational method yields either stable, anomalous or unstable results.
Unified Framework for Deriving Simultaneous Equation Algorithms for Water Distribution Networks
The known formulations for steady state hydraulics within looped water distribution networks are re-derived in terms of linear and non-linear transformations of the original set of partly linear and partly non-linear equations that express conservation of mass and energy. All of ...
ERIC Educational Resources Information Center
Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang
2006-01-01
This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…
Mechanisms Inducing Jet Rotation in Shear-Formed Shaped-Charge Liners.
1990-03-01
of deviatoric strain, and compressibility affects only the equation of state , not the deviatoric stress /strain relation. An anisotropic formulation is...strains, a more accurate scalar equation of state should simultaneously be employed to account for non-linear compressibility effects . A4 A.3 Elastic... obtainable knowing the previous and present cycles’ average stress . However, many non-linear equations
NASA Technical Reports Server (NTRS)
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
NASA Technical Reports Server (NTRS)
Dunham, R. S.
1976-01-01
FORTRAN coded out-of-core equation solvers that solve using direct methods symmetric banded systems of simultaneous algebraic equations. Banded, frontal and column (skyline) solvers were studied as well as solvers that can partition the working area and thus could fit into any available core. Comparison timings are presented for several typical two dimensional and three dimensional continuum type grids of elements with and without midside nodes. Extensive conclusions are also given.
Examining the Differences of Linear Systems between Finnish and Taiwanese Textbooks
ERIC Educational Resources Information Center
Yang, Der-Ching; Lin, Yung-Chi
2015-01-01
The purpose of this study was to examine the differences between Finnish and Taiwanese textbooks for grades 7 to 9 on the topic of solving systems of linear equations (simultaneous equations). The specific textbooks examined were TK in Taiwan and FL in Finland. The content analysis method was used to examine (a) the teaching sequence, (b)…
Higher symmetries and exact solutions of linear and nonlinear Schr{umlt o}dinger equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fushchych, W.I.; Nikitin, A.G.
1997-11-01
A new approach for the analysis of partial differential equations is developed which is characterized by a simultaneous use of higher and conditional symmetries. Higher symmetries of the Schr{umlt o}dinger equation with an arbitrary potential are investigated. Nonlinear determining equations for potentials are solved using reductions to Weierstrass, Painlev{acute e}, and Riccati forms. Algebraic properties of higher order symmetry operators are analyzed. Combinations of higher and conditional symmetries are used to generate families of exact solutions of linear and nonlinear Schr{umlt o}dinger equations. {copyright} {ital 1997 American Institute of Physics.}
Multigrid Methods for Fully Implicit Oil Reservoir Simulation
NASA Technical Reports Server (NTRS)
Molenaar, J.
1996-01-01
In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for two-phase flow problems with strong heterogeneities and anisotropies is studied. Here we consider both possibilities. Moreover we present a novel way for constructing the coarse grid correction operator in linear multigrid algorithms. This approach has the advantage in that it preserves the sparsity pattern of the fine grid matrix and it can be extended to systems of equations in a straightforward manner. We compare the linear and nonlinear multigrid algorithms by means of a numerical experiment.
Evaluating Simultaneous Integrals
ERIC Educational Resources Information Center
Kwong, Harris
2012-01-01
Many integrals require two successive applications of integration by parts. During the process, another integral of similar type is often invoked. We propose a method which can integrate these two integrals simultaneously. All we need is to solve a linear system of equations.
N-soliton interactions: Effects of linear and nonlinear gain and loss
NASA Astrophysics Data System (ADS)
Carretero-González, R.; Gerdjikov, V. S.; Todorov, M. D.
2017-10-01
We analyze the dynamical behavior of the N-soliton train in the adiabatic approximation of the nonlinear Schrödinger equation perturbed simultaneously by linear and nonlinear gain/loss terms. We derive the corresponding perturbed complex Toda chain in the case of a combination of linear, cubic, and/or quintic terms. We show that the soliton interactions dynamics for this reduced PCTC model compares favorably to full numerical results of the original perturbed nonlinear Schrödinger equation.
Numerical Problem Solving Using Mathcad in Undergraduate Reaction Engineering
ERIC Educational Resources Information Center
Parulekar, Satish J.
2006-01-01
Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…
A Nonlinear, Multiinput, Multioutput Process Control Laboratory Experiment
ERIC Educational Resources Information Center
Young, Brent R.; van der Lee, James H.; Svrcek, William Y.
2006-01-01
Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…
A multivariate model and statistical method for validating tree grade lumber yield equations
Donald W. Seegrist
1975-01-01
Lumber yields within lumber grades can be described by a multivariate linear model. A method for validating lumber yield prediction equations when there are several tree grades is presented. The method is based on multivariate simultaneous test procedures.
Algorithms for solving large sparse systems of simultaneous linear equations on vector processors
NASA Technical Reports Server (NTRS)
David, R. E.
1984-01-01
Very efficient algorithms for solving large sparse systems of simultaneous linear equations have been developed for serial processing computers. These involve a reordering of matrix rows and columns in order to obtain a near triangular pattern of nonzero elements. Then an LU factorization is developed to represent the matrix inverse in terms of a sequence of elementary Gaussian eliminations, or pivots. In this paper it is shown how these algorithms are adapted for efficient implementation on vector processors. Results obtained on the CYBER 200 Model 205 are presented for a series of large test problems which show the comparative advantages of the triangularization and vector processing algorithms.
Qualitative properties of large buckled states of spherical shells
NASA Technical Reports Server (NTRS)
Shih, K. G.; Antman, S. S.
1985-01-01
A system of 6th-order quasi-linear Ordinary Differential Equations is analyzed to show the global existence of axisymmetrically buckled states. A surprising nodal property is obtained which shows that everywhere along a branch of solutions that bifurcates from a simple eigenvalue of the linearized equation, the number of simultaneously vanishing points of both shear resultant and circumferential bending moment resultant remains invariant, provided that a certain auxiliary condition is satisfied.
Iterative color-multiplexed, electro-optical processor.
Psaltis, D; Casasent, D; Carlotto, M
1979-11-01
A noncoherent optical vector-matrix multiplier using a linear LED source array and a linear P-I-N photodiode detector array has been combined with a 1-D adder in a feedback loop. The resultant iterative optical processor and its use in solving simultaneous linear equations are described. Operation on complex data is provided by a novel color-multiplexing system.
NASA Astrophysics Data System (ADS)
Courdurier, M.; Monard, F.; Osses, A.; Romero, F.
2015-09-01
In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
The Schrödinger–Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger–Langevin equation yields the complex quantum Hamilton–Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian–Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide.more » The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.« less
Numerical solution of system of boundary value problems using B-spline with free parameter
NASA Astrophysics Data System (ADS)
Gupta, Yogesh
2017-01-01
This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.
Neoclassical transport including collisional nonlinearity.
Candy, J; Belli, E A
2011-06-10
In the standard δf theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction δf is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlüter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.
Design of linear quadratic regulators with eigenvalue placement in a specified region
NASA Technical Reports Server (NTRS)
Shieh, Leang-San; Zhen, Liu; Coleman, Norman P.
1990-01-01
Two linear quadratic regulators are developed for placing the closed-loop poles of linear multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at +/- pi/2k (for a specified integer k not less than 1) from the negative real axis, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane, and simultaneously minimizing a quadratic performance index. The design procedure mainly involves the solution of either Liapunov equations or Riccati equations. The general expression for finding the lower bound of a constant gain gamma is also developed.
NASA Astrophysics Data System (ADS)
DeBuvitz, William
2014-03-01
I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a popular Algebra I textbook, and I was surprised and dismayed by how it treated simultaneous equations and quadratic equations. The coefficients are always simple integers in examples and exercises, even when they are related to physics. This is probably a good idea when these topics are first presented to the students. It makes it easy to solve simultaneous equations by the method of elimination of a variable. And it makes it easy to solve some quadratic equations by factoring. The textbook also discusses the method of substitution for linear equations and the use of the quadratic formula, but only with simple integers.
Nonlinear magnetoacoustic wave propagation with chemical reactions
NASA Astrophysics Data System (ADS)
Margulies, Timothy Scott
2002-11-01
The magnetoacoustic problem with an application to sound wave propagation through electrically conducting fluids such as the ocean in the Earth's magnetic field, liquid metals, or plasmas has been addressed taking into account several simultaneous chemical reactions. Using continuum balance equations for the total mass, linear momentum, energy; as well as Maxwell's electrodynamic equations, a nonlinear beam equation has been developed to generalize the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a fluid with linear viscosity but nonlinear and diffraction effects. Thermodynamic parameters are used and not tailored to only an adiabatic fluid case. The chemical kinetic equations build on a relaxing media approach presented, for example, by K. Naugolnukh and L. Ostrovsky [Nonlinear Wave Processes in Acoustics (Cambridge Univ. Press, Cambridge, 1998)] for a linearized single reaction and thermodynamic pressure equation of state. Approximations for large and small relaxation times and for magnetohydrodynamic parameters [Korsunskii, Sov. Phys. Acoust. 36 (1990)] are examined. Additionally, Cattaneo's equation for heat conduction and its generalization for a memory process rather than a Fourier's law are taken into account. It was introduced for the heat flux depends on the temperature gradient at an earlier time to generate heat pulses of finite speed.
A systematic linear space approach to solving partially described inverse eigenvalue problems
NASA Astrophysics Data System (ADS)
Hu, Sau-Lon James; Li, Haujun
2008-06-01
Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.
New nonlinear control algorithms for multiple robot arms
NASA Technical Reports Server (NTRS)
Tarn, T. J.; Bejczy, A. K.; Yun, X.
1988-01-01
Multiple coordinated robot arms are modeled by considering the arms as closed kinematic chains and as a force-constrained mechanical system working on the same object simultaneously. In both formulations, a novel dynamic control method is discussed. It is based on feedback linearization and simultaneous output decoupling technique. By applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, it was found that by choosing a general output equation it became possible simultaneously to superimpose the position and velocity error feedback with the force-torque error feedback in the task space.
Nakkeeran, K
2001-10-01
We consider a family of N coupled nonlinear Schrödinger equations which govern the simultaneous propagation of N fields in the normal dispersion regime of an optical fiber with various important physical effects. The linear eigenvalue problem associated with the integrable form of all the equations is constructed with the help of the Ablowitz-Kaup-Newell-Segur method. Using the Hirota bilinear method, exact dark soliton solutions are explicitly derived.
Oxidation Behavior of Carbon Fiber-Reinforced Composites
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2008-01-01
OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.
Monte Carlo, Probability, Algebra, and Pi.
ERIC Educational Resources Information Center
Hinders, Duane C.
1981-01-01
The uses of random number generators are illustrated in three ways: (1) the solution of a probability problem using a coin; (2) the solution of a system of simultaneous linear equations using a die; and (3) the approximation of pi using darts. (MP)
Time-lapse joint AVO inversion using generalized linear method based on exact Zoeppritz equations
NASA Astrophysics Data System (ADS)
Zhi, Longxiao; Gu, Hanming
2018-03-01
The conventional method of time-lapse AVO (Amplitude Versus Offset) inversion is mainly based on the approximate expression of Zoeppritz equations. Though the approximate expression is concise and convenient to use, it has certain limitations. For example, its application condition is that the difference of elastic parameters between the upper medium and lower medium is little and the incident angle is small. In addition, the inversion of density is not stable. Therefore, we develop the method of time-lapse joint AVO inversion based on exact Zoeppritz equations. In this method, we apply exact Zoeppritz equations to calculate the reflection coefficient of PP wave. And in the construction of objective function for inversion, we use Taylor series expansion to linearize the inversion problem. Through the joint AVO inversion of seismic data in baseline survey and monitor survey, we can obtain the P-wave velocity, S-wave velocity, density in baseline survey and their time-lapse changes simultaneously. We can also estimate the oil saturation change according to inversion results. Compared with the time-lapse difference inversion, the joint inversion doesn't need certain assumptions and can estimate more parameters simultaneously. It has a better applicability. Meanwhile, by using the generalized linear method, the inversion is easily implemented and its calculation cost is small. We use the theoretical model to generate synthetic seismic records to test and analyze the influence of random noise. The results can prove the availability and anti-noise-interference ability of our method. We also apply the inversion to actual field data and prove the feasibility of our method in actual situation.
Stone, J.J. Jr.; Bettis, E.S.; Mann, E.R.
1957-10-01
The electronic digital computer is designed to solve systems involving a plurality of simultaneous linear equations. The computer can solve a system which converges rather rapidly when using Von Seidel's method of approximation and performs the summations required for solving for the unknown terms by a method of successive approximations.
Qin, Guoyou; Zhang, Jiajia; Zhu, Zhongyi; Fung, Wing
2016-12-20
Outliers, measurement error, and missing data are commonly seen in longitudinal data because of its data collection process. However, no method can address all three of these issues simultaneously. This paper focuses on the robust estimation of partially linear models for longitudinal data with dropouts and measurement error. A new robust estimating equation, simultaneously tackling outliers, measurement error, and missingness, is proposed. The asymptotic properties of the proposed estimator are established under some regularity conditions. The proposed method is easy to implement in practice by utilizing the existing standard generalized estimating equations algorithms. The comprehensive simulation studies show the strength of the proposed method in dealing with longitudinal data with all three features. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study and confirms the effectiveness of the intervention in producing weight loss at month 9. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Two-dimensional computer simulation of EMVJ and grating solar cells under AMO illumination
NASA Technical Reports Server (NTRS)
Gray, J. L.; Schwartz, R. J.
1984-01-01
A computer program, SCAP2D (Solar Cell Analysis Program in 2-Dimensions), is used to evaluate the Etched Multiple Vertical Junction (EMVJ) and grating solar cells. The aim is to demonstrate how SCAP2D can be used to evaluate cell designs. The cell designs studied are by no means optimal designs. The SCAP2D program solves the three coupled, nonlinear partial differential equations, Poisson's Equation and the hole and electron continuity equations, simultaneously in two-dimensions using finite differences to discretize the equations and Newton's Method to linearize them. The variables solved for are the electrostatic potential and the hole and electron concentrations. Each linear system of equations is solved directly by Gaussian Elimination. Convergence of the Newton Iteration is assumed when the largest correction to the electrostatic potential or hole or electron quasi-potential is less than some predetermined error. A typical problem involves 2000 nodes with a Jacobi matrix of order 6000 and a bandwidth of 243.
Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer
NASA Astrophysics Data System (ADS)
Pikichyan, H. V.
2017-07-01
In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.
Identification and control of structures in space
NASA Technical Reports Server (NTRS)
Meirovitch, L.; Quinn, R. D.; Norris, M. A.
1984-01-01
The derivation of the equations of motion for the Spacecraft Control Laboratory Experiment (SCOLE) is reported and the equations of motion of a similar structure orbiting the earth are also derived. The structure is assumed to undergo large rigid-body maneuvers and small elastic deformations. A perturbation approach is proposed whereby the quantities defining the rigid-body maneuver are assumed to be relatively large, with the elastic deformations and deviations from the rigid-body maneuver being relatively small. The perturbation equations have the form of linear equations with time-dependent coefficients. An active control technique can then be formulated to permit maneuvering of the spacecraft and simultaneously suppressing the elastic vibration.
Propagation characteristics of two-color laser pulses in homogeneous plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemlata,; Saroch, Akanksha; Jha, Pallavi
2015-11-15
An analytical and numerical study of the evolution of two-color, sinusoidal laser pulses in cold, underdense, and homogeneous plasma has been presented. The wave equations for the radiation fields driven by linear as well as nonlinear contributions due to the two-color laser pulses have been set up. A variational technique is used to obtain the simultaneous equations describing the evolution of the laser spot size, pulse length, and chirp parameter. Numerical methods are used to graphically analyze the simultaneous evolution of these parameters due to the combined effect of the two-color laser pulses. Further, the pulse parameters are compared withmore » those obtained for a single laser pulse. Significant focusing, compression, and enhanced positive chirp is obtained due to the combined effect of simultaneously propagating two-color pulses as compared to a single pulse propagating in plasma.« less
NASA Technical Reports Server (NTRS)
Hoff, N J; Boley, Bruno A; Klein, Bertram
1945-01-01
A numerical procedure is presented for the calculation of the stresses in a monocoque cylinder with a cutout. In the procedure the structure is broken up into a great many units; the forces in these units corresponding to specified distortions of the units are calculated; a set of linear equations is established expressing the equilibrium conditions of the units in the distorted state; and the simultaneous linear equations are solved. A fully worked out numerical example, corresponding to the application of a pure bending moment, gave results in good agreement with experiments carried out earlier at the Polytechnic Institute of Brooklyn.
[Measurement of cardiac output by thermodilution with a diode as a temperature sensor].
Díaz Fernández, A; Benítez, D; Sánchez Tello, G; Márquez, L A
1979-01-01
An area integrator for the thermodilution curve in cardiac output measurement is described. A new temperature sensor is used, a diode with some advantages over the thermistor normally used. The main advantages are: easy calibration and replacement, and broad range of linearity. The cardiac output values obtained in dog with the integrator follow a linear relationship with those of the flowmeter. In simultaneous measurements the correlation is R = 0.96. Using a diode as temperature sensor a modification of the Steward Hamilton equation (used for thermistor) is necessary. With this new equation a monogram is performed to calculate the cardiac output from the area given by the numerical integrator.
Numerical analysis method for linear induction machines.
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1972-01-01
A numerical analysis method has been developed for linear induction machines such as liquid metal MHD pumps and generators and linear motors. Arbitrary phase currents or voltages can be specified and the moving conductor can have arbitrary velocity and conductivity variations from point to point. The moving conductor is divided into a mesh and coefficients are calculated for the voltage induced at each mesh point by unit current at every other mesh point. Combining the coefficients with the mesh resistances yields a set of simultaneous equations which are solved for the unknown currents.
Fu, Yue; Chai, Tianyou
2016-12-01
Regarding two-player zero-sum games of continuous-time nonlinear systems with completely unknown dynamics, this paper presents an online adaptive algorithm for learning the Nash equilibrium solution, i.e., the optimal policy pair. First, for known systems, the simultaneous policy updating algorithm (SPUA) is reviewed. A new analytical method to prove the convergence is presented. Then, based on the SPUA, without using a priori knowledge of any system dynamics, an online algorithm is proposed to simultaneously learn in real time either the minimal nonnegative solution of the Hamilton-Jacobi-Isaacs (HJI) equation or the generalized algebraic Riccati equation for linear systems as a special case, along with the optimal policy pair. The approximate solution to the HJI equation and the admissible policy pair is reexpressed by the approximation theorem. The unknown constants or weights of each are identified simultaneously by resorting to the recursive least square method. The convergence of the online algorithm to the optimal solutions is provided. A practical online algorithm is also developed. Simulation results illustrate the effectiveness of the proposed method.
Phytoplankton productivity in relation to light intensity: A simple equation
Peterson, D.H.; Perry, M.J.; Bencala, K.E.; Talbot, M.C.
1987-01-01
A simple exponential equation is used to describe photosynthetic rate as a function of light intensity for a variety of unicellular algae and higher plants where photosynthesis is proportional to (1-e-??1). The parameter ?? (=Ik-1) is derived by a simultaneous curve-fitting method, where I is incident quantum-flux density. The exponential equation is tested against a wide range of data and is found to adequately describe P vs. I curves. The errors associated with photosynthetic parameters are calculated. A simplified statistical model (Poisson) of photon capture provides a biophysical basis for the equation and for its ability to fit a range of light intensities. The exponential equation provides a non-subjective simultaneous curve fitting estimate for photosynthetic efficiency (a) which is less ambiguous than subjective methods: subjective methods assume that a linear region of the P vs. I curve is readily identifiable. Photosynthetic parameters ?? and a are used widely in aquatic studies to define photosynthesis at low quantum flux. These parameters are particularly important in estuarine environments where high suspended-material concentrations and high diffuse-light extinction coefficients are commonly encountered. ?? 1987.
Scilab software as an alternative low-cost computing in solving the linear equations problem
NASA Astrophysics Data System (ADS)
Agus, Fahrul; Haviluddin
2017-02-01
Numerical computation packages are widely used both in teaching and research. These packages consist of license (proprietary) and open source software (non-proprietary). One of the reasons to use the package is a complexity of mathematics function (i.e., linear problems). Also, number of variables in a linear or non-linear function has been increased. The aim of this paper was to reflect on key aspects related to the method, didactics and creative praxis in the teaching of linear equations in higher education. If implemented, it could be contribute to a better learning in mathematics area (i.e., solving simultaneous linear equations) that essential for future engineers. The focus of this study was to introduce an additional numerical computation package of Scilab as an alternative low-cost computing programming. In this paper, Scilab software was proposed some activities that related to the mathematical models. In this experiment, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and Lower-Upper Decomposition (LU) have been implemented. The results of this study showed that a routine or procedure in numerical methods have been created and explored by using Scilab procedures. Then, the routine of numerical method that could be as a teaching material course has exploited.
Structural Equation Modeling: A Framework for Ocular and Other Medical Sciences Research
Christ, Sharon L.; Lee, David J.; Lam, Byron L.; Diane, Zheng D.
2017-01-01
Structural equation modeling (SEM) is a modeling framework that encompasses many types of statistical models and can accommodate a variety of estimation and testing methods. SEM has been used primarily in social sciences but is increasingly used in epidemiology, public health, and the medical sciences. SEM provides many advantages for the analysis of survey and clinical data, including the ability to model latent constructs that may not be directly observable. Another major feature is simultaneous estimation of parameters in systems of equations that may include mediated relationships, correlated dependent variables, and in some instances feedback relationships. SEM allows for the specification of theoretically holistic models because multiple and varied relationships may be estimated together in the same model. SEM has recently expanded by adding generalized linear modeling capabilities that include the simultaneous estimation of parameters of different functional form for outcomes with different distributions in the same model. Therefore, mortality modeling and other relevant health outcomes may be evaluated. Random effects estimation using latent variables has been advanced in the SEM literature and software. In addition, SEM software has increased estimation options. Therefore, modern SEM is quite general and includes model types frequently used by health researchers, including generalized linear modeling, mixed effects linear modeling, and population average modeling. This article does not present any new information. It is meant as an introduction to SEM and its uses in ocular and other health research. PMID:24467557
Time-lapse joint AVO inversion using generalized linear method based on exact Zoeppritz equations
NASA Astrophysics Data System (ADS)
Zhi, L.; Gu, H.
2017-12-01
The conventional method of time-lapse AVO (Amplitude Versus Offset) inversion is mainly based on the approximate expression of Zoeppritz equations. Though the approximate expression is concise and convenient to use, it has certain limitations. For example, its application condition is that the difference of elastic parameters between the upper medium and lower medium is little and the incident angle is small. In addition, the inversion of density is not stable. Therefore, we develop the method of time-lapse joint AVO inversion based on exact Zoeppritz equations. In this method, we apply exact Zoeppritz equations to calculate the reflection coefficient of PP wave. And in the construction of objective function for inversion, we use Taylor expansion to linearize the inversion problem. Through the joint AVO inversion of seismic data in baseline survey and monitor survey, we can obtain P-wave velocity, S-wave velocity, density in baseline survey and their time-lapse changes simultaneously. We can also estimate the oil saturation change according to inversion results. Compared with the time-lapse difference inversion, the joint inversion has a better applicability. It doesn't need some assumptions and can estimate more parameters simultaneously. Meanwhile, by using the generalized linear method, the inversion is easily realized and its calculation amount is small. We use the Marmousi model to generate synthetic seismic records to test and analyze the influence of random noise. Without noise, all estimation results are relatively accurate. With the increase of noise, P-wave velocity change and oil saturation change are stable and less affected by noise. S-wave velocity change is most affected by noise. Finally we use the actual field data of time-lapse seismic prospecting to process and the results can prove the availability and feasibility of our method in actual situation.
Differential equation based method for accurate approximations in optimization
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.
1990-01-01
This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.
Differential equation based method for accurate approximations in optimization
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.
1990-01-01
A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.
Non-intrusive parameter identification procedure user's guide
NASA Technical Reports Server (NTRS)
Hanson, G. D.; Jewell, W. F.
1983-01-01
Written in standard FORTRAN, NAS is capable of identifying linear as well as nonlinear relations between input and output parameters; the only restriction is that the input/output relation be linear with respect to the unknown coefficients of the estimation equations. The output of the identification algorithm can be specified to be in either the time domain (i.e., the estimation equation coefficients) or in the frequency domain (i.e., a frequency response of the estimation equation). The frame length ("window") over which the identification procedure is to take place can be specified to be any portion of the input time history, thereby allowing the freedom to start and stop the identification procedure within a time history. There also is an option which allows a sliding window, which gives a moving average over the time history. The NAS software also includes the ability to identify several assumed solutions simultaneously for the same or different input data.
Fovargue, Daniel E; Mitran, Sorin; Smith, Nathan B; Sankin, Georgy N; Simmons, Walter N; Zhong, Pei
2013-08-01
A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model.
Fovargue, Daniel E.; Mitran, Sorin; Smith, Nathan B.; Sankin, Georgy N.; Simmons, Walter N.; Zhong, Pei
2013-01-01
A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model. PMID:23927200
Control Law Design in a Computational Aeroelasticity Environment
NASA Technical Reports Server (NTRS)
Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.
2003-01-01
A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.
Using Excel's Solver Function to Facilitate Reciprocal Service Department Cost Allocations
ERIC Educational Resources Information Center
Leese, Wallace R.
2013-01-01
The reciprocal method of service department cost allocation requires linear equations to be solved simultaneously. These computations are often so complex as to cause the abandonment of the reciprocal method in favor of the less sophisticated and theoretically incorrect direct or step-down methods. This article illustrates how Excel's Solver…
Using Excel's Matrix Operations to Facilitate Reciprocal Cost Allocations
ERIC Educational Resources Information Center
Leese, Wallace R.; Kizirian, Tim
2009-01-01
The reciprocal method of service department cost allocation requires linear equations to be solved simultaneously. These computations are often so complex as to cause the abandonment of the reciprocal method in favor of the less sophisticated direct or step-down methods. Here is a short example demonstrating how Excel's sometimes unknown matrix…
A quantum extended Kalman filter
NASA Astrophysics Data System (ADS)
Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.
2017-06-01
In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements.
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.; Mohammed, Ahmed Ali; Kadiam, Subhash
2010-01-01
Solving large (and sparse) system of simultaneous linear equations has been (and continues to be) a major challenging problem for many real-world engineering/science applications [1-2]. For many practical/large-scale problems, the sparse, Symmetrical and Positive Definite (SPD) system of linear equations can be conveniently represented in matrix notation as [A] {x} = {b} , where the square coefficient matrix [A] and the Right-Hand-Side (RHS) vector {b} are known. The unknown solution vector {x} can be efficiently solved by the following step-by-step procedures [1-2]: Reordering phase, Matrix Factorization phase, Forward solution phase, and Backward solution phase. In this research work, a Game-Based Learning (GBL) approach has been developed to help engineering students to understand crucial details about matrix reordering and factorization phases. A "chess-like" game has been developed and can be played by either a single player, or two players. Through this "chess-like" open-ended game, the players/learners will not only understand the key concepts involved in reordering algorithms (based on existing algorithms), but also have the opportunities to "discover new algorithms" which are better than existing algorithms. Implementing the proposed "chess-like" game for matrix reordering and factorization phases can be enhanced by FLASH [3] computer environments, where computer simulation with animated human voice, sound effects, visual/graphical/colorful displays of matrix tables, score (or monetary) awards for the best game players, etc. can all be exploited. Preliminary demonstrations of the developed GBL approach can be viewed by anyone who has access to the internet web-site [4]!
On the Convenience of Using the Complete Linearization Method in Modelling the BLR of AGN
NASA Astrophysics Data System (ADS)
Patriarchi, P.; Perinotto, M.
The Complete Linearization Method (Mihalas, 1978) consists in the determination of the radiation field (at a set of frequency points), atomic level populations, temperature, electron density etc., by resolving the system of radiative transfer, thermal equilibrium, statistical equilibrium equations simultaneously and self-consistently. Since the system is not linear, it must be solved by iteration after linearization, using a perturbative method, starting from an initial guess solution. Of course the Complete Linearization Method is more time consuming than the previous one. But how great can this disadvantage be in the age of supercomputers? It is possible to approximately evaluate the CPU time needed to run a model by computing the number of multiplications necessary to solve the system.
ERIC Educational Resources Information Center
Adeleke, M. A.
2007-01-01
The paper examined the possibility of finding out if improvements in students' problem solving performance in simultaneous linear equation will be recorded with the use of procedural and conceptual learning strategies and in addition to find out which of the strategies will be more effective. The study adopted a pretest, post test control group…
Scalable Parallel Computation for Extended MHD Modeling of Fusion Plasmas
NASA Astrophysics Data System (ADS)
Glasser, Alan H.
2008-11-01
Parallel solution of a linear system is scalable if simultaneously doubling the number of dependent variables and the number of processors results in little or no increase in the computation time to solution. Two approaches have this property for parabolic systems: multigrid and domain decomposition. Since extended MHD is primarily a hyperbolic rather than a parabolic system, additional steps must be taken to parabolize the linear system to be solved by such a method. Such physics-based preconditioning (PBP) methods have been pioneered by Chac'on, using finite volumes for spatial discretization, multigrid for solution of the preconditioning equations, and matrix-free Newton-Krylov methods for the accurate solution of the full nonlinear preconditioned equations. The work described here is an extension of these methods using high-order spectral element methods and FETI-DP domain decomposition. Application of PBP to a flux-source representation of the physics equations is discussed. The resulting scalability will be demonstrated for simple wave and for ideal and Hall MHD waves.
Accelerating molecular property calculations with nonorthonormal Krylov space methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.
Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less
Accelerating molecular property calculations with nonorthonormal Krylov space methods
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; ...
2016-05-03
Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less
NASA Astrophysics Data System (ADS)
Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.
2018-04-01
An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.
Mathematics Literacy of Secondary Students in Solving Simultanenous Linear Equations
NASA Astrophysics Data System (ADS)
Sitompul, R. S. I.; Budayasa, I. K.; Masriyah
2018-01-01
This study examines the profile of secondary students’ mathematical literacy in solving simultanenous linear equations problems in terms of cognitive style of visualizer and verbalizer. This research is a descriptive research with qualitative approach. The subjects in this research consist of one student with cognitive style of visualizer and one student with cognitive style of verbalizer. The main instrument in this research is the researcher herself and supporting instruments are cognitive style tests, mathematics skills tests, problem-solving tests and interview guidelines. Research was begun by determining the cognitive style test and mathematics skill test. The subjects chosen were given problem-solving test about simultaneous linear equations and continued with interview. To ensure the validity of the data, the researcher conducted data triangulation; the steps of data reduction, data presentation, data interpretation, and conclusion drawing. The results show that there is a similarity of visualizer and verbalizer-cognitive style in identifying and understanding the mathematical structure in the process of formulating. There are differences in how to represent problems in the process of implementing, there are differences in designing strategies and in the process of interpreting, and there are differences in explaining the logical reasons.
NASA Astrophysics Data System (ADS)
Recchioni, Maria Cristina
2001-12-01
This paper investigates the application of the method introduced by L. Pasquini (1989) for simultaneously approaching the zeros of polynomial solutions to a class of second-order linear homogeneous ordinary differential equations with polynomial coefficients to a particular case in which these polynomial solutions have zeros symmetrically arranged with respect to the origin. The method is based on a family of nonlinear equations which is associated with a given class of differential equations. The roots of the nonlinear equations are related to the roots of the polynomial solutions of differential equations considered. Newton's method is applied to find the roots of these nonlinear equations. In (Pasquini, 1994) the nonsingularity of the roots of these nonlinear equations is studied. In this paper, following the lines in (Pasquini, 1994), the nonsingularity of the roots of these nonlinear equations is studied. More favourable results than the ones in (Pasquini, 1994) are proven in the particular case of polynomial solutions with symmetrical zeros. The method is applied to approximate the roots of Hermite-Sobolev type polynomials and Freud polynomials. A lower bound for the smallest positive root of Hermite-Sobolev type polynomials is given via the nonlinear equation. The quadratic convergence of the method is proven. A comparison with a classical method that uses the Jacobi matrices is carried out. We show that the algorithm derived by the proposed method is sometimes preferable to the classical QR type algorithms for computing the eigenvalues of the Jacobi matrices even if these matrices are real and symmetric.
Chaotic dynamics and diffusion in a piecewise linear equation
NASA Astrophysics Data System (ADS)
Shahrear, Pabel; Glass, Leon; Edwards, Rod
2015-03-01
Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.
A high-fidelity method to analyze perturbation evolution in turbulent flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unnikrishnan, S., E-mail: sasidharannair.1@osu.edu; Gaitonde, Datta V., E-mail: gaitonde.3@osu.edu
2016-04-01
Small perturbation propagation in fluid flows is usually examined by linearizing the governing equations about a steady basic state. It is often useful, however, to study perturbation evolution in the unsteady evolving turbulent environment. Such analyses can elucidate the role of perturbations in the generation of coherent structures or the production of noise from jet turbulence. The appropriate equations are still the linearized Navier–Stokes equations, except that the linearization must be performed about the instantaneous evolving turbulent state, which forms the coefficients of the linearized equations. This is a far more difficult problem since in addition to the turbulent state,more » its rate of change and the perturbation field are all required at each instant. In this paper, we develop and use a novel technique for this problem by using a pair (denoted “baseline” and “twin”) of simultaneous synchronized Large-Eddy Simulations (LES). At each time-step, small disturbances whose propagation characteristics are to be studied, are introduced into the twin through a forcing term. At subsequent time steps, the difference between the two simulations is shown to be equivalent to solving the forced Navier–Stokes equations, linearized about the instantaneous turbulent state. The technique does not put constraints on the forcing, which could be arbitrary, e.g., white noise or other stochastic variants. We consider, however, “native” forcing having properties of disturbances that exist naturally in the turbulent environment. The method then isolates the effect of turbulence in a particular region on the rest of the field, which is useful in the study of noise source localization. The synchronized technique is relatively simple to implement into existing codes. In addition to minimizing the storage and retrieval of large time-varying datasets, it avoids the need to explicitly linearize the governing equations, which can be a very complicated task for viscous terms or turbulence closures. The method is illustrated by application to a well-validated Mach 1.3 jet. Specifically, the effects of turbulence on the jet lipline and core collapse regions on the near-acoustic field are isolated. The properties of the method, including linearity and effect of initial transients, are discussed. The results provide insight into how turbulence from different parts of the jet contribute to the observed dominance of low and high frequency content at shallow and sideline angles, respectively.« less
A high-fidelity method to analyze perturbation evolution in turbulent flows
NASA Astrophysics Data System (ADS)
Unnikrishnan, S.; Gaitonde, Datta V.
2016-04-01
Small perturbation propagation in fluid flows is usually examined by linearizing the governing equations about a steady basic state. It is often useful, however, to study perturbation evolution in the unsteady evolving turbulent environment. Such analyses can elucidate the role of perturbations in the generation of coherent structures or the production of noise from jet turbulence. The appropriate equations are still the linearized Navier-Stokes equations, except that the linearization must be performed about the instantaneous evolving turbulent state, which forms the coefficients of the linearized equations. This is a far more difficult problem since in addition to the turbulent state, its rate of change and the perturbation field are all required at each instant. In this paper, we develop and use a novel technique for this problem by using a pair (denoted "baseline" and "twin") of simultaneous synchronized Large-Eddy Simulations (LES). At each time-step, small disturbances whose propagation characteristics are to be studied, are introduced into the twin through a forcing term. At subsequent time steps, the difference between the two simulations is shown to be equivalent to solving the forced Navier-Stokes equations, linearized about the instantaneous turbulent state. The technique does not put constraints on the forcing, which could be arbitrary, e.g., white noise or other stochastic variants. We consider, however, "native" forcing having properties of disturbances that exist naturally in the turbulent environment. The method then isolates the effect of turbulence in a particular region on the rest of the field, which is useful in the study of noise source localization. The synchronized technique is relatively simple to implement into existing codes. In addition to minimizing the storage and retrieval of large time-varying datasets, it avoids the need to explicitly linearize the governing equations, which can be a very complicated task for viscous terms or turbulence closures. The method is illustrated by application to a well-validated Mach 1.3 jet. Specifically, the effects of turbulence on the jet lipline and core collapse regions on the near-acoustic field are isolated. The properties of the method, including linearity and effect of initial transients, are discussed. The results provide insight into how turbulence from different parts of the jet contribute to the observed dominance of low and high frequency content at shallow and sideline angles, respectively.
Squeeze-film dampers for turbomachinery stabilization
NASA Technical Reports Server (NTRS)
Mclean, L. J.; Hahn, E. J.
1984-01-01
A technique for investigating the stability and damping present in centrally preloaded radially symmetric multi-mass flexible rotor bearing systems is presented. In general, one needs to find the eigenvalues of the linearized perturbation equations, though zero frequency stability maps may be found by solving as many simultaneous non-linear equations as there are dampers; and in the case of a single damper, such maps may be found directly, regardless of the number of degrees of freedom. The technique is illustrated for a simple symmetric four degree of freedom flexible rotor with an unpressurized damper. This example shows that whereas zero frequency stability maps are likely to prove to be a simple way to delineate multiple solution possibilities, they do not provide full stability information. Further, particularly for low bearing parameters, the introduction of an unpressurized squeeze film damper may promote instability in an otherwise stable system.
Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2014-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
NASA Technical Reports Server (NTRS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
NASA Astrophysics Data System (ADS)
Kengne, E.; Liu, W. M.
2018-05-01
A modified lossless nonlinear Noguchi transmission network with second-neighbor interactions is considered. In the semidiscrete limit, we apply the reductive perturbation method and show that the dynamics of modulated waves propagating through the network are governed by an NLS equation with linear external potential. Classes of exact solitonic solutions of this network equation are derived, proving possible transmission of both bright and dark solitonlike pulses through the network. The effects of both the coupling second-neighbor parameter L3 and the strength λ of the linear potential on the dynamics of modulated waves through the network are investigated. One of the main results of our work is that with the introduction of the second neighbors in the network, two solitary signals, either two bright solitary signals or one bright and one dark solitary signal, may simultaneously propagate at the same frequency through the network.
On multiple crack identification by ultrasonic scanning
NASA Astrophysics Data System (ADS)
Brigante, M.; Sumbatyan, M. A.
2018-04-01
The present work develops an approach which reduces operator equations arising in the engineering problems to the problem of minimizing the discrepancy functional. For this minimization, an algorithm of random global search is proposed, which is allied to some genetic algorithms. The efficiency of the method is demonstrated by the solving problem of simultaneous identification of several linear cracks forming an array in an elastic medium by using the circular Ultrasonic scanning.
NASA Astrophysics Data System (ADS)
van Dijk, Jan; Hartgers, Bart; van der Mullen, Joost
2006-10-01
Self-consistent modelling of plasma sources requires a simultaneous treatment of multiple physical phenomena. As a result plasma codes have a high degree of complexity. And with the growing interest in time-dependent modelling of non-equilibrium plasma in three dimensions, codes tend to become increasingly hard to explain-and-maintain. As a result of these trends there has been an increased interest in the software-engineering and implementation aspects of plasma modelling in our group at Eindhoven University of Technology. In this contribution we will present modern object-oriented techniques in C++ to solve an old problem: that of the discretisation of coupled linear(ized) equations involving multiple field variables on ortho-curvilinear meshes. The `LinSys' code has been tailored to the transport equations that occur in transport physics. The implementation has been made both efficient and user-friendly by using modern idiom like expression templates and template meta-programming. Live demonstrations will be given. The code is available to interested parties; please visit www.dischargemodelling.org.
Simultaneous π / 2 rotation of two spin species of different gyromagnetic ratios
Chu, Ping -Han; Peng, Jen -Chieh
2015-06-05
Here, we examine the characteristics of the π/2 pulse for simultaneously rotating two spin species of different gyromagnetic ratios with the same sign. For a π/2 pulse using a rotating magnetic field, we derive an equation relating the frequency and strength of the pulse to the gyromagnetic ratios of the two particles and the strength of the constant holding field. For a π/2 pulse using a linear oscillatory magnetic field, we obtain the solutions numerically, and compare them with the solutions for the rotating π/2 pulse. Application of this analysis to the specific case of rotating neutrons and 3He atomsmore » simultaneously with a π/2 pulse, proposed for a neutron electric dipole moment experiment, is also presented.« less
NASA Astrophysics Data System (ADS)
Manideep, P.; Raju, R. Srinivasa; Rao, T. Siva Nageswar; Reddy, G. Jithender
2018-05-01
This paper deals, an unsteady magnetohydrodynamic heat transfer natural convection flow of non-Newtonian Casson fluid over an inclined vertical plate embedded in a porous media with the presence of boundary conditions such as oscillating velocity, constant wall temperature. The governing dimensionless boundary layer partial differential equations are reduced to simultaneous algebraic linear equation for velocity, temperature of Casson fluid through finite element method. Those equations are solved by Thomas algorithm after imposing the boundary conditions through MATLAB for analyzing the behavior of Casson fluid velocity and temperature with various physical parameters. Also analyzed the local skin-friction and rate of heat transfer. Compared the present results with earlier reported studies, the results are comprehensively authenticated and robust FEM.
A Flexible CUDA LU-based Solver for Small, Batched Linear Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumeo, Antonino; Gawande, Nitin A.; Villa, Oreste
This chapter presents the implementation of a batched CUDA solver based on LU factorization for small linear systems. This solver may be used in applications such as reactive flow transport models, which apply the Newton-Raphson technique to linearize and iteratively solve the sets of non linear equations that represent the reactions for ten of thousands to millions of physical locations. The implementation exploits somewhat counterintuitive GPGPU programming techniques: it assigns the solution of a matrix (representing a system) to a single CUDA thread, does not exploit shared memory and employs dynamic memory allocation on the GPUs. These techniques enable ourmore » implementation to simultaneously solve sets of systems with over 100 equations and to employ LU decomposition with complete pivoting, providing the higher numerical accuracy required by certain applications. Other currently available solutions for batched linear solvers are limited by size and only support partial pivoting, although they may result faster in certain conditions. We discuss the code of our implementation and present a comparison with the other implementations, discussing the various tradeoffs in terms of performance and flexibility. This work will enable developers that need batched linear solvers to choose whichever implementation is more appropriate to the features and the requirements of their applications, and even to implement dynamic switching approaches that can choose the best implementation depending on the input data.« less
NASA Astrophysics Data System (ADS)
Rychnovsky, Steve; Gilbreath, G. C.; Zavriyev, A.
1996-10-01
Simultaneous measurements of the photorefractive and the absorptive grating gain components in GaAs:EL2 are made and are shown to display qualitative behavior consistent with linearized solutions of a two-carrier rate equation model. These two components, together with the linear absorption coefficient, permit determination of four independent material parameters, e.g., the ionized and the nonionized EL2 densities, the hole photoionization cross section ( sigma h), and the electro-optic coefficient (r41). Data obtained at optical wavelengths of 0.96 and 1.06 mu m indicate that sigma h and r41 are larger than published values. .
NASA Astrophysics Data System (ADS)
Plastino, A.; Rocca, M. C.
2018-05-01
We generalize several well known quantum equations to a Tsallis’ q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields’ logarithms.
He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui
2015-08-13
In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well.
Cosmological perturbations of a perfect fluid and noncommutative variables
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Felice, Antonio; Gerard, Jean-Marc; Suyama, Teruaki
2010-03-15
We describe the linear cosmological perturbations of a perfect fluid at the level of an action, providing thus an alternative to the standard approach based only on the equations of motion. This action is suited not only to perfect fluids with a barotropic equation of state, but also to those for which the pressure depends on two thermodynamical variables. By quantizing the system we find that (1) some perturbation fields exhibit a noncommutativity quite analogous to the one observed for a charged particle moving in a strong magnetic field, (2) local curvature and pressure perturbations cannot be measured simultaneously, (3)more » ghosts appear if the null energy condition is violated.« less
NASA Astrophysics Data System (ADS)
Bouchet, L.; Amestoy, P.; Buttari, A.; Rouet, F.-H.; Chauvin, M.
2013-02-01
Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge, especially for long cumulated observation times. The INTEGRAL/SPI X/γ-ray spectrometer is an instrument for which it is essential to process many exposures at the same time in order to increase the low signal-to-noise ratio of the weakest sources. In this context, the conventional methods for data reduction are inefficient and sometimes not feasible at all. Processing several years of data simultaneously requires computing not only the solution of a large system of equations, but also the associated uncertainties. We aim at reducing the computation time and the memory usage. Since the SPI transfer function is sparse, we have used some popular methods for the solution of large sparse linear systems; we briefly review these methods. We use the Multifrontal Massively Parallel Solver (MUMPS) to compute the solution of the system of equations. We also need to compute the variance of the solution, which amounts to computing selected entries of the inverse of the sparse matrix corresponding to our linear system. This can be achieved through one of the latest features of the MUMPS software that has been partly motivated by this work. In this paper we provide a brief presentation of this feature and evaluate its effectiveness on astrophysical problems requiring the processing of large datasets simultaneously, such as the study of the entire emission of the Galaxy. We used these algorithms to solve the large sparse systems arising from SPI data processing and to obtain both their solutions and the associated variances. In conclusion, thanks to these newly developed tools, processing large datasets arising from SPI is now feasible with both a reasonable execution time and a low memory usage.
Sensitivity analysis for aeroacoustic and aeroelastic design of turbomachinery blades
NASA Technical Reports Server (NTRS)
Lorence, Christopher B.; Hall, Kenneth C.
1995-01-01
A new method for computing the effect that small changes in the airfoil shape and cascade geometry have on the aeroacoustic and aeroelastic behavior of turbomachinery cascades is presented. The nonlinear unsteady flow is assumed to be composed of a nonlinear steady flow plus a small perturbation unsteady flow that is harmonic in time. First, the full potential equation is used to describe the behavior of the nonlinear mean (steady) flow through a two-dimensional cascade. The small disturbance unsteady flow through the cascade is described by the linearized Euler equations. Using rapid distortion theory, the unsteady velocity is split into a rotational part that contains the vorticity and an irrotational part described by a scalar potential. The unsteady vorticity transport is described analytically in terms of the drift and stream functions computed from the steady flow. Hence, the solution of the linearized Euler equations may be reduced to a single inhomogeneous equation for the unsteady potential. The steady flow and small disturbance unsteady flow equations are discretized using bilinear quadrilateral isoparametric finite elements. The nonlinear mean flow solution and streamline computational grid are computed simultaneously using Newton iteration. At each step of the Newton iteration, LU decomposition is used to solve the resulting set of linear equations. The unsteady flow problem is linear, and is also solved using LU decomposition. Next, a sensitivity analysis is performed to determine the effect small changes in cascade and airfoil geometry have on the mean and unsteady flow fields. The sensitivity analysis makes use of the nominal steady and unsteady flow LU decompositions so that no additional matrices need to be factored. Hence, the present method is computationally very efficient. To demonstrate how the sensitivity analysis may be used to redesign cascades, a compressor is redesigned for improved aeroelastic stability and two different fan exit guide vanes are redesigned for reduced downstream radiated noise. In addition, a framework detailing how the two-dimensional version of the method may be used to redesign three-dimensional geometries is presented.
Parallel computation using boundary elements in solid mechanics
NASA Technical Reports Server (NTRS)
Chien, L. S.; Sun, C. T.
1990-01-01
The inherent parallelism of the boundary element method is shown. The boundary element is formulated by assuming the linear variation of displacements and tractions within a line element. Moreover, MACSYMA symbolic program is employed to obtain the analytical results for influence coefficients. Three computational components are parallelized in this method to show the speedup and efficiency in computation. The global coefficient matrix is first formed concurrently. Then, the parallel Gaussian elimination solution scheme is applied to solve the resulting system of equations. Finally, and more importantly, the domain solutions of a given boundary value problem are calculated simultaneously. The linear speedups and high efficiencies are shown for solving a demonstrated problem on Sequent Symmetry S81 parallel computing system.
Implicit Plasma Kinetic Simulation Using The Jacobian-Free Newton-Krylov Method
NASA Astrophysics Data System (ADS)
Taitano, William; Knoll, Dana; Chacon, Luis
2009-11-01
The use of fully implicit time integration methods in kinetic simulation is still area of algorithmic research. A brute-force approach to simultaneously including the field equations and the particle distribution function would result in an intractable linear algebra problem. A number of algorithms have been put forward which rely on an extrapolation in time. They can be thought of as linearly implicit methods or one-step Newton methods. However, issues related to time accuracy of these methods still remain. We are pursuing a route to implicit plasma kinetic simulation which eliminates extrapolation, eliminates phase-space from the linear algebra problem, and converges the entire nonlinear system within a time step. We accomplish all this using the Jacobian-Free Newton-Krylov algorithm. The original research along these lines considered particle methods to advance the distribution function [1]. In the current research we are advancing the Vlasov equations on a grid. Results will be presented which highlight algorithmic details for single species electrostatic problems and coupled ion-electron electrostatic problems. [4pt] [1] H. J. Kim, L. Chac'on, G. Lapenta, ``Fully implicit particle in cell algorithm,'' 47th Annual Meeting of the Division of Plasma Physics, Oct. 24-28, 2005, Denver, CO
An Analysis of Processes in the Solar Wind in a Thin Layer Adjacent to the Front of the Shock Wave
NASA Astrophysics Data System (ADS)
Molotkov, I. A.; Atamaniuk, B.
2018-05-01
A two-dimensional stationary system of nonlinear magnetohydrodynamics (MHD) equations in a thin layer adjoining the front of the interplanetary shock wave has been solved. Previously, any available publications relied on linear transport equations. But the presence of high-energy particles in the solar wind (SW) requires taking into account the processes of self-interaction. Our analysis examines the nonlinear terms in the MHD equations. A solution has been constructed for three cases: (1) in the absence of magnetic reconnections; (2) for magnetic reconnections; and (3) with the simultaneous action of reconnections and junction of magnetic islands. In all three cases, expressions were found for the main parameters of the SW. The results obtained on the basis of the solution of the MHD equations are consistent with the conclusions based on the investigation of the particle velocity distribution functions. This makes it possible to confirm the previously established fraction of particles excited to energies above 1 MeV.
Lagrangian geometrical optics of nonadiabatic vector waves and spin particles
Ruiz, D. E.; Dodin, I. Y.
2015-07-29
Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Here, both phenomena are governed by an effective gauge Hamiltonian vanishing in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of N resonant modes, where N is arbitrary, and leadmore » to equations for the wave spin, which happens to be an (N 2 - 1)-dimensional spin vector. As a special case, classical equations for a Dirac particle (N = 2) are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangian with the Pauli term. The model reproduces the Bargmann-Michel-Telegdi equations with added Stern-Gerlach force.« less
He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui
2015-01-01
In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well. PMID:26287194
Midgley, Stewart; Schleich, Nanette
2015-05-01
A novel method for dual-energy X-ray analysis (DEXA) is tested using measurements of the X-ray linear attenuation coefficient μ. The key is a mathematical model that describes elemental cross sections using a polynomial in atomic number. The model is combined with the mixture rule to describe μ for materials, using the same polynomial coefficients. Materials are characterized by their electron density Ne and statistical moments Rk describing their distribution of elements, analogous to the concept of effective atomic number. In an experiment with materials of known density and composition, measurements of μ are written as a system of linear simultaneous equations, which is solved for the polynomial coefficients. DEXA itself involves computed tomography (CT) scans at two energies to provide a system of non-linear simultaneous equations that are solved for Ne and the fourth statistical moment R4. Results are presented for phantoms containing dilute salt solutions and for a biological specimen. The experiment identifies 1% systematic errors in the CT measurements, arising from third-harmonic radiation, and 20-30% noise, which is reduced to 3-5% by pre-processing with the median filter and careful choice of reconstruction parameters. DEXA accuracy is quantified for the phantom as the mean absolute differences for Ne and R4: 0.8% and 1.0% for soft tissue and 1.2% and 0.8% for bone-like samples, respectively. The DEXA results for the biological specimen are combined with model coefficients obtained from the tabulations to predict μ and the mass energy absorption coefficient at energies of 10 keV to 20 MeV.
Analytical approximations for spiral waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Löber, Jakob, E-mail: jakob@physik.tu-berlin.de; Engel, Harald
2013-12-15
We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R{sub 0}. For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R{sub +}) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R{sub +}more » with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.« less
The Elasto-Plastic Stability of Plates
NASA Technical Reports Server (NTRS)
Ilyushin, A. A.
1947-01-01
This article explains results developed from the following research: 'The Stability of Plates and Shells beyond the Elastic Limit.' A significant improvement is found in the derivation of the relations between the stress factors and the strains resulting from the instability of plates and shells. In a strict analysis, the problem reduces to the solution of two simultaneous nonlinear partial differential equations of the fourth order in the deflection and stress function, and in the approximate analysis to a single linear equation of the Bryan type. Solutions are given for the special cases of a rectangular plate buckling into a cylindrical form, and of an arbitrarily shaped plate under uniform compression. These solutions indicate that the accuracy obtained by the approximate method is satisfactory.
Cotton-type and joint invariants for linear elliptic systems.
Aslam, A; Mahomed, F M
2013-01-01
Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results.
Cotton-Type and Joint Invariants for Linear Elliptic Systems
Aslam, A.; Mahomed, F. M.
2013-01-01
Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results. PMID:24453871
A Simultaneous Equation Demand Model for Block Rates
NASA Astrophysics Data System (ADS)
Agthe, Donald E.; Billings, R. Bruce; Dobra, John L.; Raffiee, Kambiz
1986-01-01
This paper examines the problem of simultaneous-equations bias in estimation of the water demand function under an increasing block rate structure. The Hausman specification test is used to detect the presence of simultaneous-equations bias arising from correlation of the price measures with the regression error term in the results of a previously published study of water demand in Tucson, Arizona. An alternative simultaneous equation model is proposed for estimating the elasticity of demand in the presence of block rate pricing structures and availability of service charges. This model is used to reestimate the price and rate premium elasticities of demand in Tucson, Arizona for both the usual long-run static model and for a simple short-run demand model. The results from these simultaneous equation models are consistent with a priori expectations and are unbiased.
A purely Lagrangian method for computing linearly-perturbed flows in spherical geometry
NASA Astrophysics Data System (ADS)
Jaouen, Stéphane
2007-07-01
In many physical applications, one wishes to control the development of multi-dimensional instabilities around a one-dimensional (1D) complex flow. For predicting the growth rates of these perturbations, a general numerical approach is viable which consists in solving simultaneously the one-dimensional equations and their linearized form for three-dimensional perturbations. In Clarisse et al. [J.-M. Clarisse, S. Jaouen, P.-A. Raviart, A Godunov-type method in Lagrangian coordinates for computing linearly-perturbed planar-symmetric flows of gas dynamics, J. Comp. Phys. 198 (2004) 80-105], a class of Godunov-type schemes for planar-symmetric flows of gas dynamics has been proposed. Pursuing this effort, we extend these results to spherically symmetric flows. A new method to derive the Lagrangian perturbation equations, based on the canonical form of systems of conservation laws with zero entropy flux [B. Després, Lagrangian systems of conservation laws. Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition, Numer. Math. 89 (2001) 99-134; B. Després, C. Mazeran, Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. Rational Mech. Anal. 178 (2005) 327-372] is also described. It leads to many advantages. First of all, many physical problems we are interested in enter this formalism (gas dynamics, two-temperature plasma equations, ideal magnetohydrodynamics, etc.) whatever is the geometry. Secondly, a class of numerical entropic schemes is available for the basic flow [11]. Last, linearizing and devising numerical schemes for the perturbed flow is straightforward. The numerical capabilities of these methods are illustrated on three test cases of increasing difficulties and we show that - due to its simplicity and its low computational cost - the Linear Perturbations Code (LPC) is a powerful tool to understand and predict the development of hydrodynamic instabilities in the linear regime.
NASA Technical Reports Server (NTRS)
Swafford, Timothy W.; Huddleston, David H.; Busby, Judy A.; Chesser, B. Lawrence
1992-01-01
Computations of viscous-inviscid interacting internal flowfields are presented for steady and unsteady quasi-one-dimensional (Q1D) test cases. The unsteady Q1D Euler equations are coupled with integral boundary-layer equations for unsteady, two-dimensional (planar or axisymmetric), turbulent flow over impermeable, adiabatic walls. The coupling methodology differs from that used in most techniques reported previously in that the above mentioned equation sets are written as a complete system and solved simultaneously; that is, the coupling is carried out directly through the equations as opposed to coupling the solutions of the different equation sets. Solutions to the coupled system of equations are obtained using both explicit and implicit numerical schemes for steady subsonic, steady transonic, and both steady and unsteady supersonic internal flowfields. Computed solutions are compared with measurements as well as Navier-Stokes and inverse boundary-layer methods. An analysis of the eigenvalues of the coefficient matrix associated with the quasi-linear form of the coupled system of equations indicates the presence of complex eigenvalues for certain flow conditions. It is concluded that although reasonable solutions can be obtained numerically, these complex eigenvalues contribute to the overall difficulty in obtaining numerical solutions to the coupled system of equations.
White, L J; Evans, N D; Lam, T J G M; Schukken, Y H; Medley, G F; Godfrey, K R; Chappell, M J
2002-01-01
A mathematical model for the transmission of two interacting classes of mastitis causing bacterial pathogens in a herd of dairy cows is presented and applied to a specific data set. The data were derived from a field trial of a specific measure used in the control of these pathogens, where half the individuals were subjected to the control and in the others the treatment was discontinued. The resultant mathematical model (eight non-linear simultaneous ordinary differential equations) therefore incorporates heterogeneity in the host as well as the infectious agent and consequently the effects of control are intrinsic in the model structure. A structural identifiability analysis of the model is presented demonstrating that the scope of the novel method used allows application to high order non-linear systems. The results of a simultaneous estimation of six unknown system parameters are presented. Previous work has only estimated a subset of these either simultaneously or individually. Therefore not only are new estimates provided for the parameters relating to the transmission and control of the classes of pathogens under study, but also information about the relationships between them. We exploit the close link between mathematical modelling, structural identifiability analysis, and parameter estimation to obtain biological insights into the system modelled.
The Mean Curvature of the Influence Surface of Wave Equation With Sources on a Moving Surface
NASA Technical Reports Server (NTRS)
Farassat, F.; Farris, Mark
1999-01-01
The mean curvature of the influence surface of the space-time point (x, t) appears in linear supersonic propeller noise theory and in the Kirchhoff formula for a supersonic surface. Both these problems are governed by the linear wave equation with sources on a moving surface. The influence surface is also called the Sigma - surface in the aeroacoustic literature. This surface is the locus, in a frame fixed to the quiescent medium, of all the points of a radiating surface f(x, t) = 0 whose acoustic signals arrive simultaneously to an observer at position x and at the time t. Mathematically, the Sigma- surface is produced by the intersection of the characteristic conoid of the space-time point (x, t) and the moving surface. In this paper, we derive the expression for the local mean curvature of the Sigma - space of the space-time point for a moving rigid or deformable surface f(x, t) = 0. This expression is a complicated function of the geometric and kinematic parameters of the surface f(x, t) = 0. Using the results of this paper, the solution of the governing wave equation of high speed propeller noise radiation as well as the Kirchhoff formula for a supersonic surface can be written as very compact analytic expression.
Protection Relaying Scheme Based on Fault Reactance Operation Type
NASA Astrophysics Data System (ADS)
Tsuji, Kouichi
The theories of operation of existing relays are roughly divided into two types: one is the current differential types based on Kirchhoff's first law and the other is impedance types based on second law. We can apply the Kirchhoff's laws to strictly formulate fault phenomena, so the circuit equations are represented non linear simultaneous equations with variables fault point k and fault resistance Rf. This method has next two defect. 1) heavy computational burden for the iterative calculation on N-R method, 2) relay operator can not easily understand principle of numerical matrix operation. The new protection relay principles we proposed this paper focuses on the fact that the reactance component on fault point is almost zero. Two reactance Xf(S), Xf(R) on branch both ends are calculated by operation of solving linear equations. If signs of Xf(S) and Xf(R) are not same, it can be judged that the fault point exist in the branch. This reactance Xf corresponds to difference of branch reactance between actual fault point and imaginaly fault point. And so relay engineer can to understand fault location by concept of “distance". The simulation results using this new method indicates the highly precise estimation of fault locations compared with the inspected fault locations on operating transmission lines.
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Villarreal, Ramiro
1987-01-01
System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.
Helicopter Control Energy Reduction Using Moving Horizontal Tail
Oktay, Tugrul; Sal, Firat
2015-01-01
Helicopter moving horizontal tail (i.e., MHT) strategy is applied in order to save helicopter flight control system (i.e., FCS) energy. For this intention complex, physics-based, control-oriented nonlinear helicopter models are used. Equations of MHT are integrated into these models and they are together linearized around straight level flight condition. A specific variance constrained control strategy, namely, output variance constrained Control (i.e., OVC) is utilized for helicopter FCS. Control energy savings due to this MHT idea with respect to a conventional helicopter are calculated. Parameters of helicopter FCS and dimensions of MHT are simultaneously optimized using a stochastic optimization method, namely, simultaneous perturbation stochastic approximation (i.e., SPSA). In order to observe improvement in behaviors of classical controls closed loop analyses are done. PMID:26180841
NASA Astrophysics Data System (ADS)
Sengupta, Tapan K.; Sharma, Nidhi; Sengupta, Aditi
2018-05-01
An enstrophy-based non-linear instability analysis of the Navier-Stokes equation for two-dimensional (2D) flows is presented here, using the Taylor-Green vortex (TGV) problem as an example. This problem admits a time-dependent analytical solution as the base flow, whose instability is traced here. The numerical study of the evolution of the Taylor-Green vortices shows that the flow becomes turbulent, but an explanation for this transition has not been advanced so far. The deviation of the numerical solution from the analytical solution is studied here using a high accuracy compact scheme on a non-uniform grid (NUC6), with the fourth-order Runge-Kutta method. The stream function-vorticity (ψ, ω) formulation of the governing equations is solved here in a periodic square domain with four vortices at t = 0. Simulations performed at different Reynolds numbers reveal that numerical errors in computations induce a breakdown of symmetry and simultaneous fragmentation of vortices. It is shown that the actual physical instability is triggered by the growth of disturbances and is explained by the evolution of disturbance mechanical energy and enstrophy. The disturbance evolution equations have been traced by looking at (a) disturbance mechanical energy of the Navier-Stokes equation, as described in the work of Sengupta et al., "Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003), and (b) the creation of rotationality via the enstrophy transport equation in the work of Sengupta et al., "Diffusion in inhomogeneous flows: Unique equilibrium state in an internal flow," Comput. Fluids 88, 440-451 (2013).
NASA Astrophysics Data System (ADS)
Yuan, Qing; Xu, Guang; Liang, Wei-cheng; He, Bei; Zhou, Ming-xing
2018-02-01
The oxidizing behavior of Si-containing steel was investigated in an O2 and N2 binary-component gas with oxygen contents ranging between 0.5vol% and 4.0vol% under anisothermal-oxidation conditions. A simultaneous thermal analyzer was employed to simulate the heating process of Si-containing steel in industrial reheating furnaces. The oxidation gas mixtures were introduced from the commencement of heating. The results show that the oxidizing rate remains constant in the isothermal holding process at high temperatures; therefore, the mass change versus time presents a linear law. A linear relation also exists between the oxidizing rate and the oxygen content. Using the linear regression equation, the oxidation rate at different oxygen contents can be predicted. In addition, the relationship between the total mass gain and the oxygen content is linear; thus, the total mass gain at oxygen contents between 0.5vol%-4.0vol% can be determined. These results enrich the theoretical studies of the oxidation process in Si-containing steels.
Numerical Technology for Large-Scale Computational Electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharpe, R; Champagne, N; White, D
The key bottleneck of implicit computational electromagnetics tools for large complex geometries is the solution of the resulting linear system of equations. The goal of this effort was to research and develop critical numerical technology that alleviates this bottleneck for large-scale computational electromagnetics (CEM). The mathematical operators and numerical formulations used in this arena of CEM yield linear equations that are complex valued, unstructured, and indefinite. Also, simultaneously applying multiple mathematical modeling formulations to different portions of a complex problem (hybrid formulations) results in a mixed structure linear system, further increasing the computational difficulty. Typically, these hybrid linear systems aremore » solved using a direct solution method, which was acceptable for Cray-class machines but does not scale adequately for ASCI-class machines. Additionally, LLNL's previously existing linear solvers were not well suited for the linear systems that are created by hybrid implicit CEM codes. Hence, a new approach was required to make effective use of ASCI-class computing platforms and to enable the next generation design capabilities. Multiple approaches were investigated, including the latest sparse-direct methods developed by our ASCI collaborators. In addition, approaches that combine domain decomposition (or matrix partitioning) with general-purpose iterative methods and special purpose pre-conditioners were investigated. Special-purpose pre-conditioners that take advantage of the structure of the matrix were adapted and developed based on intimate knowledge of the matrix properties. Finally, new operator formulations were developed that radically improve the conditioning of the resulting linear systems thus greatly reducing solution time. The goal was to enable the solution of CEM problems that are 10 to 100 times larger than our previous capability.« less
Multiscale Concrete Modeling of Aging Degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammi, Yousseff; Gullett, Philipp; Horstemeyer, Mark F.
In this work a numerical finite element framework is implemented to enable the integration of coupled multiscale and multiphysics transport processes. A User Element subroutine (UEL) in Abaqus is used to simultaneously solve stress equilibrium, heat conduction, and multiple diffusion equations for 2D and 3D linear and quadratic elements. Transport processes in concrete structures and their degradation mechanisms are presented along with the discretization of the governing equations. The multiphysics modeling framework is theoretically extended to the linear elastic fracture mechanics (LEFM) by introducing the eXtended Finite Element Method (XFEM) and based on the XFEM user element implementation of Ginermore » et al. [2009]. A damage model that takes into account the damage contribution from the different degradation mechanisms is theoretically developed. The total contribution of damage is forwarded to a Multi-Stage Fatigue (MSF) model to enable the assessment of the fatigue life and the deterioration of reinforced concrete structures in a nuclear power plant. Finally, two examples are presented to illustrate the developed multiphysics user element implementation and the XFEM implementation of Giner et al. [2009].« less
A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty
Friedel, Michael J.
2011-01-01
This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.
AITRAC: Augmented Interactive Transient Radiation Analysis by Computer. User's information manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-10-01
AITRAC is a program designed for on-line, interactive, DC, and transient analysis of electronic circuits. The program solves linear and nonlinear simultaneous equations which characterize the mathematical models used to predict circuit response. The program features 100 external node--200 branch capability; conversional, free-format input language; built-in junction, FET, MOS, and switch models; sparse matrix algorithm with extended-precision H matrix and T vector calculations, for fast and accurate execution; linear transconductances: beta, GM, MU, ZM; accurate and fast radiation effects analysis; special interface for user-defined equations; selective control of multiple outputs; graphical outputs in wide and narrow formats; and on-line parametermore » modification capability. The user describes the problem by entering the circuit topology and part parameters. The program then automatically generates and solves the circuit equations, providing the user with printed or plotted output. The circuit topology and/or part values may then be changed by the user, and a new analysis, requested. Circuit descriptions may be saved on disk files for storage and later use. The program contains built-in standard models for resistors, voltage and current sources, capacitors, inductors including mutual couplings, switches, junction diodes and transistors, FETS, and MOS devices. Nonstandard models may be constructed from standard models or by using the special equations interface. Time functions may be described by straight-line segments or by sine, damped sine, and exponential functions. 42 figures, 1 table. (RWR)« less
NASA Astrophysics Data System (ADS)
Wati, S.; Fitriana, L.; Mardiyana
2018-04-01
Linear equation is one of the topics in mathematics that are considered difficult. Student difficulties of understanding linear equation can be caused by lack of understanding this concept and the way of teachers teach. TPACK is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches and supported by the right technology tools. This study aims to identify TPACK of junior high school mathematics teachers in teaching linear equation. The method used in the study was descriptive. In the first phase, a survey using a questionnaire was carried out on 45 junior high school mathematics teachers in teaching linear equation. While in the second phase, the interview involved three teachers. The analysis of data used were quantitative and qualitative technique. The result PCK revealed teachers emphasized developing procedural and conceptual knowledge through reliance on traditional in teaching linear equation. The result of TPK revealed teachers’ lower capacity to deal with the general information and communications technologies goals across the curriculum in teaching linear equation. The result indicated that PowerPoint constitutes TCK modal technological capability in teaching linear equation. The result of TPACK seems to suggest a low standard in teachers’ technological skills across a variety of mathematics education goals in teaching linear equation. This means that the ability of teachers’ TPACK in teaching linear equation still needs to be improved.
Lewis, F.M.; Voss, C.I.; Rubin, Jacob
1986-01-01
A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)
On supporting students' understanding of solving linear equation by using flowchart
NASA Astrophysics Data System (ADS)
Toyib, Muhamad; Kusmayadi, Tri Atmojo; Riyadi
2017-05-01
The aim of this study was to support 7th graders to gradually understand the concepts and procedures of solving linear equation. Thirty-two 7th graders of a Junior High School in Surakarta, Indonesia were involved in this study. Design research was used as the research approach to achieve the aim. A set of learning activities in solving linear equation with one unknown were designed based on Realistic Mathematics Education (RME) approach. The activities were started by playing LEGO to find a linear equation then solve the equation by using flowchart. The results indicate that using the realistic problems, playing LEGO could stimulate students to construct linear equation. Furthermore, Flowchart used to encourage students' reasoning and understanding on the concepts and procedures of solving linear equation with one unknown.
Unpacking the Complexity of Linear Equations from a Cognitive Load Theory Perspective
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Phan, Huy P.
2016-01-01
The degree of element interactivity determines the complexity and therefore the intrinsic cognitive load of linear equations. The unpacking of linear equations at the level of operational and relational lines allows the classification of linear equations in a hierarchical level of complexity. Mapping similar operational and relational lines across…
Temgoua, D D Estelle; Tchokonte, M B Tchoula; Kofane, T C
2018-04-01
The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.
NASA Astrophysics Data System (ADS)
Temgoua, D. D. Estelle; Tchokonte, M. B. Tchoula; Kofane, T. C.
2018-04-01
The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.
Optimized growth and reorientation of anisotropic material based on evolution equations
NASA Astrophysics Data System (ADS)
Jantos, Dustin R.; Junker, Philipp; Hackl, Klaus
2018-07-01
Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton's principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.
A Solution Space for a System of Null-State Partial Differential Equations: Part 2
NASA Astrophysics Data System (ADS)
Flores, Steven M.; Kleban, Peter
2015-01-01
This article is the second of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE). The system comprises 2 N null-state equations and three conformal Ward identities which govern CFT correlation functions of 2 N one-leg boundary operators. In the first article (Flores and Kleban, Commun Math Phys, arXiv:1212.2301, 2012), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. The analysis of that article is complete except for the proof of a lemma that it invokes. The purpose of this article is to provide that proof. The lemma states that if every interval among ( x 2, x 3), ( x 3, x 4),…,( x 2 N-1, x 2 N ) is a two-leg interval of (defined in Flores and Kleban, Commun Math Phys, arXiv:1212.2301, 2012), then F vanishes. Proving this lemma by contradiction, we show that the existence of such a nonzero function implies the existence of a non-vanishing CFT two-point function involving primary operators with different conformal weights, an impossibility. This proof (which is rigorous in spite of our occasional reference to CFT) involves two different types of estimates, those that give the asymptotic behavior of F as the length of one interval vanishes, and those that give this behavior as the lengths of two intervals vanish simultaneously. We derive these estimates by using Green functions to rewrite certain null-state PDEs as integral equations, combining other null-state PDEs to obtain Schauder interior estimates, and then repeatedly integrating the integral equations with these estimates until we obtain optimal bounds. Estimates in which two interval lengths vanish simultaneously divide into two cases: two adjacent intervals and two non-adjacent intervals. The analysis of the latter case is similar to that for one vanishing interval length. In contrast, the analysis of the former case is more complicated, involving a Green function that contains the Jacobi heat kernel as its essential ingredient.
Schwarz maps of algebraic linear ordinary differential equations
NASA Astrophysics Data System (ADS)
Sanabria Malagón, Camilo
2017-12-01
A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.
Kuriki, Ayako; Kumazawa, Takeshi; Lee, Xiao-Pen; Hasegawa, Chika; Kawamura, Mitsuru; Suzuki, Osamu; Sato, Keizo
2006-12-05
A method for the simultaneous determination of selegiline and its metabolite, desmethylselegiline, in human whole blood and urine is presented. The method, which combines a fiber-based headspace solid-phase microextraction (SPME) technique with gas chromatography-mass spectrometry (GC-MS), required optimization of various parameters (e.g., salt additives, extraction temperatures, extraction times and the extraction properties of the SPME fiber coatings). Pargyline was used as the internal standard. Extraction efficiencies for both selegiline and desmethylselegiline were 2.0-3.4% for whole blood, and 8.0-13.2% for urine. The regression equations for selegiline and desmethylselegiline extracted from whole blood were linear (r(2)=0.996 and 0.995) within the concentration ranges 0.1-10 and 0.2-20 ng/ml, respectively. For urine, the regression equations for selegiline and desmethylselegiline were linear (r(2)=0.999 and 0.998) within the concentration ranges 0.05-5.0 and 0.1-10 ng/ml, respectively. The limit of detection for selegiline and desmethylselegiline was 0.01-0.05 ng/ml for both samples. The lower and upper limits of quantification for each compound were 0.05-0.2 and 5-20 ng/ml, respectively. Intra- and inter-day coefficients of variation for selegiline and desmethylselegiline in both samples were not greater than 8.7 and 11.7%, respectively. The determination of selegiline and desmethylselegiline concentrations in Parkinson's disease patients undergoing continuous selegiline treatment is presented and is shown to validate the present methodology.
Opening of an interface flaw in a layered elastic half-plane under compressive loading
NASA Technical Reports Server (NTRS)
Kennedy, J. M.; Fichter, W. B.; Goree, J. G.
1984-01-01
A static analysis is given of the problem of an elastic layer perfectly bonded, except for a frictionless interface crack, to a dissimilar elastic half-plane. The free surface of the layer is loaded by a finite pressure distribution directly over the crack. The problem is formulated using the two dimensional linear elasticity equations. Using Fourier transforms, the governing equations are converted to a pair of coupled singular integral equations. The integral equations are reduced to a set of simultaneous algebraic equations by expanding the unknown functions in a series of Jacobi polynomials and then evaluating the singular Cauchy-type integrals. The resulting equations are found to be ill-conditioned and, consequently, are solved in the least-squares sense. Results from the analysis show that, under a normal pressure distribution on the free surface of the layer and depending on the combination of geometric and material parameters, the ends of the crack can open. The resulting stresses at the crack-tips are singular, implying that crack growth is possible. The extent of the opening and the crack-top stress intensity factors depend on the width of the pressure distribution zone, the layer thickness, and the relative material properties of the layer and half-plane.
NASA Astrophysics Data System (ADS)
Hosseini, K.; Ayati, Z.; Ansari, R.
2018-04-01
One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.
Local Linear Observed-Score Equating
ERIC Educational Resources Information Center
Wiberg, Marie; van der Linden, Wim J.
2011-01-01
Two methods of local linear observed-score equating for use with anchor-test and single-group designs are introduced. In an empirical study, the two methods were compared with the current traditional linear methods for observed-score equating. As a criterion, the bias in the equated scores relative to true equating based on Lord's (1980)…
Stochastic effects in a discretized kinetic model of economic exchange
NASA Astrophysics Data System (ADS)
Bertotti, M. L.; Chattopadhyay, A. K.; Modanese, G.
2017-04-01
Linear stochastic models and discretized kinetic theory are two complementary analytical techniques used for the investigation of complex systems of economic interactions. The former employ Langevin equations, with an emphasis on stock trade; the latter is based on systems of ordinary differential equations and is better suited for the description of binary interactions, taxation and welfare redistribution. We propose a new framework which establishes a connection between the two approaches by introducing random fluctuations into the kinetic model based on Langevin and Fokker-Planck formalisms. Numerical simulations of the resulting model indicate positive correlations between the Gini index and the total wealth, that suggest a growing inequality with increasing income. Further analysis shows, in the presence of a conserved total wealth, a simultaneous decrease in inequality as social mobility increases, in conformity with economic data.
NASA Astrophysics Data System (ADS)
Gorelenkov, Nikolai; Duarte, Vinicius; Podesta, Mario
2017-10-01
The performance of the burning plasma can be limited by the requirements to confine the superalfvenic fusion products which are capable of resonating with the Alfvénic eigenmodes (AEs). The effect of AEs on fast ions is evaluated using the quasi-linear approach [Berk et al., Ph.Plasmas'96] generalized for this problem recently [Duarte et al., Ph.D.'17]. The generalization involves the resonance line broadened interaction regions with the diffusion coefficient prescribed to find the evolution of the velocity distribution function. The baseline eigenmode structures are found using the NOVA-K code perturbatively [Gorelenkov et al., Ph.Plasmas'99]. A RBQ1D code allowing the diffusion in radial direction is presented here. The wave particle interaction can be reduced to one-dimensional dynamics where for the Alfvénic modes typically the particle kinetic energy is nearly constant. Hence to a good approximation the Quasi-Linear (QL) diffusion equation only contains derivatives in the angular momentum. The diffusion equation is then one dimensional that is efficiently solved simultaneously for all particles with the equation for the evolution of the wave angular momentum. The RBQ1D is validated against recent DIIID results [Collins et al., PRL'16]. Supported by the US Department of Energy under DE-AC02-09CH11466.
Students’ difficulties in solving linear equation problems
NASA Astrophysics Data System (ADS)
Wati, S.; Fitriana, L.; Mardiyana
2018-03-01
A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.
Cerovic, Zoran G; Masdoumier, Guillaume; Ghozlen, NaÏma Ben; Latouche, Gwendal
2012-01-01
We have characterized a new commercial chlorophyll (Chl) and flavonoid (Flav) meter called Dualex 4 Scientific (Dx4). We compared this device to two other Chl meters, the SPAD-502 and the CCM-200. In addition, Dx4 was compared to the leaf-clip Dualex 3 that measures only epidermal Flav. Dx4 is factory-calibrated to provide a linear response to increasing leaf Chl content in units of µg cm–2, as opposed to both SPAD-502 and CCM-200 that have a non-linear response to leaf Chl content. Our comparative calibration by Chl extraction confirmed these responses. It seems that the linear response of Dx4 derives from the use of 710 nm as the sampling wavelength for transmittance. The major advantage of Dx4 is its simultaneous assessment of Chl and Flav on the same leaf spot. This allows the generation of the nitrogen balance index (NBI) used for crop surveys and nitrogen nutrition management. The Dx4 leaf clip, that incorporates a GPS receiver, can be useful for non-destructive estimation of leaf Chl and Flav contents for ecophysiological research and ground truthing of remote sensing of vegetation. In this work, we also propose a consensus equation for the transformation of SPAD units into leaf Chl content, for general use. PMID:22568678
Cerovic, Zoran G; Masdoumier, Guillaume; Ghozlen, Naïma Ben; Latouche, Gwendal
2012-11-01
We have characterized a new commercial chlorophyll (Chl) and flavonoid (Flav) meter called Dualex 4 Scientific (Dx4). We compared this device to two other Chl meters, the SPAD-502 and the CCM-200. In addition, Dx4 was compared to the leaf-clip Dualex 3 that measures only epidermal Flav. Dx4 is factory-calibrated to provide a linear response to increasing leaf Chl content in units of µg cm(-2), as opposed to both SPAD-502 and CCM-200 that have a non-linear response to leaf Chl content. Our comparative calibration by Chl extraction confirmed these responses. It seems that the linear response of Dx4 derives from the use of 710 nm as the sampling wavelength for transmittance. The major advantage of Dx4 is its simultaneous assessment of Chl and Flav on the same leaf spot. This allows the generation of the nitrogen balance index (NBI) used for crop surveys and nitrogen nutrition management. The Dx4 leaf clip, that incorporates a GPS receiver, can be useful for non-destructive estimation of leaf Chl and Flav contents for ecophysiological research and ground truthing of remote sensing of vegetation. In this work, we also propose a consensus equation for the transformation of SPAD units into leaf Chl content, for general use. Copyright © Physiologia Plantarum 2012.
On solutions of the fifth-order dispersive equations with porous medium type non-linearity
NASA Astrophysics Data System (ADS)
Kocak, Huseyin; Pinar, Zehra
2018-07-01
In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.
Selection of software for mechanical engineering undergraduates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheah, C. T.; Yin, C. S.; Halim, T.
A major problem with the undergraduate mechanical course is the limited exposure of students to software packages coupled with the long learning curve on the existing software packages. This work proposes the use of appropriate software packages for the entire mechanical engineering curriculum to ensure students get sufficient exposure real life design problems. A variety of software packages are highlighted as being suitable for undergraduate work in mechanical engineering, e.g. simultaneous non-linear equations; uncertainty analysis; 3-D modeling software with the FEA; analysis tools for the solution of problems in thermodynamics, fluid mechanics, mechanical system design, and solid mechanics.
Attimarad, Mahesh
2010-01-01
The objective of this study was to develop simple, precise, accurate and sensitive UV spectrophotometric methods for the simultaneous determination of ofloxacin (OFX) and flavoxate HCl (FLX) in pharmaceutical formulations. The first method is based on absorption ratio method, by formation of Q absorbance equation at 289 nm (λmax of OFX) and 322.4 nm (isoabsorptive point). The linearity range was found to be 1 to 30 μg/ml for FLX and OFX. In the method-II second derivative absorption at 311.4 nm for OFX (zero crossing for FLX) and at 246.2 nm for FLX (zero crossing for OFX) was used for the determination of the drugs and the linearity range was found to be 2 to 30 μg/ml for OFX and 2-75 μg /ml for FLX. The accuracy and precision of the methods were determined and validated statistically. Both the methods showed good reproducibility and recovery with % RSD less than 1.5%. Both the methods were found to be rapid, specific, precise and accurate and can be successfully applied for the routine analysis of OFX and FLX in combined dosage form PMID:24826003
On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra
NASA Astrophysics Data System (ADS)
Ndogmo, J. C.
2017-06-01
Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.
Hassan, Mostafa A.; Zaghary, Wafaa A.
2018-01-01
New spectrophotometric and chemometric methods were carried out for the simultaneous assay of trelagliptin (TRG) and its acid degradation product (TAD) and applied successfully as a stability indicating assay to recently approved Zafatek® tablets. TAD was monitored using TLC to ensure complete degradation. Furthermore, HPLC was used to confirm dealing with one major acid degradation product. The proposed methods were developed by manipulating zero-order, first-derivative, and ratio spectra of TRG and TAD using simultaneous equation, first-derivative, and mean-centering methods, respectively. Using Spectra Manager II and Minitab v.14 software, the absorbance at 274 nm–260.4 nm, amplitudes at 260.4 nm–274.0 nm, and mean-centered values at 287.6 nm–257.2 nm were measured against methanol as a blank for TRG and TAD, respectively. Linearity and the other validation parameters were acceptable at concentration ranges of 5–50 μg/mL and 2.5–25 μg/mL for TRG and TAD, respectively. Using one-way analysis of variance (ANOVA), the optimized methods were compared and proved to be accurate for the simultaneous assay of TRG and TAD. PMID:29629213
Mowaka, Shereen; Ayoub, Bassam M; Hassan, Mostafa A; Zaghary, Wafaa A
2018-01-01
New spectrophotometric and chemometric methods were carried out for the simultaneous assay of trelagliptin (TRG) and its acid degradation product (TAD) and applied successfully as a stability indicating assay to recently approved Zafatek® tablets. TAD was monitored using TLC to ensure complete degradation. Furthermore, HPLC was used to confirm dealing with one major acid degradation product. The proposed methods were developed by manipulating zero-order, first-derivative, and ratio spectra of TRG and TAD using simultaneous equation, first-derivative, and mean-centering methods, respectively. Using Spectra Manager II and Minitab v.14 software, the absorbance at 274 nm-260.4 nm, amplitudes at 260.4 nm-274.0 nm, and mean-centered values at 287.6 nm-257.2 nm were measured against methanol as a blank for TRG and TAD, respectively. Linearity and the other validation parameters were acceptable at concentration ranges of 5-50 μ g/mL and 2.5-25 μ g/mL for TRG and TAD, respectively. Using one-way analysis of variance (ANOVA), the optimized methods were compared and proved to be accurate for the simultaneous assay of TRG and TAD.
Multi-source apportionment of polycyclic aromatic hydrocarbons using simultaneous linear equations
NASA Astrophysics Data System (ADS)
Marinaite, Irina; Semenov, Mikhail
2014-05-01
A new approach to identify multiple sources of polycyclic aromatic hydrocarbons (PAHs) and to evaluate the source contributions to atmospheric deposition of particulate PAHs is proposed. The approach is based on differences in concentrations of sums of PAHs with the same molecular weight among the sources. The data on PAHs accumulation in snow as well as the source profiles were used for calculations. Contributions of aluminum production plant, oil-fired central heating boilers, and residential wood and coal combustion were calculated using the linear mixing models. The concentrations of PAH pairs such as Benzo[b]fluorantene + Benzo[k]fluorantene and Benzo[g,h,i]perylene + Indeno[1,2,3-c,d]pyrene normalized to Benzo[a]antracene + Chrysene were used as tracers in mixing equations. The results obtained using ratios of sums of PAHs were compared with those obtained using molecular diagnostic ratios such as Benzo[a]antracene/Chrysene and Benzo[g,h,i]perylene/Indeno[1,2,3-c,d]pyrene. It was shown that the results obtained using diagnostic ratios as tracers are less reliable than results obtained using ratios of sums of PAHs. Funding was provided by Siberian Branch of Russian Academy of Sciences grant No. 8 (2012-2014).
A new performance index for the repetitive motion of mobile manipulators.
Xiao, Lin; Zhang, Yunong
2014-02-01
A mobile manipulator is a robotic device composed of a mobile platform and a stationary manipulator fixed to the platform. To achieve the repetitive motion control of mobile manipulators, the mobile platform and the manipulator have to realize the repetitive motion simultaneously. To do so, a novel quadratic performance index is, for the first time, designed and presented in this paper, of which the effectiveness is analyzed by following a neural dynamics method. Then, a repetitive motion scheme is proposed by combining the criterion, physical constraints, and integrated kinematical equations of mobile manipulators, which is further reformulated as a quadratic programming (QP) subject to equality and bound constraints. In addition, two important Bridge theorems are established to prove that such a QP can be converted equivalently into a linear variational inequality, and then equivalently into a piecewise-linear projection equation (PLPE). A real-time numerical algorithm based on PLPE is thus developed and applied for the online solution of the resultant QP. Two tracking-path tasks demonstrate the effectiveness and accuracy of the repetitive motion scheme. In addition, comparisons between the nonrepetitive and repetitive motion further validate the superiority and novelty of the proposed scheme.
Iterative absolute electroanalytical approach to characterization of bulk redox conducting systems.
Lewera, Adam; Miecznikowski, Krzysztof; Chojak, Malgorzata; Makowski, Oktawian; Golimowski, Jerzy; Kulesza, Pawel J
2004-05-15
A novel electroanalytical approach is proposed here, and it is demonstrated with the direct and simultaneous determination of two unknowns: the concentration of redox sites and the apparent diffusion coefficient for charge propagation in a single crystal of dodecatungstophosphoric acid. This Keggin-type polyoxometalate serves as a model bulk redox conducting inorganic material for solid-state voltammetry. The system has been investigated using an ultramicrodisk working electrode in the absence of external liquid supporting electrolyte. The analytical method requires numerical solution of the combination of two equations in which the first one describes current (or charge) in a well-defined (either spherical or linear) diffusional regime and the second general equation describes chronoamperometric (or normal pulse voltammetric current) under mixed (linear-spherical) conditions. The iterative approach is based on successive approximations through calculation and minimizing the least-squares error function. The method is fairly universal, and in principle, it can be extended to the investigation of other bulk systems including sol-gel processed materials, redox melts, and solutions on condition that they are electroactive and well behaved, they contain redox centers at sufficiently high level, and a number of electrons for the redox reaction considered is known.
An extended continuum model accounting for the driver's timid and aggressive attributions
NASA Astrophysics Data System (ADS)
Cheng, Rongjun; Ge, Hongxia; Wang, Jufeng
2017-04-01
Considering the driver's timid and aggressive behaviors simultaneously, a new continuum model is put forwarded in this paper. By applying the linear stability theory, we presented the analysis of new model's linear stability. Through nonlinear analysis, the KdV-Burgers equation is derived to describe density wave near the neutral stability line. Numerical results verify that aggressive driving is better than timid act because the aggressive driver will adjust his speed timely according to the leading car's speed. The key improvement of this new model is that the timid driving deteriorates traffic stability while the aggressive driving will enhance traffic stability. The relationship of energy consumption between the aggressive and timid driving is also studied. Numerical results show that aggressive driver behavior can not only suppress the traffic congestion but also reduce the energy consumption.
NASA Technical Reports Server (NTRS)
Hafez, M.; Ahmad, J.; Kuruvila, G.; Salas, M. D.
1987-01-01
In this paper, steady, axisymmetric inviscid, and viscous (laminar) swirling flows representing vortex breakdown phenomena are simulated using a stream function-vorticity-circulation formulation and two numerical methods. The first is based on an inverse iteration, where a norm of the solution is prescribed and the swirling parameter is calculated as a part of the output. The second is based on direct Newton iterations, where the linearized equations, for all the unknowns, are solved simultaneously by an efficient banded Gaussian elimination procedure. Several numerical solutions for inviscid and viscous flows are demonstrated, followed by a discussion of the results. Some improvements on previous work have been achieved: first order upwind differences are replaced by second order schemes, line relaxation procedure (with linear convergence rate) is replaced by Newton's iterations (which converge quadratically), and Reynolds numbers are extended from 200 up to 1000.
Transformation matrices between non-linear and linear differential equations
NASA Technical Reports Server (NTRS)
Sartain, R. L.
1983-01-01
In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.
Quasi-Newton methods for parameter estimation in functional differential equations
NASA Technical Reports Server (NTRS)
Brewer, Dennis W.
1988-01-01
A state-space approach to parameter estimation in linear functional differential equations is developed using the theory of linear evolution equations. A locally convergent quasi-Newton type algorithm is applied to distributed systems with particular emphasis on parameters that induce unbounded perturbations of the state. The algorithm is computationally implemented on several functional differential equations, including coefficient and delay estimation in linear delay-differential equations.
Equating Scores from Adaptive to Linear Tests
ERIC Educational Resources Information Center
van der Linden, Wim J.
2006-01-01
Two local methods for observed-score equating are applied to the problem of equating an adaptive test to a linear test. In an empirical study, the methods were evaluated against a method based on the test characteristic function (TCF) of the linear test and traditional equipercentile equating applied to the ability estimates on the adaptive test…
Prediction equation for calculating fat mass in young Indian adults.
Sandhu, Jaspal Singh; Gupta, Giniya; Shenoy, Shweta
2010-06-01
Accurate measurement or prediction of fat mass is useful in physiology, nutrition and clinical medicine. Most predictive equations currently used to assess percentage of body fat or fat mass, using simple anthropometric measurements were derived from people in western societies and they may not be appropriate for individuals with other genotypic and phenotypic characteristics. We developed equations to predict fat mass from anthropometric measurements in young Indian adults. Fat mass was measured in 60 females and 58 males, aged 20 to 29 yrs by using hydrostatic weighing and by simultaneous measurement of residual lung volume. Anthropometric measure included weight (kg), height (m) and 4 skinfold thickness [STs (mm)]. Sex specific linear regression model was developed with fat mass as the dependent variable and all anthropometric measures as independent variables. The prediction equation obtained for fat mass (kg) for males was 8.46+0.32 (weight) - 15.16 (height) + 9.54 (log of sum of 4 STs) (R2= 0. 53, SEE=3.42 kg) and - 20.22 + 0.33 (weight) + 3.44 (height) + 7.66 (log of sum of 4 STs) (R2=0.72, SEE=3.01kg) for females. A new prediction equation for the measurement of fat mass was derived and internally validated in young Indian adults using simple anthropometric measurements.
Multiscale modeling and computation of optically manipulated nano devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Gang, E-mail: baog@zju.edu.cn; Liu, Di, E-mail: richardl@math.msu.edu; Luo, Songting, E-mail: luos@iastate.edu
2016-07-01
We present a multiscale modeling and computational scheme for optical-mechanical responses of nanostructures. The multi-physical nature of the problem is a result of the interaction between the electromagnetic (EM) field, the molecular motion, and the electronic excitation. To balance accuracy and complexity, we adopt the semi-classical approach that the EM field is described classically by the Maxwell equations, and the charged particles follow the Schrödinger equations quantum mechanically. To overcome the numerical challenge of solving the high dimensional multi-component many-body Schrödinger equations, we further simplify the model with the Ehrenfest molecular dynamics to determine the motion of the nuclei, andmore » use the Time-Dependent Current Density Functional Theory (TD-CDFT) to calculate the excitation of the electrons. This leads to a system of coupled equations that computes the electromagnetic field, the nuclear positions, and the electronic current and charge densities simultaneously. In the regime of linear responses, the resonant frequencies initiating the out-of-equilibrium optical-mechanical responses can be formulated as an eigenvalue problem. A self-consistent multiscale method is designed to deal with the well separated space scales. The isomerization of azobenzene is presented as a numerical example.« less
NASA Technical Reports Server (NTRS)
Homicz, G. F.; Moselle, J. R.
1985-01-01
A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.
Building 1D resonance broadened quasilinear (RBQ) code for fast ions Alfvénic relaxations
NASA Astrophysics Data System (ADS)
Gorelenkov, Nikolai; Duarte, Vinicius; Berk, Herbert
2016-10-01
The performance of the burning plasma is limited by the confinement of superalfvenic fusion products, e.g. alpha particles, which are capable of resonating with the Alfvénic eigenmodes (AEs). The effect of AEs on fast ions is evaluated using a resonance line broadened diffusion coefficient. The interaction of fast ions and AEs is captured for cases where there are either isolated or overlapping modes. A new code RBQ1D is being built which constructs diffusion coefficients based on realistic eigenfunctions that are determined by the ideal MHD code NOVA. The wave particle interaction can be reduced to one-dimensional dynamics where for the Alfvénic modes typically the particle kinetic energy is nearly constant. Hence to a good approximation the Quasi-Linear (QL) diffusion equation only contains derivatives in the angular momentum. The diffusion equation is then one dimensional that is efficiently solved simultaneously for all particles with the equation for the evolution of the wave angular momentum. The evolution of fast ion constants of motion is governed by the QL diffusion equations which are adapted to find the ion distribution function.
2013-08-14
Connectivity Graph; Graph Search; Bounded Disturbances; Linear Time-Varying (LTV); Clohessy - Wiltshire -Hill (CWH) 16. SECURITY CLASSIFICATION OF: 17...the linearization of the relative motion model given by the Hill- Clohessy - Wiltshire (CWH) equations is used [14]. A. Nonlinear equations of motion...equations can be used to describe the motion of the debris. B. Linearized HCW equations in discrete-time For δr << R, the linearized Hill- Clohessy
Newton's method: A link between continuous and discrete solutions of nonlinear problems
NASA Technical Reports Server (NTRS)
Thurston, G. A.
1980-01-01
Newton's method for nonlinear mechanics problems replaces the governing nonlinear equations by an iterative sequence of linear equations. When the linear equations are linear differential equations, the equations are usually solved by numerical methods. The iterative sequence in Newton's method can exhibit poor convergence properties when the nonlinear problem has multiple solutions for a fixed set of parameters, unless the iterative sequences are aimed at solving for each solution separately. The theory of the linear differential operators is often a better guide for solution strategies in applying Newton's method than the theory of linear algebra associated with the numerical analogs of the differential operators. In fact, the theory for the differential operators can suggest the choice of numerical linear operators. In this paper the method of variation of parameters from the theory of linear ordinary differential equations is examined in detail in the context of Newton's method to demonstrate how it might be used as a guide for numerical solutions.
User's manual for interactive LINEAR: A FORTRAN program to derive linear aircraft models
NASA Technical Reports Server (NTRS)
Antoniewicz, Robert F.; Duke, Eugene L.; Patterson, Brian P.
1988-01-01
An interactive FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models is documented in this report. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.
Autonomous orbital navigation using Kepler's equation
NASA Technical Reports Server (NTRS)
Boltz, F. W.
1974-01-01
A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.
A Study of the Relation Between Crop Growth and Spectra Reflectance Parameters
NASA Technical Reports Server (NTRS)
Badhwar, G.
1984-01-01
A differential equation describing the temporal behavior of greenness, G(t), with time was developed. The basic equation, dG(t)/dt=k(t)(1-G/G sub m) where G sub m is the saturation value of greenness at time, t sub p. It demonstrated that k(t) is linearly proportional to the rate of change of leaf area index. It was also demonstrated that G sub m, t sub p and profile width, are the key to vegetation identification and that the inflection points of the profile are related to the ontogenic state of the plant. These profile features were shown to hold not only throughout the United States corn/soybean growing area, but for the first time in Argentina. A mathematical technique that maximizes the sensitivity of spectral transformation to Leaf Area Index and simultaneously minimizes the sensitivity to all other variables was formulated. Initial results on corn and wheat were obtained.
NASA Astrophysics Data System (ADS)
Yoshida, Hidehisa; Nagai, Masao
This paper analyzes the fundamental dynamic characteristics of a tilting railway vehicle using a variable link mechanism for compensating both the lateral acceleration experienced by passengers and the wheel load imbalance between the inner and outer rails. The geometric relations between the center of rotation, the center of gravity, and the positions of all four links of the tilting system are analyzed. Then, equations of the pendulum motions of the railway vehicle body with a four-link mechanism are derived. A theoretically discussion is given on the geometrical shapes employed in the link mechanism that can simultaneously provide zero lateral acceleration and zero wheel load fluctuation. Then, the perfect tilting condition, which is the control target of the feedforward tilting control, is derived from the linear equation of tilting motion.
NASA Astrophysics Data System (ADS)
Mozer, F. S.; Agapitov, O. V.; Blake, J. B.; Vasko, I. Y.
2018-01-01
On 11 December 2016 at 00:12:30 UT, Van Allen Probe-B, at the equator and near midnight, and AC6-B, in the ionosphere, were on magnetic field lines whose 100 km altitude foot points were separated by 600 km. Van Allen Probe-B observed a 30 s burst of lower band chorus waves (with maximum amplitudes >1 nT) at the same time that AC6-B observed intense microburst electrons in the loss cone. One second averaged variations of the chorus intensity and the microburst electron flux were well correlated. The low-altitude electron flux expected from quasi-linear diffusion of the equatorial electrons by the equatorial chorus is in excellent agreement with the observed, 1 s averaged, low-altitude electron flux. However, the large-amplitude, <0.5 s duration, low-altitude electron pulses require nonlinear processes for their explanation.
NASA Astrophysics Data System (ADS)
Enin, S. S.; Omelchenko, E. Y.; Fomin, N. V.; Beliy, A. V.
2018-03-01
The paper has a description of a computer model of an overhead crane system. The designed overhead crane system consists of hoisting, trolley and crane mechanisms as well as a payload two-axis system. With the help of the differential equation of specified mechanisms movement derived through Lagrange equation of the II kind, it is possible to build an overhead crane computer model. The computer model was obtained using Matlab software. Transients of coordinate, linear speed and motor torque of trolley and crane mechanism systems were simulated. In addition, transients of payload swaying were obtained with respect to the vertical axis. A trajectory of the trolley mechanism with simultaneous operation with the crane mechanism is represented in the paper as well as a two-axis trajectory of payload. The designed computer model of an overhead crane is a great means for studying positioning control and anti-sway control systems.
NASA Astrophysics Data System (ADS)
Nursyahidah, F.; Saputro, B. A.; Rubowo, M. R.
2018-03-01
The aim of this research is to know the students’ understanding of linear equation system in two variables using Ethnomathematics and to acquire learning trajectory of linear equation system in two variables for the second grade of lower secondary school students. This research used methodology of design research that consists of three phases, there are preliminary design, teaching experiment, and retrospective analysis. Subject of this study is 28 second grade students of Sekolah Menengah Pertama (SMP) 37 Semarang. The result of this research shows that the students’ understanding in linear equation system in two variables can be stimulated by using Ethnomathematics in selling buying tradition in Peterongan traditional market in Central Java as a context. All of strategies and model that was applied by students and also their result discussion shows how construction and contribution of students can help them to understand concept of linear equation system in two variables. All the activities that were done by students produce learning trajectory to gain the goal of learning. Each steps of learning trajectory of students have an important role in understanding the concept from informal to the formal level. Learning trajectory using Ethnomathematics that is produced consist of watching video of selling buying activity in Peterongan traditional market to construct linear equation in two variables, determine the solution of linear equation in two variables, construct model of linear equation system in two variables from contextual problem, and solving a contextual problem related to linear equation system in two variables.
Hui, Wang; Jiahui, Liu; Hongshuai, Yang; Jin, Liu; Zhigang, Liu
2014-04-01
The combined effects of temperature and ammonia concentration on the percent fertilization and percent hatching in Crassostrea ariakensis were examined under laboratory conditions using the central composite design and response surface methodology. The results indicated: (1) The linear effects of temperature and ammonia concentration on the percent fertilization were significant (P<0.05), and the quadratic effects were highly significant (P<0.01). The interactive effect between temperature and ammonia concentration on the percent fertilization was not significant (P>0.05). (2) The linear effect of temperature on the percent hatching was highly significant (P<0.01), and that of ammonia concentration was nonsignificant (P>0.05). The quadratic effects of temperature and ammonia concentration on the percent hatching were highly significant (P<0.01). The interaction on the percent hatching was not significant (P>0.05). Temperature was more important than ammonia in influencing the fertilization and hatching in C. ariakensis. (3) The model equations of the percent fertilization and hatching towards temperature and ammonia concentration were established, with the coefficients of determination R(2)=99.4% and 99.76%, respectively. Through the lack-of-fit test, these models were of great adequacy. The predictive coefficients of determination for the two model equations were as high as 94.6% and 98.03%, respectively, showing that they could be used for practical projection. (4) Via the statistical simultaneous optimization technique, the optimal factor level combination, i.e., 25°C/0.038mgmL(-1), was derived, at which the greatest percent fertilization 95.25% and hatching 83.26% was achieved, with the desirability being 97.81%. Our results may provide advantageous guidelines for the successful reproduction of C. ariakensis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lotfy, Hayam Mahmoud; Hegazy, Maha A; Rezk, Mamdouh R; Omran, Yasmin Rostom
2014-05-21
Two smart and novel spectrophotometric methods namely; absorbance subtraction (AS) and amplitude modulation (AM) were developed and validated for the determination of a binary mixture of timolol maleate (TIM) and dorzolamide hydrochloride (DOR) in presence of benzalkonium chloride without prior separation, using unified regression equation. Additionally, simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of the binary mixture namely; simultaneous ratio subtraction (SRS), ratio difference (RD), ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), constant multiplication method (CM) and mean centering of ratio spectra (MCR). The proposed spectrophotometric procedures do not require any separation steps. Accuracy, precision and linearity ranges of the proposed methods were determined and the specificity was assessed by analyzing synthetic mixtures of both drugs. They were applied to their pharmaceutical formulation and the results obtained were statistically compared to that of a reported spectrophotometric method. The statistical comparison showed that there is no significant difference between the proposed methods and the reported one regarding both accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.
A note on the relations between thermodynamics, energy definitions and Friedmann equations
NASA Astrophysics Data System (ADS)
Moradpour, H.; Nunes, Rafael C.; Abreu, Everton M. C.; Neto, Jorge Ananias
2017-04-01
We investigate the relation between the Friedmann and thermodynamic pressure equations, through solving the Friedmann and thermodynamic pressure equations simultaneously. Our investigation shows that a perfect fluid, as a suitable solution for the Friedmann equations leading to the standard modeling of the universe expansion history, cannot simultaneously satisfy the thermodynamic pressure equation and those of Friedmann. Moreover, we consider various energy definitions, such as the Komar mass, and solve the Friedmann and thermodynamic pressure equations simultaneously to get some models for dark energy fluids. The cosmological consequences of obtained solutions are also addressed. Our results indicate that some of obtained solutions may unify the dominated fluid in both the primary inflationary and current accelerating eras into one model. In addition, by taking into account a cosmic fluid of a known equation of state (EoS), and combining it with the Friedmann and thermodynamic pressure equations, we obtain the corresponding energy of these cosmic fluids and face their limitations. Finally, we point out the cosmological features of this cosmic fluid and also study its observational constraints.
New Results on the Linear Equating Methods for the Non-Equivalent-Groups Design
ERIC Educational Resources Information Center
von Davier, Alina A.
2008-01-01
The two most common observed-score equating functions are the linear and equipercentile functions. These are often seen as different methods, but von Davier, Holland, and Thayer showed that any equipercentile equating function can be decomposed into linear and nonlinear parts. They emphasized the dominant role of the linear part of the nonlinear…
Vandenplas, Jérémie; Colinet, Frederic G; Gengler, Nicolas
2014-09-30
A condition to predict unbiased estimated breeding values by best linear unbiased prediction is to use simultaneously all available data. However, this condition is not often fully met. For example, in dairy cattle, internal (i.e. local) populations lead to evaluations based only on internal records while widely used foreign sires have been selected using internally unavailable external records. In such cases, internal genetic evaluations may be less accurate and biased. Because external records are unavailable, methods were developed to combine external information that summarizes these records, i.e. external estimated breeding values and associated reliabilities, with internal records to improve accuracy of internal genetic evaluations. Two issues of these methods concern double-counting of contributions due to relationships and due to records. These issues could be worse if external information came from several evaluations, at least partially based on the same records, and combined into a single internal evaluation. Based on a Bayesian approach, the aim of this research was to develop a unified method to integrate and blend simultaneously several sources of information into an internal genetic evaluation by avoiding double-counting of contributions due to relationships and due to records. This research resulted in equations that integrate and blend simultaneously several sources of information and avoid double-counting of contributions due to relationships and due to records. The performance of the developed equations was evaluated using simulated and real datasets. The results showed that the developed equations integrated and blended several sources of information well into a genetic evaluation. The developed equations also avoided double-counting of contributions due to relationships and due to records. Furthermore, because all available external sources of information were correctly propagated, relatives of external animals benefited from the integrated information and, therefore, more reliable estimated breeding values were obtained. The proposed unified method integrated and blended several sources of information well into a genetic evaluation by avoiding double-counting of contributions due to relationships and due to records. The unified method can also be extended to other types of situations such as single-step genomic or multi-trait evaluations, combining information across different traits.
NASA Technical Reports Server (NTRS)
Kaup, D. J.; Hansen, P. J.; Choudhury, S. Roy; Thomas, Gary E.
1986-01-01
The equations for the single-particle orbits in a nonneutral high density plasma in the presence of inhomogeneous crossed fields are obtained. Using these orbits, the linearized Vlasov equation is solved as an expansion in the orbital radii in the presence of inhomogeneities and density gradients. A model distribution function is introduced whose cold-fluid limit is exactly the same as that used in many previous studies of the cold-fluid equations. This model function is used to reduce the linearized Vlasov-Poisson equations to a second-order ordinary differential equation for the linearized electrostatic potential whose eigenvalue is the perturbation frequency.
ERIC Educational Resources Information Center
Blakley, G. R.
1982-01-01
Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)
ERIC Educational Resources Information Center
Chen, Haiwen
2012-01-01
In this article, linear item response theory (IRT) observed-score equating is compared under a generalized kernel equating framework with Levine observed-score equating for nonequivalent groups with anchor test design. Interestingly, these two equating methods are closely related despite being based on different methodologies. Specifically, when…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersson, N. Anders; Sjogreen, Bjorn
Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less
Job, D; Dunford, H B
1976-07-15
A stopped-flow kinetic study shows that the reduction rate of horseradish peroxidase compound I by phenols and aromatic amines is greatly dependent upon the substituent effect on the benzene ring. Morever it has been possible to relate the reduction rate constants of monosubstituted substrates by a linear free-energy relationship (Hammett equation). The correlation of log (rate constants) with sigma values (Hammett equation) and the absence of correlation with sigma+ values (Okamoto-Brown equation) can be explained by a mechanism of aromatic substrate oxidations, in which the substrate gives an electron to the enzyme compound I and simultaneously loses a proton. The analogy which has been made with oxidation potentials of phenols or anilines strengthens the view that the reaction is only dependent on the relative ease of oxidation of the substrate. The rate constant obtained for p-aminophenol indicates that a value of 2.3 X 10(8) M-1 S-1 probably approaches the diffusion-controlled limit for a bimolecular reaction involving compound I and an aromatic substrate.
Petersson, N. Anders; Sjogreen, Bjorn
2017-04-18
Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less
NASA Astrophysics Data System (ADS)
Camporesi, Roberto
2011-06-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and the variation of constants method. The approach presented here can be used in a first course on differential equations for science and engineering majors.
Semi-Analytic Reconstruction of Flux in Finite Volume Formulations
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2006-01-01
Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.
Schüler, D; Alonso, S; Torcini, A; Bär, M
2014-12-01
Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.
Fast wavelet based algorithms for linear evolution equations
NASA Technical Reports Server (NTRS)
Engquist, Bjorn; Osher, Stanley; Zhong, Sifen
1992-01-01
A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.
Note on Solutions to a Class of Nonlinear Singular Integro-Differential Equations,
1986-08-01
KdV) ut + 2uu x +Uxx x a 0, (1) the sine-Gordon equation Uxt a sin u, (2) and the Kadomtsev - Petviashvili (KP) equation (Ut + 2uu x + UXXx)x -3a 2u yy...SOUIN OA LSFNN ! /" / M.. \\boiz A.S ::-:- and ,M.O.. .- :1/1 / NOTE ON SOLUTIONS TO A CLASS OF NON \\ / LINEAR SINGULAR INTEGRO-DIFFERENTIA[ EQUATIONS by...important nonlinear evolution equations which can be linearized. Many of these equations fall into the category of linearization via soliton theory and
SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER
Collier, D.M.; Meeks, L.A.; Palmer, J.P.
1960-05-10
A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.
NASA Astrophysics Data System (ADS)
Campoamor-Stursberg, R.
2018-03-01
A procedure for the construction of nonlinear realizations of Lie algebras in the context of Vessiot-Guldberg-Lie algebras of first-order systems of ordinary differential equations (ODEs) is proposed. The method is based on the reduction of invariants and projection of lowest-dimensional (irreducible) representations of Lie algebras. Applications to the description of parameterized first-order systems of ODEs related by contraction of Lie algebras are given. In particular, the kinematical Lie algebras in (2 + 1)- and (3 + 1)-dimensions are realized simultaneously as Vessiot-Guldberg-Lie algebras of parameterized nonlinear systems in R3 and R4, respectively.
NASA Astrophysics Data System (ADS)
Man, Yiu-Kwong
2010-10-01
In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided.
A refinement of the combination equations for evaporation
Milly, P.C.D.
1991-01-01
Most combination equations for evaporation rely on a linear expansion of the saturation vapor-pressure curve around the air temperature. Because the temperature at the surface may differ from this temperature by several degrees, and because the saturation vapor-pressure curve is nonlinear, this approximation leads to a certain degree of error in those evaporation equations. It is possible, however, to introduce higher-order polynomial approximations for the saturation vapor-pressure curve and to derive a family of explicit equations for evaporation, having any desired degree of accuracy. Under the linear approximation, the new family of equations for evaporation reduces, in particular cases, to the combination equations of H. L. Penman (Natural evaporation from open water, bare soil and grass, Proc. R. Soc. London, Ser. A193, 120-145, 1948) and of subsequent workers. Comparison of the linear and quadratic approximations leads to a simple approximate expression for the error associated with the linear case. Equations based on the conventional linear approximation consistently underestimate evaporation, sometimes by a substantial amount. ?? 1991 Kluwer Academic Publishers.
Nonlinear Diophantine equation 11 x +13 y = z 2
NASA Astrophysics Data System (ADS)
Sugandha, A.; Tripena, A.; Prabowo, A.; Sukono, F.
2018-03-01
This research aims to obtaining the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2. There are 3 possibilities to obtain the solutions (if any) from the Non Linear Diophantine equation, namely single, multiple, and no solution. This research is conducted in two stages: (1) by utilizing simulation to obtain the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2 and (2) by utilizing congruency theory with its characteristics proven that the Non Linear Diophantine equation has no solution for non negative whole numbers (integers) of x, y, z.
Lie algebras and linear differential equations.
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material
NASA Astrophysics Data System (ADS)
Upadhyay, Ashwani; Chandramohan, V. P.
2018-04-01
A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.
Simple taper: Taper equations for the field forester
David R. Larsen
2017-01-01
"Simple taper" is set of linear equations that are based on stem taper rates; the intent is to provide taper equation functionality to field foresters. The equation parameters are two taper rates based on differences in diameter outside bark at two points on a tree. The simple taper equations are statistically equivalent to more complex equations. The linear...
ERIC Educational Resources Information Center
Wang, Tianyou
2009-01-01
Holland and colleagues derived a formula for analytical standard error of equating using the delta-method for the kernel equating method. Extending their derivation, this article derives an analytical standard error of equating procedure for the conventional percentile rank-based equipercentile equating with log-linear smoothing. This procedure is…
NASA Astrophysics Data System (ADS)
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.
El-Din, Mohie M K Sharaf; Attia, Khalid A M; Nassar, Mohamed W I; Kaddah, Mohamed M Y
2010-10-15
Two accurate, reliable, and highly sensitive spectrofluorimetric methods were developed for simultaneous determination of binary mixture gemfibrozil and rosiglitazone in human plasma without prior separation steps. The first method is based on synchronous fluorescence spectrometry using double scans. At Δλ=27nm, gemfibrozil yields detectable signal that is independent of the presence of rosiglitazone. Similarly, at Δλ=120nm the signal of rosiglitazone is not influenced by the presence of gemfibrozil. Signals at two wavelengths, 301 (Δλ=27nm) and 368nm (Δλ=120nm) vary linearly with gemfibrozil and rosiglitazone concentrations over the range 100-700ngmL(-1) (for gemfibrozil) and 20-140ngmL(-1) (for rosiglitazone), respectively. The limits of detection (LOD) were 2.3 and 2.72ngmL(-1) for gemfibrozil and rosiglitazone, respectively. The second method is based on the technique of simultaneous equations (Vierodt's method), in which 258nm was selected as the excitation wavelength. Two equations are constructed based on the fact that at ( λ(EM)₂=302 nm of gemfibrozil) and (λ(EM)₂=369 nm of rosiglitazone) the fluorescence of the mixture is the sum of the individual fluorescence of gemfibrozil and rosiglitazone. The limits of detection (LOD) were 28.1 and 23.63ngmL(-1) for gemfibrozil and rosiglitazone, respectively. The proposed methods were successfully applied for the determination of the two compounds in synthetic mixtures and in human plasma with a good recovery. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tetsu, Hiroyuki; Nakamoto, Taishi, E-mail: h.tetsu@geo.titech.ac.jp
Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton–Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme,more » we examined the scheme developed by Douglas and Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.« less
The spectral applications of Beer-Lambert law for some biological and dosimetric materials
NASA Astrophysics Data System (ADS)
Içelli, Orhan; Yalçin, Zeynel; Karakaya, Vatan; Ilgaz, Işıl P.
2014-08-01
The aim of this study is to conduct quantitative and qualitative analysis of biological and dosimetric materials which contain organic and inorganic materials and to make the determination by using the spectral theorem Beer-Lambert law. Beer-Lambert law is a system of linear equations for the spectral theory. It is possible to solve linear equations with a non-zero coefficient matrix determinant forming linear equations. Characteristic matrix of the linear equation with zero determinant is called point spectrum at the spectral theory.
Fundamental Review ’Chemometrics’.
1982-02-01
using the inverted Abel integral equation to evaluate spectroscopic sources. They found that the selection of one of three methods tested depends...nonlinear simultaneous equations are then solved for the concentration of each component in a mixture. When more spectrometric data can be obtained (e.g...Liu (R12) uses six simultaneous equations to resolve overlapping 1-.ic-S-;-inping voltammograms. The use of the Kalman filter (R3) is very effective
The numerical solution of linear multi-term fractional differential equations: systems of equations
NASA Astrophysics Data System (ADS)
Edwards, John T.; Ford, Neville J.; Simpson, A. Charles
2002-11-01
In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.
Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (3).
Murase, Kenya
2016-01-01
In this issue, simultaneous differential equations were introduced. These differential equations are often used in the field of medical physics. The methods for solving them were also introduced, which include Laplace transform and matrix methods. Some examples were also introduced, in which Laplace transform and matrix methods were applied to solving simultaneous differential equations derived from a three-compartment kinetic model for analyzing the glucose metabolism in tissues and Bloch equations for describing the behavior of the macroscopic magnetization in magnetic resonance imaging.In the next (final) issue, partial differential equations and various methods for solving them will be introduced together with some examples in medical physics.
NASA Astrophysics Data System (ADS)
Kang, Pilsang; Koo, Changhoi; Roh, Hokyu
2017-11-01
Since simple linear regression theory was established at the beginning of the 1900s, it has been used in a variety of fields. Unfortunately, it cannot be used directly for calibration. In practical calibrations, the observed measurements (the inputs) are subject to errors, and hence they vary, thus violating the assumption that the inputs are fixed. Therefore, in the case of calibration, the regression line fitted using the method of least squares is not consistent with the statistical properties of simple linear regression as already established based on this assumption. To resolve this problem, "classical regression" and "inverse regression" have been proposed. However, they do not completely resolve the problem. As a fundamental solution, we introduce "reversed inverse regression" along with a new methodology for deriving its statistical properties. In this study, the statistical properties of this regression are derived using the "error propagation rule" and the "method of simultaneous error equations" and are compared with those of the existing regression approaches. The accuracy of the statistical properties thus derived is investigated in a simulation study. We conclude that the newly proposed regression and methodology constitute the complete regression approach for univariate linear calibrations.
ERIC Educational Resources Information Center
Chen, Haiwen; Holland, Paul
2010-01-01
In this paper, we develop a new curvilinear equating for the nonequivalent groups with anchor test (NEAT) design under the assumption of the classical test theory model, that we name curvilinear Levine observed score equating. In fact, by applying both the kernel equating framework and the mean preserving linear transformation of…
A canonical form of the equation of motion of linear dynamical systems
NASA Astrophysics Data System (ADS)
Kawano, Daniel T.; Salsa, Rubens Goncalves; Ma, Fai; Morzfeld, Matthias
2018-03-01
The equation of motion of a discrete linear system has the form of a second-order ordinary differential equation with three real and square coefficient matrices. It is shown that, for almost all linear systems, such an equation can always be converted by an invertible transformation into a canonical form specified by two diagonal coefficient matrices associated with the generalized acceleration and displacement. This canonical form of the equation of motion is unique up to an equivalence class for non-defective systems. As an important by-product, a damped linear system that possesses three symmetric and positive definite coefficients can always be recast as an undamped and decoupled system.
An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher-KPP equation
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.; Trifonov, A. Yu.
A semiclassical approximation approach based on the Maslov complex germ method is considered in detail for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov (Fisher-KPP) equation under the supposition of weak diffusion. In terms of the semiclassical formalism developed, the original nonlinear equation is reduced to an associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation with a given accuracy of the asymptotic parameter. The solutions of the nonlinear equation are constructed from the solutions of both the linear equation and the algebraic equations. The solutions of the linear problem are found with the use of symmetry operators. A countable family of the leading terms of the semiclassical asymptotics is constructed in explicit form. The semiclassical asymptotics are valid by construction in a finite time interval. We construct asymptotics which are different from the semiclassical ones and can describe evolution of the solutions of the Fisher-KPP equation at large times. In the example considered, an initial unimodal distribution becomes multimodal, which can be treated as an example of a space structure.
Nikita, Efthymia
2014-03-01
The current article explores whether the application of generalized linear models (GLM) and generalized estimating equations (GEE) can be used in place of conventional statistical analyses in the study of ordinal data that code an underlying continuous variable, like entheseal changes. The analysis of artificial data and ordinal data expressing entheseal changes in archaeological North African populations gave the following results. Parametric and nonparametric tests give convergent results particularly for P values <0.1, irrespective of whether the underlying variable is normally distributed or not under the condition that the samples involved in the tests exhibit approximately equal sizes. If this prerequisite is valid and provided that the samples are of equal variances, analysis of covariance may be adopted. GLM are not subject to constraints and give results that converge to those obtained from all nonparametric tests. Therefore, they can be used instead of traditional tests as they give the same amount of information as them, but with the advantage of allowing the study of the simultaneous impact of multiple predictors and their interactions and the modeling of the experimental data. However, GLM should be replaced by GEE for the study of bilateral asymmetry and in general when paired samples are tested, because GEE are appropriate for correlated data. Copyright © 2013 Wiley Periodicals, Inc.
Radial orbit error reduction and sea surface topography determination using satellite altimetry
NASA Technical Reports Server (NTRS)
Engelis, Theodossios
1987-01-01
A method is presented in satellite altimetry that attempts to simultaneously determine the geoid and sea surface topography with minimum wavelengths of about 500 km and to reduce the radial orbit error caused by geopotential errors. The modeling of the radial orbit error is made using the linearized Lagrangian perturbation theory. Secular and second order effects are also included. After a rather extensive validation of the linearized equations, alternative expressions of the radial orbit error are derived. Numerical estimates for the radial orbit error and geoid undulation error are computed using the differences of two geopotential models as potential coefficient errors, for a SEASAT orbit. To provide statistical estimates of the radial distances and the geoid, a covariance propagation is made based on the full geopotential covariance. Accuracy estimates for the SEASAT orbits are given which agree quite well with already published results. Observation equations are develped using sea surface heights and crossover discrepancies as observables. A minimum variance solution with prior information provides estimates of parameters representing the sea surface topography and corrections to the gravity field that is used for the orbit generation. The simulation results show that the method can be used to effectively reduce the radial orbit error and recover the sea surface topography.
Analysis of ammonia separation from purge gases in microporous hollow fiber membrane contactors.
Karami, M R; Keshavarz, P; Khorram, M; Mehdipour, M
2013-09-15
In this study, a mathematical model was developed to analyze the separation of ammonia from the purge gas of ammonia plants using microporous hollow fiber membrane contactors. A numerical procedure was proposed to solve the simultaneous linear and non linear partial differential equations in the liquid, membrane and gas phases for non-wetted or partially wetted conditions. An equation of state was applied in the model instead of Henry's law because of high solubility of ammonia in water. The experimental data of CO₂-water system in the literature was used to validate the model due to the lack of data for ammonia-water system. The model showed that the membrane contactor can separate ammonia very effectively and with recoveries higher than 99%. SEM images demonstrated that ammonia caused some micro-cracks on the surfaces of polypropylene fibers, which could be an indication of partial wetting of membrane in long term applications. However, the model results revealed that the membrane wetting did not have significant effect on the absorption of ammonia because of very high solubility of ammonia in water. It was also found that the effect of gas velocity on the absorption flux was much more than the effect of liquid velocity. Copyright © 2013 Elsevier B.V. All rights reserved.
Operator Factorization and the Solution of Second-Order Linear Ordinary Differential Equations
ERIC Educational Resources Information Center
Robin, W.
2007-01-01
The theory and application of second-order linear ordinary differential equations is reviewed from the standpoint of the operator factorization approach to the solution of ordinary differential equations (ODE). Using the operator factorization approach, the general second-order linear ODE is solved, exactly, in quadratures and the resulting…
Prediction Equation for Calculating Fat Mass in Young Indian Adults
Sandhu, Jaspal Singh; Gupta, Giniya; Shenoy, Shweta
2010-01-01
Purpose Accurate measurement or prediction of fat mass is useful in physiology, nutrition and clinical medicine. Most predictive equations currently used to assess percentage of body fat or fat mass, using simple anthropometric measurements were derived from people in western societies and they may not be appropriate for individuals with other genotypic and phenotypic characteristics. We developed equations to predict fat mass from anthropometric measurements in young Indian adults. Methods Fat mass was measured in 60 females and 58 males, aged 20 to 29 yrs by using hydrostatic weighing and by simultaneous measurement of residual lung volume. Anthropometric measure included weight (kg), height (m) and 4 skinfold thickness [STs (mm)]. Sex specific linear regression model was developed with fat mass as the dependent variable and all anthropometric measures as independent variables. Results The prediction equation obtained for fat mass (kg) for males was 8.46+0.32 (weight) − 15.16 (height) + 9.54 (log of sum of 4 STs) (R2= 0. 53, SEE=3.42 kg) and − 20.22 + 0.33 (weight) + 3.44 (height) + 7.66 (log of sum of 4 STs) (R2=0.72, SEE=3.01kg) for females. Conclusion A new prediction equation for the measurement of fat mass was derived and internally validated in young Indian adults using simple anthropometric measurements. PMID:22375197
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adcock, T. A. A.; Taylor, P. H.
2016-01-15
The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest whichmore » leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.« less
Blomquist, Patrick; Devor, Anna; Indahl, Ulf G.; Ulbert, Istvan; Einevoll, Gaute T.; Dale, Anders M.
2009-01-01
A new method is presented for extraction of population firing-rate models for both thalamocortical and intracortical signal transfer based on stimulus-evoked data from simultaneous thalamic single-electrode and cortical recordings using linear (laminar) multielectrodes in the rat barrel system. Time-dependent population firing rates for granular (layer 4), supragranular (layer 2/3), and infragranular (layer 5) populations in a barrel column and the thalamic population in the homologous barreloid are extracted from the high-frequency portion (multi-unit activity; MUA) of the recorded extracellular signals. These extracted firing rates are in turn used to identify population firing-rate models formulated as integral equations with exponentially decaying coupling kernels, allowing for straightforward transformation to the more common firing-rate formulation in terms of differential equations. Optimal model structures and model parameters are identified by minimizing the deviation between model firing rates and the experimentally extracted population firing rates. For the thalamocortical transfer, the experimental data favor a model with fast feedforward excitation from thalamus to the layer-4 laminar population combined with a slower inhibitory process due to feedforward and/or recurrent connections and mixed linear-parabolic activation functions. The extracted firing rates of the various cortical laminar populations are found to exhibit strong temporal correlations for the present experimental paradigm, and simple feedforward population firing-rate models combined with linear or mixed linear-parabolic activation function are found to provide excellent fits to the data. The identified thalamocortical and intracortical network models are thus found to be qualitatively very different. While the thalamocortical circuit is optimally stimulated by rapid changes in the thalamic firing rate, the intracortical circuits are low-pass and respond most strongly to slowly varying inputs from the cortical layer-4 population. PMID:19325875
NASA Technical Reports Server (NTRS)
Cooke, K. L.; Meyer, K. R.
1966-01-01
Extension of problem of singular perturbation for linear scalar constant coefficient differential- difference equation with single retardation to several retardations, noting degenerate equation solution
A Few New 2+1-Dimensional Nonlinear Dynamics and the Representation of Riemann Curvature Tensors
NASA Astrophysics Data System (ADS)
Wang, Yan; Zhang, Yufeng; Zhang, Xiangzhi
2016-09-01
We first introduced a linear stationary equation with a quadratic operator in ∂x and ∂y, then a linear evolution equation is given by N-order polynomials of eigenfunctions. As applications, by taking N=2, we derived a (2+1)-dimensional generalized linear heat equation with two constant parameters associative with a symmetric space. When taking N=3, a pair of generalized Kadomtsev-Petviashvili equations with the same eigenvalues with the case of N=2 are generated. Similarly, a second-order flow associative with a homogeneous space is derived from the integrability condition of the two linear equations, which is a (2+1)-dimensional hyperbolic equation. When N=3, the third second flow associative with the homogeneous space is generated, which is a pair of new generalized Kadomtsev-Petviashvili equations. Finally, as an application of a Hermitian symmetric space, we established a pair of spectral problems to obtain a new (2+1)-dimensional generalized Schrödinger equation, which is expressed by the Riemann curvature tensors.
Gu, Xiao-Jun; Emerson, David R
2014-06-01
Understanding the thermal behavior of a rarefied gas remains a fundamental problem. In the present study, we investigate the predictive capabilities of the regularized 13 and 26 moment equations. In this paper, we consider low-speed problems with small gradients, and to simplify the analysis, a linearized set of moment equations is derived to explore a classic temperature problem. Analytical solutions obtained for the linearized 26 moment equations are compared with available kinetic models and can reliably capture all qualitative trends for the temperature-jump coefficient and the associated temperature defect in the thermal Knudsen layer. In contrast, the linearized 13 moment equations lack the necessary physics to capture these effects and consistently underpredict kinetic theory. The deviation from kinetic theory for the 13 moment equations increases significantly for specular reflection of gas molecules, whereas the 26 moment equations compare well with results from kinetic theory. To improve engineering analyses, expressions for the effective thermal conductivity and Prandtl number in the Knudsen layer are derived with the linearized 26 moment equations.
Signal Prediction With Input Identification
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Chen, Ya-Chin
1999-01-01
A novel coding technique is presented for signal prediction with applications including speech coding, system identification, and estimation of input excitation. The approach is based on the blind equalization method for speech signal processing in conjunction with the geometric subspace projection theory to formulate the basic prediction equation. The speech-coding problem is often divided into two parts, a linear prediction model and excitation input. The parameter coefficients of the linear predictor and the input excitation are solved simultaneously and recursively by a conventional recursive least-squares algorithm. The excitation input is computed by coding all possible outcomes into a binary codebook. The coefficients of the linear predictor and excitation, and the index of the codebook can then be used to represent the signal. In addition, a variable-frame concept is proposed to block the same excitation signal in sequence in order to reduce the storage size and increase the transmission rate. The results of this work can be easily extended to the problem of disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. Simulations are included to demonstrate the proposed method.
Encouraging Students to Think Strategically when Learning to Solve Linear Equations
ERIC Educational Resources Information Center
Robson, Daphne; Abell, Walt; Boustead, Therese
2012-01-01
Students who are preparing to study science and engineering need to understand equation solving but adult students returning to study can find this difficult. In this paper, the design of an online resource, Equations2go, for helping students learn to solve linear equations is investigated. Students learning to solve equations need to consider…
FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations
NASA Astrophysics Data System (ADS)
Ibragimov, N. H.; Torrisi, M.; Tracinà, R.
2010-11-01
In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.
ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations
NASA Astrophysics Data System (ADS)
Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil
2018-04-01
In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruss, D. E.; Morel, J. E.; Ragusa, J. C.
2013-07-01
Preconditioners based upon sweeps and diffusion-synthetic acceleration have been constructed and applied to the zeroth and first spatial moments of the 1-D S{sub n} transport equation using a strictly non negative nonlinear spatial closure. Linear and nonlinear preconditioners have been analyzed. The effectiveness of various combinations of these preconditioners are compared. In one dimension, nonlinear sweep preconditioning is shown to be superior to linear sweep preconditioning, and DSA preconditioning using nonlinear sweeps in conjunction with a linear diffusion equation is found to be essentially equivalent to nonlinear sweeps in conjunction with a nonlinear diffusion equation. The ability to use amore » linear diffusion equation has important implications for preconditioning the S{sub n} equations with a strictly non negative spatial discretization in multiple dimensions. (authors)« less
Time and frequency domain analysis of sampled data controllers via mixed operation equations
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1981-01-01
Specification of the mathematical equations required to define the dynamic response of a linear continuous plant, subject to sampled data control, is complicated by the fact that the digital components of the control system cannot be modeled via linear ordinary differential equations. This complication can be overcome by introducing two new mathematical operations; namely, the operation of zero order hold and digial delay. It is shown that by direct utilization of these operations, a set of linear mixed operation equations can be written and used to define the dynamic response characteristics of the controlled system. It also is shown how these linear mixed operation equations lead, in an automatable manner, directly to a set of finite difference equations which are in a format compatible with follow on time and frequency domain analysis methods.
ERIC Educational Resources Information Center
Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.
2009-01-01
This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…
Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles
ERIC Educational Resources Information Center
Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim
2016-01-01
This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schüler, D.; Alonso, S.; Bär, M.
2014-12-15
Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexistingmore » static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.« less
LINEAR - DERIVATION AND DEFINITION OF A LINEAR AIRCRAFT MODEL
NASA Technical Reports Server (NTRS)
Duke, E. L.
1994-01-01
The Derivation and Definition of a Linear Model program, LINEAR, provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models. LINEAR was developed to provide a standard, documented, and verified tool to derive linear models for aircraft stability analysis and control law design. Linear system models define the aircraft system in the neighborhood of an analysis point and are determined by the linearization of the nonlinear equations defining vehicle dynamics and sensors. LINEAR numerically determines a linear system model using nonlinear equations of motion and a user supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. LINEAR is capable of extracting both linearized engine effects, such as net thrust, torque, and gyroscopic effects and including these effects in the linear system model. The point at which this linear model is defined is determined either by completely specifying the state and control variables, or by specifying an analysis point on a trajectory and directing the program to determine the control variables and the remaining state variables. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to provide easy selection of state, control, and observation variables to be used in a particular model. Thus, the order of the system model is completely under user control. Further, the program provides the flexibility of allowing alternate formulations of both the state and observation equations. Data describing the aircraft and the test case is input to the program through a terminal or formatted data files. All data can be modified interactively from case to case. The aerodynamic model can be defined in two ways: a set of nondimensional stability and control derivatives for the flight point of interest, or a full non-linear aerodynamic model as used in simulations. LINEAR is written in FORTRAN and has been implemented on a DEC VAX computer operating under VMS with a virtual memory requirement of approximately 296K of 8 bit bytes. Both an interactive and batch version are included. LINEAR was developed in 1988.
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Hosseini, Kamyar; Samadani, Farzan; Raza, Nauman
2018-07-01
A wide range of problems in different fields of the applied sciences especially non-linear optics is described by non-linear Schrödinger's equations (NLSEs). In the present paper, a specific type of NLSEs known as the cubic-quintic non-linear Schrödinger's equation including an anti-cubic term has been studied. The generalized Kudryashov method along with symbolic computation package has been exerted to carry out this objective. As a consequence, a series of optical soliton solutions have formally been retrieved. It is corroborated that the generalized form of Kudryashov method is a direct, effectual, and reliable technique to deal with various types of non-linear Schrödinger's equations.
Preliminary Planar Formation: Flight Dynamics Near Sun-Earth L2 Point
NASA Technical Reports Server (NTRS)
Segerman, Alan M.; Zedd, Michael F.
2003-01-01
NASA's Goddard Space Flight Center is planning a series of missions in the vicinity of the Sun-Earth L2 libration point. Some of these projects will involve a distributed space system of telescope spacecraft acting together as a single telescope for high-resolution. The individual telescopes will be configured in a plane, surrounding a hub, where the telescope plane can be aimed toward various astronomical targets of interest. In preparation for these missions, it is necessary to develop an improved understanding of the dynamical behavior of objects in a planar configuration near L2. The classical circular restricted three body problem is taken as the basis for the analysis. At first order, the motion of such a telescope relative to the hub is described by a system of linear second order differential equations. These equations are identical to the circular restricted problem's linear equations describing the hub motion about L2. Therefore, the fundamental frequencies, both parallel to and normal to the ecliptic plane, are the same for the relative telescope motion as for the hub motion. To maintain the telescope plane for the duration necessary for the planned observations, a halo-type orbit of the telescopes about the hub is investigated. By using a halo orbit, the individual telescopes remain in approximately the same plane over the observation duration. For such an orbit, the fundamental periods parallel to and normal to the ecliptic plane are forced to be the same by careful selection of the initial conditions in order to adjust the higher order forces. The relative amplitudes of the resulting oscillations are associated with the orientation of the telescope plane relative to the ecliptic. As in the circular restricted problem, initial conditions for the linearized equations must be selected so as not to excite the convergent or divergent linear modes. In a higher order analysis, the telescope relative motion equations include the effects of the position of the hub relative to L2. In this paper, the differential equations are developed through second order in the distance of the hub from the libration point. A modified Lindstedt-Poincad perturbation method is employed to construct the solution of these differential equations through that same order of magnitude. In the course of the solution process, relationships are determined between the initial conditions of the telescopes, selected in order to avoid resonance excitation. As the differential equations include the hub position, it is necessary to simultaneously develop the solution for the hub. As has been done in past analyses of the circular restricted problem, the hub position is written in a power series formulation in terms of its distance from L2. Then, in order to be included in the telescope equations, the hub solution is cast in terms of the nonlinear frequency of the relative telescope motion. In the course of the analysis, it is determined that the hub should also maintain a halo orbit - about L2. Additionally, relationships are formed between the initial conditions of the telescopes and the hub. These relationships may be used to associate sets of initial conditions with particular orientations of the telescope plane. The accuracy of the analytical solution is verified through various simulations and comparison to numerical integration of the differential equations. The results of the simulations are presented, along with a graphical representation of the relationships between the initial conditions of the telescopes and hub.
NASA Technical Reports Server (NTRS)
Clark, William S.; Hall, Kenneth C.
1994-01-01
A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.
NASA Technical Reports Server (NTRS)
Park, K. C.; Belvin, W. Keith
1990-01-01
A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.
Application of variational and Galerkin equations to linear and nonlinear finite element analysis
NASA Technical Reports Server (NTRS)
Yu, Y.-Y.
1974-01-01
The paper discusses the application of the variational equation to nonlinear finite element analysis. The problem of beam vibration with large deflection is considered. The variational equation is shown to be flexible in both the solution of a general problem and in the finite element formulation. Difficulties are shown to arise when Galerkin's equations are used in the consideration of the finite element formulation of two-dimensional linear elasticity and of the linear classical beam.
1980-06-01
sufficient. Dropping the time lag terms, the equations for Xu, Xx’, and X reduce to linear algebraic equations.Y Hence in the quasistatic case the...quasistatic variables now are not described by differential equations but rather by linear algebraic equations. The solution for x0 then is simply -365...matrices for two-bladed rotor 414 7. LINEAR SYSTEM ANALYSIS 425 7,1 State Variable Form 425 7.2 Constant Coefficient System 426 7.2. 1 Eigen-analysis 426
ERIC Educational Resources Information Center
Mallet, D. G.; McCue, S. W.
2009-01-01
The solution of linear ordinary differential equations (ODEs) is commonly taught in first-year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognizing what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to…
DOT National Transportation Integrated Search
2016-09-01
We consider the problem of solving mixed random linear equations with k components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample...
Perturbations of linear delay differential equations at the verge of instability.
Lingala, N; Namachchivaya, N Sri
2016-06-01
The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. This paper considers linear DDEs that are on the verge of instability, i.e., a pair of roots of the characteristic equation lies on the imaginary axis of the complex plane and all other roots have negative real parts. It is shown that when small noise perturbations are present, the probability distribution of the dynamics can be approximated by the probability distribution of a certain one-dimensional stochastic differential equation (SDE) without delay. This is advantageous because equations without delay are easier to simulate and one-dimensional SDEs are analytically tractable. When the perturbations are also linear, it is shown that the stability depends on a specific complex number. The theory is applied to study oscillators with delayed feedback. Some errors in other articles that use multiscale approach are pointed out.
How Darcy's equation is linked to the linear reservoir at catchment scale
NASA Astrophysics Data System (ADS)
Savenije, Hubert H. G.
2017-04-01
In groundwater hydrology two simple linear equations exist that describe the relation between groundwater flow and the gradient that drives it: Darcy's equation and the linear reservoir. Both equations are empirical at heart: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they show similarity, without having detailed knowledge of the structure of the underlying aquifers it is not trivial to upscale Darcy's equation to the watershed scale. In this paper, a relatively simple connection is provided between the two, based on the assumption that the groundwater system is organized by an efficient drainage network, a mostly invisible pattern that has evolved over geological time scales. This drainage network provides equally distributed resistance to flow along the streamlines that connect the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance.
Polynomial elimination theory and non-linear stability analysis for the Euler equations
NASA Technical Reports Server (NTRS)
Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.
1986-01-01
Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.
Chen, Jinsong; Liu, Lei; Shih, Ya-Chen T; Zhang, Daowen; Severini, Thomas A
2016-03-15
We propose a flexible model for correlated medical cost data with several appealing features. First, the mean function is partially linear. Second, the distributional form for the response is not specified. Third, the covariance structure of correlated medical costs has a semiparametric form. We use extended generalized estimating equations to simultaneously estimate all parameters of interest. B-splines are used to estimate unknown functions, and a modification to Akaike information criterion is proposed for selecting knots in spline bases. We apply the model to correlated medical costs in the Medical Expenditure Panel Survey dataset. Simulation studies are conducted to assess the performance of our method. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Reid, G. F.
1976-01-01
A technique is presented for determining state variable feedback gains that will place both the poles and zeros of a selected transfer function of a dual-input control system at pre-determined locations in the s-plane. Leverrier's algorithm is used to determine the numerator and denominator coefficients of the closed-loop transfer function as functions of the feedback gains. The values of gain that match these coefficients to those of a pre-selected model are found by solving two systems of linear simultaneous equations. The algorithm has been used in a computer simulation of the CH-47 helicopter to control longitudinal dynamics.
Quadratic spline subroutine package
Rasmussen, Lowell A.
1982-01-01
A continuous piecewise quadratic function with continuous first derivative is devised for approximating a single-valued, but unknown, function represented by a set of discrete points. The quadratic is proposed as a treatment intermediate between using the angular (but reliable, easily constructed and manipulated) piecewise linear function and using the smoother (but occasionally erratic) cubic spline. Neither iteration nor the solution of a system of simultaneous equations is necessary to determining the coefficients. Several properties of the quadratic function are given. A set of five short FORTRAN subroutines is provided for generating the coefficients (QSC), finding function value and derivatives (QSY), integrating (QSI), finding extrema (QSE), and computing arc length and the curvature-squared integral (QSK). (USGS)
Model predictive control for spacecraft rendezvous in elliptical orbit
NASA Astrophysics Data System (ADS)
Li, Peng; Zhu, Zheng H.
2018-05-01
This paper studies the control of spacecraft rendezvous with attitude stable or spinning targets in an elliptical orbit. The linearized Tschauner-Hempel equation is used to describe the motion of spacecraft and the problem is formulated by model predictive control. The control objective is to maximize control accuracy and smoothness simultaneously to avoid unexpected change or overshoot of trajectory for safe rendezvous. It is achieved by minimizing the weighted summations of control errors and increments. The effects of two sets of horizons (control and predictive horizons) in the model predictive control are examined in terms of fuel consumption, rendezvous time and computational effort. The numerical results show the proposed control strategy is effective.
NASA Astrophysics Data System (ADS)
Zia, Haider
2017-06-01
This paper describes an updated exponential Fourier based split-step method that can be applied to a greater class of partial differential equations than previous methods would allow. These equations arise in physics and engineering, a notable example being the generalized derivative non-linear Schrödinger equation that arises in non-linear optics with self-steepening terms. These differential equations feature terms that were previously inaccessible to model accurately with low computational resources. The new method maintains a 3rd order error even with these additional terms and models the equation in all three spatial dimensions and time. The class of non-linear differential equations that this method applies to is shown. The method is fully derived and implementation of the method in the split-step architecture is shown. This paper lays the mathematical ground work for an upcoming paper employing this method in white-light generation simulations in bulk material.
An extended harmonic balance method based on incremental nonlinear control parameters
NASA Astrophysics Data System (ADS)
Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.
2017-02-01
A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.
Computation of multi-dimensional viscous supersonic jet flow
NASA Technical Reports Server (NTRS)
Kim, Y. N.; Buggeln, R. C.; Mcdonald, H.
1986-01-01
A new method has been developed for two- and three-dimensional computations of viscous supersonic flows with embedded subsonic regions adjacent to solid boundaries. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases relevant to internal supersonic flow is presented and compared with data. Comparison between data and computation are in general excellent thus indicating that the computational technique has great promise as a tool for calculating supersonic flow with embedded subsonic regions. Finally, a User's Manual is presented for the computer code used to perform the calculations.
Stress analysis of rotating propellers subject to forced excitations
NASA Astrophysics Data System (ADS)
Akgun, Ulas
Turbine blades experience vibrations due to the flow disturbances. These vibrations are the leading cause for fatigue failure in turbine blades. This thesis presents the finite element analysis methods to estimate the maximum vibrational stresses of rotating structures under forced excitation. The presentation included starts with the derived equations of motion for vibration of rotating beams using energy methods under the Euler Bernoulli beam assumptions. The nonlinear large displacement formulation captures the centrifugal stiffening and gyroscopic effects. The weak form of the equations and their finite element discretization are shown. The methods implemented were used for normal modes analyses and forced vibration analyses of rotating beam structures. The prediction of peak stresses under simultaneous multi-mode excitation show that the maximum vibrational stresses estimated using the linear superposition of the stresses can greatly overestimate the stresses if the phase information due to damping (physical and gyroscopic effects) are neglected. The last section of this thesis also presents the results of a practical study that involves finite element analysis and redesign of a composite propeller.
Computation of multi-dimensional viscous supersonic flow
NASA Technical Reports Server (NTRS)
Buggeln, R. C.; Kim, Y. N.; Mcdonald, H.
1986-01-01
A method has been developed for two- and three-dimensional computations of viscous supersonic jet flows interacting with an external flow. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases associated with supersonic jet flow is presented and compared with other calculations for axisymmetric cases. Demonstration calculations indicate that the computational technique has great promise as a tool for calculating a wide range of supersonic flow problems including jet flow. Finally, a User's Manual is presented for the computer code used to perform the calculations.
NASA Astrophysics Data System (ADS)
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-12-01
We examine students' mathematical performance on quantitative "synthesis problems" with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking, formulation and combination of equations require conceptual reasoning; simplification of equations requires manipulation of equations as computational tools. Mathematical complexity is operationally defined by the number and the type of equations to be manipulated concurrently due to the number of unknowns in each equation. We use two types of synthesis problems, namely, sequential and simultaneous tasks. Sequential synthesis tasks require a chronological application of pertinent concepts, and simultaneous synthesis tasks require a concurrent application of the pertinent concepts. A total of 179 physics major students from a second year mechanics course participated in the study. Data were collected from written tasks and individual interviews. Results show that mathematical complexity negatively influences the students' mathematical performance on both types of synthesis problems. However, for the sequential synthesis tasks, it interferes only with the students' simplification of equations. For the simultaneous synthesis tasks, mathematical complexity additionally impedes the students' formulation and combination of equations. Several reasons may explain this difference, including the students' different approaches to the two types of synthesis problems, cognitive load, and the variation of mathematical complexity within each synthesis type.
Xu, Feifei; Yang, Ting; Sheng, Yuan; Zhong, Ting; Yang, Mi; Chen, Yun
2014-12-05
As one of the most studied post-translational modifications (PTM), protein phosphorylation plays an essential role in almost all cellular processes. Current methods are able to predict and determine thousands of phosphorylation sites, whereas stoichiometric quantification of these sites is still challenging. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based targeted proteomics is emerging as a promising technique for site-specific quantification of protein phosphorylation using proteolytic peptides as surrogates of proteins. However, several issues may limit its application, one of which relates to the phosphopeptides with different phosphorylation sites and the same mass (i.e., isobaric phosphopeptides). While employment of site-specific product ions allows for these isobaric phosphopeptides to be distinguished and quantified, site-specific product ions are often absent or weak in tandem mass spectra. In this study, linear algebra algorithms were employed as an add-on to targeted proteomics to retrieve information on individual phosphopeptides from their common spectra. To achieve this simultaneous quantification, a LC-MS/MS-based targeted proteomics assay was first developed and validated for each phosphopeptide. Given the slope and intercept of calibration curves of phosphopeptides in each transition, linear algebraic equations were developed. Using a series of mock mixtures prepared with varying concentrations of each phosphopeptide, the reliability of the approach to quantify isobaric phosphopeptides containing multiple phosphorylation sites (≥ 2) was discussed. Finally, we applied this approach to determine the phosphorylation stoichiometry of heat shock protein 27 (HSP27) at Ser78 and Ser82 in breast cancer cells and tissue samples.
Theodorakis, Stavros
2003-06-01
We emulate the cubic term Psi(3) in the nonlinear Schrödinger equation by a piecewise linear term, thus reducing the problem to a set of uncoupled linear inhomogeneous differential equations. The resulting analytic expressions constitute an excellent approximation to the exact solutions, as is explicitly shown in the case of the kink, the vortex, and a delta function trap. Such a piecewise linear emulation can be used for any differential equation where the only nonlinearity is a Psi(3) one. In particular, it can be used for the nonlinear Schrödinger equation in the presence of harmonic traps, giving analytic Bose-Einstein condensate solutions that reproduce very accurately the numerically calculated ones in one, two, and three dimensions.
Dissipative behavior of some fully non-linear KdV-type equations
NASA Astrophysics Data System (ADS)
Brenier, Yann; Levy, Doron
2000-03-01
The KdV equation can be considered as a special case of the general equation u t+f(u) x-δg(u xx) x=0, δ>0, where f is non-linear and g is linear, namely f( u)= u2/2 and g( v)= v. As the parameter δ tends to 0, the dispersive behavior of the KdV equation has been throughly investigated (see, e.g., [P.G. Drazin, Solitons, London Math. Soc. Lect. Note Ser. 85, Cambridge University Press, Cambridge, 1983; P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg-de Vries equation, III, Commun. Pure Appl. Math. 36 (1983) 809-829; G.B. Whitham, Linear and Nonlinear Waves, Wiley/Interscience, New York, 1974] and the references therein). We show through numerical evidence that a completely different, dissipative behavior occurs when g is non-linear, namely when g is an even concave function such as g( v)=-∣ v∣ or g( v)=- v2. In particular, our numerical results hint that as δ→0 the solutions strongly converge to the unique entropy solution of the formal limit equation, in total contrast with the solutions of the KdV equation.
Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.
The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less
NASA Astrophysics Data System (ADS)
Han, Renji; Dai, Binxiang
2017-06-01
The spatiotemporal pattern induced by cross-diffusion of a toxic-phytoplankton-zooplankton model with nonmonotonic functional response is investigated in this paper. The linear stability analysis shows that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes in the framework of a weakly nonlinear theory, and the stability analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, we illustrate the theoretical results via numerical simulations. It is shown that the spatiotemporal distribution of the plankton is homogeneous in the absence of cross-diffusion. However, when the cross-diffusivity is greater than the critical value, the spatiotemporal distribution of all the plankton species becomes inhomogeneous in spaces and results in different kinds of patterns: spot, stripe, and the mixture of spot and stripe patterns depending on the cross-diffusivity. Simultaneously, the impact of toxin-producing rate of toxic-phytoplankton (TPP) species and natural death rate of zooplankton species on pattern selection is also explored.
Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing
Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.
2018-01-10
The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less
NASA Technical Reports Server (NTRS)
Geddes, K. O.
1977-01-01
If a linear ordinary differential equation with polynomial coefficients is converted into integrated form then the formal substitution of a Chebyshev series leads to recurrence equations defining the Chebyshev coefficients of the solution function. An explicit formula is presented for the polynomial coefficients of the integrated form in terms of the polynomial coefficients of the differential form. The symmetries arising from multiplication and integration of Chebyshev polynomials are exploited in deriving a general recurrence equation from which can be derived all of the linear equations defining the Chebyshev coefficients. Procedures for deriving the general recurrence equation are specified in a precise algorithmic notation suitable for translation into any of the languages for symbolic computation. The method is algebraic and it can therefore be applied to differential equations containing indeterminates.
A General Linear Method for Equating with Small Samples
ERIC Educational Resources Information Center
Albano, Anthony D.
2015-01-01
Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…
ESEA Title I Linking Project. Final Report.
ERIC Educational Resources Information Center
Holmes, Susan E.
The Rasch model for test score equating was compared with three other equating procedures as methods for implementing the norm referenced method (RMC Model A) of evaluating ESEA Title I projects. The Rasch model and its theoretical limitations were described. The three other equating methods used were: linear observed score equating, linear true…
A Factorization Approach to the Linear Regulator Quadratic Cost Problem
NASA Technical Reports Server (NTRS)
Milman, M. H.
1985-01-01
A factorization approach to the linear regulator quadratic cost problem is developed. This approach makes some new connections between optimal control, factorization, Riccati equations and certain Wiener-Hopf operator equations. Applications of the theory to systems describable by evolution equations in Hilbert space and differential delay equations in Euclidean space are presented.
Variations in the Solution of Linear First-Order Differential Equations. Classroom Notes
ERIC Educational Resources Information Center
Seaman, Brian; Osler, Thomas J.
2004-01-01
A special project which can be given to students of ordinary differential equations is described in detail. Students create new differential equations by changing the dependent variable in the familiar linear first-order equation (dv/dx)+p(x)v=q(x) by means of a substitution v=f(y). The student then creates a table of the new equations and…
ERIC Educational Resources Information Center
Pirie, Susan E. B.; Martin, Lyndon
1997-01-01
Presents the results of a case study which looked at the mathematics classroom of one teacher trying to teach mathematics with meaning to pupils or lower ability at the secondary level. Contrasts methods of teaching linear equations to a variety of ability levels and uses the Pirie-Kieren model to account for the successful growth in understanding…
NASA Technical Reports Server (NTRS)
Rizk, Magdi H.
1988-01-01
A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.
NASA Astrophysics Data System (ADS)
Pipkins, Daniel Scott
Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially.
A Novel Blast-mitigation Concept for Light Tactical Vehicles
2013-01-01
analysis which utilizes the mass and energy (but not linear momentum ) conservation equations is provided. It should be noted that the identical final...results could be obtained using an analogous analysis which combines the mass and the linear momentum conservation equations. For a calorically...governing mass, linear momentum and energy conservation and heat conduction equations are solved within ABAQUS/ Explicit with a second-order accurate
NASA Astrophysics Data System (ADS)
Shao, W.; Bogaard, T.; Bakker, M.; Berti, M.; Savenije, H. H. G.
2016-12-01
The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately.
Liu, Lan; Jiang, Tao
2007-01-01
With the launch of the international HapMap project, the haplotype inference problem has attracted a great deal of attention in the computational biology community recently. In this paper, we study the question of how to efficiently infer haplotypes from genotypes of individuals related by a pedigree without mating loops, assuming that the hereditary process was free of mutations (i.e. the Mendelian law of inheritance) and recombinants. We model the haplotype inference problem as a system of linear equations as in [10] and present an (optimal) linear-time (i.e. O(mn) time) algorithm to generate a particular solution (A particular solution of any linear system is an assignment of numerical values to the variables in the system which satisfies the equations in the system.) to the haplotype inference problem, where m is the number of loci (or markers) in a genotype and n is the number of individuals in the pedigree. Moreover, the algorithm also provides a general solution (A general solution of any linear system is denoted by the span of a basis in the solution space to its associated homogeneous system, offset from the origin by a vector, namely by any particular solution. A general solution for ZRHC is very useful in practice because it allows the end user to efficiently enumerate all solutions for ZRHC and performs tasks such as random sampling.) in O(mn2) time, which is optimal because the size of a general solution could be as large as Theta(mn2). The key ingredients of our construction are (i) a fast consistency checking procedure for the system of linear equations introduced in [10] based on a careful investigation of the relationship between the equations (ii) a novel linear-time method for solving linear equations without invoking the Gaussian elimination method. Although such a fast method for solving equations is not known for general systems of linear equations, we take advantage of the underlying loop-free pedigree graph and some special properties of the linear equations.
Semigroup theory and numerical approximation for equations in linear viscoelasticity
NASA Technical Reports Server (NTRS)
Fabiano, R. H.; Ito, K.
1990-01-01
A class of abstract integrodifferential equations used to model linear viscoelastic beams is investigated analytically, applying a Hilbert-space approach. The basic equation is rewritten as a Cauchy problem, and its well-posedness is demonstrated. Finite-dimensional subspaces of the state space and an estimate of the state operator are obtained; approximation schemes for the equations are constructed; and the convergence is proved using the Trotter-Kato theorem of linear semigroup theory. The actual convergence behavior of different approximations is demonstrated in numerical computations, and the results are presented in tables.
Internal null controllability of a linear Schrödinger-KdV system on a bounded interval
NASA Astrophysics Data System (ADS)
Araruna, Fágner D.; Cerpa, Eduardo; Mercado, Alberto; Santos, Maurício C.
2016-01-01
The control of a linear dispersive system coupling a Schrödinger and a linear Korteweg-de Vries equation is studied in this paper. The system can be viewed as three coupled real-valued equations by taking real and imaginary parts in the Schrödinger equation. The internal null controllability is proven by using either one complex-valued control on the Schrödinger equation or two real-valued controls, one on each equation. Notice that the single Schrödinger equation is not known to be controllable with a real-valued control. The standard duality method is used to reduce the controllability property to an observability inequality, which is obtained by means of a Carleman estimates approach.
NASA Astrophysics Data System (ADS)
Kumar, Devendra; Singh, Jagdev; Baleanu, Dumitru
2018-02-01
The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order.
NASA Technical Reports Server (NTRS)
Sreenivas, Kidambi; Whitfield, David L.
1995-01-01
Two linearized solvers (time and frequency domain) based on a high resolution numerical scheme are presented. The basic approach is to linearize the flux vector by expressing it as a sum of a mean and a perturbation. This allows the governing equations to be maintained in conservation law form. A key difference between the time and frequency domain computations is that the frequency domain computations require only one grid block irrespective of the interblade phase angle for which the flow is being computed. As a result of this and due to the fact that the governing equations for this case are steady, frequency domain computations are substantially faster than the corresponding time domain computations. The linearized equations are used to compute flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numerical solutions are compared to linear theory (where available) and to numerical solutions of the nonlinear Euler equations.
Application of viscous-inviscid interaction methods to transonic turbulent flows
NASA Technical Reports Server (NTRS)
Lee, D.; Pletcher, R. H.
1986-01-01
Two different viscous-inviscid interaction schemes were developed for the analysis of steady, turbulent, transonic, separated flows over axisymmetric bodies. The viscous and inviscid solutions are coupled through the displacement concept using a transpiration velocity approach. In the semi-inverse interaction scheme, the viscous and inviscid equations are solved in an explicitly separate manner and the displacement thickness distribution is iteratively updated by a simple coupling algorithm. In the simultaneous interaction method, local solutions of viscous and inviscid equations are treated simultaneously, and the displacement thickness is treated as an unknown and is obtained as a part of the solution through a global iteration procedure. The inviscid flow region is described by a direct finite-difference solution of a velocity potential equation in conservative form. The potential equation is solved on a numerically generated mesh by an approximate factorization (AF2) scheme in the semi-inverse interaction method and by a successive line overrelaxation (SLOR) scheme in the simultaneous interaction method. The boundary-layer equations are used for the viscous flow region. The continuity and momentum equations are solved inversely in a coupled manner using a fully implicit finite-difference scheme.
Symbolic Solution of Linear Differential Equations
NASA Technical Reports Server (NTRS)
Feinberg, R. B.; Grooms, R. G.
1981-01-01
An algorithm for solving linear constant-coefficient ordinary differential equations is presented. The computational complexity of the algorithm is discussed and its implementation in the FORMAC system is described. A comparison is made between the algorithm and some classical algorithms for solving differential equations.
Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations
2008-02-01
Craig interpolants has enabled the development of powerful hardware and software model checking techniques. Efficient algorithms are known for computing...interpolants in rational and real linear arithmetic. We focus on subsets of integer linear arithmetic. Our main results are polynomial time algorithms ...congruences), and linear diophantine disequations. We show the utility of the proposed interpolation algorithms for discovering modular/divisibility predicates
NASA Astrophysics Data System (ADS)
Rezaei, G.; Vaseghi, B.; Doostimotlagh, N. A.
2012-03-01
Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/AlxGa1-x As spherical quantum dot are theoretically investigated, using the Luttinger—Kohn effective mass equation. So, electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach, respectively. Finally, effects of an impurity, band edge non-parabolicity, incident light intensity and the dot size on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated. Our results indicate that, the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered. Moreover, incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.
A non-linear piezoelectric actuator calibration using N-dimensional Lissajous figure
NASA Astrophysics Data System (ADS)
Albertazzi, A.; Viotti, M. R.; Veiga, C. L. N.; Fantin, A. V.
2016-08-01
Piezoelectric translators (PZTs) are very often used as phase shifters in interferometry. However, they typically present a non-linear behavior and strong hysteresis. The use of an additional resistive or capacitive sensor make possible to linearize the response of the PZT by feedback control. This approach works well, but makes the device more complex and expensive. A less expensive approach uses a non-linear calibration. In this paper, the authors used data from at least five interferograms to form N-dimensional Lissajous figures to establish the actual relationship between the applied voltages and the resulting phase shifts [1]. N-dimensional Lissajous figures are formed when N sinusoidal signals are combined in an N-dimensional space, where one signal is assigned to each axis. It can be verified that the resulting Ndimensional ellipsis lays in a 2D plane. By fitting an ellipsis equation to the resulting 2D ellipsis it is possible to accurately compute the resulting phase value for each interferogram. In this paper, the relationship between the resulting phase shift and the applied voltage is simultaneously established for a set of 12 increments by a fourth degree polynomial. The results in speckle interferometry show that, after two or three interactions, the calibration error is usually smaller than 1°.
Weak stability of the plasma-vacuum interface problem
NASA Astrophysics Data System (ADS)
Catania, Davide; D'Abbicco, Marcello; Secchi, Paolo
2016-09-01
We consider the free boundary problem for the two-dimensional plasma-vacuum interface in ideal compressible magnetohydrodynamics (MHD). In the plasma region, the flow is governed by the usual compressible MHD equations, while in the vacuum region we consider the Maxwell system for the electric and the magnetic fields. At the free interface, driven by the plasma velocity, the total pressure is continuous and the magnetic field on both sides is tangent to the boundary. We study the linear stability of rectilinear plasma-vacuum interfaces by computing the Kreiss-Lopatinskiĭ determinant of an associated linearized boundary value problem. Apart from possible resonances, we obtain that the piecewise constant plasma-vacuum interfaces are always weakly linearly stable, independently of the size of tangential velocity, magnetic and electric fields on both sides of the characteristic discontinuity. We also prove that solutions to the linearized problem obey an energy estimate with a loss of regularity with respect to the source terms, both in the interior domain and on the boundary, due to the failure of the uniform Kreiss-Lopatinskiĭ condition, as the Kreiss-Lopatinskiĭ determinant associated with this linearized boundary value problem has roots on the boundary of the frequency space. In the proof of the a priori estimates, a crucial part is played by the construction of symmetrizers for a reduced differential system, which has poles at which the Kreiss-Lopatinskiĭ condition may fail simultaneously.
Stress stiffening and approximate equations in flexible multibody dynamics
NASA Technical Reports Server (NTRS)
Padilla, Carlos E.; Vonflotow, Andreas H.
1993-01-01
A useful model for open chains of flexible bodies undergoing large rigid body motions, but small elastic deformations, is one in which the equations of motion are linearized in the small elastic deformations and deformation rates. For slow rigid body motions, the correctly linearized, or consistent, set of equations can be compared to prematurely linearized, or inconsistent, equations and to 'oversimplified,' or ruthless, equations through the use of open loop dynamic simulations. It has been shown that the inconsistent model should never be used, while the ruthless model should be used whenever possible. The consistent and inconsistent models differ by stress stiffening terms. These are due to zeroth-order stresses effecting virtual work via nonlinear strain-displacement terms. In this paper we examine in detail the nature of these stress stiffening terms and conclude that they are significant only when the associated zeroth-order stresses approach 'buckling' stresses. Finally it is emphasized that when the stress stiffening terms are negligible the ruthlessly linearized equations should be used.
A formulation of rotor-airframe coupling for design analysis of vibrations of helicopter airframes
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.; Walton, W. C., Jr.
1982-01-01
A linear formulation of rotor airframe coupling intended for vibration analysis in airframe structural design is presented. The airframe is represented by a finite element analysis model; the rotor is represented by a general set of linear differential equations with periodic coefficients; and the connections between the rotor and airframe are specified through general linear equations of constraint. Coupling equations are applied to the rotor and airframe equations to produce one set of linear differential equations governing vibrations of the combined rotor airframe system. These equations are solved by the harmonic balance method for the system steady state vibrations. A feature of the solution process is the representation of the airframe in terms of forced responses calculated at the rotor harmonics of interest. A method based on matrix partitioning is worked out for quick recalculations of vibrations in design studies when only relatively few airframe members are varied. All relations are presented in forms suitable for direct computer implementation.
NASA Astrophysics Data System (ADS)
Zhou, L.-Q.; Meleshko, S. V.
2017-07-01
The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.
Chandrasekhar equations for infinite dimensional systems
NASA Technical Reports Server (NTRS)
Ito, K.; Powers, R.
1985-01-01
The existence of Chandrasekhar equations for linear time-invariant systems defined on Hilbert spaces is investigated. An important consequence is that the solution to the evolutional Riccati equation is strongly differentiable in time, and that a strong solution of the Riccati differential equation can be defined. A discussion of the linear-quadratic optimal-control problem for hereditary differential systems is also included.
Whitham modulation theory for the Kadomtsev- Petviashvili equation.
Ablowitz, Mark J; Biondini, Gino; Wang, Qiao
2017-08-01
The genus-1 Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.
Whitham modulation theory for the Kadomtsev- Petviashvili equation
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.; Biondini, Gino; Wang, Qiao
2017-08-01
The genus-1 Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.
Buchheit, Martin; Allen, Adam; Poon, Tsz Kit; Modonutti, Mattia; Gregson, Warren; Di Salvo, Valter
2014-12-01
Abstract During the past decade substantial development of computer-aided tracking technology has occurred. Therefore, we aimed to provide calibration equations to allow the interchangeability of different tracking technologies used in soccer. Eighty-two highly trained soccer players (U14-U17) were monitored during training and one match. Player activity was collected simultaneously with a semi-automatic multiple-camera (Prozone), local position measurement (LPM) technology (Inmotio) and two global positioning systems (GPSports and VX). Data were analysed with respect to three different field dimensions (small, <30 m 2 to full-pitch, match). Variables provided by the systems were compared, and calibration equations (linear regression models) between each system were calculated for each field dimension. Most metrics differed between the 4 systems with the magnitude of the differences dependant on both pitch size and the variable of interest. Trivial-to-small between-system differences in total distance were noted. However, high-intensity running distance (>14.4 km · h -1 ) was slightly-to-moderately greater when tracked with Prozone, and accelerations, small-to-very largely greater with LPM. For most of the equations, the typical error of the estimate was of a moderate magnitude. Interchangeability of the different tracking systems is possible with the provided equations, but care is required given their moderate typical error of the estimate.
NASA Astrophysics Data System (ADS)
Misra, Amar P.; Chatterjee, Debjani; Brodin, Gert
2017-11-01
We study the nonlinear wave modulation of Langmuir waves (LWs) in a fully degenerate plasma. Using the Wigner-Moyal equation coupled to the Poisson equation and the multiple scale expansion technique, a modified nonlocal nonlinear Schrödinger (NLS) equation is derived which governs the evolution of LW envelopes in degenerate plasmas. The nonlocal nonlinearity in the NLS equation appears due to the group velocity and multiplasmon resonances, i.e., resonances induced by the simultaneous particle absorption of multiple wave quanta. We focus on the regime where the resonant velocity of electrons is larger than the Fermi velocity and thereby the linear Landau damping is forbidden. As a result, the nonlinear wave-particle resonances due to the group velocity and multiplasmon processes are the dominant mechanisms for wave-particle interaction. It is found that in contrast to classical or semiclassical plasmas, the group velocity resonance does not necessarily give rise the wave damping in the strong quantum regime where ℏ k ˜m vF with ℏ denoting the reduced Planck's constant, m the electron mass, and vF the Fermi velocity; however, the three-plasmon process plays a dominant role in the nonlinear Landau damping of wave envelopes. In this regime, the decay rate of the wave amplitude is also found to be higher compared to that in the modest quantum regime where the multiplasmon effects are forbidden.
NASA Astrophysics Data System (ADS)
Thomann, Enrique A.; Guenther, Ronald B.
2006-02-01
Explicit formulae for the fundamental solution of the linearized time dependent Navier Stokes equations in three spatial dimensions are obtained. The linear equations considered in this paper include those used to model rigid bodies that are translating and rotating at a constant velocity. Estimates extending those obtained by Solonnikov in [23] for the fundamental solution of the time dependent Stokes equations, corresponding to zero translational and angular velocity, are established. Existence and uniqueness of solutions of these linearized problems is obtained for a class of functions that includes the classical Lebesgue spaces L p (R 3), 1 < p < ∞. Finally, the asymptotic behavior and semigroup properties of the fundamental solution are established.
NASA Technical Reports Server (NTRS)
Cheyney, H., III; Arking, A.
1976-01-01
The equations of radiative transfer in anisotropically scattering media are reformulated as linear operator equations in a single independent variable. The resulting equations are suitable for solution by a variety of standard mathematical techniques. The operators appearing in the resulting equations are in general nonsymmetric; however, it is shown that every bounded linear operator equation can be embedded in a symmetric linear operator equation and a variational solution can be obtained in a straightforward way. For purposes of demonstration, a Rayleigh-Ritz variational method is applied to three problems involving simple phase functions. It is to be noted that the variational technique demonstrated is of general applicability and permits simple solutions for a wide range of otherwise difficult mathematical problems in physics.
Oscillation criteria for half-linear dynamic equations on time scales
NASA Astrophysics Data System (ADS)
Hassan, Taher S.
2008-09-01
This paper is concerned with oscillation of the second-order half-linear dynamic equation(r(t)(x[Delta])[gamma])[Delta]+p(t)x[gamma](t)=0, on a time scale where [gamma] is the quotient of odd positive integers, r(t) and p(t) are positive rd-continuous functions on . Our results solve a problem posed by [R.P. Agarwal, D. O'Regan, S.H. Saker, Philos-type oscillation criteria for second-order half linear dynamic equations, Rocky Mountain J. Math. 37 (2007) 1085-1104; S.H. Saker, Oscillation criteria of second order half-linear dynamic equations on time scales, J. Comput. Appl. Math. 177 (2005) 375-387] and our results in the special cases when and involve and improve some oscillation results for second-order differential and difference equations; and when , and , etc., our oscillation results are essentially newE Some examples illustrating the importance of our results are also included.
Mathematical Modeling of Chemical Stoichiometry
ERIC Educational Resources Information Center
Croteau, Joshua; Fox, William P.; Varazo, Kristofoland
2007-01-01
In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…
Generalized Multilevel Structural Equation Modeling
ERIC Educational Resources Information Center
Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew
2004-01-01
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fike, Jeffrey A.
2013-08-01
The construction of stable reduced order models using Galerkin projection for the Euler or Navier-Stokes equations requires a suitable choice for the inner product. The standard L2 inner product is expected to produce unstable ROMs. For the non-linear Navier-Stokes equations this means the use of an energy inner product. In this report, Galerkin projection for the non-linear Navier-Stokes equations using the L2 inner product is implemented as a first step toward constructing stable ROMs for this set of physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addona, Davide, E-mail: d.addona@campus.unimib.it
2015-08-15
We obtain weighted uniform estimates for the gradient of the solutions to a class of linear parabolic Cauchy problems with unbounded coefficients. Such estimates are then used to prove existence and uniqueness of the mild solution to a semi-linear backward parabolic Cauchy problem, where the differential equation is the Hamilton–Jacobi–Bellman equation of a suitable optimal control problem. Via backward stochastic differential equations, we show that the mild solution is indeed the value function of the controlled equation and that the feedback law is verified.
Program for the solution of multipoint boundary value problems of quasilinear differential equations
NASA Technical Reports Server (NTRS)
1973-01-01
Linear equations are solved by a method of superposition of solutions of a sequence of initial value problems. For nonlinear equations and/or boundary conditions, the solution is iterative and in each iteration a problem like the linear case is solved. A simple Taylor series expansion is used for the linearization of both nonlinear equations and nonlinear boundary conditions. The perturbation method of solution is used in preference to quasilinearization because of programming ease, and smaller storage requirements; and experiments indicate that the desired convergence properties exist although no proof or convergence is given.
Yang, Ruiqi; Wang, Fei; Zhang, Jialing; Zhu, Chonglei; Fan, Limei
2015-05-19
To establish the reference values of thalamus, caudate nucleus and lenticular nucleus diameters through fetal thalamic transverse section. A total of 265 fetuses at our hospital were randomly selected from November 2012 to August 2014. And the transverse and length diameters of thalamus, caudate nucleus and lenticular nucleus were measured. SPSS 19.0 statistical software was used to calculate the regression curve of fetal diameter changes and gestational weeks of pregnancy. P < 0.05 was considered as having statistical significance. The linear regression equation of fetal thalamic length diameter and gestational week was: Y = 0.051X+0.201, R = 0.876, linear regression equation of thalamic transverse diameter and fetal gestational week was: Y = 0.031X+0.229, R = 0.817, linear regression equation of fetal head of caudate nucleus length diameter and gestational age was: Y = 0.033X+0.101, R = 0.722, linear regression equation of fetal head of caudate nucleus transverse diameter and gestational week was: R = 0.025 - 0.046, R = 0.711, linear regression equation of fetal lentiform nucleus length diameter and gestational week was: Y = 0.046+0.229, R = 0.765, linear regression equation of fetal lentiform nucleus diameter and gestational week was: Y = 0.025 - 0.05, R = 0.772. Ultrasonic measurement of diameter of fetal thalamus caudate nucleus, and lenticular nucleus through thalamic transverse section is simple and convenient. And measurements increase with fetal gestational weeks and there is linear regression relationship between them.
Lee, Kyung Hee; Kang, Seung Kwan; Goo, Jin Mo; Lee, Jae Sung; Cheon, Gi Jeong; Seo, Seongho; Hwang, Eui Jin
2017-03-01
To compare the relationship between K trans from DCE-MRI and K 1 from dynamic 13 N-NH 3 -PET, with simultaneous and separate MR/PET in the VX-2 rabbit carcinoma model. MR/PET was performed simultaneously and separately, 14 and 15 days after VX-2 tumor implantation at the paravertebral muscle. The K trans and K 1 values were estimated using an in-house software program. The relationships between K trans and K 1 were analyzed using Pearson's correlation coefficients and linear/non-linear regression function. Assuming a linear relationship, K trans and K 1 exhibited a moderate positive correlations with both simultaneous (r=0.54-0.57) and separate (r=0.53-0.69) imaging. However, while the K trans and K 1 from separate imaging were linearly correlated, those from simultaneous imaging exhibited a non-linear relationship. The amount of change in K 1 associated with a unit increase in K trans varied depending on K trans values. The relationship between K trans and K 1 may be mis-interpreted with separate MR and PET acquisition. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Corrected Implicit Monte Carlo
Cleveland, Mathew Allen; Wollaber, Allan Benton
2018-01-02
Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less
Local energy decay for linear wave equations with variable coefficients
NASA Astrophysics Data System (ADS)
Ikehata, Ryo
2005-06-01
A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].
Corrected implicit Monte Carlo
NASA Astrophysics Data System (ADS)
Cleveland, M. A.; Wollaber, A. B.
2018-04-01
In this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle for frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. We present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, Mathew Allen; Wollaber, Allan Benton
Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less
NASA Astrophysics Data System (ADS)
See, J. J.; Jamaian, S. S.; Salleh, R. M.; Nor, M. E.; Aman, F.
2018-04-01
This research aims to estimate the parameters of Monod model of microalgae Botryococcus Braunii sp growth by the Least-Squares method. Monod equation is a non-linear equation which can be transformed into a linear equation form and it is solved by implementing the Least-Squares linear regression method. Meanwhile, Gauss-Newton method is an alternative method to solve the non-linear Least-Squares problem with the aim to obtain the parameters value of Monod model by minimizing the sum of square error ( SSE). As the result, the parameters of the Monod model for microalgae Botryococcus Braunii sp can be estimated by the Least-Squares method. However, the estimated parameters value obtained by the non-linear Least-Squares method are more accurate compared to the linear Least-Squares method since the SSE of the non-linear Least-Squares method is less than the linear Least-Squares method.
Saito, L.; Redd, C.; Chandra, S.; Atwell, L.; Fritsen, C.H.; Rosen, Michael R.
2007-01-01
Aquatic foodweb models for 2 seasons (relatively high- [March] and low-flow [August] conditions) were constructed for 4 reaches on the Truckee River using ??13C and ??15N data from periphyton, macroinvertebrate, and fish samples collected in 2003 and 2004. The models were constructed with isotope values that included measured periphyton signatures and calculated mean isotope values for detritus and seston as basal food sources of each food web. The pseudo-optimization function in Excel's Solver module was used to minimize the sum of squared error between predicted and observed stable-isotope values while simultaneously solving for diet proportions for all foodweb consumers and estimating ??13C and ??15N trophic enrichment factors. This approach used an underdetermined set of simultaneous linear equations and was tested by running the pseudo-optimization procedure for 500 randomly selected sets of initial conditions. Estimated diet proportions had average standard deviations (SDs) of 0.03 to 0.04??? and SDs of trophic enrichment factors ranged from <0.005 to 0.05??? based on the results of the 500 runs, indicating that the modeling approach was very robust. However, sensitivity analysis of calculated detritus and seston ??13C and ??15N values indicated that the robustness of the approach is dependent on having accurate measures of all observed foodweb-component ??13c and ??15N values. Model results from the 500 runs using the mean isotope values for detritus and seston indicated that upstream food webs were the simplest, with fewer feeding groups and trophic interactions (e.g., 21 interactions for 10 feeding groups), whereas food webs for the reach downstream of the Reno-Sparks metropolitan area were the most complex (e.g., 58 interactions for 16 feeding groups). Nonnative crayfish were important omnivores in each reach and drew energy from multiple sources, but appeared to be energetic dead ends because they generally were not consumed. Predatory macroinvertebrate diets varied along the river and affected estimated trophic positions of fish that consumed them. Differences in complexity and composition of the food webs appeared to be related to season, but could also have been caused by interactions with nonnative species, especially invasive crayfish. ?? 2007 by The North American Benthological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Minseok; Sapsis, Themistoklis P.; Karniadakis, George Em, E-mail: george_karniadakis@brown.edu
2014-08-01
The Karhunen–Lòeve (KL) decomposition provides a low-dimensional representation for random fields as it is optimal in the mean square sense. Although for many stochastic systems of practical interest, described by stochastic partial differential equations (SPDEs), solutions possess this low-dimensional character, they also have a strongly time-dependent form and to this end a fixed-in-time basis may not describe the solution in an efficient way. Motivated by this limitation of standard KL expansion, Sapsis and Lermusiaux (2009) [26] developed the dynamically orthogonal (DO) field equations which allow for the simultaneous evolution of both the spatial basis where uncertainty ‘lives’ but also themore » stochastic characteristics of uncertainty. Recently, Cheng et al. (2013) [28] introduced an alternative approach, the bi-orthogonal (BO) method, which performs the exact same tasks, i.e. it evolves the spatial basis and the stochastic characteristics of uncertainty. In the current work we examine the relation of the two approaches and we prove theoretically and illustrate numerically their equivalence, in the sense that one method is an exact reformulation of the other. We show this by deriving a linear and invertible transformation matrix described by a matrix differential equation that connects the BO and the DO solutions. We also examine a pathology of the BO equations that occurs when two eigenvalues of the solution cross, resulting in an instantaneous, infinite-speed, internal rotation of the computed spatial basis. We demonstrate that despite the instantaneous duration of the singularity this has important implications on the numerical performance of the BO approach. On the other hand, it is observed that the BO is more stable in nonlinear problems involving a relatively large number of modes. Several examples, linear and nonlinear, are presented to illustrate the DO and BO methods as well as their equivalence.« less
Lyapunov stability and its application to systems of ordinary differential equations
NASA Technical Reports Server (NTRS)
Kennedy, E. W.
1979-01-01
An outline and a brief introduction to some of the concepts and implications of Lyapunov stability theory are presented. Various aspects of the theory are illustrated by the inclusion of eight examples, including the Cartesian coordinate equations of the two-body problem, linear and nonlinear (Van der Pol's equation) oscillatory systems, and the linearized Kustaanheimo-Stiefel element equations for the unperturbed two-body problem.
Chandrasekhar equations for infinite dimensional systems
NASA Technical Reports Server (NTRS)
Ito, K.; Powers, R. K.
1985-01-01
Chandrasekhar equations are derived for linear time invariant systems defined on Hilbert spaces using a functional analytic technique. An important consequence of this is that the solution to the evolutional Riccati equation is strongly differentiable in time and one can define a strong solution of the Riccati differential equation. A detailed discussion on the linear quadratic optimal control problem for hereditary differential systems is also included.
Approximating a nonlinear advanced-delayed equation from acoustics
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena
2016-10-01
We approximate the solution of a particular non-linear mixed type functional differential equation from physiology, the mucosal wave model of the vocal oscillation during phonation. The mathematical equation models a superficial wave propagating through the tissues. The numerical scheme is adapted from the work presented in [1, 2, 3], using homotopy analysis method (HAM) to solve the non linear mixed type equation under study.
NASA Astrophysics Data System (ADS)
Nutku, Y.
1985-06-01
We point out a class of nonlinear wave equations which admit infinitely many conserved quantities. These equations are characterized by a pair of exact one-forms. The implication that they are closed gives rise to equations, the characteristics and Riemann invariants of which are readily obtained. The construction of the conservation laws requires the solution of a linear second-order equation which can be reduced to canonical form using the Riemann invariants. The hodograph transformation results in a similar linear equation. We discuss also the symplectic structure and Bäcklund transformations associated with these equations.
Algebraic methods for the solution of some linear matrix equations
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.
NASA Astrophysics Data System (ADS)
Takalo, Leo O.; Sillanpaa, Aimo
1993-08-01
We present the first ever simultaneous optical linear and circular polarization observations of blazars. These polarizations have been measured simultaneously in UBVRI-bands in three blazars; 3C 66A, OJ 287 and Markarian 421. Measured linear polarization in 3C 66A was the largest ever observed, at PR equals 33.1 plus/minus .5%. In 3C 66A we detected small circular polarization on the other bands, except U. In OJ 287 we detected variable circular polarization in the U-band.
Using MathCAD to Teach One-Dimensional Graphs
ERIC Educational Resources Information Center
Yushau, B.
2004-01-01
Topics such as linear and nonlinear equations and inequalities, compound inequalities, linear and nonlinear absolute value equations and inequalities, rational equations and inequality are commonly found in college algebra and precalculus textbooks. What is common about these topics is the fact that their solutions and graphs lie in the real line…
A Bohmian approach to the non-Markovian non-linear Schrödinger–Langevin equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas, Andrés F.; Morales-Durán, Nicolás; Bargueño, Pedro, E-mail: p.bargueno@uniandes.edu.co
2015-05-15
In this work, a non-Markovian non-linear Schrödinger–Langevin equation is derived from the system-plus-bath approach. After analyzing in detail previous Markovian cases, Bohmian mechanics is shown to be a powerful tool for obtaining the desired generalized equation.
Universal equation for estimating ideal body weight and body weight at any BMI1
Peterson, Courtney M; Thomas, Diana M; Blackburn, George L; Heymsfield, Steven B
2016-01-01
Background: Ideal body weight (IBW) equations and body mass index (BMI) ranges have both been used to delineate healthy or normal weight ranges, although these 2 different approaches are at odds with each other. In particular, past IBW equations are misaligned with BMI values, and unlike BMI, the equations have failed to recognize that there is a range of ideal or target body weights. Objective: For the first time, to our knowledge, we merged the concepts of a linear IBW equation and of defining target body weights in terms of BMI. Design: With the use of calculus and approximations, we derived an easy-to-use linear equation that clinicians can use to calculate both IBW and body weight at any target BMI value. We measured the empirical accuracy of the equation with the use of NHANES data and performed a comparative analysis with past IBW equations. Results: Our linear equation allowed us to calculate body weights for any BMI and height with a mean empirical accuracy of 0.5–0.7% on the basis of NHANES data. Moreover, we showed that our body weight equation directly aligns with BMI values for both men and women, which avoids the overestimation and underestimation problems at the upper and lower ends of the height spectrum that have plagued past IBW equations. Conclusions: Our linear equation increases the sophistication of IBW equations by replacing them with a single universal equation that calculates both IBW and body weight at any target BMI and height. Therefore, our equation is compatible with BMI and can be applied with the use of mental math or a calculator without the need for an app, which makes it a useful tool for both health practitioners and the general public. PMID:27030535
Universal equation for estimating ideal body weight and body weight at any BMI.
Peterson, Courtney M; Thomas, Diana M; Blackburn, George L; Heymsfield, Steven B
2016-05-01
Ideal body weight (IBW) equations and body mass index (BMI) ranges have both been used to delineate healthy or normal weight ranges, although these 2 different approaches are at odds with each other. In particular, past IBW equations are misaligned with BMI values, and unlike BMI, the equations have failed to recognize that there is a range of ideal or target body weights. For the first time, to our knowledge, we merged the concepts of a linear IBW equation and of defining target body weights in terms of BMI. With the use of calculus and approximations, we derived an easy-to-use linear equation that clinicians can use to calculate both IBW and body weight at any target BMI value. We measured the empirical accuracy of the equation with the use of NHANES data and performed a comparative analysis with past IBW equations. Our linear equation allowed us to calculate body weights for any BMI and height with a mean empirical accuracy of 0.5-0.7% on the basis of NHANES data. Moreover, we showed that our body weight equation directly aligns with BMI values for both men and women, which avoids the overestimation and underestimation problems at the upper and lower ends of the height spectrum that have plagued past IBW equations. Our linear equation increases the sophistication of IBW equations by replacing them with a single universal equation that calculates both IBW and body weight at any target BMI and height. Therefore, our equation is compatible with BMI and can be applied with the use of mental math or a calculator without the need for an app, which makes it a useful tool for both health practitioners and the general public. © 2016 American Society for Nutrition.
Brownian motion from Boltzmann's equation.
NASA Technical Reports Server (NTRS)
Montgomery, D.
1971-01-01
Two apparently disparate lines of inquiry in kinetic theory are shown to be equivalent: (1) Brownian motion as treated by the (stochastic) Langevin equation and Fokker-Planck equation; and (2) Boltzmann's equation. The method is to derive the kinetic equation for Brownian motion from the Boltzmann equation for a two-component neutral gas by a simultaneous expansion in the density and mass ratios.
Linear analysis of auto-organization in Hebbian neural networks.
Carlos Letelier, J; Mpodozis, J
1995-01-01
The self-organization of neurotopies where neural connections follow Hebbian dynamics is framed in terms of linear operator theory. A general and exact equation describing the time evolution of the overall synaptic strength connecting two neural laminae is derived. This linear matricial equation, which is similar to the equations used to describe oscillating systems in physics, is modified by the introduction of non-linear terms, in order to capture self-organizing (or auto-organizing) processes. The behavior of a simple and small system, that contains a non-linearity that mimics a metabolic constraint, is analyzed by computer simulations. The emergence of a simple "order" (or degree of organization) in this low-dimensionality model system is discussed.
Perfect commuting-operator strategies for linear system games
NASA Astrophysics Data System (ADS)
Cleve, Richard; Liu, Li; Slofstra, William
2017-01-01
Linear system games are a generalization of Mermin's magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bob's measurement operators act on a joint Hilbert space, and Alice's operators must commute with Bob's operators. We show that perfect strategies in this model correspond to possibly infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely presented group associated with the linear system which arises from the non-commutative equations.
Partner symmetries and non-invariant solutions of four-dimensional heavenly equations
NASA Astrophysics Data System (ADS)
Malykh, A. A.; Nutku, Y.; Sheftel, M. B.
2004-07-01
We extend our method of partner symmetries to the hyperbolic complex Monge-Ampère equation and the second heavenly equation of Plebañski. We show the existence of partner symmetries and derive the relations between them. For certain simple choices of partner symmetries the resulting differential constraints together with the original heavenly equations are transformed to systems of linear equations by an appropriate Legendre transformation. The solutions of these linear equations are generically non-invariant. As a consequence we obtain explicitly new classes of heavenly metrics without Killing vectors.
The method of Ritz applied to the equation of Hamilton. [for pendulum systems
NASA Technical Reports Server (NTRS)
Bailey, C. D.
1976-01-01
Without any reference to the theory of differential equations, the initial value problem of the nonlinear, nonconservative double pendulum system is solved by the application of the method of Ritz to the equation of Hamilton. Also shown is an example of the reduction of the traditional eigenvalue problem of linear, homogeneous, differential equations of motion to the solution of a set of nonhomogeneous algebraic equations. No theory of differential equations is used. Solution of the time-space path of the linear oscillator is demonstrated and compared to the exact solution.
Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel
ERIC Educational Resources Information Center
El-Gebeily, M.; Yushau, B.
2008-01-01
In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…
Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dain, Sergio; Ortiz, Omar E.; Facultad de Matematica, Astronomia y Fisica, FaMAF, Universidad Nacional de Cordoba, Instituto de Fisica Enrique Gaviola, IFEG, CONICET, Ciudad Universitaria
2010-02-15
For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, thoughmore » the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable.« less
NASA Technical Reports Server (NTRS)
Hoff, N J; Libby, Paul A; Klein, Bertran
1946-01-01
This report deals with the calculation of the bending moments in and the distortions of fuselage rings upon which known concentrated and distributed loads are acting. In the procedure suggested, the ring is divided into a number of beams each having a constant radius of curvature. The forces and moments caused in the end sections of the beams by individual unit displacements of the end sections are listed in a table designated as the operations table in conformity with Southwell's nomenclature. The operations table and the external loads are equivalent to a set of linear equations. For their solution the following three procedures are presented: 1) Southwell's method of systematic relaxations. This is a step-by-step approximation procedure guided by the physical interpretation of the changes in the values of the unknown. 2) The growing unit procedure in which the individual beams are combined successively into beams of increasing length until finally the entire ring becomes a single beam. In each step of the procedure a set of not more than three simultaneous linear equations is solved. 3) Solution of the entire set of simultaneous equations by the methods of the matrix calculus. In order to demonstrate the manner in which the calculations may be carried out, the following numerical examples are worked out: 1) Curved beam with both its end sections rigidly fixed. The load is a concentrated force. 2) Egg-shape ring with symmetric concentrated loads. 3) Circular ring with antisymmetric concentrated loads and shear flow (torsion of the fuselage). 4) Same with V-braces incorporated in the ring. 5) Egg-shape ring with antisymmetric concentrated loads and shear flow (torsion of the fuselage). 6) Same with V-braces incorporated in the ring. The results of these calculations are checked, whenever possible, by calculations carried out according to known methods of analysis. The agreement is found to be good. The amount of work necessary for the solution of ring problems by the methods described in the present report is practically independent of the degree of redundancy of the structure. For this reason the methods are recommended for use particularly in problems of rings having one or more internal bracing elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnett, J. L.; Britton, R. E.; Abrecht, D. G.
The acquisition of time-stamped list (TLIST) data provides additional information useful to gamma-spectrometry analysis. A novel technique is described that uses non-linear least-squares fitting and the Levenberg-Marquardt algorithm to simultaneously determine parent-daughter atoms from time sequence measurements of only the daughter radionuclide. This has been demonstrated for the radioactive decay of short-lived radon progeny (214Pb/214Bi, 212Pb/212Bi) described using the Bateman first-order differential equation. The calculated atoms are in excellent agreement with measured atoms, with a difference of 1.3 – 4.8% for parent atoms and 2.4% - 10.4% for daughter atoms. Measurements are also reported with reduced uncertainty. The technique hasmore » potential to redefine gamma-spectrometry analysis.« less
Detailed gravity anomalies from GEOS-3 satellite altimetry data
NASA Technical Reports Server (NTRS)
Gopalapillai, G. S.; Mourad, A. G.
1978-01-01
A technique for deriving mean gravity anomalies from dense altimetry data was developed. A combination of both deterministic and statistical techniques was used. The basic mathematical model was based on the Stokes' equation which describes the analytical relationship between mean gravity anomalies and geoid undulations at a point; this undulation is a linear function of the altimetry data at that point. The overdetermined problem resulting from the excessive altimetry data available was solved using Least-Squares principles. These principles enable the simultaneous estimation of the associated standard deviations reflecting the internal consistency based on the accuracy estimates provided for the altimetry data as well as for the terrestrial anomaly data. Several test computations were made of the anomalies and their accuracy estimates using GOES-3 data.
Star adaptation for two-algorithms used on serial computers
NASA Technical Reports Server (NTRS)
Howser, L. M.; Lambiotte, J. J., Jr.
1974-01-01
Two representative algorithms used on a serial computer and presently executed on the Control Data Corporation 6000 computer were adapted to execute efficiently on the Control Data STAR-100 computer. Gaussian elimination for the solution of simultaneous linear equations and the Gauss-Legendre quadrature formula for the approximation of an integral are the two algorithms discussed. A description is given of how the programs were adapted for STAR and why these adaptations were necessary to obtain an efficient STAR program. Some points to consider when adapting an algorithm for STAR are discussed. Program listings of the 6000 version coded in 6000 FORTRAN, the adapted STAR version coded in 6000 FORTRAN, and the STAR version coded in STAR FORTRAN are presented in the appendices.
Compact terahertz spectrometer based on disordered rough surfaces
NASA Astrophysics Data System (ADS)
Yang, Tao; Jiang, Bing; Ge, Jia-cheng; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei
2018-01-01
In this paper, a compact spectrometer based on disordered rough surfaces for operation in the terahertz band is presented. The proposed spectrometer consists of three components, which are used for dispersion, modulation and detection respectively. The disordered rough surfaces, which are acted as the dispersion component, are modulated by the modulation component. Different scattering intensities are captured by the detection component with different extent of modulation. With a calibration measurement process, one can reconstruct the spectra of the probe terahertz beam by solving a system of simultaneous linear equations. A Tikhonov regularization approach has been implemented to improve the accuracy of the spectral reconstruction. The reported broadband, compact, high-resolution terahertz spectrometer is well suited for portable terahertz spectroscopy applications.
Digital adaptive control of a VTOL aircraft
NASA Technical Reports Server (NTRS)
Reid, G. F.
1976-01-01
A technique has been developed for calculating feedback and feedforward gain matrices that stabilize a VTOL aircraft while enabling it to track input commands of forward and vertical velocity. Leverrier's algorithm is used in a procedure for determining a set of state variable, feedback gains that force the closed loop poles and zeroes of one pilot input transfer function to be at preselected positions in the s plane. This set of feedback gains is then used to calculate the feedback and feedforward gains for the velocity command controller. The method is computationally attractive since the gains are determined by solving systems of linear, simultaneous equations. Responses obtained using a digital simulation of the longitudinal dynamics of the CH-47 helicopter are presented.
Using input command pre-shaping to suppress multiple mode vibration
NASA Technical Reports Server (NTRS)
Hyde, James M.; Seering, Warren P.
1990-01-01
Spacecraft, space-borne robotic systems, and manufacturing equipment often utilize lightweight materials and configurations that give rise to vibration problems. Prior research has led to the development of input command pre-shapers that can significantly reduce residual vibration. These shapers exhibit marked insensitivity to errors in natural frequency estimates and can be combined to minimize vibration at more than one frequency. This paper presents a method for the development of multiple mode input shapers which are simpler to implement than previous designs and produce smaller system response delays. The new technique involves the solution of a group of simultaneous non-linear impulse constraint equations. The resulting shapers were tested on a model of MACE, an MIT/NASA experimental flexible structure.
User's manual for LINEAR, a FORTRAN program to derive linear aircraft models
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Patterson, Brian P.; Antoniewicz, Robert F.
1987-01-01
This report documents a FORTRAN program that provides a powerful and flexible tool for the linearization of aircraft models. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.
NASA Astrophysics Data System (ADS)
Schuch, Dieter
2014-04-01
Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.
Shang, Yu; Yu, Guoqiang
2014-09-29
Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a N th-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the N th-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order ( N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The N th-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.
Wave propagation problem for a micropolar elastic waveguide
NASA Astrophysics Data System (ADS)
Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.
2018-04-01
A propagation problem for coupled harmonic waves of translational displacements and microrotations along the axis of a long cylindrical waveguide is discussed at present study. Microrotations modeling is carried out within the linear micropolar elasticity frameworks. The mathematical model of the linear (or even nonlinear) micropolar elasticity is also expanded to a field theory model by variational least action integral and the least action principle. The governing coupled vector differential equations of the linear micropolar elasticity are given. The translational displacements and microrotations in the harmonic coupled wave are decomposed into potential and vortex parts. Calibrating equations providing simplification of the equations for the wave potentials are proposed. The coupled differential equations are then reduced to uncoupled ones and finally to the Helmholtz wave equations. The wave equations solutions for the translational and microrotational waves potentials are obtained for a high-frequency range.
NASA Astrophysics Data System (ADS)
Andriopoulos, K.; Leach, P. G. L.
2007-04-01
We extend the work of Abraham-Shrauner [B. Abraham-Shrauner, Hidden symmetries and linearization of the modified Painleve-Ince equation, J. Math. Phys. 34 (1993) 4809-4816] on the linearization of the modified Painleve-Ince equation to a wider class of nonlinear second-order ordinary differential equations invariant under the symmetries of time translation and self-similarity. In the process we demonstrate a remarkable connection with the parameters obtained in the singularity analysis of this class of equations.
Who Will Win?: Predicting the Presidential Election Using Linear Regression
ERIC Educational Resources Information Center
Lamb, John H.
2007-01-01
This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…
Mariotti, E.; Orton, M. R.; Eerbeek, O.; Ashruf, J. F.; Zuurbier, C. J.; Southworth, R.
2016-01-01
Hyperpolarized 13C MR measurements have the potential to display non‐linear kinetics. We have developed an approach to describe possible non‐first‐order kinetics of hyperpolarized [1‐13C] pyruvate employing a system of differential equations that agrees with the principle of conservation of mass of the hyperpolarized signal. Simultaneous fitting to a second‐order model for conversion of [1‐13C] pyruvate to bicarbonate, lactate and alanine was well described in the isolated rat heart perfused with Krebs buffer containing glucose as sole energy substrate, or glucose supplemented with pyruvate. Second‐order modeling yielded significantly improved fits of pyruvate–bicarbonate kinetics compared with the more traditionally used first‐order model and suggested time‐dependent decreases in pyruvate–bicarbonate flux. Second‐order modeling gave time‐dependent changes in forward and reverse reaction kinetics of pyruvate–lactate exchange and pyruvate–alanine exchange in both groups of hearts during the infusion of pyruvate; however, the fits were not significantly improved with respect to a traditional first‐order model. The mechanism giving rise to second‐order pyruvate dehydrogenase (PDH) kinetics was explored experimentally using surface fluorescence measurements of nicotinamide adenine dinucleotide reduced form (NADH) performed under the same conditions, demonstrating a significant increase of NADH during pyruvate infusion. This suggests a simultaneous depletion of available mitochondrial NAD+ (the cofactor for PDH), consistent with the non‐linear nature of the kinetics. NADH levels returned to baseline following cessation of the pyruvate infusion, suggesting this to be a transient effect. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26777799
NASA Astrophysics Data System (ADS)
Tu, Jin; Yi, Cai-Feng
2008-04-01
In this paper, the authors investigate the growth of solutions of a class of higher order linear differential equationsf(k)+Ak-1f(k-1)+...+A0f=0 when most coefficients in the above equations have the same order with each other, and obtain some results which improve previous results due to K.H. Kwon [K.H. Kwon, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J. 19 (1996) 378-387] and ZE-X. Chen [Z.-X. Chen, The growth of solutions of the differential equation f''+e-zf'+Q(z)f=0, Sci. China Ser. A 31 (2001) 775-784 (in Chinese); ZE-X. Chen, On the hyper order of solutions of higher order differential equations, Chinese Ann. Math. Ser. B 24 (2003) 501-508 (in Chinese); Z.-X. Chen, On the growth of solutions of a class of higher order differential equations, Acta Math. Sci. Ser. B 24 (2004) 52-60 (in Chinese); Z.-X. Chen, C.-C. Yang, Quantitative estimations on the zeros and growth of entire solutions of linear differential equations, Complex Var. 42 (2000) 119-133].
Chandrasekhar equations for infinite dimensional systems. Part 2: Unbounded input and output case
NASA Technical Reports Server (NTRS)
Ito, Kazufumi; Powers, Robert K.
1987-01-01
A set of equations known as Chandrasekhar equations arising in the linear quadratic optimal control problem is considered. In this paper, we consider the linear time-invariant system defined in Hilbert spaces involving unbounded input and output operators. For a general class of such systems, the Chandrasekhar equations are derived and the existence, uniqueness, and regularity of the results of their solutions established.
The Shock and Vibration Digest. Volume 16, Number 11
1984-11-01
wave [19], a secular equation for Rayleigh waves on ing, seismic risk, and related problems are discussed. the surface of an anisotropic half-space...waves in an !so- tive equation of an elastic-plastic rack medium was....... tropic linear elastic half-space with plane material used; the coefficient...pair of semi-linear hyperbolic partial differential -- " Conditions under which the equations of motion equations governing slow variations in amplitude
Modified Chapman-Enskog moment approach to diffusive phonon heat transport.
Banach, Zbigniew; Larecki, Wieslaw
2008-12-01
A detailed treatment of the Chapman-Enskog method for a phonon gas is given within the framework of an infinite system of moment equations obtained from Callaway's model of the Boltzmann-Peierls equation. Introducing no limitations on the magnitudes of the individual components of the drift velocity or the heat flux, this method is used to derive various systems of hydrodynamic equations for the energy density and the drift velocity. For one-dimensional flow problems, assuming that normal processes dominate over resistive ones, it is found that the first three levels of the expansion (i.e., the zeroth-, first-, and second-order approximations) yield the equations of hydrodynamics which are linearly stable at all wavelengths. This result can be achieved either by examining the dispersion relations for linear plane waves or by constructing the explicit quadratic Lyapunov entropy functionals for the linear perturbation equations. The next order in the Chapman-Enskog expansion leads to equations which are unstable to some perturbations. Precisely speaking, the linearized equations of motion that describe the propagation of small disturbances in the flow have unstable plane-wave solutions in the short-wavelength limit of the dispersion relations. This poses no problem if the equations are used in their proper range of validity.
Quasi-linear theory via the cumulant expansion approach
NASA Technical Reports Server (NTRS)
Jones, F. C.; Birmingham, T. J.
1974-01-01
The cumulant expansion technique of Kubo was used to derive an intergro-differential equation for f , the average one particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the f equation degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory for this limited class of fluctuations. For more physically realistic fluctuations, however, quasi-linear theory is at best approximate.
Dual exponential polynomials and linear differential equations
NASA Astrophysics Data System (ADS)
Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne
2018-01-01
We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.
NASA Astrophysics Data System (ADS)
Attia, Khalid A. M.; El-Abasawi, Nasr M.; El-Olemy, Ahmed; Abdelazim, Ahmed H.
2018-01-01
The first three UV spectrophotometric methods have been developed of simultaneous determination of two new FDA approved drugs namely; elbasvir and grazoprevir in their combined pharmaceutical dosage form. These methods include simultaneous equation, partial least squares with and without variable selection procedure (genetic algorithm). For simultaneous equation method, the absorbance values at 369 (λmax of elbasvir) and 253 nm (λmax of grazoprevir) have been selected for the formation of two simultaneous equations required for the mathematical processing and quantitative analysis of the studied drugs. Alternatively, the partial least squares with and without variable selection procedure (genetic algorithm) have been applied in the spectra analysis because the synchronous inclusion of many unreal wavelengths rather than by using a single or dual wavelength which greatly increases the precision and predictive ability of the methods. Successfully assay of the drugs in their pharmaceutical formulation has been done by the proposed methods. Statistically comparative analysis for the obtained results with the manufacturing methods has been performed. It is noteworthy to mention that there was no significant difference between the proposed methods and the manufacturing one with respect to the validation parameters.
GVE-Based Dynamics and Control for Formation Flying Spacecraft
NASA Technical Reports Server (NTRS)
Breger, Louis; How, Jonathan P.
2004-01-01
Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss Variational Equations and used in a model predictive controller. The linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. Several linear, convex initialization techniques are presented, as well as a general, decentralized method for coordinating a tetrahedral formation using differential orbital elements. Control methods are validated using a commercial numerical propagator.
Schwarzschild and linear potentials in Mannheim's model of conformal gravity
NASA Astrophysics Data System (ADS)
Phillips, Peter R.
2018-05-01
We study the equations of conformal gravity, as given by Mannheim, in the weak field limit, so that a linear approximation is adequate. Specialising to static fields with spherical symmetry, we obtain a second-order equation for one of the metric functions. We obtain the Green function for this equation, and represent the metric function in the form of integrals over the source. Near a compact source such as the Sun the solution no longer has a form that is compatible with observations. We conclude that a solution of Mannheim type (a Schwarzschild term plus a linear potential of galactic scale) cannot exist for these field equations.
A decentralized process for finding equilibria given by linear equations.
Reiter, S
1994-01-01
I present a decentralized process for finding the equilibria of an economy characterized by a finite number of linear equilibrium conditions. The process finds all equilibria or, if there are none, reports that, in a finite number of steps at most equal to the number of equations. The communication and computational complexity compare favorably with other decentralized processes. The process may also be interpreted as an algorithm for solving a distributed system of linear equations. Comparisons with the Linpack program for LU (lower and upper triangular decomposition of the matrix of the equation system, a version of Gaussian elimination) are presented. PMID:11607486
A simultaneous all-optical half/full-subtraction strategy using cascaded highly nonlinear fibers
NASA Astrophysics Data System (ADS)
Singh, Karamdeep; Kaur, Gurmeet; Singh, Maninder Lal
2018-02-01
Using non-linear effects such as cross-gain modulation (XGM) and cross-phase modulation (XPM) inside two highly non-linear fibres (HNLF) arranged in cascaded configuration, a simultaneous half/full-subtracter is proposed. The proposed simultaneous half/full-subtracter design is attractive due to several features such as input data pattern independence and usage of minimal number of non-linear elements i.e. HNLFs. Proof of concept simulations have been conducted at 100 Gbps rate, indicating fine performance, as extinction ratio (dB) > 6.28 dB and eye opening factors (EO) > 77.1072% are recorded for each implemented output. The proposed simultaneous half/full-subtracter can be used as a key component in all-optical information processing circuits.
NASA Astrophysics Data System (ADS)
Shao, Wei; Bogaard, Thom; Bakker, Mark; Berti, Matteo
2016-12-01
The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately. In conclusion, the 1D dual-permeability model is a promising tool for landslides under similar conditions.
High-order Two-way Artificial Boundary Conditions for Nonlinear Wave Propagation with Backscattering
NASA Technical Reports Server (NTRS)
Fibich, Gadi; Tsynkov, Semyon
2000-01-01
When solving linear scattering problems, one typically first solves for the impinging wave in the absence of obstacles. Then, by linear superposition, the original problem is reduced to one that involves only the scattered waves driven by the values of the impinging field at the surface of the obstacles. In addition, when the original domain is unbounded, special artificial boundary conditions (ABCs) that would guarantee the reflectionless propagation of waves have to be set at the outer boundary of the finite computational domain. The situation becomes conceptually different when the propagation equation is nonlinear. In this case the impinging and scattered waves can no longer be separated, and the problem has to be solved in its entirety. In particular, the boundary on which the incoming field values are prescribed, should transmit the given incoming waves in one direction and simultaneously be transparent to all the outgoing waves that travel in the opposite direction. We call this type of boundary conditions two-way ABCs. In the paper, we construct the two-way ABCs for the nonlinear Helmholtz equation that models the laser beam propagation in a medium with nonlinear index of refraction. In this case, the forward propagation is accompanied by backscattering, i.e., generation of waves in the direction opposite to that of the incoming signal. Our two-way ABCs generate no reflection of the backscattered waves and at the same time impose the correct values of the incoming wave. The ABCs are obtained for a fourth-order accurate discretization to the Helmholtz operator; the fourth-order grid convergence is corroborated experimentally by solving linear model problems. We also present solutions in the nonlinear case using the two-way ABC which, unlike the traditional Dirichlet boundary condition, allows for direct calculation of the magnitude of backscattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garifullin, R. N., E-mail: rustem@matem.anrb.ru; Suleimanov, B. I., E-mail: bisul@mail.r
An analysis is presented of the effect of weak dispersion on transitions from weak to strong discontinuities in inviscid fluid dynamics. In the neighborhoods of transition points, this effect is described by simultaneous solutions to the Korteweg-de Vries equation u{sub t}'+ uu{sub x}' + u{sub xxx}' = 0 and fifth-order nonautonomous ordinary differential equations. As x{sup 2} + t{sup 2} {yields}{infinity}, the asymptotic behavior of these simultaneous solutions in the zone of undamped oscillations is given by quasi-simple wave solutions to Whitham equations of the form r{sub i}(t, x) = tl{sub i} x/t{sup 2}.
Modification of 2-D Time-Domain Shallow Water Wave Equation using Asymptotic Expansion Method
NASA Astrophysics Data System (ADS)
Khairuman, Teuku; Nasruddin, MN; Tulus; Ramli, Marwan
2018-01-01
Generally, research on the tsunami wave propagation model can be conducted by using a linear model of shallow water theory, where a non-linear side on high order is ignored. In line with research on the investigation of the tsunami waves, the Boussinesq equation model underwent a change aimed to obtain an improved quality of the dispersion relation and non-linearity by increasing the order to be higher. To solve non-linear sides at high order is used a asymptotic expansion method. This method can be used to solve non linear partial differential equations. In the present work, we found that this method needs much computational time and memory with the increase of the number of elements.
Alfvén wave interactions in the solar wind
NASA Astrophysics Data System (ADS)
Webb, G. M.; McKenzie, J. F.; Hu, Q.; le Roux, J. A.; Zank, G. P.
2012-11-01
Alfvén wave mixing (interaction) equations used in locally incompressible turbulence transport equations in the solar wind are analyzed from the perspective of linear wave theory. The connection between the wave mixing equations and non-WKB Alfven wave driven wind theories are delineated. We discuss the physical wave energy equation and the canonical wave energy equation for non-WKB Alfven waves and the WKB limit. Variational principles and conservation laws for the linear wave mixing equations for the Heinemann and Olbert non-WKB wind model are obtained. The connection with wave mixing equations used in locally incompressible turbulence transport in the solar wind are discussed.
Squared eigenfunctions for the Sasa-Satsuma equation
NASA Astrophysics Data System (ADS)
Yang, Jianke; Kaup, D. J.
2009-02-01
Squared eigenfunctions are quadratic combinations of Jost functions and adjoint Jost functions which satisfy the linearized equation of an integrable equation. They are needed for various studies related to integrable equations, such as the development of its soliton perturbation theory. In this article, squared eigenfunctions are derived for the Sasa-Satsuma equation whose spectral operator is a 3×3 system, while its linearized operator is a 2×2 system. It is shown that these squared eigenfunctions are sums of two terms, where each term is a product of a Jost function and an adjoint Jost function. The procedure of this derivation consists of two steps: First is to calculate the variations of the potentials via variations of the scattering data by the Riemann-Hilbert method. The second one is to calculate the variations of the scattering data via the variations of the potentials through elementary calculations. While this procedure has been used before on other integrable equations, it is shown here, for the first time, that for a general integrable equation, the functions appearing in these variation relations are precisely the squared eigenfunctions and adjoint squared eigenfunctions satisfying, respectively, the linearized equation and the adjoint linearized equation of the integrable system. This proof clarifies this procedure and provides a unified explanation for previous results of squared eigenfunctions on individual integrable equations. This procedure uses primarily the spectral operator of the Lax pair. Thus two equations in the same integrable hierarchy will share the same squared eigenfunctions (except for a time-dependent factor). In the Appendix, the squared eigenfunctions are presented for the Manakov equations whose spectral operator is closely related to that of the Sasa-Satsuma equation.
The simultaneous discharge of liquid and grains from a silo
NASA Astrophysics Data System (ADS)
Cervantes-Álvarez, A. M.; Hidalgo-Caballero, S.; Pacheco-Vázquez, F.
2018-04-01
The flow rate of water through an orifice at the bottom of a container depends on the hydrostatic pressure whereas for a dry granular material it is nearly constant. But what happens during the simultaneous discharge of grains and liquid from a silo? By measuring the flow rate as a function of time, we found that (i) different regimes appear, going from the constant flow rate to a hydrostatic-like discharge depending on the aperture size and grain diameter, (ii) the mixed material is always discharged faster than dry grains but slower than liquid, (iii) for the mixture, the liquid level drops faster than the grain level, but they are always linearly proportional to one another, and (iv) a sudden growth in the flow rate happens during the transition from a biphasic discharge to a single phase discharge. These results are associated to the competition between the decrease in hydrostatic pressure above the granular bed and the hydrodynamic resistance. A model combining Darcy's law with Bernoulli and mass conservation equations is proposed, and the numerical results are in good agreement with experiments.
Numerical solution of distributed order fractional differential equations
NASA Astrophysics Data System (ADS)
Katsikadelis, John T.
2014-02-01
In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.
Thermal-Interaction Matrix For Resistive Test Structure
NASA Technical Reports Server (NTRS)
Buehler, Martin G.; Dhiman, Jaipal K.; Zamani, Nasser
1990-01-01
Linear mathematical model predicts increase in temperature in each segment of 15-segment resistive structure used to test electromigration. Assumption of linearity based on fact: equations that govern flow of heat are linear and coefficients in equations (heat conductivities and capacities) depend only weakly on temperature and considered constant over limited range of temperature.
A modified homotopy perturbation method and the axial secular frequencies of a non-linear ion trap.
Doroudi, Alireza
2012-01-01
In this paper, a modified version of the homotopy perturbation method, which has been applied to non-linear oscillations by V. Marinca, is used for calculation of axial secular frequencies of a non-linear ion trap with hexapole and octopole superpositions. The axial equation of ion motion in a rapidly oscillating field of an ion trap can be transformed to a Duffing-like equation. With only octopole superposition the resulted non-linear equation is symmetric; however, in the presence of hexapole and octopole superpositions, it is asymmetric. This modified homotopy perturbation method is used for solving the resulting non-linear equations. As a result, the ion secular frequencies as a function of non-linear field parameters are obtained. The calculated secular frequencies are compared with the results of the homotopy perturbation method and the exact results. With only hexapole superposition, the results of this paper and the homotopy perturbation method are the same and with hexapole and octopole superpositions, the results of this paper are much more closer to the exact results compared with the results of the homotopy perturbation method.
NASA Technical Reports Server (NTRS)
Jamison, J. W.
1994-01-01
CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granita, E-mail: granitafc@gmail.com; Bahar, A.
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.
Fluid equations with nonlinear wave-particle resonances^
NASA Astrophysics Data System (ADS)
Mattor, Nathan
1997-11-01
We have derived fluid equations that include linear and nonlinear wave-particle resonance effects. This greatly extends previous ``Landau-fluid'' closures, which include linear Landau damping. (G.W. Hammett and F.W. Perkins, Phys. Rev. Lett. 64,) 3019 (1990).^, (Z. Chang and J. D. Callen, Phys. Fluids B 4,) 1167 (1992). The new fluid equations are derived with no approximation regarding nonlinear kinetic interaction, and so additionally include numerous nonlinear kinetic effects. The derivation starts with the electrostatic drift kinetic equation for simplicity, with a Maxwellian distribution function. Fluid closure is accomplished through a simple integration trick applied to the drift kinetic equation, using the property that the nth moment of Maxwellian distribution is related to the nth derivative. The result is a compact closure term appearing in the highest moment equation, a term which involves a plasma dispersion function of the electrostatic field and its derivatives. The new term reduces to the linear closures in appropriate limits, so both approaches retain linear Landau damping. But the nonlinearly closed equations have additional desirable properties. Unlike linear closures, the nonlinear closure retains the time-reversibility of the original kinetic equation. We have shown directly that the nonlinear closure retains at least two nonlinear resonance effects: wave-particle trapping and Compton scattering. Other nonlinear kinetic effects are currently under investigation. The new equations correct two previous discrepancies between kinetic and Landau-fluid predictions, including a propagator discrepancy (N. Mattor, Phys. Fluids B 4,) 3952 (1992). and a numerical discrepancy for the 3-mode shearless bounded slab ITG problem. (S. E. Parker et al.), Phys. Plasmas 1, 1461 (1994). ^* In collaboration with S. E. Parker, Department of Physics, University of Colorado, Boulder. ^ Work performed at LLNL under DoE contract No. W7405-ENG-48.
Preprocessing Inconsistent Linear System for a Meaningful Least Squares Solution
NASA Technical Reports Server (NTRS)
Sen, Syamal K.; Shaykhian, Gholam Ali
2011-01-01
Mathematical models of many physical/statistical problems are systems of linear equations. Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.
Preprocessing in Matlab Inconsistent Linear System for a Meaningful Least Squares Solution
NASA Technical Reports Server (NTRS)
Sen, Symal K.; Shaykhian, Gholam Ali
2011-01-01
Mathematical models of many physical/statistical problems are systems of linear equations Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the . minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.
NASA Astrophysics Data System (ADS)
Zingan, Valentin Nikolaevich
This work develops a discontinuous Galerkin finite element discretization of non- linear hyperbolic conservation equations with efficient and robust high order stabilization built on an entropy-based artificial viscosity approximation. The solutions of equations are represented by elementwise polynomials of an arbitrary degree p > 0 which are continuous within each element but discontinuous on the boundaries. The discretization of equations in time is done by means of high order explicit Runge-Kutta methods identified with respective Butcher tableaux. To stabilize a numerical solution in the vicinity of shock waves and simultaneously preserve the smooth parts from smearing, we add some reasonable amount of artificial viscosity in accordance with the physical principle of entropy production in the interior of shock waves. The viscosity coefficient is proportional to the local size of the residual of an entropy equation and is bounded from above by the first-order artificial viscosity defined by a local wave speed. Since the residual of an entropy equation is supposed to be vanishingly small in smooth regions (of the order of the Local Truncation Error) and arbitrarily large in shocks, the entropy viscosity is almost zero everywhere except the shocks, where it reaches the first-order upper bound. One- and two-dimensional benchmark test cases are presented for nonlinear hyperbolic scalar conservation laws and the system of compressible Euler equations. These tests demonstrate the satisfactory stability properties of the method and optimal convergence rates as well. All numerical solutions to the test problems agree well with the reference solutions found in the literature. We conclude that the new method developed in the present work is a valuable alternative to currently existing techniques of viscous stabilization.
Ho, Yuh-Shan
2006-01-01
A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.
Symmetry operators and decoupled equations for linear fields on black hole spacetimes
NASA Astrophysics Data System (ADS)
Araneda, Bernardo
2017-02-01
In the class of vacuum Petrov type D spacetimes with cosmological constant, which includes the Kerr-(A)dS black hole as a particular case, we find a set of four-dimensional operators that, when composed off shell with the Dirac, Maxwell and linearized gravity equations, give a system of equations for spin weighted scalars associated with the linear fields, that decouple on shell. Using these operator relations we give compact reconstruction formulae for solutions of the original spinor and tensor field equations in terms of solutions of the decoupled scalar equations. We also analyze the role of Killing spinors and Killing-Yano tensors in the spin weight zero equations and, in the case of spherical symmetry, we compare our four-dimensional formulation with the standard 2 + 2 decomposition and particularize to the Schwarzschild-(A)dS black hole. Our results uncover a pattern that generalizes a number of previous results on Teukolsky-like equations and Debye potentials for higher spin fields.
NASA Technical Reports Server (NTRS)
Tam, Sunny W. Y.; Chang, Tom
1995-01-01
The existence of localized regions of intense lower hybrid waves in the auroral ionosphere recently observed by rocket and satellite experiments can be understood by the study of a non-linear two-timescale coupling process. In this Letter, we demonstrate that the leading non-linear term in the standard Musher-Sturman equation vanishes identically in strict two-dimensions (normal to the magnetic field). Instead, the new two-dimensional equation is characterized by a much weaker non-linear term which arises from the ponderomotive force perpendicular to the magnetic field, particularly that due to the ions. The old and new equations are compared by means of time-evolution calculations of wave fields. The results exhibit a remarkable difference in the evolution of the waves as governed by the two equations. Such dissimilar outcomes motivate our investigation of the limitation of Musher-Sturman equation in quasi-two-dimensions. Only within all these limits can Musher-Sturman equation adequately describe the collapse of lower hybrid waves.
Numerical Solution of Systems of Loaded Ordinary Differential Equations with Multipoint Conditions
NASA Astrophysics Data System (ADS)
Assanova, A. T.; Imanchiyev, A. E.; Kadirbayeva, Zh. M.
2018-04-01
A system of loaded ordinary differential equations with multipoint conditions is considered. The problem under study is reduced to an equivalent boundary value problem for a system of ordinary differential equations with parameters. A system of linear algebraic equations for the parameters is constructed using the matrices of the loaded terms and the multipoint condition. The conditions for the unique solvability and well-posedness of the original problem are established in terms of the matrix made up of the coefficients of the system of linear algebraic equations. The coefficients and the righthand side of the constructed system are determined by solving Cauchy problems for linear ordinary differential equations. The solutions of the system are found in terms of the values of the desired function at the initial points of subintervals. The parametrization method is numerically implemented using the fourth-order accurate Runge-Kutta method as applied to the Cauchy problems for ordinary differential equations. The performance of the constructed numerical algorithms is illustrated by examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu
Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different typesmore » of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.« less
NASA Astrophysics Data System (ADS)
Rahman, Syazila; Yusoff, Mohd. Zamri; Hasini, Hasril
2012-06-01
This paper describes the comparison between the cell centered scheme and cell vertex scheme in the calculation of high speed compressible flow properties. The calculation is carried out using Computational Fluid Dynamic (CFD) in which the mass, momentum and energy equations are solved simultaneously over the flow domain. The geometry under investigation consists of a Binnie and Green convergent-divergent nozzle and structured mesh scheme is implemented throughout the flow domain. The finite volume CFD solver employs second-order accurate central differencing scheme for spatial discretization. In addition, the second-order accurate cell-vertex finite volume spatial discretization is also introduced in this case for comparison. The multi-stage Runge-Kutta time integration is implemented for solving a set of non-linear governing equations with variables stored at the vertices. Artificial dissipations used second and fourth order terms with pressure switch to detect changes in pressure gradient. This is important to control the solution stability and capture shock discontinuity. The result is compared with experimental measurement and good agreement is obtained for both cases.
Quantum transport with long-range steps on Watts-Strogatz networks
NASA Astrophysics Data System (ADS)
Wang, Yan; Xu, Xin-Jian
2016-07-01
We study transport dynamics of quantum systems with long-range steps on the Watts-Strogatz network (WSN) which is generated by rewiring links of the regular ring. First, we probe physical systems modeled by the discrete nonlinear schrödinger (DNLS) equation. Using the localized initial condition, we compute the time-averaged occupation probability of the initial site, which is related to the nonlinearity, the long-range steps and rewiring links. Self-trapping transitions occur at large (small) nonlinear parameters for coupling ɛ=-1 (1), as long-range interactions are intensified. The structure disorder induced by random rewiring, however, has dual effects for ɛ=-1 and inhibits the self-trapping behavior for ɛ=1. Second, we investigate continuous-time quantum walks (CTQW) on the regular ring ruled by the discrete linear schrödinger (DLS) equation. It is found that only the presence of the long-range steps does not affect the efficiency of the coherent exciton transport, while only the allowance of random rewiring enhances the partial localization. If both factors are considered simultaneously, localization is greatly strengthened, and the transport becomes worse.
NASA Astrophysics Data System (ADS)
Kiss, I.; Cioată, V. G.; Ratiu, S. A.; Rackov, M.; Penčić, M.
2018-01-01
Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. This article focuses on expressing the multiple linear regression model related to the hardness assurance by the chemical composition of the phosphorous cast irons destined to the brake shoes, having in view that the regression coefficients will illustrate the unrelated contributions of each independent variable towards predicting the dependent variable. In order to settle the multiple correlations between the hardness of the cast-iron brake shoes, and their chemical compositions several regression equations has been proposed. Is searched a mathematical solution which can determine the optimum chemical composition for the hardness desirable values. Starting from the above-mentioned affirmations two new statistical experiments are effectuated related to the values of Phosphorus [P], Manganese [Mn] and Silicon [Si]. Therefore, the regression equations, which describe the mathematical dependency between the above-mentioned elements and the hardness, are determined. As result, several correlation charts will be revealed.
Optimal cure cycle design of a resin-fiber composite laminate
NASA Technical Reports Server (NTRS)
Hou, Jean W.; Sheen, Jeenson
1987-01-01
A unified computed aided design method was studied for the cure cycle design that incorporates an optimal design technique with the analytical model of a composite cure process. The preliminary results of using this proposed method for optimal cure cycle design are reported and discussed. The cure process of interest is the compression molding of a polyester which is described by a diffusion reaction system. The finite element method is employed to convert the initial boundary value problem into a set of first order differential equations which are solved simultaneously by the DE program. The equations for thermal design sensitivities are derived by using the direct differentiation method and are solved by the DE program. A recursive quadratic programming algorithm with an active set strategy called a linearization method is used to optimally design the cure cycle, subjected to the given design performance requirements. The difficulty of casting the cure cycle design process into a proper mathematical form is recognized. Various optimal design problems are formulated to address theses aspects. The optimal solutions of these formulations are compared and discussed.
NASA Astrophysics Data System (ADS)
Kokurin, M. Yu.
2010-11-01
A general scheme for improving approximate solutions to irregular nonlinear operator equations in Hilbert spaces is proposed and analyzed in the presence of errors. A modification of this scheme designed for equations with quadratic operators is also examined. The technique of universal linear approximations of irregular equations is combined with the projection onto finite-dimensional subspaces of a special form. It is shown that, for finite-dimensional quadratic problems, the proposed scheme provides information about the global geometric properties of the intersections of quadrics.
The primer vector in linear, relative-motion equations. [spacecraft trajectory optimization
NASA Technical Reports Server (NTRS)
1980-01-01
Primer vector theory is used in analyzing a set of linear, relative-motion equations - the Clohessy-Wiltshire equations - to determine the criteria and necessary conditions for an optimal, N-impulse trajectory. Since the state vector for these equations is defined in terms of a linear system of ordinary differential equations, all fundamental relations defining the solution of the state and costate equations, and the necessary conditions for optimality, can be expressed in terms of elementary functions. The analysis develops the analytical criteria for improving a solution by (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of (1) fixed-end conditions, two-impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized rendezvous problem. A sequence of rendezvous problems is solved to illustrate the analysis and the computational procedure.
Numerical computation of linear instability of detonations
NASA Astrophysics Data System (ADS)
Kabanov, Dmitry; Kasimov, Aslan
2017-11-01
We propose a method to study linear stability of detonations by direct numerical computation. The linearized governing equations together with the shock-evolution equation are solved in the shock-attached frame using a high-resolution numerical algorithm. The computed results are processed by the Dynamic Mode Decomposition technique to generate dispersion relations. The method is applied to the reactive Euler equations with simple-depletion chemistry as well as more complex multistep chemistry. The results are compared with those known from normal-mode analysis. We acknowledge financial support from King Abdullah University of Science and Technology.
A Textbook for a First Course in Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Zingg, D. W.; Pulliam, T. H.; Nixon, David (Technical Monitor)
1999-01-01
This paper describes and discusses the textbook, Fundamentals of Computational Fluid Dynamics by Lomax, Pulliam, and Zingg, which is intended for a graduate level first course in computational fluid dynamics. This textbook emphasizes fundamental concepts in developing, analyzing, and understanding numerical methods for the partial differential equations governing the physics of fluid flow. Its underlying philosophy is that the theory of linear algebra and the attendant eigenanalysis of linear systems provides a mathematical framework to describe and unify most numerical methods in common use in the field of fluid dynamics. Two linear model equations, the linear convection and diffusion equations, are used to illustrate concepts throughout. Emphasis is on the semi-discrete approach, in which the governing partial differential equations (PDE's) are reduced to systems of ordinary differential equations (ODE's) through a discretization of the spatial derivatives. The ordinary differential equations are then reduced to ordinary difference equations (O(Delta)E's) using a time-marching method. This methodology, using the progression from PDE through ODE's to O(Delta)E's, together with the use of the eigensystems of tridiagonal matrices and the theory of O(Delta)E's, gives the book its distinctiveness and provides a sound basis for a deep understanding of fundamental concepts in computational fluid dynamics.
ERIC Educational Resources Information Center
DeVany, Arthur S.; And Others
This research was designed to develop and test a model of the Air Force manpower market. The study indicates that previous manpower supply studies failed to account for simultaneous determination of enlistments and retentions and misinterpreted regressions as supply equations. They are, instead, reduced form equations resulting from joint…
ERIC Educational Resources Information Center
Camporesi, Roberto
2011-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1988-01-01
An approximation and convergence theory was developed for Galerkin approximations to infinite dimensional operator Riccati differential equations formulated in the space of Hilbert-Schmidt operators on a separable Hilbert space. The Riccati equation was treated as a nonlinear evolution equation with dynamics described by a nonlinear monotone perturbation of a strongly coercive linear operator. A generic approximation result was proven for quasi-autonomous nonlinear evolution system involving accretive operators which was then used to demonstrate the Hilbert-Schmidt norm convergence of Galerkin approximations to the solution of the Riccati equation. The application of the results was illustrated in the context of a linear quadratic optimal control problem for a one dimensional heat equation.
NASA Astrophysics Data System (ADS)
Denli, H.; Huang, L.
2008-12-01
Quantitative monitoring of reservoir property changes is essential for safe geologic carbon sequestration. Time-lapse seismic surveys have the potential to effectively monitor fluid migration in the reservoir that causes geophysical property changes such as density, and P- and S-wave velocities. We introduce a novel method for quantitative estimation of seismic velocity changes using time-lapse seismic data. The method employs elastic sensitivity wavefields, which are the derivatives of elastic wavefield with respect to density, P- and S-wave velocities of a target region. We derive the elastic sensitivity equations from analytical differentiations of the elastic-wave equations with respect to seismic-wave velocities. The sensitivity equations are coupled with the wave equations in a way that elastic waves arriving in a target reservoir behave as a secondary source to sensitivity fields. We use a staggered-grid finite-difference scheme with perfectly-matched layers absorbing boundary conditions to simultaneously solve the elastic-wave equations and the elastic sensitivity equations. By elastic-wave sensitivities, a linear relationship between relative seismic velocity changes in the reservoir and time-lapse seismic data at receiver locations can be derived, which leads to an over-determined system of equations. We solve this system of equations using a least- square method for each receiver to obtain P- and S-wave velocity changes. We validate the method using both surface and VSP synthetic time-lapse seismic data for a multi-layered model and the elastic Marmousi model. Then we apply it to the time-lapse field VSP data acquired at the Aneth oil field in Utah. A total of 10.5K tons of CO2 was injected into the oil reservoir between the two VSP surveys for enhanced oil recovery. The synthetic and field data studies show that our new method can quantitatively estimate changes in seismic velocities within a reservoir due to CO2 injection/migration.
Conical Lens for 5-Inch/54 Gun Launched Missile
1981-06-01
Propagation, Interferenceand Diffraction of Light, 2nd ed. (revised), p. 121-124, Pergamon Press, 1964. 10. Anton , Howard, Elementary Linear Algebra , p. 1-21...equations is nonlinear in x, but is linear in the coefficients. Therefore, the techniques of linear algebra can be used on equation (F-13). The method...This thesis assumes the air to be homogenous, isotropic, linear , time indepen- dent (HILT) and free of shock waves in order to investigate the
Experimental quantum computing to solve systems of linear equations.
Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2013-06-07
Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.
A framework for simultaneous aerodynamic design optimization in the presence of chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Günther, Stefanie, E-mail: stefanie.guenther@scicomp.uni-kl.de; Gauger, Nicolas R.; Wang, Qiqi
Integrating existing solvers for unsteady partial differential equations into a simultaneous optimization method is challenging due to the forward-in-time information propagation of classical time-stepping methods. This paper applies the simultaneous single-step one-shot optimization method to a reformulated unsteady constraint that allows for both forward- and backward-in-time information propagation. Especially in the presence of chaotic and turbulent flow, solving the initial value problem simultaneously with the optimization problem often scales poorly with the time domain length. The new formulation relaxes the initial condition and instead solves a least squares problem for the discrete partial differential equations. This enables efficient one-shot optimizationmore » that is independent of the time domain length, even in the presence of chaos.« less
Kinetic theory of oxygen isotopic exchange between minerals and water
Criss, R.E.; Gregory, R.T.; Taylor, H.P.
1987-01-01
Kinetic and mass conservation equations are used to describe oxygen isotopic exchange between minerals and water in "closed" and open hydrothermal systems. In cases where n coexisting mineral phases having different reaction rates are present, the exchange process is described by a system of n + 1 simultaneous differential equations consisting of n pseudo first-order rate equations and a conservation of mass equation. The simultaneous solutions to these equations generate curved exchange trajectories on ??-?? plots. Families of such trajectories generated under conditions allowing for different fluid mole fractions, different fluid isotopic compositions, or different fluid flow rates are connected by positive-sloped isochronous lines. These isochrons reproduce the effects observed in hydrothermally exchanged mineral pairs including 1) steep positive slopes, 2) common reversals in the measured fractionation factors (??), and 3) measured fractionations that are highly variable over short distances where no thermal gradient can be geologically demonstrated. ?? 1987.
NASA Astrophysics Data System (ADS)
Agresti, Juri; De Pietri, Roberto; Lusanna, Luca; Martucci, Luca
2004-05-01
In the framework of the rest-frame instant form of tetrad gravity, where the Hamiltonian is the weak ADM energy {\\hat E}ADM, we define a special completely fixed 3-orthogonal Hamiltonian gauge, corresponding to a choice of non-harmonic 4-coordinates, in which the independent degrees of freedom of the gravitational field are described by two pairs of canonically conjugate Dirac observables (DO) r_{\\bar a}(\\tau ,\\vec \\sigma ), \\pi_{\\bar a}(\\tau ,\\vec \\sigma ), \\bar a = 1,2. We define a Hamiltonian linearization of the theory, i.e. gravitational waves, without introducing any background 4-metric, by retaining only the linear terms in the DO's in the super-hamiltonian constraint (the Lichnerowicz equation for the conformal factor of the 3-metric) and the quadratic terms in the DO's in {\\hat E}ADM. We solve all the constraints of the linearized theory: this amounts to work in a well defined post-Minkowskian Christodoulou-Klainermann space-time. The Hamilton equations imply the wave equation for the DO's r_{\\bar a}(\\tau ,\\vec \\sigma ), which replace the two polarizations of the TT harmonic gauge, and that linearized Einstein's equations are satisfied. Finally we study the geodesic equation, both for time-like and null geodesics, and the geodesic deviation equation.
ERIC Educational Resources Information Center
Deboeck, Pascal R.; Boker, Steven M.; Bergeman, C. S.
2008-01-01
Among the many methods available for modeling intraindividual time series, differential equation modeling has several advantages that make it promising for applications to psychological data. One interesting differential equation model is that of the damped linear oscillator (DLO), which can be used to model variables that have a tendency to…
Matrix form of Legendre polynomials for solving linear integro-differential equations of high order
NASA Astrophysics Data System (ADS)
Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.
2017-04-01
This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1977-01-01
A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.
NASA Astrophysics Data System (ADS)
Yan, Zhenya; Bluman, George
2002-11-01
The special exact solutions of nonlinearly dispersive Boussinesq equations (called B( m, n) equations), utt- uxx- a( un) xx+ b( um) xxxx=0, is investigated by using four direct ansatze. As a result, abundant new compactons: solitons with the absence of infinite wings, solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions of these two equations are obtained. The variant is extended to include linear dispersion to support compactons and solitary patterns in the linearly dispersive Boussinesq equations with m=1. Moreover, another new compacton solution of the special case, B(2,2) equation, is also found.
Nonlinear and linear wave equations for propagation in media with frequency power law losses
NASA Astrophysics Data System (ADS)
Szabo, Thomas L.
2003-10-01
The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.
Implicit time-integration method for simultaneous solution of a coupled non-linear system
NASA Astrophysics Data System (ADS)
Watson, Justin Kyle
Historically large physical problems have been divided into smaller problems based on the physics involved. This is no different in reactor safety analysis. The problem of analyzing a nuclear reactor for design basis accidents is performed by a handful of computer codes each solving a portion of the problem. The reactor thermal hydraulic response to an event is determined using a system code like TRAC RELAP Advanced Computational Engine (TRACE). The core power response to the same accident scenario is determined using a core physics code like Purdue Advanced Core Simulator (PARCS). Containment response to the reactor depressurization in a Loss Of Coolant Accident (LOCA) type event is calculated by a separate code. Sub-channel analysis is performed with yet another computer code. This is just a sample of the computer codes used to solve the overall problems of nuclear reactor design basis accidents. Traditionally each of these codes operates independently from each other using only the global results from one calculation as boundary conditions to another. Industry's drive to uprate power for reactors has motivated analysts to move from a conservative approach to design basis accident towards a best estimate method. To achieve a best estimate calculation efforts have been aimed at coupling the individual physics models to improve the accuracy of the analysis and reduce margins. The current coupling techniques are sequential in nature. During a calculation time-step data is passed between the two codes. The individual codes solve their portion of the calculation and converge to a solution before the calculation is allowed to proceed to the next time-step. This thesis presents a fully implicit method of simultaneous solving the neutron balance equations, heat conduction equations and the constitutive fluid dynamics equations. It discusses the problems involved in coupling different physics phenomena within multi-physics codes and presents a solution to these problems. The thesis also outlines the basic concepts behind the nodal balance equations, heat transfer equations and the thermal hydraulic equations, which will be coupled to form a fully implicit nonlinear system of equations. The coupling of separate physics models to solve a larger problem and improve accuracy and efficiency of a calculation is not a new idea, however implementing them in an implicit manner and solving the system simultaneously is. Also the application to reactor safety codes is new and has not be done with thermal hydraulics and neutronics codes on realistic applications in the past. The coupling technique described in this thesis is applicable to other similar coupled thermal hydraulic and core physics reactor safety codes. This technique is demonstrated using coupled input decks to show that the system is solved correctly and then verified by using two derivative test problems based on international benchmark problems the OECD/NRC Three mile Island (TMI) Main Steam Line Break (MSLB) problem (representative of pressurized water reactor analysis) and the OECD/NRC Peach Bottom (PB) Turbine Trip (TT) benchmark (representative of boiling water reactor analysis).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, William W., E-mail: dai@lanl.gov; Scannapieco, Anthony J.
2015-11-01
A set of numerical schemes is developed for two- and three-dimensional time-dependent 3-T radiation diffusion equations in systems involving multi-materials. To resolve sub-cell structure, interface reconstruction is implemented within any cell that has more than one material. Therefore, the system of 3-T radiation diffusion equations is solved on two- and three-dimensional polyhedral meshes. The focus of the development is on the fully coupling between radiation and material, the treatment of nonlinearity in the equations, i.e., in the diffusion terms and source terms, treatment of the discontinuity across cell interfaces in material properties, the formulations for both transient and steady states,more » the property for large time steps, and second order accuracy in both space and time. The discontinuity of material properties between different materials is correctly treated based on the governing physics principle for general polyhedral meshes and full nonlinearity. The treatment is exact for arbitrarily strong discontinuity. The scheme is fully nonlinear for the full nonlinearity in the 3-T diffusion equations. Three temperatures are fully coupled and are updated simultaneously. The scheme is general in two and three dimensions on general polyhedral meshes. The features of the scheme are demonstrated through numerical examples for transient problems and steady states. The effects of some simplifications of numerical schemes are also shown through numerical examples, such as linearization, simple average of diffusion coefficient, and approximate treatment for the coupling between radiation and material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liang, E-mail: liang.wang@unh.edu; Germaschewski, K.; Hakim, Ammar H.
2015-01-15
We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically andmore » numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.« less
Flutter and Forced Response Analyses of Cascades using a Two-Dimensional Linearized Euler Solver
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, R.; Mehmed, O.
1999-01-01
Flutter and forced response analyses for a cascade of blades in subsonic and transonic flow is presented. The structural model for each blade is a typical section with bending and torsion degrees of freedom. The unsteady aerodynamic forces due to bending and torsion motions. and due to a vortical gust disturbance are obtained by solving unsteady linearized Euler equations. The unsteady linearized equations are obtained by linearizing the unsteady nonlinear equations about the steady flow. The predicted unsteady aerodynamic forces include the effect of steady aerodynamic loading due to airfoil shape, thickness and angle of attack. The aeroelastic equations are solved in the frequency domain by coupling the un- steady aerodynamic forces to the aeroelastic solver MISER. The present unsteady aerodynamic solver showed good correlation with published results for both flutter and forced response predictions. Further improvements are required to use the unsteady aerodynamic solver in a design cycle.
Systems of fuzzy equations in structural mechanics
NASA Astrophysics Data System (ADS)
Skalna, Iwona; Rama Rao, M. V.; Pownuk, Andrzej
2008-08-01
Systems of linear and nonlinear equations with fuzzy parameters are relevant to many practical problems arising in structure mechanics, electrical engineering, finance, economics and physics. In this paper three methods for solving such equations are discussed: method for outer interval solution of systems of linear equations depending linearly on interval parameters, fuzzy finite element method proposed by Rama Rao and sensitivity analysis method. The performance and advantages of presented methods are described with illustrative examples. Extended version of the present paper can be downloaded from the web page of the UTEP [I. Skalna, M.V. Rama Rao, A. Pownuk, Systems of fuzzy equations in structural mechanics, The University of Texas at El Paso, Department of Mathematical Sciences Research Reports Series,
Bohling, Geoffrey C.; Butler, J.J.
2001-01-01
We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.
Satellite Formation Control Using Atmospheric Drag
2007-03-01
of the formation. The linearized Clohessy - Wiltshire equations of motion are used to describe the motion of the two-satellite formation about an empty...control methods were applied to both the linear and nonlinear forms of the Clohessy - Wiltshire equations, and the performance of each control method was...r0δθ̈ = −2nδṙ + fθ (2.16) δz̈ = −n2δz + fz (2.17) These three equations are commonly known as Hill’s equations or the Clohessy - Wiltshire (CW
ERIC Educational Resources Information Center
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1989-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.
A new look at the simultaneous analysis and design of structures
NASA Technical Reports Server (NTRS)
Striz, Alfred G.
1994-01-01
The minimum weight optimization of structural systems, subject to strength and displacement constraints as well as size side constraints, was investigated by the Simultaneous ANalysis and Design (SAND) approach. As an optimizer, the code NPSOL was used which is based on a sequential quadratic programming (SQP) algorithm. The structures were modeled by the finite element method. The finite element related input to NPSOL was automatically generated from the input decks of such standard FEM/optimization codes as NASTRAN or ASTROS, with the stiffness matrices, at present, extracted from the FEM code ANALYZE. In order to avoid ill-conditioned matrices that can be encountered when the global stiffness equations are used as additional nonlinear equality constraints in the SAND approach (with the displacements as additional variables), the matrix displacement method was applied. In this approach, the element stiffness equations are used as constraints instead of the global stiffness equations, in conjunction with the nodal force equilibrium equations. This approach adds the element forces as variables to the system. Since, for complex structures and the associated large and very sparce matrices, the execution times of the optimization code became excessive due to the large number of required constraint gradient evaluations, the Kreisselmeier-Steinhauser function approach was used to decrease the computational effort by reducing the nonlinear equality constraint system to essentially a single combined constraint equation. As the linear equality and inequality constraints require much less computational effort to evaluate, they were kept in their previous form to limit the complexity of the KS function evaluation. To date, the standard three-bar, ten-bar, and 72-bar trusses have been tested. For the standard SAND approach, correct results were obtained for all three trusses although convergence became slower for the 72-bar truss. When the matrix displacement method was used, correct results were still obtained, but the execution times became excessive due to the large number of constraint gradient evaluations required. Using the KS function, the computational effort dropped, but the optimization seemed to become less robust. The investigation of this phenomenon is continuing. As an alternate approach, the code MINOS for the optimization of sparse matrices can be applied to the problem in lieu of the Kreisselmeier-Steinhauser function. This investigation is underway.
Comparison of kinetic model for biogas production from corn cob
NASA Astrophysics Data System (ADS)
Shitophyta, L. M.; Maryudi
2018-04-01
Energy demand increases every day, while the energy source especially fossil energy depletes increasingly. One of the solutions to overcome the energy depletion is to provide renewable energies such as biogas. Biogas can be generated by corn cob and food waste. In this study, biogas production was carried out by solid-state anaerobic digestion. The steps of biogas production were the preparation of feedstock, the solid-state anaerobic digestion, and the measurement of biogas volume. This study was conducted on TS content of 20%, 22%, and 24%. The aim of this research was to compare kinetic models of biogas production from corn cob and food waste as a co-digestion using the linear, exponential equation, and first-kinetic models. The result showed that the exponential equation had a better correlation than the linear equation on the ascending graph of biogas production. On the contrary, the linear equation had a better correlation than the exponential equation on the descending graph of biogas production. The correlation values on the first-kinetic model had the smallest value compared to the linear and exponential models.
Calculation of biochemical net reactions and pathways by using matrix operations.
Alberty, R A
1996-01-01
Pathways for net biochemical reactions can be calculated by using a computer program that solves systems of linear equations. The coefficients in the linear equations are the stoichiometric numbers in the biochemical equations for the system. The solution of the system of linear equations is a vector of the stoichiometric numbers of the reactions in the pathway for the net reaction; this is referred to as the pathway vector. The pathway vector gives the number of times the various reactions have to occur to produce the desired net reaction. Net reactions may involve unknown numbers of ATP, ADP, and Pi molecules. The numbers of ATP, ADP, and Pi in a desired net reaction can be calculated in a two-step process. In the first step, the pathway is calculated by solving the system of linear equations for an abbreviated stoichiometric number matrix without ATP, ADP, Pi, NADred, and NADox. In the second step, the stoichiometric numbers in the desired net reaction, which includes ATP, ADP, Pi, NADred, and NADox, are obtained by multiplying the full stoichiometric number matrix by the calculated pathway vector. PMID:8804633
Krylov subspace methods - Theory, algorithms, and applications
NASA Technical Reports Server (NTRS)
Sad, Youcef
1990-01-01
Projection methods based on Krylov subspaces for solving various types of scientific problems are reviewed. The main idea of this class of methods when applied to a linear system Ax = b, is to generate in some manner an approximate solution to the original problem from the so-called Krylov subspace span. Thus, the original problem of size N is approximated by one of dimension m, typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now becoming popular for solving nonlinear equations. The main ideas in Krylov subspace methods are shown and their use in solving linear systems, eigenvalue problems, parabolic partial differential equations, Liapunov matrix equations, and nonlinear system of equations are discussed.
HESS Opinions: Linking Darcy's equation to the linear reservoir
NASA Astrophysics Data System (ADS)
Savenije, Hubert H. G.
2018-03-01
In groundwater hydrology, two simple linear equations exist describing the relation between groundwater flow and the gradient driving it: Darcy's equation and the linear reservoir. Both equations are empirical and straightforward, but work at different scales: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they appear similar, it is not trivial to upscale Darcy's equation to the watershed scale without detailed knowledge of the structure or shape of the underlying aquifers. This paper shows that these two equations, combined by the water balance, are indeed identical provided there is equal resistance in space for water entering the subsurface network. This implies that groundwater systems make use of an efficient drainage network, a mostly invisible pattern that has evolved over geological timescales. This drainage network provides equally distributed resistance for water to access the system, connecting the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance. As a result, the timescale of the linear reservoir appears to be inversely proportional to Darcy's conductance
, the proportionality being the product of the porosity and the resistance to entering the drainage network. The main question remaining is which physical law lies behind pattern formation in groundwater systems, evolving in a way that resistance to drainage is constant in space. But that is a fundamental question that is equally relevant for understanding the hydraulic properties of leaf veins in plants or of blood veins in animals.
NASA Astrophysics Data System (ADS)
Wibowo, Wahyu; Wene, Chatrien; Budiantara, I. Nyoman; Permatasari, Erma Oktania
2017-03-01
Multiresponse semiparametric regression is simultaneous equation regression model and fusion of parametric and nonparametric model. The regression model comprise several models and each model has two components, parametric and nonparametric. The used model has linear function as parametric and polynomial truncated spline as nonparametric component. The model can handle both linearity and nonlinearity relationship between response and the sets of predictor variables. The aim of this paper is to demonstrate the application of the regression model for modeling of effect of regional socio-economic on use of information technology. More specific, the response variables are percentage of households has access to internet and percentage of households has personal computer. Then, predictor variables are percentage of literacy people, percentage of electrification and percentage of economic growth. Based on identification of the relationship between response and predictor variable, economic growth is treated as nonparametric predictor and the others are parametric predictors. The result shows that the multiresponse semiparametric regression can be applied well as indicate by the high coefficient determination, 90 percent.
Nonlinear convergence active vibration absorber for single and multiple frequency vibration control
NASA Astrophysics Data System (ADS)
Wang, Xi; Yang, Bintang; Guo, Shufeng; Zhao, Wenqiang
2017-12-01
This paper presents a nonlinear convergence algorithm for active dynamic undamped vibration absorber (ADUVA). The damping of absorber is ignored in this algorithm to strengthen the vibration suppressing effect and simplify the algorithm at the same time. The simulation and experimental results indicate that this nonlinear convergence ADUVA can help significantly suppress vibration caused by excitation of both single and multiple frequency. The proposed nonlinear algorithm is composed of equivalent dynamic modeling equations and frequency estimator. Both the single and multiple frequency ADUVA are mathematically imitated by the same mechanical structure with a mass body and a voice coil motor (VCM). The nonlinear convergence estimator is applied to simultaneously satisfy the requirements of fast convergence rate and small steady state frequency error, which are incompatible for linear convergence estimator. The convergence of the nonlinear algorithm is mathematically proofed, and its non-divergent characteristic is theoretically guaranteed. The vibration suppressing experiments demonstrate that the nonlinear ADUVA can accelerate the convergence rate of vibration suppressing and achieve more decrement of oscillation attenuation than the linear ADUVA.
Shear Stress in Magnetorheological FInishing for Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.
2009-04-28
We report in situ, simultaneous measurements of both drag and normal forces in magnetorheological finishing (MRF) for what is believed to be the first time, using a spot taking machine (STM) as a test bed to take MRF spots on stationary parts. The measurements are carried out over the entire area where material is being removed, i.e., the projected area of the MRF removal function/spot on the part surface, using a dual force sensor. This approach experimentally addresses the mechanisms governing material removal in MRF for optical glasses in terms of the hydrodynamic pressure and shear stress, applied by themore » hydrodynamic flow of magnetorheological fluid at the gap between the part surface and the STM wheel. This work demonstrates that the volumetric removal rate shows a positive linear dependence on shear stress. Shear stress exhibits a positive linear dependence on a material figure of merit that depends upon Young’s modulus, fracture toughness, and hardness. A modified Preston’s equation is proposed that better estimates MRF material removal rate for optical glasses by incorporating mechanical properties, shear stress, and velocity.« less
Shear stress in magnetorheological finishing for glasses.
Miao, Chunlin; Shafrir, Shai N; Lambropoulos, John C; Mici, Joni; Jacobs, Stephen D
2009-05-01
We report in situ, simultaneous measurements of both drag and normal forces in magnetorheological finishing (MRF) for what is believed to be the first time, using a spot taking machine (STM) as a test bed to take MRF spots on stationary parts. The measurements are carried out over the entire area where material is being removed, i.e., the projected area of the MRF removal function/spot on the part surface, using a dual force sensor. This approach experimentally addresses the mechanisms governing material removal in MRF for optical glasses in terms of the hydrodynamic pressure and shear stress, applied by the hydrodynamic flow of magnetorheological fluid at the gap between the part surface and the STM wheel. This work demonstrates that the volumetric removal rate shows a positive linear dependence on shear stress. Shear stress exhibits a positive linear dependence on a material figure of merit that depends upon Young's modulus, fracture toughness, and hardness. A modified Preston's equation is proposed that better estimates MRF material removal rate for optical glasses by incorporating mechanical properties, shear stress, and velocity.
Computational investigation of large-scale vortex interaction with flexible bodies
NASA Astrophysics Data System (ADS)
Connell, Benjamin; Yue, Dick K. P.
2003-11-01
The interaction of large-scale vortices with flexible bodies is examined with particular interest paid to the energy and momentum budgets of the system. Finite difference direct numerical simulation of the Navier-Stokes equations on a moving curvilinear grid is coupled with a finite difference structural solver of both a linear membrane under tension and linear Euler-Bernoulli beam. The hydrodynamics and structural dynamics are solved simultaneously using an iterative procedure with the external structural forcing calculated from the hydrodynamics at the surface and the flow-field velocity boundary condition given by the structural motion. We focus on an investigation into the canonical problem of a vortex-dipole impinging on a flexible membrane. It is discovered that the structural properties of the membrane direct the interaction in terms of the flow evolution and the energy budget. Pressure gradients associated with resonant membrane response are shown to sustain the oscillatory motion of the vortex pair. Understanding how the key mechanisms in vortex-body interactions are guided by the structural properties of the body is a prerequisite to exploiting these mechanisms.
Time-stable overset grid method for hyperbolic problems using summation-by-parts operators
NASA Astrophysics Data System (ADS)
Sharan, Nek; Pantano, Carlos; Bodony, Daniel J.
2018-05-01
A provably time-stable method for solving hyperbolic partial differential equations arising in fluid dynamics on overset grids is presented in this paper. The method uses interface treatments based on the simultaneous approximation term (SAT) penalty method and derivative approximations that satisfy the summation-by-parts (SBP) property. Time-stability is proven using energy arguments in a norm that naturally relaxes to the standard diagonal norm when the overlap reduces to a traditional multiblock arrangement. The proposed overset interface closures are time-stable for arbitrary overlap arrangements. The information between grids is transferred using Lagrangian interpolation applied to the incoming characteristics, although other interpolation schemes could also be used. The conservation properties of the method are analyzed. Several one-, two-, and three-dimensional, linear and non-linear numerical examples are presented to confirm the stability and accuracy of the method. A performance comparison between the proposed SAT-based interface treatment and the commonly-used approach of injecting the interpolated data onto each grid is performed to highlight the efficacy of the SAT method.
Sensitivity of control-augmented structure obtained by a system decomposition method
NASA Technical Reports Server (NTRS)
Sobieszczanskisobieski, Jaroslaw; Bloebaum, Christina L.; Hajela, Prabhat
1988-01-01
The verification of a method for computing sensitivity derivatives of a coupled system is presented. The method deals with a system whose analysis can be partitioned into subsets that correspond to disciplines and/or physical subsystems that exchange input-output data with each other. The method uses the partial sensitivity derivatives of the output with respect to input obtained for each subset separately to assemble a set of linear, simultaneous, algebraic equations that are solved for the derivatives of the coupled system response. This sensitivity analysis is verified using an example of a cantilever beam augmented with an active control system to limit the beam's dynamic displacements under an excitation force. The verification shows good agreement of the method with reference data obtained by a finite difference technique involving entire system analysis. The usefulness of a system sensitivity method in optimization applications by employing a piecewise-linear approach to the same numerical example is demonstrated. The method's principal merits are its intrinsically superior accuracy in comparison with the finite difference technique, and its compatibility with the traditional division of work in complex engineering tasks among specialty groups.
Non-linear scale interactions in a forced turbulent boundary layer
NASA Astrophysics Data System (ADS)
Duvvuri, Subrahmanyam; McKeon, Beverley
2015-11-01
A strong phase-organizing influence exerted by a single synthetic large-scale spatio-temporal mode on directly-coupled (through triadic interactions) small scales in a turbulent boundary layer forced by a spatially-impulsive dynamic wall-roughness patch was previously demonstrated by the authors (J. Fluid Mech. 2015, vol. 767, R4). The experimental set-up was later enhanced to allow for simultaneous forcing of multiple scales in the flow. Results and analysis are presented from a new set of novel experiments where two distinct large scales are forced in the flow by a dynamic wall-roughness patch. The internal non-linear forcing of two other scales with triadic consistency to the artificially forced large scales, corresponding to sum and difference in wavenumbers, is dominated by the latter. This allows for a forcing-response (input-output) type analysis of the two triadic scales, and naturally lends itself to a resolvent operator based model (e.g. McKeon & Sharma, J. Fluid Mech. 2010, vol. 658, pp. 336-382) of the governing Navier-Stokes equations. The support of AFOSR (grant #FA 9550-12-1-0469, program manager D. Smith) is gratefully acknowledged.
Classifying bilinear differential equations by linear superposition principle
NASA Astrophysics Data System (ADS)
Zhang, Lijun; Khalique, Chaudry Masood; Ma, Wen-Xiu
2016-09-01
In this paper, we investigate the linear superposition principle of exponential traveling waves to construct a sub-class of N-wave solutions of Hirota bilinear equations. A necessary and sufficient condition for Hirota bilinear equations possessing this specific sub-class of N-wave solutions is presented. We apply this result to find N-wave solutions to the (2+1)-dimensional KP equation, a (3+1)-dimensional generalized Kadomtsev-Petviashvili (KP) equation, a (3+1)-dimensional generalized BKP equation and the (2+1)-dimensional BKP equation. The inverse question, i.e., constructing Hirota Bilinear equations possessing N-wave solutions, is considered and a refined 3-step algorithm is proposed. As examples, we construct two very general kinds of Hirota bilinear equations of order 4 possessing N-wave solutions among which one satisfies dispersion relation and another does not satisfy dispersion relation.
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1985-01-01
The classical method of equivalent linearization is extended to a particular class of nonlinear difference equations. It is shown that the method can be used to obtain an approximation of the periodic solutions of these equations. In particular, the parameters of the limit cycle and the limit points can be determined. Three examples illustrating the method are presented.
Diffusion phenomenon for linear dissipative wave equations in an exterior domain
NASA Astrophysics Data System (ADS)
Ikehata, Ryo
Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.
Nonlinear Waves and Inverse Scattering
1989-01-01
transform provides a linearization.’ Well known systems include the Kadomtsev - Petviashvili , Davey-Stewartson and Self-Dual Yang-Mills equations . The d...which employs inverse scattering theory in order to linearize the given nonlinear equation . I.S.T. has led to new developments in both fields: inverse...scattering and nonlinear wave equations . Listed below are some of the problems studied and a short description of results. - Multidimensional
Non-Linear Acoustic Concealed Weapons Detector
2006-05-01
signature analysis 8 the interactions of the beams with concealed objects. The Khokhlov- Zabolotskaya-Kuznetsov ( KZK ) equation is the most widely used...Hamilton developed a finite difference method based on the KZK equation to model pulsed acoustic emissions from axial symmetric sources. Using a...College of William & Mary, we have developed a simulation code using the KZK equation to model non-linear acoustic beams and visualize beam patterns
Fu, Wei; Nijhoff, Frank W
2017-07-01
A unified framework is presented for the solution structure of three-dimensional discrete integrable systems, including the lattice AKP, BKP and CKP equations. This is done through the so-called direct linearizing transform, which establishes a general class of integral transforms between solutions. As a particular application, novel soliton-type solutions for the lattice CKP equation are obtained.
LETTER TO THE EDITOR: Bicomplexes and conservation laws in non-Abelian Toda models
NASA Astrophysics Data System (ADS)
Gueuvoghlanian, E. P.
2001-08-01
A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.
State Estimation for Linear Systems Driven Simultaneously by Wiener and Poisson Processes.
1978-12-01
The state estimation problem of linear stochastic systems driven simultaneously by Wiener and Poisson processes is considered, especially the case...where the incident intensities of the Poisson processes are low and the system is observed in an additive white Gaussian noise. The minimum mean squared
Simultaneous Optimization of Decisions Using a Linear Utility Function.
ERIC Educational Resources Information Center
Vos, Hans J.
1990-01-01
An approach is presented to simultaneously optimize decision rules for combinations of elementary decisions through a framework derived from Bayesian decision theory. The developed linear utility model for selection-mastery decisions was applied to a sample of 43 first year medical students to illustrate the procedure. (SLD)
Permanent-magnet linear alternators. I - Fundamental equations. II - Design guidelines
NASA Astrophysics Data System (ADS)
Boldea, I.; Nasar, S. A.
1987-01-01
The general equations of permanent-magnet heteropolar three-phase and single-phase linear alternators, powered by free-piston Stirling engines, are presented, with application to space power stations and domestic applications including solar power plants. The equations are applied to no-load and short-circuit conditions, illustrating the end-effect caused by the speed-reversal process. In the second part, basic design guidelines for a three-phase tubular linear alternator are given, and the procedure is demonstrated with the numerical example of the design of a 25-kVA, 14.4-m/s, 120/220-V, 60-Hz alternator.
Second-order discrete Kalman filtering equations for control-structure interaction simulations
NASA Technical Reports Server (NTRS)
Park, K. C.; Belvin, W. Keith; Alvin, Kenneth F.
1991-01-01
A general form for the first-order representation of the continuous, second-order linear structural dynamics equations is introduced in order to derive a corresponding form of first-order Kalman filtering equations (KFE). Time integration of the resulting first-order KFE is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete KFE involving only symmetric, N x N solution matrix.
An efficient parallel algorithm for the solution of a tridiagonal linear system of equations
NASA Technical Reports Server (NTRS)
Stone, H. S.
1971-01-01
Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.
Variational formulation for dissipative continua and an incremental J-integral
NASA Astrophysics Data System (ADS)
Rahaman, Md. Masiur; Dhas, Bensingh; Roy, D.; Reddy, J. N.
2018-01-01
Our aim is to rationally formulate a proper variational principle for dissipative (viscoplastic) solids in the presence of inertia forces. As a first step, a consistent linearization of the governing nonlinear partial differential equations (PDEs) is carried out. An additional set of complementary (adjoint) equations is then formed to recover an underlying variational structure for the augmented system of linearized balance laws. This makes it possible to introduce an incremental Lagrangian such that the linearized PDEs, including the complementary equations, become the Euler-Lagrange equations. Continuous groups of symmetries of the linearized PDEs are computed and an analysis is undertaken to identify the variational groups of symmetries of the linearized dissipative system. Application of Noether's theorem leads to the conservation laws (conserved currents) of motion corresponding to the variational symmetries. As a specific outcome, we exploit translational symmetries of the functional in the material space and recover, via Noether's theorem, an incremental J-integral for viscoplastic solids in the presence of inertia forces. Numerical demonstrations are provided through a two-dimensional plane strain numerical simulation of a compact tension specimen of annealed mild steel under dynamic loading.
Multigrid approaches to non-linear diffusion problems on unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.
Borges, Cleber N; Bruns, Roy E; Almeida, Aline A; Scarminio, Ieda S
2007-07-09
A composite simplex centroid-simplex centroid mixture design is proposed for simultaneously optimizing two mixture systems. The complementary model is formed by multiplying special cubic models for the two systems. The design was applied to the simultaneous optimization of both mobile phase chromatographic mixtures and extraction mixtures for the Camellia sinensis Chinese tea plant. The extraction mixtures investigated contained varying proportions of ethyl acetate, ethanol and dichloromethane while the mobile phase was made up of varying proportions of methanol, acetonitrile and a methanol-acetonitrile-water (MAW) 15%:15%:70% mixture. The experiments were block randomized corresponding to a split-plot error structure to minimize laboratory work and reduce environmental impact. Coefficients of an initial saturated model were obtained using Scheffe-type equations. A cumulative probability graph was used to determine an approximate reduced model. The split-plot error structure was then introduced into the reduced model by applying generalized least square equations with variance components calculated using the restricted maximum likelihood approach. A model was developed to calculate the number of peaks observed with the chromatographic detector at 210 nm. A 20-term model contained essentially all the statistical information of the initial model and had a root mean square calibration error of 1.38. The model was used to predict the number of peaks eluted in chromatograms obtained from extraction solutions that correspond to axial points of the simplex centroid design. The significant model coefficients are interpreted in terms of interacting linear, quadratic and cubic effects of the mobile phase and extraction solution components.
Polynomial compensation, inversion, and approximation of discrete time linear systems
NASA Technical Reports Server (NTRS)
Baram, Yoram
1987-01-01
The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.
Wankhede, S. B.; Raka, K. C.; Wadkar, S. B.; Chitlange, S. S.
2010-01-01
Two UV-spectrophotometric and one reverse phase high performance liquid chromatography methods have been developed for the simultaneous estimation of amlodipine besilate, losartan potassium and hydrochlorothiazide in tablet dosage form. The first UV spectrophotometric method was a determination using the simultaneous equation method at 236.5, 254 and 271 nm over the concentration range 5-25, 10-50 and 5-25 μg/ml for amlodipine besilate, losartan potassium and hydrochlorothiazide, respectively. The second UV method was a determination using the area under curve method at 231.5-241.5, 249-259 and 266-276 nm over the concentration range of 5-25, 5-25 and 10-50 μg/ml for amlodipine besilate, hydrochlorothiazide and losartan potassium, respectively. In reverse phase high performance liquid chromatography analysis is carried out using 0.025 M phosphate buffer (pH 3.7):acetonitrile (57:43 v/v) as the mobile phase and Kromasil C18 (4.6 mm i.d×250 mm) column as stationery phase with detection wavelength of 232 nm linearity was obtained in the concentration range of 2-14, 20-140 and 5-40 μg/ml for amlodipine besilate, losartan potassium and hydrochlorothiazide, respectively. Both UV-spectrophotometric and reverse phase high performance liquid chromatography methods were statistically validated and can be used for analysis of combined dose tablet formulation containing amlodipine besilate, losartan potassium and hydrochlorothiazide. PMID:20582208
Ashour, Safwan; Kattan, Nuha
2012-12-01
A novel method for the simultaneous high-performance liquid chromatographic determination of nortriptyline hydrochloride and fluphenazine hydrochloride was developed and validated. Fluvastatin sodium was used as internal standard. The determination was performed on a Hypersil Gold C 8 column (250 mm × 4.6 mm i.d., 5 μm particle size) at 25 °C; the mobile phase, consisting of a mixture of formic acid (0.1 M, pH 2.16)-methanol (33:67, v / v), was delivered at a flow rate of 1.1 mL/min and detector wavelength at 251 nm. The retention time of nortriptyline, fluphenazine and fluvastatin was found to be 5.11, 8.05 and 11.38 min, respectively. Linearity ranges were 5.0-1350.0 and 10.0-1350.0 μg/mL with limit of detection values of 0.72 and 0.31 μg/mL, for nortriptyline and fluphenazine, respectively. Results of assay and recovery studies were statistically evaluated for its accuracy and precision. Correlation coefficients ( r 2 ) of the regression equations were greater than 0.999 in all cases. According to the validation results, the proposed method was found to be specific, accurate, precise and could be applied to the simultaneous quantitative analysis of nortriptyline and fluphenazine.
A linearized Euler analysis of unsteady flows in turbomachinery
NASA Technical Reports Server (NTRS)
Hall, Kenneth C.; Crawley, Edward F.
1987-01-01
A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).
Dilations and the Equation of a Line
ERIC Educational Resources Information Center
Yopp, David A.
2016-01-01
Students engage in proportional reasoning when they use covariance and multiple comparisons. Without rich connections to proportional reasoning, students may develop inadequate understandings of linear relationships and the equations that model them. Teachers can improve students' understanding of linear relationships by focusing on realistic…
On Polynomial Solutions of Linear Differential Equations with Polynomial Coefficients
ERIC Educational Resources Information Center
Si, Do Tan
1977-01-01
Demonstrates a method for solving linear differential equations with polynomial coefficients based on the fact that the operators z and D + d/dz are known to be Hermitian conjugates with respect to the Bargman and Louck-Galbraith scalar products. (MLH)
Development and validation of a general purpose linearization program for rigid aircraft models
NASA Technical Reports Server (NTRS)
Duke, E. L.; Antoniewicz, R. F.
1985-01-01
A FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft models is discussed. The program LINEAR numerically determines a linear systems model using nonlinear equations of motion and a user-supplied, nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model. Also, included in the report is a comparison of linear and nonlinear models for a high performance aircraft.
Substructure method in high-speed monorail dynamic problems
NASA Astrophysics Data System (ADS)
Ivanchenko, I. I.
2008-12-01
The study of actions of high-speed moving loads on bridges and elevated tracks remains a topical problem for transport. In the present study, we propose a new method for moving load analysis of elevated tracks (monorail structures or bridges), which permits studying the interaction between two strained objects consisting of rod systems and rigid bodies with viscoelastic links; one of these objects is the moving load (monorail rolling stock), and the other is the carrying structure (monorail elevated track or bridge). The methods for moving load analysis of structures were developed in numerous papers [1-15]. At the first stage, when solving the problem about a beam under the action of the simplest moving load such as a moving weight, two fundamental methods can be used; the same methods are realized for other structures and loads. The first method is based on the use of a generalized coordinate in the expansion of the deflection in the natural shapes of the beam, and the problem is reduced to solving a system of ordinary differential equations with variable coefficients [1-3]. In the second method, after the "beam-weight" system is decomposed, just as in the problem with the weight impact on the beam [4], solving the problem is reduced to solving an integral equation for the dynamic weight reaction [6, 7]. In [1-3], an increase in the number of retained forms leads to an increase in the order of the system of equations; in [6, 7], difficulties arise when solving the integral equations related to the conditional stability of the step procedures. The method proposed in [9, 14] for beams and rod systems combines the above approaches and eliminates their drawbacks, because it permits retaining any necessary number of shapes in the deflection expansion and has a resolving system of equations with an unconditionally stable integration scheme and with a minimum number of unknowns, just as in the method of integral equations [6, 7]. This method is further developed for combined schemes modeling a strained elastic compound moving structure and a monorail elevated track. The problems of development of methods for dynamic analysis of monorails are very topical, especially because of increasing speeds of the rolling stock motion. These structures are studied in [16-18]. In the present paper, the above problem is solved by using the method for the moving load analysis and a step procedure of integration with respect to time, which were proposed in [9, 19], respectively. Further, these components are used to enlarge the possibilities of the substructure method in problems of dynamics. In the approach proposed for moving load analysis of structures, for a substructure (having the shape of a boundary element or a superelement) we choose an object moving at a constant speed (a monorail rolling stock); in this case, we use rod boundary elements of large length, which are gathered in a system modeling these objects. In particular, sets of such elements form a model of a monorail rolling stock, namely, carriage hulls, wheeled carts, elements of the wheel spring suspension, models of continuous beams of monorail ways and piers with foundations admitting emergency subsidence and unilateral links. These specialized rigid finite elements with linear and nonlinear links, included into the set of earlier proposed finite elements [14, 19], permit studying unsteady vibrations in the "monorail train-elevated track" (MTET) system taking into account various irregularities on the beam-rail, the pier emergency subsidence, and their elastic support by the basement. In this case, a high degree of the structure spatial digitization is obtained by using rods with distributed parameters in the analysis. The displacements are approximated by linear functions and trigonometric Fourier series, which, as was already noted, permits increasing the number of degrees of freedom of the system under study simultaneously preserving the order of the resolving system of equations. This approach permits studying the stress-strain state in the MTET system and determining accelerations at the desired points of the rolling stock. The proposed numerical procedure permits uniquely solving linear and nonlinear differential equations describing the operation of the model, which replaces the system by a monorail rolling stock consisting of several specialized mutually connected cars and a system of continuous beams on elastic inertial supports. This approach (based on the use of a moving substructure, which is also modeled by a system of boundary rod elements) permits maximally reducing the number of unknowns in the resolving system of equations at each step of its solution [11]. The authors of the preceding investigations of this problem, when studying the simultaneous vibrations of bridges and moving loads, considered only the case in which the rolling stock was represented by sufficiently complicated systems of rigid bodies connected by viscoelastic links [3-18] and the rolling stock motion was described by systems of ordinary differential equations. A specific characteristic of the proposed method is that it is convenient to derive the equations of motion of both the rolling stock and the bridge structure. The method [9, 14] permits obtaining the equations of interaction between the structures as two separate finite-element structures. Hence the researcher need not traditionally write out the system of equations of motion, for example, for the rolling stock (of cars) with finitely many degrees of freedom [3-18].We note several papers where simultaneous vibrations of an elastic moving load and an elastic carrying structure are considered in a rather narrow region and have a specific character. For example, the motion of an elastic rod along an elastic infinite rod on an elastic foundation is studied in [20], and the body of a car moving along a beam is considered as a rod with ten concentrated masses in [21].
Waves and instabilities in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L.
1987-01-01
The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.
Sequential-Simultaneous Analysis of Japanese Children's Performance on the Japanese McCarthy.
ERIC Educational Resources Information Center
Ishikuma, Toshinori; And Others
This study explored the hypothesis that Japanese children perform significantly better on simultaneous processing than on sequential processing. The Kaufman Assessment Battery for Children (K-ABC) served as the criterion of the two types of mental processing. Regression equations to predict Sequential and Simultaneous processing from McCarthy…
2008-01-01
exceeds the local water depth. The approximation eliminates the vertical dimension of the elliptic equation that is normally required for the fully non...used for vertical resolution. The shallow water equations (SWE) are a set of non-linear hyperbolic equations. As the equations are derived under...linear standing wave with a wavelength of 10 m in a square 10 m by 10 m basin. The still water depth is 0.5 m. In order to compare with the analytical
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...
2015-11-12
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
NASA Astrophysics Data System (ADS)
Whiteley, J. P.
2017-10-01
Large, incompressible elastic deformations are governed by a system of nonlinear partial differential equations. The finite element discretisation of these partial differential equations yields a system of nonlinear algebraic equations that are usually solved using Newton's method. On each iteration of Newton's method, a linear system must be solved. We exploit the structure of the Jacobian matrix to propose a preconditioner, comprising two steps. The first step is the solution of a relatively small, symmetric, positive definite linear system using the preconditioned conjugate gradient method. This is followed by a small number of multigrid V-cycles for a larger linear system. Through the use of exemplar elastic deformations, the preconditioner is demonstrated to facilitate the iterative solution of the linear systems arising. The number of GMRES iterations required has only a very weak dependence on the number of degrees of freedom of the linear systems.
NASA Technical Reports Server (NTRS)
Bland, S. R.
1982-01-01
Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.
NASA Astrophysics Data System (ADS)
Ji, Songsong; Yang, Yibo; Pang, Gang; Antoine, Xavier
2018-01-01
The aim of this paper is to design some accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations in rectangular domains. The Laplace transform in time and discrete Fourier transform in space are applied to get Green's functions of the semi-discretized equations in unbounded domains with single-source. An algorithm is given to compute these Green's functions accurately through some recurrence relations. Furthermore, the finite-difference method is used to discretize the reduced problem with accurate boundary conditions. Numerical simulations are presented to illustrate the accuracy of our method in the case of the linear Schrödinger and heat equations. It is shown that the reflection at the corners is correctly eliminated.
MagIC: Fluid dynamics in a spherical shell simulator
NASA Astrophysics Data System (ADS)
Wicht, J.; Gastine, T.; Barik, A.; Putigny, B.; Yadav, R.; Duarte, L.; Dintrans, B.
2017-09-01
MagIC simulates fluid dynamics in a spherical shell. It solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD), a temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations. MagIC uses either Chebyshev polynomials or finite differences in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.
A computationally efficient scheme for the non-linear diffusion equation
NASA Astrophysics Data System (ADS)
Termonia, P.; Van de Vyver, H.
2009-04-01
This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered version of the linearized Crank-Nicholson scheme, showing that, although this scheme is slightly less accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems, (ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more computationally cheap, and (iv) is easier in implementation.
Wu, Huai-Ning; Luo, Biao
2012-12-01
It is well known that the nonlinear H∞ state feedback control problem relies on the solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which is a nonlinear partial differential equation that has proven to be impossible to solve analytically. In this paper, a neural network (NN)-based online simultaneous policy update algorithm (SPUA) is developed to solve the HJI equation, in which knowledge of internal system dynamics is not required. First, we propose an online SPUA which can be viewed as a reinforcement learning technique for two players to learn their optimal actions in an unknown environment. The proposed online SPUA updates control and disturbance policies simultaneously; thus, only one iterative loop is needed. Second, the convergence of the online SPUA is established by proving that it is mathematically equivalent to Newton's method for finding a fixed point in a Banach space. Third, we develop an actor-critic structure for the implementation of the online SPUA, in which only one critic NN is needed for approximating the cost function, and a least-square method is given for estimating the NN weight parameters. Finally, simulation studies are provided to demonstrate the effectiveness of the proposed algorithm.
On the solubility of certain classes of non-linear integral equations in p-adic string theory
NASA Astrophysics Data System (ADS)
Khachatryan, Kh. A.
2018-04-01
We study classes of non-linear integral equations that have immediate application to p-adic mathematical physics and to cosmology. We prove existence and uniqueness theorems for non-trivial solutions in the space of bounded functions.
Generating Linear Equations Based on Quantitative Reasoning
ERIC Educational Resources Information Center
Lee, Mi Yeon
2017-01-01
The Common Core's Standards for Mathematical Practice encourage teachers to develop their students' ability to reason abstractly and quantitatively by helping students make sense of quantities and their relationships within problem situations. The seventh-grade content standards include objectives pertaining to developing linear equations in…
Scott, M
2012-08-01
The time-covariance function captures the dynamics of biochemical fluctuations and contains important information about the underlying kinetic rate parameters. Intrinsic fluctuations in biochemical reaction networks are typically modelled using a master equation formalism. In general, the equation cannot be solved exactly and approximation methods are required. For small fluctuations close to equilibrium, a linearisation of the dynamics provides a very good description of the relaxation of the time-covariance function. As the number of molecules in the system decrease, deviations from the linear theory appear. Carrying out a systematic perturbation expansion of the master equation to capture these effects results in formidable algebra; however, symbolic mathematics packages considerably expedite the computation. The authors demonstrate that non-linear effects can reveal features of the underlying dynamics, such as reaction stoichiometry, not available in linearised theory. Furthermore, in models that exhibit noise-induced oscillations, non-linear corrections result in a shift in the base frequency along with the appearance of a secondary harmonic.
NASA Astrophysics Data System (ADS)
Bahrampour, Alireza; Fallah, Robabeh; Ganjovi, Alireza A.; Bahrampour, Abolfazl
2007-07-01
This paper models the dielectric corona pre-ionization, capacitor transfer type of flat-plane transmission line traveling wave transverse excited atmospheric pressure nitrogen laser by a non-linear lumped RLC electric circuit. The flat-plane transmission line and the pre-ionizer dielectric are modeled by a lumped linear RLC and time-dependent non-linear RC circuit, respectively. The main discharge region is considered as a time-dependent non-linear RLC circuit where its resistance value is also depends on the radiated pre-ionization ultra violet (UV) intensity. The UV radiation is radiated by the resistance due to the surface plasma on the pre-ionizer dielectric. The theoretical predictions are in a very good agreement with the experimental observations. The electric circuit equations (including the ionization rate equations), the equations of laser levels population densities and propagation equation of laser intensities, are solved numerically. As a result, the effects of pre-ionizer dielectric parameters on the electrical behavior and output laser intensity are obtained.
Prediction of textural attributes using color values of banana (Musa sapientum) during ripening.
Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Poonam Preet; Bhardwaj, Rishi; Singh, Ashish Kumar; Wadhawan, Vishakha
2014-06-01
Banana is an important sub-tropical fruit in international trade. It undergoes significant textural and color transformations during ripening process, which in turn influence the eating quality of the fruit. In present study, color ('L', 'a' and 'b' value) and textural attributes of bananas (peel, fruit and pulp firmness; pulp toughness; stickiness) were studied simultaneously using Hunter Color Lab and Texture Analyser, respectively, during ripening period of 10 days at ambient atmosphere. There was significant effect of ripening period on all the considered textural characteristics and color properties of bananas except color value 'b'. In general, textural descriptors (peel, fruit and pulp firmness; and pulp toughness) decreased during ripening except stickiness, while color values viz 'a' and 'b' increased with ripening barring 'L' value. Among various textural attributes, peel toughness and pulp firmness showed highest correlation (r) with 'a' value of banana peel. In order to predict textural properties using color values of banana, five types of equations (linear/polynomial/exponential/logarithmic/power) were fitted. Among them, polynomial equation was found to be the best fit (highest coefficient of determination, R(2)) for prediction of texture using color properties for bananas. The pulp firmness, peel toughness and pulp toughness showed R(2) above 0.84 with indicating its potentiality of the fitted equations for prediction of textural profile of bananas non-destructively using 'a' value.
Students' conceptual performance on synthesis physics problems with varying mathematical complexity
NASA Astrophysics Data System (ADS)
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-06-01
A body of research on physics problem solving has focused on single-concept problems. In this study we use "synthesis problems" that involve multiple concepts typically taught in different chapters. We use two types of synthesis problems, sequential and simultaneous synthesis tasks. Sequential problems require a consecutive application of fundamental principles, and simultaneous problems require a concurrent application of pertinent concepts. We explore students' conceptual performance when they solve quantitative synthesis problems with varying mathematical complexity. Conceptual performance refers to the identification, follow-up, and correct application of the pertinent concepts. Mathematical complexity is determined by the type and the number of equations to be manipulated concurrently due to the number of unknowns in each equation. Data were collected from written tasks and individual interviews administered to physics major students (N =179 ) enrolled in a second year mechanics course. The results indicate that mathematical complexity does not impact students' conceptual performance on the sequential tasks. In contrast, for the simultaneous problems, mathematical complexity negatively influences the students' conceptual performance. This difference may be explained by the students' familiarity with and confidence in particular concepts coupled with cognitive load associated with manipulating complex quantitative equations. Another explanation pertains to the type of synthesis problems, either sequential or simultaneous task. The students split the situation presented in the sequential synthesis tasks into segments but treated the situation in the simultaneous synthesis tasks as a single event.
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
quantum linear systems subject to non-classical quantum fields. The major outcomes of this project are (i) derivation of quantum filtering equations for...derivation of quantum filtering equations for systems non-classical input states including single photon states, (ii) determination of how linear...history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering and LQG optimal control
Instability of isolated planar shock waves
2007-06-07
Note that multi-mode perturbations can be treated by the inclusion of additional terms in Eq. (4), but owing to the linear independence of the... Volterra equation Figure 4 shows five examples of the evolution of the amplitude of a linear sinusoidal perturbation on a shock front obtained by...showing the evolution of the amplitude of a linear sinusoidal perturbation on a shock front obtained by numerically solving the Volterra equation in
On the Duffin-Kemmer-Petiau equation with linear potential in the presence of a minimal length
NASA Astrophysics Data System (ADS)
Chargui, Yassine
2018-04-01
We point out an erroneous handling in the literature regarding solutions of the (1 + 1)-dimensional Duffin-Kemmer-Petiau equation with linear potentials in the context of quantum mechanics with minimal length. Furthermore, using Brau's approach, we present a perturbative treatment of the effect of the minimal length on bound-state solutions when a Lorentz-scalar linear potential is applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnich, Glenn; Troessaert, Cedric
2009-04-15
In the reduced phase space of electromagnetism, the generator of duality rotations in the usual Poisson bracket is shown to generate Maxwell's equations in a second, much simpler Poisson bracket. This gives rise to a hierarchy of bi-Hamiltonian evolution equations in the standard way. The result can be extended to linearized Yang-Mills theory, linearized gravity, and massless higher spin gauge fields.
Recursive linearization of multibody dynamics equations of motion
NASA Technical Reports Server (NTRS)
Lin, Tsung-Chieh; Yae, K. Harold
1989-01-01
The equations of motion of a multibody system are nonlinear in nature, and thus pose a difficult problem in linear control design. One approach is to have a first-order approximation through the numerical perturbations at a given configuration, and to design a control law based on the linearized model. Here, a linearized model is generated analytically by following the footsteps of the recursive derivation of the equations of motion. The equations of motion are first written in a Newton-Euler form, which is systematic and easy to construct; then, they are transformed into a relative coordinate representation, which is more efficient in computation. A new computational method for linearization is obtained by applying a series of first-order analytical approximations to the recursive kinematic relationships. The method has proved to be computationally more efficient because of its recursive nature. It has also turned out to be more accurate because of the fact that analytical perturbation circumvents numerical differentiation and other associated numerical operations that may accumulate computational error, thus requiring only analytical operations of matrices and vectors. The power of the proposed linearization algorithm is demonstrated, in comparison to a numerical perturbation method, with a two-link manipulator and a seven degrees of freedom robotic manipulator. Its application to control design is also demonstrated.
Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla
2010-02-01
Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.
NASA Astrophysics Data System (ADS)
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
Optical systolic solutions of linear algebraic equations
NASA Technical Reports Server (NTRS)
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
Equations for the Filled Inelastic Membrane: A More General Derivation
ERIC Educational Resources Information Center
Deakin, Michael A. B.
2011-01-01
An earlier paper discussed the case of a flexible but inextensible membrane filled to capacity with incompressible fluid. It was found that the resulting shape satisfies a set of three simultaneous partial differential equations. This article gives a more general derivation of these equations and shows their form in an interesting special case.
NASA Astrophysics Data System (ADS)
Perelomova, Anna
2006-08-01
The equation of energy balance is subdivided into two dynamics equations, one describing evolution of the dominative sound, and the second one responsible for acoustic heating. The first one is the famous KZK equation, and the second one is a novel equation governing acoustic heating. The novel dynamic equation considers both periodic and non-periodic sound. Quasi-plane geometry of flow is supposed. Subdividing is provided on the base of specific links of every mode. Media with arbitrary thermic T(p,ρ) and caloric e(p,ρ) equations of state are considered. Individual roles of thermal conductivity and viscosity in the heating induced by aperiodic sound in the ideal gases and media different from ideal gases are discussed.
On homogeneous second order linear general quantum difference equations.
Faried, Nashat; Shehata, Enas M; El Zafarani, Rasha M
2017-01-01
In this paper, we prove the existence and uniqueness of solutions of the β -Cauchy problem of second order β -difference equations [Formula: see text] [Formula: see text], in a neighborhood of the unique fixed point [Formula: see text] of the strictly increasing continuous function β , defined on an interval [Formula: see text]. These equations are based on the general quantum difference operator [Formula: see text], which is defined by [Formula: see text], [Formula: see text]. We also construct a fundamental set of solutions for the second order linear homogeneous β -difference equations when the coefficients are constants and study the different cases of the roots of their characteristic equations. Finally, we drive the Euler-Cauchy β -difference equation.
NASA Astrophysics Data System (ADS)
Filimonov, M. Yu.
2017-12-01
The method of special series with recursively calculated coefficients is used to solve nonlinear partial differential equations. The recurrence of finding the coefficients of the series is achieved due to a special choice of functions, in powers of which the solution is expanded in a series. We obtain a sequence of linear partial differential equations to find the coefficients of the series constructed. In many cases, one can deal with a sequence of linear ordinary differential equations. We construct classes of solutions in the form of convergent series for a certain class of nonlinear evolution equations. A new class of solutions of generalized Boussinesque equation with an arbitrary function in the form of a convergent series is constructed.
On conforming mixed finite element methods for incompressible viscous flow problems
NASA Technical Reports Server (NTRS)
Gunzburger, M. D; Nicolaides, R. A.; Peterson, J. S.
1982-01-01
The application of conforming mixed finite element methods to obtain approximate solutions of linearized Navier-Stokes equations is examined. Attention is given to the convergence rates of various finite element approximations of the pressure and the velocity field. The optimality of the convergence rates are addressed in terms of comparisons of the approximation convergence to a smooth solution in relation to the best approximation available for the finite element space used. Consideration is also devoted to techniques for efficient use of a Gaussian elimination algorithm to obtain a solution to a system of linear algebraic equations derived by finite element discretizations of linear partial differential equations.
NASA Technical Reports Server (NTRS)
Barker, L. E., Jr.; Bowles, R. L.; Williams, L. H.
1973-01-01
High angular rates encountered in real-time flight simulation problems may require a more stable and accurate integration method than the classical methods normally used. A study was made to develop a general local linearization procedure of integrating dynamic system equations when using a digital computer in real-time. The procedure is specifically applied to the integration of the quaternion rate equations. For this application, results are compared to a classical second-order method. The local linearization approach is shown to have desirable stability characteristics and gives significant improvement in accuracy over the classical second-order integration methods.
A high performance linear equation solver on the VPP500 parallel supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakanishi, Makoto; Ina, Hiroshi; Miura, Kenichi
1994-12-31
This paper describes the implementation of two high performance linear equation solvers developed for the Fujitsu VPP500, a distributed memory parallel supercomputer system. The solvers take advantage of the key architectural features of VPP500--(1) scalability for an arbitrary number of processors up to 222 processors, (2) flexible data transfer among processors provided by a crossbar interconnection network, (3) vector processing capability on each processor, and (4) overlapped computation and transfer. The general linear equation solver based on the blocked LU decomposition method achieves 120.0 GFLOPS performance with 100 processors in the LIN-PACK Highly Parallel Computing benchmark.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsanea, F; Therriault-Proulx, F; Sawakuchi, G
Purpose: The light generated in organic scintillators depends on both the radiation dose and the linear energy transfer (LET). The LET dependence leads to an under-response of the detector in the Bragg peak of proton beams. This phenomenon, called ionization quenching, must be corrected to obtain accurate dose measurements of proton beams. This work exploits the ionization quenching phenomenon to provide a method of measuring LET and auto correcting quenching. Methods: We exposed simultaneously four different organic scintillators (BCF-12, PMMA, PVT, and LSD; 1mm in diameter) and a plane parallel ionization chamber in passively scattered proton beams to doses betweenmore » 32 and 43 cGy and fluence averaged LET values from 0.47 to 1.26 keV/µm. The LET values for each irradiation condition were determined using a validated Monte Carlo model of the beam line. We determined the quenching parameter in the Birk’s equation for scintillation in BCF-12 for dose measurements. One set of irradiation conditions was used to correlate the scintillation response ratio to the LET values and plot a scintillation response ratio versus LET calibration curve. Irradiation conditions independent from the calibration ones were used to validate this method. Comparisons to the expected values were made on both the basis of dose and LET. Results: Among all the scintillators investigated, the ratio of PMMA to BCF-12 provided the best correlation to LET values and was used as the LET calibration curve. The expected LET values in the validation set were within 2%±6%, which resulted in dose accuracy of 1.5%±5.8% for the range of LET values investigated in this work. Conclusion: We have demonstrated the feasibility of using the ratio between the light output of two organic scintillators to simultaneously measure LET and dose of therapeutic proton beams. Further studies are needed to verify the response in higher LET values.« less
2013-01-01
application of the Hammett equation with the constants rph in the chemistry of organophosphorus compounds, Russ. Chem. Rev. 38 (1969) 795–811. [13...of oximes and OP compounds and the ability of oximes to reactivate OP- inhibited AChE. Multiple linear regression equations were analyzed using...phosphonate pairs, 21 oxime/ phosphoramidate pairs and 12 oxime/phosphate pairs. The best linear regression equation resulting from multiple regression anal
When is quasi-linear theory exact. [particle acceleration
NASA Technical Reports Server (NTRS)
Jones, F. C.; Birmingham, T. J.
1975-01-01
We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.
Method of Conjugate Radii for Solving Linear and Nonlinear Systems
NASA Technical Reports Server (NTRS)
Nachtsheim, Philip R.
1999-01-01
This paper describes a method to solve a system of N linear equations in N steps. A quadratic form is developed involving the sum of the squares of the residuals of the equations. Equating the quadratic form to a constant yields a surface which is an ellipsoid. For different constants, a family of similar ellipsoids can be generated. Starting at an arbitrary point an orthogonal basis is constructed and the center of the family of similar ellipsoids is found in this basis by a sequence of projections. The coordinates of the center in this basis are the solution of linear system of equations. A quadratic form in N variables requires N projections. That is, the current method is an exact method. It is shown that the sequence of projections is equivalent to a special case of the Gram-Schmidt orthogonalization process. The current method enjoys an advantage not shared by the classic Method of Conjugate Gradients. The current method can be extended to nonlinear systems without modification. For nonlinear equations the Method of Conjugate Gradients has to be augmented with a line-search procedure. Results for linear and nonlinear problems are presented.
Abel's Theorem Simplifies Reduction of Order
ERIC Educational Resources Information Center
Green, William R.
2011-01-01
We give an alternative to the standard method of reduction or order, in which one uses one solution of a homogeneous, linear, second order differential equation to find a second, linearly independent solution. Our method, based on Abel's Theorem, is shorter, less complex and extends to higher order equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyer, Christopher; Rosenthal, Anja; Myhill, Robert
We have performed an experimental cross calibration of a suite of mineral equilibria within mantle rock bulk compositions that are commonly used in geobarometry to determine the equilibration depths of upper mantle assemblages. Multiple barometers were compared simultaneously in experimental runs, where the pressure was determined using in-situ measurements of the unit cell volumes of MgO, NaCl, Re and h-BN between 3.6 and 10.4 GPa, and 1250 and 1500 °C. The experiments were performed in a large volume press (LVPs) in combination with synchrotron X-ray diffraction. Noble metal capsules drilled with multiple sample chambers were loaded with a range ofmore » bulk compositions representative of peridotite, eclogite and pyroxenite lithologies. By this approach, we simultaneously calibrated the geobarometers applicable to different mantle lithologies under identical and well determined pressure and temperature conditions. We identified discrepancies between the calculated and experimental pressures for which we propose simple linear or constant correction factors to some of the previously published barometric equations. As a result, we establish internally-consistent cross-calibrations for a number of garnet-orthopyroxene, garnet-clinopyroxene, Ca-Tschermaks-in-clinopyroxene and majorite geobarometers.« less
Optimal Control for Stochastic Delay Evolution Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qingxin, E-mail: mqx@hutc.zj.cn; Shen, Yang, E-mail: skyshen87@gmail.com
2016-08-15
In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we applymore » stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.« less
NASA Astrophysics Data System (ADS)
Chang, Chih-Yuan; Owen, Gerry; Pease, Roger Fabian W.; Kailath, Thomas
1992-07-01
Dose correction is commonly used to compensate for the proximity effect in electron lithography. The computation of the required dose modulation is usually carried out using 'self-consistent' algorithms that work by solving a large number of simultaneous linear equations. However, there are two major drawbacks: the resulting correction is not exact, and the computation time is excessively long. A computational scheme, as shown in Figure 1, has been devised to eliminate this problem by the deconvolution of the point spread function in the pattern domain. The method is iterative, based on a steepest descent algorithm. The scheme has been successfully tested on a simple pattern with a minimum feature size 0.5 micrometers , exposed on a MEBES tool at 10 KeV in 0.2 micrometers of PMMA resist on a silicon substrate.
Effect of virtual memory on efficient solution of two model problems
NASA Technical Reports Server (NTRS)
Lambiotte, J. J., Jr.
1977-01-01
Computers with virtual memory architecture allow programs to be written as if they were small enough to be contained in memory. Two types of problems are investigated to show that this luxury can lead to quite an inefficient performance if the programmer does not interact strongly with the characteristics of the operating system when developing the program. The two problems considered are the simultaneous solutions of a large linear system of equations by Gaussian elimination and a model three-dimensional finite-difference problem. The Control Data STAR-100 computer runs are made to demonstrate the inefficiencies of programming the problems in the manner one would naturally do if the problems were indeed, small enough to be contained in memory. Program redesigns are presented which achieve large improvements in performance through changes in the computational procedure and the data base arrangement.
NASA Technical Reports Server (NTRS)
Barrett, C. A.
1985-01-01
Multiple linear regression analysis was used to determine an equation for estimating hot corrosion attack for a series of Ni base cast turbine alloys. The U transform (i.e., 1/sin (% A/100) to the 1/2) was shown to give the best estimate of the dependent variable, y. A complete second degree equation is described for the centered" weight chemistries for the elements Cr, Al, Ti, Mo, W, Cb, Ta, and Co. In addition linear terms for the minor elements C, B, and Zr were added for a basic 47 term equation. The best reduced equation was determined by the stepwise selection method with essentially 13 terms. The Cr term was found to be the most important accounting for 60 percent of the explained variability hot corrosion attack.
NASA Astrophysics Data System (ADS)
Eule, S.; Friedrich, R.
2013-03-01
Dynamical processes exhibiting non-Poissonian kinetics with nonexponential waiting times are frequently encountered in nature. Examples are biochemical processes like gene transcription which are known to involve multiple intermediate steps. However, often a second process, obeying Poissonian statistics, affects the first one simultaneously, such as the degradation of mRNA in the above example. The aim of the present article is to provide a concise treatment of such random systems which are affected by regular and non-Poissonian kinetics at the same time. We derive the governing master equation and provide a controlled approximation scheme for this equation. The simplest approximation leads to generalized reaction rate equations. For a simple model of gene transcription we solve the resulting equation and show how the time evolution is influenced significantly by the type of waiting time distribution assumed for the non-Poissonian process.
Ishikawa, Taisuke; Fukushima, Ryuji; Suzuki, Shuji; Miyaishi, Yuka; Nishimura, Taiki; Hira, Satoshi; Hamabe, Lina; Tanaka, Ryou
2011-08-01
Non-invasive and immediate estimation of left atrial pressure (LAP) is very useful for the management of mitral regurgitation (MR), and many reports have assessed echocardiographic estimations of LAP to date. However, it has been unclear of which examination and evaluate article possess the best accuracy for the MR severity. The present research aims to establish the echocardiographic estimation equation of LAP that is well applicable for clinical MR dogs. After the chordae tendineae rupture was experimentally induced via left atriotomy in six healthy beagle dogs (three males and three females, two years old, weighing between 9.8 to 12.8 kg), a radio telemetry transmitter catheter was inserted, which allows the continuous recordings of LAP without the use of sedation. Approximately 5 weeks after the surgery, echocardiographic examination, indirect blood pressure measurement, measurement of plasma atrial natriuretic peptide (ANP) and LAP measurement by way of the radio telemetry system was performed simultaneously. Subsequently, simple linear regression equations between LAP and each variable were obtained, and the equations were evaluated whether to be applicable for clinical MR dogs. As a result, the ratio of early diastolic mitral flow to early diastolic lateral mitral annulus velocity (E/Ea) had the strongest correlation as maximum LAP=7.03*(E/Ea)-54.86 (r=0.74), and as mean LAP=4.94*(E/Ea)-40.37 (r=0.70) among the all variables. Therefore, these two equations associated with E/Ea should bring more precise and instant estimations of maximum and mean LAP in clinical MR dogs.
Effect of Coannular Flow on Linearized Euler Equation Predictions of Jet Noise
NASA Technical Reports Server (NTRS)
Hixon, R.; Shih, S.-H.; Mankbadi, Reda R.
1997-01-01
An improved version of a previously validated linearized Euler equation solver is used to compute the noise generated by coannular supersonic jets. Results for a single supersonic jet are compared to the results from both a normal velocity profile and an inverted velocity profile supersonic jet.
Teaching Linear Equations: Case Studies from Finland, Flanders and Hungary
ERIC Educational Resources Information Center
Andrews, Paul; Sayers, Judy
2012-01-01
In this paper we compare how three teachers, one from each of Finland, Flanders and Hungary, introduce linear equations to grade 8 students. Five successive lessons were videotaped and analysed qualitatively to determine how teachers, each of whom was defined against local criteria as effective, addressed various literature-derived…
Discovering Linear Equations in Explicit Tables
ERIC Educational Resources Information Center
Burton, Lauren
2017-01-01
When teaching algebra concepts to middle school students, the author often hears questions that echo her own past confusion as a young student learning to write linear equations using data tables that show only input and output values. Students, expected to synthesize the relationship between these values in symbolic representation, grow…
Observed Score Linear Equating with Covariates
ERIC Educational Resources Information Center
Branberg, Kenny; Wiberg, Marie
2011-01-01
This paper examined observed score linear equating in two different data collection designs, the equivalent groups design and the nonequivalent groups design, when information from covariates (i.e., background variables correlated with the test scores) was included. The main purpose of the study was to examine the effect (i.e., bias, variance, and…
From Arithmetic Sequences to Linear Equations
ERIC Educational Resources Information Center
Matsuura, Ryota; Harless, Patrick
2012-01-01
The first part of the article focuses on deriving the essential properties of arithmetic sequences by appealing to students' sense making and reasoning. The second part describes how to guide students to translate their knowledge of arithmetic sequences into an understanding of linear equations. Ryota Matsuura originally wrote these lessons for…
1989-01-01
Signs of Algebraic Numbers T. Sakkalis, New Mexico State University, Las Cruces ................................. 130 Efficient Reduction of Quadratic...equations. These equations are solved for dl,.. , d. and el ’.. e,, and a basis of minimal non-zero simultaneous solutions in which if d1 # 0, then ei = 0 and...and < el ,..,- emm d, dm > need to be considered because of the symmetric nature of the diophantine equations. These equations can be solved using
NASA Astrophysics Data System (ADS)
Huang, Xingguo; Sun, Jianguo; Greenhalgh, Stewart
2018-04-01
We present methods for obtaining numerical and analytic solutions of the complex eikonal equation in inhomogeneous acoustic VTI media (transversely isotropic media with a vertical symmetry axis). The key and novel point of the method for obtaining numerical solutions is to transform the problem of solving the highly nonlinear acoustic VTI eikonal equation into one of solving the relatively simple eikonal equation for the background (isotropic) medium and a system of linear partial differential equations. Specifically, to obtain the real and imaginary parts of the complex traveltime in inhomogeneous acoustic VTI media, we generalize a perturbation theory, which was developed earlier for solving the conventional real eikonal equation in inhomogeneous anisotropic media, to the complex eikonal equation in such media. After the perturbation analysis, we obtain two types of equations. One is the complex eikonal equation for the background medium and the other is a system of linearized partial differential equations for the coefficients of the corresponding complex traveltime formulas. To solve the complex eikonal equation for the background medium, we employ an optimization scheme that we developed for solving the complex eikonal equation in isotropic media. Then, to solve the system of linearized partial differential equations for the coefficients of the complex traveltime formulas, we use the finite difference method based on the fast marching strategy. Furthermore, by applying the complex source point method and the paraxial approximation, we develop the analytic solutions of the complex eikonal equation in acoustic VTI media, both for the isotropic and elliptical anisotropic background medium. Our numerical results demonstrate the effectiveness of our derivations and illustrate the influence of the beam widths and the anisotropic parameters on the complex traveltimes.
NASA Astrophysics Data System (ADS)
Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.
2017-11-01
When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.
Numerical Analysis of a Class of THM Coupled Model for Porous Materials
NASA Astrophysics Data System (ADS)
Liu, Tangwei; Zhou, Jingying; Lu, Hongzhi
2018-01-01
We consider the coupled models of the Thermo-hydro-mechanical (THM) problem for porous materials which arises in many engineering applications. Firstly, mathematical models of the THM coupled problem for porous materials were discussed. Secondly, for different cases, some numerical difference schemes of coupled model were constructed, respectively. Finally, aassuming that the original water vapour effect is neglectable and that the volume fraction of liquid phase and the solid phase are constants, the nonlinear equations can be reduced to linear equations. The discrete equations corresponding to the linear equations were solved by the Arnodli method.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.
Gyro-Landau fluid models for toroidal geometry
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Dominguez, R. R.; Hammett, G. W.
1992-10-01
Gyro-Landau fluid model equations provide first-order time advancement for a limited number of moments of the gyrokinetic equation, while approximately preserving the effects of the gyroradius averaging and Landau damping. This paper extends the work of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for electrostatic motion parallel to the magnetic field and E×B motion to include the gyroaveraging linearly and the curvature drift motion. The equations are tested by comparing the ion-temperature-gradient mode linear growth rates for the model equations with those of the exact gyrokinetic theory over a full range of parameters.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
NASA Astrophysics Data System (ADS)
Macomber, B.; Woollands, R. M.; Probe, A.; Younes, A.; Bai, X.; Junkins, J.
2013-09-01
Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for approximating solutions of linear or non-linear Ordinary Differential Equations (ODEs) to obtain time histories of system state trajectories. Unlike other step-by-step differential equation solvers, the Runge-Kutta family of numerical integrators for example, MCPI approximates long arcs of the state trajectory with an iterative path approximation approach, and is ideally suited to parallel computation. Orthogonal Chebyshev Polynomials are used as basis functions during each path iteration; the integrations of the Picard iteration are then done analytically. Due to the orthogonality of the Chebyshev basis functions, the least square approximations are computed without matrix inversion; the coefficients are computed robustly from discrete inner products. As a consequence of discrete sampling and weighting adopted for the inner product definition, Runge phenomena errors are minimized near the ends of the approximation intervals. The MCPI algorithm utilizes a vector-matrix framework for computational efficiency. Additionally, all Chebyshev coefficients and integrand function evaluations are independent, meaning they can be simultaneously computed in parallel for further decreased computational cost. Over an order of magnitude speedup from traditional methods is achieved in serial processing, and an additional order of magnitude is achievable in parallel architectures. This paper presents a new MCPI library, a modular toolset designed to allow MCPI to be easily applied to a wide variety of ODE systems. Library users will not have to concern themselves with the underlying mathematics behind the MCPI method. Inputs are the boundary conditions of the dynamical system, the integrand function governing system behavior, and the desired time interval of integration, and the output is a time history of the system states over the interval of interest. Examples from the field of astrodynamics are presented to compare the output from the MCPI library to current state-of-practice numerical integration methods. It is shown that MCPI is capable of out-performing the state-of-practice in terms of computational cost and accuracy.
NASA Astrophysics Data System (ADS)
Zheng, Yuan-Fang
A three-dimensional, five link biped system is established. Newton-Euler state space formulation is employed to derive the equations of the system. The constraint forces involved in the equations can be eliminated by projection onto a smaller state space system for deriving advanced control laws. A model-referenced adaptive control scheme is developed to control the system. Digital computer simulations of point to point movement are carried out to show that the model-referenced adaptive control increases the dynamic range and speeds up the response of the system in comparison with linear and nonlinear feedback control. Further, the implementation of the controller is simpler. Impact effects of biped contact with the environment are modeled and studied. The instant velocity change at the moment of impact is derived as a function of the biped state and contact speed. The effects of impact on the state, as well as constraints are studied in biped landing on heels and toes simultaneously or on toes first. Rate and nonlinear position feedback are employed for stability of the biped after the impact. The complex structure of the foot is properly modeled. A spring and dashpot pair is suggested to represent the action of plantar fascia during the impact. This action prevents the arch of the foot from collapsing. A mathematical model of the skeletal muscle is discussed. A direct relationship between the stimulus rate and the active state is established. A piecewise linear relation between the length of the contractile element and the isometric force is considered. Hill's characteristic equation is maintained for determining the actual output force during different shortening velocities. A physical threshold model is proposed for recruitment which encompasses the size principle, its manifestations and exceptions to the size principle. Finally the role of spindle feedback in stability of the model is demonstrated by study of a pair of muscles.
Panday, Sorab; Langevin, Christian D.; Niswonger, Richard G.; Ibaraki, Motomu; Hughes, Joseph D.
2013-01-01
A new version of MODFLOW, called MODFLOW–USG (for UnStructured Grid), was developed to support a wide variety of structured and unstructured grid types, including nested grids and grids based on prismatic triangles, rectangles, hexagons, and other cell shapes. Flexibility in grid design can be used to focus resolution along rivers and around wells, for example, or to subdiscretize individual layers to better represent hydrostratigraphic units. MODFLOW–USG is based on an underlying control volume finite difference (CVFD) formulation in which a cell can be connected to an arbitrary number of adjacent cells. To improve accuracy of the CVFD formulation for irregular grid-cell geometries or nested grids, a generalized Ghost Node Correction (GNC) Package was developed, which uses interpolated heads in the flow calculation between adjacent connected cells. MODFLOW–USG includes a Groundwater Flow (GWF) Process, based on the GWF Process in MODFLOW–2005, as well as a new Connected Linear Network (CLN) Process to simulate the effects of multi-node wells, karst conduits, and tile drains, for example. The CLN Process is tightly coupled with the GWF Process in that the equations from both processes are formulated into one matrix equation and solved simultaneously. This robustness results from using an unstructured grid with unstructured matrix storage and solution schemes. MODFLOW–USG also contains an optional Newton-Raphson formulation, based on the formulation in MODFLOW–NWT, for improving solution convergence and avoiding problems with the drying and rewetting of cells. Because the existing MODFLOW solvers were developed for structured and symmetric matrices, they were replaced with a new Sparse Matrix Solver (SMS) Package developed specifically for MODFLOW–USG. The SMS Package provides several methods for resolving nonlinearities and multiple symmetric and asymmetric linear solution schemes to solve the matrix arising from the flow equations and the Newton-Raphson formulation, respectively.
Nurhuda, M; Rouf, A
2017-09-01
The paper presents a method for simultaneous computation of eigenfunction and eigenvalue of the stationary Schrödinger equation on a grid, without imposing boundary-value condition. The method is based on the filter operator, which selects the eigenfunction from wave packet at the rate comparable to δ function. The efficacy and reliability of the method are demonstrated by comparing the simulation results with analytical or numerical solutions obtained by using other methods for various boundary-value conditions. It is found that the method is robust, accurate, and reliable. Further prospect of filter method for simulation of the Schrödinger equation in higher-dimensional space will also be highlighted.
The application of MINIQUASI to thermal program boundary and initial value problems
NASA Technical Reports Server (NTRS)
1974-01-01
The feasibility of applying the solution techniques of Miniquasi to the set of equations which govern a thermoregulatory model is investigated. For solving nonlinear equations and/or boundary conditions, a Taylor Series expansion is required for linearization of both equations and boundary conditions. The solutions are iterative and in each iteration, a problem like the linear case is solved. It is shown that Miniquasi cannot be applied to the thermoregulatory model as originally planned.
Scattering of elastic waves by a spheroidal inclusion
NASA Astrophysics Data System (ADS)
Johnson, Lane R.
2018-03-01
An analytical solution is presented for scattering of elastic waves by prolate and oblate spheroidal inclusions. The problem is solved in the frequency domain where separation of variables leads to a solution involving spheroidal wave functions of the angular and radial kind. Unlike the spherical problem, the boundary equations remain coupled with respect to one of the separation indices. Expanding the angular spheroidal wave functions in terms of associated Legendre functions and using their orthogonality properties leads to a set of linear equations that can be solved to simultaneously obtain solutions for all coupled modes of both scattered and interior fields. To illustrate some of the properties of the spheroidal solution, total scattering cross-sections for P, SV and SH plane waves incident at an oblique angle on a prolate spheroid, an oblate spheroid and a sphere are compared. The waveforms of the scattered field exterior to the inclusion are calculated for these same incident waves. The waveforms scattered by a spheroid are strongly dependent upon the angle of incidence, are different for incident SV and SH waves and are asymmetrical about the centre of the spheroid with the asymmetry different for prolate and oblate spheroids.
Kumar, K Vasanth; Sivanesan, S
2005-08-31
Comparison analysis of linear least square method and non-linear method for estimating the isotherm parameters was made using the experimental equilibrium data of safranin onto activated carbon at two different solution temperatures 305 and 313 K. Equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherm equations. All the three isotherm equations showed a better fit to the experimental equilibrium data. The results showed that non-linear method could be a better way to obtain the isotherm parameters. Redlich-Peterson isotherm is a special case of Langmuir isotherm when the Redlich-Peterson isotherm constant g was unity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crenshaw, Michael E., E-mail: michael.e.crenshaw4.civ@mail.mil
2014-04-15
In a continuum setting, the energy–momentum tensor embodies the relations between conservation of energy, conservation of linear momentum, and conservation of angular momentum. The well-defined total energy and the well-defined total momentum in a thermodynamically closed system with complete equations of motion are used to construct the total energy–momentum tensor for a stationary simple linear material with both magnetic and dielectric properties illuminated by a quasimonochromatic pulse of light through a gradient-index antireflection coating. The perplexing issues surrounding the Abraham and Minkowski momentums are bypassed by working entirely with conservation principles, the total energy, and the total momentum. We derivemore » electromagnetic continuity equations and equations of motion for the macroscopic fields based on the material four-divergence of the traceless, symmetric total energy–momentum tensor. We identify contradictions between the macroscopic Maxwell equations and the continuum form of the conservation principles. We resolve the contradictions, which are the actual fundamental issues underlying the Abraham–Minkowski controversy, by constructing a unified version of continuum electrodynamics that is based on establishing consistency between the three-dimensional Maxwell equations for macroscopic fields, the electromagnetic continuity equations, the four-divergence of the total energy–momentum tensor, and a four-dimensional tensor formulation of electrodynamics for macroscopic fields in a simple linear medium.« less
Multi-image encryption based on synchronization of chaotic lasers and iris authentication
NASA Astrophysics Data System (ADS)
Banerjee, Santo; Mukhopadhyay, Sumona; Rondoni, Lamberto
2012-07-01
A new technique of transmitting encrypted combinations of gray scaled and chromatic images using chaotic lasers derived from Maxwell-Bloch's equations has been proposed. This novel scheme utilizes the general method of solution of a set of linear equations to transmit similar sized heterogeneous images which are a combination of monochrome and chromatic images. The chaos encrypted gray scaled images are concatenated along the three color planes resulting in color images. These are then transmitted over a secure channel along with a cover image which is an iris scan. The entire cryptology is augmented with an iris-based authentication scheme. The secret messages are retrieved once the authentication is successful. The objective of our work is briefly outlined as (a) the biometric information is the iris which is encrypted before transmission, (b) the iris is used for personal identification and verifying for message integrity, (c) the information is transmitted securely which are colored images resulting from a combination of gray images, (d) each of the images transmitted are encrypted through chaos based cryptography, (e) these encrypted multiple images are then coupled with the iris through linear combination of images before being communicated over the network. The several layers of encryption together with the ergodicity and randomness of chaos render enough confusion and diffusion properties which guarantee a fool-proof approach in achieving secure communication as demonstrated by exhaustive statistical methods. The result is vital from the perspective of opening a fundamental new dimension in multiplexing and simultaneous transmission of several monochromatic and chromatic images along with biometry based authentication and cryptography.
New Galerkin operational matrices for solving Lane-Emden type equations
NASA Astrophysics Data System (ADS)
Abd-Elhameed, W. M.; Doha, E. H.; Saad, A. S.; Bassuony, M. A.
2016-04-01
Lane-Emden type equations model many phenomena in mathematical physics and astrophysics, such as thermal explosions. This paper is concerned with introducing third and fourth kind Chebyshev-Galerkin operational matrices in order to solve such problems. The principal idea behind the suggested algorithms is based on converting the linear or nonlinear Lane-Emden problem, through the application of suitable spectral methods, into a system of linear or nonlinear equations in the expansion coefficients, which can be efficiently solved. The main advantage of the proposed algorithm in the linear case is that the resulting linear systems are specially structured, and this of course reduces the computational effort required to solve such systems. As an application, we consider the solar model polytrope with n=3 to show that the suggested solutions in this paper are in good agreement with the numerical results.
Linear Magnetochiral effect in Weyl Semimetals
NASA Astrophysics Data System (ADS)
Cortijo, Alberto
We describe the presence of a linear magnetochiral effect in time reversal breaking Weyl semimetals. The magnetochiral effect consists in a simultaneous linear dependence of the magnetotransport coefficients with the magnetic field and a momentum vector. This simultaneous dependence is allowed by the Onsager reciprocity relations, being the separation vector between the Weyl nodes the vector that plays such role. This linear magnetochiral effect constitutes a new transport effect associated to the topological structures linked to time reversal breaking Weyl semimetals. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007) and MINECO (Spain) Grant No. FIS2015-73454-JIN.
A conformal approach for the analysis of the non-linear stability of radiation cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luebbe, Christian, E-mail: c.luebbe@ucl.ac.uk; Department of Mathematics, University of Leicester, University Road, LE1 8RH; Valiente Kroon, Juan Antonio, E-mail: j.a.valiente-kroon@qmul.ac.uk
2013-01-15
The conformal Einstein equations for a trace-free (radiation) perfect fluid are derived in terms of the Levi-Civita connection of a conformally rescaled metric. These equations are used to provide a non-linear stability result for de Sitter-like trace-free (radiation) perfect fluid Friedman-Lemaitre-Robertson-Walker cosmological models. The solutions thus obtained exist globally towards the future and are future geodesically complete. - Highlights: Black-Right-Pointing-Pointer We study the Einstein-Euler system in General Relativity using conformal methods. Black-Right-Pointing-Pointer We analyze the structural properties of the associated evolution equations. Black-Right-Pointing-Pointer We establish the non-linear stability of pure radiation cosmological models.
Systems of Inhomogeneous Linear Equations
NASA Astrophysics Data System (ADS)
Scherer, Philipp O. J.
Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.
A Zonal Approach for Prediction of Jet Noise
NASA Technical Reports Server (NTRS)
Shih, S. H.; Hixon, D. R.; Mankbadi, Reda R.
1995-01-01
A zonal approach for direct computation of sound generation and propagation from a supersonic jet is investigated. The present work splits the computational domain into a nonlinear, acoustic-source regime and a linear acoustic wave propagation regime. In the nonlinear regime, the unsteady flow is governed by the large-scale equations, which are the filtered compressible Navier-Stokes equations. In the linear acoustic regime, the sound wave propagation is described by the linearized Euler equations. Computational results are presented for a supersonic jet at M = 2. 1. It is demonstrated that no spurious modes are generated in the matching region and the computational expense is reduced substantially as opposed to fully large-scale simulation.
Simple linear and multivariate regression models.
Rodríguez del Águila, M M; Benítez-Parejo, N
2011-01-01
In biomedical research it is common to find problems in which we wish to relate a response variable to one or more variables capable of describing the behaviour of the former variable by means of mathematical models. Regression techniques are used to this effect, in which an equation is determined relating the two variables. While such equations can have different forms, linear equations are the most widely used form and are easy to interpret. The present article describes simple and multiple linear regression models, how they are calculated, and how their applicability assumptions are checked. Illustrative examples are provided, based on the use of the freely accessible R program. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.
Simple Derivation of the Lindblad Equation
ERIC Educational Resources Information Center
Pearle, Philip
2012-01-01
The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is…
Simultaneous spectrophotometric determination of salbutamol and bromhexine in tablets.
Habib, I H I; Hassouna, M E M; Zaki, G A
2005-03-01
Typical anti-mucolytic drugs called salbutamol hydrochloride and bromhexine sulfate encountered in tablets were determined simultaneously either by using linear regression at zero-crossing wavelengths of the first derivation of UV-spectra or by application of multiple linear partial least squares regression method. The results obtained by the two proposed mathematical methods were compared with those obtained by the HPLC technique.
Northeastern forest survey revised cubic-foot volume equations
Charles T. Scott
1981-01-01
Cubic-foot volume equations are presented for the 17 species groups used in the forest survey of the 14 northeastern states. The previous cubic- foot volume equations were simple linear in form; the revised cubic-foot volume equations are nonlinear.
NASA Astrophysics Data System (ADS)
Yadav, Manish; Singh, Nitin Kumar
2017-12-01
A comparison of the linear and non-linear regression method in selecting the optimum isotherm among three most commonly used adsorption isotherms (Langmuir, Freundlich, and Redlich-Peterson) was made to the experimental data of fluoride (F) sorption onto Bio-F at a solution temperature of 30 ± 1 °C. The coefficient of correlation (r2) was used to select the best theoretical isotherm among the investigated ones. A total of four Langmuir linear equations were discussed and out of which linear form of most popular Langmuir-1 and Langmuir-2 showed the higher coefficient of determination (0.976 and 0.989) as compared to other Langmuir linear equations. Freundlich and Redlich-Peterson isotherms showed a better fit to the experimental data in linear least-square method, while in non-linear method Redlich-Peterson isotherm equations showed the best fit to the tested data set. The present study showed that the non-linear method could be a better way to obtain the isotherm parameters and represent the most suitable isotherm. Redlich-Peterson isotherm was found to be the best representative (r2 = 0.999) for this sorption system. It is also observed that the values of β are not close to unity, which means the isotherms are approaching the Freundlich but not the Langmuir isotherm.
Iterative algorithms for large sparse linear systems on parallel computers
NASA Technical Reports Server (NTRS)
Adams, L. M.
1982-01-01
Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.
Shape in Picture: Mathematical Description of Shape in Grey-Level Images
1992-09-11
representation is scale-space, derived frrr- the linear isotropic diffusion equation; recently other types of equations have been considered. Multiscale...recognition of dimensions in the general case of an arbitrary denominator is similar to that just explained. 3 Linear Inequalities in the Two-Dimensional...solid region containing all pixels of the space, whose coordinates satisfy a linear inequality. A Um C scspt fr Digital Geometry 41 s a a v--’ -0 7 O
Small-Caliber Projectile Target Impact Angle Determined From Close Proximity Radiographs
2006-10-01
discrete motion data that can be numerically modeled using linear aerodynamic theory or 6-degrees-of- freedom equations of motion. The values of Fφ...Prediction Excel® Spreadsheet shown in figure 9. The Gamma at Impact Spreadsheet uses the linear aerodynamics model , equations 5 and 6, to calculate αT...trajectory angle error via consideration of the RMS fit errors of the actual firings. However, the linear aerodynamics model does not include this effect
Aircraft Airframe Cost Estimation Using a Random Coefficients Model
1979-12-01
approach will also be used here. 2 Model Formulation Several different types of equations could be used for the basic form of the CER, such as linear ...5) Marcotte developed several CER’s for fighter aircraft airframes using the log- linear model . A plot of the residuals from the CER for recurring...of the natural logarithm. Ordinary Least Squares The ordinary least squares procedure starts with the equation for the general linear model . The
Linear network representation of multistate models of transport.
Sandblom, J; Ring, A; Eisenman, G
1982-01-01
By introducing external driving forces in rate-theory models of transport we show how the Eyring rate equations can be transformed into Ohm's law with potentials that obey Kirchhoff's second law. From such a formalism the state diagram of a multioccupancy multicomponent system can be directly converted into linear network with resistors connecting nodal (branch) points and with capacitances connecting each nodal point with a reference point. The external forces appear as emf or current generators in the network. This theory allows the algebraic methods of linear network theory to be used in solving the flux equations for multistate models and is particularly useful for making proper simplifying approximation in models of complex membrane structure. Some general properties of linear network representation are also deduced. It is shown, for instance, that Maxwell's reciprocity relationships of linear networks lead directly to Onsager's relationships in the near equilibrium region. Finally, as an example of the procedure, the equivalent circuit method is used to solve the equations for a few transport models. PMID:7093425
Runge-Kutta Methods for Linear Ordinary Differential Equations
NASA Technical Reports Server (NTRS)
Zingg, David W.; Chisholm, Todd T.
1997-01-01
Three new Runge-Kutta methods are presented for numerical integration of systems of linear inhomogeneous ordinary differential equations (ODES) with constant coefficients. Such ODEs arise in the numerical solution of the partial differential equations governing linear wave phenomena. The restriction to linear ODEs with constant coefficients reduces the number of conditions which the coefficients of the Runge-Kutta method must satisfy. This freedom is used to develop methods which are more efficient than conventional Runge-Kutta methods. A fourth-order method is presented which uses only two memory locations per dependent variable, while the classical fourth-order Runge-Kutta method uses three. This method is an excellent choice for simulations of linear wave phenomena if memory is a primary concern. In addition, fifth- and sixth-order methods are presented which require five and six stages, respectively, one fewer than their conventional counterparts, and are therefore more efficient. These methods are an excellent option for use with high-order spatial discretizations.
A Brief Historical Introduction to Matrices and Their Applications
ERIC Educational Resources Information Center
Debnath, L.
2014-01-01
This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…
Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses
ERIC Educational Resources Information Center
Martinez-Luaces, Victor
2009-01-01
In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…
The Multifaceted Variable Approach: Selection of Method in Solving Simple Linear Equations
ERIC Educational Resources Information Center
Tahir, Salma; Cavanagh, Michael
2010-01-01
This paper presents a comparison of the solution strategies used by two groups of Year 8 students as they solved linear equations. The experimental group studied algebra following a multifaceted variable approach, while the comparison group used a traditional approach. Students in the experimental group employed different solution strategies,…
Lines of Eigenvectors and Solutions to Systems of Linear Differential Equations
ERIC Educational Resources Information Center
Rasmussen, Chris; Keynes, Michael
2003-01-01
The purpose of this paper is to describe an instructional sequence where students invent a method for locating lines of eigenvectors and corresponding solutions to systems of two first order linear ordinary differential equations with constant coefficients. The significance of this paper is two-fold. First, it represents an innovative alternative…
NASA Technical Reports Server (NTRS)
Packard, A. K.; Sastry, S. S.
1986-01-01
A method of solving a class of linear matrix equations over various rings is proposed, using results from linear geometric control theory. An algorithm, successfully implemented, is presented, along with non-trivial numerical examples. Applications of the method to the algebraic control system design methodology are discussed.
Three Interpretations of the Matrix Equation Ax = b
ERIC Educational Resources Information Center
Larson, Christine; Zandieh, Michelle
2013-01-01
Many of the central ideas in an introductory undergraduate linear algebra course are closely tied to a set of interpretations of the matrix equation Ax = b (A is a matrix, x and b are vectors): linear combination interpretations, systems interpretations, and transformation interpretations. We consider graphic and symbolic representations for each,…
Secondary Pre-Service Teachers' Algebraic Reasoning about Linear Equation Solving
ERIC Educational Resources Information Center
Alvey, Christina; Hudson, Rick A.; Newton, Jill; Males, Lorraine M.
2016-01-01
This study analyzes the responses of 12 secondary pre-service teachers on two tasks focused on reasoning when solving linear equations. By documenting the choices PSTs made while engaging in these tasks, we gain insight into how new teachers work mathematically, reason algebraically, communicate their thinking, and make pedagogical decisions. We…
Synthesizing Strategies Creatively: Solving Linear Equations
ERIC Educational Resources Information Center
Ponce, Gregorio A.; Tuba, Imre
2015-01-01
New strategies can ignite teachers' imagination to create new lessons or adapt lessons created by others. In this article, the authors present the experience of an algebra teacher and his students solving linear and literal equations and explain how the use of ideas found in past NCTM journals helped bring this lesson to life. The…
NASA Astrophysics Data System (ADS)
Campos-García, Manuel; Granados-Agustín, Fermín.; Cornejo-Rodríguez, Alejandro; Estrada-Molina, Amilcar; Avendaño-Alejo, Maximino; Moreno-Oliva, Víctor Iván.
2013-11-01
In order to obtain a clearer interpretation of the Intensity Transport Equation (ITE), in this work, we propose an algorithm to solve it for some particular wavefronts and its corresponding intensity distributions. By simulating intensity distributions in some planes, the ITE is turns into a Poisson equation with Neumann boundary conditions. The Poisson equation is solved by means of the iterative algorithm SOR (Simultaneous Over-Relaxation).
Numerical Analysis of 2-D and 3-D MHD Flows Relevant to Fusion Applications
Khodak, Andrei
2017-08-21
Here, the analysis of many fusion applications such as liquid-metal blankets requires application of computational fluid dynamics (CFD) methods for electrically conductive liquids in geometrically complex regions and in the presence of a strong magnetic field. A current state of the art general purpose CFD code allows modeling of the flow in complex geometric regions, with simultaneous conjugated heat transfer analysis in liquid and surrounding solid parts. Together with a magnetohydrodynamics (MHD) capability, the general purpose CFD code will be a valuable tool for the design and optimization of fusion devices. This paper describes an introduction of MHD capability intomore » the general purpose CFD code CFX, part of the ANSYS Workbench. The code was adapted for MHD problems using a magnetic induction approach. CFX allows introduction of user-defined variables using transport or Poisson equations. For MHD adaptation of the code three additional transport equations were introduced for the components of the magnetic field, in addition to the Poisson equation for electric potential. The Lorentz force is included in the momentum transport equation as a source term. Fusion applications usually involve very strong magnetic fields, with values of the Hartmann number of up to tens of thousands. In this situation a system of MHD equations become very rigid with very large source terms and very strong variable gradients. To increase system robustness, special measures were introduced during the iterative convergence process, such as linearization using source coefficient for momentum equations. The MHD implementation in general purpose CFD code was tested against benchmarks, specifically selected for liquid-metal blanket applications. Results of numerical simulations using present implementation closely match analytical solutions for a Hartmann number of up to 1500 for a 2-D laminar flow in the duct of square cross section, with conducting and nonconducting walls. Results for a 3-D test case are also included.« less