Sample records for simultaneous multi-depth assessment

  1. Clinical measurements analysis of multi-spectral photoplethysmograph biosensors

    NASA Astrophysics Data System (ADS)

    Asare, Lasma; Kviesis-Kipge, Edgars; Spigulis, Janis

    2014-05-01

    The developed portable multi-spectral photoplethysmograph (MS-PPG) optical biosensor device, intended for analysis of peripheral blood volume pulsations at different vascular depths, has been clinically verified. Multi-spectral monitoring was performed by means of a four - wavelengths (454 nm, 519 nm, 632 nm and 888 nm) light emitted diodes and photodiode with multi-channel signal output processing. Two such sensors can be operated in parallel and imposed on the patient's skin. The clinical measurements confirmed ability to detect PPG signals at four wavelengths simultaneously and to record temporal differences in the signal shapes (corresponding to different penetration depths) in normal and pathological skin. This study analyzed wavelengths relations between systole and diastole peak difference at various tissue depths in normal and pathological skin. The difference between parameters of healthy and pathological skin at various skin depths could be explain by oxy- and deoxyhemoglobin dominance at different wavelengths operated in sensor. The proposed methodology and potential clinical applications in dermatology for skin assessment are discussed.

  2. Multispectral scanning laser ophthalmoscopy combined with optical coherence tomography for simultaneous in vivo mouse retinal imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Zam, Azhar; Jian, Yifan; Wang, Xinlei; Burns, Marie E.; Sarunic, Marinko V.; Pugh, Edward N.; Zawadzki, Robert J.

    2015-03-01

    A compact, non-invasive multi-modal system has been developed for in vivo mouse retina imaging. It is configured for simultaneously detecting green and red fluorescent protein signals with scanning laser ophthalmoscopy (SLO) back-scattered light from the SLO illumination beam, and depth information about different retinal layers by means of Optical Coherence Tomography (OCT). Simultaneous assessment of retinal characteristics with different modalities can provide a wealth of information about the structural and functional changes in the retinal neural tissue and chorio-retinal vasculature in vivo. Additionally, simultaneous acquisition of multiple channels facilitates analysis of the data of different modalities by automatic temporal and structural co-registration. As an example of the instrument's performance we imaged the retina of a mouse with constitutive expression of GFP in microglia cells (Cx3cr1GFP/+), and which also expressed the red fluorescent protein mCherry in Müller glial cells by means of adeno-associated virus delivery (AAV2) of an mCherry cDNA driven by the GFAP (glial fibrillary acid protein) promoter.

  3. Simultaneous multi-depth assessment of tissue oxygen saturation in thenar and forearm using near-infrared spectroscopy during a simple cardiovascular challenge

    PubMed Central

    2009-01-01

    Introduction Hypovolemia and hypovolemic shock are life-threatening conditions that occur in numerous clinical scenarios. Near-infrared spectroscopy (NIRS) has been widely explored, successfully and unsuccessfully, in an attempt to use it as an early detector of hypovolemia by measuring tissue oxygen saturation (StO2). In order to investigate the measurement site dependence and probe dependence of NIRS in response to hemodynamic changes, such as hypovolemia, we applied a simple cardiovascular challenge: a posture change from supine to upright, causing a decrease in stroke volume (as in hypovolemia) and a heart rate increase in combination with peripheral vasoconstriction to maintain adequate blood pressure. Methods Multi-depth NIRS was used in nine healthy volunteers to assess changes in StO2 in the thenar and forearm in response to the hemodynamic changes associated with a posture change from supine to upright. Results A posture change from supine to upright resulted in a significant increase (P < 0.001) in heart rate. Thenar StO2 did not respond to the hemodynamic changes following the posture change, whereas forearm StO2 did. Forearm StO2 was significantly lower (P < 0.001) in the upright position compared to supine for all probing depths. Conclusions The primary findings in this study were that forearm StO2 is a more sensitive parameter to hemodynamic changes than thenar StO2 and that the depth at which StO2 is measured is of minor influence. Our data support the use of forearm StO2 as a sensitive parameter for the detection of central hypovolemia and hypovolemic shock in (trauma) patients. PMID:19951389

  4. Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes.

    PubMed

    Du, Mingde; Xu, Xianchen; Yang, Long; Guo, Yichuan; Guan, Shouliang; Shi, Jidong; Wang, Jinfen; Fang, Ying

    2018-05-15

    Subdural surface and penetrating depth probes are widely applied to record neural activities from the cortical surface and intracortical locations of the brain, respectively. Simultaneous surface and depth neural activity recording is essential to understand the linkage between the two modalities. Here, we develop flexible dual-modality neural probes based on graphene transistors. The neural probes exhibit stable electrical performance even under 90° bending because of the excellent mechanical properties of graphene, and thus allow multi-site recording from the subdural surface of rat cortex. In addition, finite element analysis was carried out to investigate the mechanical interactions between probe and cortex tissue during intracortical implantation. Based on the simulation results, a sharp tip angle of π/6 was chosen to facilitate tissue penetration of the neural probes. Accordingly, the graphene transistor-based dual-modality neural probes have been successfully applied for simultaneous surface and depth recording of epileptiform activity of rat brain in vivo. Our results show that graphene transistor-based dual-modality neural probes can serve as a facile and versatile tool to study tempo-spatial patterns of neural activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64.

    PubMed

    Miller, Julie M; Dewey, Marc; Vavere, Andrea L; Rochitte, Carlos E; Niinuma, Hiroyuki; Arbab-Zadeh, Armin; Paul, Narinder; Hoe, John; de Roos, Albert; Yoshioka, Kunihiro; Lemos, Pedro A; Bush, David E; Lardo, Albert C; Texter, John; Brinker, Jeffery; Cox, Christopher; Clouse, Melvin E; Lima, João A C

    2009-04-01

    Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its non-invasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective "CORE-64" trial ("Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors"). This multi-centre trial was unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows.

  6. T staging of gastric cancer: role of multi-detector row CT.

    PubMed

    Kumano, Seishi; Murakami, Takamichi; Kim, Tonsok; Hori, Masatoshi; Iannaccone, Riccardo; Nakata, Saki; Onishi, Hiromitsu; Osuga, Keigo; Tomoda, Kaname; Catalano, Carlo; Nakamura, Hironobu

    2005-12-01

    To evaluate retrospectively the accuracy of multi-detector row computed tomography (CT) in the assessment of serosal invasion in patients with gastric cancer. The Ethics Committee does not require approval or informed consent for retrospective studies. Forty-one consecutive patients (24 men, 17 women; mean age, 68 years) with gastric cancer were included in this study. All patients were given 600 mL of tap water to drink and were positioned prone or supine on the scanning table. The detector row configuration included four detector rows, a section thickness of 1.25 mm, a pitch of 6, and a reconstruction interval of 0.63 mm. Transverse and multiplanar reconstruction images were simultaneously evaluated by two independent observers to assess the depth of tumor invasion in the gastric wall (ie, T stage). T staging at multi-detector row CT was compared with T staging at histologic evaluation (reference standard), which was performed by means of surgical or histologic examination of the resected specimen. We also calculated the sensitivity, specificity, and accuracy of multi-detector row CT for each observer in the assessment of serosal invasion. Analysis of interobserver agreement showed substantial or almost perfect agreement (nonweighted kappa value of 0.78 and weighted kappa value of 0.85). Correct assessment of gastric wall invasion was 80% and 85% for observers 1 and 2, respectively. The sensitivity, specificity, and accuracy of multi-detector row CT in the assessment of serosal invasion were 90%, 95%, and 93%, respectively, for observer 1 and 80%, 97%, and 93%, respectively, for observer 2. Overstaging occurred in six patients, and understaging occurred in five patients. All understaged tumors were scirrhous subtype gastric cancer. Multi-detector row CT scanning of patients with gastric cancer gave 93% accuracy in the assessment of serosal invasion in patients with gastric cancer. RSNA, 2005

  7. Simultaneous fast scanning XRF, dark field, phase-, and absorption contrast tomography

    NASA Astrophysics Data System (ADS)

    Medjoubi, Kadda; Bonissent, Alain; Leclercq, Nicolas; Langlois, Florent; Mercère, Pascal; Somogyi, Andrea

    2013-09-01

    Scanning hard X-ray nanoprobe imaging provides a unique tool for probing specimens with high sensitivity and large penetration depth. Moreover, the combination of complementary techniques such as X-ray fluorescence, absorption, phase contrast and dark field imaging gives complete quantitative information on the sample structure, composition and chemistry. The multi-technique "FLYSCAN" data acquisition scheme developed at Synchrotron SOLEIL permits to perform fast continuous scanning imaging and as such makes scanning tomography techniques feasible in a time-frame well-adapted to typical user experiments. Here we present the recent results of simultaneous fast scanning multi-technique tomography performed at Soleil. This fast scanning scheme will be implemented at the Nanoscopium beamline for large field of view 2D and 3D multimodal imaging.

  8. Computer vision research with new imaging technology

    NASA Astrophysics Data System (ADS)

    Hou, Guangqi; Liu, Fei; Sun, Zhenan

    2015-12-01

    Light field imaging is capable of capturing dense multi-view 2D images in one snapshot, which record both intensity values and directions of rays simultaneously. As an emerging 3D device, the light field camera has been widely used in digital refocusing, depth estimation, stereoscopic display, etc. Traditional multi-view stereo (MVS) methods only perform well on strongly texture surfaces, but the depth map contains numerous holes and large ambiguities on textureless or low-textured regions. In this paper, we exploit the light field imaging technology on 3D face modeling in computer vision. Based on a 3D morphable model, we estimate the pose parameters from facial feature points. Then the depth map is estimated through the epipolar plane images (EPIs) method. At last, the high quality 3D face model is exactly recovered via the fusing strategy. We evaluate the effectiveness and robustness on face images captured by a light field camera with different poses.

  9. In vivo characterization of structural and optical properties of human skin by combined photothermal radiometry and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Verdel, Nina; Marin, Ana; Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2017-02-01

    We have combined two optical techniques to enable simultaneous assessment of structure and composition of human skin in vivo: Pulsed photothermal radiometry (PPTR), which involves measurements of transient dynamics in midinfrared emission from sample surface after exposure to a light pulse, and diffuse reflectance spectroscopy (DRS) in visible part of the spectrum. Namely, while PPTR is highly sensitive to depth distribution of selected absorbers, DRS provides spectral information and thus enables differentiation between various chromophores. The accuracy and robustness of the inverse analysis is thus considerably improved compared to use of either technique on its own. Our analysis approach is simultaneous multi-dimensional fitting of the measured PPTR signals and DRS with predictions from a numerical model of light-tissue interaction (a.k.a. inverse Monte Carlo). By using a three-layer skin model (epidermis, dermis, and subcutis), we obtain a good match between the experimental and modeling data. However, dividing the dermis into two separate layers (i.e., papillary and reticular dermis) helps to bring all assessed parameter values within anatomically and physiologically plausible intervals. Both the quality of the fit and the assessed parameter values depend somewhat on the assumed scattering properties for skin, which vary in literature and likely depend on subject's age and gender, anatomical site, etc. In our preliminary experience, simultaneous fitting of the scattering properties is possible and leads to considerable improvement of the fit. The described approach may thus have a potential for simultaneous determination of absorption and scattering properties of human skin in vivo.

  10. Salient object detection based on multi-scale contrast.

    PubMed

    Wang, Hai; Dai, Lei; Cai, Yingfeng; Sun, Xiaoqiang; Chen, Long

    2018-05-01

    Due to the development of deep learning networks, a salient object detection based on deep learning networks, which are used to extract the features, has made a great breakthrough compared to the traditional methods. At present, the salient object detection mainly relies on very deep convolutional network, which is used to extract the features. In deep learning networks, an dramatic increase of network depth may cause more training errors instead. In this paper, we use the residual network to increase network depth and to mitigate the errors caused by depth increase simultaneously. Inspired by image simplification, we use color and texture features to obtain simplified image with multiple scales by means of region assimilation on the basis of super-pixels in order to reduce the complexity of images and to improve the accuracy of salient target detection. We refine the feature on pixel level by the multi-scale feature correction method to avoid the feature error when the image is simplified at the above-mentioned region level. The final full connection layer not only integrates features of multi-scale and multi-level but also works as classifier of salient targets. The experimental results show that proposed model achieves better results than other salient object detection models based on original deep learning networks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A novel tetrode microdrive for simultaneous multi-neuron recording from different regions of primate brain.

    PubMed

    Santos, Lucas; Opris, Ioan; Fuqua, Joshua; Hampson, Robert E; Deadwyler, Sam A

    2012-04-15

    A unique custom-made tetrode microdrive for recording from large numbers of neurons in several areas of primate brain is described as a means for assessing simultaneous neural activity in cortical and subcortical structures in nonhuman primates (NHPs) performing behavioral tasks. The microdrive device utilizes tetrode technology with up to six ultra-thin microprobe guide tubes (0.1mm) that can be independently positioned, each containing reduced diameter tetrode and/or hexatrode microwires (0.02 mm) for recording and isolating single neuron activity. The microdrive device is mounted within the standard NHP cranial well and allows traversal of brain depths up to 40.0 mm. The advantages of this technology are demonstrated via simultaneously recorded large populations of neurons with tetrode type probes during task performance from a) primary motor cortex and deep brain structures (caudate-putamen and hippocampus) and b) multiple layers within the prefrontal cortex. The means to characterize interactions of well-isolated ensembles of neurons recorded simultaneously from different regions, as shown with this device, has not been previously available for application in primate brain. The device has extensive application to primate models for the detection and study of inoperative or maladaptive neural circuits related to human neurological disorders. Published by Elsevier B.V.

  12. Multi-dimension feature fusion for action recognition

    NASA Astrophysics Data System (ADS)

    Dong, Pei; Li, Jie; Dong, Junyu; Qi, Lin

    2018-04-01

    Typical human actions last several seconds and exhibit characteristic spatio-temporal structure. The challenge for action recognition is to capture and fuse the multi-dimension information in video data. In order to take into account these characteristics simultaneously, we present a novel method that fuses multiple dimensional features, such as chromatic images, depth and optical flow fields. We built our model based on the multi-stream deep convolutional networks with the help of temporal segment networks and extract discriminative spatial and temporal features by fusing ConvNets towers multi-dimension, in which different feature weights are assigned in order to take full advantage of this multi-dimension information. Our architecture is trained and evaluated on the currently largest and most challenging benchmark NTU RGB-D dataset. The experiments demonstrate that the performance of our method outperforms the state-of-the-art methods.

  13. Feasibility investigations on multi-cutter milling process: A novel fabrication method for microreactors with multiple microchannels

    NASA Astrophysics Data System (ADS)

    Pan, Minqiang; Zeng, Dehuai; Tang, Yong

    A novel multi-cutter milling process for multiple parallel microchannels with manifolds is proposed to address the challenge of mass manufacture as required for cost-effective commercial applications. Several slotting cutters are stacked together to form a composite tool for machining microchannels simultaneously. The feasibility of this new fabrication process is experimentally investigated under different machining conditions and reaction characteristics of methanol steam reforming for hydrogen production. The influences of cutting parameters and the composite tool on the microchannel qualities and burr formation are analyzed. Experimental results indicate that larger cutting speed, smaller feed rate and cutting depth are in favor of obtaining relatively good microchannel qualities and small burrs. Of all the cutting parameters considered in these experiments, 94.2 m min -1 cutting speed, 23.5 mm min -1 feed rate and 0.5 mm cutting depth are found to be the optimum value. According to the comparisons of experimental results of multi-cutter milling process and estimated one of other alternative methods, it is found that multi-cutter milling process shows much shorter machining time and higher work removal rate than that of other alternative methods. Reaction characteristics of methanol steam reforming in microchannels also indicate that multi-cutter milling process is probably suitable for a commercial application.

  14. Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR

    NASA Astrophysics Data System (ADS)

    Poulsen, C. A.; Siddans, R.; Thomas, G. E.; Sayer, A. M.; Grainger, R. G.; Campmany, E.; Dean, S. M.; Arnold, C.; Watts, P. D.

    2012-08-01

    Clouds play an important role in balancing the Earth's radiation budget. Hence, it is vital that cloud climatologies are produced that quantify cloud macro and micro physical parameters and the associated uncertainty. In this paper, we present an algorithm ORAC (Oxford-RAL retrieval of Aerosol and Cloud) which is based on fitting a physically consistent cloud model to satellite observations simultaneously from the visible to the mid-infrared, thereby ensuring that the resulting cloud properties provide both a good representation of the short-wave and long-wave radiative effects of the observed cloud. The advantages of the optimal estimation method are that it enables rigorous error propagation and the inclusion of all measurements and any a priori information and associated errors in a rigorous mathematical framework. The algorithm provides a measure of the consistency between retrieval representation of cloud and satellite radiances. The cloud parameters retrieved are the cloud top pressure, cloud optical depth, cloud effective radius, cloud fraction and cloud phase. The algorithm can be applied to most visible/infrared satellite instruments. In this paper, we demonstrate the applicability to the Along-Track Scanning Radiometers ATSR-2 and AATSR. Examples of applying the algorithm to ATSR-2 flight data are presented and the sensitivity of the retrievals assessed, in particular the algorithm is evaluated for a number of simulated single-layer and multi-layer conditions. The algorithm was found to perform well for single-layer cloud except when the cloud was very thin; i.e., less than 1 optical depths. For the multi-layer cloud, the algorithm was robust except when the upper ice cloud layer is less than five optical depths. In these cases the retrieved cloud top pressure and cloud effective radius become a weighted average of the 2 layers. The sum of optical depth of multi-layer cloud is retrieved well until the cloud becomes thick, greater than 50 optical depths, where the cloud begins to saturate. The cost proved a good indicator of multi-layer scenarios. Both the retrieval cost and the error need to be considered together in order to evaluate the quality of the retrieval. This algorithm in the configuration described here has been applied to both ATSR-2 and AATSR visible and infrared measurements in the context of the GRAPE (Global Retrieval and cloud Product Evaluation) project to produce a 14 yr consistent record for climate research.

  15. Ground EMI: designing the future trends in shallow depth surveying

    NASA Astrophysics Data System (ADS)

    Thiesson, J.; Schamper, C.; Simon, F. X.; Tabbagh, A.

    2017-12-01

    In theory, electromagnetic induction phenomena are driven by three fundamental properties (conductivity, susceptibility, permittivity). Since the 1930's, the developments of EMI prospecting were based on assumptions (Low frequency VS High frequency, low/high induction number). The design of the devices was focused on specific aims (diffusive/propagative, mapping/sounding) and, in the last thirty years the progressive transition from analog to numeric electronics completely enhanced the potency of measurements (multi-channeling, automatic positioning) a) as it did in model computation. In the field of metric sized devices for lower depths of investigation, the measurements have been first restricted to electrical conductivity. However, the measurement of the magnetic susceptibility proved to be possible thanks to in phase and quadrature separation, and the last developed commercially available multi-frequency and/or multi-receivers devices permit, thanks to accurate calibration, the measurements of the three properties with various geometries or frequencies simultaneously. The aims of this study is to present theoretical results in order to give hints for designing a device which can be optimal to evaluate the three properties and their frequency dependence.

  16. Simultaneous aerosol/ocean products retrieved during the 2014 SABOR campaign using the NASA Research Scanning Polarimeter (RSP)

    NASA Astrophysics Data System (ADS)

    Stamnes, S.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Burton, S. P.; Liu, X.; Hu, Y.; Stamnes, K. H.; Chowdhary, J.; Brian, C.

    2017-12-01

    The SABOR (Ship-Aircraft Bio-Optical Research) campaign was conducted during the summer of 2014, in the Atlantic Ocean, over the Chesapeake Bay and the eastern coastal region of the United States. The NASA GISS Research Scanning Polarimeter, a multi-angle, multi-spectral polarimeter measured the upwelling polarized radiances from a B200 aircraft. We present results from the new "MAPP" algorithm for RSP that is based on optimal estimation and that can retrieve simultaneous aerosol microphysical properties (including effective radius, single-scattering albedo, and real refractive index) and ocean color products using accurate radiative transfer and Mie calculations. The algorithm was applied to data collected during SABOR to retrieve aerosol microphysics and ocean products for all Aerosols-Above-Ocean (AAO) scenes. The RSP MAPP products are compared against collocated aerosol extinction and backscatter profiles collected by the NASA LaRC airborne High Spectral Resolution Lidar (HSRL-1), including lidar depth profiles of the ocean diffuse attenuation coefficient and the hemispherical backscatter coefficient.

  17. Multi-frequency Electromagnetic Induction Survey for Archaeological Prospection: Approach and Results in Han Hangu Pass and Xishan Yang in China

    NASA Astrophysics Data System (ADS)

    Tang, Panpan; Chen, Fulong; Jiang, Aihui; Zhou, Wei; Wang, Hongchao; Leucci, Giovanni; de Giorgi, Lara; Sileo, Maria; Luo, Rupeng; Lasaponara, Rosa; Masini, Nicola

    2018-04-01

    This study presents the potential of multi-frequency electromagnetic induction (EMI) in archaeology. EMI is currently less employed for archaeological prospection with respect to other geophysical techniques. It is capable of identifying shallow subsurface relics by simultaneously measuring the apparent electrical conductivity (ECa) and apparent magnetic susceptibility (MSa). Moreover, frequency sounding is able to quantify the depths and vertical shapes of buried structures. In this study, EMI surveys with five frequencies were performed at two heritage sites with different geological conditions: Han Hangu Pass characterized by cinnamon soil and Xishan Yang by sandy loams. In the first site, high ECa values were observed with variations in depth correlated to archaeological remains. Moreover, electromagnetic anomalies related to an ancient road and five kiln caves were identified. In the second site, an ancient tomb, indicating extremely low ECa and high MSa, was discovered. Its electromagnetic properties are attributed to the cavity and ferroferric oxides.

  18. Multi-target QSPR modeling for simultaneous prediction of multiple gas-phase kinetic rate constants of diverse chemicals

    NASA Astrophysics Data System (ADS)

    Basant, Nikita; Gupta, Shikha

    2018-03-01

    The reactions of molecular ozone (O3), hydroxyl (•OH) and nitrate (NO3) radicals are among the major pathways of removal of volatile organic compounds (VOCs) in the atmospheric environment. The gas-phase kinetic rate constants (kO3, kOH, kNO3) are thus, important in assessing the ultimate fate and exposure risk of atmospheric VOCs. Experimental data for rate constants are not available for many emerging VOCs and the computational methods reported so far address a single target modeling only. In this study, we have developed a multi-target (mt) QSPR model for simultaneous prediction of multiple kinetic rate constants (kO3, kOH, kNO3) of diverse organic chemicals considering an experimental data set of VOCs for which values of all the three rate constants are available. The mt-QSPR model identified and used five descriptors related to the molecular size, degree of saturation and electron density in a molecule, which were mechanistically interpretable. These descriptors successfully predicted three rate constants simultaneously. The model yielded high correlations (R2 = 0.874-0.924) between the experimental and simultaneously predicted endpoint rate constant (kO3, kOH, kNO3) values in test arrays for all the three systems. The model also passed all the stringent statistical validation tests for external predictivity. The proposed multi-target QSPR model can be successfully used for predicting reactivity of new VOCs simultaneously for their exposure risk assessment.

  19. Comparison of Two Stochastic Daily Rainfall Models and their Ability to Preserve Multi-year Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Kamal Chowdhury, AFM; Lockart, Natalie; Willgoose, Garry; Kuczera, George; Kiem, Anthony; Parana Manage, Nadeeka

    2016-04-01

    Stochastic simulation of rainfall is often required in the simulation of streamflow and reservoir levels for water security assessment. As reservoir water levels generally vary on monthly to multi-year timescales, it is important that these rainfall series accurately simulate the multi-year variability. However, the underestimation of multi-year variability is a well-known issue in daily rainfall simulation. Focusing on this issue, we developed a hierarchical Markov Chain (MC) model in a traditional two-part MC-Gamma Distribution modelling structure, but with a new parameterization technique. We used two parameters of first-order MC process (transition probabilities of wet-to-wet and dry-to-dry days) to simulate the wet and dry days, and two parameters of Gamma distribution (mean and standard deviation of wet day rainfall) to simulate wet day rainfall depths. We found that use of deterministic Gamma parameter values results in underestimation of multi-year variability of rainfall depths. Therefore, we calculated the Gamma parameters for each month of each year from the observed data. Then, for each month, we fitted a multi-variate normal distribution to the calculated Gamma parameter values. In the model, we stochastically sampled these two Gamma parameters from the multi-variate normal distribution for each month of each year and used them to generate rainfall depth in wet days using the Gamma distribution. In another study, Mehrotra and Sharma (2007) proposed a semi-parametric Markov model. They also used a first-order MC process for rainfall occurrence simulation. But, the MC parameters were modified by using an additional factor to incorporate the multi-year variability. Generally, the additional factor is analytically derived from the rainfall over a pre-specified past periods (e.g. last 30, 180, or 360 days). They used a non-parametric kernel density process to simulate the wet day rainfall depths. In this study, we have compared the performance of our hierarchical MC model with the semi-parametric model in preserving rainfall variability in daily, monthly, and multi-year scales. To calibrate the parameters of both models and assess their ability to preserve observed statistics, we have used ground based data from 15 raingauge stations around Australia, which consist a wide range of climate zones including coastal, monsoonal, and arid climate characteristics. In preliminary results, both models show comparative performances in preserving the multi-year variability of rainfall depth and occurrence. However, the semi-parametric model shows a tendency of overestimating the mean rainfall depth, while our model shows a tendency of overestimating the number of wet days. We will discuss further the relative merits of the both models for hydrology simulation in the presentation.

  20. Single-Shot Laser Ablation Split-Stream (SS-LASS) Analysis Depth Profiling

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Stearns, M. A.; Viete, D. R.; Cottle, J. M.; Hacker, B. R.

    2014-12-01

    Laser ablation depth profiling of geochronometers—such as zircon, monazite, titanite and rutile—has become popular in recent years as a tool to both determine date vs. depth or trace-element (TE) composition vs. depth; the former allows the dating of thin rims and, potentially, inversion of Pb-loss profiles for thermal histories, whereas the latter can yield insight into changes in PTX or mineral parageneses and inversion of trace-element profiles for thermal histories. In this study, we combine both techniques, enabling simultaneous acquisition of U-Th/Pb isotopic ratios and trace-element compositions, by joining a 193 nm excimer laser to a multi-collector ICP-MS and single-collector ICP-MS. The simultaneous acquisition allows direct shot-by-shot linkage between time and petrology, expanding our ability to understand the evolution of complex geologic systems. We construct each depth profile by capturing the analyte with a succession of individual laser pulses (each ~100 nm deep) . This has two main advantages over a typical time-dependent analysis of a multi-shot routine composed of tens to hundreds of shots and a several μm deep hole. 1) The reference material is analyzed between each shot for a more-accurate standardization of each aliquot of ablated material. 2) There is no mixing of material ablated from successive laser pulses during transmission to the ICP. The method is limited by count rate, which depends on spot size, excavation rate, instrument sensitivity, etc., and, for single-collector ICP, the switching time, which limits the number of elements that can be analyzed and their total counts. We explore the latter theoretically and experimentally to provide insight on both the ideal number of elements to measure and the dwell time in any given sample. Examples of the utility of SS-LASS include the comparison of apparent Pb loss to diffusion profiles of trace elements in rims of metamorphic rutile and titanite, as well as the determination of the timing and petrologic conditions of thin zircon rims in metamorphic rocks.

  1. New challenges in risk assessment of chemicals when simulating real exposure scenarios; simultaneous multi-chemicals' low dose exposure.

    PubMed

    Tsatsakis, Aristidis M; Docea, Anca Oana; Tsitsimpikou, Christina

    2016-10-01

    The general population experiences uncontrolled multi-chemicals exposure from many different sources at doses around or well below regulatory limits. Therefore, traditional chronic toxicity evaluations for a single chemical could possibly miss to identify adequately all the risks. For this an experimental methodology that has the ambition to provide at one strike multi-answers to multi-questions is hereby proposed: a long-term toxicity study of non-commercial chemical mixtures, consisting of common everyday life chemicals (pesticides, food additives, life-style products components) at low and realistic dose levels around the regulatory limits and with the simultaneous investigation of several key endpoints, like genotoxicity, endocrine disruption, target organ toxicity including the heart and systemic mechanistic pathways, like oxidative stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Field Trials of the Multi-Source Approach for Resistivity and Induced Polarization Data Acquisition

    NASA Astrophysics Data System (ADS)

    LaBrecque, D. J.; Morelli, G.; Fischanger, F.; Lamoureux, P.; Brigham, R.

    2013-12-01

    Implementing systems of distributed receivers and transmitters for resistivity and induced polarization data is an almost inevitable result of the availability of wireless data communication modules and GPS modules offering precise timing and instrument locations. Such systems have a number of advantages; for example, they can be deployed around obstacles such as rivers, canyons, or mountains which would be difficult with traditional 'hard-wired' systems. However, deploying a system of identical, small, battery powered, transceivers, each capable of injecting a known current and measuring the induced potential has an additional and less obvious advantage in that multiple units can inject current simultaneously. The original purpose for using multiple simultaneous current sources (multi-source) was to increase signal levels. In traditional systems, to double the received signal you inject twice the current which requires you to apply twice the voltage and thus four times the power. Alternatively, one approach to increasing signal levels for large-scale surveys collected using small, battery powered transceivers is it to allow multiple units to transmit in parallel. In theory, using four 400 watt transmitters on separate, parallel dipoles yields roughly the same signal as a single 6400 watt transmitter. Furthermore, implementing the multi-source approach creates the opportunity to apply more complex current flow patterns than simple, parallel dipoles. For a perfect, noise-free system, multi-sources adds no new information to a data set that contains a comprehensive set of data collected using single sources. However, for realistic, noisy systems, it appears that multi-source data can substantially impact survey results. In preliminary model studies, the multi-source data produced such startling improvements in subsurface images that even the authors questioned their veracity. Between December of 2012 and July of 2013, we completed multi-source surveys at five sites with depths of exploration ranging from 150 to 450 m. The sites included shallow geothermal sites near Reno Nevada, Pomarance Italy, and Volterra Italy; a mineral exploration site near Timmins Quebec; and a landslide investigation near Vajont Dam in northern Italy. These sites provided a series of challenges in survey design and deployment including some extremely difficult terrain and a broad range of background resistivity and induced values. Despite these challenges, comparison of multi-source results to resistivity and induced polarization data collection with more traditional methods support the thesis that the multi-source approach is capable of providing substantial improvements in both depth of penetration and resolution over conventional approaches.

  3. Multiple-stage decisions in a marine central-place forager

    NASA Astrophysics Data System (ADS)

    Friedlaender, Ari S.; Johnston, David W.; Tyson, Reny B.; Kaltenberg, Amanda; Goldbogen, Jeremy A.; Stimpert, Alison K.; Curtice, Corrie; Hazen, Elliott L.; Halpin, Patrick N.; Read, Andrew J.; Nowacek, Douglas P.

    2016-05-01

    Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator-prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager studies.

  4. Multiple-stage decisions in a marine central-place forager.

    PubMed

    Friedlaender, Ari S; Johnston, David W; Tyson, Reny B; Kaltenberg, Amanda; Goldbogen, Jeremy A; Stimpert, Alison K; Curtice, Corrie; Hazen, Elliott L; Halpin, Patrick N; Read, Andrew J; Nowacek, Douglas P

    2016-05-01

    Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator-prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager studies.

  5. Construction of Multi-Mode Affective Learning System: Taking Affective Design as an Example

    ERIC Educational Resources Information Center

    Lin, Hao-Chiang Koong; Su, Sheng-Hsiung; Chao, Ching-Ju; Hsieh, Cheng-Yen; Tsai, Shang-Chin

    2016-01-01

    This study aims to design a non-simultaneous distance instruction system with affective computing, which integrates interactive agent technology with the curricular instruction of affective design. The research subjects were 78 students, and prototype assessment and final assessment were adopted to assess the interface and usability of the system.…

  6. Multichannel optical mapping: investigation of depth information

    NASA Astrophysics Data System (ADS)

    Sase, Ichiro; Eda, Hideo; Seiyama, Akitoshi; Tanabe, Hiroki C.; Takatsuki, Akira; Yanagida, Toshio

    2001-06-01

    Near infrared (NIR) light has become a powerful tool for non-invasive imaging of human brain activity. Many systems have been developed to capture the changes in regional brain blood flow and hemoglobin oxygenation, which occur in the human cortex in response to neural activity. We have developed a multi-channel reflectance imaging system, which can be used as a `mapping device' and also as a `multi-channel spectrophotometer'. In the present study, we visualized changes in the hemodynamics of the human occipital region in multiple ways. (1) Stimulating left and right primary visual cortex independently by showing sector shaped checkerboards sequentially over the contralateral visual field, resulted in corresponding changes in the hemodynamics observed by `mapping' measurement. (2) Simultaneous measurement of functional-MRI and NIR (changes in total hemoglobin) during visual stimulation showed good spatial and temporal correlation with each other. (3) Placing multiple channels densely over the occipital region demonstrated spatial patterns more precisely, and depth information was also acquired by placing each pair of illumination and detection fibers at various distances. These results indicate that optical method can provide data for 3D analysis of human brain functions.

  7. Multisensor Capacitance Probes for Simultaneously Monitoring Rice Field Soil-Water- Crop-Ambient Conditions.

    PubMed

    Brinkhoff, James; Hornbuckle, John; Dowling, Thomas

    2017-12-26

    Multisensor capacitance probes (MCPs) have traditionally been used for soil moisture monitoring and irrigation scheduling. This paper presents a new application of these probes, namely the simultaneous monitoring of ponded water level, soil moisture, and temperature profile, conditions which are particularly important for rice crops in temperate growing regions and for rice grown with prolonged periods of drying. WiFi-based loggers are used to concurrently collect the data from the MCPs and ultrasonic distance sensors (giving an independent reading of water depth). Models are fit to MCP water depth vs volumetric water content (VWC) characteristics from laboratory measurements, variability from probe-to-probe is assessed, and the methodology is verified using measurements from a rice field throughout a growing season. The root-mean-squared error of the water depth calculated from MCP VWC over the rice growing season was 6.6 mm. MCPs are used to simultaneously monitor ponded water depth, soil moisture content when ponded water is drained, and temperatures in root, water, crop and ambient zones. The insulation effect of ponded water against cold-temperature effects is demonstrated with low and high water levels. The developed approach offers advantages in gaining the full soil-plant-atmosphere continuum in a single robust sensor.

  8. Defining how aging Pseudotsuga and Abies compensate for multiple stresses through multi-criteria assessment of a functional-structural model

    Treesearch

    Maureen C. Kennedy; E. David Ford; Thomas M. Hinckley

    2009-01-01

    Many hypotheses have been advanced about factors that control tree longevity. We use a simulation model with multi-criteria optimization and Pareto optimality to determine branch morphologies in the Pinaceae that minimize the effect of growth limitations due to water stress while simultaneously maximizing carbohydrate gain. Two distinct branch morphologies in the...

  9. Modeling of Broadband Liners Applied to the Advanced Noise Control Fan

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.

    2015-01-01

    The broadband component of fan noise has grown in relevance with an increase in bypass ratio and incorporation of advanced fan designs. Therefore, while the attenuation of fan tones remains a major factor in engine nacelle acoustic liner design, the simultaneous reduction of broadband fan noise levels has received increased interest. As such, a previous investigation focused on improvements to an established broadband acoustic liner optimization process using the Advanced Noise Control Fan (ANCF) rig as a demonstrator. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom liner designs were carried through design, fabrication, and testing. This paper addresses a number of areas for further research identified in the initial assessment of the ANCF study. Specifically, incident source specification and uncertainty in some aspects of the predicted liner impedances are addressed. This information is incorporated in updated predictions of the liner performance and comparisons with measurement are greatly improved. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of various liner designs. This study also provides further confidence in the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  10. A multi-modal stereo microscope based on a spatial light modulator.

    PubMed

    Lee, M P; Gibson, G M; Bowman, R; Bernet, S; Ritsch-Marte, M; Phillips, D B; Padgett, M J

    2013-07-15

    Spatial Light Modulators (SLMs) can emulate the classic microscopy techniques, including differential interference (DIC) contrast and (spiral) phase contrast. Their programmability entails the benefit of flexibility or the option to multiplex images, for single-shot quantitative imaging or for simultaneous multi-plane imaging (depth-of-field multiplexing). We report the development of a microscope sharing many of the previously demonstrated capabilities, within a holographic implementation of a stereo microscope. Furthermore, we use the SLM to combine stereo microscopy with a refocusing filter and with a darkfield filter. The instrument is built around a custom inverted microscope and equipped with an SLM which gives various imaging modes laterally displaced on the same camera chip. In addition, there is a wide angle camera for visualisation of a larger region of the sample.

  11. Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data for improved profiling of ultra-shallow depth distributions☆

    PubMed Central

    Ingerle, D.; Meirer, F.; Pepponi, G.; Demenev, E.; Giubertoni, D.; Wobrauschek, P.; Streli, C.

    2014-01-01

    The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted elements with drastically increased confidence level. Silicon wafers implanted with Arsenic at different implantation energies were measured by XRR and GIXRF using a combined, simultaneous measurement and data evaluation procedure. The data were processed using a self-developed software package (JGIXA), designed for simultaneous fitting of GIXRF and XRR data. The results were compared with depth profiles obtained by Secondary Ion Mass Spectrometry (SIMS). PMID:25202165

  12. Ultra-long-period fiber grating cascaded to a knob-taper for simultaneous measurement of strain and temperature

    NASA Astrophysics Data System (ADS)

    Tong, Chengguo; Chen, Xudong; Zhou, Yu; He, Jiang; Yang, Wenlei; Geng, Tao; Sun, Weimin; Yuan, Libo

    2018-06-01

    This study presents a simple Mach-Zehnder interferometer (MZI) to obtain the bimodal characteristics that realize simultaneous measurement of strain and temperature through cascading an ultra-long-period fiber grating and a knob-shaped taper. We obtain the multi-dip feature from the MZI, and the Dips 2 and 5 are selected from 11 interference dips. Experimental results indicated that the wavelength sensitivities of Dips 2 and 5 are - 0.54 nm mɛ-1 and 0.058 nm °C-1, and - 0.53 nm mɛ-1 and 0.055 nm °C-1 to strain and temperature, respectively. The depth sensitivities are - 3.3 dB mɛ- 1, - 0.015 dB °C-1 and -5.8 dB mɛ-1, and 0.06 dB °C-1 for Dips 2 and 5, respectively. It is concluded that the proposed structure is suitable for simultaneous strain and temperature measurements.

  13. In vivo animal histology and clinical evaluation of multisource fractional radiofrequency skin resurfacing (FSR) applicator.

    PubMed

    Sadick, Neil S; Sato, Masaki; Palmisano, Diana; Frank, Ido; Cohen, Hila; Harth, Yoram

    2011-10-01

    Acne scars are one of the most difficult disorders to treat in dermatology. The optimal treatment system will provide minimal downtime resurfacing for the epidermis and non-ablative deep volumetric heating for collagen remodeling in the dermis. A novel therapy system (EndyMed Ltd., Cesarea, Israel) uses phase-controlled multi-source radiofrequency (RF) to provide simultaneous one pulse microfractional resurfacing with simultaneous volumetric skin tightening. The study included 26 subjects (Fitzpatrick's skin type 2-5) with moderate to severe wrinkles and 4 subjects with depressed acne scars. Treatment was repeated each month up to a total of three treatment sessions. Patients' photographs were graded according to accepted scales by two uninvolved blinded evaluators. Significant reduction in the depth of wrinkles and acne scars was noted 4 weeks after therapy with further improvement at the 3-month follow-up. Our data show the histological impact and clinical beneficial effects of simultaneous RF fractional microablation and volumetric deep dermal heating for the treatment of wrinkles and acne scars.

  14. Ultra-long-period fiber grating cascaded to a knob-taper for simultaneous measurement of strain and temperature

    NASA Astrophysics Data System (ADS)

    Tong, Chengguo; Chen, Xudong; Zhou, Yu; He, Jiang; Yang, Wenlei; Geng, Tao; Sun, Weimin; Yuan, Libo

    2018-03-01

    This study presents a simple Mach-Zehnder interferometer (MZI) to obtain the bimodal characteristics that realize simultaneous measurement of strain and temperature through cascading an ultra-long-period fiber grating and a knob-shaped taper. We obtain the multi-dip feature from the MZI, and the Dips 2 and 5 are selected from 11 interference dips. Experimental results indicated that the wavelength sensitivities of Dips 2 and 5 are - 0.54 nm mɛ-1 and 0.058 nm °C-1, and - 0.53 nm mɛ-1 and 0.055 nm °C-1 to strain and temperature, respectively. The depth sensitivities are - 3.3 dB mɛ- 1, - 0.015 dB °C-1 and -5.8 dB mɛ-1, and 0.06 dB °C-1 for Dips 2 and 5, respectively. It is concluded that the proposed structure is suitable for simultaneous strain and temperature measurements.

  15. Multiple-animal MR imaging using a 3T clinical scanner and multi-channel coil for volumetric analysis in a mouse tumor model.

    PubMed

    Mitsuda, Minoru; Yamaguchi, Masayuki; Furuta, Toshihiro; Nabetani, Akira; Hirayama, Akira; Nozaki, Atsushi; Niitsu, Mamoru; Fujii, Hirofumi

    2011-01-01

    Multiple small-animal magnetic resonance (MR) imaging to measure tumor volume may increase the throughput of preclinical cancer research assessing tumor response to novel therapies. We used a clinical scanner and multi-channel coil to evaluate the usefulness of this imaging to assess experimental tumor volume in mice. We performed a phantom study to assess 2-dimensional (2D) geometric distortion using 9-cm spherical and 32-cell (8×4 one-cm(2) grids) phantoms using a 3-tesla clinical MR scanner and dedicated multi-channel coil composed of 16 5-cm circular coils. Employing the multi-channel coil, we simultaneously scanned 6 or 8 mice bearing sarcoma 180 tumors. We estimated tumor volume from the sum of the product of tumor area and slice thickness on 2D spin-echo images (repetition time/echo time, 3500/16 ms; in-plane resolution, 0.195×0.195×1 mm(3)). After MR acquisition, we excised and weighed tumors, calculated reference tumor volumes from actual tumor weight assuming a density of 1.05 g/cm(3), and assessed the correlation between the estimated and reference volumes using Pearson's test. Two-dimensional geometric distortion was acceptable below 5% in the 9-cm spherical phantom and in every cell in the 32-cell phantom. We scanned up to 8 mice simultaneously using the multi-channel coil and found 11 tumors larger than 0.1 g in 12 mice. Tumor volumes were 1.04±0.73 estimated by MR imaging and 1.04±0.80 cm(3) by reference volume (average±standard deviation) and highly correlated (correlation coefficient, 0.995; P<0.01, Pearson's test). Use of multiple small-animal MR imaging employing a clinical scanner and multi-channel coil enabled accurate assessment of experimental tumor volume in a large number of mice and may facilitate high throughput monitoring of tumor response to therapy in preclinical research.

  16. Simultaneous refraction measurement and OCT axial biometry of the eye during accommodation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    De Freitas, Carolina; Hernandez, Victor M.; Ruggeri, Marco; Durkee, Heather A.; Williams, Siobhan; Gregori, Giovanni; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie

    2016-03-01

    The purpose of this project is to design and evaluate a system that will enable objective assessment of the optical accommodative response in real-time while acquiring axial biometric information. The system combines three sub-systems which were integrated and mounted on a joystick x-y-z adjustable modified slit-lamp base to facilitate alignment and data acquisition: (1) a Shack-Hartmann wavefront sensor for dynamic refraction measurement, provided software calculates sphere, cylinder and axis values, (2) an extended-depth Optical Coherence Tomography (OCT) system using an optical switch records high-resolution cross-sectional images across the length of the eye, from which, dynamic axial biometry (corneal thickness, anterior chamber depth, crystalline lens thickness and vitreous depth) can be extracted, and (3) a modified dual-channel accommodation stimulus unit based on the Badal optometer for providing a step change in accommodative stimulus. The prototypal system is capable of taking simultaneous measurements of both the optical and the mechanical response of lens accommodation. These measurements can provide insight into correlating changes in lens shape with changes in lens power and ocular refraction and ultimately provide a more comprehensive understanding of accommodation, presbyopia and an objective assessment of presbyopia correction techniques.

  17. The ability of multi-site, multi-depth sacral lateral branch blocks to anesthetize the sacroiliac joint complex.

    PubMed

    Dreyfuss, Paul; Henning, Troy; Malladi, Niriksha; Goldstein, Barry; Bogduk, Nikolai

    2009-01-01

    To determine the physiologic effectiveness of multi-site, multi-depth sacral lateral branch injections. Double-blind, randomized, placebo-controlled study. Outpatient pain management center. Twenty asymptomatic volunteers. The dorsal innervation to the sacroiliac joint (SIJ) is from the L5 dorsal ramus and the S1-3 lateral branches. Multi-site, multi-depth lateral branch blocks were developed to compensate for the complex regional anatomy that limited the effectiveness of single-site, single-depth lateral branch injections. Bilateral multi-site, multi-depth lateral branch green dye injections and subsequent dissection on two cadavers revealed a 91% accuracy with this technique. Session 1: 20 asymptomatic subjects had a 25-g spinal needle probe their interosseous (IO) and dorsal sacroiliac (DSI) ligaments. The inferior dorsal SIJ was entered and capsular distension with contrast medium was performed. Discomfort had to occur with each provocation maneuver and a contained arthrogram was necessary to continue in the study. Session 2: 1 week later; computer randomized, double-blind multi-site, multi-depth lateral branch blocks injections were performed. Ten subjects received active (bupivicaine 0.75%) and 10 subjects received sham (normal saline) multi-site, multi-depth lateral branch injections. Thirty minutes later, provocation testing was repeated with identical methodology used in session 1. Presence or absence of pain for ligamentous probing and SIJ capsular distension. Seventy percent of the active group had an insensate IO and DSI ligaments, and inferior dorsal SIJ vs 0-10% of the sham group. Twenty percent of the active vs 10% of the sham group did not feel repeat capsular distension. Six of seven subjects (86%) retained the ability to feel repeat capsular distension despite an insensate dorsal SIJ complex. Multi-site, multi-depth lateral branch blocks are physiologically effective at a rate of 70%. Multi-site, multi-depth lateral branch blocks do not effectively block the intra-articular portion of the SIJ. There is physiological evidence that the intra-articular portion of the SIJ is innervated from both ventral and dorsal sources. Comparative multi-site, multi-depth lateral branch blocks should be considered a potentially valuable tool to diagnose extra-articular SIJ pain and determine if lateral branch radiofrequency neurotomy may assist one with SIJ pain.

  18. IMPLANTABLE RESONATORS – A TECHNIQUE FOR REPEATED MEASUREMENT OF OXYGEN AT MULTIPLE DEEP SITES WITH IN VIVO EPR

    PubMed Central

    Li, Hongbin; Hou, Huagang; Sucheta, Artur; Williams, Benjamin B.; Lariviere, Jean P.; Khan, Nadeem; Lesniewski, Piotr N.; Swartz, Harold M.

    2013-01-01

    EPR oximetry using implantable resonators allow measurements at much deeper sites than are possible with surface resonators (> 80 mm vs. 10 mm) and have greater sensitivity at any depth. We report here the development of an improvement of the technique that now enables us to obtain the information from multiple sites and at a variety of depths. The measurements from the various sites are resolved using a simple magnetic field gradient. In the rat brain multi-probe implanted resonators measured pO2 at several sites simultaneously for over 6 months to record under normoxic, hypoxic and hyperoxic conditions. This technique also facilitates measurements in moving parts of the animal such as the heart, because the orientation of the paramagnetic material relative to the sensitive small loop is not altered by the motion. The measured response is very fast, enabling measurements in real time of physiological and pathological changes such as experimental cardiac ischemia in the mouse heart. The technique also is quite useful for following changes in tumor pO2, including applications with simultaneous measurements in tumors and adjacent normal tissues. PMID:20204802

  19. Simultaneous Estimation of Overall and Domain Abilities: A Higher-Order IRT Model Approach

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Song, Hao

    2009-01-01

    Assessments consisting of different domains (e.g., content areas, objectives) are typically multidimensional in nature but are commonly assumed to be unidimensional for estimation purposes. The different domains of these assessments are further treated as multi-unidimensional tests for the purpose of obtaining diagnostic information. However, when…

  20. Development and assessment of a higher-spatial-resolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data

    NASA Astrophysics Data System (ADS)

    Garay, Michael J.; Kalashnikova, Olga V.; Bull, Michael A.

    2017-04-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been acquiring data that have been used to produce aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution. Capitalizing on the capabilities provided by multi-angle viewing, the current operational (Version 22) MISR algorithm performs well, with about 75 % of MISR AOD retrievals globally falling within 0.05 or 20 % × AOD of paired validation data from the ground-based Aerosol Robotic Network (AERONET). This paper describes the development and assessment of a prototype version of a higher-spatial-resolution 4.4 km MISR aerosol optical depth product compared against multiple AERONET Distributed Regional Aerosol Gridded Observations Network (DRAGON) deployments around the globe. In comparisons with AERONET-DRAGON AODs, the 4.4 km resolution retrievals show improved correlation (r = 0. 9595), smaller RMSE (0.0768), reduced bias (-0.0208), and a larger fraction within the expected error envelope (80.92 %) relative to the Version 22 MISR retrievals.

  1. Natural Crack Sizing Based on Eddy Current Image and Electromagnetic Field Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endo, H.; Uchimoto, T.; Takagi, T.

    2006-03-06

    An eddy current testing (ECT) system with multi-coil type probes is applied to size up cracks fabricated on austenite stainless plates. We have developed muti-channel ECT system to produce data as digital images. The probes consist of transmit-receive type sensors as elements to classify crack directions, working as two scan direction modes simultaneously. Template matching applied to the ECT images determines regions of interest in sizing up cracks. Finite element based inversion sizes up the crack depth from the measured ECT signal. The present paper demonstrates this approach for fatigue crack and stress corrosion cracking.

  2. Design and characterization of a handheld multimodal imaging device for the assessment of oral epithelial lesions

    NASA Astrophysics Data System (ADS)

    Higgins, Laura M.; Pierce, Mark C.

    2014-08-01

    A compact handpiece combining high resolution fluorescence (HRF) imaging with optical coherence tomography (OCT) was developed to provide real-time assessment of oral lesions. This multimodal imaging device simultaneously captures coregistered en face images with subcellular detail alongside cross-sectional images of tissue microstructure. The HRF imaging acquires a 712×594 μm2 field-of-view at the sample with a spatial resolution of 3.5 μm. The OCT images were acquired to a depth of 1.5 mm with axial and lateral resolutions of 9.3 and 8.0 μm, respectively. HRF and OCT images are simultaneously displayed at 25 fps. The handheld device was used to image a healthy volunteer, demonstrating the potential for in vivo assessment of the epithelial surface for dysplastic and neoplastic changes at the cellular level, while simultaneously evaluating submucosal involvement. We anticipate potential applications in real-time assessment of oral lesions for improved surveillance and surgical guidance.

  3. Multiple-stage decisions in a marine central-place forager

    PubMed Central

    Friedlaender, Ari S.; Johnston, David W.; Tyson, Reny B.; Kaltenberg, Amanda; Goldbogen, Jeremy A.; Stimpert, Alison K.; Curtice, Corrie; Hazen, Elliott L.; Halpin, Patrick N.; Read, Andrew J.; Nowacek, Douglas P.

    2016-01-01

    Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator–prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager studies. PMID:27293784

  4. Automated multivariate analysis of multi-sensor data submitted online: Real-time environmental monitoring.

    PubMed

    Eide, Ingvar; Westad, Frank

    2018-01-01

    A pilot study demonstrating real-time environmental monitoring with automated multivariate analysis of multi-sensor data submitted online has been performed at the cabled LoVe Ocean Observatory located at 258 m depth 20 km off the coast of Lofoten-Vesterålen, Norway. The major purpose was efficient monitoring of many variables simultaneously and early detection of changes and time-trends in the overall response pattern before changes were evident in individual variables. The pilot study was performed with 12 sensors from May 16 to August 31, 2015. The sensors provided data for chlorophyll, turbidity, conductivity, temperature (three sensors), salinity (calculated from temperature and conductivity), biomass at three different depth intervals (5-50, 50-120, 120-250 m), and current speed measured in two directions (east and north) using two sensors covering different depths with overlap. A total of 88 variables were monitored, 78 from the two current speed sensors. The time-resolution varied, thus the data had to be aligned to a common time resolution. After alignment, the data were interpreted using principal component analysis (PCA). Initially, a calibration model was established using data from May 16 to July 31. The data on current speed from two sensors were subject to two separate PCA models and the score vectors from these two models were combined with the other 10 variables in a multi-block PCA model. The observations from August were projected on the calibration model consecutively one at a time and the result was visualized in a score plot. Automated PCA of multi-sensor data submitted online is illustrated with an attached time-lapse video covering the relative short time period used in the pilot study. Methods for statistical validation, and warning and alarm limits are described. Redundant sensors enable sensor diagnostics and quality assurance. In a future perspective, the concept may be used in integrated environmental monitoring.

  5. Conflict between Work and Family: An Investigation of Four Policy Measures

    ERIC Educational Resources Information Center

    Ruppanner, Leah

    2013-01-01

    Welfare states enact a range of policies aimed at reducing work-family conflict. While welfare state policies have been assessed at the macro-level and work-family conflict at the individual-level, few studies have simultaneously addressed these relationships in a cross-national multi-level model. This study addresses this void by assessing the…

  6. Clinical evaluation of a simultaneous closed-loop anaesthesia control system for depth of anaesthesia and neuromuscular blockade*.

    PubMed

    Janda, M; Simanski, O; Bajorat, J; Pohl, B; Noeldge-Schomburg, G F E; Hofmockel, R

    2011-12-01

    We developed a closed-loop system to control the depth of anaesthesia and neuromuscular blockade using the bispectral index and the electromyogram simultaneously and evaluated the clinical performance of this combined system for general anaesthesia. Twenty-two adult patients were included in this study. Anaesthesia was induced by a continuous infusion of remifentanil at 0.4 μg.kg(-1) .min(-1) (induction dose) and then 0.25 μg.kg(-1) .min(-1) (maintenance dose) and propofol at 2 mg.kg(-1) 3 min later. The combined automatic control was started 2 min after tracheal intubation. The depth of anaesthesia was recorded using bispectral index monitoring using a target value of 40. The target value of neuromuscular blockade, using mivacurium, was a T1/T1(0) twitch height of 10%. The precision of the system was calculated using internationally defined performance parameters. Twenty patients were included in the data analysis. The mean (SD) duration of simultaneous control was 129 (69) min. No human intervention was necessary during the computer-controlled administration of propofol and mivacurium. All patients assessed the quality of anaesthesia as 'good' to 'very good'; there were no episodes of awareness. The mean (SD) median performance error, median absolute performance error and wobble for the control of depth of anaesthesia and for neuromuscular blockade were -0.31 (1.78), 6.76 (3.45), 6.32 (2.93) and -0.38 (1.68), 3.75 (4.83), 3.63 (4.69), respectively. The simultaneous closed-loop system using propofol and mivacurium was able to maintain the target values with a high level of precision in a clinical setting. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  7. A satellite snow depth multi-year average derived from SSM/I for the high latitude regions

    USGS Publications Warehouse

    Biancamaria, S.; Mognard, N.M.; Boone, A.; Grippa, M.; Josberger, E.G.

    2008-01-01

    The hydrological cycle for high latitude regions is inherently linked with the seasonal snowpack. Thus, accurately monitoring the snow depth and the associated aerial coverage are critical issues for monitoring the global climate system. Passive microwave satellite measurements provide an optimal means to monitor the snowpack over the arctic region. While the temporal evolution of snow extent can be observed globally from microwave radiometers, the determination of the corresponding snow depth is more difficult. A dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from Special Sensor Microwave/Imager (SSM/I) brightness temperatures and was validated over the U.S. Great Plains and Western Siberia. The purpose of this study is to assess the dynamic algorithm performance over the entire high latitude (land) region by computing a snow depth multi-year field for the time period 1987-1995. This multi-year average is compared to the Global Soil Wetness Project-Phase2 (GSWP2) snow depth computed from several state-of-the-art land surface schemes and averaged over the same time period. The multi-year average obtained by the dynamic algorithm is in good agreement with the GSWP2 snow depth field (the correlation coefficient for January is 0.55). The static algorithm, which assumes a constant snow grain size in space and time does not correlate with the GSWP2 snow depth field (the correlation coefficient with GSWP2 data for January is - 0.03), but exhibits a very high anti-correlation with the NCEP average January air temperature field (correlation coefficient - 0.77), the deepest satellite snow pack being located in the coldest regions, where the snow grain size may be significantly larger than the average value used in the static algorithm. The dynamic algorithm performs better over Eurasia (with a correlation coefficient with GSWP2 snow depth equal to 0.65) than over North America (where the correlation coefficient decreases to 0.29). ?? 2007 Elsevier Inc. All rights reserved.

  8. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo

    PubMed Central

    Yang, Joon-Mo; Favazza, Christopher; Chen, Ruimin; Yao, Junjie; Cai, Xin; Maslov, Konstantin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.

    2013-01-01

    Presently, clinicians routinely apply ultrasound endoscopy in a variety of interventional procedures which provide treatment solutions for diseased organs. Ultrasound endoscopy not only produces high resolution images, it is also safe for clinical use and broadly applicable. However, for soft tissue imaging, its mechanical wave-based image contrast fundamentally limits its ability to provide physiologically-specific functional information. By contrast, photoacoustic endoscopy possesses a unique combination of functional optical contrast and high spatial resolution at clinically-relevant depths, ideal for soft tissue imaging. With these attributes, photoacoustic endoscopy can overcome the current limitations of ultrasound endoscopy. Moreover, the benefits of photoacoustic imaging do not come at the expense of existing ultrasound functions; photoacoustic endoscopy systems are inherently compatible with ultrasound imaging, enabling multi-modality imaging with complementary contrast. Here, we present simultaneous photoacoustic and ultrasonic dual-mode endoscopy and demonstrate its ability to image internal organs in vivo, illustrating its potential clinical application. PMID:22797808

  9. A multi-annual landslide inventory for the assessment of shallow landslide susceptibility - Two test cases in Vorarlberg, Austria

    NASA Astrophysics Data System (ADS)

    Zieher, Thomas; Perzl, Frank; Rössel, Monika; Rutzinger, Martin; Meißl, Gertraud; Markart, Gerhard; Geitner, Clemens

    2016-04-01

    Geomorphological landslide inventories provide crucial input data for any study on the assessment of landslide susceptibility, hazard or risk. Several approaches for assessing landslide susceptibility have been proposed to identify areas particularly vulnerable to this natural hazard. What they have in common is the need for data of observed landslides. Therefore the first step of any study on landslide susceptibility is usually the compilation of a geomorphological landslide inventory using a geographical information system. Recent research has proved the feasibility of orthophoto interpretation for the preparation of an inventory aimed at the delineation of landslides with the use of distinctive signs in the imagery data. In this study a multi-annual landslide inventory focusing on shallow landslides (i.e. translational soil slides of 0-2 m in depth) was compiled for two study areas in Vorarlberg (Austria) from the interpretation of nine orthophoto series. In addition, derivatives of two generations of airborne laser scanning data aided the mapping procedure. Landslide scar areas were delineated on the basis of a high-resolution differential digital terrain model. The derivation of landslide volumes, depths and depth-to-length ratios are discussed. Results show that most mapped landslides meet the definition of a shallow landslide. The inventory therefore provides the data basis for the assessment of shallow landslide susceptibility and allows for the application of various modelling techniques.

  10. Second Life in Higher Education: Assessing the Potential for and the Barriers to Deploying Virtual Worlds in Learning and Teaching

    ERIC Educational Resources Information Center

    Warburton, Steven

    2009-01-01

    "Second Life" (SL) is currently the most mature and popular multi-user virtual world platform being used in education. Through an in-depth examination of SL, this article explores its potential and the barriers that multi-user virtual environments present to educators wanting to use immersive 3-D spaces in their teaching. The context is set by…

  11. Hippocampal effective synchronization values are not pre-seizure indicator without considering the state of the onset channels

    PubMed Central

    Shayegh, Farzaneh; Sadri, Saeed; Amirfattahi, Rassoul; Ansari-Asl, Karim; Bellanger, Jean-Jacques; Senhadji, Lotfi

    2014-01-01

    In this paper, a model-based approach is presented to quantify the effective synchrony between hippocampal areas from depth-EEG signals. This approach is based on the parameter identification procedure of a realistic Multi-Source/Multi-Channel (MSMC) hippocampal model that simulates the function of different areas of hippocampus. In the model it is supposed that the observed signals recorded using intracranial electrodes are generated by some hidden neuronal sources, according to some parameters. An algorithm is proposed to extract the intrinsic (solely relative to one hippocampal area) and extrinsic (coupling coefficients between two areas) model parameters, simultaneously, by a Maximum Likelihood (ML) method. Coupling coefficients are considered as the measure of effective synchronization. This work can be considered as an application of Dynamic Causal Modeling (DCM) that enables us to understand effective synchronization changes during transition from inter-ictal to pre -ictal state. The algorithm is first validated by using some synthetic datasets. Then by extracting the coupling coefficients of real depth-EEG signals by the proposed approach, it is observed that the coupling values show no significant difference between ictal, pre-ictal and inter-ictal states, i.e., either the increase or decrease of coupling coefficients has been observed in all states. However, taking the value of intrinsic parameters into account, pre-seizure state can be distinguished from inter-ictal state. It is claimed that seizures start to appear when there are seizure-related physiological parameters on the onset channel, and its coupling coefficient toward other channels increases simultaneously. As a result of considering both intrinsic and extrinsic parameters as the feature vector, inter-ictal, pre-ictal and ictal activities are discriminated from each other with an accuracy of 91.33% accuracy. PMID:25061815

  12. Aerosol Retrievals from ARM SGP MFRSR Data

    DOE Data Explorer

    Alexandrov, Mikhail

    2008-01-15

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670 nm). Aerosols and Rayleigh scattering contribute atmospheric extinction in all MFRSR channels. Our recently updated MFRSR data analysis algorithm allows us to partition the spectral aerosol optical depth into fine and coarse modes and to retrieve the fine mode effective radius. In this approach we rely on climatological amounts of NO2 from SCIAMACHY satellite retrievals and use daily ozone columns from TOMS.

  13. Comparison of procedures for correction of matrix interferences in the analysis of soils by ICP-OES with CCD detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, D.A.; Sun, F.; Littlejohn, D.

    1995-12-31

    ICP-OES is a useful technique for multi-element analysis of soils. However, as a number of elements are present in relatively high concentrations, matrix interferences can occur and examples have been widely reported. The availability of CCD detectors has increased the opportunities for rapid multi-element, multi-wave-length determination of elemental concentrations in soils and other environmental samples. As the composition of soils from industrial sites can vary considerably, especially when taken from different pit horizons, procedures are required to assess the extent of interferences and correct the effects, on a simultaneous multi-element basis. In single element analysis, plasma operating conditions can sometimesmore » be varied to minimize or even remove multiplicative interferences. In simultaneous multi-element analysis, the scope for this approach may be limited, depending on the spectrochemical characteristics of the emitting analyte species. Matrix matching, by addition of major sample components to the analyte calibrant solutions, can be used to minimize inaccuracies. However, there are also limitations to this procedure, when the sample composition varies significantly. Multiplicative interference effects can also be assessed by a {open_quotes}single standard addition{close_quotes} of each analyte to the sample solution and the information obtained may be used to correct the analyte concentrations determined directly. Each of these approaches has been evaluated to ascertain the best procedure for multi-element analysis of industrial soils by ICP-OES with CCD detection at multiple wavelengths. Standard reference materials and field samples have been analyzed to illustrate the efficacy of each procedure.« less

  14. Real-time calibration-free C-scan images of the eye fundus using Master Slave swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Fred; Garway-Heath, David F.; Rajendram, Ranjan; Keane, Pearce; Podoleanu, Adrian G.

    2015-03-01

    Recently, we introduced a novel Optical Coherence Tomography (OCT) method, termed as Master Slave OCT (MS-OCT), specialized for delivering en-face images. This method uses principles of spectral domain interfereometry in two stages. MS-OCT operates like a time domain OCT, selecting only signals from a chosen depth only while scanning the laser beam across the eye. Time domain OCT allows real time production of an en-face image, although relatively slowly. As a major advance, the Master Slave method allows collection of signals from any number of depths, as required by the user. The tremendous advantage in terms of parallel provision of data from numerous depths could not be fully employed by using multi core processors only. The data processing required to generate images at multiple depths simultaneously is not achievable with commodity multicore processors only. We compare here the major improvement in processing and display, brought about by using graphic cards. We demonstrate images obtained with a swept source at 100 kHz (which determines an acquisition time [Ta] for a frame of 200×200 pixels2 of Ta =1.6 s). By the end of the acquired frame being scanned, using our computing capacity, 4 simultaneous en-face images could be created in T = 0.8 s. We demonstrate that by using graphic cards, 32 en-face images can be displayed in Td 0.3 s. Other faster swept source engines can be used with no difference in terms of Td. With 32 images (or more), volumes can be created for 3D display, using en-face images, as opposed to the current technology where volumes are created using cross section OCT images.

  15. A multi-spectral approach to simultaneously retrieve above-cloud smoke optical depth and the optical and microphysical properties of underlying marine stratocumulus clouds using MODIS

    NASA Astrophysics Data System (ADS)

    Meyer, K.; Platnick, S. E.; Zhang, Z.

    2013-12-01

    Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer (MBL) clouds over the southeastern Atlantic Ocean, which underlie a near-persistent smoke layer produced from extensive biomass burning throughout the southern African savanna during austral winter. The absorption of the above-cloud smoke layer, which increases with decreasing wavelength, can introduce biases into the standard MODIS cloud optical and microphysical property retrievals of the underlying MBL clouds. This effect is more pronounced in the cloud optical thickness retrievals, which over ocean are derived from the wavelength channel centered near 0.86 μm (effective particle size retrievals are derived from the short and mid-wave IR channels at 1.6, 2.1, and 3.7 μm). Here, a new method is introduced to simultaneously retrieve the above-cloud smoke aerosol optical depth (AOD) and the unbiased cloud optical thickness (COT) and effective radius (CER) using multiple MODIS spectral channels in the visible and near- and shortwave-infrared. Preliminary retrieval results are shown, as are comparisons with other A-Train sensors.

  16. Life cycle thinking and assessment tools on environmentally-benign electronics: Convergent optimization of materials use, end-of-life strategy and environmental policies

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoying

    The purpose of this study is to integrate the quantitative environmental performance assessment tools and the theory of multi-objective optimization within the boundary of electronic product systems to support the selection among design alternatives in terms of environmental impact, technical criteria, and economic feasibility. To meet with the requirements that result from emerging environmental legislation targeting electronics products, the research addresses an important analytical methodological approach to facilitate environmentally conscious design and end-of-life management with a life cycle viewpoint. A synthesis of diverse assessment tools is applied on a set of case studies: lead-free solder materials selection, cellular phone design, and desktop display technology assessment. In the first part of this work, an in-depth industrial survey of the status and concerns of the U.S. electronics industry on the elimination of lead (Pb) in solders is described. The results show that the trade-offs among environmental consequences, technology challenges, business risks, legislative compliance and stakeholders' preferences must be explicitly, simultaneously, and systematically addressed in the decision-making process used to guide multi-faceted planning of environmental solutions. In the second part of this work, the convergent optimization of the technical cycle, economic cycle and environmental cycle is addressed in a coherent and systematic way using the application of environmentally conscious design of cellular phones. The technical understanding of product structure, components analysis, and materials flow facilitates the development of "Design for Disassembly" guidelines. A bottom-up disassembly analysis on a "bill of materials" based structure at a micro-operational level is utilized to select optimal end-of-life strategies on the basis of economic feasibility. A macro-operational level life cycle model is used to investigate the environmental consequences linking environmental impact with the cellular phone production activities focusing on the upstream manufacturing and end-of-life life cycle stages. The last part of this work, the quantitative elicitation of weighting factors facilitates the comparison of trade-offs in the context of a multi-attribute problem. An integrated analytical approach, Integrated Industrial Ecology Function Deployment (I2-EFD), is proposed to assess alternatives at the design phase of a product system and is validated with the assessment of desktop display technologies and lead-free solder alternatives.

  17. Synthesized view comparison method for no-reference 3D image quality assessment

    NASA Astrophysics Data System (ADS)

    Luo, Fangzhou; Lin, Chaoyi; Gu, Xiaodong; Ma, Xiaojun

    2018-04-01

    We develop a no-reference image quality assessment metric to evaluate the quality of synthesized view rendered from the Multi-view Video plus Depth (MVD) format. Our metric is named Synthesized View Comparison (SVC), which is designed for real-time quality monitoring at the receiver side in a 3D-TV system. The metric utilizes the virtual views in the middle which are warped from left and right views by Depth-image-based rendering algorithm (DIBR), and compares the difference between the virtual views rendered from different cameras by Structural SIMilarity (SSIM), a popular 2D full-reference image quality assessment metric. The experimental results indicate that our no-reference quality assessment metric for the synthesized images has competitive prediction performance compared with some classic full-reference image quality assessment metrics.

  18. Identification of copy number variants in whole-genome data using Reference Coverage Profiles

    PubMed Central

    Glusman, Gustavo; Severson, Alissa; Dhankani, Varsha; Robinson, Max; Farrah, Terry; Mauldin, Denise E.; Stittrich, Anna B.; Ament, Seth A.; Roach, Jared C.; Brunkow, Mary E.; Bodian, Dale L.; Vockley, Joseph G.; Shmulevich, Ilya; Niederhuber, John E.; Hood, Leroy

    2015-01-01

    The identification of DNA copy numbers from short-read sequencing data remains a challenge for both technical and algorithmic reasons. The raw data for these analyses are measured in tens to hundreds of gigabytes per genome; transmitting, storing, and analyzing such large files is cumbersome, particularly for methods that analyze several samples simultaneously. We developed a very efficient representation of depth of coverage (150–1000× compression) that enables such analyses. Current methods for analyzing variants in whole-genome sequencing (WGS) data frequently miss copy number variants (CNVs), particularly hemizygous deletions in the 1–100 kb range. To fill this gap, we developed a method to identify CNVs in individual genomes, based on comparison to joint profiles pre-computed from a large set of genomes. We analyzed depth of coverage in over 6000 high quality (>40×) genomes. The depth of coverage has strong sequence-specific fluctuations only partially explained by global parameters like %GC. To account for these fluctuations, we constructed multi-genome profiles representing the observed or inferred diploid depth of coverage at each position along the genome. These Reference Coverage Profiles (RCPs) take into account the diverse technologies and pipeline versions used. Normalization of the scaled coverage to the RCP followed by hidden Markov model (HMM) segmentation enables efficient detection of CNVs and large deletions in individual genomes. Use of pre-computed multi-genome coverage profiles improves our ability to analyze each individual genome. We make available RCPs and tools for performing these analyses on personal genomes. We expect the increased sensitivity and specificity for individual genome analysis to be critical for achieving clinical-grade genome interpretation. PMID:25741365

  19. Human genome-microbiome interaction: metagenomics frontiers for the aetiopathology of autoimmune diseases.

    PubMed

    Gundogdu, Aycan; Nalbantoglu, Ufuk

    2017-04-01

    A short while ago, the human genome and microbiome were analysed simultaneously for the first time as a multi-omic approach. The analyses of heterogeneous population cohorts showed that microbiome components were associated with human genome variations. In-depth analysis of these results reveals that the majority of those relationships are between immune pathways and autoimmune disease-associated microbiome components. Thus, it can be hypothesized that autoimmunity may be associated with homeostatic disequilibrium of the human-microbiome interactome. Further analysis of human genome-human microbiome relationships in disease contexts with tailored systems biology approaches may yield insights into disease pathogenesis and prognosis.

  20. Human genome-microbiome interaction: metagenomics frontiers for the aetiopathology of autoimmune diseases

    PubMed Central

    Nalbantoglu, Ufuk

    2017-01-01

    A short while ago, the human genome and microbiome were analysed simultaneously for the first time as a multi-omic approach. The analyses of heterogeneous population cohorts showed that microbiome components were associated with human genome variations. In-depth analysis of these results reveals that the majority of those relationships are between immune pathways and autoimmune disease-associated microbiome components. Thus, it can be hypothesized that autoimmunity may be associated with homeostatic disequilibrium of the human-microbiome interactome. Further analysis of human genome–human microbiome relationships in disease contexts with tailored systems biology approaches may yield insights into disease pathogenesis and prognosis. PMID:28785422

  1. Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity

    USGS Publications Warehouse

    Brosten, Troy R.; Day-Lewis, Frederick D.; Schultz, Gregory M.; Curtis, Gary P.; Lane, John W.

    2011-01-01

    Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of − 0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)–ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~ 0.5 m followed by a gradual correlation loss of 90% at 2.3 m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter–receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0 ± 0.5 m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation.

  2. Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity

    USGS Publications Warehouse

    Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.

    2011-01-01

    Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.

  3. Multi-enzyme logic network architectures for assessing injuries: digital processing of biomarkers.

    PubMed

    Halámek, Jan; Bocharova, Vera; Chinnapareddy, Soujanya; Windmiller, Joshua Ray; Strack, Guinevere; Chuang, Min-Chieh; Zhou, Jian; Santhosh, Padmanabhan; Ramirez, Gabriela V; Arugula, Mary A; Wang, Joseph; Katz, Evgeny

    2010-12-01

    A multi-enzyme biocatalytic cascade processing simultaneously five biomarkers characteristic of traumatic brain injury (TBI) and soft tissue injury (STI) was developed. The system operates as a digital biosensor based on concerted function of 8 Boolean AND logic gates, resulting in the decision about the physiological conditions based on the logic analysis of complex patterns of the biomarkers. The system represents the first example of a multi-step/multi-enzyme biosensor with the built-in logic for the analysis of complex combinations of biochemical inputs. The approach is based on recent advances in enzyme-based biocomputing systems and the present paper demonstrates the potential applicability of biocomputing for developing novel digital biosensor networks.

  4. Wavelet extractor: A Bayesian well-tie and wavelet extraction program

    NASA Astrophysics Data System (ADS)

    Gunning, James; Glinsky, Michael E.

    2006-06-01

    We introduce a new open-source toolkit for the well-tie or wavelet extraction problem of estimating seismic wavelets from seismic data, time-to-depth information, and well-log suites. The wavelet extraction model is formulated as a Bayesian inverse problem, and the software will simultaneously estimate wavelet coefficients, other parameters associated with uncertainty in the time-to-depth mapping, positioning errors in the seismic imaging, and useful amplitude-variation-with-offset (AVO) related parameters in multi-stack extractions. It is capable of multi-well, multi-stack extractions, and uses continuous seismic data-cube interpolation to cope with the problem of arbitrary well paths. Velocity constraints in the form of checkshot data, interpreted markers, and sonic logs are integrated in a natural way. The Bayesian formulation allows computation of full posterior uncertainties of the model parameters, and the important problem of the uncertain wavelet span is addressed uses a multi-model posterior developed from Bayesian model selection theory. The wavelet extraction tool is distributed as part of the Delivery seismic inversion toolkit. A simple log and seismic viewing tool is included in the distribution. The code is written in Java, and thus platform independent, but the Seismic Unix (SU) data model makes the inversion particularly suited to Unix/Linux environments. It is a natural companion piece of software to Delivery, having the capacity to produce maximum likelihood wavelet and noise estimates, but will also be of significant utility to practitioners wanting to produce wavelet estimates for other inversion codes or purposes. The generation of full parameter uncertainties is a crucial function for workers wishing to investigate questions of wavelet stability before proceeding to more advanced inversion studies.

  5. Micro-optical system based 3D imaging for full HD depth image capturing

    NASA Astrophysics Data System (ADS)

    Park, Yong-Hwa; Cho, Yong-Chul; You, Jang-Woo; Park, Chang-Young; Yoon, Heesun; Lee, Sang-Hun; Kwon, Jong-Oh; Lee, Seung-Wan

    2012-03-01

    20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical shutter'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation. The optical shutter device is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image. Suggested novel optical shutter device enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously. The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical shutter design, fabrication, characterization, 3D camera system prototype and image test results.

  6. Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach

    Treesearch

    F. Briggs; B. Lakshminarayanan; L. Neal; X.Z. Fern; R. Raich; S.F. Hadley; A.S. Hadley; M.G. Betts

    2012-01-01

    Although field-collected recordings typically contain multiple simultaneously vocalizing birds of different species, acoustic species classification in this setting has received little study so far. This work formulates the problem of classifying the set of species present in an audio recording using the multi-instance multi-label (MIML) framework for machine learning...

  7. The potential of multi-port optical memories in digital computing

    NASA Technical Reports Server (NTRS)

    Alford, C. O.; Gaylord, T. K.

    1975-01-01

    A high-capacity memory with a relatively high data transfer rate and multi-port simultaneous access capability may serve as the basis for new computer architectures. The implementation of a multi-port optical memory is discussed. Several computer structures are presented that might profitably use such a memory. These structures include (1) a simultaneous record access system, (2) a simultaneously shared memory computer system, and (3) a parallel digital processing structure.

  8. WE-DE-201-08: Multi-Source Rotating Shield Brachytherapy Apparatus for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadkhah, H; Wu, X; Kim, Y

    Purpose: To introduce a novel multi-source rotating shield brachytherapy (RSBT) apparatus for the precise simultaneous angular and linear positioning of all partially-shielded 153Gd radiation sources in interstitial needles for treating prostate cancer. The mechanism is designed to lower the detrimental dose to healthy tissues, the urethra in particular, relative to conventional high-dose-rate brachytherapy (HDR-BT) techniques. Methods: Following needle implantation, the delivery system is docked to the patient template. Each needle is coupled to a multi-source afterloader catheter by a connector passing through a shaft. The shafts are rotated by translating a moving template between two stationary templates. Shaft walls asmore » well as moving template holes are threaded such that the resistive friction produced between the two parts exerts enough force on the shafts to bring about the rotation. Rotation of the shaft is then transmitted to the shielded source via several keys. Thus, shaft angular position is fully correlated with the position of the moving template. The catheter angles are simultaneously incremented throughout treatment as needed, and only a single 360° rotation of all catheters is needed for a full treatment. For each rotation angle, source depth in each needle is controlled by a multi-source afterloader, which is proposed as an array of belt-driven linear actuators, each of which drives a source wire. Results: Optimized treatment plans based on Monte Carlo dose calculations demonstrated RSBT with the proposed apparatus reduced urethral D{sub 1cc} below that of conventional HDR-BT by 35% for urethral dose gradient volume within 3 mm of the urethra surface. Treatment time to deliver 20 Gy with multi-source RSBT apparatus using nineteen 62.4 GBq {sup 153}Gd sources is 117 min. Conclusions: The proposed RSBT delivery apparatus in conjunction with multiple nitinol catheter-mounted platinum-shielded {sup 153}Gd sources enables a mechanically feasible urethra-sparing treatment technique for prostate cancer in a clinically reasonable timeframe.« less

  9. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity.

    PubMed

    Cohen, Alexander D; Nencka, Andrew S; Lebel, R Marc; Wang, Yang

    2017-01-01

    A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI.

  10. Field experimental observations of highly graded sediment plumes.

    PubMed

    Jensen, Jacob Hjelmager; Saremi, Sina; Jimenez, Carlos; Hadjioannou, Louis

    2015-06-15

    A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes, gravitating towards the seafloor, were filmed simultaneously by four divers situated at different depths in the water column, and facing the plume at different angles. The processes were captured using GoPro-Hero-series cameras. The high-quality underwater footage from near-surface, mid-depth and near-bed positions gives unique insight into the dynamics of the descending plume and near-field dispersion processes, and enables good understanding of flow and sediment transport processes involved from-release-to-deposition of the load in a non-scaled environment. The high resolution images and footages are available through the link provided herein. Observations support the development of a detailed multi-fractional sediment plume model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Multi-angle lensless digital holography for depth resolved imaging on a chip.

    PubMed

    Su, Ting-Wei; Isikman, Serhan O; Bishara, Waheb; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan

    2010-04-26

    A multi-angle lensfree holographic imaging platform that can accurately characterize both the axial and lateral positions of cells located within multi-layered micro-channels is introduced. In this platform, lensfree digital holograms of the micro-objects on the chip are recorded at different illumination angles using partially coherent illumination. These digital holograms start to shift laterally on the sensor plane as the illumination angle of the source is tilted. Since the exact amount of this lateral shift of each object hologram can be calculated with an accuracy that beats the diffraction limit of light, the height of each cell from the substrate can be determined over a large field of view without the use of any lenses. We demonstrate the proof of concept of this multi-angle lensless imaging platform by using light emitting diodes to characterize various sized microparticles located on a chip with sub-micron axial and lateral localization over approximately 60 mm(2) field of view. Furthermore, we successfully apply this lensless imaging approach to simultaneously characterize blood samples located at multi-layered micro-channels in terms of the counts, individual thicknesses and the volumes of the cells at each layer. Because this platform does not require any lenses, lasers or other bulky optical/mechanical components, it provides a compact and high-throughput alternative to conventional approaches for cytometry and diagnostics applications involving lab on a chip systems.

  12. Simultaneous confocal fluorescence microscopy and optical coherence tomography for drug distribution and tissue integrity assessment

    NASA Astrophysics Data System (ADS)

    Rinehart, Matthew T.; LaCroix, Jeffrey; Henderson, Marcus; Katz, David; Wax, Adam

    2011-03-01

    The effectiveness of microbicidal gels, topical products developed to prevent infection by sexually transmitted diseases including HIV/AIDS, is governed by extent of gel coverage, pharmacokinetics of active pharmaceutical ingredients (APIs), and integrity of vaginal epithelium. While biopsies provide localized information about drug delivery and tissue structure, in vivo measurements are preferable in providing objective data on API and gel coating distribution as well as tissue integrity. We are developing a system combining confocal fluorescence microscopy with optical coherence tomography (OCT) to simultaneously measure local concentrations and diffusion coefficients of APIs during transport from microbicidal gels into tissue, while assessing tissue integrity. The confocal module acquires 2-D images of fluorescent APIs multiple times per second allowing analysis of lateral diffusion kinetics. The custom Fourier domain OCT module has a maximum a-scan rate of 54 kHz and provides depth-resolved tissue integrity information coregistered with the confocal fluorescence measurements. The combined system is validated by imaging phantoms with a surrogate fluorophore. Time-resolved API concentration measured at fixed depths is analyzed for diffusion kinetics. This multimodal system will eventually be implemented in vivo for objective evaluation of microbicide product performance.

  13. Assessment of suturing in the vertical plane shows the efficacy of the multi-degree-of-freedom needle driver for neonatal laparoscopy.

    PubMed

    Takazawa, Shinya; Ishimaru, Tetsuya; Fujii, Masahiro; Harada, Kanako; Sugita, Naohiko; Mitsuishi, Mamoru; Iwanaka, Tadashi

    2013-11-01

    We have developed a thin needle driver with multiple degrees-of-freedom (DOFs) for neonatal laparoscopic surgery. The tip of this needle driver has three DOFs for grasp, deflection and rotation. Our aim was to evaluate the performance of the multi-DOF needle driver in vertical plane suturing. Six pediatric surgeons performed four directional suturing tasks in the vertical plane using the multi-DOF needle driver and a conventional one. Assessed parameters were the accuracy of insertion and exit, the depth of suture, the inclination angle of the needle and the force applied on the model. In left and right direction sutures, the inclination angle of the needle with the multi-DOF needle driver was significantly smaller than that with the conventional one (p = 0.014, 0.042, respectively). In left and right direction sutures, the force for pulling the model with the multi-DOF needle driver was smaller than that with the conventional one (p = 0.036, 0.010, respectively). This study showed that multi-directional suturing on a vertical plane using the multi-DOF needle driver had better needle trajectories and was less invasive as compared to a conventional needle driver.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jatana, Gurneesh; Geckler, Sam; Koeberlein, David

    We designed and developed a 4-probe multiplexed multi-species absorption spectroscopy sensor system for gas property measurements on the intake side of commercial multi-cylinder internal-combustion (I.C.) engines; the resulting cycle- and cylinder-resolved concentration, temperature and pressure measurements are applicable for assessing spatial and temporal variations in the recirculated exhaust gas (EGR) distribution at various locations along the intake gas path, which in turn is relevant to assessing cylinder charge uniformity, control strategies, and CFD models. Furthermore, the diagnostic is based on absorption spectroscopy and includes an H 2O absorption system (utilizing a 1.39 m distributed feedback (DFB) diode laser) for measuringmore » gas temperature, pressure, and H 2O concentration, and a CO 2 absorption system (utilizing a 2.7 m DFB laser) for measuring CO 2 concentration. The various lasers, optical components and detectors were housed in an instrument box, and the 1.39- m and 2.7- m lasers were guided to and from the engine-mounted probes via optical fibers and hollow waveguides, respectively. The 5kHz measurement bandwidth allows for near-crank angle resolved measurements, with a resolution of 1.2 crank angle degrees at 1000 RPM. Our use of compact stainless steel measurement probes enables simultaneous multi-point measurements at various locations on the engine with minimal changes to the base engine hardware; in addition to resolving large-scale spatial variations via simultaneous multi-probe measurements, local spatial gradients can be resolved by translating individual probes. Along with details of various sensor design features and performance, we also demonstrate validation of the spectral parameters of the associated CO 2 absorption transitions using both a multi-pass heated cell and the sensor probes.« less

  15. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tang, Qinggong; Frank, Aaron; Wang, Jianting; Chen, Chao-wei; Jin, Lily; Lin, Jon; Chan, Joanne M.; Chen, Yu

    2016-03-01

    Early detection of neoplastic changes remains a critical challenge in clinical cancer diagnosis and treatment. Many cancers arise from epithelial layers such as those of the gastrointestinal (GI) tract. Current standard endoscopic technology is unable to detect those subsurface lesions. Since cancer development is associated with both morphological and molecular alterations, imaging technologies that can quantitative image tissue's morphological and molecular biomarkers and assess the depth extent of a lesion in real time, without the need for tissue excision, would be a major advance in GI cancer diagnostics and therapy. In this research, we investigated the feasibility of multi-modal optical imaging including high-resolution optical coherence tomography (OCT) and depth-resolved high-sensitivity fluorescence laminar optical tomography (FLOT) for structural and molecular imaging. APC (adenomatous polyposis coli) mice model were imaged using OCT and FLOT and the correlated histopathological diagnosis was obtained. Quantitative structural (the scattering coefficient) and molecular imaging parameters (fluorescence intensity) from OCT and FLOT images were developed for multi-parametric analysis. This multi-modal imaging method has demonstrated the feasibility for more accurate diagnosis with 87.4% (87.3%) for sensitivity (specificity) which gives the most optimal diagnosis (the largest area under receiver operating characteristic (ROC) curve). This project results in a new non-invasive multi-modal imaging platform for improved GI cancer detection, which is expected to have a major impact on detection, diagnosis, and characterization of GI cancers, as well as a wide range of epithelial cancers.

  16. Evaluation of laser ablation crater relief by white light micro interferometer

    NASA Astrophysics Data System (ADS)

    Gurov, Igor; Volkov, Mikhail; Zhukova, Ekaterina; Ivanov, Nikita; Margaryants, Nikita; Potemkin, Andrey; Samokhvalov, Andrey; Shelygina, Svetlana

    2017-06-01

    A multi-view scanning method is suggested to assess a complicated surface relief by white light interferometer. Peculiarities of the method are demonstrated on a special object in the form of quadrangular pyramid cavity, which is formed at measurement of micro-hardness of materials using a hardness gauge. An algorithm of the joint processing of multi-view scanning results is developed that allows recovering correct relief values. Laser ablation craters were studied experimentally, and their relief was recovered using the developed method. It is shown that the multi-view scanning reduces ambiguity when determining the local depth of the laser ablation craters micro relief. Results of experimental studies of the multi-view scanning method and data processing algorithm are presented.

  17. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    PubMed

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  18. Simultaneously extracting multiple parameters via multi-distance and multi-exposure diffuse speckle contrast analysis

    PubMed Central

    Liu, Jialin; Zhang, Hongchao; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua

    2017-01-01

    Recent advancements in diffuse speckle contrast analysis (DSCA) have opened the path for noninvasive acquisition of deep tissue microvasculature blood flow. In fact, in addition to blood flow index αDB, the variations of tissue optical absorption μa, reduced scattering coefficients μs′, as well as coherence factor β can modulate temporal fluctuations of speckle patterns. In this study, we use multi-distance and multi-exposure DSCA (MDME-DSCA) to simultaneously extract multiple parameters such as μa, μs′, αDB, and β. The validity of MDME-DSCA has been validated by the simulated data and phantoms experiments. Moreover, as a comparison, the results also show that it is impractical to simultaneously obtain multiple parameters by multi-exposure DSCA (ME-DSCA). PMID:29082083

  19. A New Finite Difference Q-compensated RTM Algorithm in Tilted Transverse Isotropic (TTI) Media

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Hu, W.; Ning, J.

    2017-12-01

    Attenuating anisotropic geological body is difficult to image with conventional migration methods. In such kind of scenarios, recorded seismic data suffer greatly from both amplitude decay and phase distortion, resulting in degraded resolution, poor illumination and incorrect migration depth in imaging results. To efficiently obtain high quality images, we propose a novel TTI QRTM algorithm based on Generalized Standard Linear Solid model combined with a unique multi-stage optimization technique to simultaneously correct the decayed amplitude and the distorted phase velocity. Numerical tests (shown in the figure) demonstrate that our TTI QRTM algorithm effectively corrects migration depth, significantly improves illumination, and enhances resolution within and below the low Q regions. The result of our new method is very close to the reference RTM image, while QRTM without TTI cannot get a correct image. Compared to the conventional QRTM method based on a pseudo-spectral operator for fractional Laplacian evaluation, our method is more computationally efficient for large scale applications and more suitable for GPU acceleration. With the current multi-stage dispersion optimization scheme, this TTI QRTM method best performs in the frequency range 10-70 Hz, and could be used in a wider frequency range. Furthermore, as this method can also handle frequency dependent Q, it has potential to be applied in imaging deep structures where low Q exists, such as subduction zones, volcanic zones or fault zones with passive source observations.

  20. Development of a novel multi-point plastic scintillation detector with a single optical transmission line for radiation dose measurement*

    PubMed Central

    Therriault-Proulx, François; Archambault, Louis; Beaulieu, Luc; Beddar, Sam

    2013-01-01

    Purpose The goal of this study was to develop a novel multi-point plastic scintillation detector (mPSD) capable of measuring the dose accurately at multiple positions simultaneously using a single optical transmission line. Methods A 2-point mPSD used a band-pass approach that included splitters, color filters, and an EMCCD camera. The 3-point mPSD was based on a new full-spectrum approach, in which a spectrograph was coupled to a CCD camera. Irradiations of the mPSDs and of an ion chamber were performed with a 6-MV photon beam at various depths and lateral positions in a water tank. Results For the 2-point mPSD, the average relative differences between mPSD and ion chamber measurements for the depth-dose were 2.4±1.6% and 1.3±0.8% for BCF-60 and BCF-12, respectively. For the 3-point mPSD, the average relative differences over all conditions were 2.3±1.1%, 1.6±0.4%, and 0.32±0.19% for BCF-60, BCF-12, and BCF-10, respectively. Conclusions This study demonstrates the practical feasibility of mPSDs. This type of detector could be very useful for pre-treatment quality assurance applications as well as an accurate tool for real-time in vivo dosimetry. PMID:23060069

  1. An Integrated Approach to Risk Assessment for Concurrent Design

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Voss, Luke; Feather, Martin; Cornford, Steve

    2005-01-01

    This paper describes an approach to risk assessment and analysis suited to the early phase, concurrent design of a space mission. The approach integrates an agile, multi-user risk collection tool, a more in-depth risk analysis tool, and repositories of risk information. A JPL developed tool, named RAP, is used for collecting expert opinions about risk from designers involved in the concurrent design of a space mission. Another in-house developed risk assessment tool, named DDP, is used for the analysis.

  2. Simultaneous signal reconstruction from both superficial and deep tissue for fNIRS using depth-selective filtering method

    NASA Astrophysics Data System (ADS)

    Fujii, M.

    2017-07-01

    Two variations of a depth-selective back-projection filter for functional near-infrared spectroscopy (fNIRS) systems are introduced. The filter comprises a depth-selective algorithm that uses inverse problems applied to an optically diffusive multilayer medium. In this study, simultaneous signal reconstruction of both superficial and deep tissue from fNIRS experiments of the human forehead using a prototype of a CW-NIRS system is demonstrated.

  3. Design and development of a probe-based multiplexed multi-species absorption spectroscopy sensor for characterizing transient gas-parameter distributions in the intake systems of I.C. engines

    DOE PAGES

    Jatana, Gurneesh; Geckler, Sam; Koeberlein, David; ...

    2016-09-01

    We designed and developed a 4-probe multiplexed multi-species absorption spectroscopy sensor system for gas property measurements on the intake side of commercial multi-cylinder internal-combustion (I.C.) engines; the resulting cycle- and cylinder-resolved concentration, temperature and pressure measurements are applicable for assessing spatial and temporal variations in the recirculated exhaust gas (EGR) distribution at various locations along the intake gas path, which in turn is relevant to assessing cylinder charge uniformity, control strategies, and CFD models. Furthermore, the diagnostic is based on absorption spectroscopy and includes an H 2O absorption system (utilizing a 1.39 m distributed feedback (DFB) diode laser) for measuringmore » gas temperature, pressure, and H 2O concentration, and a CO 2 absorption system (utilizing a 2.7 m DFB laser) for measuring CO 2 concentration. The various lasers, optical components and detectors were housed in an instrument box, and the 1.39- m and 2.7- m lasers were guided to and from the engine-mounted probes via optical fibers and hollow waveguides, respectively. The 5kHz measurement bandwidth allows for near-crank angle resolved measurements, with a resolution of 1.2 crank angle degrees at 1000 RPM. Our use of compact stainless steel measurement probes enables simultaneous multi-point measurements at various locations on the engine with minimal changes to the base engine hardware; in addition to resolving large-scale spatial variations via simultaneous multi-probe measurements, local spatial gradients can be resolved by translating individual probes. Along with details of various sensor design features and performance, we also demonstrate validation of the spectral parameters of the associated CO 2 absorption transitions using both a multi-pass heated cell and the sensor probes.« less

  4. Evaluation of the Sparton tight-tolerance AXBT

    NASA Technical Reports Server (NTRS)

    Boyd, Janice D.; Linzell, Robert S.

    1993-01-01

    Forty-six near-simultaneous pairs of conductivity - temperature - depth (CTD) and Sparton 'tight tolerance' air expendable bathythermograph (AXBT) temperature profiles were obtained in summer 1991 from a location in the Sargasso Sea. The data were analyzed to assess the temperature and depth accuracies of the Sparton AXBTs. The tight-tolerance criterion was not achieved using the manufacturer's equations but may have been achieved using customized equations computed from the CTD data. The temperature data from the customized equations had a one standard deviation error of 0.13 C. A customized elapsed fall time-to-depth conversion equation was found to be z = 1.620t - 2.2384 x 10(exp -4) t(exp 2) + 1.291 x 10(exp -7) t(exp 3), with z the depth in meters and t the elapsed fall time after probe release in seconds. The standard deviation of the depth error was about 5 m; a rule of thumb for estimating maximum bounds on the depth error below 100 m could be expressed as +/-2% of depth or +/- 10 m, whichever is greater. This equation gave greater depth accuracy than either the manufacturer's supplied equation or the navy standard equation.

  5. Multi-Angle Snowflake Camera Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkurko, Konstantin; Garrett, T.; Gaustad, K

    The Multi-Angle Snowflake Camera (MASC) addresses a need for high-resolution multi-angle imaging of hydrometeors in freefall with simultaneous measurement of fallspeed. As illustrated in Figure 1, the MASC consists of three cameras, separated by 36°, each pointing at an identical focal point approximately 10 cm away. Located immediately above each camera, a light aims directly at the center of depth of field for its corresponding camera. The focal point at which the cameras are aimed lies within a ring through which hydrometeors fall. The ring houses a system of near-infrared emitter-detector pairs, arranged in two arrays separated vertically by 32more » mm. When hydrometeors pass through the lower array, they simultaneously trigger all cameras and lights. Fallspeed is calculated from the time it takes to traverse the distance between the upper and lower triggering arrays. The trigger electronics filter out ambient light fluctuations associated with varying sunlight and shadows. The microprocessor onboard the MASC controls the camera system and communicates with the personal computer (PC). The image data is sent via FireWire 800 line, and fallspeed (and camera control) is sent via a Universal Serial Bus (USB) line that relies on RS232-over-USB serial conversion. See Table 1 for specific details on the MASC located at the Oliktok Point Mobile Facility on the North Slope of Alaska. The value-added product (VAP) detailed in this documentation analyzes the raw data (Section 2.0) using Python: images rely on OpenCV image processing library and derived aggregated statistics rely on some clever averaging. See Sections 4.1 and 4.2 for more details on what variables are computed.« less

  6. Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool

    NASA Astrophysics Data System (ADS)

    Cai, Yu; Sha, Shuang

    2016-09-01

    This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers.

  7. Multi-criteria objective based climate change impact assessment for multi-purpose multi-reservoir systems

    NASA Astrophysics Data System (ADS)

    Müller, Ruben; Schütze, Niels

    2014-05-01

    Water resources systems with reservoirs are expected to be sensitive to climate change. Assessment studies that analyze the impact of climate change on the performance of reservoirs can be divided in two groups: (1) Studies that simulate the operation under projected inflows with the current set of operational rules. Due to non adapted operational rules the future performance of these reservoirs can be underestimated and the impact overestimated. (2) Studies that optimize the operational rules for best adaption of the system to the projected conditions before the assessment of the impact. The latter allows for estimating more realistically future performance and adaption strategies based on new operation rules are available if required. Multi-purpose reservoirs serve various, often conflicting functions. If all functions cannot be served simultaneously at a maximum level, an effective compromise between multiple objectives of the reservoir operation has to be provided. Yet under climate change the historically preferenced compromise may no longer be the most suitable compromise in the future. Therefore a multi-objective based climate change impact assessment approach for multi-purpose multi-reservoir systems is proposed in the study. Projected inflows are provided in a first step using a physically based rainfall-runoff model. In a second step, a time series model is applied to generate long-term inflow time series. Finally, the long-term inflow series are used as driving variables for a simulation-based multi-objective optimization of the reservoir system in order to derive optimal operation rules. As a result, the adapted Pareto-optimal set of diverse best compromise solutions can be presented to the decision maker in order to assist him in assessing climate change adaption measures with respect to the future performance of the multi-purpose reservoir system. The approach is tested on a multi-purpose multi-reservoir system in a mountainous catchment in Germany. A climate change assessment is performed for climate change scenarios based on the SRES emission scenarios A1B, B1 and A2 for a set of statistically downscaled meteorological data. The future performance of the multi-purpose multi-reservoir system is quantified and possible intensifications of trade-offs between management goals or reservoir utilizations are shown.

  8. Improved high-resolution ultrasonic imaging of the eye.

    PubMed

    Silverman, Ronald H; Ketterling, Jeffrey A; Mamou, Jonathan; Coleman, D Jackson

    2008-01-01

    Currently, virtually all clinical diagnostic ultrasound systems used in ophthalmology are based on fixed-focus, single-element transducers. High-frequency (> or = 20-MHz) transducers introduced to ophthalmology during the last decade have led to improved resolution and diagnostic capabilities for assessment of the anterior segment and the retina. However, single-element transducers are restricted to a small depth of field, limiting their capacity to image the eye as a whole. We fabricated a 20-MHz annular array probe prototype consisting of 5 concentric transducer elements and scanned an ex vivo human eye. Synthetically focused images of the bank eye showed improved depth of field and sensitivity, allowing simultaneous display of the anterior and posterior segments and the full lens contour. This capability may be useful in assessment of vitreoretinal pathologies and investigation of the accommodative mechanism.

  9. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials

    PubMed Central

    Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin

    2017-01-01

    Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials. PMID:29084152

  10. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials.

    PubMed

    Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin

    2017-10-30

    Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.

  11. Combining chemometric tools for assessing hazard sources and factors acting simultaneously in contaminated areas. Case study: "Mar Piccolo" Taranto (South Italy).

    PubMed

    Mali, Matilda; Dell'Anna, Maria Michela; Notarnicola, Michele; Damiani, Leonardo; Mastrorilli, Piero

    2017-10-01

    Almost all marine coastal ecosystems possess complex structural and dynamic characteristics, which are influenced by anthropogenic causes and natural processes as well. Revealing the impact of sources and factors controlling the spatial distributions of contaminants within highly polluted areas is a fundamental propaedeutic step of their quality evaluation. Combination of different pattern recognition techniques, applied to one of the most polluted Mediterranean coastal basin, resulted in a more reliable hazard assessment. PCA/CA and factorial ANOVA were exploited as complementary techniques for apprehending the impact of multi-sources and multi-factors acting simultaneously and leading to similarities or differences in the spatial contamination pattern. The combination of PCA/CA and factorial ANOVA allowed, on one hand to determine the main processes and factors controlling the contamination trend within different layers and different basins, and, on the other hand, to ascertain possible synergistic effects. This approach showed the significance of a spatially representative overview given by the combination of PCA-CA/ANOVA in inferring the historical anthropogenic sources loading on the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-01-01

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified. PMID:29649173

  13. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor.

    PubMed

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-04-12

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified.

  14. Improving detection of copy-number variation by simultaneous bias correction and read-depth segmentation.

    PubMed

    Szatkiewicz, Jin P; Wang, WeiBo; Sullivan, Patrick F; Wang, Wei; Sun, Wei

    2013-02-01

    Structural variation is an important class of genetic variation in mammals. High-throughput sequencing (HTS) technologies promise to revolutionize copy-number variation (CNV) detection but present substantial analytic challenges. Converging evidence suggests that multiple types of CNV-informative data (e.g. read-depth, read-pair, split-read) need be considered, and that sophisticated methods are needed for more accurate CNV detection. We observed that various sources of experimental biases in HTS confound read-depth estimation, and note that bias correction has not been adequately addressed by existing methods. We present a novel read-depth-based method, GENSENG, which uses a hidden Markov model and negative binomial regression framework to identify regions of discrete copy-number changes while simultaneously accounting for the effects of multiple confounders. Based on extensive calibration using multiple HTS data sets, we conclude that our method outperforms existing read-depth-based CNV detection algorithms. The concept of simultaneous bias correction and CNV detection can serve as a basis for combining read-depth with other types of information such as read-pair or split-read in a single analysis. A user-friendly and computationally efficient implementation of our method is freely available.

  15. Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe

    PubMed Central

    Fiáth, Richárd; Beregszászi, Patrícia; Horváth, Domonkos; Wittner, Lucia; Aarts, Arno A. A.; Ruther, Patrick; Neves, Hercules P.; Bokor, Hajnalka; Acsády, László

    2016-01-01

    Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study. PMID:27535370

  16. Simultaneous, proportional, multi-axis prosthesis control using multichannel surface EMG.

    PubMed

    Yatsenko, Dimitri; McDonnall, Daniel; Guillory, K Shane

    2007-01-01

    Most upper limb prosthesis controllers only allow the individual selection and control of single joints of the limb. The main limiting factor for simultaneous multi-joint control is usually the availability of reliable independent control signals that can intuitively be used. In this paper, a novel method is presented for extraction of individual muscle source signals from surface EMG array recordings, based on EMG energy orthonormalization along principle movement vectors. In cases where independently-controllable muscles are present in residual limbs, this method can be used to provide simultaneous, multi-axis, proportional control of prosthetic systems. Initial results are presented for simultaneous control of wrist rotation, wrist flexion/extension, and grip open/close for two intact subjects under both isometric and non-isometric conditions and for one subject with transradial amputation.

  17. Understanding and simulating the material behavior during multi-particle irradiations

    PubMed Central

    Mir, Anamul H.; Toulemonde, M.; Jegou, C.; Miro, S.; Serruys, Y.; Bouffard, S.; Peuget, S.

    2016-01-01

    A number of studies have suggested that the irradiation behavior and damage processes occurring during sequential and simultaneous particle irradiations can significantly differ. Currently, there is no definite answer as to why and when such differences are seen. Additionally, the conventional multi-particle irradiation facilities cannot correctly reproduce the complex irradiation scenarios experienced in a number of environments like space and nuclear reactors. Therefore, a better understanding of multi-particle irradiation problems and possible alternatives are needed. This study shows ionization induced thermal spike and defect recovery during sequential and simultaneous ion irradiation of amorphous silica. The simultaneous irradiation scenario is shown to be equivalent to multiple small sequential irradiation scenarios containing latent damage formation and recovery mechanisms. The results highlight the absence of any new damage mechanism and time-space correlation between various damage events during simultaneous irradiation of amorphous silica. This offers a new and convenient way to simulate and understand complex multi-particle irradiation problems. PMID:27466040

  18. Evaluation of multi-resolution satellite sensors for assessing water quality and bottom depth of Lake Garda.

    PubMed

    Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Schenk, Karin; Rieger, Patrizia; Braga, Federica; Matta, Erica; Brando, Vittorio E

    2014-12-15

    In this study we evaluate the capabilities of three satellite sensors for assessing water composition and bottom depth in Lake Garda, Italy. A consistent physics-based processing chain was applied to Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-8 Operational Land Imager (OLI) and RapidEye. Images gathered on 10 June 2014 were corrected for the atmospheric effects with the 6SV code. The computed remote sensing reflectance (Rrs) from MODIS and OLI were converted into water quality parameters by adopting a spectral inversion procedure based on a bio-optical model calibrated with optical properties of the lake. The same spectral inversion procedure was applied to RapidEye and to OLI data to map bottom depth. In situ measurements of Rrs and of concentrations of water quality parameters collected in five locations were used to evaluate the models. The bottom depth maps from OLI and RapidEye showed similar gradients up to 7 m (r = 0.72). The results indicate that: (1) the spatial and radiometric resolutions of OLI enabled mapping water constituents and bottom properties; (2) MODIS was appropriate for assessing water quality in the pelagic areas at a coarser spatial resolution; and (3) RapidEye had the capability to retrieve bottom depth at high spatial resolution. Future work should evaluate the performance of the three sensors in different bio-optical conditions.

  19. Who multi-tasks and why? Multi-tasking ability, perceived multi-tasking ability, impulsivity, and sensation seeking.

    PubMed

    Sanbonmatsu, David M; Strayer, David L; Medeiros-Ward, Nathan; Watson, Jason M

    2013-01-01

    The present study examined the relationship between personality and individual differences in multi-tasking ability. Participants enrolled at the University of Utah completed measures of multi-tasking activity, perceived multi-tasking ability, impulsivity, and sensation seeking. In addition, they performed the Operation Span in order to assess their executive control and actual multi-tasking ability. The findings indicate that the persons who are most capable of multi-tasking effectively are not the persons who are most likely to engage in multiple tasks simultaneously. To the contrary, multi-tasking activity as measured by the Media Multitasking Inventory and self-reported cell phone usage while driving were negatively correlated with actual multi-tasking ability. Multi-tasking was positively correlated with participants' perceived ability to multi-task ability which was found to be significantly inflated. Participants with a strong approach orientation and a weak avoidance orientation--high levels of impulsivity and sensation seeking--reported greater multi-tasking behavior. Finally, the findings suggest that people often engage in multi-tasking because they are less able to block out distractions and focus on a singular task. Participants with less executive control--low scorers on the Operation Span task and persons high in impulsivity--tended to report higher levels of multi-tasking activity.

  20. Robotic assisted andrological surgery

    PubMed Central

    Parekattil, Sijo J; Gudeloglu, Ahmet

    2013-01-01

    The introduction of the operative microscope for andrological surgery in the 1970s provided enhanced magnification and accuracy, unparalleled to any previous visual loop or magnification techniques. This technology revolutionized techniques for microsurgery in andrology. Today, we may be on the verge of a second such revolution by the incorporation of robotic assisted platforms for microsurgery in andrology. Robotic assisted microsurgery is being utilized to a greater degree in andrology and a number of other microsurgical fields, such as ophthalmology, hand surgery, plastics and reconstructive surgery. The potential advantages of robotic assisted platforms include elimination of tremor, improved stability, surgeon ergonomics, scalability of motion, multi-input visual interphases with up to three simultaneous visual views, enhanced magnification, and the ability to manipulate three surgical instruments and cameras simultaneously. This review paper begins with the historical development of robotic microsurgery. It then provides an in-depth presentation of the technique and outcomes of common robotic microsurgical andrological procedures, such as vasectomy reversal, subinguinal varicocelectomy, targeted spermatic cord denervation (for chronic orchialgia) and robotic assisted microsurgical testicular sperm extraction (microTESE). PMID:23241637

  1. Simultaneous three wavelength imaging with a scanning laser ophthalmoscope.

    PubMed

    Reinholz, F; Ashman, R A; Eikelboom, R H

    1999-11-01

    Various imaging properties of scanning laser ophthalmoscopes (SLO) such as contrast or depth discrimination, are superior to those of the traditional photographic fundus camera. However, most SLO are monochromatic whereas photographic systems produce colour images, which inherently contain information over a broad wavelength range. An SLO system has been modified to allow simultaneous three channel imaging. Laser light sources in the visible and infrared spectrum were concurrently launched into the system. Using different wavelength triads, digital fundus images were acquired at high frame rates. Favourable wavelengths combinations were established and high contrast, true (red, green, blue) or false (red, green, infrared) colour images of the retina were recorded. The monochromatic frames which form the colour image exhibit improved distinctness of different retinal structures such as the nerve fibre layer, the blood vessels, and the choroid. A multi-channel SLO combines the advantageous imaging properties of a tunable, monochrome SLO with the benefits and convenience of colour ophthalmoscopy. The options to modify parameters such as wavelength, intensity, gain, beam profile, aperture sizes, independently for every channel assign a high degree of versatility to the system. Copyright 1999 Wiley-Liss, Inc.

  2. Multi-surface topography targeted plateau honing for the processing of cylinder liner surfaces of automotive engines

    NASA Astrophysics Data System (ADS)

    Lawrence, K. Deepak; Ramamoorthy, B.

    2016-03-01

    Cylinder bores of automotive engines are 'engineered' surfaces that are processed using multi-stage honing process to generate multiple layers of micro geometry for meeting the different functional requirements of the piston assembly system. The final processed surfaces should comply with several surface topographic specifications that are relevant for the good tribological performance of the engine. Selection of the process parameters in three stages of honing to obtain multiple surface topographic characteristics simultaneously within the specification tolerance is an important module of the process planning and is often posed as a challenging task for the process engineers. This paper presents a strategy by combining the robust process design and gray-relational analysis to evolve the operating levels of honing process parameters in rough, finish and plateau honing stages targeting to meet multiple surface topographic specifications on the final running surface of the cylinder bores. Honing experiments were conducted in three stages namely rough, finish and plateau honing on cast iron cylinder liners by varying four honing process parameters such as rotational speed, oscillatory speed, pressure and honing time. Abbott-Firestone curve based functional parameters (Rk, Rpk, Rvk, Mr1 and Mr2) coupled with mean roughness depth (Rz, DIN/ISO) and honing angle were measured and identified as the surface quality performance targets to be achieved. The experimental results have shown that the proposed approach is effective to generate cylinder liner surface that would simultaneously meet the explicit surface topographic specifications currently practiced by the industry.

  3. A comparison of video review and feedback device measurement of chest compressions quality during pediatric cardiopulmonary resuscitation.

    PubMed

    Hsieh, Ting-Chang; Wolfe, Heather; Sutton, Robert; Myers, Sage; Nadkarni, Vinay; Donoghue, Aaron

    2015-08-01

    To describe chest compression (CC) rate, depth, and leaning during pediatric cardiopulmonary resuscitation (CPR) as measured by two simultaneous methods, and to assess the accuracy and reliability of video review in measuring CC quality. Resuscitations in a pediatric emergency department are videorecorded for quality improvement. Patients aged 8-18 years receiving CPR under videorecording were eligible for inclusion. CPR was recorded by a pressure/accelerometer feedback device and tabulated in 30-s epochs of uninterrupted CC. Investigators reviewed videorecorded CPR and measured rate, depth, and release by observation. Raters categorized epochs as 'meeting criteria' if 80% of CCs in an epoch were done with appropriate depth (>45 mm) and/or release (<2.5 kg leaning). Comparison between device measurement and video was made by Spearman's ρ for rate and by κ statistic for depth and release. Interrater reliability for depth and release was measured by κ statistic. Five patients underwent videorecorded CPR using the feedback device. 97 30-s epochs of CCs were analyzed. CCs met criteria for rate in 74/97 (76%) of epochs; depth in 38/97 (39%); release in 82/97 (84%). Agreement between video and feedback device for rate was good (ρ = 0.77); agreement was poor for depth and release (κ 0.04-0.41). Interrater reliability for depth and release measured by video was poor (κ 0.04-0.49). Video review measured CC rate accurately; depth and release were not reliably or accurately assessed by video. Future research should focus on the optimal combination of methods for measuring CPR quality. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. River Induced Wellbore Flow Dynamics in Long-Screen Wells and their Impact on Aqueous Sampling Results

    NASA Astrophysics Data System (ADS)

    Vermeul, V.; McKinley, J. P.; Newcomer, D.; Fritz, B. G.; Mackley, R.; Zachara, J. M.

    2010-12-01

    Previously published field investigations and modeling studies have demonstrated the potential for sample bias associated with vertical wellbore flow in conventional monitoring wells constructed with long-screened intervals. In this study, simultaneous measurement of 1) wellbore flow using an electromagnetic borehole flowmeter (EBF), 2) depth discrete hydraulic head, and 3) aqueous uranium concentrations were used to quantify wellbore flow and assess the associated impacts on measured aqueous concentrations. Monitoring results demonstrate the utility of continuous (i.e., hourly measurements for ~ one month) ambient wellbore flow monitoring and show that relatively large wellbore flows (up to 4 LPM) can be induced by aquifer hydrodynamics associated with a fluctuating river boundary located approximately 250 m from the test well. The observed vertical wellbore flows were strongly correlated with fluctuations in river stage, alternating between upward and downward flow throughout the monitoring period in response to changes in river stage. Continuous monitoring of ambient wellbore flows using an EBF system allowed these effects to be evaluated in concert with continuously monitored river stage elevations (hourly) and aqueous uranium concentrations (daily) in a long-screen well and an adjacent multi-level well cluster. This study demonstrates that when contaminant concentrations within the aquifer vary significantly over the depth interval interrogated, river-induced vertical wellbore flow can result in variations in measured concentration that nearly encompass the full range of variation in aquifer contaminant concentration with depth. In addition, observed variability in aqueous concentrations measured during active tracer transport experiments provided additional evidence of wellbore flow impacts and showed that the magnitude and direction of wellbore flow varied spatially across the wellfield. An approach to mitigate these effects based on increasing hydraulic resistance within the wellbore was evaluated. This research is part of the ERSP Hanford IFRC at Pacific Northwest National Laboratory.

  5. Azimuthal anisotropy of the Pacific region

    NASA Astrophysics Data System (ADS)

    Maggi, Alessia; Debayle, Eric; Priestley, Keith; Barruol, Guilhem

    2006-10-01

    Azimuthal anisotropy is the dependence of local seismic properties on the azimuth of propagation. We present the azimuthally anisotropic component of a 3D SV velocity model for the Pacific Ocean, derived from the waveform modeling of over 56,000 multi-mode Rayleigh waves followed by a simultaneous inversion for isotropic and azimuthally anisotropic vsv structure. The isotropic vsv model is discussed in a previous paper (A. Maggi, E. Debayle, K. Priestley, G. Barruol, Multi-mode surface waveform tomography of the Pacific Ocean: a close look at the lithospheric cooling signature, Geophys. J. Int. 166 (3) (2006). doi:10.1111/j.1365-246x.2006.03037.x). The azimuthal anisotropy we find is consistent with the lattice preferred orientation model (LPO): the hypothesis of anisotropy generation in the Earth's mantle by preferential alignment of anisotropic crystals in response to the shear strains induced by mantle flow. At lithospheric depths we find good agreement between fast azimuthal anisotropy orientations and ridge spreading directions recorded by sea-floor magnetic anomalies. At asthenospheric depths we find a strong correlation between fast azimuthal anisotropy orientations and the directions of current plate motions. We observe perturbations in the pattern of seismic anisotropy close to Pacific hot-spots that are consistent with the predictions of numerical models of LPO generation in plume-disturbed plate motion-driven mantle flow. These observations suggest that perturbations in the patterns of azimuthal anisotropy may provide indirect evidence for plume-like upwelling in the mantle.

  6. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing.

    PubMed

    Shah, Sheel; Lubeck, Eric; Schwarzkopf, Maayan; He, Ting-Fang; Greenbaum, Alon; Sohn, Chang Ho; Lignell, Antti; Choi, Harry M T; Gradinaru, Viviana; Pierce, Niles A; Cai, Long

    2016-08-01

    Accurate and robust detection of mRNA molecules in thick tissue samples can reveal gene expression patterns in single cells within their native environment. Preserving spatial relationships while accessing the transcriptome of selected cells is a crucial feature for advancing many biological areas - from developmental biology to neuroscience. However, because of the high autofluorescence background of many tissue samples, it is difficult to detect single-molecule fluorescence in situ hybridization (smFISH) signals robustly in opaque thick samples. Here, we draw on principles from the emerging discipline of dynamic nucleic acid nanotechnology to develop a robust method for multi-color, multi-RNA imaging in deep tissues using single-molecule hybridization chain reaction (smHCR). Using this approach, single transcripts can be imaged using epifluorescence, confocal or selective plane illumination microscopy (SPIM) depending on the imaging depth required. We show that smHCR has high sensitivity in detecting mRNAs in cell culture and whole-mount zebrafish embryos, and that combined with SPIM and PACT (passive CLARITY technique) tissue hydrogel embedding and clearing, smHCR can detect single mRNAs deep within thick (0.5 mm) brain slices. By simultaneously achieving ∼20-fold signal amplification and diffraction-limited spatial resolution, smHCR offers a robust and versatile approach for detecting single mRNAs in situ, including in thick tissues where high background undermines the performance of unamplified smFISH. © 2016. Published by The Company of Biologists Ltd.

  7. Understanding hydrothermal circulation patterns at a low-enthalpy thermal spring using audio-magnetotelluric data: A case study from Ireland

    NASA Astrophysics Data System (ADS)

    Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozar, Jan; Walsh, John; Rath, Volker

    2016-09-01

    Kilbrook spring is a thermal spring in east-central Ireland. The temperatures in the spring are the highest recorded for any thermal spring in Ireland (maximum of 25 °C). The temperature is elevated with respect to average Irish groundwater temperatures (9.5-10.5 °C), and represents a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon an audio-magnetotelluric (AMT) survey, and hydrochemical analysis including time-lapse temperature and chemistry measurements, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The three-dimensional (3-D) electrical resistivity model of the subsurface at Kilbrook spring was obtained by the inversion of AMT impedances and vertical magnetic transfer functions. The model is interpreted alongside high resolution temperature and electrical conductivity measurements, and a previous hydrochemical analysis. The hydrochemical analysis and time-lapse measurements suggest that the thermal waters have a relatively stable temperature and major ion hydrochemistry, and flow within the limestones of the Carboniferous Dublin Basin at all times. The 3-D resistivity model of the subsurface reveals a prominent NNW aligned structure within a highly resistive limestone lithology that is interpreted as a dissolutionally enhanced strike-slip fault, of Cenozoic age. The karstification of this structure, which extends to depths of at least 500 m directly beneath the spring, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 560 and 1000 m) within the limestone succession of the Dublin Basin. The results of this study support the hypothesis that the winter thermal maximum and simultaneous increased discharge at Kilbrook spring is the result of rapid infiltration, heating and re-circulation of meteoric waters within this structurally controlled hydrothermal circulation system. This paper illustrates how AMT may be useful in a multi-disciplinary investigation of an intermediate-depth (100-1000 m), low-enthalpy, geothermal target, and shows how the different strands of inquiry from a multi-disciplinary investigation may be woven together to gain a deeper understanding of a complex hydrothermal system.

  8. In-field experiment of electro-hydraulic tillage depth draft-position mixed control on tractor

    NASA Astrophysics Data System (ADS)

    Han, Jiangyi; Xia, Changgao; Shang, Gaogao; Gao, Xiang

    2017-12-01

    The soil condition and condition of the plow affect the tillage resistance and the maximum traction of tractor. In order to improve the adaptability of tractor tillage depth control, a multi-parameter control strategy is proposed that included tillage depth target, draft force aim and draft-position mixed ratio. In the strategy, the resistance coefficient was used to adjust the draft force target. Then, based on a JINMA1204 tractor, the electro-hydraulic hitch prototype is constructed that could set control parameters.. The fuzzy controller of draft-position mixed control is designed. After that, in-field experiments of position control was carried on, and the result of experiment shows the error of tillage depth was less than ±20mm. The experiment of draft-position control shown that the draft force and the tillage depth could be adjust by multi-parameter such as tillage depth, resistance coefficient and draft-position mixed coefficient. So that, the multi-parameter control strategy could improve the adaptability of tillage depth control in various soils and plow condition.

  9. Action recognition using multi-scale histograms of oriented gradients based depth motion trail Images

    NASA Astrophysics Data System (ADS)

    Wang, Guanxi; Tie, Yun; Qi, Lin

    2017-07-01

    In this paper, we propose a novel approach based on Depth Maps and compute Multi-Scale Histograms of Oriented Gradient (MSHOG) from sequences of depth maps to recognize actions. Each depth frame in a depth video sequence is projected onto three orthogonal Cartesian planes. Under each projection view, the absolute difference between two consecutive projected maps is accumulated through a depth video sequence to form a Depth Map, which is called Depth Motion Trail Images (DMTI). The MSHOG is then computed from the Depth Maps for the representation of an action. In addition, we apply L2-Regularized Collaborative Representation (L2-CRC) to classify actions. We evaluate the proposed approach on MSR Action3D dataset and MSRGesture3D dataset. Promising experimental result demonstrates the effectiveness of our proposed method.

  10. Nanometric depth resolution from multi-focal images in microscopy.

    PubMed

    Dalgarno, Heather I C; Dalgarno, Paul A; Dada, Adetunmise C; Towers, Catherine E; Gibson, Gavin J; Parton, Richard M; Davis, Ilan; Warburton, Richard J; Greenaway, Alan H

    2011-07-06

    We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels.

  11. Nanometric depth resolution from multi-focal images in microscopy

    PubMed Central

    Dalgarno, Heather I. C.; Dalgarno, Paul A.; Dada, Adetunmise C.; Towers, Catherine E.; Gibson, Gavin J.; Parton, Richard M.; Davis, Ilan; Warburton, Richard J.; Greenaway, Alan H.

    2011-01-01

    We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels. PMID:21247948

  12. An improved method for constructing and selectively silanizing double-barreled, neutral liquid-carrier, ion-selective microelectrodes

    PubMed Central

    Deveau, Jason S.T.; Grodzinski, Bernard

    2005-01-01

    We describe an improved, efficient and reliable method for the vapour-phase silanization of multi-barreled, ion-selective microelectrodes of which the silanized barrel(s) are to be filled with neutral liquid ion-exchanger (LIX). The technique employs a metal manifold to exclusively and simultaneously deliver dimethyldichlorosilane to only the ion-selective barrels of several multi-barreled microelectrodes. Compared to previously published methods the technique requires fewer procedural steps, less handling of individual microelectrodes, improved reproducibility of silanization of the selected microelectrode barrels and employs standard borosilicate tubing rather than the less-conventional theta-type glass. The electrodes remain stable for up to 3 weeks after the silanization procedure. The efficacy of a double-barreled electrode containing a proton ionophore in the ion-selective barrel is demonstrated in situ in the leaf apoplasm of pea (Pisum) and sunflower (Helianthus). Individual leaves were penetrated to depth of ~150 μm through the abaxial surface. Microelectrode readings remained stable after multiple impalements without the need for a stabilizing PVC matrix. PMID:16136222

  13. Multi-functional angiographic OFDI using frequency-multiplexed dual-beam illumination

    PubMed Central

    Kim, SunHee; Park, Taejin; Jang, Sun-Joo; Nam, Ahhyun S.; Vakoc, Benjamin J.; Oh, Wang-Yuhl

    2015-01-01

    Detection of blood flow inside the tissue sample can be achieved by measuring the local change of complex signal over time in angiographic optical coherence tomography (OCT). In conventional angiographic OCT, the transverse displacement of the imaging beam during the time interval between a pair of OCT signal measurements must be significantly reduced to minimize the noise due to the beam scanning-induced phase decorrelation at the expense of the imaging speed. Recent introduction of dual-beam scan method either using polarization encoding or two identical imaging systems in spectral-domain (SD) OCT scheme shows potential for high-sensitivity vasculature imaging without suffering from spurious phase noise caused by the beam scanning-induced spatial decorrelation. In this paper, we present multi-functional angiographic optical frequency domain imaging (OFDI) using frequency-multiplexed dual-beam illumination. This frequency multiplexing scheme, utilizing unique features of OFDI, provides spatially separated dual imaging beams occupying distinct electrical frequency bands that can be demultiplexed in the frequency domain processing. We demonstrate the 3D multi-functional imaging of the normal mouse skin in the dorsal skin fold chamber visualizing distinct layer structures from the intensity imaging, information about mechanical integrity from the polarization-sensitive imaging, and depth-resolved microvasculature from the angiographic imaging that are simultaneously acquired and automatically co-registered. PMID:25968731

  14. Simultaneous identification of optical constants and PSD of spherical particles by multi-wavelength scattering-transmittance measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-You; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming

    2018-04-01

    An accurate and stable identification technique is developed to retrieve the optical constants and particle size distributions (PSDs) of particle system simultaneously from the multi-wavelength scattering-transmittance signals by using the improved quantum particle swarm optimization algorithm. The Mie theory are selected to calculate the directional laser intensity scattered by particles and the spectral collimated transmittance. The sensitivity and objective function distribution analysis were conducted to evaluate the mathematical properties (i.e. ill-posedness and multimodality) of the inverse problems under three different optical signals combinations (i.e. the single-wavelength multi-angle light scattering signal, the single-wavelength multi-angle light scattering and spectral transmittance signal, and the multi-angle light scattering and spectral transmittance signal). It was found the best global convergence performance can be obtained by using the multi-wavelength scattering-transmittance signals. Meanwhile, the present technique have been tested under different Gaussian measurement noise to prove its feasibility in a large solution space. All the results show that the inverse technique by using multi-wavelength scattering-transmittance signals is effective and suitable for retrieving the optical complex refractive indices and PSD of particle system simultaneously.

  15. Coupled multi-disciplinary simulation of composite engine structures in propulsion environment

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Singhal, Surendra N.

    1992-01-01

    A computational simulation procedure is described for the coupled response of multi-layered multi-material composite engine structural components which are subjected to simultaneous multi-disciplinary thermal, structural, vibration, and acoustic loadings including the effect of hostile environments. The simulation is based on a three dimensional finite element analysis technique in conjunction with structural mechanics codes and with acoustic analysis methods. The composite material behavior is assessed at the various composite scales, i.e., the laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization model. Sample cases exhibiting nonlinear geometrical, material, loading, and environmental behavior of aircraft engine fan blades, are presented. Results for deformed shape, vibration frequency, mode shapes, and acoustic noise emitted from the fan blade, are discussed for their coupled effect in hot and humid environments. Results such as acoustic noise for coupled composite-mechanics/heat transfer/structural/vibration/acoustic analyses demonstrate the effectiveness of coupled multi-disciplinary computational simulation and the various advantages of composite materials compared to metals.

  16. Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis.

    PubMed

    Carp, Stefan A; Farzam, Parisa; Redes, Norin; Hueber, Dennis M; Franceschini, Maria Angela

    2017-09-01

    Frequency domain near infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS) have emerged as synergistic techniques for the non-invasive assessment of tissue health. Combining FD-NIRS oximetry with DCS measures of blood flow, the tissue oxygen metabolic rate can be quantified, a parameter more closely linked to underlying physiology and pathology than either NIRS or DCS estimates alone. Here we describe the first commercially available integrated instrument, called the "MetaOx", designed to enable simultaneous FD-NIRS and DCS measurements at rates of 10 + Hz, and offering real-time data evaluation. We show simultaneously acquired characterization data demonstrating performance equivalent to individual devices and sample in vivo measurements of pulsation resolved blood flow, forearm occlusion hemodynamic changes and muscle oxygen metabolic rate monitoring during stationary bike exercise.

  17. Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis

    PubMed Central

    Carp, Stefan A.; Farzam, Parisa; Redes, Norin; Hueber, Dennis M.; Franceschini, Maria Angela

    2017-01-01

    Frequency domain near infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS) have emerged as synergistic techniques for the non-invasive assessment of tissue health. Combining FD-NIRS oximetry with DCS measures of blood flow, the tissue oxygen metabolic rate can be quantified, a parameter more closely linked to underlying physiology and pathology than either NIRS or DCS estimates alone. Here we describe the first commercially available integrated instrument, called the “MetaOx”, designed to enable simultaneous FD-NIRS and DCS measurements at rates of 10 + Hz, and offering real-time data evaluation. We show simultaneously acquired characterization data demonstrating performance equivalent to individual devices and sample in vivo measurements of pulsation resolved blood flow, forearm occlusion hemodynamic changes and muscle oxygen metabolic rate monitoring during stationary bike exercise. PMID:29026684

  18. Simultaneous multi-headed imager geometry calibration method

    DOEpatents

    Tran, Vi-Hoa [Newport News, VA; Meikle, Steven Richard [Penshurst, AU; Smith, Mark Frederick [Yorktown, VA

    2008-02-19

    A method for calibrating multi-headed high sensitivity and high spatial resolution dynamic imaging systems, especially those useful in the acquisition of tomographic images of small animals. The method of the present invention comprises: simultaneously calibrating two or more detectors to the same coordinate system; and functionally correcting for unwanted detector movement due to gantry flexing.

  19. Direct Aerosol Radiative Forcing from Combined A-Train Observations - Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-sky Estimates

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.

    2014-12-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  20. Liquid-assisted tunable metasurface for simultaneous manipulation of surface elastic and acoustic waves

    NASA Astrophysics Data System (ADS)

    Yuan, Si-Min; Ma, Tian-Xue; Chen, A.-Li; Wang, Yue-Sheng

    2018-03-01

    A tunable and multi-functional one-dimensional metasurface, which is formed by engraving periodic semi-ellipse grooves on the surface of an aluminum half-space, is proposed in this paper. One characteristic of the metasurface is the manipulation of multi-physical fields, i.e. it could be utilized to manipulate surface elastic and acoustic waves simultaneously. The dispersion curves of the elastic and acoustic waves can be effectively tuned by adding liquids into the grooves. Based on the tunability different applications can be realized by adding different volumes of different liquids into the grooves. As an example, simultaneous rainbow trapping of the surface elastic and acoustic waves is demonstrated in the metasurface. Moreover, a resonant cavity where the elastic and acoustic waves are highly confined is reported. The proposed metasurface paves the way to the design of multi-functional devices for simultaneous control of elastic and acoustic waves.

  1. Towards automated early cancer detection: Non-invasive, fluorescence-based approaches for quantitative assessment of cells and tissue to identify pre-cancers

    NASA Astrophysics Data System (ADS)

    Levitt, Jonathan Michael

    Cancer is the second leading cause of death globally, second only to heart disease. As in many diseases, patient survival is directly related to how early lesions are detected. Using conventional screening methods, the early changes associated with cancer, which occur on the microscopic scale, can easily go overlooked. Due to the inherent drawbacks of conventional techniques we present non-invasive, optically based methods to acquire high resolution images from live samples and assess cellular function associated with the onset of disease. Specifically, we acquired fluorescence images from NADH and FAD to quantify morphology and metabolic activity. We first conducted studies to monitor monolayers of keratinocytes in response to apoptosis which has been shown to be disrupted during cancer progression. We found that as keratinocytes undergo apoptosis there are populations of mitochondria that exhibit a higher metabolic activity that become progressively confined to a gradually smaller perinuclear region. To further assess the changes associated with early cancer growth we developed automated methods to rapidly quantify fluorescence images and extract morphological and metabolic information from life tissue. In this study, we simultaneously quantified mitochondrial organization, metabolic activity, nuclear size distribution, and the localization of the structural protein keratin, to differentiate between normal and pre-cancerous engineered tissues. We found the degree mitochondrial organization, as determined from the fractal derived Hurst parameter, was well correlated to level of cellular differentiation. We also found that the metabolic activity in the pre-cancerous cells was greater and more consistent throughout tissue depths in comparison to normal tissue. Keratin localization, also quantified from the fluorescence images, we found it to be confined to the uppermost layers of normal tissue while it was more evenly distributed in the precancerous tissues. To allow for evaluation of the early cancerous changes in vivo, we developed video-rate confocal reflectance/multi-photon fluorescence microscope as a clinical prototype. This device was specifically designed to rapidly acquire and assess non-invasively acquire fluorescence images using the automated methods we have developed. We have demonstrated the ability of this microscope to simultaneously acquire fluorescence, confocal reflectance, and second-harmonic generation images as well as assess blood flow in vivo.

  2. Bioimpedance harmonic analysis as a tool to simultaneously assess circulation and nervous control.

    PubMed

    Mudraya, I S; Revenko, S V; Nesterov, A V; Gavrilov, I Yu; Kirpatovsky, V I

    2011-07-01

    Multicycle harmonic (Fourier) analysis of bioimpedance was employed to simultaneously assess circulation and neural activity in visceral (rat urinary bladder) and somatic (human finger) organs. The informative value of the first cardiac harmonic of the bladder impedance as an index of bladder circulation is demonstrated. The individual reactions of normal and obstructive bladders in response to infusion cystometry were recorded. The potency of multicycle harmonic analysis of bioimpedance to assess sympathetic and parasympathetic neural control in urinary bladder is discussed. In the human finger, bioimpedance harmonic analysis revealed three periodic components at the rate of the heart beat, respiration and Mayer wave (0.1 Hz), which were observed under normal conditions and during blood flow arrest in the hand. The revealed spectrum peaks were explained by the changes in systemic blood pressure and in regional vascular tone resulting from neural vasomotor control. During normal respiration and circulation, two side cardiac peaks were revealed in a bioimpedance amplitude spectrum, whose amplitude reflected the depth of amplitude respiratory modulation of the cardiac output. During normal breathing, the peaks corresponding to the second and third cardiac harmonics were split, reflecting frequency respiratory modulation of the heart rate. Multicycle harmonic analysis of bioimpedance is a novel potent tool to examine the interaction between the respiratory and cardiovascular system and to simultaneously assess regional circulation and neural influences in visceral and somatic organs.

  3. Interictal spike detection comparing subdural and depth electrodes during electrocorticography.

    PubMed

    Privitera, M D; Quinlan, J G; Yeh, H S

    1990-11-01

    We compared the ability of subdural and depth electrodes to detect and localize interictal epileptiform discharges (IEDs) in the temporal lobe. Sixteen patients had simultaneous intraoperative recordings with depth and subdural electrodes while undergoing anterior temporal lobe resections under local anesthesia for medically intractable seizures. IEDs that were focal (detected at just 1 or 2 electrode contacts) typically registered at the nearest contact, regardless of type. IEDs that were regional (engaging more than 2 electrode contacts) typically appeared simultaneously at both electrode types. Neither method was better able to indicate whether an IED was mesial or lateral, posterior or anterior. Subdural and depth electrodes seem to provide complementary information on the location of IEDs within the temporal lobe.

  4. Multi-Dimensional Deprivation in India during and after the Reforms: Do the Household Expenditure and the Family Health Surveys Present Consistent Evidence?

    ERIC Educational Resources Information Center

    Mishra, Ankita; Ray, Ranjan

    2013-01-01

    This paper uses the recent approach of multidimensional deprivation measures to provide a comprehensive and wide ranging assessment of changes to living standards in India during the period, 1992/93-2004/5. This covers the reforms and the immediate post reforms time periods. The study is the first to be based on the simultaneous use of two…

  5. An international comparison study of pharmacy students' achievement goals and their relationship to assessment type and scores.

    PubMed

    Alrakaf, Saleh; Anderson, Claire; Coulman, Sion A; John, Dai N; Tordoff, June; Sainsbury, Erica; Rose, Grenville; Smith, Lorraine

    2015-04-25

    To identify pharmacy students' preferred achievement goals in a multi-national undergraduate population, to investigate achievement goal preferences across comparable degree programs, and to identify relationships between achievement goals, academic performance, and assessment type. The Achievement Goal Questionnaire was administered to second year students in 4 universities in Australia, New Zealand, England, and Wales. Academic performance was measured using total scores, multiple-choice questions, and written answers (short essay). Four hundred eighty-six second year students participated. Students showed an overall preference for the mastery-approach goal orientation across all sites. The predicted relationships between goal orientation and multiple-choice questions, and written answers scores, were significant. This study is the first of its kind to examine pharmacy students' achievement goals at a multi-national level and to differentiate between assessment type and measures of achievement motivation. Students adopting a mastery-approach goal are more likely to gain high scores in assessments that measure understanding and depth of knowledge.

  6. An International Comparison Study of Pharmacy Students’ Achievement Goals and their Relationship to Assessment Type and Scores

    PubMed Central

    Anderson, Claire; Coulman, Sion A.; John, Dai N.; Tordoff, June; Sainsbury, Erica; Rose, Grenville; Smith, Lorraine

    2015-01-01

    Objective: To identify pharmacy students’ preferred achievement goals in a multi-national undergraduate population, to investigate achievement goal preferences across comparable degree programs, and to identify relationships between achievement goals, academic performance, and assessment type. Methods: The Achievement Goal Questionnaire was administered to second year students in 4 universities in Australia, New Zealand, England, and Wales. Academic performance was measured using total scores, multiple-choice questions, and written answers (short essay). Results: Four hundred eighty-six second year students participated. Students showed an overall preference for the mastery-approach goal orientation across all sites. The predicted relationships between goal orientation and multiple-choice questions, and written answers scores, were significant. Conclusion: This study is the first of its kind to examine pharmacy students’ achievement goals at a multi-national level and to differentiate between assessment type and measures of achievement motivation. Students adopting a mastery-approach goal are more likely to gain high scores in assessments that measure understanding and depth of knowledge. PMID:25995510

  7. Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe.

    PubMed

    Fiáth, Richárd; Beregszászi, Patrícia; Horváth, Domonkos; Wittner, Lucia; Aarts, Arno A A; Ruther, Patrick; Neves, Hercules P; Bokor, Hajnalka; Acsády, László; Ulbert, István

    2016-11-01

    Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study. Copyright © 2016 the American Physiological Society.

  8. The right view from the wrong location: depth perception in stereoscopic multi-user virtual environments.

    PubMed

    Pollock, Brice; Burton, Melissa; Kelly, Jonathan W; Gilbert, Stephen; Winer, Eliot

    2012-04-01

    Stereoscopic depth cues improve depth perception and increase immersion within virtual environments (VEs). However, improper display of these cues can distort perceived distances and directions. Consider a multi-user VE, where all users view identical stereoscopic images regardless of physical location. In this scenario, cues are typically customized for one "leader" equipped with a head-tracking device. This user stands at the center of projection (CoP) and all other users ("followers") view the scene from other locations and receive improper depth cues. This paper examines perceived depth distortion when viewing stereoscopic VEs from follower perspectives and the impact of these distortions on collaborative spatial judgments. Pairs of participants made collaborative depth judgments of virtual shapes viewed from the CoP or after displacement forward or backward. Forward and backward displacement caused perceived depth compression and expansion, respectively, with greater compression than expansion. Furthermore, distortion was less than predicted by a ray-intersection model of stereo geometry. Collaboration times were significantly longer when participants stood at different locations compared to the same location, and increased with greater perceived depth discrepancy between the two viewing locations. These findings advance our understanding of spatial distortions in multi-user VEs, and suggest a strategy for reducing distortion.

  9. L-band InSAR Penetration Depth Experiment, North Slope Alaska

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald

    2017-04-01

    Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales.

  10. Design and simulation of a novel method for determining depth-of-interaction in a PET scintillation crystal array using a single-ended readout by a multi-anode PMT

    NASA Astrophysics Data System (ADS)

    Ito, Mikiko; Lee, Jae Sung; Park, Min-Jae; Sim, Kwang-Souk; Jong Hong, Seong

    2010-07-01

    PET detectors with depth-of-interaction (DOI) encoding capability allow high spatial resolution and high sensitivity to be achieved simultaneously. To obtain DOI information from a mono-layer array of scintillation crystals using a single-ended readout, the authors devised a method based on light spreading within a crystal array and performed Monte Carlo simulations with individual scintillation photon tracking to prove the concept. A scintillation crystal array model was constructed using a grid method. Conventional grids are constructed using comb-shaped reflector strips with rectangular teeth to isolate scintillation crystals optically. However, the authors propose the use of triangularly shaped teeth, such that scintillation photons spread only in the x-direction in the upper halves of crystals and in the y-direction in lower halves. DOI positions can be estimated by considering the extent of two-dimensional light dispersion, which can be determined from the multiple anode outputs of a position-sensitive PMT placed under the crystal array. In the main simulation, a crystal block consisting of a 29 × 29 array of 1.5 mm × 1.5 mm × 20 mm crystals and a multi-anode PMT with 16 × 16 pixels were used. The effects of crystal size and non-uniform PMT output gain were also explored by simulation. The DOI resolution estimated for 1.5 × 1.5 × 20 mm3 crystals was 2.16 mm on average. Although the flood map was depth dependent, each crystal was well identified at all depths when a corner of the crystal array was irradiated with 511 keV gamma rays (peak-to-valley ratio ~9:1). DOI resolution was better than 3 mm up to a crystal length of 28 mm with a 1.5 × 1.5 mm2 or 2.0 × 2.0 mm2 crystal surface area. The devised light-sharing method allowed excellent DOI resolutions to be obtained without the use of dual-ended readout or multiple crystal arrays.

  11. Dual Contrast - Magnetic Resonance Fingerprinting (DC-MRF): A Platform for Simultaneous Quantification of Multiple MRI Contrast Agents.

    PubMed

    Anderson, Christian E; Donnola, Shannon B; Jiang, Yun; Batesole, Joshua; Darrah, Rebecca; Drumm, Mitchell L; Brady-Kalnay, Susann M; Steinmetz, Nicole F; Yu, Xin; Griswold, Mark A; Flask, Chris A

    2017-08-16

    Injectable Magnetic Resonance Imaging (MRI) contrast agents have been widely used to provide critical assessments of disease for both clinical and basic science imaging research studies. The scope of available MRI contrast agents has expanded over the years with the emergence of molecular imaging contrast agents specifically targeted to biological markers. Unfortunately, synergistic application of more than a single molecular contrast agent has been limited by MRI's ability to only dynamically measure a single agent at a time. In this study, a new Dual Contrast - Magnetic Resonance Fingerprinting (DC - MRF) methodology is described that can detect and independently quantify the local concentration of multiple MRI contrast agents following simultaneous administration. This "multi-color" MRI methodology provides the opportunity to monitor multiple molecular species simultaneously and provides a practical, quantitative imaging framework for the eventual clinical translation of molecular imaging contrast agents.

  12. iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins.

    PubMed

    Lin, Wei-Zhong; Fang, Jian-An; Xiao, Xuan; Chou, Kuo-Chen

    2013-04-05

    Predicting protein subcellular localization is a challenging problem, particularly when query proteins have multi-label features meaning that they may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing methods can only be used to deal with the single-label proteins. Actually, multi-label proteins should not be ignored because they usually bear some special function worthy of in-depth studies. By introducing the "multi-label learning" approach, a new predictor, called iLoc-Animal, has been developed that can be used to deal with the systems containing both single- and multi-label animal (metazoan except human) proteins. Meanwhile, to measure the prediction quality of a multi-label system in a rigorous way, five indices were introduced; they are "Absolute-True", "Absolute-False" (or Hamming-Loss"), "Accuracy", "Precision", and "Recall". As a demonstration, the jackknife cross-validation was performed with iLoc-Animal on a benchmark dataset of animal proteins classified into the following 20 location sites: (1) acrosome, (2) cell membrane, (3) centriole, (4) centrosome, (5) cell cortex, (6) cytoplasm, (7) cytoskeleton, (8) endoplasmic reticulum, (9) endosome, (10) extracellular, (11) Golgi apparatus, (12) lysosome, (13) mitochondrion, (14) melanosome, (15) microsome, (16) nucleus, (17) peroxisome, (18) plasma membrane, (19) spindle, and (20) synapse, where many proteins belong to two or more locations. For such a complicated system, the outcomes achieved by iLoc-Animal for all the aforementioned five indices were quite encouraging, indicating that the predictor may become a useful tool in this area. It has not escaped our notice that the multi-label approach and the rigorous measurement metrics can also be used to investigate many other multi-label problems in molecular biology. As a user-friendly web-server, iLoc-Animal is freely accessible to the public at the web-site .

  13. Simultaneous Quantitative MRI Mapping of T1, T2* and Magnetic Susceptibility with Multi-Echo MP2RAGE

    PubMed Central

    Kober, Tobias; Möller, Harald E.; Schäfer, Andreas

    2017-01-01

    The knowledge of relaxation times is essential for understanding the biophysical mechanisms underlying contrast in magnetic resonance imaging. Quantitative experiments, while offering major advantages in terms of reproducibility, may benefit from simultaneous acquisitions. In this work, we demonstrate the possibility of simultaneously recording relaxation-time and susceptibility maps with a prototype Multi-Echo (ME) Magnetization-Prepared 2 RApid Gradient Echoes (MP2RAGE) sequence. T1 maps can be obtained using the MP2RAGE sequence, which is relatively insensitive to inhomogeneities of the radio-frequency transmit field, B1+. As an extension, multiple gradient echoes can be acquired in each of the MP2RAGE readout blocks, which permits the calculation of T2* and susceptibility maps. We used computer simulations to explore the effects of the parameters on the precision and accuracy of the mapping. In vivo parameter maps up to 0.6 mm nominal resolution were acquired at 7 T in 19 healthy volunteers. Voxel-by-voxel correlations and the test-retest reproducibility were used to assess the reliability of the results. When using optimized paramenters, T1 maps obtained with ME-MP2RAGE and standard MP2RAGE showed excellent agreement for the whole range of values found in brain tissues. Simultaneously obtained T2* and susceptibility maps were of comparable quality as Fast Low-Angle SHot (FLASH) results. The acquisition times were more favorable for the ME-MP2RAGE (≈ 19 min) sequence as opposed to the sum of MP2RAGE (≈ 12 min) and FLASH (≈ 10 min) acquisitions. Without relevant sacrifice in accuracy, precision or flexibility, the multi-echo version may yield advantages in terms of reduced acquisition time and intrinsic co-registration, provided that an appropriate optimization of the acquisition parameters is performed. PMID:28081157

  14. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective.

    PubMed

    Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio

    2017-11-01

    The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Multiple kernel SVR based on the MRE for remote sensing water depth fusion detection

    NASA Astrophysics Data System (ADS)

    Wang, Jinjin; Ma, Yi; Zhang, Jingyu

    2018-03-01

    Remote sensing has an important means of water depth detection in coastal shallow waters and reefs. Support vector regression (SVR) is a machine learning method which is widely used in data regression. In this paper, SVR is used to remote sensing multispectral bathymetry. Aiming at the problem that the single-kernel SVR method has a large error in shallow water depth inversion, the mean relative error (MRE) of different water depth is retrieved as a decision fusion factor with single kernel SVR method, a multi kernel SVR fusion method based on the MRE is put forward. And taking the North Island of the Xisha Islands in China as an experimentation area, the comparison experiments with the single kernel SVR method and the traditional multi-bands bathymetric method are carried out. The results show that: 1) In range of 0 to 25 meters, the mean absolute error(MAE)of the multi kernel SVR fusion method is 1.5m,the MRE is 13.2%; 2) Compared to the 4 single kernel SVR method, the MRE of the fusion method reduced 1.2% (1.9%) 3.4% (1.8%), and compared to traditional multi-bands method, the MRE reduced 1.9%; 3) In 0-5m depth section, compared to the single kernel method and the multi-bands method, the MRE of fusion method reduced 13.5% to 44.4%, and the distribution of points is more concentrated relative to y=x.

  16. Deblending of simultaneous-source data using iterative seislet frame thresholding based on a robust slope estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Yatong; Han, Chunying; Chi, Yue

    2018-06-01

    In a simultaneous source survey, no limitation is required for the shot scheduling of nearby sources and thus a huge acquisition efficiency can be obtained but at the same time making the recorded seismic data contaminated by strong blending interference. In this paper, we propose a multi-dip seislet frame based sparse inversion algorithm to iteratively separate simultaneous sources. We overcome two inherent drawbacks of traditional seislet transform. For the multi-dip problem, we propose to apply a multi-dip seislet frame thresholding strategy instead of the traditional seislet transform for deblending simultaneous-source data that contains multiple dips, e.g., containing multiple reflections. The multi-dip seislet frame strategy solves the conflicting dip problem that degrades the performance of the traditional seislet transform. For the noise issue, we propose to use a robust dip estimation algorithm that is based on velocity-slope transformation. Instead of calculating the local slope directly using the plane-wave destruction (PWD) based method, we first apply NMO-based velocity analysis and obtain NMO velocities for multi-dip components that correspond to multiples of different orders, then a fairly accurate slope estimation can be obtained using the velocity-slope conversion equation. An iterative deblending framework is given and validated through a comprehensive analysis over both numerical synthetic and field data examples.

  17. Planarity constrained multi-view depth map reconstruction for urban scenes

    NASA Astrophysics Data System (ADS)

    Hou, Yaolin; Peng, Jianwei; Hu, Zhihua; Tao, Pengjie; Shan, Jie

    2018-05-01

    Multi-view depth map reconstruction is regarded as a suitable approach for 3D generation of large-scale scenes due to its flexibility and scalability. However, there are challenges when this technique is applied to urban scenes where apparent man-made regular shapes may present. To address this need, this paper proposes a planarity constrained multi-view depth (PMVD) map reconstruction method. Starting with image segmentation and feature matching for each input image, the main procedure is iterative optimization under the constraints of planar geometry and smoothness. A set of candidate local planes are first generated by an extended PatchMatch method. The image matching costs are then computed and aggregated by an adaptive-manifold filter (AMF), whereby the smoothness constraint is applied to adjacent pixels through belief propagation. Finally, multiple criteria are used to eliminate image matching outliers. (Vertical) aerial images, oblique (aerial) images and ground images are used for qualitative and quantitative evaluations. The experiments demonstrated that the PMVD outperforms the popular multi-view depth map reconstruction with an accuracy two times better for the aerial datasets and achieves an outcome comparable to the state-of-the-art for ground images. As expected, PMVD is able to preserve the planarity for piecewise flat structures in urban scenes and restore the edges in depth discontinuous areas.

  18. A New Computational Technique for the Generation of Optimised Aircraft Trajectories

    NASA Astrophysics Data System (ADS)

    Chircop, Kenneth; Gardi, Alessandro; Zammit-Mangion, David; Sabatini, Roberto

    2017-12-01

    A new computational technique based on Pseudospectral Discretisation (PSD) and adaptive bisection ɛ-constraint methods is proposed to solve multi-objective aircraft trajectory optimisation problems formulated as nonlinear optimal control problems. This technique is applicable to a variety of next-generation avionics and Air Traffic Management (ATM) Decision Support Systems (DSS) for strategic and tactical replanning operations. These include the future Flight Management Systems (FMS) and the 4-Dimensional Trajectory (4DT) planning and intent negotiation/validation tools envisaged by SESAR and NextGen for a global implementation. In particular, after describing the PSD method, the adaptive bisection ɛ-constraint method is presented to allow an efficient solution of problems in which two or multiple performance indices are to be minimized simultaneously. Initial simulation case studies were performed adopting suitable aircraft dynamics models and addressing a classical vertical trajectory optimisation problem with two objectives simultaneously. Subsequently, a more advanced 4DT simulation case study is presented with a focus on representative ATM optimisation objectives in the Terminal Manoeuvring Area (TMA). The simulation results are analysed in-depth and corroborated by flight performance analysis, supporting the validity of the proposed computational techniques.

  19. Process cost and facility considerations in the selection of primary cell culture clarification technology.

    PubMed

    Felo, Michael; Christensen, Brandon; Higgins, John

    2013-01-01

    The bioreactor volume delineating the selection of primary clarification technology is not always easily defined. Development of a commercial scale process for the manufacture of therapeutic proteins requires scale-up from a few liters to thousands of liters. While the separation techniques used for protein purification are largely conserved across scales, the separation techniques for primary cell culture clarification vary with scale. Process models were developed to compare monoclonal antibody production costs using two cell culture clarification technologies. One process model was created for cell culture clarification by disc stack centrifugation with depth filtration. A second process model was created for clarification by multi-stage depth filtration. Analyses were performed to examine the influence of bioreactor volume, product titer, depth filter capacity, and facility utilization on overall operating costs. At bioreactor volumes <1,000 L, clarification using multi-stage depth filtration offers cost savings compared to clarification using centrifugation. For bioreactor volumes >5,000 L, clarification using centrifugation followed by depth filtration offers significant cost savings. For bioreactor volumes of ∼ 2,000 L, clarification costs are similar between depth filtration and centrifugation. At this scale, factors including facility utilization, available capital, ease of process development, implementation timelines, and process performance characterization play an important role in clarification technology selection. In the case study presented, a multi-product facility selected multi-stage depth filtration for cell culture clarification at the 500 and 2,000 L scales of operation. Facility implementation timelines, process development activities, equipment commissioning and validation, scale-up effects, and process robustness are examined. © 2013 American Institute of Chemical Engineers.

  20. The "RED Versa NIR" Plane to Retrieve Broken-Cloud Optical Depth from Ground-Based Measurements"

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Evans, K.; Wiscombe, W.

    2003-01-01

    A new method for retrieving cloud optical depth from ground-based measurements of zenith radiance in the RED and near infrared (MR) spectral regions is introduced. Because zenith radiance does not have a one-to-one relationship with optical depth, it is absolutely impossible to use a monochromatic retrieval. On the other side, algebraic combinations of spectral radiances such as NDCI while largely removing nouniquiness and the radiative effects of cloud inhomogeneity, can result in poor retrievals due to its insensitivity to cloud fraction. Instead, both RED and NIR radiances as points on the 'RED vs. NIR' plane are proposed to be used for retrieval. The proposed retrieval method is applied to Cimel measurements at the Atmospheric Radiation Measurements (ARM) site in Oklahoma. Cimel, a multi-channel sunphotometer, is a part of AERONET - a ground-based network for monitoring aerosol optical properties. The results of retrieval are compared with the ones from Microwave Radiometer (MWR) and Multi-Filter Rotating Shadowband Radiometers (MFRSR) located next to Cimel at the ARM site. In addition, the performance of the retrieval method is assessed using a fractal model of cloud inhomogeneity and broken cloudiness. The preliminary results look very promising both theoretically and from measurements.

  1. A multi-resolution approach to electromagnetic modeling.

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu

    2018-04-01

    We present a multi-resolution approach for three-dimensional magnetotelluric forward modeling. Our approach is motivated by the fact that fine grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography, and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. This is especially true for forward modeling required in regularized inversion, where conductivity variations at depth are generally very smooth. With a conventional structured finite-difference grid the fine discretization required to adequately represent rapid variations near the surface are continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modeling is especially important for solving regularized inversion problems. We implement a multi-resolution finite-difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of sub-grids, with each sub-grid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modeling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modeling operators on interfaces between adjacent sub-grids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models show that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.

  2. Depth-tunable three-dimensional display with interactive light field control

    NASA Astrophysics Data System (ADS)

    Xie, Songlin; Wang, Peng; Sang, Xinzhu; Li, Chenyu; Dou, Wenhua; Xiao, Liquan

    2016-07-01

    A software-defined depth-tunable three-dimensional (3D) display with interactive 3D depth control is presented. With the proposed post-processing system, the disparity of the multi-view media can be freely adjusted. Benefiting from a wealth of information inherently contains in dense multi-view images captured with parallel arrangement camera array, the 3D light field is built and the light field structure is controlled to adjust the disparity without additional acquired depth information since the light field structure itself contains depth information. A statistical analysis based on the least square is carried out to extract the depth information inherently exists in the light field structure and the accurate depth information can be used to re-parameterize light fields for the autostereoscopic display, and a smooth motion parallax can be guaranteed. Experimental results show that the system is convenient and effective to adjust the 3D scene performance in the 3D display.

  3. Spatial and vertical distribution of bacterial community in the northern South China Sea.

    PubMed

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Sun, Cui-Ci; Cheng, Hao

    2015-10-01

    Microbial communities are highly diverse in coastal oceans and response rapidly with changing environments. Learning about this will help us understand the ecology of microbial populations in marine ecosystems. This study aimed to assess the spatial and vertical distributions of the bacterial community in the northern South China Sea. Multi-dimensional scaling analyses revealed structural differences of the bacterial community among sampling sites and vertical depth. Result also indicated that bacterial community in most sites had higher diversity in 0-75 m depths than those in 100-200 m depths. Bacterial community of samples was positively correlation with salinity and depth, whereas was negatively correlation with temperature. Proteobacteria and Cyanobacteria were the dominant groups, which accounted for the majority of sequences. The α-Proteobacteria was highly diverse, and sequences belonged to Rhodobacterales bacteria were dominant in all characterized sequences. The current data indicate that the Rhodobacterales bacteria, especially Roseobacter clade are the diverse group in the tropical waters.

  4. Monte Carlo modeling of time-resolved fluorescence for depth-selective interrogation of layered tissue.

    PubMed

    Pfefer, T Joshua; Wang, Quanzeng; Drezek, Rebekah A

    2011-11-01

    Computational approaches for simulation of light-tissue interactions have provided extensive insight into biophotonic procedures for diagnosis and therapy. However, few studies have addressed simulation of time-resolved fluorescence (TRF) in tissue and none have combined Monte Carlo simulations with standard TRF processing algorithms to elucidate approaches for cancer detection in layered biological tissue. In this study, we investigate how illumination-collection parameters (e.g., collection angle and source-detector separation) influence the ability to measure fluorophore lifetime and tissue layer thickness. Decay curves are simulated with a Monte Carlo TRF light propagation model. Multi-exponential iterative deconvolution is used to determine lifetimes and fractional signal contributions. The ability to detect changes in mucosal thickness is optimized by probes that selectively interrogate regions superficial to the mucosal-submucosal boundary. Optimal accuracy in simultaneous determination of lifetimes in both layers is achieved when each layer contributes 40-60% of the signal. These results indicate that depth-selective approaches to TRF have the potential to enhance disease detection in layered biological tissue and that modeling can play an important role in probe design optimization. Published by Elsevier Ireland Ltd.

  5. Real-time 3D human pose recognition from reconstructed volume via voxel classifiers

    NASA Astrophysics Data System (ADS)

    Yoo, ByungIn; Choi, Changkyu; Han, Jae-Joon; Lee, Changkyo; Kim, Wonjun; Suh, Sungjoo; Park, Dusik; Kim, Junmo

    2014-03-01

    This paper presents a human pose recognition method which simultaneously reconstructs a human volume based on ensemble of voxel classifiers from a single depth image in real-time. The human pose recognition is a difficult task since a single depth camera can capture only visible surfaces of a human body. In order to recognize invisible (self-occluded) surfaces of a human body, the proposed algorithm employs voxel classifiers trained with multi-layered synthetic voxels. Specifically, ray-casting onto a volumetric human model generates a synthetic voxel, where voxel consists of a 3D position and ID corresponding to the body part. The synthesized volumetric data which contain both visible and invisible body voxels are utilized to train the voxel classifiers. As a result, the voxel classifiers not only identify the visible voxels but also reconstruct the 3D positions and the IDs of the invisible voxels. The experimental results show improved performance on estimating the human poses due to the capability of inferring the invisible human body voxels. It is expected that the proposed algorithm can be applied to many fields such as telepresence, gaming, virtual fitting, wellness business, and real 3D contents control on real 3D displays.

  6. Multi-object investigation using two-wavelength phase-shift interferometry guided by an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Ibrahim, Dahi Ghareab Abdelsalam; Yasui, Takeshi

    2018-04-01

    Two-wavelength phase-shift interferometry guided by optical frequency combs is presented. We demonstrate the operation of the setup with a large step sample simultaneously with a resolution test target with a negative pattern. The technique can investigate multi-objects simultaneously with high precision. Using this technique, several important applications in metrology that require high speed and precision are demonstrated.

  7. Data-driven simultaneous fault diagnosis for solid oxide fuel cell system using multi-label pattern identification

    NASA Astrophysics Data System (ADS)

    Li, Shuanghong; Cao, Hongliang; Yang, Yupu

    2018-02-01

    Fault diagnosis is a key process for the reliability and safety of solid oxide fuel cell (SOFC) systems. However, it is difficult to rapidly and accurately identify faults for complicated SOFC systems, especially when simultaneous faults appear. In this research, a data-driven Multi-Label (ML) pattern identification approach is proposed to address the simultaneous fault diagnosis of SOFC systems. The framework of the simultaneous-fault diagnosis primarily includes two components: feature extraction and ML-SVM classifier. The simultaneous-fault diagnosis approach can be trained to diagnose simultaneous SOFC faults, such as fuel leakage, air leakage in different positions in the SOFC system, by just using simple training data sets consisting only single fault and not demanding simultaneous faults data. The experimental result shows the proposed framework can diagnose the simultaneous SOFC system faults with high accuracy requiring small number training data and low computational burden. In addition, Fault Inference Tree Analysis (FITA) is employed to identify the correlations among possible faults and their corresponding symptoms at the system component level.

  8. Effects-based spatial assessment of contaminated estuarine sediments from Bear Creek, Baltimore Harbor, MD, USA.

    PubMed

    Hartzell, Sharon E; Unger, Michael A; McGee, Beth L; Wilson, Sacoby M; Yonkos, Lance T

    2017-10-01

    Estuarine sediments in regions with prolonged histories of industrial activity are often laden to significant depths with complex contaminant mixtures, including trace metals and persistent organic pollutants. Given the complexity of assessing risks from multi-contaminant exposures, the direct measurement of impacts to biological receptors is central to characterizing contaminated sediment sites. Though biological consequences are less commonly assessed at depth, laboratory-based toxicity testing of subsurface sediments can be used to delineate the scope of contamination at impacted sites. The extent and depth of sediment toxicity in Bear Creek, near Baltimore, Maryland, USA, was delineated using 10-day acute toxicity tests with the estuarine amphipod Leptocheirus plumulosus, and chemical analysis of trace metals and persistent organic pollutants. A gradient of toxicity was demonstrated in surface sediments with 21 of 22 tested sites differing significantly from controls. Effects were most pronounced (100% lethality) at sites proximate to a historic industrial complex. Sediments from eight of nine core samples to depths of 80 cm were particularly impacted (i.e., caused significant lethality to L. plumulosus) even in locations overlain with relatively non-toxic surface sediments, supporting a conclusion that toxicity observed at the surface (top 2 cm) does not adequately predict toxicity at depth. In seven of nine sites, toxicity of surface sediments differed from toxicity at levels beneath by 28 to 69%, in five instances underestimating toxicity (28 to 69%), and in two instances overestimating toxicity (44 to 56%). Multiple contaminants exceeded sediment quality guidelines and correlated positively with toxic responses within surface sediments (e.g., chromium, nickel, polycyclic aromatic hydrocarbon (PAH), total petroleum hydrocarbon). Use of an antibody-based PAH biosensor revealed that porewater PAH concentrations also increased with depth at most sites. This study informs future management decisions concerning the extent of impact to Bear Creek sediments, and demonstrates the benefits of a spatial approach, relying primarily on toxicity testing to assess sediment quality in a system with complex contaminant mixtures.

  9. Multi-channel electrical impedance tomography for regional tissue hydration monitoring.

    PubMed

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-06-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical settings for helping optimize patient fluid management during hemodialysis as well as for home monitoring of patients with congestive heart failure, chronic kidney disease, diabetes and other diseases with peripheral edema symptoms.

  10. Multi-reverse flow injection analysis integrated with multi-optical sensor for simultaneous determination of Mn(II), Fe(II), Cu(II) and Fe(III) in natural waters.

    PubMed

    Youngvises, Napaporn; Suwannasaroj, Kittigan; Jakmunee, Jaroon; AlSuhaimi, Awadh

    2017-05-01

    Multi-reverse flow injection analysis (Mr-FIA) integrated with multi-optical sensor was developed and optimized for the simultaneous determination of multi ions; Mn(II), Fe(II), Cu(II) and Fe(III) in water samples. The sample/standard solutions were propelled making use of a four channels peristaltic pump whereas 4 colorimetric reagents specific for the metal ions were separately injected in sample streams using multi-syringe pump. The color zones that formed in the individual mixing coils were then streamed into multi-channels spectrometer, which comprised of four flows through cell and four pairs of light emitting diode and photodiode, whereby signals were measured concurrently. The linearity range (along with detection limit, µgL -1 ) was 0.050-3.0(16), 0.30-2.0 (11), 0.050-1.0(12) and 0.10-1.0(50)mgL -1 , for Mn(II), Fe(II), Cu(II) and Fe(III), respectively. In the interim, the correlation coefficients were 0.9924-0.9942. The percentages relative standard deviation was less than 3. The proposed system was applied successfully to determine targeted metal ions simultaneously in natural water with high sample throughput and low reagent consumption, thus it satisfies the criteria of Green Analytical Chemistry (GAC) and its goals. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fall Risk Assessment and Early-Warning for Toddler Behaviors at Home

    PubMed Central

    Yang, Mau-Tsuen; Chuang, Min-Wen

    2013-01-01

    Accidental falls are the major cause of serious injuries in toddlers, with most of these falls happening at home. Instead of providing immediate fall detection based on short-term observations, this paper proposes an early-warning childcare system to monitor fall-prone behaviors of toddlers at home. Using 3D human skeleton tracking and floor plane detection based on depth images captured by a Kinect system, eight fall-prone behavioral modules of toddlers are developed and organized according to four essential criteria: posture, motion, balance, and altitude. The final fall risk assessment is generated by a multi-modal fusion using either a weighted mean thresholding or a support vector machine (SVM) classification. Optimizations are performed to determine local parameter in each module and global parameters of the multi-modal fusion. Experimental results show that the proposed system can assess fall risks and trigger alarms with an accuracy rate of 92% at a speed of 20 frames per second. PMID:24335727

  12. Fall risk assessment and early-warning for toddler behaviors at home.

    PubMed

    Yang, Mau-Tsuen; Chuang, Min-Wen

    2013-12-10

    Accidental falls are the major cause of serious injuries in toddlers, with most of these falls happening at home. Instead of providing immediate fall detection based on short-term observations, this paper proposes an early-warning childcare system to monitor fall-prone behaviors of toddlers at home. Using 3D human skeleton tracking and floor plane detection based on depth images captured by a Kinect system, eight fall-prone behavioral modules of toddlers are developed and organized according to four essential criteria: posture, motion, balance, and altitude. The final fall risk assessment is generated by a multi-modal fusion using either a weighted mean thresholding or a support vector machine (SVM) classification. Optimizations are performed to determine local parameter in each module and global parameters of the multi-modal fusion. Experimental results show that the proposed system can assess fall risks and trigger alarms with an accuracy rate of 92% at a speed of 20 frames per second.

  13. A multi-resolution approach to electromagnetic modelling

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu

    2018-07-01

    We present a multi-resolution approach for 3-D magnetotelluric forward modelling. Our approach is motivated by the fact that fine-grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. With a conventional structured finite difference grid, the fine discretization required to adequately represent rapid variations near the surface is continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modelling is especially important for solving regularized inversion problems. We implement a multi-resolution finite difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of subgrids, with each subgrid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modelling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modelling operators on interfaces between adjacent subgrids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models shows that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.

  14. Multi-channel, passive, short-range anti-aircraft defence system

    NASA Astrophysics Data System (ADS)

    Gapiński, Daniel; Krzysztofik, Izabela; Koruba, Zbigniew

    2018-01-01

    The paper presents a novel method for tracking several air targets simultaneously. The developed concept concerns a multi-channel, passive, short-range anti-aircraft defence system based on the programmed selection of air targets and an algorithm of simultaneous synchronisation of several modified optical scanning seekers. The above system is supposed to facilitate simultaneous firing of several self-guided infrared rocket missiles at many different air targets. From the available information, it appears that, currently, there are no passive self-guided seekers that fulfil such tasks. This paper contains theoretical discussions and simulations of simultaneous detection and tracking of many air targets by mutually integrated seekers of several rocket missiles. The results of computer simulation research have been presented in a graphical form.

  15. Collimator Design for a Brain SPECT/MRI Insert

    NASA Astrophysics Data System (ADS)

    Salvado, Debora; Erlandsson, Kjell; Bousse, Alexandre; Occhipinti, Michele; Busca, Paolo; Fiorini, Carlo; Hutton, Brian F.

    2015-08-01

    This project's goal is to design a SPECT insert for a clinical MRI system for simultaneous brain SPECT/MR imaging, with a high-sensitivity collimator and high-resolution detectors. We have compared eight collimator designs, four multi-pinhole and four multi-slit slit-slat configurations. The collimation was designed for a system with 2 rings of 25 5 × 5 cm detectors. We introduce the concept of 1/2-pinhole and 1/2-slit, which are transaxially shared between two adjacent detectors. Analytical geometric efficiency was calculated for an activity distribution corresponding to a human brain and a range of intrinsic detector resolutions Ri and target resolutions Rt at the centre of the FOV. Noise-free data were simulated with and without depth-of-interaction (DOI) information, 0.8 mm Ri and 10 mm Rt FWHM, and reconstructed for uniform, Defrise, Derenzo, and Zubal brain phantoms. Comparing the multi-pinhole and multi-slit slit-slat collimators, the former gives better reconstructed uniformity and transaxial resolution, while the latter gives better axial resolution. Although the 2 ×2-pinhole and 2-slit designs give the highest sensitivities, they result in a sub-optimal utilisation of the detector FOV. The best options are therefore the 5+ 2 1/2-pinhole and the 1 + 2 1/2-slit systems, with sensitivities of 1.8 ×10-4 and 3.2 ×10-4, respectively. Noiseless brain phantom reconstructions with the multi-pinhole collimator are slightly superior as compared to slit-slat, in terms of symmetry and accuracy of the activity distribution, but the same is not true when noise is included. DOI information reduces artefacts and improves uniformity in geometric phantoms. Further evaluation is needed with prototype collimators.

  16. [Quality evaluation of rhubarb dispensing granules based on multi-component simultaneous quantitative analysis and bioassay].

    PubMed

    Tan, Peng; Zhang, Hai-Zhu; Zhang, Ding-Kun; Wu, Shan-Na; Niu, Ming; Wang, Jia-Bo; Xiao, Xiao-He

    2017-07-01

    This study attempts to evaluate the quality of Chinese formula granules by combined use of multi-component simultaneous quantitative analysis and bioassay. The rhubarb dispensing granules were used as the model drug for demonstrative study. The ultra-high performance liquid chromatography (UPLC) method was adopted for simultaneously quantitative determination of the 10 anthraquinone derivatives (such as aloe emodin-8-O-β-D-glucoside) in rhubarb dispensing granules; purgative biopotency of different batches of rhubarb dispensing granules was determined based on compound diphenoxylate tablets-induced mouse constipation model; blood activating biopotency of different batches of rhubarb dispensing granules was determined based on in vitro rat antiplatelet aggregation model; SPSS 22.0 statistical software was used for correlation analysis between 10 anthraquinone derivatives and purgative biopotency, blood activating biopotency. The results of multi-components simultaneous quantitative analysisshowed that there was a great difference in chemical characterizationand certain differences inpurgative biopotency and blood activating biopotency among 10 batches of rhubarb dispensing granules. The correlation analysis showed that the intensity of purgative biopotency was significantly correlated with the content of conjugated anthraquinone glycosides (P<0.01), and the intensity of blood activating biopotency was significantly correlated with the content of free anthraquinone (P<0.01). In summary, the combined use of multi-component simultaneous quantitative analysis and bioassay can achieve objective quantification and more comprehensive reflection on overall quality difference among different batches of rhubarb dispensing granules. Copyright© by the Chinese Pharmaceutical Association.

  17. Rosetta:MSF: a modular framework for multi-state computational protein design.

    PubMed

    Löffler, Patrick; Schmitz, Samuel; Hupfeld, Enrico; Sterner, Reinhard; Merkl, Rainer

    2017-06-01

    Computational protein design (CPD) is a powerful technique to engineer existing proteins or to design novel ones that display desired properties. Rosetta is a software suite including algorithms for computational modeling and analysis of protein structures and offers many elaborate protocols created to solve highly specific tasks of protein engineering. Most of Rosetta's protocols optimize sequences based on a single conformation (i. e. design state). However, challenging CPD objectives like multi-specificity design or the concurrent consideration of positive and negative design goals demand the simultaneous assessment of multiple states. This is why we have developed the multi-state framework MSF that facilitates the implementation of Rosetta's single-state protocols in a multi-state environment and made available two frequently used protocols. Utilizing MSF, we demonstrated for one of these protocols that multi-state design yields a 15% higher performance than single-state design on a ligand-binding benchmark consisting of structural conformations. With this protocol, we designed de novo nine retro-aldolases on a conformational ensemble deduced from a (βα)8-barrel protein. All variants displayed measurable catalytic activity, testifying to a high success rate for this concept of multi-state enzyme design.

  18. Rosetta:MSF: a modular framework for multi-state computational protein design

    PubMed Central

    Hupfeld, Enrico; Sterner, Reinhard

    2017-01-01

    Computational protein design (CPD) is a powerful technique to engineer existing proteins or to design novel ones that display desired properties. Rosetta is a software suite including algorithms for computational modeling and analysis of protein structures and offers many elaborate protocols created to solve highly specific tasks of protein engineering. Most of Rosetta’s protocols optimize sequences based on a single conformation (i. e. design state). However, challenging CPD objectives like multi-specificity design or the concurrent consideration of positive and negative design goals demand the simultaneous assessment of multiple states. This is why we have developed the multi-state framework MSF that facilitates the implementation of Rosetta’s single-state protocols in a multi-state environment and made available two frequently used protocols. Utilizing MSF, we demonstrated for one of these protocols that multi-state design yields a 15% higher performance than single-state design on a ligand-binding benchmark consisting of structural conformations. With this protocol, we designed de novo nine retro-aldolases on a conformational ensemble deduced from a (βα)8-barrel protein. All variants displayed measurable catalytic activity, testifying to a high success rate for this concept of multi-state enzyme design. PMID:28604768

  19. L-band InSAR Penetration Depth Experiment, North Slope Alaska

    NASA Astrophysics Data System (ADS)

    Muskett, R. R.

    2017-12-01

    Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales. Ref.: Geoscience and Environment Protection, vol. 5, no. 3, p. 14-30, 2017. DOI: 10.4236/gep.2017.53002.

  20. Extended depth of field integral imaging using multi-focus fusion

    NASA Astrophysics Data System (ADS)

    Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua

    2018-03-01

    In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.

  1. Assessment of the performance characteristics of a prototype 12-element capacitive contact flexible microstrip applicator (CFMA-12) for superficial hyperthermia.

    PubMed

    Lee, W M; Gelvich, E A; van der Baan, P; Mazokhin, V N; van Rhoon, G C

    2004-09-01

    The electrical performance of the CFMA-12 operating at 433 MHz is assessed under laboratory conditions using a RF network analyser. From measurements of the scattering parameters of the CFMA-12 on both a multi-layered muscle- and fat/muscle-equivalent phantom, the optimal water bolus thickness, at which the transfer of the energy to the phantom configuration is maximal, is determined to be approximately 1 cm. The SAR distribution of the CFMA-12 in a multi-layered muscle-equivalent phantom is characterized using Schottky diode sheets and a TVS-600 IR camera. From the SAR measurements using the Schottky diode sheets it is shown that the contribution of the E(x) component to the SAR (SAR(x)) is maximal 7% of the contribution of the E(y)component to the SAR (SAR(y)) at different layers in both phantom configurations. The complete SAR distribution (SAR(tot)) at different depths is measured using the power pulse technique. From these measurements, it can be seen that SAR(y)at a depth of 0 cm in the muscle-equivalent phantom represents up to 80% of SAR(tot). At 1 and 2 cm depth, SAR(y) is up to 95% of SAR(tot). Therefore, in homogeneous muscle-equivalent phantoms, E(y) is the largest E-field component and measurement of SAR(y) distribution is sufficient to characterize SAR-steering performance of the CFMA-12. SAR steering measurements at 1 cm depth in the muscle-equivalent phantom show that the SAR maximum varies by 40% (1 SD) around the average value of 38.8 W kg(-1) (range 10-65 W kg(-1)) between single antenna elements. The effective fieldsize (E(50)) varies by 14% (1 SD) around the average value of 19.1 cm(2).

  2. A manipulative instrument with simultaneous gesture and end-effector trajectory planning and controlling

    NASA Astrophysics Data System (ADS)

    Lin, Hsien-I.; Nguyen, Xuan-Anh

    2017-05-01

    To operate a redundant manipulator to accomplish the end-effector trajectory planning and simultaneously control its gesture in online programming, incorporating the human motion is a useful and flexible option. This paper focuses on a manipulative instrument that can simultaneously control its arm gesture and end-effector trajectory via human teleoperation. The instrument can be classified by two parts; first, for the human motion capture and data processing, marker systems are proposed to capture human gesture. Second, the manipulator kinematics control is implemented by an augmented multi-tasking method, and forward and backward reaching inverse kinematics, respectively. Especially, the local-solution and divergence problems of a multi-tasking method are resolved by the proposed augmented multi-tasking method. Computer simulations and experiments with a 7-DOF (degree of freedom) redundant manipulator were used to validate the proposed method. Comparison among the single-tasking, original multi-tasking, and augmented multi-tasking algorithms were performed and the result showed that the proposed augmented method had a good end-effector position accuracy and the most similar gesture to the human gesture. Additionally, the experimental results showed that the proposed instrument was realized online.

  3. A Multi-Modal Face Recognition Method Using Complete Local Derivative Patterns and Depth Maps

    PubMed Central

    Yin, Shouyi; Dai, Xu; Ouyang, Peng; Liu, Leibo; Wei, Shaojun

    2014-01-01

    In this paper, we propose a multi-modal 2D + 3D face recognition method for a smart city application based on a Wireless Sensor Network (WSN) and various kinds of sensors. Depth maps are exploited for the 3D face representation. As for feature extraction, we propose a new feature called Complete Local Derivative Pattern (CLDP). It adopts the idea of layering and has four layers. In the whole system, we apply CLDP separately on Gabor features extracted from a 2D image and depth map. Then, we obtain two features: CLDP-Gabor and CLDP-Depth. The two features weighted by the corresponding coefficients are combined together in the decision level to compute the total classification distance. At last, the probe face is assigned the identity with the smallest classification distance. Extensive experiments are conducted on three different databases. The results demonstrate the robustness and superiority of the new approach. The experimental results also prove that the proposed multi-modal 2D + 3D method is superior to other multi-modal ones and CLDP performs better than other Local Binary Pattern (LBP) based features. PMID:25333290

  4. Seismic Imaging of the Lesser Antilles Subduction Zone Using S-to-P Receiver Functions: Insights From VoiLA

    NASA Astrophysics Data System (ADS)

    Chichester, B.; Rychert, C.; Harmon, N.; Rietbrock, A.; Collier, J.; Henstock, T.; Goes, S. D. B.; Kendall, J. M.; Krueger, F.

    2017-12-01

    In the Lesser Antilles subduction zone Atlantic oceanic lithosphere, expected to be highly hydrated, is being subducted beneath the Caribbean plate. Water and other volatiles from the down-going plate are released and cause the overlying mantle to melt, feeding volcanoes with magma and hence forming the volcanic island arc. However, the depths and pathways of volatiles and melt within the mantle wedge are not well known. Here, we use S-to-P receiver functions to image seismic velocity contrasts with depth within the subduction zone in order to constrain the release of volatiles and the presence of melt in the mantle wedge, as well as slab structure and arc-lithosphere structure. We use data from 55-80° epicentral distances recorded by 32 recovered broadband ocean-bottom seismometers that were deployed during the 2016-2017 Volatiles in the Lesser Antilles (VoiLA) project for 15 months on the back- and fore-arc. The S-to-P receiver functions are calculated using two methods: extended time multi-taper deconvolution followed by migration to depth to constrain 3-D discontinuity structure of the subduction zone; and simultaneous deconvolution to determine structure beneath single stations. In the south of the island arc, we image a velocity increase with depth associated with the Moho at depths of 32-40 ± 4 km on the fore- and back-arc, consistent with various previous studies. At depths of 65-80 ± 4 km beneath the fore-arc we image a strong velocity decrease with depth that is west-dipping. At 96-120 ± 5 km beneath the fore-arc, we image a velocity increase with depth that is also west-dipping. The dipping negative-positive phase could represent velocity contrasts related to the top of the down-going plate, a feature commonly imaged in subduction zone receiver function studies. The negative phase is strong, so there may also be contributions to the negative velocity discontinuity from slab dehydration and/or mantle wedge serpentinization in the fore-arc.

  5. Ergonomic approaches to designing educational materials for immersive multi-projection system

    NASA Astrophysics Data System (ADS)

    Shibata, Takashi; Lee, JaeLin; Inoue, Tetsuri

    2014-02-01

    Rapid advances in computer and display technologies have made it possible to present high quality virtual reality (VR) environment. To use such virtual environments effectively, research should be performed into how users perceive and react to virtual environment in view of particular human factors. We created a VR simulation of sea fish for science education, and we conducted an experiment to examine how observers perceive the size and depth of an object within their reach and evaluated their visual fatigue. We chose a multi-projection system for presenting the educational VR simulation, because this system can provide actual-size objects and produce stereo images located close to the observer. The results of the experiment show that estimation of size and depth was relatively accurate when subjects used physical actions to assess them. Presenting images within the observer's reach is suggested to be useful for education in VR environment. Evaluation of visual fatigue shows that the level of symptoms from viewing stereo images with a large disparity in VR environment was low in a short time.

  6. Clinical feasibility of simultaneous multi-slice imaging with blipped-CAIPI for diffusion-weighted imaging and diffusion-tensor imaging of the brain.

    PubMed

    Yokota, Hajime; Sakai, Koji; Tazoe, Jun; Goto, Mariko; Imai, Hiroshi; Teramukai, Satoshi; Yamada, Kei

    2017-12-01

    Background Simultaneous multi-slice (SMS) imaging is starting to be used in clinical situation, although evidence of clinical feasibility is scanty. Purpose To prospectively assess the clinical feasibility of SMS diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) with blipped-controlled aliasing in parallel imaging for brain lesions. Material and Methods The institutional review board approved this study. This study included 156 hyperintense lesions on DWI from 32 patients. A slice acceleration factor of 2 was applied for SMS scans, which allowed shortening of the scan time by 41.3%. The signal-to-noise ratio (SNR) was calculated for brain tissue of a selected slice. The contrast-to-noise ratio (CNR), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were calculated in 36 hyperintense lesions with a diameter of three pixels or more. Visual assessment was performed for all 156 lesions. Tractography of the corticospinal tract of 29 patients was evaluated. The number of tracts and averaged tract length were used for quantitative analysis, and visual assessment was evaluated by grading. Results The SMS scan showed no bias and acceptable 95% limits of agreement compared to conventional scans in SNR, CNR, and ADC on Bland-Altman analyses. Only FA of the lesions was higher in the SMS scan by 9% ( P = 0.016), whereas FA of the surrounding tissues was similar. Quantitative analysis of tractography showed similar values. Visual assessment of DWI hyperintense lesions and tractography also resulted in comparable evaluation. Conclusion SMS imaging was clinically feasible for imaging quality and quantitative values compared with conventional DWI and DTI.

  7. Phase diagram of dilute cosmic matter

    NASA Astrophysics Data System (ADS)

    Iwata, Yoritaka

    2011-10-01

    Enhancement of nuclear pasta formation due to multi-nucleus simultaneous collision is presented based on time-dependent density functional calculations with periodic boundary condition. This calculation corresponds to the situation with density lower than the known low-density existence limit of the nuclear pasta phase. In order to evaluate the contribution from three-nucleus simultaneous collisions inside the cosmic matter, the possibility of multi-nucleus simultaneous collisions is examined by a systematic Monte-Carlo calculation, and the mean free path of a nucleus is obtained. Consequently the low-density existence limit of the nuclear pasta phase is formed to be lower than believed up to now.

  8. A Vision for an International Multi-Sensor Snow Observing Mission

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2015-01-01

    Discussions within the international snow remote sensing community over the past two years have led to encouraging consensus regarding the broad outlines of a dedicated snow observing mission. The primary consensus - that since no single sensor type is satisfactory across all snow types and across all confounding factors, a multi-sensor approach is required - naturally leads to questions about the exact mix of sensors, required accuracies, and so on. In short, the natural next step is to collect such multi-sensor snow observations (with detailed ground truth) to enable trade studies of various possible mission concepts. Such trade studies must assess the strengths and limitations of heritage as well as newer measurement techniques with an eye toward natural sensitivity to desired parameters such as snow depth and/or snow water equivalent (SWE) in spite of confounding factors like clouds, lack of solar illumination, forest cover, and topography, measurement accuracy, temporal and spatial coverage, technological maturity, and cost.

  9. Multi-frequency local wavenumber analysis and ply correlation of delamination damage.

    PubMed

    Juarez, Peter D; Leckey, Cara A C

    2015-09-01

    Wavenumber domain analysis through use of scanning laser Doppler vibrometry has been shown to be effective for non-contact inspection of damage in composites. Qualitative and semi-quantitative local wavenumber analysis of realistic delamination damage and quantitative analysis of idealized damage scenarios (Teflon inserts) have been performed previously in the literature. This paper presents a new methodology based on multi-frequency local wavenumber analysis for quantitative assessment of multi-ply delamination damage in carbon fiber reinforced polymer (CFRP) composite specimens. The methodology is presented and applied to a real world damage scenario (impact damage in an aerospace CFRP composite). The methodology yields delamination size and also correlates local wavenumber results from multiple excitation frequencies to theoretical dispersion curves in order to robustly determine the delamination ply depth. Results from the wavenumber based technique are validated against a traditional nondestructive evaluation method. Published by Elsevier B.V.

  10. Technical solutions for simultaneous MEG and SEEG recordings: towards routine clinical use.

    PubMed

    Badier, J M; Dubarry, A S; Gavaret, M; Chen, S; Trébuchon, A S; Marquis, P; Régis, J; Bartolomei, F; Bénar, C G; Carron, R

    2017-09-21

    The simultaneous recording of intracerebral EEG (stereotaxic EEG, SEEG) and magnetoencephalography (MEG) is a promising strategy that provides both local and global views on brain pathological activity. Yet, acquiring simultaneous signals poses difficult technical issues that hamper their use in clinical routine. Our objective was thus to develop a set of solutions for recording a high number of SEEG channels while preserving signal quality. We recorded data in a patient with drug resistant epilepsy during presurgical evaluation. We used dedicated insertion screws and optically insulated amplifiers. We recorded 137 SEEG contacts on 10 depth electrodes (5-15 contacts each) and 248 MEG channels (magnetometers). Signal quality was assessed by comparing the distribution of RMS values in different frequency bands to a reference set of MEG acquisitions. The quality of signals was excellent for both MEG and SEEG; for MEG, it was comparable to that of MEG signals without concurrent SEEG. Discharges involving several structures on SEEG were visible on MEG, whereas discharges limited in space were not seen at the surface. SEEG can now be recorded simultaneously with whole-head MEG in routine. This opens new avenues, both methodologically for understanding signals and improving signal processing methods, and clinically for future combined analyses.

  11. SEOM's Sentinel-3/OLCI' project CAWA: advanced GRASP aerosol retrieval

    NASA Astrophysics Data System (ADS)

    Dubovik, Oleg; litvinov, Pavel; Huang, Xin; Aspetsberger, Michael; Fuertes, David; Brockmann, Carsten; Fischer, Jürgen; Bojkov, Bojan

    2016-04-01

    The CAWA "Advanced Clouds, Aerosols and WAter vapour products for Sentinel-3/OLCI" ESA-SEOM project aims on the development of advanced atmospheric retrieval algorithms for the Sentinel-3/OLCI mission, and is prepared using Envisat/MERIS and Aqua/MODIS datasets. This presentation discusses mainly CAWA aerosol product developments and results. CAWA aerosol retrieval uses recently developed GRASP algorithm (Generalized Retrieval of Aerosol and Surface Properties) algorithm described by Dubovik et al. (2014). GRASP derives extended set of atmospheric parameters using multi-pixel concept - a simultaneous fitting of a large group of pixels under additional a priori constraints limiting the time variability of surface properties and spatial variability of aerosol properties. Over land GRASP simultaneously retrieves properties of both aerosol and underlying surface even over bright surfaces. GRAPS doesn't use traditional look-up-tables and performs retrieval as search in continuous space of solution. All radiative transfer calculations are performed as part of the retrieval. The results of comprehensive sensitivity tests, as well as results obtained from real Envisat/MERIS data will be presented. The tests analyze various aspects of aerosol and surface reflectance retrieval accuracy. In addition, the possibilities of retrieval improvement by means of implementing synergetic inversion of a combination of OLCI data with observations by SLSTR are explored. Both the results of numerical tests, as well as the results of processing several years of Envisat/MERIS data illustrate demonstrate reliable retrieval of AOD (Aerosol Optical Depth) and surface BRDF. Observed retrieval issues and advancements will be discussed. For example, for some situations we illustrate possibilities of retrieving aerosol absorption - property that hardly accessible from satellite observations with no multi-angular and polarimetric capabilities.

  12. A new approach to assess the skier additional stress within a multi-layered snowpack

    NASA Astrophysics Data System (ADS)

    Monti, Fabiano; Gaume, Johan; van Herwijnen, Alec; Schweizer, Jürg

    2014-05-01

    The physical and mechanical processes of dry-snow slab avalanche formation can be distinguished into two subsequent phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation, based on a simple strength-of-material approach (strength vs. stress). Even if it is known that both weak layer and slab properties play a major role in avalanche release, apart from weak layer characteristics, often only the slab thickness and its average density were considered. For calculating the amount of additional stress (e.g. due to a skier) at the depth of the weak layer, the snow cover was often assumed to be a semi-infinite elastic half space in order to apply Boussinesq's theory. However, finite element (FE) calculations have shown that slab layering strongly influences the stress at depth. To avoid FE calculations, we suggest a new approach based on a simplification of multi-layered elasticity theory. It allows computing the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. The proposed approach was first tested on simplified snow profiles and compared reasonably well with FE calculations. We then implemented the method to refine the classical skier stability index. Using manually observed snow profiles, classified in different stability classes using stability tests, we obtained a satisfactory discrimination power. Lastly, the refined skier stability index was implemented into the 1-D snow cover model SNOWPACK and presented on two case studies. In the future, it will be interesting to implement the proposed method for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.

  13. RARE/Turbo Spin Echo Imaging with Simultaneous MultiSlice Wave-CAIPI

    PubMed Central

    Eichner, Cornelius; Bhat, Himanshu; Grant, P. Ellen; Wald, Lawrence L.; Setsompop, Kawin

    2014-01-01

    Purpose To enable highly accelerated RARE/Turbo Spin Echo (TSE) imaging using Simultaneous MultiSlice (SMS) Wave-CAIPI acquisition with reduced g-factor penalty. Methods SMS Wave-CAIPI incurs slice shifts across simultaneously excited slices while playing sinusoidal gradient waveforms during the readout of each encoding line. This results in an efficient k-space coverage that spreads aliasing in all three dimensions to fully harness the encoding power of coil sensitivities. The novel MultiPINS radiofrequency (RF) pulses dramatically reduce the power deposition of multiband (MB) refocusing pulse, thus allowing high MB factors within the Specific Absorption Rate (SAR) limit. Results Wave-CAIPI acquisition with MultiPINS permits whole brain coverage with 1 mm isotropic resolution in 70 seconds at effective MB factor 13, with maximum and average g-factor penalties of gmax=1.34 and gavg=1.12, and without √R penalty. With blipped-CAIPI, the g-factor performance was degraded to gmax=3.24 and gavg=1.42; a 2.4-fold increase in gmax relative to Wave-CAIPI. At this MB factor, the SAR of the MultiBand and PINS pulses are 4.2 and 1.9 times that of the MultiPINS pulse, while the peak RF power are 19.4 and 3.9 times higher. Conclusion Combination of the two technologies, Wave-CAIPI and MultiPINS pulse, enables highly accelerated RARE/TSE imaging with low SNR penalty at reduced SAR. PMID:25640187

  14. Probabilistic Approaches for Multi-Hazard Risk Assessment of Structures and Systems

    NASA Astrophysics Data System (ADS)

    Kwag, Shinyoung

    Performance assessment of structures, systems, and components for multi-hazard scenarios has received significant attention in recent years. However, the concept of multi-hazard analysis is quite broad in nature and the focus of existing literature varies across a wide range of problems. In some cases, such studies focus on hazards that either occur simultaneously or are closely correlated with each other. For example, seismically induced flooding or seismically induced fires. In other cases, multi-hazard studies relate to hazards that are not dependent or correlated but have strong likelihood of occurrence at different times during the lifetime of a structure. The current approaches for risk assessment need enhancement to account for multi-hazard risks. It must be able to account for uncertainty propagation in a systems-level analysis, consider correlation among events or failure modes, and allow integration of newly available information from continually evolving simulation models, experimental observations, and field measurements. This dissertation presents a detailed study that proposes enhancements by incorporating Bayesian networks and Bayesian updating within a performance-based probabilistic framework. The performance-based framework allows propagation of risk as well as uncertainties in the risk estimates within a systems analysis. Unlike conventional risk assessment techniques such as a fault-tree analysis, a Bayesian network can account for statistical dependencies and correlations among events/hazards. The proposed approach is extended to develop a risk-informed framework for quantitative validation and verification of high fidelity system-level simulation tools. Validation of such simulations can be quite formidable within the context of a multi-hazard risk assessment in nuclear power plants. The efficiency of this approach lies in identification of critical events, components, and systems that contribute to the overall risk. Validation of any event or component on the critical path is relatively more important in a risk-informed environment. Significance of multi-hazard risk is also illustrated for uncorrelated hazards of earthquakes and high winds which may result in competing design objectives. It is also illustrated that the number of computationally intensive nonlinear simulations needed in performance-based risk assessment for external hazards can be significantly reduced by using the power of Bayesian updating in conjunction with the concept of equivalent limit-state.

  15. Imaging a photodynamic therapy photosensitizer in vivo with a time-gated fluorescence tomography system

    NASA Astrophysics Data System (ADS)

    Mo, Weirong; Rohrbach, Daniel; Sunar, Ulas

    2012-07-01

    We report the tomographic imaging of a photodynamic therapy (PDT) photosensitizer, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) in vivo with time-domain fluorescence diffuse optical tomography (TD-FDOT). Simultaneous reconstruction of fluorescence yield and lifetime of HPPH was performed before and after PDT. The methodology was validated in phantom experiments, and depth-resolved in vivo imaging was achieved through simultaneous three-dimensional (3-D) mappings of fluorescence yield and lifetime contrasts. The tomographic images of a human head-and-neck xenograft in a mouse confirmed the preferential uptake and retention of HPPH by the tumor 24-h post-injection. HPPH-mediated PDT induced significant changes in fluorescence yield and lifetime. This pilot study demonstrates that TD-FDOT may be a good imaging modality for assessing photosensitizer distributions in deep tissue during PDT monitoring.

  16. A combined positron emission tomography (PET)-electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner

    NASA Astrophysics Data System (ADS)

    Tseytlin, Mark; Stolin, Alexander V.; Guggilapu, Priyaankadevi; Bobko, Andrey A.; Khramtsov, Valery V.; Tseytlin, Oxana; Raylman, Raymond R.

    2018-05-01

    The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.

  17. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.

    PubMed

    Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan

    2015-08-21

    The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential.

  18. A system for simultaneous near-infrared reflectance and transillumination imaging of occlusal carious lesions

    NASA Astrophysics Data System (ADS)

    Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel

    2016-02-01

    Clinicians need technologies to improve the diagnosis of questionable occlusal carious lesions (QOC's) and determine if decay has penetrated to the underlying dentin. Assessing lesion depth from near-infrared (NIR) images holds great potential due to the high transparency of enamel and stain to NIR light at λ=1300-1700-nm, which allows direct visualization and quantified measurements of enamel demineralization. Unfortunately, NIR reflectance measurements alone are limited in utility for approximating occlusal lesion depth >200-μm due to light attenuation from the lesion body. Previous studies sought to combine NIR reflectance and transillumination measurements taken at λ=1300-nm in order to estimate QOC depth and severity. The objective of this study was to quantify the change in lesion contrast and size measured from multispectral NIR reflectance and transillumination images of natural occlusal carious lesions with increasing lesion depth and severity in order to determine the optimal multimodal wavelength combinations for estimating QOC depth. Extracted teeth with varying amounts of natural occlusal decay were measured using a multispectral-multimodal NIR imaging system at prominent wavelengths within the λ=1300-1700-nm spectral region. Image analysis software was used to calculate lesion contrast and area values between sound and carious enamel regions.

  19. Sleep Is Associated with the Metabolic Syndrome in a Multi-Ethnic Cohort of Midlife Women: The SWAN Sleep Study

    PubMed Central

    Hall, Martica H.; Okun, Michele L.; Sowers, MaryFran; Matthews, Karen A.; Kravitz, Howard M.; Hardin, Kimberly; Buysse, Daniel J.; Bromberger, Joyce T.; Owens, Jane F.; Karpov, Irina; Sanders, Mark H.

    2012-01-01

    Study Objectives: We evaluated associations among subjective and objective measures of sleep and the metabolic syndrome in a multi-ethnic sample of midlife women. Design: Cross-sectional study. Setting: Participants' homes. Participants: Caucasian (n = 158), African American (n = 125), and Chinese women (n = 57); mean age = 51 years. Age range = 46-57 years. Interventions: None. Measurements and Results: Metabolic syndrome was measured in the clinic and sleep quality was assessed by self-report. Indices of sleep duration, continuity/fragmentation, depth, and sleep disordered breathing were assessed by in-home polysomnography (PSG). Covariates included sociodemographics, menopausal status, use of medications that affect sleep, and self-reported health complaints and health behaviors known to influence metabolic syndrome risk. Logistic regression was used to test the hypothesis that the metabolic syndrome would be associated with increased subjective sleep complaints and PSG-assessed sleep disturbances. In univariate analyses, the metabolic syndrome was associated with decreased sleep duration and efficiency and increased NREM beta power and apnea-hypopnea index (AHI). After covariate adjustment, sleep efficiency (odds ratio [OR] = 2.06, 95% confidence interval [CI]: 1.08-3.93), NREM beta power (OR = 2.09, 95% CI: 1.09-3.98), and AHI (OR = 1.86, 95% CI: 1.40-2.48) remained significantly associated with the metabolic syndrome (odds ratio values are expressed in standard deviation units). These relationships did not differ by race. Conclusions: Objective indices of sleep continuity, depth, and sleep disordered breathing are significant correlates of the metabolic syndrome in midlife women, independent of race, menopausal status and other factors that might otherwise account for these relationships. Citation: Hall MH; Okun ML; Sowers M; Matthews KA; Kravitz HM; Hardin K; Buysse DJ; Bromberger JT; Owens JF; Karpov I; Sanders MH. Sleep is associated with the metabolic syndrome in a multi-ethnic cohort of midlife women: the SWAN Sleep Study. SLEEP 2012;35(6):783-790. PMID:22654197

  20. Uni- and multi-variable modelling of flood losses: experiences gained from the Secchia river inundation event.

    NASA Astrophysics Data System (ADS)

    Carisi, Francesca; Domeneghetti, Alessio; Kreibich, Heidi; Schröter, Kai; Castellarin, Attilio

    2017-04-01

    Flood risk is function of flood hazard and vulnerability, therefore its accurate assessment depends on a reliable quantification of both factors. The scientific literature proposes a number of objective and reliable methods for assessing flood hazard, yet it highlights a limited understanding of the fundamental damage processes. Loss modelling is associated with large uncertainty which is, among other factors, due to a lack of standard procedures; for instance, flood losses are often estimated based on damage models derived in completely different contexts (i.e. different countries or geographical regions) without checking its applicability, or by considering only one explanatory variable (i.e. typically water depth). We consider the Secchia river flood event of January 2014, when a sudden levee-breach caused the inundation of nearly 200 km2 in Northern Italy. In the aftermath of this event, local authorities collected flood loss data, together with additional information on affected private households and industrial activities (e.g. buildings surface and economic value, number of company's employees and others). Based on these data we implemented and compared a quadratic-regression damage function, with water depth as the only explanatory variable, and a multi-variable model that combines multiple regression trees and considers several explanatory variables (i.e. bagging decision trees). Our results show the importance of data collection revealing that (1) a simple quadratic regression damage function based on empirical data from the study area can be significantly more accurate than literature damage-models derived for a different context and (2) multi-variable modelling may outperform the uni-variable approach, yet it is more difficult to develop and apply due to a much higher demand of detailed data.

  1. Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda.

    PubMed

    Nsengiyumva, Jean Baptiste; Luo, Geping; Nahayo, Lamek; Huang, Xiaotao; Cai, Peng

    2018-01-31

    Landslides susceptibility assessment has to be conducted to identify prone areas and guide risk management. Landslides in Rwanda are very deadly disasters. The current research aimed to conduct landslide susceptibility assessment by applying Spatial Multi-Criteria Evaluation Model with eight layers of causal factors including: slope, distance to roads, lithology, precipitation, soil texture, soil depth, altitude and land cover. In total, 980 past landslide locations were mapped. The relationship between landslide factors and inventory map was calculated using the Spatial Multi-Criteria Evaluation. The results revealed that susceptibility is spatially distributed countrywide with 42.3% of the region classified from moderate to very high susceptibility, and this is inhabited by 49.3% of the total population. In addition, Provinces with high to very high susceptibility are West, North and South (40.4%, 22.8% and 21.5%, respectively). Subsequently, the Eastern Province becomes the peak under low susceptibility category (87.8%) with no very high susceptibility (0%). Based on these findings, the employed model produced accurate and reliable outcome in terms of susceptibility, since 49.5% of past landslides fell within the very high susceptibility category, which confirms the model's performance. The outcomes of this study will be useful for future initiatives related to landslide risk reduction and management.

  2. Multi-scale groundwater flow modeling during temperate climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden

    NASA Astrophysics Data System (ADS)

    Joyce, Steven; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter

    2014-09-01

    Forsmark in Sweden has been proposed as the site of a geological repository for spent high-level nuclear fuel, to be located at a depth of approximately 470 m in fractured crystalline rock. The safety assessment for the repository has required a multi-disciplinary approach to evaluate the impact of hydrogeological and hydrogeochemical conditions close to the repository and in a wider regional context. Assessing the consequences of potential radionuclide releases requires quantitative site-specific information concerning the details of groundwater flow on the scale of individual waste canister locations (1-10 m) as well as details of groundwater flow and composition on the scale of groundwater pathways between the facility and the surface (500 m to 5 km). The purpose of this article is to provide an illustration of multi-scale modeling techniques and the results obtained when combining aspects of local-scale flows in fractures around a potential contaminant source with regional-scale groundwater flow and transport subject to natural evolution of the system. The approach set out is novel, as it incorporates both different scales of model and different levels of detail, combining discrete fracture network and equivalent continuous porous medium representations of fractured bedrock.

  3. Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda

    PubMed Central

    Nsengiyumva, Jean Baptiste; Luo, Geping; Nahayo, Lamek; Huang, Xiaotao; Cai, Peng

    2018-01-01

    Landslides susceptibility assessment has to be conducted to identify prone areas and guide risk management. Landslides in Rwanda are very deadly disasters. The current research aimed to conduct landslide susceptibility assessment by applying Spatial Multi-Criteria Evaluation Model with eight layers of causal factors including: slope, distance to roads, lithology, precipitation, soil texture, soil depth, altitude and land cover. In total, 980 past landslide locations were mapped. The relationship between landslide factors and inventory map was calculated using the Spatial Multi-Criteria Evaluation. The results revealed that susceptibility is spatially distributed countrywide with 42.3% of the region classified from moderate to very high susceptibility, and this is inhabited by 49.3% of the total population. In addition, Provinces with high to very high susceptibility are West, North and South (40.4%, 22.8% and 21.5%, respectively). Subsequently, the Eastern Province becomes the peak under low susceptibility category (87.8%) with no very high susceptibility (0%). Based on these findings, the employed model produced accurate and reliable outcome in terms of susceptibility, since 49.5% of past landslides fell within the very high susceptibility category, which confirms the model’s performance. The outcomes of this study will be useful for future initiatives related to landslide risk reduction and management. PMID:29385096

  4. 3D mesoscopic fluorescence tomography for imaging micro-distribution of antibody-photon absorber conjugates during near infrared photoimmunotherapy in vivo.

    PubMed

    Tang, Qinggong; Nagaya, Tadanobu; Liu, Yi; Horng, Hannah; Lin, Jonathan; Sato, Kazuhide; Kobayashi, Hisataka; Chen, Yu

    2018-06-10

    As a novel low-side-effect cancer therapy, photo-immunotherapy (PIT) is based on conjugating monoclonal antibody (mAb) with a near-infrared (NIR) phthalocyanine dye IRDye700DX (IR 700). IR700 is not only fluorescent to be used as an imaging agent, but also phototoxic. When illuminating with NIR light, PIT can induce highly-selective cancer cell death while leaving most of tumor blood vessels unharmed, leading to an effect termed super-enhanced permeability and retention (SUPR), which can significantly improve the effectiveness of anti-cancer drug. Currently, the therapeutic effects of PIT are monitored using 2D macroscopic fluorescence reflectance imager, which lacks the resolution and depth information to reveal the 3D distribution of mAb-IR700. In the study, we applied a multi-modal optical imaging approach including high-resolution optical coherence tomography (OCT) and high-sensitivity fluorescence laminar optical tomography (FLOT), to provide 3D tumor micro-structure and micro-distribution of mAb-IR700 in the tumor simultaneously during PIT in situ and in vivo. The multi-wavelength FLOT can also provide the blood vessels morphology of the tumor. Thus, the 3D FLOT reconstructed images allow us to evaluate the IR700 fluorescence distribution change with respect to the blood vessels and at different tumor locations/depths non-invasively, thereby enabling evaluation of the therapeutic effects in vivo and optimization of treatment regimens accordingly. The mAb-IR700 can access more tumor areas after PIT treatment, which can be explained by increased vascular permeability immediately after NIR-PIT. Two-photon microscopy was also used to record the mAb-IR700 on the tumor surface near the blood vessels to verify the results. Published by Elsevier B.V.

  5. Validation Study on a Rapid Method for Simultaneous Determination of Pesticide Residues in Vegetables and Fruits by LC-MS/MS.

    PubMed

    Sato, Tamaki; Miyamoto, Iori; Uemura, Masako; Nakatani, Tadashi; Kakutani, Naoya; Yamano, Tetsuo

    2016-01-01

    A validation study was carried out on a rapid method for the simultaneous determination of pesticide residues in vegetables and fruits by LC-MS/MS. Preparation of the test solution was performed by a solid-phase extraction technique with QuEChERS (STQ method). Pesticide residues were extracted with acetonitrile using a homogenizer, followed by salting-out and dehydration at the same time. The acetonitrile layer was purified with C18 and PSA mini-columns. The method was assessed for 130 pesticide residues in 14 kinds of vegetables and fruits at the concentration level of 0.01 μg/g according to the method validation guideline of the Ministry of Health, Labour and Welfare of Japan. As a result 75 to 120 pesticide residues were determined satisfactorily in the tested samples. Thus, this method could be useful for a rapid and simultaneous determination of multi-class pesticide residues in various vegetables and fruits.

  6. Optical multichannel monitoring of skin blood pulsations for cardiovascular assessment

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Ozols, Maris

    2004-07-01

    Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for cardiovascular assessment. The multichannel PPG concept has been developed and clinically verified in this work. Simultaneous data flow from several body locations allows to study the heartbeat pulse wave propagation in real time and to evaluate the vascular resistance. Portable two- and four-channel PPG monitoring devices and special software have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions.

  7. Design and verification of wide-band, simultaneous, multi-frequency, tuning circuits for large moment transmitter loops

    NASA Astrophysics Data System (ADS)

    Dvorak, Steven L.; Sternberg, Ben K.; Feng, Wanjie

    2017-03-01

    In this paper we discuss the design and verification of wide-band, multi-frequency, tuning circuits for large-moment Transmitter (TX) loops. Since these multi-frequency, tuned-TX loops allow for the simultaneous transmission of multiple frequencies at high-current levels, they are ideally suited for frequency-domain geophysical systems that collect data while moving, such as helicopter mounted systems. Furthermore, since multi-frequency tuners use the same TX loop for all frequencies, instead of using separate tuned-TX loops for each frequency, they allow for the use of larger moment TX loops. In this paper we discuss the design and simulation of one- and three-frequency tuned TX loops and then present measurement results for a three-frequency, tuned-TX loop.

  8. A Hierarchical Model for Simultaneous Detection and Estimation in Multi-subject fMRI Studies

    PubMed Central

    Degras, David; Lindquist, Martin A.

    2014-01-01

    In this paper we introduce a new hierarchical model for the simultaneous detection of brain activation and estimation of the shape of the hemodynamic response in multi-subject fMRI studies. The proposed approach circumvents a major stumbling block in standard multi-subject fMRI data analysis, in that it both allows the shape of the hemodynamic response function to vary across region and subjects, while still providing a straightforward way to estimate population-level activation. An e cient estimation algorithm is presented, as is an inferential framework that not only allows for tests of activation, but also for tests for deviations from some canonical shape. The model is validated through simulations and application to a multi-subject fMRI study of thermal pain. PMID:24793829

  9. A Single Session of rTMS Enhances Small-Worldness in Writer's Cramp: Evidence from Simultaneous EEG-fMRI Multi-Modal Brain Graph.

    PubMed

    Bharath, Rose D; Panda, Rajanikant; Reddam, Venkateswara Reddy; Bhaskar, M V; Gohel, Suril; Bhardwaj, Sujas; Prajapati, Arvind; Pal, Pramod Kumar

    2017-01-01

    Background and Purpose : Repetitive transcranial magnetic stimulation (rTMS) induces widespread changes in brain connectivity. As the network topology differences induced by a single session of rTMS are less known we undertook this study to ascertain whether the network alterations had a small-world morphology using multi-modal graph theory analysis of simultaneous EEG-fMRI. Method : Simultaneous EEG-fMRI was acquired in duplicate before (R1) and after (R2) a single session of rTMS in 14 patients with Writer's Cramp (WC). Whole brain neuronal and hemodynamic network connectivity were explored using the graph theory measures and clustering coefficient, path length and small-world index were calculated for EEG and resting state fMRI (rsfMRI). Multi-modal graph theory analysis was used to evaluate the correlation of EEG and fMRI clustering coefficients. Result : A single session of rTMS was found to increase the clustering coefficient and small-worldness significantly in both EEG and fMRI ( p < 0.05). Multi-modal graph theory analysis revealed significant modulations in the fronto-parietal regions immediately after rTMS. The rsfMRI revealed additional modulations in several deep brain regions including cerebellum, insula and medial frontal lobe. Conclusion : Multi-modal graph theory analysis of simultaneous EEG-fMRI can supplement motor physiology methods in understanding the neurobiology of rTMS in vivo . Coinciding evidence from EEG and rsfMRI reports small-world morphology for the acute phase network hyper-connectivity indicating changes ensuing low-frequency rTMS is probably not "noise".

  10. The Effect of Orthographic Depth on Letter String Processing: The Case of Visual Attention Span and Rapid Automatized Naming

    ERIC Educational Resources Information Center

    Antzaka, Alexia; Martin, Clara; Caffarra, Sendy; Schlöffel, Sophie; Carreiras, Manuel; Lallier, Marie

    2018-01-01

    The present study investigated whether orthographic depth can increase the bias towards multi-letter processing in two reading-related skills: visual attention span (VAS) and rapid automatized naming (RAN). VAS (i.e., the number of visual elements that can be processed at once in a multi-element array) was tested with a visual 1-back task and RAN…

  11. Cross-country transferability of multi-variable damage models

    NASA Astrophysics Data System (ADS)

    Wagenaar, Dennis; Lüdtke, Stefan; Kreibich, Heidi; Bouwer, Laurens

    2017-04-01

    Flood damage assessment is often done with simple damage curves based only on flood water depth. Additionally, damage models are often transferred in space and time, e.g. from region to region or from one flood event to another. Validation has shown that depth-damage curve estimates are associated with high uncertainties, particularly when applied in regions outside the area where the data for curve development was collected. Recently, progress has been made with multi-variable damage models created with data-mining techniques, i.e. Bayesian Networks and random forest. However, it is still unknown to what extent and under which conditions model transfers are possible and reliable. Model validations in different countries will provide valuable insights into the transferability of multi-variable damage models. In this study we compare multi-variable models developed on basis of flood damage datasets from Germany as well as from The Netherlands. Data from several German floods was collected using computer aided telephone interviews. Data from the 1993 Meuse flood in the Netherlands is available, based on compensations paid by the government. The Bayesian network and random forest based models are applied and validated in both countries on basis of the individual datasets. A major challenge was the harmonization of the variables between both datasets due to factors like differences in variable definitions, and regional and temporal differences in flood hazard and exposure characteristics. Results of model validations and comparisons in both countries are discussed, particularly in respect to encountered challenges and possible solutions for an improvement of model transferability.

  12. Simultaneous quantitative analysis of arsenic, bismuth, selenium, and tellurium in soil samples using multi-channel hydride-generation atomic fluorescence spectrometry.

    PubMed

    Wang, Fang; Zhang, Gai

    2011-03-01

    The basic principles and the application of hydride-generation multi-channel atomic fluorescence spectrometry (HG-MC-AFS) in soil analysis are described. It is generally understood that only one or two elements can be simultaneously detected by commonly used one- or two-channel HG-AFS. In this work, a new sample-sensitive and effective method for the analysis of arsenic, bismuth, tellurium, and selenium in soil samples by simultaneous detection using HG-MC-AFS was developed. The method detection limits for arsenic, bismuth, tellurium, and selenium are 0.19 μg/g, 0.10 μg/g, 0.11 μg/g, and 0.08 μg/g, respectively. This method was successfully applied to the simultaneous determination of arsenic, bismuth, tellurium, and selenium in soil samples.

  13. Determination of optimum "multi-channel surface wave method" field parameters.

    DOT National Transportation Integrated Search

    2012-12-01

    Multi-channel surface wave methods (especially the multi-channel analyses of surface wave method; MASW) are routinely used to : determine the shear-wave velocity of the subsurface to depths of 100 feet for site classification purposes. Users are awar...

  14. Simultaneous Conduction and Valence Band Quantization in Ultrashallow High-Density Doping Profiles in Semiconductors

    NASA Astrophysics Data System (ADS)

    Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.

    2018-01-01

    We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.

  15. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  16. Covering Chemical Diversity of Genetically-Modified Tomatoes Using Metabolomics for Objective Substantial Equivalence Assessment

    PubMed Central

    Hirai, Tadayoshi; Oikawa, Akira; Matsuda, Fumio; Fukushima, Atsushi; Arita, Masanori; Watanabe, Shin; Yano, Megumu; Hiwasa-Tanase, Kyoko; Ezura, Hiroshi; Saito, Kazuki

    2011-01-01

    As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms. PMID:21359231

  17. Real Time Assessment of Potable Water Quality in Distribution Network based on Low Cost Multi-Sensor Array

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Khatri, Punit

    2018-03-01

    New concepts and techniques are replacing traditional methods of water quality parameters measurement systems. This paper proposed a new way of potable water quality assessment in distribution network using Multi Sensor Array (MSA). Extensive research suggests that following parameters i.e. pH, Dissolved Oxygen (D.O.), Conductivity, Oxygen Reduction Potential (ORP), Temperature and Salinity are most suitable to detect overall quality of potable water. Commonly MSA is not an integrated sensor array on some substrate, but rather comprises a set of individual sensors measuring simultaneously different water parameters all together. Based on research, a MSA has been developed followed by signal conditioning unit and finally, an algorithm for easy user interfacing. A dedicated part of this paper also discusses the platform design and significant results. The Objective of this proposed research is to provide simple, efficient, cost effective and socially acceptable means to detect and analyse water bodies regularly and automatically.

  18. Enhancing sound absorption and transmission through flexible multi-layer micro-perforated structures.

    PubMed

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2013-11-01

    Theoretical and experimental results are presented into the sound absorption and transmission properties of multi-layer structures made up of thin micro-perforated panels (ML-MPPs). The objective is to improve both the absorption and insulation performances of ML-MPPs through impedance boundary optimization. A fully coupled modal formulation is introduced that predicts the effect of the structural resonances onto the normal incidence absorption coefficient and transmission loss of ML-MPPs. This model is assessed against standing wave tube measurements and simulations based on impedance translation method for two double-layer MPP configurations of relevance in building acoustics and aeronautics. Optimal impedance relationships are proposed that ensure simultaneous maximization of both the absorption and the transmission loss under normal incidence. Exhaustive optimization of the double-layer MPPs is performed to assess the absorption and/or transmission performances with respect to the impedance criterion. It is investigated how the panel volumetric resonances modify the excess dissipation that can be achieved from non-modal optimization of ML-MPPs.

  19. Riparian rehabilitation planning in an urban-rural gradient: Integrating social needs and ecological conditions.

    PubMed

    Guida-Johnson, Bárbara; Zuleta, Gustavo A

    2017-09-01

    In the present context of global change and search for sustainability, we detected a gap between restoration and society: local communities are usually only considered as threats or disturbances when planning for restoration. To bridge this gap, we propose a landscape design framework for planning riparian rehabilitation in an urban-rural gradient. A spatial multi-criteria analysis was used to assess the priority of riversides by considering two rehabilitation objectives simultaneously-socio-environmental and ecological-and two sets of criteria were designed according to these objectives. The assessment made it possible to identify 17 priority sites for riparian rehabilitation that were associated with different conditions along the gradient. The double goal setting enabled a dual consideration of citizens, both as beneficiaries and potential impacts to rehabilitation, and the criteria selected incorporated the multi-dimensional nature of the environment. This approach can potentially be adapted and implemented in any other anthropic-natural interface throughout the world.

  20. The ability of individuals to assess population density influences the evolution of emigration propensity and dispersal distance.

    PubMed

    Poethke, Hans Joachim; Gros, Andreas; Hovestadt, Thomas

    2011-08-07

    We analyze the simultaneous evolution of emigration and settlement decisions for actively dispersing species differing in their ability to assess population density. Using an individual-based model we simulate dispersal as a multi-step (patch to patch) movement in a world consisting of habitat patches surrounded by a hostile matrix. Each such step is associated with the same mortality risk. Our simulations show that individuals following an informed strategy, where emigration (and settlement) probability depends on local population density, evolve a lower (natal) emigration propensity but disperse over significantly larger distances - i.e. postpone settlement longer - than individuals performing density-independent emigration. This holds especially when variation in environmental conditions is spatially correlated. Both effects can be traced to the informed individuals' ability to better exploit existing heterogeneity in reproductive chances. Yet, already moderate distance-dependent dispersal costs prevent the evolution of multi-step (long-distance) dispersal, irrespective of the dispersal strategy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Atmospheric correction for remote sensing image based on multi-spectral information

    NASA Astrophysics Data System (ADS)

    Wang, Yu; He, Hongyan; Tan, Wei; Qi, Wenwen

    2018-03-01

    The light collected from remote sensors taken from space must transit through the Earth's atmosphere. All satellite images are affected at some level by lightwave scattering and absorption from aerosols, water vapor and particulates in the atmosphere. For generating high-quality scientific data, atmospheric correction is required to remove atmospheric effects and to convert digital number (DN) values to surface reflectance (SR). Every optical satellite in orbit observes the earth through the same atmosphere, but each satellite image is impacted differently because atmospheric conditions are constantly changing. A physics-based detailed radiative transfer model 6SV requires a lot of key ancillary information about the atmospheric conditions at the acquisition time. This paper investigates to achieve the simultaneous acquisition of atmospheric radiation parameters based on the multi-spectral information, in order to improve the estimates of surface reflectance through physics-based atmospheric correction. Ancillary information on the aerosol optical depth (AOD) and total water vapor (TWV) derived from the multi-spectral information based on specific spectral properties was used for the 6SV model. The experimentation was carried out on images of Sentinel-2, which carries a Multispectral Instrument (MSI), recording in 13 spectral bands, covering a wide range of wavelengths from 440 up to 2200 nm. The results suggest that per-pixel atmospheric correction through 6SV model, integrating AOD and TWV derived from multispectral information, is better suited for accurate analysis of satellite images and quantitative remote sensing application.

  2. Concept of dual-resolution light field imaging using an organic photoelectric conversion film for high-resolution light field photography.

    PubMed

    Sugimura, Daisuke; Kobayashi, Suguru; Hamamoto, Takayuki

    2017-11-01

    Light field imaging is an emerging technique that is employed to realize various applications such as multi-viewpoint imaging, focal-point changing, and depth estimation. In this paper, we propose a concept of a dual-resolution light field imaging system to synthesize super-resolved multi-viewpoint images. The key novelty of this study is the use of an organic photoelectric conversion film (OPCF), which is a device that converts spectra information of incoming light within a certain wavelength range into an electrical signal (pixel value), for light field imaging. In our imaging system, we place the OPCF having the green spectral sensitivity onto the micro-lens array of the conventional light field camera. The OPCF allows us to acquire the green spectra information only at the center viewpoint with the full resolution of the image sensor. In contrast, the optical system of the light field camera in our imaging system captures the other spectra information (red and blue) at multiple viewpoints (sub-aperture images) but with low resolution. Thus, our dual-resolution light field imaging system enables us to simultaneously capture information about the target scene at a high spatial resolution as well as the direction information of the incoming light. By exploiting these advantages of our imaging system, our proposed method enables the synthesis of full-resolution multi-viewpoint images. We perform experiments using synthetic images, and the results demonstrate that our method outperforms other previous methods.

  3. Towards Year-round Estimation of Terrestrial Water Storage over Snow-Covered Terrain via Multi-sensor Assimilation of GRACE/GRACE-FO and AMSR-E/AMSR-2.

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xue, Y.; Forman, B. A.; Girotto, M.; Reichle, R. H.

    2017-12-01

    The Gravity and Recovery Climate Experiment (GRACE) has revolutionized large-scale remote sensing of the Earth's terrestrial hydrologic cycle and has provided an unprecedented observational constraint for global land surface models. However, the coarse-scale (in space and time), vertically-integrated measure of terrestrial water storage (TWS) limits GRACE's applicability to smaller scale hydrologic applications. In order to enhance model-based estimates of TWS while effectively adding resolution (in space and time) to the coarse-scale TWS retrievals, a multi-variate, multi-sensor data assimilation framework is presented here that simultaneously assimilates gravimetric retrievals of TWS in conjunction with passive microwave (PMW) brightness temperature (Tb) observations over snow-covered terrain. The framework uses the NASA Catchment Land Surface Model (Catchment) and an ensemble Kalman filter (EnKF). A synthetic assimilation experiment is presented for the Volga river basin in Russia. The skill of the output from the assimilation of synthetic observations is compared with that of model estimates generated without the benefit of assimilating the synthetic observations. It is shown that the EnKF framework improves modeled estimates of TWS, snow depth, and snow mass (a.k.a. snow water equivalent). The data assimilation routine produces a conditioned (updated) estimate that is more accurate and contains less uncertainty during both the snow accumulation phase of the snow season as well as during the snow ablation season.

  4. Robust, Efficient Depth Reconstruction With Hierarchical Confidence-Based Matching.

    PubMed

    Sun, Li; Chen, Ke; Song, Mingli; Tao, Dacheng; Chen, Gang; Chen, Chun

    2017-07-01

    In recent years, taking photos and capturing videos with mobile devices have become increasingly popular. Emerging applications based on the depth reconstruction technique have been developed, such as Google lens blur. However, depth reconstruction is difficult due to occlusions, non-diffuse surfaces, repetitive patterns, and textureless surfaces, and it has become more difficult due to the unstable image quality and uncontrolled scene condition in the mobile setting. In this paper, we present a novel hierarchical framework with multi-view confidence-based matching for robust, efficient depth reconstruction in uncontrolled scenes. Particularly, the proposed framework combines local cost aggregation with global cost optimization in a complementary manner that increases efficiency and accuracy. A depth map is efficiently obtained in a coarse-to-fine manner by using an image pyramid. Moreover, confidence maps are computed to robustly fuse multi-view matching cues, and to constrain the stereo matching on a finer scale. The proposed framework has been evaluated with challenging indoor and outdoor scenes, and has achieved robust and efficient depth reconstruction.

  5. Integrated multi-choice goal programming and multi-segment goal programming for supplier selection considering imperfect-quality and price-quantity discounts in a multiple sourcing environment

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Ter; Chen, Huang-Mu; Zhuang, Zheng-Yun

    2014-05-01

    Supplier selection (SS) is a multi-criteria and multi-objective problem, in which multi-segment (e.g. imperfect-quality discount (IQD) and price-quantity discount (PQD)) and multi-aspiration level problems may be significantly important; however, little attention had been given to dealing with both of them simultaneously in the past. This study proposes a model for integrating multi-choice goal programming and multi-segment goal programming to solve the above-mentioned problems by providing the following main contributions: (1) it allows decision-makers to set multiple aspiration levels on the right-hand side of each goal to suit real-world situations, (2) the PQD and IQD conditions are considered in the proposed model simultaneously and (3) the proposed model can solve a SS problem with n suppliers where each supplier offers m IQD with r PQD intervals, where only ? extra binary variables are required. The usefulness of the proposed model is explained using a real case. The results indicate that the proposed model not only can deal with a SS problem with multi-segment and multi-aspiration levels, but also can help the decision-maker to find the appropriate order quantities for each supplier by considering cost, quality and delivery.

  6. Assessing pollution in a Mediterranean lagoon using acid volatile sulfides and estimations of simultaneously extracted metals.

    PubMed

    Zaaboub, Noureddine; Helali, Mohamed Amine; Martins, Maria Virgínia Alves; Ennouri, Rym; Béjaoui, Béchir; da Silva, Eduardo Ferreira; El Bour, Monia; Aleya, Lotfi

    2016-11-01

    Bizerte Lagoon is a southern Mediterranean semi-enclosed lagoon with a maximum depth of 12 m. After assessing sediment quality, the authors report on the physicochemical characteristics of the lagoon's surface sediment using SEM (simultaneously extracted metals) and AVS (acid volatile sulfides) as proxies. Biogeochemical tools are used to investigate the environmental disturbance at the water-sediment interface by means of SEM and AVS to seek conclusions concerning the study area's pollution status. Results confirm accumulation of trace elements in sediment. The use of the SEM-AVS model with organic matter in sediment (ƒOC) confirms possible bioavailability of accumulated trace elements, especially Zn, in the southern part of the lagoon, with organic matter playing an important role in SEM excess correction to affirm a nontoxic total metal sediment state. Individual trace element toxicity is dependent on the bioavailable fraction of SEM Metal on sediment, as is the influence of lagoon inflow from southern water sources on element bioavailability. Appropriate management strategies are highly recommended to mitigate any potential harmful effects on health from this heavy-metal-based pollution.

  7. Probing the Milky Way electron density using multi-messenger astronomy

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Larson, Shane

    2015-04-01

    Multi-messenger observations of ultra-compact binaries in both gravitational waves and electromagnetic radiation supply highly complementary information, providing new ways of characterizing the internal dynamics of these systems, as well as new probes of the galaxy itself. Electron density models, used in pulsar distance measurements via the electron dispersion measure, are currently not well constrained. Simultaneous radio and gravitational wave observations of pulsars in binaries provide a method of measuring the average electron density along the line of sight to the pulsar, thus giving a new method for constraining current electron density models. We present this method and assess its viability with simulations of the compact binary component of the Milky Way using the public domain binary evolution code, BSE. This work is supported by NASA Award NNX13AM10G.

  8. New Shortwave Array Spectroradiometer-Hemispheric (SAS-He): Hyperspectral Design and Initial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni I.; Flynn, Connor J M.; Barnard, James C.

    2016-10-31

    Aerosol optical depth (AOD) derived from hyperspectral measurements can serve as an invaluable input for simultaneous retrievals of particle size distributions and major trace gases. The required hyperspectral measurements are provided by a new ground-based radiometer, the so-called Shortwave Array Spectroradiometer-Hemispheric (SAS-He), recently developed with support from the Department of Energy (DOE) Office Atmospheric Radiation Measurement (ARM) Program. The SAS-He has wide spectral coverage (350-1700nm) and high spectral resolution: about 2.4 nm and 6 nm within 350-1000 nm and 970-1700 nm spectral ranges, respectively. To illustrate an initial performance of the SAS-He, we take advantage of integrated dataset collected duringmore » the ARM-supported Two-Column Aerosol Project (TCAP) over the US coastal region (Cape Cod, Massachusetts). This dataset includes AODs derived using data from Aerosol Robotic Network (AERONET) sunphotometer and Multi-Filter Rotating Shadowband Radiometer (MFRSR). We demonstrate that, on average, the SAS-He AODs closely match the MFRSR and AERONET AODs in the ultraviolet and visible spectral ranges for this area with highly variable AOD. Also, we discuss corrections of SAS-He total optical depth for gas absorption in the near-infrared spectral range and their operational implementation.« less

  9. Contemporary Tools and Techniques for Substrate Ablation of Ventricular Tachycardia in Structural Heart Disease.

    PubMed

    Hutchinson, Mathew D; Garza, Hyon-He K

    2018-02-24

    As we have witnessed in other arenas of catheter-based therapeutics, ventricular tachycardia (VT) ablation has become increasingly anatomical in its execution. Multi-modality imaging provides anatomical detail in substrate characterization, which is often complex in nonischemic cardiomyopathy patients. Patients with intramural, intraseptal, and epicardial substrates provide challenges in delivering effective ablation to the critical arrhythmia substrate due to the depth of origin or the presence of adjacent critical structures. Novel ablation techniques such as simultaneous unipolar or bipolar ablation can be useful to achieve greater lesion depth, though at the expense of increasing collateral damage. Disruptive technologies like stereotactic radioablation may provide a tailored approach to these complex patients while minimizing procedural risk. Substrate ablation is a cornerstone of the contemporary VT ablation procedure, and recent data suggest that it is as effective and more efficient that conventional activation guided ablation. A number of specific targets and techniques for substrate ablation have been described, and all have shown a fairly high success in achieving their acute procedural endpoint. Substrate ablation also provides a novel and reproducible procedural endpoint, which may add predictive value for VT recurrence beyond conventional programmed stimulation. Extrapolation of outcome data to nonischemic phenotypes requires caution given both the variability in substrate nonischemic distribution and the underrepresentation of these patients in previous trials.

  10. Integration of least angle regression with empirical Bayes for multi-locus genome-wide association studies

    USDA-ARS?s Scientific Manuscript database

    Multi-locus genome-wide association studies has become the state-of-the-art procedure to identify quantitative trait loci (QTL) associated with traits simultaneously. However, implementation of multi-locus model is still difficult. In this study, we integrated least angle regression with empirical B...

  11. A Multi-scale Finite-frequency Approach to the Inversion of Reciprocal Travel Times for 3-D Velocity Structure beneath Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Hung, S.; Kuo, B.; Kuochen, H.

    2012-12-01

    Taiwan is one of the archetypical places for studying the active orogenic process in the world, where the Luzon arc has obliquely collided into the southwest China continental margin since 5 Ma ago. Because of the lack of convincing evidence for the structure in the lithospheric mantle and at even greater depths, several competing models have been proposed for the Taiwan mountain-building process. With the deployment of ocean-bottom seismometers (OBSs) on the seafloor around Taiwan from the TAIGER (TAiwan Integrated GEodynamic Research) and IES seismic experiments, the aperture of the seismic network is greatly extended to improve the depth resolution of tomographic imaging, which is critical to illuminate the nature of the arc-continent collision and accretion in Taiwan. In this study, we use relative travel-time residuals between a collection of teleseismic body wave arrivals to tomographically image the velocity structure beneath Taiwan. In addition to those from common distant earthquakes observed across an array of stations, we take advantage of dense seismicity in the vicinity of Taiwan and the source and receiver reciprocity to augment the data coverage from clustered earthquakes recorded by global stations. As waveforms are dependent of source mechanisms, we carry out the cluster analysis to group the phase arrivals with similar waveforms into clusters and simultaneously determine relative travel-time anomalies in the same cluster accurately by a cross correlation method. The combination of these two datasets would particularly enhance the resolvability of the tomographic models offshore of eastern Taiwan, where the two subduction systems of opposite polarity are taking place and have primarily shaped the present tectonic framework of Taiwan. On the other hand, our inversion adopts an innovation that invokes wavelet-based, multi-scale parameterization and finite-frequency theory. Not only does this approach make full use of frequency-dependent travel-time data providing different, but complementary sensitivity to velocity heterogeneity, but it also objectively addresses the intrinsically multi-scale characters of unevenly distributed data which yields the model with spatially-varying, data-adaptive resolution. Besides, we employ a parallelized singular value decomposition algorithm to directly solve for the resolution matrix and point spread functions (PSF). While the spatial distribution of a PSF is considered as the probability density function of multivariate normal distribution, we employ the principal component analysis (PCA) to estimate the lengths and directions of the principal axes of the PSF distribution, used for quantitative assessment of the resolvable scale-length and degree of smearing of the model and guidance to interpret the robust and trustworthy features in the resolved models.

  12. Multi-slice ptychography with large numerical aperture multilayer Laue lenses

    DOE PAGES

    Ozturk, Hande; Yan, Hanfei; He, Yan; ...

    2018-05-09

    Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less

  13. Multi-slice ptychography with large numerical aperture multilayer Laue lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozturk, Hande; Yan, Hanfei; He, Yan

    Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less

  14. A prospective, multi-method, multi-disciplinary, multi-level, collaborative, social-organisational design for researching health sector accreditation [LP0560737

    PubMed Central

    Braithwaite, Jeffrey; Westbrook, Johanna; Pawsey, Marjorie; Greenfield, David; Naylor, Justine; Iedema, Rick; Runciman, Bill; Redman, Sally; Jorm, Christine; Robinson, Maureen; Nathan, Sally; Gibberd, Robert

    2006-01-01

    Background Accreditation has become ubiquitous across the international health care landscape. Award of full accreditation status in health care is viewed, as it is in other sectors, as a valid indicator of high quality organisational performance. However, few studies have empirically demonstrated this assertion. The value of accreditation, therefore, remains uncertain, and this persists as a central legitimacy problem for accreditation providers, policymakers and researchers. The question arises as to how best to research the validity, impact and value of accreditation processes in health care. Most health care organisations participate in some sort of accreditation process and thus it is not possible to study its merits using a randomised controlled strategy. Further, tools and processes for accreditation and organisational performance are multifaceted. Methods/design To understand the relationship between them a multi-method research approach is required which incorporates both quantitative and qualitative data. The generic nature of accreditation standard development and inspection within different sectors enhances the extent to which the findings of in-depth study of accreditation process in one industry can be generalised to other industries. This paper presents a research design which comprises a prospective, multi-method, multi-level, multi-disciplinary approach to assess the validity, impact and value of accreditation. Discussion The accreditation program which assesses over 1,000 health services in Australia is used as an exemplar for testing this design. The paper proposes this design as a framework suitable for application to future international research into accreditation. Our aim is to stimulate debate on the role of accreditation and how to research it. PMID:16968552

  15. Multi-rendezvous low-thrust trajectory optimization using costate transforming and homotopic approach

    NASA Astrophysics Data System (ADS)

    Chen, Shiyu; Li, Haiyang; Baoyin, Hexi

    2018-06-01

    This paper investigates a method for optimizing multi-rendezvous low-thrust trajectories using indirect methods. An efficient technique, labeled costate transforming, is proposed to optimize multiple trajectory legs simultaneously rather than optimizing each trajectory leg individually. Complex inner-point constraints and a large number of free variables are one main challenge in optimizing multi-leg transfers via shooting algorithms. Such a difficulty is reduced by first optimizing each trajectory leg individually. The results may be, next, utilized as an initial guess in the simultaneous optimization of multiple trajectory legs. In this paper, the limitations of similar techniques in previous research is surpassed and a homotopic approach is employed to improve the convergence efficiency of the shooting process in multi-rendezvous low-thrust trajectory optimization. Numerical examples demonstrate that newly introduced techniques are valid and efficient.

  16. Calcium neuroimaging in behaving zebrafish larvae using a turn-key light field camera

    NASA Astrophysics Data System (ADS)

    Cruz Perez, Carlos; Lauri, Antonella; Symvoulidis, Panagiotis; Cappetta, Michele; Erdmann, Arne; Westmeyer, Gil Gregor

    2015-09-01

    Reconstructing a three-dimensional scene from multiple simultaneously acquired perspectives (the light field) is an elegant scanless imaging concept that can exceed the temporal resolution of currently available scanning-based imaging methods for capturing fast cellular processes. We tested the performance of commercially available light field cameras on a fluorescent microscopy setup for monitoring calcium activity in the brain of awake and behaving reporter zebrafish larvae. The plenoptic imaging system could volumetrically resolve diverse neuronal response profiles throughout the zebrafish brain upon stimulation with an aversive odorant. Behavioral responses of the reporter fish could be captured simultaneously together with depth-resolved neuronal activity. Overall, our assessment showed that with some optimizations for fluorescence microscopy applications, commercial light field cameras have the potential of becoming an attractive alternative to custom-built systems to accelerate molecular imaging research on cellular dynamics.

  17. Calcium neuroimaging in behaving zebrafish larvae using a turn-key light field camera.

    PubMed

    Perez, Carlos Cruz; Lauri, Antonella; Symvoulidis, Panagiotis; Cappetta, Michele; Erdmann, Arne; Westmeyer, Gil Gregor

    2015-09-01

    Reconstructing a three-dimensional scene from multiple simultaneously acquired perspectives (the light field) is an elegant scanless imaging concept that can exceed the temporal resolution of currently available scanning-based imaging methods for capturing fast cellular processes. We tested the performance of commercially available light field cameras on a fluorescent microscopy setup for monitoring calcium activity in the brain of awake and behaving reporter zebrafish larvae. The plenoptic imaging system could volumetrically resolve diverse neuronal response profiles throughout the zebrafish brain upon stimulation with an aversive odorant. Behavioral responses of the reporter fish could be captured simultaneously together with depth-resolved neuronal activity. Overall, our assessment showed that with some optimizations for fluorescence microscopy applications, commercial light field cameras have the potential of becoming an attractive alternative to custom-built systems to accelerate molecular imaging research on cellular dynamics.

  18. Multiple Stressors in a Changing World: The Need for an Improved Perspective on Physiological Responses to the Dynamic Marine Environment.

    PubMed

    Gunderson, Alex R; Armstrong, Eric J; Stillman, Jonathon H

    2016-01-01

    Abiotic conditions (e.g., temperature and pH) fluctuate through time in most marine environments, sometimes passing intensity thresholds that induce physiological stress. Depending on habitat and season, the peak intensity of different abiotic stressors can occur in or out of phase with one another. Thus, some organisms are exposed to multiple stressors simultaneously, whereas others experience them sequentially. Understanding these physicochemical dynamics is critical because how organisms respond to multiple stressors depends on the magnitude and relative timing of each stressor. Here, we first discuss broad patterns of covariation between stressors in marine systems at various temporal scales. We then describe how these dynamics will influence physiological responses to multi-stressor exposures. Finally, we summarize how multi-stressor effects are currently assessed. We find that multi-stressor experiments have rarely incorporated naturalistic physicochemical variation into their designs, and emphasize the importance of doing so to make ecologically relevant inferences about physiological responses to global change.

  19. On-board orbit determination for low thrust LEO-MEO transfer by Consider Kalman Filtering and multi-constellation GNSS

    NASA Astrophysics Data System (ADS)

    Menzione, Francesco; Renga, Alfredo; Grassi, Michele

    2017-09-01

    In the framework of the novel navigation scenario offered by the next generation satellite low thrust autonomous LEO-to-MEO orbit transfer, this study proposes and tests a GNSS based navigation system aimed at providing on-board precise and robust orbit determination strategy to override rising criticalities. The analysis introduces the challenging design issues to simultaneously deal with the variable orbit regime, the electric thrust control and the high orbit GNSS visibility conditions. The Consider Kalman Filtering approach is here proposed as the filtering scheme to process the GNSS raw data provided by a multi-antenna/multi-constellation receiver in presence of uncertain parameters affecting measurements, actuation and spacecraft physical properties. Filter robustness and achievable navigation accuracy are verified using a high fidelity simulation of the low-thrust rising scenario and performance are compared with the one of a standard Extended Kalman Filtering approach to highlight the advantages of the proposed solution. Performance assessment of the developed navigation solution is accomplished for different transfer phases.

  20. Blob-enhanced reconstruction technique

    NASA Astrophysics Data System (ADS)

    Castrillo, Giusy; Cafiero, Gioacchino; Discetti, Stefano; Astarita, Tommaso

    2016-09-01

    A method to enhance the quality of the tomographic reconstruction and, consequently, the 3D velocity measurement accuracy, is presented. The technique is based on integrating information on the objects to be reconstructed within the algebraic reconstruction process. A first guess intensity distribution is produced with a standard algebraic method, then the distribution is rebuilt as a sum of Gaussian blobs, based on location, intensity and size of agglomerates of light intensity surrounding local maxima. The blobs substitution regularizes the particle shape allowing a reduction of the particles discretization errors and of their elongation in the depth direction. The performances of the blob-enhanced reconstruction technique (BERT) are assessed with a 3D synthetic experiment. The results have been compared with those obtained by applying the standard camera simultaneous multiplicative reconstruction technique (CSMART) to the same volume. Several blob-enhanced reconstruction processes, both substituting the blobs at the end of the CSMART algorithm and during the iterations (i.e. using the blob-enhanced reconstruction as predictor for the following iterations), have been tested. The results confirm the enhancement in the velocity measurements accuracy, demonstrating a reduction of the bias error due to the ghost particles. The improvement is more remarkable at the largest tested seeding densities. Additionally, using the blobs distributions as a predictor enables further improvement of the convergence of the reconstruction algorithm, with the improvement being more considerable when substituting the blobs more than once during the process. The BERT process is also applied to multi resolution (MR) CSMART reconstructions, permitting simultaneously to achieve remarkable improvements in the flow field measurements and to benefit from the reduction in computational time due to the MR approach. Finally, BERT is also tested on experimental data, obtaining an increase of the signal-to-noise ratio in the reconstructed flow field and a higher value of the correlation factor in the velocity measurements with respect to the volume to which the particles are not replaced.

  1. Inspection of thick welded joints using laser-ultrasonic SAFT.

    PubMed

    Lévesque, D; Asaumi, Y; Lord, M; Bescond, C; Hatanaka, H; Tagami, M; Monchalin, J-P

    2016-07-01

    The detection of defects in thick butt joints in the early phase of multi-pass arc welding would be very valuable to reduce cost and time in the necessity of reworking. As a non-contact method, the laser-ultrasonic technique (LUT) has the potential for the automated inspection of welds, ultimately online during manufacturing. In this study, testing has been carried out using LUT combined with the synthetic aperture focusing technique (SAFT) on 25 and 50mm thick butt welded joints of steel both completed and partially welded. EDM slits of 2 or 3mm height were inserted at different depths in the multi-pass welding process to simulate a lack of fusion. Line scans transverse to the weld are performed with the generation and detection laser spots superimposed directly on the surface of the weld bead. A CCD line camera is used to simultaneously acquire the surface profile for correction in the SAFT processing. All artificial defects but also real defects are visualized in the investigated thick butt weld specimens, either completed or partially welded after a given number of passes. The results obtained clearly show the potential of using the LUT with SAFT for the automated inspection of arc welds or hybrid laser-arc welds during manufacturing. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  2. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction.

    PubMed

    Liang, Yicheng; Peng, Hao

    2015-02-07

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.

  3. Frequency multiplexed long range swept source optical coherence tomography

    PubMed Central

    Zurauskas, Mantas; Bradu, Adrian; Podoleanu, Adrian Gh.

    2013-01-01

    We present a novel swept source optical coherence tomography configuration, equipped with acousto-optic deflectors that can be used to simultaneously acquire multiple B-scans originating from different depths. The sensitivity range of the configuration is evaluated while acquiring five simultaneous B-scans. Then the configuration is employed to demonstrate long range B-scan imaging by combining two simultaneous B-scans from a mouse head sample. PMID:23760762

  4. A stepwise under-prepared osteotomy technique improves primary stability in shallow-placed implants: a preliminary study for simultaneous vertical ridge augmentation.

    PubMed

    Ueno, Daisuke; Nakamura, Kei; Kojima, Kousuke; Toyoshima, Takeshi; Tanaka, Hideaki; Ueda, Kazuhiko; Koyano, Kiyoshi; Kodama, Toshiro

    2018-04-01

    Simultaneous vertical ridge augmentation (VRA) can reduce treatment procedures and surgery time, but the concomitant reduction in primary stability (PS) of a shallow-placed implant imparts risk to its prognosis. Although several studies have reported improvements in PS, there is little information from any simultaneous VRA model. This study aimed to evaluate whether tapered implants with stepwise under-prepared osteotomy could improve the PS of shallow-placed implants in an in vitro model of simultaneous VRA. Tapered implants (Straumann ® Bone Level Tapered implant; BLT) and hybrid implants (Straumann ® Bone Level implant; BL) were investigated in this study. A total of 80 osteotomies of different depths (4, 6, 8, 10 mm) were created in rigid polyurethane foam blocks, and each BLT and BL was inserted by either standard (BLT-S, BL-S) or a stepwise under-prepared (BLT-U, BL-U) osteotomy protocol. The PS was evaluated by measuring maximum insertion torque (IT), implant stability quotient (ISQ), and removal torque (RT). The significance level was set at P < 0.05. There were no significant differences in IT, ISQ or RT when comparing BLT-S and BL-S or BLT-U and BL-U at placement depths of 6 and 8 mm. When comparison was made between osteotomy protocols, IT was significantly greater in BLT-U than in BLT-S at all placement depths. A stepwise under-prepared osteotomy protocol improves initial stability of a tapered implant even in a shallow-placed implant model. BLT-U could be a useful protocol for simultaneous VRA.

  5. Multi-photon microscopy of tobacco-exposed organotypic skin models

    NASA Astrophysics Data System (ADS)

    Dao, Belinda; Yamazaki, Alissa; Sun, Chung Ho; Wang, Zifu; Pham, Nguyen; Oldham, Michael; Wong, Brian J. F.

    2006-02-01

    Cigarette smoking is the most preventable cause of death in the United States. Researchers have extensively studied smoking in regards to its association with cancer, cardiovascular, and pulmonary disease. In contrast, the impact of cigarette smoking on skin has received much less attention. To provide a better understanding of the effect of cigarette smoking on the human dermal layer, this study used multi-photon microscopy (MPM) to examine collagen in organotypic skin models exposed to cigarette smoke condensate (CSC). Adult and neonatal organotypic tissue-engineered artificial skin models (RAFTs) were constructed and exposed to varying concentrations of CSC. Imaging of the RAFTs was performed using MPM and second-harmonic generation signals (SHG), which allowed for collagen structure to be viewed and analyzed as well as for collagen density to be assessed from derived depth-dependent decay (DDD) values. RAFT contraction as related to exposure concentration was monitored as well. Results indicated a dose dependent between contraction rates and CSC concentration. Collagen structure showed more preservation of its original structure at a greater depth in RAFTs with higher concentrations of CSC. No clear trends could be drawn from analysis of derived DDD values.

  6. Development of Millimeter Wave Fabry-Pérot Resonator for Simultaneous Electron-Spin and Nuclear Magnetic Resonance Measurement

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yuya; Ohya, Kenta; Fujii, Yutaka; Fukuda, Akira; Miura, Shunsuke; Mitsudo, Seitaro; Yamamori, Hidetomo; Kikuchi, Hikomitsu

    2018-04-01

    We report a Fabry-Pérot resonator with spherical and flat mirrors to allow simultaneous electron-spin resonance (ESR) and nuclear magnetic resonance (NMR) measurements that could be used for double magnetic resonance (DoMR). In order to perform simultaneous ESR and NMR measurements, the flat mirror must reflect millimeter wavelength electromagnetic waves and the resonator must have a high Q value ( Q > 3000) for ESR frequencies, while the mirror must simultaneously let NMR frequencies pass through. This requirement can be achieved by exploiting the difference of skin depth for the two frequencies, since skin depth is inversely proportional to the square root of the frequency. In consideration of the skin depth, the optimum conditions for conducting ESR and NMR using a gold thin film are explored by examining the relation between the Q value and the film thickness. A flat mirror with a gold thin film was fabricated by sputtering gold on an epoxy plate. We also installed a Helmholtz radio frequency coil for NMR and tested the system both at room and low temperatures with an optimally thick gold film. As a result, signals were obtained at 0.18 K for ESR and at 1.3 K for NMR. A flat-mirrored resonator with a thin gold film surface is an effective way to locate NMR coils closer to the sample being examined with DoMR.

  7. Relative skills of soil moisture and vegetation optical depth retrievals for agricultural drought monitoring

    USDA-ARS?s Scientific Manuscript database

    Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Mi...

  8. Retrieval of Surface Lambert Albedos and Aerosols Optical Depths Using OMEGA Near-IR EPF Observations of Mars

    NASA Astrophysics Data System (ADS)

    Vincendon, M.; Langevin, Y.; Poulet, F.; Bibring, J.-P.; Gondet, B.

    2007-03-01

    We have analyzed five EPF sequences acquired by OMEGA/Mars Express in the near-IR over ice-free and ice-covered surfaces to retrieve simultaneously the Lambert albedo of the surface and the optical depth of aerosols.

  9. Simultaneous Multi-Scale Diffusion Estimation and Tractography Guided by Entropy Spectrum Pathways

    PubMed Central

    Galinsky, Vitaly L.; Frank, Lawrence R.

    2015-01-01

    We have developed a method for the simultaneous estimation of local diffusion and the global fiber tracts based upon the information entropy flow that computes the maximum entropy trajectories between locations and depends upon the global structure of the multi-dimensional and multi-modal diffusion field. Computation of the entropy spectrum pathways requires only solving a simple eigenvector problem for the probability distribution for which efficient numerical routines exist, and a straight forward integration of the probability conservation through ray tracing of the convective modes guided by a global structure of the entropy spectrum coupled with a small scale local diffusion. The intervoxel diffusion is sampled by multi b-shell multi q-angle DWI data expanded in spherical waves. This novel approach to fiber tracking incorporates global information about multiple fiber crossings in every individual voxel and ranks it in the most scientifically rigorous way. This method has potential significance for a wide range of applications, including studies of brain connectivity. PMID:25532167

  10. Aeronautics Research Mission Directorate Integrated Systems Research Program (ISRP) and UAS Integration in the NAS Project

    NASA Technical Reports Server (NTRS)

    Wolfe, Jean

    2010-01-01

    Program Goal: Conduct research at an integrated system-level on promising concepts and technologies and explore, assess, or demonstrate the benefits in a relevant environment.Criteria for selection of projects for Integrated Systems Research: a) Technology has attained enough maturity in the foundational research program that they merit more in-depth evaluation at an integrated system level in a relevant environment. b) Technologies which systems analysis indicates have the most potential for contributing to the simultaneous attainment of goals. c) Technologies identified through stakeholder input as having potential for simultaneous attainment of goals. d) Research not being done by other government agencies and appropriate for NASA to conduct. e) Budget augmentation. Environmentally Responsible Aviation (ERA) Project Explore and assess new vehicle concepts and enabling technologies through system-level experimentation to simultaneously reduce fuel burn, noise, and emissions Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS Innovative Concepts for Green Aviation (ICGA) Project Spur innovation by offering research opportunities to the broader aeronautics community through peer-reviewed proposals, with a focus on making aviation more eco-friendly. Establish incentive prizes similar to the Centennial Challenges and sponsor innovation demonstrations of selected technologies that show promise of reducing aviation s impact on the environment

  11. EXPERIMENTING WITH MULTI-ATTRIBUTE UTILITY SURVEY METHODS IN A MULTI-DIMENSIONAL VALUATION PROBLEM. (R824699)

    EPA Science Inventory

    Abstract

    The use of willingness-to-pay (WTP) survey techniques based on multi-attribute utility (MAU) approaches has been recommended by some authors as a way to deal simultaneously with two difficulties that increasingly plague environmental valuation. The first of th...

  12. A multi-scale spatial approach to address environmental effects of small hydropower development.

    PubMed

    McManamay, Ryan A; Samu, Nicole; Kao, Shih-Chieh; Bevelhimer, Mark S; Hetrick, Shelaine C

    2015-01-01

    Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.

  13. Optical non-invasive monitoring of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spīgulis, Jānis

    2005-08-01

    Time resolved detection and analysis of the skin backscattered optical signals (remission photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for reliable cardiovascular assessment. The single- and multi-channel PPG concepts are discussed in this work. Simultaneous data flow from several body locations allows one to study the heartbeat pulse wave propagation in real time and evaluate the vascular resistance. Portable single-, dual- and four-channel PPG monitoring devices with special software have been designed for real-time data acquisition and processing. The clinical studies confirmed their potential in the monitoring of heart arrhythmias, drug tests, steady-state cardiovascular assessment, body fitness control, and express diagnostics of the arterial occlusions.

  14. Capability and Interface Assessment of Gaming Technologies for Future Multi-Unmanned Air Vehicle Systems

    DTIC Science & Technology

    2011-08-01

    resource management games (e.g., Sim City 2000), board game simulations (e.g., VASSAL), and abstract games (e.g., Tetris). The second purpose of the...which occur simultaneously o E.g., Starcraft  Board game o A computer game that emulates a board game o E.g., Archon  2D Side View o A game...a mouse  Joypad o E.g., A playstation/X-box controller  Accelerometer o E.g., A Wii Controller  Touch 22 Distribution A: Approved for

  15. Direct Measurements of the Penetration Depth in a Superconducting Film using Magnetic Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Nazaretski; J Thibodaux; I Vekhter

    2011-12-31

    We report the local measurements of the magnetic penetration depth in a superconducting Nb film using magnetic force microscopy (MFM). We developed a method for quantitative extraction of the penetration depth from single-parameter simultaneous fits to the lateral and height profiles of the MFM signal, and demonstrate that the obtained value is in excellent agreement with that obtained from the bulk magnetization measurements.

  16. Vertical characterization of soil contamination using multi-way modeling--a case study.

    PubMed

    Singh, Kunwar P; Malik, Amrita; Basant, Ankita; Ojha, Priyanka

    2008-11-01

    This study describes application of chemometric multi-way modeling approach to analyze the dataset pertaining to soils of industrial area with a view to assess the soil/sub-soil contamination, accumulation pathways and mobility of contaminants in the soil profiles. The three-way (sampling depths, chemical variables, sampling sites) dataset on heavy metals in soil samples collected from three different sites in an industrial area, up to a depth of 60 m each was analyzed using three-way Tucker3 model validated for stability and goodness of fit. A two component Tucker3 model, explaining 66.6% of data variance, allowed interpretation of the data information in all the three modes. The interpretation of core elements revealing interactions among the components of different modes (depth, variables, sites) allowed inferring more realistic information about the contamination pattern of soils both along the horizontal and vertical coordinates, contamination pathways, and mobility of contaminants through soil profiles, as compared to the traditional data analysis techniques. It concluded that soils at site-1 and site-2 are relatively more contaminated with heavy metals of both the natural as well as anthropogenic origins, as compared to the soil of site-3. Moreover, the accumulation pathways of metals for upper shallow layers and deeper layers of soils in the area were differentiated. The information generated would be helpful in developing strategies for remediation of the contaminated soils for reducing the subsequent risk of ground-water contamination in the study region.

  17. Improved numerical methods for turbulent viscous flows aerothermal modeling program, phase 2

    NASA Technical Reports Server (NTRS)

    Karki, K. C.; Patankar, S. V.; Runchal, A. K.; Mongia, H. C.

    1988-01-01

    The details of a study to develop accurate and efficient numerical schemes to predict complex flows are described. In this program, several discretization schemes were evaluated using simple test cases. This assessment led to the selection of three schemes for an in-depth evaluation based on two-dimensional flows. The scheme with the superior overall performance was incorporated in a computer program for three-dimensional flows. To improve the computational efficiency, the selected discretization scheme was combined with a direct solution approach in which the fluid flow equations are solved simultaneously rather than sequentially.

  18. Development and application of variable angle internal reflection Raman spectroscopy for vibrationally specific depth-profiling of polymer thin films

    NASA Astrophysics Data System (ADS)

    Fontaine, Norman Henry

    1997-10-01

    Techniques which can be used to obtain depth-resolved information on the thermodynamics at polymer-polymer and polymer-wall interfaces, and of small molecule diffusion in polymers, are of particular interest to industry. Optical methods which are sensitive to molecular vibrations (such as internal reflection Raman spectroscopy) are advantageous because they can non- destructively probe molecular content, orientation, and polarity of the local environment in a sample. However, while optical internal reflection depth-profiling methods have been reported, they have never progressed beyond the demonstration stage. In this work, the theory and methodology of internal reflection spectroscopy are developed and optimized into a rigorous field-controlled spectroscopic technique. A novel asymmetric internal reflection element (IRE) is introduced which traps back-reflections, allowing precise evanescent and standing wave probe-field control in the sample for all angles of incidence. It is demonstrated that a Gaussian laser beam will best approximate an infinite homogeneous plane wave when the IRE/sample interface lies in the paraxial-Fraunhofer region (far- field) of the beam path. Calibration methods are presented, sources of systematic errors are identified, and the angular resolution limit (ARL) is introduced as a measure of the field control developed in a sample by any internal reflection method. A general model of Raman scattering and photon detection from multi-layer thin films is developed. A new and generalized operator based transfer matrix method is developed and applied to electromagnetic field and diffusion computations in multi-layer systems. Total internal reflection spectroscopy is extended to include sub-critical angles of incidence, where resonant field enhancements generate large and selective amplification of the probe-field intensity within the layers of the sample. Fitting these resonances to the model spectral intensities allows unique determination of the location of buried interfaces in micron-sized polymer multi-layers with nanometer scale precision and the refractive indices of the layers with precision of /Delta n/approx/pm 0.0001. The Raman active molecular content of each optically distinct layer of the film is determinable simultaneously with the optical properties. Resonant mode VAIRRS studies of poly(methyl methacrylate) films spun-cast from toluene and then dried under ambient conditions have shown evidence for toluene diffusion concurrent with a rotationally hindered relaxation of oriented ester side groups about the polymer backbone. Low temperature annealing (≈87oC) has shown evidence that this hindered rotational relaxation may be reversible. VAIRRS study of a polystyrene/poly(methyl methacrylate) bi-layer has detected evidence for toluene diffusion across the buried polymer-polymer interface.

  19. Depth of interaction decoding of a continuous crystal detector module.

    PubMed

    Ling, T; Lewellen, T K; Miyaoka, R S

    2007-04-21

    We present a clustering method to extract the depth of interaction (DOI) information from an 8 mm thick crystal version of our continuous miniature crystal element (cMiCE) small animal PET detector. This clustering method, based on the maximum-likelihood (ML) method, can effectively build look-up tables (LUT) for different DOI regions. Combined with our statistics-based positioning (SBP) method, which uses a LUT searching algorithm based on the ML method and two-dimensional mean-variance LUTs of light responses from each photomultiplier channel with respect to different gamma ray interaction positions, the position of interaction and DOI can be estimated simultaneously. Data simulated using DETECT2000 were used to help validate our approach. An experiment using our cMiCE detector was designed to evaluate the performance. Two and four DOI region clustering were applied to the simulated data. Two DOI regions were used for the experimental data. The misclassification rate for simulated data is about 3.5% for two DOI regions and 10.2% for four DOI regions. For the experimental data, the rate is estimated to be approximately 25%. By using multi-DOI LUTs, we also observed improvement of the detector spatial resolution, especially for the corner region of the crystal. These results show that our ML clustering method is a consistent and reliable way to characterize DOI in a continuous crystal detector without requiring any modifications to the crystal or detector front end electronics. The ability to characterize the depth-dependent light response function from measured data is a major step forward in developing practical detectors with DOI positioning capability.

  20. Dual-element transducer with phase-inversion for wide depth of field in high-frequency ultrasound imaging.

    PubMed

    Jeong, Jong Seob

    2014-08-05

    In high frequency ultrasound imaging (HFUI), the quality of focusing is deeply related to the length of the depth of field (DOF). In this paper, a phase-inversion technique implemented by a dual-element transducer is proposed to enlarge the DOF. The performance of the proposed method was numerically demonstrated by using the ultrasound simulation program called Field-II. A simulated dual-element transducer was composed of a disc- and an annular-type elements, and its aperture was concavely shaped to have a confocal point at 6 mm. The area of each element was identical in order to provide same intensity at the focal point. The outer diameters of the inner and the outer elements were 2.1 mm and 3 mm, respectively. The center frequency of each element was 40 MHz and the f-number (focal depth/aperture size) was two. When two input signals with 0° and 180° phases were applied to inner and outer elements simultaneously, a multi-focal zone was generated in the axial direction. The total -6 dB DOF, i.e., sum of two -6 dB DOFs in the near and far field lobes, was 40% longer than that of the conventional single element transducer. The signal to noise ratio (SNR) was increased by about two times, especially in the far field. The point and cyst phantom simulation were conducted and their results were identical to that of the beam pattern simulation. Thus, the proposed scheme may be a potential method to improve the DOF and SNR in HFUI.

  1. Optimizing water depth for wetland-dependent wildlife could increase wetland restoration success, water efficiency, and water security

    USGS Publications Warehouse

    Nadeau, Christopher P.; Conway, Courtney J.

    2015-01-01

    Securing water for wetland restoration efforts will be increasingly difficult as human populations demand more water and climate change alters the hydrologic cycle. Minimizing water use at a restoration site could help justify water use to competing users, thereby increasing future water security. Moreover, optimizing water depth for focal species will increase habitat quality and the probability that the restoration is successful. We developed and validated spatial habitat models to optimize water depth within wetland restoration projects along the lower Colorado River intended to benefit California black rails (Laterallus jamaicensis coturniculus). We observed a 358% increase in the number of black rails detected in the year after manipulating water depth to maximize the amount of predicted black rail habitat in two wetlands. The number of black rail detections in our restoration sites was similar to those at our reference site. Implementing the optimal water depth in each wetland decreased water use while simultaneously increasing habitat suitability for the focal species. Our results also provide experimental confirmation of past descriptive accounts of black rail habitat preferences and provide explicit water depth recommendations for future wetland restoration efforts for this species of conservation concern; maintain surface water depths between saturated soil and 100 mm. Efforts to optimize water depth in restored wetlands around the world would likely increase the success of wetland restorations for the focal species while simultaneously minimizing and justifying water use.

  2. Improving streamflow prediction using remotely-sensed soil moisture and snow depth

    USDA-ARS?s Scientific Manuscript database

    The monitoring of both cold and warm season hydrologic processes in headwater watersheds is critical for accurate water resource monitoring in many alpine regions. This work presents a new method that explores the simultaneous use of remotely sensed surface soil moisture (SM) and snow depth (SD) ret...

  3. Remote focusing for programmable multi-layer differential multiphoton microscopy

    PubMed Central

    Hoover, Erich E.; Young, Michael D.; Chandler, Eric V.; Luo, Anding; Field, Jeffrey J.; Sheetz, Kraig E.; Sylvester, Anne W.; Squier, Jeff A.

    2010-01-01

    We present the application of remote focusing to multiphoton laser scanning microscopy and utilize this technology to demonstrate simultaneous, programmable multi-layer imaging. Remote focusing is used to independently control the axial location of multiple focal planes that can be simultaneously imaged with single element detection. This facilitates volumetric multiphoton imaging in scattering specimens and can be practically scaled to a large number of focal planes. Further, it is demonstrated that the remote focusing control can be synchronized with the lateral scan directions, enabling imaging in orthogonal scan planes. PMID:21326641

  4. Delineation of the southern elephant seal's main foraging environments defined by temperature and light conditions

    NASA Astrophysics Data System (ADS)

    Vacquié-Garcia, Jade; Guinet, Christophe; Laurent, Cécile; Bailleul, Frédéric

    2015-03-01

    Changes in marine environments, induced by the global warming, are likely to influence the prey field distribution and consequently the foraging behaviour and the distribution of top marine predators. Thanks to bio-logging, the simultaneous measurements of fine-scale foraging behaviors and oceanographic parameters by predators allow characterizing their foraging environments and provide insights into their prey distribution. In this context, we propose to delimit and to characterize the foraging environments of a marine predator, the Southern Elephant Seal (SES). To do so, the relationship between oceanographic factors and prey encounter events (PEE) was investigated in 12 females SES from Kerguelen Island simultaneously equipped with accelerometers and with a range of physical sensors (temperature, light and depth). PEEs were assessed from the accelerometer data at high spatio-temporal precision while the physical sensors allowed the continuous monitoring of environmental conditions encountered by the SES when diving. First, visited and foraging environments were distinguished according to the oceanographic conditions encountered in the absence and in presence of PEE. Then, a hierarchical classification of the physical parameters recorded during PEEs led to the distinction of five different foraging environments. These foraging environments were structured according to the main frontal systems of the SO. One was located north to the subantarctic front (SAF) and characterized by high temperature and depth, and low light levels. Another, characterized by intermediate levels of temperature, light and depth, was located between the SAF and the polar front (PF). And finally, the last three environments were all found south to the PF and, characterized by low temperature but highly variable depth and light levels. The large physical and/or spatial differences found between these environments suggest that, depending on the location, different prey communities are targeted by SES over a broad range of water temperature, light level and depth conditions. This result highlights the versatility of this marine predator. In addition, in most cases, PEEs were found deeper during the day than during the night, which is indicative of mesopelagic prey performing nycthemeral migration, a behaviour consistent with myctophids species thought to represent the bulk of Kerguelen SES female diets.

  5. Multi-Decadal Change of Atmospheric Aerosols and Their Effect on Surface Radiation

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Tan, Qian; Wild, Martin; Qian, Yun; Yu, Hongbin; Bian, Huisheng; Wang, Weiguo

    2012-01-01

    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007, during which a suite of aerosol data from satellite observations and ground-based remote sensing and in-situ measurements have become available. We analyze the long-term global and regional aerosol optical depth and concentration trends and their relationship to the changes of emissions" and assess the role aerosols play in the multi-decadal change of solar radiation reaching the surface (known as "dimming" or "brightening") at different regions of the world, including the major anthropogenic source regions (North America, Europe, Asia) that have been experiencing considerable changes of emissions, dust and biomass burning regions that have large interannual variabilities, downwind regions that are directly affected by the changes in the source area, and remote regions that are considered to representing "background" conditions.

  6. Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence

    NASA Astrophysics Data System (ADS)

    Nicolaides, Lena; Mandelis, Andreas

    2000-01-01

    A high-spatial-resolution dynamic experimental imaging setup, which can provide simultaneous measurements of laser- induced frequency-domain infrared photothermal radiometric and luminescence signals from defects in teeth, has been developed for the first time. The major findings of this work are: (1) radiometric images are complementary to (anticorrelated with) luminescence images, as a result of the nature of the two physical signal generation processes; (2) the radiometric amplitude exhibits much superior dynamic (signal resolution) range to luminescence in distinguishing between intact and cracked sub-surface structures in the enamel; (3) the radiometric signal (amplitude and phase) produces dental images with much better defect localization, delineation, and resolution; (4) radiometric images (amplitude and phase) at a fixed modulation frequency are depth profilometric, whereas luminescence images are not; and (5) luminescence frequency responses from enamel and hydroxyapatite exhibit two relaxation lifetimes, the longer of which (approximately ms) is common to all and is not sensitive to the defect state and overall quality of the enamel. Simultaneous radiometric and luminescence frequency scans for the purpose of depth profiling were performed and a quantitative theoretical two-lifetime rate model of dental luminescence was advanced.

  7. Topology Control in Aerial Multi-Beam Directional Networks

    DTIC Science & Technology

    2017-04-24

    underlying challenges to topology control in multi -beam direction networks. Two topology control algorithms are developed: a centralized algorithm...main beam, the gain is negligible. Thus, for topology control in a multi -beam system, two nodes that are being simultaneously transmitted to or...the network. As the network size is larger than the communication range, even the original network will require some multi -hop traffic. The second two

  8. [Spectrometric assessment of thyroid depth within the radioiodine test].

    PubMed

    Rink, T; Bormuth, F-J; Schroth, H-J; Braun, S; Zimny, M

    2005-01-01

    Aim of this study is the validation of a simple method for evaluating the depth of the target volume within the radioiodine test by analyzing the emitted iodine-131 energy spectrum. In a total of 250 patients (102 with a solitary autonomous nodule, 66 with multifocal autonomy, 29 with disseminated autonomy, 46 with Graves' disease, 6 for reducing goiter volume and 1 with only partly resectable papillary thyroid carcinoma), simultaneous uptake measurements in the Compton scatter (210 +/- 110 keV) and photopeak (364-45/+55 keV) windows were performed over one minute 24 hours after application of the 3 MBq test dose, with subsequent calculation of the respective count ratios. Measurements with a water-filled plastic neck phantom were carried out to perceive the relationship between these quotients and the average source depth and to get a calibration curve for calculating the depth of the target volume in the 250 patients for comparison with the sonographic reference data. Another calibration curve was obtained by evaluating the results of 125 randomly selected patient measurements to calculate the source depth in the other half of the group. The phantom measurements revealed a highly significant correlation (r = 0,99) between the count ratios and the source depth. Using these calibration data, a good relationship (r = 0,81, average deviation 6 mm corresponding to 22%) between the spectrometric and the sonographic depths was obtained. When using the calibration curve resulting from the 125 patient measurements, the overage deviation in the other half of the group was only 3 mm (12%). There was no difference between the disease groups. The described method allows on easy to use depth correction of the uptake measurements providing good results.

  9. Geographical classification of Epimedium based on HPLC fingerprint analysis combined with multi-ingredients quantitative analysis.

    PubMed

    Xu, Ning; Zhou, Guofu; Li, Xiaojuan; Lu, Heng; Meng, Fanyun; Zhai, Huaqiang

    2017-05-01

    A reliable and comprehensive method for identifying the origin and assessing the quality of Epimedium has been developed. The method is based on analysis of HPLC fingerprints, combined with similarity analysis, hierarchical cluster analysis (HCA), principal component analysis (PCA) and multi-ingredient quantitative analysis. Nineteen batches of Epimedium, collected from different areas in the western regions of China, were used to establish the fingerprints and 18 peaks were selected for the analysis. Similarity analysis, HCA and PCA all classified the 19 areas into three groups. Simultaneous quantification of the five major bioactive ingredients in the Epimedium samples was also carried out to confirm the consistency of the quality tests. These methods were successfully used to identify the geographical origin of the Epimedium samples and to evaluate their quality. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Simultaneous neural and movement recording in large-scale immersive virtual environments.

    PubMed

    Snider, Joseph; Plank, Markus; Lee, Dongpyo; Poizner, Howard

    2013-10-01

    Virtual reality (VR) allows precise control and manipulation of rich, dynamic stimuli that, when coupled with on-line motion capture and neural monitoring, can provide a powerful means both of understanding brain behavioral relations in the high dimensional world and of assessing and treating a variety of neural disorders. Here we present a system that combines state-of-the-art, fully immersive, 3D, multi-modal VR with temporally aligned electroencephalographic (EEG) recordings. The VR system is dynamic and interactive across visual, auditory, and haptic interactions, providing sight, sound, touch, and force. Crucially, it does so with simultaneous EEG recordings while subjects actively move about a 20 × 20 ft² space. The overall end-to-end latency between real movement and its simulated movement in the VR is approximately 40 ms. Spatial precision of the various devices is on the order of millimeters. The temporal alignment with the neural recordings is accurate to within approximately 1 ms. This powerful combination of systems opens up a new window into brain-behavioral relations and a new means of assessment and rehabilitation of individuals with motor and other disorders.

  11. Implementation of Multi-Agent Object Attention System Based on Biologically Inspired Attractor Selection

    NASA Astrophysics Data System (ADS)

    Hashimoto, Ryoji; Matsumura, Tomoya; Nozato, Yoshihiro; Watanabe, Kenji; Onoye, Takao

    A multi-agent object attention system is proposed, which is based on biologically inspired attractor selection model. Object attention is facilitated by using a video sequence and a depth map obtained through a compound-eye image sensor TOMBO. Robustness of the multi-agent system over environmental changes is enhanced by utilizing the biological model of adaptive response by attractor selection. To implement the proposed system, an efficient VLSI architecture is employed with reducing enormous computational costs and memory accesses required for depth map processing and multi-agent attractor selection process. According to the FPGA implementation result of the proposed object attention system, which is accomplished by using 7,063 slices, 640×512 pixel input images can be processed in real-time with three agents at a rate of 9fps in 48MHz operation.

  12. Assessment of submarine landslides hazard through geotechnical and rheological analysis of sediments on the French Atlantic continental slope

    NASA Astrophysics Data System (ADS)

    Toucanne, S.; Howlett, S.; Garziglia, S.; Silva Jacinto, R.; Courgeon, S.; Sabine, M.; Riboulot, V.; Marsset, B.

    2016-12-01

    In the aftermath of the devastating tsunami on the Japanese coast in 2011, a French multi-partnership project called TANDEM has been launched to assess the impact of tsunamis generated or propagated in the vicinity of French Channel and Atlantic coastlines. Tsunami are usually generated by earthquakes, but can also be triggered by submarine landslides. This study focuses on submarine landslides along the French Atlantic continental slope using data that were mainly collected in August 2015 during the GITAN cruise (R/V Pourquoi Pas?). Following geomorphological, geophysical and sedimentological analysis of the Bay of Biscay, efforts were oriented towards the determination of the sediment properties controlling landslide dynamics from in situ and laboratory measurements. Preliminary results show over 700 landslide scars on the French Atlantic continental slope, with most of them occurring between 400 and 1000m water depth and in canyon environments. The Plio-Quaternary sediments draping the majority of the Bay of Biscay are generally normally consolidated and composed of high plasticity clays. They show similar geomechanical properties throughout the area studied, with linear evolutions with depth and good reproducibility for rheological parameters such as Storage and Loss modulus. These similarities allow to extend geotechnical and rheological models to a regional scale in the Bay of Biscay. Our multi-disciplinary approach will provide the tools to assess continental slope failures and submarine landslides generation. Finally, we will aim to qualify and quantify the volumes and flow properties of sediment transported obtained through slope-stability modeling on SAMU-3D and rheology modelling on Nixes-SPH. These results will provide the TANDEM actors with the information necessary to simulate tsunami wave generation.

  13. Dual-opposite multi-walled carbon nanotube modified carbon fiber microelectrode for microfluidic chip-capillary electrophoresis determination of methyl parathion metabolites in human urine.

    PubMed

    Du, Fuying; Fung, Ying-Sing

    2018-06-01

    Methyl parathion (MP) is a highly toxic organophosphate and its exposure may lead to substantial adverse effects to human health. The existence of 4-nitrophenol (4-NP) in the form of free phenol, glucuronide (4-NP-G) or as a sulfate ester (4-NP-S) can be used as biomarkers to assess the duration and extent of MP exposure. In this work, a MC-CE device incorporating post-CE amperometric detection using multi-walled carbon nanotubes (MWNTs) modified carbon fiber microelectrode (CFME) was fabricated and assessed for simultaneous determination of 4-NP, 4-NP-G, and 4-NP-S in human urine. The detection sensitivity and stability was greatly enhanced by the modification of MWNTs. The capability of the MC-CE device with dual MWNTs modified CFME for detecting impurity was assessed and reliability established by high recoveries from 95 to 97% for spiked MP biomarkers. The method developed is shown to provide a simple, sensitive, and reliable means for monitoring 4-NP, 4-NP-G, and 4-NP-S in human urine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Guidelines for Risk-Based Changeover of Biopharma Multi-Product Facilities.

    PubMed

    Lynch, Rob; Barabani, David; Bellorado, Kathy; Canisius, Peter; Heathcote, Doug; Johnson, Alan; Wyman, Ned; Parry, Derek Willison

    2018-01-01

    In multi-product biopharma facilities, the protection from product contamination due to the manufacture of multiple products simultaneously is paramount to assure product quality. To that end, the use of traditional changeover methods (elastomer change-out, full sampling, etc.) have been widely used within the industry and have been accepted by regulatory agencies. However, with the endorsement of Quality Risk Management (1), the use of risk-based approaches may be applied to assess and continuously improve established changeover processes. All processes, including changeover, can be improved with investment (money/resources), parallel activities, equipment design improvements, and standardization. However, processes can also be improved by eliminating waste. For product changeover, waste is any activity not needed for the new process or that does not provide added assurance of the quality of the subsequent product. The application of a risk-based approach to changeover aligns with the principles of Quality Risk Management. Through the use of risk assessments, the appropriate changeover controls can be identified and controlled to assure product quality is maintained. Likewise, the use of risk assessments and risk-based approaches may be used to improve operational efficiency, reduce waste, and permit concurrent manufacturing of products. © PDA, Inc. 2018.

  15. Computer assisted video analysis of swimming performance in a forced swim test: simultaneous assessment of duration of immobility and swimming style in mice selected for high and low swim-stress induced analgesia.

    PubMed

    Juszczak, Grzegorz R; Lisowski, Paweł; Sliwa, Adam T; Swiergiel, Artur H

    2008-10-20

    In behavioral pharmacology, two problems are encountered when quantifying animal behavior: 1) reproducibility of the results across laboratories, especially in the case of manual scoring of animal behavior; 2) presence of different behavioral idiosyncrasies, common in genetically different animals, that mask or mimic the effects of the experimental treatments. This study aimed to develop an automated method enabling simultaneous assessment of the duration of immobility in mice and the depth of body submersion during swimming by means of computer assisted video analysis system (EthoVision from Noldus). We tested and compared parameters of immobility based either on the speed of an object (animal) movement or based on the percentage change in the object's area between the consecutive video frames. We also examined the effects of an erosion-dilation filtering procedure on the results obtained with both parameters of immobility. Finally, we proposed an automated method enabling assessment of depth of body submersion that reflects swimming performance. It was found that both parameters of immobility were sensitive to the effect of an antidepressant, desipramine, and that they yielded similar results when applied to mice that are good swimmers. The speed parameter was, however, more sensitive and more reliable because it depended less on random noise of the video image. Also, it was established that applying the erosion-dilation filtering procedure increased the reliability of both parameters of immobility. In case of mice that were poor swimmers, the assessed duration of immobility differed depending on a chosen parameter, thus resulting in the presence or lack of differences between two lines of mice that differed in swimming performance. These results substantiate the need for assessing swimming performance when the duration of immobility in the FST is compared in lines that differ in their swimming "styles". Testing swimming performance can also be important in the studies investigating the effects of swim stress on other behavioral or physiological parameters because poor swimming abilities displayed by some lines can increase severity of swim stress, masking the between-line differences or the main treatment effects.

  16. Towards large scale multi-target tracking

    NASA Astrophysics Data System (ADS)

    Vo, Ba-Ngu; Vo, Ba-Tuong; Reuter, Stephan; Lam, Quang; Dietmayer, Klaus

    2014-06-01

    Multi-target tracking is intrinsically an NP-hard problem and the complexity of multi-target tracking solutions usually do not scale gracefully with problem size. Multi-target tracking for on-line applications involving a large number of targets is extremely challenging. This article demonstrates the capability of the random finite set approach to provide large scale multi-target tracking algorithms. In particular it is shown that an approximate filter known as the labeled multi-Bernoulli filter can simultaneously track one thousand five hundred targets in clutter on a standard laptop computer.

  17. Multi-wavelength laser emission in dye-doped photonic liquid crystals.

    PubMed

    Wang, Chun-Ta; Lin, Tsung-Hsien

    2008-10-27

    Multi-wavelength lasing in a dye-doped cholesteric liquid crystal (CLC) cell is demonstrated. By adding oversaturated chiral dopant, the multi-photonic band CLC structure can be obtained with non-uniform chiral solubility. Under appropriate excitation, multi-wavelength lasing can be achieved with a multi-photonic band edge CLC structure. The number of lasing wavelengths can be controlled under various temperature processes. Nine wavelength CLC lasings were observed simultaneously. The wavelength range covers around 600-675nm. Furthermore, reversible tuning of multi-wavelength lasing was achieved by controlling CLC device temperature.

  18. VISIDEP™: visual image depth enhancement by parallax induction

    NASA Astrophysics Data System (ADS)

    Jones, Edwin R.; McLaurin, A. P.; Cathey, LeConte

    1984-05-01

    The usual descriptions of depth perception have traditionally required the simultaneous presentation of disparate views presented to separate eyes with the concomitant demand that the resulting binocular parallax be horizontally aligned. Our work suggests that the visual input information is compared in a short-term memory buffer which permits the brain to compute depth as it is normally perceived. However, the mechanism utilized is also capable of receiving and processing the stereographic information even when it is received monocularly or when identical inputs are simultaneously fed to both eyes. We have also found that the restriction to horizontally displaced images is not a necessary requirement and that improvement in image acceptability is achieved by the use of vertical parallax. Use of these ideas permit the presentation of three-dimensional scenes on flat screens in full color without the encumbrance of glasses or other viewing aids.

  19. We introduce an algorithm for the simultaneous reconstruction of faults and slip fields. We prove that the minimum of a related regularized functional converges to the unique solution of the fault inverse problem. We consider a Bayesian approach. We use a parallel multi-core platform and we discuss techniques to save on computational time.

    NASA Astrophysics Data System (ADS)

    Volkov, D.

    2017-12-01

    We introduce an algorithm for the simultaneous reconstruction of faults and slip fields on those faults. We define a regularized functional to be minimized for the reconstruction. We prove that the minimum of that functional converges to the unique solution of the related fault inverse problem. Due to inherent uncertainties in measurements, rather than seeking a deterministic solution to the fault inverse problem, we consider a Bayesian approach. The advantage of such an approach is that we obtain a way of quantifying uncertainties as part of our final answer. On the downside, this Bayesian approach leads to a very large computation. To contend with the size of this computation we developed an algorithm for the numerical solution to the stochastic minimization problem which can be easily implemented on a parallel multi-core platform and we discuss techniques to save on computational time. After showing how this algorithm performs on simulated data and assessing the effect of noise, we apply it to measured data. The data was recorded during a slow slip event in Guerrero, Mexico.

  20. A molded surface-micromachining and bulk etching release (MOSBE) fabrication platform on (1 1 1) Si for MOEMS

    NASA Astrophysics Data System (ADS)

    Wu, Mingching; Fang, Weileun

    2006-02-01

    This work attempts to integrate poly-Si thin film and single-crystal-silicon (SCS) structures in a monolithic process. The process integrated multi-depth DRIE (deep reactive ion etching), trench-refilled molding, a two poly-Si MUMPs process and (1 1 1) Si bulk micromachining to accomplish multi-thickness and multi-depth structures for superior micro-optical devices. In application, a SCS scanning mirror driven by self-aligned vertical comb-drive actuators was demonstrated. The stiffness of the mirror was significantly increased by thick SCS structures. The thin poly-Si film served as flexible torsional springs and electrical routings. The depth difference of the vertical comb electrodes was tuned by DRIE to increase the devices' stroke. Finally, a large moving space was available after the bulk Si etching. In summary, the present fabrication process, named (1 1 1) MOSBE (molded surface-micromachining and bulk etching release on (1 1 1) Si substrate), can further integrate with the MUMPs devices to establish a more powerful platform.

  1. Correlators in simultaneous measurement of non-commuting qubit observables

    NASA Astrophysics Data System (ADS)

    Atalaya, Juan; Hacohen-Gourgy, Shay; Martin, Leigh S.; Siddiqi, Irfan; Korotkov, Alexander N.

    We consider simultaneous continuous measurement of non-commuting qubit observables and analyze multi-time correlators 〈i κ1 (t1) ^i κN (tN) 〉 for output signals i κ (t) from the detectors. Both informational (''spooky'') and phase backactions from cQED-type measurements with phase-sensitive amplifiers are taken into account. We find an excellent agreement between analytical results and experimental data for two-time correlators of the output signals from simultaneous measurement of qubit observables σx and σφ =σx cosφ +σy sinφ . The correlators can be used to extract small deviations of experimental parameters, e.g., phase backaction and residual Rabi frequency. The multi-time correlators are important in analysis of Bacon-Shor error correction/detection codes, operated with continuous measurements.

  2. On the Performance of Alternate Conceptual Ecohydrological Models for Streamflow Prediction

    NASA Astrophysics Data System (ADS)

    Naseem, Bushra; Ajami, Hoori; Cordery, Ian; Sharma, Ashish

    2016-04-01

    A merging of a lumped conceptual hydrological model with two conceptual dynamic vegetation models is presented to assess the performance of these models for simultaneous simulations of streamflow and leaf area index (LAI). Two conceptual dynamic vegetation models with differing representation of ecological processes are merged with a lumped conceptual hydrological model (HYMOD) to predict catchment scale streamflow and LAI. The merged RR-LAI-I model computes relative leaf biomass based on transpiration rates while the RR-LAI-II model computes above ground green and dead biomass based on net primary productivity and water use efficiency in response to soil moisture dynamics. To assess the performance of these models, daily discharge and 8-day MODIS LAI product for 27 catchments of 90 - 1600km2 in size located in the Murray - Darling Basin in Australia are used. Our results illustrate that when single-objective optimisation was focussed on maximizing the objective function for streamflow or LAI, the other un-calibrated predicted outcome (LAI if streamflow is the focus) was consistently compromised. Thus, single-objective optimization cannot take into account the essence of all processes in the conceptual ecohydrological models. However, multi-objective optimisation showed great strength for streamflow and LAI predictions. Both response outputs were better simulated by RR-LAI-II than RR-LAI-I due to better representation of physical processes such as net primary productivity (NPP) in RR-LAI-II. Our results highlight that simultaneous calibration of streamflow and LAI using a multi-objective algorithm proves to be an attractive tool for improved streamflow predictions.

  3. An efficient method for the fusion of light field refocused images

    NASA Astrophysics Data System (ADS)

    Wang, Yingqian; Yang, Jungang; Xiao, Chao; An, Wei

    2018-04-01

    Light field cameras have drawn much attention due to the advantage of post-capture adjustments such as refocusing after exposure. The depth of field in refocused images is always shallow because of the large equivalent aperture. As a result, a large number of multi-focus images are obtained and an all-in-focus image is demanded. Consider that most multi-focus image fusion algorithms do not particularly aim at large numbers of source images and traditional DWT-based fusion approach has serious problems in dealing with lots of multi-focus images, causing color distortion and ringing effect. To solve this problem, this paper proposes an efficient multi-focus image fusion method based on stationary wavelet transform (SWT), which can deal with a large quantity of multi-focus images with shallow depth of fields. We compare SWT-based approach with DWT-based approach on various occasions. And the results demonstrate that the proposed method performs much better both visually and quantitatively.

  4. A study on multifrequency scintillations near the EIA crest of the Indian zone

    NASA Astrophysics Data System (ADS)

    Chakraborty, S. K.; Chatterjee, S.; Jana, Debasis

    2017-10-01

    Occurrence features of ionospheric scintillations at S band (2492.028 MHz) are reported for the first time. The same have been explored in the context of scintillations at VHF (250.650 MHz) and L5 (1176.45 MHz) bands. Observations were carried out during the period April-December, 2015 at Raja Peary Mohan College Centre (RPMC: 22.66° N, 88.4° E), located near the equatorial ionization anomaly (EIA) crest of the Indian longitude zone. Mostly weak (<10 dB), short duration, slow fading rate with shallower slope power spectra characterize the S band scintillations compared to VHF and L5 band. In the severe scintillation conditions of VHF frequent loss of lock in L5 channel is reflected. Fade depth of 4.2 ± 1.3 dB and fade rate ∼9 fades/minute at S band mostly precede the loss of lock at L5 channel. A good correspondence between fade rates at multi frequency band is reflected irrespective of phases of scintillation. Spectral analysis reveals weak scattering is the dominating mechanism for scintillation at S band while VHF and L5 band scintillations are mostly attributed to multiple scattering. The estimated threshold coherence length of <23 m at VHF may be suggested to be a good indicator for occurrence of L5 and S band scintillations. Occurrence of simultaneous multi-satellite multi-frequency scintillations leads to speculation over the failsafe navigation using available IRNSS constellation. The results are discussed in terms of existing theory of evolution, structure and dynamics of electron density irregularities in the low latitude region.

  5. Examination of Single- and Multi-Channel GPR Bridge Deck Condition Assessment Methods with Comparison to Complementary NDE Results

    NASA Astrophysics Data System (ADS)

    Romero, Francisco A.; Manacorda, Guido; Simi, Alessandro; Gucunski, Nenad; Parvardeh, Hooman

    2013-04-01

    A sixteen-channel GPR system which houses both longitudinally- and transversely-polarized, 2.0 GHz antenna elements within a single housing was compared with a single-channel GPR system that was separately using both 1.5GHz and 2.6GHz antennas oriented in the transverse polarization, for the purpose of determining effectiveness of bridge deck condition assessment. The multi-channel system has obvious benefits which include closely-spaced GPR antennas (channels) that provide better lateral resolution, as well as combined data sets from co-linear antennas oriented in both the transverse and longitudinal polarizations, which has benefits for imaging within the deck's internal structure. However, the primary objective was to determine whether the multi-channel system would perform in a similar manner to proven single-channel GPR technology during an attenuation-based GPR condition assessment on an older, partially deteriorated deck in northwestern New Jersey that is annually exposed to freeze-thaw conditions as well as de-icing salts. These assessments were made by focusing on identifying the strongest reflections from the upper mat of transversely-oriented rebars within the deck and comparing reflection strength, or conversely, attenuation of the GPR signal, from each of the 'picked' GPR rebar responses. Coordinates for each of the GPR picks, along with amplitude or attenuation measurements, were gridded and contour-plotted for the purpose of identifying areas identified as either relatively deteriorated or sound. Initially, results were compared for data with no applied correction that takes into account GPR signal attenuation with increasing depth within the concrete deck. Final GPR maps were produced incorporating a depth-correction technique similar to what is described by Barnes, et. al., Romero, et. al, and Gucunski, et. al., a process which has been clearly demonstrated to better correlate GPR results with not only ground truth (cores, sounding) but also with other NDE technologies. Not only did all the single- and multi-channel system comparisons generate nearly identical deterioration maps when GPR results were compared and examined, but mapped results obtained from other NDE methods on the same deck were used to identify zones where corrosive environment (electrical resistivity - ER) elastic modulus (ultrasonic surface wave - USW), and identified delaminations (impact-echo - IE) had commonality with the GPR results. A summary of the equipment used, as well as general data collection and analysis procedures is provided for the GPR condition assessments. Brief descriptions of background and references to how the complementary NDT technologies are deployed, and how data are interpreted, are also discussed. Comparative maps for all technologies are used for illustrative purposes.

  6. Design of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W., E-mail: woochanglee@unist.ac.kr; Lee, D. J.; Park, H. K.

    The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm{sup −1}.more » The upper limit corresponds to the normalized wavenumber k{sub θ}ρ{sub e} of ∼0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsutani, Takaomi; Taya, Masaki; Ikuta, Takashi

    A parallel image detection system using an annular pupil for electron optics were developed to realize an increase in the depth of focus, aberration-free imaging and separation of amplitude and phase images under scanning transmission electron microscopy (STEM). Apertures for annular pupils able to suppress high-energy electron scattering were developed using a focused ion beam (FIB) technique. The annular apertures were designed with outer diameter of oe 40 {mu}m and inner diameter of oe32 {mu}m. A taper angle varying from 20 deg. to 1 deg. was applied to the slits of the annular apertures to suppress the influence of high-energymore » electron scattering. Each azimuth angle image on scintillator was detected by a multi-anode photomultiplier tube assembly through 40 optical fibers bundled in a ring shape. To focus the image appearing on the scintillator on optical fibers, an optical lens relay system attached with CCD camera was developed. The system enables the taking of 40 images simultaneously from different scattered directions.« less

  8. Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second

    PubMed Central

    Choi, Dong-hak; Hiro-Oka, Hideaki; Shimizu, Kimiya; Ohbayashi, Kohji

    2012-01-01

    An ultrafast frequency domain optical coherence tomography system was developed at A-scan rates between 2.5 and 10 MHz, a B-scan rate of 4 or 8 kHz, and volume-rates between 12 and 41 volumes/second. In the case of the worst duty ratio of 10%, the averaged A-scan rate was 1 MHz. Two optical demultiplexers at a center wavelength of 1310 nm were used for linear-k spectral dispersion and simultaneous differential signal detection at 320 wavelengths. The depth-range, sensitivity, sensitivity roll-off by 6 dB, and axial resolution were 4 mm, 97 dB, 6 mm, and 23 μm, respectively. Using FPGAs for FFT and a GPU for volume rendering, a real-time 4D display was demonstrated at a rate up to 41 volumes/second for an image size of 256 (axial) × 128 × 128 (lateral) voxels. PMID:23243560

  9. Biphasic DC measurement approach for enhanced measurement stability and multi-channel sampling of self-sensing multi-functional structural materials doped with carbon-based additives

    NASA Astrophysics Data System (ADS)

    Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Geiger, Randall

    2017-06-01

    Investigation of multi-functional carbon-based self-sensing structural materials for structural health monitoring applications is a topic of growing interest. These materials are self-sensing in the sense that they can provide measurable electrical outputs corresponding to physical changes such as strain or induced damage. Nevertheless, the development of an appropriate measurement technique for such materials is yet to be achieved, as many results in the literature suggest that these materials exhibit a drift in their output when measured with direct current (DC) methods. In most of the cases, the electrical output is a resistance and the reported drift is an increase in resistance from the time the measurement starts due to material polarization. Alternating current methods seem more appropriate at eliminating the time drift. However, published results show they are not immune to drift. Moreover, the use of multiple impedance measurement devices (LCR meters) does not allow for the simultaneous multi-channel sampling of multi-sectioned self-sensing materials due to signal crosstalk. The capability to simultaneously monitor multiple sections of self-sensing structural materials is needed to deploy these multi-functional materials for structural health monitoring. Here, a biphasic DC measurement approach with a periodic measure/discharge cycle in the form of a square wave sensing current is used to provide consistent, stable resistance measurements for self-sensing structural materials. DC measurements are made during the measurement region of the square wave while material depolarization is obtained during the discharge region of the periodic signal. The proposed technique is experimentally shown to remove the signal drift in a carbon-based self-sensing cementitious material while providing simultaneous multi-channel measurements of a multi-sectioned self-sensing material. The application of the proposed electrical measurement technique appears promising for real-time utilization of self-sensing materials in structural health monitoring.

  10. Assessment of Multi-frequency Electromagnetic Induction for Determining Soil Moisture Patterns at the Hillslope Scale

    NASA Astrophysics Data System (ADS)

    Tromp-van Meerveld, I.; McDonnell, J.

    2009-05-01

    We present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the Panola (GA, USA) hillslope. We address the following questions regarding the applicability of EM measurements for hillslope hydrological investigations: (1) Can EM be used for soil moisture measurements in areas with shallow soils?; (2) Can EM represent the temporal and spatial patterns of soil moisture throughout the year?; and (3) can multiple frequencies be used to extract additional information content from the EM approach and explain the depth profile of soil moisture? We found that the apparent conductivity measured with the multi-frequency GEM-300 was linearly related to soil moisture measured with an Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7290, 9090, 11250, and 14010 Hz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition, the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the Aqua-pro soil moisture measurements.

  11. Simultaneous multi-component seismic denoising and reconstruction via K-SVD

    NASA Astrophysics Data System (ADS)

    Hou, Sian; Zhang, Feng; Li, Xiangyang; Zhao, Qiang; Dai, Hengchang

    2018-06-01

    Data denoising and reconstruction play an increasingly significant role in seismic prospecting for their value in enhancing effective signals, dealing with surface obstacles and reducing acquisition costs. In this paper, we propose a novel method to denoise and reconstruct multicomponent seismic data simultaneously. This method lies within the framework of machine learning and the key points are defining a suitable weight function and a modified inner product operator. The purpose of these two processes are to perform missing data machine learning when the random noise deviation is unknown, and building a mathematical relationship for each component to incorporate all the information of multi-component data. Two examples, using synthetic and real multicomponent data, demonstrate that the new method is a feasible alternative for multi-component seismic data processing.

  12. Archaeological Evaluation of The Multi-frequency Electromagnetic Slingram Device Gem 300

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Bonsall, J.

    Frequency-domain electromagnetic devices offer a great potential in geophysical prospection as they allow the simultaneous measurement of two parameters. Con- ventionally, in-phase and quadrature components of the return-signal are recorded. However the identification of these measurements with ground properties such as con- ductance or magnetic susceptibility are complicated and depend on instrument design, frequency and other parameters, such as magnetic viscosity. While in environmental applications a simple identification of strongly conductive features (e.g. oil drums) can be obtained, archaeological surveys pose much greater challenges due to the smaller contrast in conductivity and magnetic susceptibility. A very detailed analysis of mea- sured data and sophisticated computations are therefore required. The new GEM 300 Slingram device allows to measure in-phase and quadrature data at up to 16 frequencies simultaneously which could be used to calculate three inde- pendent soil parameters: conductivity, magnetic susceptibility and magnetic viscosity. Alternatively, the manufacturer claims that the different frequencies can be used for depth soundings. The instrument was tested on a number of sites for which prior geophysical and ar- chaeological investigations had revealed distinct features (e.g. a brick-built cest pit). The results were disappointing as large drift and undefined offsets made a quantitative analysis of data nearly impossible. It was therefore concluded that further develop- ments of the instrument are required before it can be used successfully for archaeo- logical prospection.

  13. Applying a multi-replication framework to support dynamic situation assessment and predictive capabilities

    NASA Astrophysics Data System (ADS)

    Lammers, Craig; McGraw, Robert M.; Steinman, Jeffrey S.

    2005-05-01

    Technological advances and emerging threats reduce the time between target detection and action to an order of a few minutes. To effectively assist with the decision-making process, C4I decision support tools must quickly and dynamically predict and assess alternative Courses Of Action (COAs) to assist Commanders in anticipating potential outcomes. These capabilities can be provided through the faster-than-real-time predictive simulation of plans that are continuously re-calibrating with the real-time picture. This capability allows decision-makers to assess the effects of re-tasking opportunities, providing the decision-maker with tremendous freedom to make time-critical, mid-course decisions. This paper presents an overview and demonstrates the use of a software infrastructure that supports DSAP capabilities. These DSAP capabilities are demonstrated through the use of a Multi-Replication Framework that supports (1) predictivie simulations using JSAF (Joint Semi-Automated Forces); (2) real-time simulation, also using JSAF, as a state estimation mechanism; and, (3) real-time C4I data updates through TBMCS (Theater Battle Management Core Systems). This infrastructure allows multiple replications of a simulation to be executed simultaneously over a grid faster-than-real-time, calibrated with live data feeds. A cost evaluator mechanism analyzes potential outcomes and prunes simulations that diverge from the real-time picture. In particular, this paper primarily serves to walk a user through the process for using the Multi-Replication Framework providing an enhanced decision aid.

  14. Whole-body diffusion-weighted MR image stitching and alignment to anatomical MRI

    NASA Astrophysics Data System (ADS)

    Ceranka, Jakub; Polfliet, Mathias; Lecouvet, Frederic; Michoux, Nicolas; Vandemeulebroucke, Jef

    2017-02-01

    Whole-body diffusion-weighted (WB-DW) MRI in combination with anatomical MRI has shown a great poten- tial in bone and soft tissue tumour detection, evaluation of lymph nodes and treatment response assessment. Because of the vast body coverage, whole-body MRI is acquired in separate stations, which are subsequently combined into a whole-body image. However, inter-station and inter-modality image misalignments can occur due to image distortions and patient motion during acquisition, which may lead to inaccurate representations of patient anatomy and hinder visual assessment. Automated and accurate whole-body image formation and alignment of the multi-modal MRI images is therefore crucial. We investigated several registration approaches for the formation or stitching of the whole-body image stations, followed by a deformable alignment of the multi- modal whole-body images. We compared a pairwise approach, where diffusion-weighted (DW) image stations were sequentially aligned to a reference station (pelvis), to a groupwise approach, where all stations were simultaneously mapped to a common reference space while minimizing the overall transformation. For each, a choice of input images and corresponding metrics was investigated. Performance was evaluated by assessing the quality of the obtained whole-body images, and by verifying the accuracy of the alignment with whole-body anatomical sequences. The groupwise registration approach provided the best compromise between the formation of WB- DW images and multi-modal alignment. The fully automated method was found to be robust, making its use in the clinic feasible.

  15. Modeling Particle Exposure in US Trucking Terminals

    PubMed Central

    Davis, ME; Smith, TJ; Laden, F; Hart, JE; Ryan, LM; Garshick, E

    2007-01-01

    Multi-tiered sampling approaches are common in environmental and occupational exposure assessment, where exposures for a given individual are often modeled based on simultaneous measurements taken at multiple indoor and outdoor sites. The monitoring data from such studies is hierarchical by design, imposing a complex covariance structure that must be accounted for in order to obtain unbiased estimates of exposure. Statistical methods such as structural equation modeling (SEM) represent a useful alternative to simple linear regression in these cases, providing simultaneous and unbiased predictions of each level of exposure based on a set of covariates specific to the exposure setting. We test the SEM approach using data from a large exposure assessment of diesel and combustion particles in the US trucking industry. The exposure assessment includes data from 36 different trucking terminals across the United States sampled between 2001 and 2005, measuring PM2.5 and its elemental carbon (EC), organic carbon (OC) components, by personal monitoring, and sampling at two indoor work locations and an outdoor “background” location. Using the SEM method, we predict: 1) personal exposures as a function of work related exposure and smoking status; 2) work related exposure as a function of terminal characteristics, indoor ventilation, job location, and background exposure conditions; and 3) background exposure conditions as a function of weather, nearby source pollution, and other regional differences across terminal sites. The primary advantage of SEMs in this setting is the ability to simultaneously predict exposures at each of the sampling locations, while accounting for the complex covariance structure among the measurements and descriptive variables. The statistically significant results and high R2 values observed from the trucking industry application supports the broader use of this approach in exposure assessment modeling. PMID:16856739

  16. Multi-Population Invariance with Dichotomous Measures: Combining Multi-Group and MIMIC Methodologies in Evaluating the General Aptitude Test in the Arabic Language

    ERIC Educational Resources Information Center

    Sideridis, Georgios D.; Tsaousis, Ioannis; Al-harbi, Khaleel A.

    2015-01-01

    The purpose of the present study was to extend the model of measurement invariance by simultaneously estimating invariance across multiple populations in the dichotomous instrument case using multi-group confirmatory factor analytic and multiple indicator multiple causes (MIMIC) methodologies. Using the Arabic version of the General Aptitude Test…

  17. Morphomics of the Talus.

    PubMed

    Gorman, David; Handy, Ebram; Wang, Sikui; Irwin, Annette L; Wang, Stewart

    2016-11-01

    Previous studies of frontal crash databases reported that ankle fractures are among the most common lower extremity fractures. While not generally life threatening, these injuries can be debilitating. Laboratory research into the mechanisms of ankle fractures has linked dorsiflexion with an increased risk of tibia and fibula malleolus fractures. However, talus fractures were not produced in the laboratory tests and appear to be caused by more complex loading of the joint. In this study, an analysis of the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) for the years 2004-2013 was conducted to investigate foot-ankle injury rates in front seat occupants involved in frontal impact crashes. A logistic regression model was developed indicating occupant weight, impact delta velocity and gender to be significant predictors of talus fracture (p<0.05). Separately, a specific set of Computed Tomography (CT) scans from the International Center for Automotive Medicine (ICAM) scan database was used to characterize the talar dome. This control population consisted of 207 adults aged 18 to 84, with no foot or ankle trauma, and scans that had suitable coverage of the talus. Size of the talus was determined using medial-to-lateral width and anterior-to-posterior depth measurements. Geometry was assessed by evaluating the radius of the articulating talus and strength was assessed using a combination of cross sectional area and density. Demographics were studied to investigate correlation with talus measurements from the CT scan database. A multi-variable linear regression model of the morphomics showed gender to be statistically significant (p<0.05) for talus depth, width, cross-sectional area, radius and strength. Body Mass Index (BMI) was significant for depth and radius. Weight was significant for depth, width, density and strength. Stature was significant for depth, cross-sectional area, radius and strength. Age was significant for radius and density.

  18. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.

    PubMed

    Fu, Rong-Geng; Sun, Yuan; Sheng, Wen-Bing; Liao, Duan-Fang

    2017-08-18

    The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Cognitive responses and cortical oscillatory processing at various stereoscopic depths - a simultaneous EEG/MEG study.

    PubMed

    Cho, Hohyun; Kang, Min-Koo; Ahn, Sangtae; Kwon, Moonyoung; Yoon, Kuk-Jin; Kim, Kiwoong; Jun, Sung Chan

    2017-01-01

    Due to the recent explosion in various forms of 3D content, the evaluation of such content from a neuroscience perspective is quite interesting. However, existing investigations of cortical oscillatory responses in stereoscopic depth perception are quite rare. Therefore, we investigated spatiotemporal and spatio-temporo-spectral features at four different stereoscopic depths within the comfort zone. We adopted a simultaneous EEG/MEG acquisition technique to collect the oscillatory responses of eight participants. We defined subject-specific retinal disparities and designed a single trial-based stereoscopic viewing experimental paradigm. In the group analysis, we observed that, as the depth increased from Level 1 to Level 3, there was a time-locked increase in the N200 component in MEG and the P300 component in EEG in the occipital and parietal areas, respectively. In addition, initial alpha and beta event-related desynchronizations (ERD) were observed at approximately 500 to 1000 msec, while theta, alpha, and beta event-related synchronizations (ERS) appeared at approximately 1000 to 2000 ms. Interestingly, there was a saturation point in the increase in cognitive responses, including N200, P300, and alpha ERD, even when the depth increased only within the comfort zone. Meanwhile, the magnitude of low beta ERD decreased in the dorsal pathway as depth increased. From these findings, we concluded that cognitive responses are likely to become saturated in the visual comfort zone, while perceptual load may increase with depth.

  20. Multi-hazard Assessment and Scenario Toolbox (MhAST): A Framework for Analyzing Compounding Effects of Multiple Hazards

    NASA Astrophysics Data System (ADS)

    Sadegh, M.; Moftakhari, H.; AghaKouchak, A.

    2017-12-01

    Many natural hazards are driven by multiple forcing variables, and concurrence/consecutive extreme events significantly increases risk of infrastructure/system failure. It is a common practice to use univariate analysis based upon a perceived ruling driver to estimate design quantiles and/or return periods of extreme events. A multivariate analysis, however, permits modeling simultaneous occurrence of multiple forcing variables. In this presentation, we introduce the Multi-hazard Assessment and Scenario Toolbox (MhAST) that comprehensively analyzes marginal and joint probability distributions of natural hazards. MhAST also offers a wide range of scenarios of return period and design levels and their likelihoods. Contribution of this study is four-fold: 1. comprehensive analysis of marginal and joint probability of multiple drivers through 17 continuous distributions and 26 copulas, 2. multiple scenario analysis of concurrent extremes based upon the most likely joint occurrence, one ruling variable, and weighted random sampling of joint occurrences with similar exceedance probabilities, 3. weighted average scenario analysis based on a expected event, and 4. uncertainty analysis of the most likely joint occurrence scenario using a Bayesian framework.

  1. Seizure entrainment with polarizing low-frequency electric fields in a chronic animal epilepsy model

    NASA Astrophysics Data System (ADS)

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-08-01

    Neural activity can be modulated by applying a polarizing low-frequency (Lt100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5-25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson's harmonic F-test, with 45/132 stimulated seizures in four animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in three of four animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording.

  2. Multi-Target Regression via Robust Low-Rank Learning.

    PubMed

    Zhen, Xiantong; Yu, Mengyang; He, Xiaofei; Li, Shuo

    2018-02-01

    Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target correlations and input-output relationships. In this paper, we propose Multi-layer Multi-target Regression (MMR) which enables simultaneously modeling intrinsic inter-target correlations and nonlinear input-output relationships in a general framework via robust low-rank learning. Specifically, the MMR can explicitly encode inter-target correlations in a structure matrix by matrix elastic nets (MEN); the MMR can work in conjunction with the kernel trick to effectively disentangle highly complex nonlinear input-output relationships; the MMR can be efficiently solved by a new alternating optimization algorithm with guaranteed convergence. The MMR leverages the strength of kernel methods for nonlinear feature learning and the structural advantage of multi-layer learning architectures for inter-target correlation modeling. More importantly, it offers a new multi-layer learning paradigm for multi-target regression which is endowed with high generality, flexibility and expressive ability. Extensive experimental evaluation on 18 diverse real-world datasets demonstrates that our MMR can achieve consistently high performance and outperforms representative state-of-the-art algorithms, which shows its great effectiveness and generality for multivariate prediction.

  3. INTERDEPENDENCIES OF MULTI-POLLUTANT CONTROL SIMULATIONS IN AN AIR QUALITY MODEL

    EPA Science Inventory

    In this work, we use the Community Multi-Scale Air Quality (CMAQ) modeling system to examine the effect of several control strategies on simultaneous concentrations of ozone, PM2.5, and three important HAPs: formaldehyde, acetaldehyde and benzene.

  4. Heterogeneous variances in multi-environment yield trials for corn hybrids

    USDA-ARS?s Scientific Manuscript database

    Recent developments in statistics and computing have enabled much greater levels of complexity in statistical models of multi-environment yield trial data. One particular feature of interest to breeders is simultaneously modeling heterogeneity of variances among environments and cultivars. Our obj...

  5. Method of Making Large Area Nanostructures

    NASA Technical Reports Server (NTRS)

    Marks, Alvin M.

    1995-01-01

    A method which enables the high speed formation of nanostructures on large area surfaces is described. The method uses a super sub-micron beam writer (Supersebter). The Supersebter uses a large area multi-electrode (Spindt type emitter source) to produce multiple electron beams simultaneously scanned to form a pattern on a surface in an electron beam writer. A 100,000 x 100,000 array of electron point sources, demagnified in a long electron beam writer to simultaneously produce 10 billion nano-patterns on a 1 meter squared surface by multi-electron beam impact on a 1 cm squared surface of an insulating material is proposed.

  6. Improved Broadband Liner Optimization Applied to the Advanced Noise Control Fan

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.; Ayle, Earl; Ichihashi, Fumitaka

    2014-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more desirable. This paper describes improvements to a previously established broadband acoustic liner optimization process using the Advanced Noise Control Fan rig as a demonstrator. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom designs are carried through design, fabrication, and testing to validate the efficacy of the design process. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of these liner designs. This study also provides an application for demonstrating the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  7. Fast analysis of wood preservers using laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Uhl, A.; Loebe, K.; Kreuchwig, L.

    2001-06-01

    Laser-induced breakdown spectroscopy (LIBS) is used for the investigation of wood preservers in timber and in furniture. Both experiments in laboratory and practical applications in recycling facilities and on a building site prove the new possibilities for the fast detection of harmful agents in wood. A commercial system was developed for mobile laser-plasma-analysis as well as for industrial use in sorting plants. The universal measuring principle in combination with an Echelle optics permits real simultaneous multi-element-analysis in the range of 200-780 nm with a resolution of a few picometers. It enables the user to detect main and trace elements in wood within a few seconds, nearly independent of the matrix, knowing that different kinds of wood show an equal elemental composition. Sample preparation is not required. The quantitative analysis of inorganic wood preservers (containing, e.g. Cu, Cr, B, As, Pb, Hg) has been performed exactly using carbon as reference element. It can be shown that the detection limits for heavy metals in wood are in the ppm-range. Additional information is given concerning the quantitative analysis. Statistical data, e.g. the standard deviation (S.D.), were determined and calibration curves were used for each particular element. A comparison between ICP-AES and LIBS is given using depth profile correction factors regarding the different penetration depths with respect to the different volumes in wood analyzed by both analytical methods.

  8. Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type.

    PubMed

    Dusza, Yann; Barot, Sébastien; Kraepiel, Yvan; Lata, Jean-Christophe; Abbadie, Luc; Raynaud, Xavier

    2017-04-01

    Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.

  9. Advanced characterization of glass/melt inclusions trapped in phenocrysts by combined SEM-EDS, EMP-WDS and FT-IR techniques

    NASA Astrophysics Data System (ADS)

    Bellatreccia, Fabio; Cavallo, Andrea; de Astis, Gianfilippo; Della Ventura, Giancarlo; Mangiacapra, Annarita; Moretti, Roberto; Mormone, Angela; Piochi, Monica

    2010-05-01

    Melt inclusions (MIs) are micrometric-sized and variable-shaped impurity parcels of glass ± vesicles ± solids present within cavities or fractures of crystals. Because representing melt droplets that were trapped during crystal growth, they are believed to record the variable physico-chemical conditions of the hosting multi-phase system. Therefore, MIs are unique probe of near-liquidus magmatic conditions, otherwise inaccessible to Earth Scientists, and are widely used to integrate and corroborate conventional petrological and volcanological techniques based on mineral phases and whole rocks. Electron microprobe (EMP-WDS) and microscopy (SEM-EDS), and Fourier Transform Infra Red (FT-IR) spectroscopy are well-established analytical techniques, commonly used to determine composition of the magma from which MIs formed. Noteworthy, FT-IR is usually adopted to determine the content of dissolved H2O and CO2, providing i) essential information for entrapment pressures, hence depths of crystal growth, and ii) constraints to the volatile budget of magmas. Assessing such volatile contents has significant implications for the understanding of magma evolution and migration, from the depths of parental magma genesis, through the main depths of crustal storage, up to surface. The MI-based quantification of volatile contents and the recognition of degassing patterns are also vital for deciphering magma rheology, which largely affects eruptive dynamics and style. Limits to melt inclusion studies are i) their typically very small size (< 100 µm), ii) the possible late and secondary crystallization, iii) the diffusivity-driven chemical exchange between melt and host crystal, iv) and the alteration phenomena that mask or even delete the original melt composition. Here, we present a study of glass/melt inclusions in phenocrysts from Procida Island (Phlegraean Volcanic District, South Italy), analyzed for combined SEM-EDS electron microscopy, EMP-WDS microchemistry and FT-IR spectroscopy. In particular, we have characterized the distribution of volatile H and C species across both the host crystals and the inclusions, by using a focal-plane-array (FPA) of detectors. The FPA technique allows the acquisition of a large number of IR spectra simultaneously and generate mid-IR images with high resolving power of the target molecules in the H-O-C system. The integration of these analytical techniques is a mandatory step in order to provide definite advances in MI characterization and data interpretation.

  10. A multiplex immunochromatographic test using gold nanoparticles for the rapid and simultaneous detection of four nitrofuran metabolites in fish samples.

    PubMed

    Wang, Quan; Liu, Yingchun; Wang, Mingyan; Chen, Yongjun; Jiang, Wei

    2018-01-01

    There is an urgent need for the rapid and simultaneous detection of multiple analytes present in a sample matrix. Here, a multiplex immunochromatographic test (multi-ICT) was developed that successfully allowed for the rapid and simultaneous detection of four major nitrofuran metabolites, i.e., 3-amino-2-oxazolidinone (AOZ), semicarbazide (SEM), 3-amino-5-methylmorpholino-2-oxazolidinone (AMOZ), and 1-aminohydantoin (AHD), in fish samples. Four different antigens were separately immobilized in four test lines on a nitrocellulose membrane. Goat anti-mouse immunoglobulin (IgG) was used as a control. Sensitive and specific monoclonal antibodies (mAbs) that recognize the corresponding antigens were selected for the assay, and no cross-reactivity between the antibodies in the detection assay was observed. The free analytes in samples or standards were pre-incubated with freeze-dried mAb-gold conjugates to improve the sensitivity of the detection assay. The multi-ICT detection was accomplished in less than 15 min by the naked eye. The cutoff values for the strip test were 0.5 ng/mL for AOZ and 0.75 ng/mL for AHD, SEM, and AMOZ, which were all below the maximum residue levels set by the European Union and China. A high degree of consistency was observed between the multi-ICT method and commercially available enzyme-linked immunosorbent assay (ELISA) kits using spiked, incurred, and "blind" fish samples, indicating the accuracy, reproducibility, and reliability of the novel test strip. This newly developed multi-ICT strip assay is suitable for the rapid and high-throughput screening of four nitrofuran metabolites in fish samples on-site, with no treatment or devices required. Graphical abstract A multiplex immunochromatographic test (multi-ICT) was developed that successfully allowed for the rapid and simultaneous detection of four major nitrofuran metabolites (AOZ, SEM, AMOZ, and AHD) in fish samples.

  11. A simultaneous multi-slice selective J-resolved experiment for fully resolved scalar coupling information

    NASA Astrophysics Data System (ADS)

    Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong

    2017-09-01

    Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.

  12. Subscribing to Databases: How Important Is Depth and Quality of Indexing?

    ERIC Educational Resources Information Center

    Delong, Linwood

    2007-01-01

    This paper compares the subject indexing on articles pertaining to Immanuel Kant, agriculture, and aging that are found simultaneously in Humanities Index, Academic Search Elite (EBSCO) and Periodicals Research II (Micromedia ProQuest), in order to show that there are substantial variations in the depth and quality of indexing in these databases.…

  13. Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b

    NASA Astrophysics Data System (ADS)

    Bourrier, V.; Lecavelier des Etangs, A.; Wheatley, P. J.; Dupuy, H.; Ehrenreich, D.; Vidal-Madjar, A.; Hébrard, G.; Ballester, G. E.; Désert, J.-M.; Ferlet, R.; Sing, D. K.

    2012-12-01

    Transit observations of the hydrogen Lyman-α line allowed the detection of atmospheric escape from the exoplanet HD209458b (Vidal-Madjar et al. 2003). Using spectrally resolved Lyman-α transit observations of the exoplanet HD 189733b at two different epochs, Lecavelier des Etangs et al. (2012) detected for the first time temporal variations in the physical conditions of an evaporating planetary atmosphere. Here we summarized the results obtained with the HST/STIS observations as presented in June 2012 at the SF2A 2012 meeting. While atmospheric hydrogen cannot be detected in the STIS observations of April 2010, it is clearly detected in the September 2011 observations. The atomic hydrogen cloud surrounding the transiting planet produces a transit absorption depth of 14.4±3.6% between velocities of -230 to -140 km s^{-1}. These high velocities cannot arise from radiation pressure alone and, contrary to HD 209458b, this requires an additional acceleration mechanism, such as interactions with stellar wind protons. The spectral and temporal signature of the absorption is fitted by an atmospheric escape rate of neutral hydrogen atoms of about 10^9 g s^{-1}, a stellar wind with a velocity of 190 km s^{-1} and a temperature of ˜10^5 K. We also illustrate the power of multi-wavelengths approach with simultaneous observations in the X-rays obtained with Swift/XRT. We detected an X-ray flare about 8 hours before the transit of September 2011. This suggests that the observed changes within the upper part of the escaping atmosphere can be caused by variations in the stellar wind properties, or/and by variations in the stellar energy input to the planet's escaping gas. This multi-wavelengths approach allowed the simultaneous detection of temporal variations both in the stellar X-ray and in the planetary upper atmosphere, providing first observational constraints on the interaction between the exoplanet's atmosphere and the star.

  14. Overview of the CERES Edition-4 Multilayer Cloud Property Datasets

    NASA Astrophysics Data System (ADS)

    Chang, F. L.; Minnis, P.; Sun-Mack, S.; Chen, Y.; Smith, R. A.; Brown, R. R.

    2014-12-01

    Knowledge of the cloud vertical distribution is important for understanding the role of clouds on earth's radiation budget and climate change. Since high-level cirrus clouds with low emission temperatures and small optical depths can provide a positive feedback to a climate system and low-level stratus clouds with high emission temperatures and large optical depths can provide a negative feedback effect, the retrieval of multilayer cloud properties using satellite observations, like Terra and Aqua MODIS, is critically important for a variety of cloud and climate applications. For the objective of the Clouds and the Earth's Radiant Energy System (CERES), new algorithms have been developed using Terra and Aqua MODIS data to allow separate retrievals of cirrus and stratus cloud properties when the two dominant cloud types are simultaneously present in a multilayer system. In this paper, we will present an overview of the new CERES Edition-4 multilayer cloud property datasets derived from Terra as well as Aqua. Assessment of the new CERES multilayer cloud datasets will include high-level cirrus and low-level stratus cloud heights, pressures, and temperatures as well as their optical depths, emissivities, and microphysical properties.

  15. The Multi-energy High precision Data Processor Based on AD7606

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Zhang, Yanchi; Xie, Da

    2017-11-01

    This paper designs an information collector based on AD7606 to realize the high-precision simultaneous acquisition of multi-source information of multi-energy systems to form the information platform of the energy Internet at Laogang with electricty as its major energy source. Combined with information fusion technologies, this paper analyzes the data to improve the overall energy system scheduling capability and reliability.

  16. Uncoordinated MAC for Adaptive Multi Beam Directional Networks: Analysis and Evaluation

    DTIC Science & Technology

    2016-08-01

    control (MAC) policies for emerging systems that are equipped with fully digital antenna arrays which are capable of adaptive multi-beam directional...Adaptive Beam- forming, Multibeam, Directional Networking, Random Access, Smart Antennas I. INTRODUCTION Fully digital beamforming antenna arrays that...are capable of adaptive multi-beam communications are quickly becoming a reality. These antenna arrays allow users to form multiple simultaneous

  17. Number Strings: Daily Computational Fluency

    ERIC Educational Resources Information Center

    Lambert, Rachel; Imm, Kara; Williams, Dina A.

    2017-01-01

    In this article, the authors illustrate how the practice of number strings--used regularly in a classroom community--can simultaneously support computational fluency and building conceptual understanding. Specifically, the authors will demonstrate how a lesson about multi-digit addition (CCSSM 2NBT.B.5) can simultaneously serve as an invitation to…

  18. Leaching of Br-, metolachlor, alachlor, atrazine, deethylatrazine and deisopropylatrazine in clayey vadoze zone: a field scale experiment in north-east Greece.

    PubMed

    Vryzas, Zisis; Papadakis, Emmanuel Nikolaos; Papadopoulou-Mourkidou, E

    2012-04-15

    An extensive four-year research program has been carried out to explore and acquire knowledge about the fundamental agricultural practices and processes affecting the mobility and bioavailability of pesticides in soils under semi-arid Mediterranean conditions. Pesticide leaching was studied under field conditions at five different depths using suction cups. Monitoring of metolachlor, alachlor, atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and bromide ions in soil water, as well as dye patterns made apparent the significant role of preferential flow to the mobility of the studied compounds. Irrespective to their adsorption capacities and degradation rates, atrazine, metolachlor and bromide ions were simultaneously detected to 160 cm depth. Following 40 mm irrigation, just after their application, both alachlor and atrazine were leached to 160 cm depth within 18 h, giving maximum concentrations of 211 and 199 μg L(-1), respectively. Metolachlor was also detected in all depth when its application was followed by a rainfall event (50 mm) two weeks after its application. The greatest concentrations of atrazine, alachlor and metolachlor in soil water were 1795, 1166 and 845 μg L(-1), respectively. The greatest concentrations of atrazine's degradation products (both DEA and DIA) appeared later in the season compared to the parent compound. Metolachlor exhibited the greatest persistence with concentrations up to 10 μg L(-1) appearing in soil water 18 months after its application. Brilliant blue application followed by 40 mm irrigation clearly depict multi-branching network of preferential flow paths allowing the fast flow of the dye down to 150 cm within 24 h. This network was created by soil cracks caused by shrinking of dry soils, earthworms and plant roots. Chromatographic flow of the stained soil solution was evident only in the upper 10-15 cm of soil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Multi-acoustic lens design methodology for a low cost C-scan photoacoustic imaging camera

    NASA Astrophysics Data System (ADS)

    Chinni, Bhargava; Han, Zichao; Brown, Nicholas; Vallejo, Pedro; Jacobs, Tess; Knox, Wayne; Dogra, Vikram; Rao, Navalgund

    2016-03-01

    We have designed and implemented a novel acoustic lens based focusing technology into a prototype photoacoustic imaging camera. All photoacoustically generated waves from laser exposed absorbers within a small volume get focused simultaneously by the lens onto an image plane. We use a multi-element ultrasound transducer array to capture the focused photoacoustic signals. Acoustic lens eliminates the need for expensive data acquisition hardware systems, is faster compared to electronic focusing and enables real-time image reconstruction. Using this photoacoustic imaging camera, we have imaged more than 150 several centimeter size ex-vivo human prostate, kidney and thyroid specimens with a millimeter resolution for cancer detection. In this paper, we share our lens design strategy and how we evaluate the resulting quality metrics (on and off axis point spread function, depth of field and modulation transfer function) through simulation. An advanced toolbox in MATLAB was adapted and used for simulating a two-dimensional gridded model that incorporates realistic photoacoustic signal generation and acoustic wave propagation through the lens with medium properties defined on each grid point. Two dimensional point spread functions have been generated and compared with experiments to demonstrate the utility of our design strategy. Finally we present results from work in progress on the use of two lens system aimed at further improving some of the quality metrics of our system.

  20. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers

    NASA Astrophysics Data System (ADS)

    Ploetz, Evelyn; Lerner, Eitan; Husada, Florence; Roelfs, Martin; Chung, Sangyoon; Hohlbein, Johannes; Weiss, Shimon; Cordes, Thorben

    2016-09-01

    Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble.

  1. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers

    PubMed Central

    Ploetz, Evelyn; Lerner, Eitan; Husada, Florence; Roelfs, Martin; Chung, SangYoon; Hohlbein, Johannes; Weiss, Shimon; Cordes, Thorben

    2016-01-01

    Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble. PMID:27641327

  2. The Benefits of Multi-Year Research Experiences: Differences in Novice and Experienced Students’ Reported Gains from Undergraduate Research

    PubMed Central

    Thiry, Heather; Weston, Timothy J.; Laursen, Sandra L.; Hunter, Anne-Barrie

    2012-01-01

    This mixed-methods study explores differences in novice and experienced undergraduate students’ perceptions of their cognitive, personal, and professional gains from engaging in scientific research. The study was conducted in four different undergraduate research (UR) programs at two research-extensive universities; three of these programs had a focus on the biosciences. Seventy-three entry-level and experienced student researchers participated in in-depth, semi-structured interviews and completed the quantitative Undergraduate Research Student Self-Assessment (URSSA) instrument. Interviews and surveys assessed students’ developmental outcomes from engaging in UR. Experienced students reported distinct personal, professional, and cognitive outcomes relative to their novice peers, including a more sophisticated understanding of the process of scientific research. Students also described the trajectories by which they developed not only the intellectual skills necessary to advance in science, but also the behaviors and temperament necessary to be a scientist. The findings suggest that students benefit from multi-year UR experiences. Implications for UR program design, advising practices, and funding structures are discussed. PMID:22949423

  3. Identification of multi-loci hubs from 4C-seq demonstrates the functional importance of simultaneous interactions.

    PubMed

    Jiang, Tingting; Raviram, Ramya; Snetkova, Valentina; Rocha, Pedro P; Proudhon, Charlotte; Badri, Sana; Bonneau, Richard; Skok, Jane A; Kluger, Yuval

    2016-10-14

    Use of low resolution single cell DNA FISH and population based high resolution chromosome conformation capture techniques have highlighted the importance of pairwise chromatin interactions in gene regulation. However, it is unlikely that associations involving regulatory elements act in isolation of other interacting partners that also influence their impact. Indeed, the influence of multi-loci interactions remains something of an enigma as beyond low-resolution DNA FISH we do not have the appropriate tools to analyze these. Here we present a method that uses standard 4C-seq data to identify multi-loci interactions from the same cell. We demonstrate the feasibility of our method using 4C-seq data sets that identify known pairwise and novel tri-loci interactions involving the Tcrb and Igk antigen receptor enhancers. We further show that the three Igk enhancers, MiEκ, 3'Eκ and Edκ, interact simultaneously in this super-enhancer cluster, which add to our previous findings showing that loss of one element decreases interactions between all three elements as well as reducing their transcriptional output. These findings underscore the functional importance of simultaneous interactions and provide new insight into the relationship between enhancer elements. Our method opens the door for studying multi-loci interactions and their impact on gene regulation in other biological settings. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Identification of multi-loci hubs from 4C-seq demonstrates the functional importance of simultaneous interactions

    PubMed Central

    Jiang, Tingting; Raviram, Ramya; Snetkova, Valentina; Rocha, Pedro P.; Proudhon, Charlotte; Badri, Sana; Bonneau, Richard; Skok, Jane A.; Kluger, Yuval

    2016-01-01

    Use of low resolution single cell DNA FISH and population based high resolution chromosome conformation capture techniques have highlighted the importance of pairwise chromatin interactions in gene regulation. However, it is unlikely that associations involving regulatory elements act in isolation of other interacting partners that also influence their impact. Indeed, the influence of multi-loci interactions remains something of an enigma as beyond low-resolution DNA FISH we do not have the appropriate tools to analyze these. Here we present a method that uses standard 4C-seq data to identify multi-loci interactions from the same cell. We demonstrate the feasibility of our method using 4C-seq data sets that identify known pairwise and novel tri-loci interactions involving the Tcrb and Igk antigen receptor enhancers. We further show that the three Igk enhancers, MiEκ, 3′Eκ and Edκ, interact simultaneously in this super-enhancer cluster, which add to our previous findings showing that loss of one element decreases interactions between all three elements as well as reducing their transcriptional output. These findings underscore the functional importance of simultaneous interactions and provide new insight into the relationship between enhancer elements. Our method opens the door for studying multi-loci interactions and their impact on gene regulation in other biological settings. PMID:27439714

  5. Free-space transmission with passive 2D beam steering for multi-gigabit-per-second per-beam indoor optical wireless networks.

    PubMed

    Oh, Chin Wan; Cao, Zizheng; Tangdiongga, Eduward; Koonen, Ton

    2016-08-22

    In order to circumvent radio spectrum congestion, we propose an innovative system which can provide multiple infrared optical wireless beams simultaneously where each beam supports multi-gigabit-per-second communication. Scalable two-dimensional beam steering by means of wavelength tuning is proposed. A passive beam-steering module constructed with cascaded reflection gratings is designed for simultaneous multi-user coverage. We experimentally characterized the beam-steered system and thoroughly evaluated the performance of steered channels using the spectrally efficient and robust discrete multitone modulation in a bandwidth-limited system deploying 10 GHz telecom transceivers. This study reports the achievement of at least 37 Gbps free-space transmission per beam over a distance of up to 2 m over 5.61° × 12.66° scanning angles.

  6. Optimal spectral structure for simultaneous Stimulated Brillouin Scattering suppression and coherent property preservation in high power coherent beam combination system

    NASA Astrophysics Data System (ADS)

    Han, Kai; Xu, Xiaojun; Liu, Zejin

    2013-05-01

    Based on the spectral manipulation technique, the Stimulated Brillouin Scattering (SBS) suppression effect and the coherent beam combination (CBC) effect in multi-tone CBC system are researched theoretically and experimentally. To get satisfactory SBS suppression, the frequency interval of the multi-tone seed laser should be large enough, at least larger than the SBS gain bandwidth. In order to attain excellent CBC effect, the spectra of the multi-tone seed laser need to be matched with the optical path differences among the amplifier chains. Hence, a sufficiently separated matching spectrum is capable at both SBS mitigation and coherent property preservation. By comparing the SBS suppression effect and the CBC effect at various spectra, the optimal spectral structure for simultaneous SBS suppression and excellent CBC effect is found.

  7. Multi-layer waste containment barrier

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Nickelson, David F.

    1999-01-01

    An apparatus for constructing an underground containment barrier for containing an in-situ portion of earth. The apparatus includes an excavating device for simultaneously (i) excavating earthen material from beside the in-situ portion of earth without removing the in-situ portion and thereby forming an open side trench defined by opposing earthen sidewalls, and (ii) excavating earthen material from beneath the in-situ portion of earth without removing the in-situ portion and thereby forming a generally horizontal underground trench beneath the in-situ portion defined by opposing earthen sidewalls. The apparatus further includes a barrier-forming device attached to the excavating device for simultaneously forming a side barrier within the open trench and a generally horizontal, multi-layer barrier within the generally horizontal trench. The multi-layer barrier includes at least a first layer and a second layer.

  8. Single shot multi-wavelength phase retrieval with coherent modulation imaging.

    PubMed

    Dong, Xue; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2018-04-15

    A single shot multi-wavelength phase retrieval method is proposed by combining common coherent modulation imaging (CMI) and a low rank mixed-state algorithm together. A radiation beam consisting of multi-wavelength is illuminated on the sample to be observed, and the exiting field is incident on a random phase plate to form speckle patterns, which is the incoherent superposition of diffraction patterns of each wavelength. The exiting complex amplitude of the sample including both the modulus and phase of each wavelength can be reconstructed simultaneously from the recorded diffraction intensity using a low rank mixed-state algorithm. The feasibility of this proposed method was verified with visible light experimentally. This proposed method not only makes CMI realizable with partially coherent illumination but also can extend its application to various traditionally unrelated fields, where several wavelengths should be considered simultaneously.

  9. Design of current source for multi-frequency simultaneous electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Han, Bing; Xu, Yanbin; Dong, Feng

    2017-09-01

    Multi-frequency electrical impedance tomography has been evolving from the frequency-sweep approach to the multi-frequency simultaneous measurement technique which can reduce measuring time and will be increasingly attractive for time-varying biological applications. The accuracy and stability of the current source are the key factors determining the quality of the image reconstruction. This article presents a field programmable gate array-based current source for a multi-frequency simultaneous electrical impedance tomography system. A novel current source circuit was realized by combining the classic current mirror based on the feedback amplifier AD844 with a differential topology. The optimal phase offsets of harmonic sinusoids were obtained through the crest factor analysis. The output characteristics of this current source were evaluated by simulation and actual measurement. The results include the following: (1) the output impedance was compared with one of the Howland pump circuit in simulation, showing comparable performance at low frequencies. However, the proposed current source makes lower demands for resistor tolerance but performs even better at high frequencies. (2) The output impedance in actual measurement below 200 kHz is above 1.3 MΩ and can reach 250 KΩ up to 1 MHz. (3) An experiment based on a biological RC model has been implemented. The mean error for the demodulated impedance amplitude and phase are 0.192% and 0.139°, respectively. Therefore, the proposed current source is wideband, biocompatible, and high precision, which demonstrates great potential to work as a sub-system in the multi-frequency electrical impedance tomography system.

  10. Synthesis of Joint Volumes, Visualization of Paths, and Revision of Viewing Sequences in a Multi-dimensional Seismic Data Viewer

    NASA Astrophysics Data System (ADS)

    Chen, D. M.; Clapp, R. G.; Biondi, B.

    2006-12-01

    Ricksep is a freely-available interactive viewer for multi-dimensional data sets. The viewer is very useful for simultaneous display of multiple data sets from different viewing angles, animation of movement along a path through the data space, and selection of local regions for data processing and information extraction. Several new viewing features are added to enhance the program's functionality in the following three aspects. First, two new data synthesis algorithms are created to adaptively combine information from a data set with mostly high-frequency content, such as seismic data, and another data set with mainly low-frequency content, such as velocity data. Using the algorithms, these two data sets can be synthesized into a single data set which resembles the high-frequency data set on a local scale and at the same time resembles the low- frequency data set on a larger scale. As a result, the originally separated high and low-frequency details can now be more accurately and conveniently studied together. Second, a projection algorithm is developed to display paths through the data space. Paths are geophysically important because they represent wells into the ground. Two difficulties often associated with tracking paths are that they normally cannot be seen clearly inside multi-dimensional spaces and depth information is lost along the direction of projection when ordinary projection techniques are used. The new algorithm projects samples along the path in three orthogonal directions and effectively restores important depth information by using variable projection parameters which are functions of the distance away from the path. Multiple paths in the data space can be generated using different character symbols as positional markers, and users can easily create, modify, and view paths in real time. Third, a viewing history list is implemented which enables Ricksep's users to create, edit and save a recipe for the sequence of viewing states. Then, the recipe can be loaded into an active Ricksep session, after which the user can navigate to any state in the sequence and modify the sequence from that state. Typical uses of this feature are undoing and redoing viewing commands and animating a sequence of viewing states. The theoretical discussion are carried out and several examples using real seismic data are provided to show how these new Ricksep features provide more convenient, accurate ways to manipulate multi-dimensional data sets.

  11. The Desired Concept Maps and Goal Setting for Assessing Professionalism in Medicine.

    PubMed

    Guraya, Salman Y; Guraya, Shaista S; Mahabbat, Nehal Anam; Fallatah, Khulood Yahya; Al-Ahmadi, Bashaer Ahmad; Alalawi, Hadeel Hadi

    2016-05-01

    Due to the multi-dimensional characteristics of professionalism, no single assessment modality has shown to reliably assess professionalism. This review aims to describe some of the popular assessment tools that are being used to assess professionalism with a view to formulate a framework of assessment of professionalism in medicine. In December 2015, the online research databases of MEDLINE, the Educational Resources Information Center (ERIC), Elton Bryson Stephens Company (EBSCO), SCOPUS, OVID and PsychINFO were searched for full-text English language articles published during 2000 to 2015. MeSH terms "professionalism" AND "duty" AND "assessment" OR "professionalism behavioural" AND "professionalism-cognitive" were used. The research articles that assessed professionalism across medical fields along with other areas of competencies were included. A final list of 35 articles were selected for this review. Several assessment tools are available for assessing professionalism that includes, but not limited to, mini clinical evaluation exercise, standardised direct observation of procedural skills, professionalism mini-evaluation exercise, multi-source feedback and 360 degree evaluation, and case based discussions. Because professionalism is a complex construct, it is less likely that a single assessment strategy will adequately measure it. Since every single assessment tool has its own weaknesses, triangulation involving multiple tools can compensate the shortcomings associated with any single approach. Assessment of professionalism necessitates a combination of modalities at individual, interpersonal, societal, and institutional levels and should be accompanied by feedback and motivational reflection that will, in turn, lead to behaviour and identity formation. The assessment of professionalism in medicine should meet the criteria of validity, reliability, feasibility and acceptability. Educators are urged to enhance the depth and quality of assessment instruments in the existing medical curricula for ensuring validity and reliability of assessment tools for professionalism.

  12. Developing a Multi-Dimensional Early Elementary Mathematics Screener and Diagnostic Tool: The Primary Mathematics Assessment.

    PubMed

    Brendefur, Jonathan L; Johnson, Evelyn S; Thiede, Keith W; Strother, Sam; Severson, Herb H

    2018-01-01

    There is a critical need to identify primary level students experiencing difficulties in mathematics to provide immediate and targeted instruction that remediates their deficits. However, most early math screening instruments focus only on the concept of number, resulting in inadequate and incomplete information for teachers to design intervention efforts. We propose a mathematics assessment that screens and provides diagnostic information in six domains that are important to building a strong foundation in mathematics. This article describes the conceptual framework and psychometric qualities of a web-based assessment tool, the Primary Math Assessment (PMA). The PMA includes a screener to identify students at risk for poor math outcomes and a diagnostic tool to provide a more in-depth profile of children's specific strengths and weaknesses in mathematics. The PMA allows teachers and school personnel to make better instructional decisions by providing more targeted analyses.

  13. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  14. Application of fluorescence and PARAFAC to assess vertical distribution of subsurface hydrocarbons and dispersant during the Deepwater Horizon oil spill.

    PubMed

    Mendoza, Wilson G; Riemer, Daniel D; Zika, Rod G

    2013-05-01

    We evaluated the use of excitation and emission matrix (EEM) fluorescence and parallel factorial analysis (PARAFAC) modeling techniques for monitoring crude oil components in the water column. Four of the seven derived PARAFAC loadings were associated with the Macondo crude oil components. The other three components were associated with the dispersant, an unresolved component and colored dissolved organic matter (CDOM). The fluorescence of the associated benzene and naphthalene-like components of crude oil exhibited a maximum at ∼1200 m. The maximum fluorescence of the component associated with the dispersant (i.e., Corexit EC9500A) was observed at the same depth. The plume observed at this depth was attributed to the dispersed crude oil from the Deepwater Horizon oil spill. Results demonstrate the application of EEM and PARAFAC to simultaneously monitor selected PAH, dispersant-containing and humic-like fluorescence components in the oil spill region in the Gulf of Mexico.

  15. The Desired Concept Maps and Goal Setting for Assessing Professionalism in Medicine

    PubMed Central

    Guraya, Shaista S.; Mahabbat, Nehal Anam; Fallatah, Khulood Yahya; Al-Ahmadi, Bashaer Ahmad; Alalawi, Hadeel Hadi

    2016-01-01

    Due to the multi-dimensional characteristics of professionalism, no single assessment modality has shown to reliably assess professionalism. This review aims to describe some of the popular assessment tools that are being used to assess professionalism with a view to formulate a framework of assessment of professionalism in medicine. In December 2015, the online research databases of MEDLINE, the Educational Resources Information Center (ERIC), Elton Bryson Stephens Company (EBSCO), SCOPUS, OVID and PsychINFO were searched for full-text English language articles published during 2000 to 2015. MeSH terms “professionalism” AND “duty” AND “assessment” OR “professionalism behavioural” AND “professionalism–cognitive” were used. The research articles that assessed professionalism across medical fields along with other areas of competencies were included. A final list of 35 articles were selected for this review. Several assessment tools are available for assessing professionalism that includes, but not limited to, mini clinical evaluation exercise, standardised direct observation of procedural skills, professionalism mini-evaluation exercise, multi-source feedback and 360 degree evaluation, and case based discussions. Because professionalism is a complex construct, it is less likely that a single assessment strategy will adequately measure it. Since every single assessment tool has its own weaknesses, triangulation involving multiple tools can compensate the shortcomings associated with any single approach. Assessment of professionalism necessitates a combination of modalities at individual, interpersonal, societal, and institutional levels and should be accompanied by feedback and motivational reflection that will, in turn, lead to behaviour and identity formation. The assessment of professionalism in medicine should meet the criteria of validity, reliability, feasibility and acceptability. Educators are urged to enhance the depth and quality of assessment instruments in the existing medical curricula for ensuring validity and reliability of assessment tools for professionalism. PMID:27437247

  16. Characterization of a multi-user indoor positioning system based on low cost depth vision (Kinect) for monitoring human activity in a smart home.

    PubMed

    Sevrin, Loïc; Noury, Norbert; Abouchi, Nacer; Jumel, Fabrice; Massot, Bertrand; Saraydaryan, Jacques

    2015-01-01

    An increasing number of systems use indoor positioning for many scenarios such as asset tracking, health care, games, manufacturing, logistics, shopping, and security. Many technologies are available and the use of depth cameras is becoming more and more attractive as this kind of device becomes affordable and easy to handle. This paper contributes to the effort of creating an indoor positioning system based on low cost depth cameras (Kinect). A method is proposed to optimize the calibration of the depth cameras, to describe the multi-camera data fusion and to specify a global positioning projection to maintain the compatibility with outdoor positioning systems. The monitoring of the people trajectories at home is intended for the early detection of a shift in daily activities which highlights disabilities and loss of autonomy. This system is meant to improve homecare health management at home for a better end of life at a sustainable cost for the community.

  17. Airborne measurements of multi-wavelength aerosol optical depth and cloud-transmitted radiances in the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES)

    NASA Astrophysics Data System (ADS)

    Shinozuka, Y.; Johnson, R. R.; LeBlanc, S. E.; Chang, C. S.; Redemann, J.

    2016-12-01

    We report on our recent airborne measurements of multi-wavelength aerosol optical depth and cloud-transmitted radiances over the North Atlantic. We ran the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) in November 2015 and the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14) in May and June 2016, both aboard the NASA C-130 aircraft. These sunphotometers provide measurements of overlying cirrus and aerosol optical depths of up to about 0.5 and constrain ecosystem and aerosol retrievals from the accompanying nadir-viewing remote sensing instruments. In addition, 4STAR measures hyperspectral transmitted light, which enables the retrieval of cloud optical depth, effective radius, and thermodynamic phase from below cloud. Our measurements contribute to the science objectives of the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES), an interdisciplinary investigation resolving key processes controlling marine ecosystems and aerosols that are essential to our understanding of Earth system function and future change.

  18. Repeated assessment of orthotopic glioma pO2 by multi-site EPR oximetry: A technique with the potential to guide therapeutic optimization by repeated measurements of oxygen

    PubMed Central

    Khan, Nadeem; Mupparaju, Sriram; Hou, Huagang; Williams, Benjamin B.; Swartz, Harold

    2011-01-01

    Tumor hypoxia plays a vital role in therapeutic resistance. Consequently, measurements of tumor pO2 could be used to optimize the outcome of oxygen-dependent therapies, such as, chemoradiation. However, the potential optimizations are restricted by the lack of methods to repeatedly and quantitatively assess tumor pO2 during therapies, particularly in gliomas. We describe the procedures for repeated measurements of orthotopic glioma pO2 by multi-site electron paramagnetic resonance (EPR) oximetry. This oximetry approach provides simultaneous measurements of pO2 at more than one site in the glioma and contralateral cerebral tissue. The pO2 of intracerebral 9L, C6, F98 and U251 tumors, as well as contralateral brain, were measured repeatedly for five consecutive days. The 9L glioma was well oxygenated with pO2 of 27 - 36 mm Hg, while C6, F98 and U251 glioma were hypoxic with pO2 of 7 - 12 mm Hg. The potential of multi-site EPR oximetry to assess temporal changes in tissue pO2 was investigated in rats breathing 100% O2. A significant increase in F98 tumor and contralateral brain pO2 was observed on day 1 and day 2, however, glioma oxygenation declined on subsequent days. In conclusion, EPR oximetry provides the capability to repeatedly assess temporal changes in orthotopic glioma pO2. This information could be used to test and optimize the methods being developed to modulate tumor hypoxia. Furthermore, EPR oximetry could be potentially used to enhance the outcome of chemoradiation by scheduling treatments at times of increase in glioma pO2. PMID:22079559

  19. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak

    NASA Astrophysics Data System (ADS)

    Dash, Jonathan P.; Watt, Michael S.; Pearse, Grant D.; Heaphy, Marie; Dungey, Heidi S.

    2017-09-01

    Research into remote sensing tools for monitoring physiological stress caused by biotic and abiotic factors is critical for maintaining healthy and highly-productive plantation forests. Significant research has focussed on assessing forest health using remotely sensed data from satellites and manned aircraft. Unmanned aerial vehicles (UAVs) may provide new tools for improved forest health monitoring by providing data with very high temporal and spatial resolutions. These platforms also pose unique challenges and methods for health assessments must be validated before use. In this research, we simulated a disease outbreak in mature Pinus radiata D. Don trees using targeted application of herbicide. The objective was to acquire a time-series simulated disease expression dataset to develop methods for monitoring physiological stress from a UAV platform. Time-series multi-spectral imagery was acquired using a UAV flown over a trial at regular intervals. Traditional field-based health assessments of crown health (density) and needle health (discolouration) were carried out simultaneously by experienced forest health experts. Our results showed that multi-spectral imagery collected from a UAV is useful for identifying physiological stress in mature plantation trees even during the early stages of tree stress. We found that physiological stress could be detected earliest in data from the red edge and near infra-red bands. In contrast to previous findings, red edge data did not offer earlier detection of physiological stress than the near infra-red data. A non-parametric approach was used to model physiological stress based on spectral indices and was found to provide good classification accuracy (weighted kappa = 0.694). This model can be used to map physiological stress based on high-resolution multi-spectral data.

  20. Repeated assessment of orthotopic glioma pO(2) by multi-site EPR oximetry: a technique with the potential to guide therapeutic optimization by repeated measurements of oxygen.

    PubMed

    Khan, Nadeem; Mupparaju, Sriram; Hou, Huagang; Williams, Benjamin B; Swartz, Harold

    2012-02-15

    Tumor hypoxia plays a vital role in therapeutic resistance. Consequently, measurements of tumor pO(2) could be used to optimize the outcome of oxygen-dependent therapies, such as, chemoradiation. However, the potential optimizations are restricted by the lack of methods to repeatedly and quantitatively assess tumor pO(2) during therapies, particularly in gliomas. We describe the procedures for repeated measurements of orthotopic glioma pO(2) by multi-site electron paramagnetic resonance (EPR) oximetry. This oximetry approach provides simultaneous measurements of pO(2) at more than one site in the glioma and contralateral cerebral tissue. The pO(2) of intracerebral 9L, C6, F98 and U251 tumors, as well as contralateral brain, were measured repeatedly for five consecutive days. The 9L glioma was well oxygenated with pO(2) of 27-36 mm Hg, while C6, F98 and U251 glioma were hypoxic with pO(2) of 7-12mm Hg. The potential of multi-site EPR oximetry to assess temporal changes in tissue pO(2) was investigated in rats breathing 100% O(2). A significant increase in F98 tumor and contralateral brain pO(2) was observed on day 1 and day 2, however, glioma oxygenation declined on subsequent days. In conclusion, EPR oximetry provides the capability to repeatedly assess temporal changes in orthotopic glioma pO(2). This information could be used to test and optimize the methods being developed to modulate tumor hypoxia. Furthermore, EPR oximetry could be potentially used to enhance the outcome of chemoradiation by scheduling treatments at times of increase in glioma pO(2). Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Optimisation of flame parameters for simultaneous multi-element atomic absorption spectrometric determination of trace elements in rocks

    USGS Publications Warehouse

    Kane, J.S.

    1988-01-01

    A study is described that identifies the optimum operating conditions for the accurate determination of Co, Cu, Mn, Ni, Pb, Zn, Ag, Bi and Cd using simultaneous multi-element atomic absorption spectrometry. Accuracy was measured in terms of the percentage recoveries of the analytes based on certified values in nine standard reference materials. In addition to identifying optimum operating conditions for accurate analysis, conditions resulting in serious matrix interferences and the magnitude of the interferences were determined. The listed elements can be measured with acceptable accuracy in a lean to stoicheiometric flame at measurement heights ???5-10 mm above the burner.

  2. The multi-mode polarization modulation spectrometer: part 1: simultaneous detection of absorption, turbidity, and optical activity.

    PubMed

    Arvinte, Tudor; Bui, Tam T T; Dahab, Ali A; Demeule, Barthélemy; Drake, Alex F; Elhag, Dhia; King, Peter

    2004-09-01

    Circular dichroism (CD) is an important spectroscopic technique for monitoring chirality and biological macromolecule conformation. However, during a CD measurement, absorbance, light scattering/turbidity, and fluorescence can also be detected. The simultaneous measurement of these different spectral features for a single sample is the basis of a multi-mode optical spectrometer. This allows time-efficient gathering of complementary information and provides a scheme to ensure that CD measurements are reliable. Aspects of circular polarization differential light scattering, pH, and temperature variation of a protein (antibody) solution are described. A procedure to help ensure that CD measurements are reliable is described.

  3. Achieving bifunctional cloak via combination of passive and active schemes

    NASA Astrophysics Data System (ADS)

    Lan, Chuwen; Bi, Ke; Gao, Zehua; Li, Bo; Zhou, Ji

    2016-11-01

    In this study, a simple and delicate approach to realizing manipulation of multi-physics field simultaneously through combination of passive and active schemes is proposed. In the design, one physical field is manipulated with passive scheme while the other with active scheme. As a proof of this concept, a bifunctional device is designed and fabricated to behave as electric and thermal invisibility cloak simultaneously. It is found that the experimental results are consistent with the simulated ones well, confirming the feasibility of our method. Furthermore, the proposed method could also be extended to other multi-physics fields, which might lead to potential applications in thermal, electric, and acoustic areas.

  4. Tractography from HARDI using an Intrinsic Unscented Kalman Filter

    PubMed Central

    Cheng, Guang; Salehian, Hesamoddin; Forder, John R.; Vemuri, Baba C.

    2014-01-01

    A novel adaptation of the unscented Kalman filter (UKF) was recently introduced in literature for simultaneous multi-tensor estimation and fiber tractography from diffusion MRI. This technique has the advantage over other tractography methods in terms of computational efficiency, due to the fact that the UKF simultaneously estimates the diffusion tensors and propagates the most consistent direction to track along. This UKF and its variants reported later in literature however are not intrinsic to the space of diffusion tensors. Lack of this key property can possibly lead to inaccuracies in the multi-tensor estimation as well as in the tractography. In this paper, we propose a novel intrinsic unscented Kalman filter (IUKF) in the space of diffusion tensors which are symmetric positive definite matrices, that can be used for simultaneous recursive estimation of multi-tensors and propagation of directional information for use in fiber tractography from diffusion weighted MR data. In addition to being more accurate, IUKF retains all the advantages of UKF mentioned above. We demonstrate the accuracy and effectiveness of the proposed method via experiments publicly available phantom data from the fiber cup-challenge (MICCAI 2009) and diffusion weighted MR scans acquired from human brains and rat spinal cords. PMID:25203986

  5. Control system of the inspection robots group applying auctions and multi-criteria analysis for task allocation

    NASA Astrophysics Data System (ADS)

    Panfil, Wawrzyniec; Moczulski, Wojciech

    2017-10-01

    In the paper presented is a control system of a mobile robots group intended for carrying out inspection missions. The main research problem was to define such a control system in order to facilitate a cooperation of the robots resulting in realization of the committed inspection tasks. Many of the well-known control systems use auctions for tasks allocation, where a subject of an auction is a task to be allocated. It seems that in the case of missions characterized by much larger number of tasks than number of robots it will be better if robots (instead of tasks) are subjects of auctions. The second identified problem concerns the one-sided robot-to-task fitness evaluation. Simultaneous assessment of the robot-to-task fitness and task attractiveness for robot should affect positively for the overall effectiveness of the multi-robot system performance. The elaborated system allows to assign tasks to robots using various methods for evaluation of fitness between robots and tasks, and using some tasks allocation methods. There is proposed the method for multi-criteria analysis, which is composed of two assessments, i.e. robot's concurrency position for task among other robots and task's attractiveness for robot among other tasks. Furthermore, there are proposed methods for tasks allocation applying the mentioned multi-criteria analysis method. The verification of both the elaborated system and the proposed tasks' allocation methods was carried out with the help of simulated experiments. The object under test was a group of inspection mobile robots being a virtual counterpart of the real mobile-robot group.

  6. A low power radiofrequency pulse for simultaneous multislice excitation and refocusing.

    PubMed

    Eichner, Cornelius; Wald, Lawrence L; Setsompop, Kawin

    2014-10-01

    Simultaneous multislice (SMS) acquisition enables increased temporal efficiency of MRI. Nonetheless, MultiBand (MB) radiofrequency (RF) pulses used for SMS can cause large energy deposition. Power independent of number of slices (PINS) pulses reduce RF power at cost of reduced bandwidth and increased off-resonance dependency. This work improves PINS design to further reduce energy deposition, off-resonance dependency and peak power. Modifying the shape of MB RF-pulses allows for mixing with PINS excitation, creating a new pulse type with reduced energy deposition and SMS excitation characteristics. Bloch Simulations were used to evaluate excitation and off-resonance behavior of this "MultiPINS" pulse. In this work, MultiPINS was used for whole-brain MB = 3 acquisition of high angular and spatial resolution diffusion MRI at 7 Tesla in 3 min. By using MultiPINS, energy transmission and peak power for SMS imaging can be significantly reduced compared with PINS and MB pulses. For MB = 3 acquisition in this work, MultiPINS reduces energy transmission by up to ∼50% compared with PINS pulses. The energy reduction was traded off to shorten the MultiPINS pulse, yielding higher signal at off-resonances for spin-echo acquisitions. MB and PINS pulses can be combined to enable low energy and peak power SMS acquisition. Copyright © 2014 Wiley Periodicals, Inc.

  7. Multiple echo multi-shot diffusion sequence.

    PubMed

    Chabert, Steren; Galindo, César; Tejos, Cristian; Uribe, Sergio A

    2014-04-01

    To measure both transversal relaxation time (T2 ) and diffusion coefficients within a single scan using a multi-shot approach. Both measurements have drawn interest in many applications, especially in skeletal muscle studies, which have short T2 values. Multiple echo single-shot schemes have been proposed to obtain those variables simultaneously within a single scan, resulting in a reduction of the scanning time. However, one problem with those approaches is the associated long echo read-out. Consequently, the minimum achievable echo time tends to be long, limiting the application of these sequences to tissues with relatively long T2 . To address this problem, we propose to extend the multi-echo sequences using a multi-shot approach, so that to allow shorter echo times. A multi-shot dual-echo EPI sequence with diffusion gradients and echo navigators was modified to include independent diffusion gradients in any of the two echoes. The multi-shot approach allows us to drastically reduce echo times. Results showed a good agreement for the T2 and mean diffusivity measurements with gold standard sequences in phantoms and in vivo data of calf muscles from healthy volunteers. A fast and accurate method is proposed to measure T2 and diffusion coefficients simultaneously, tested in vitro and in healthy volunteers. Copyright © 2013 Wiley Periodicals, Inc.

  8. Simultaneous Communication Supports Learning in Noise by Cochlear Implant Users

    PubMed Central

    Blom, Helen C.; Marschark, Marc; Machmer, Elizabeth

    2017-01-01

    Objectives This study sought to evaluate the potential of using spoken language and signing together (simultaneous communication, SimCom, sign-supported speech) as a means of improving speech recognition, comprehension, and learning by cochlear implant users in noisy contexts. Methods Forty eight college students who were active cochlear implant users, watched videos of three short presentations, the text versions of which were standardized at the 8th grade reading level. One passage was presented in spoken language only, one was presented in spoken language with multi-talker babble background noise, and one was presented via simultaneous communication with the same background noise. Following each passage, participants responded to 10 (standardized) open-ended questions designed to assess comprehension. Indicators of participants’ spoken language and sign language skills were obtained via self-reports and objective assessments. Results When spoken materials were accompanied by signs, scores were significantly higher than when materials were spoken in noise without signs. Participants’ receptive spoken language skills significantly predicted scores in all three conditions; neither their receptive sign skills nor age of implantation predicted performance. Discussion Students who are cochlear implant users typically rely solely on spoken language in the classroom. The present results, however, suggest that there are potential benefits of simultaneous communication for such learners in noisy settings. For those cochlear implant users who know sign language, the redundancy of speech and signs potentially can offset the reduced fidelity of spoken language in noise. Conclusion Accompanying spoken language with signs can benefit learners who are cochlear implant users in noisy situations such as classroom settings. Factors associated with such benefits, such as receptive skills in signed and spoken modalities, classroom acoustics, and material difficulty need to be empirically examined. PMID:28010675

  9. Simultaneous communication supports learning in noise by cochlear implant users.

    PubMed

    Blom, Helen; Marschark, Marc; Machmer, Elizabeth

    2017-01-01

    This study sought to evaluate the potential of using spoken language and signing together (simultaneous communication, SimCom, sign-supported speech) as a means of improving speech recognition, comprehension, and learning by cochlear implant (CI) users in noisy contexts. Forty eight college students who were active CI users, watched videos of three short presentations, the text versions of which were standardized at the 8 th -grade reading level. One passage was presented in spoken language only, one was presented in spoken language with multi-talker babble background noise, and one was presented via simultaneous communication with the same background noise. Following each passage, participants responded to 10 (standardized) open-ended questions designed to assess comprehension. Indicators of participants' spoken language and sign language skills were obtained via self-reports and objective assessments. When spoken materials were accompanied by signs, scores were significantly higher than when materials were spoken in noise without signs. Participants' receptive spoken language skills significantly predicted scores in all three conditions; neither their receptive sign skills nor age of implantation predicted performance. Students who are CI users typically rely solely on spoken language in the classroom. The present results, however, suggest that there are potential benefits of simultaneous communication for such learners in noisy settings. For those CI users who know sign language, the redundancy of speech and signs potentially can offset the reduced fidelity of spoken language in noise. Accompanying spoken language with signs can benefit learners who are CI users in noisy situations such as classroom settings. Factors associated with such benefits, such as receptive skills in signed and spoken modalities, classroom acoustics, and material difficulty need to be empirically examined.

  10. Dimming-discrete-multi-tone (DMT) for simultaneous color control and high speed visible light communication.

    PubMed

    Sung, Jiun-Yu; Chow, Chi-Wai; Yeh, Chien-Hung

    2014-04-07

    Visible light communication (VLC) using LEDs has attracted significant attention recently for the future secure, license-free and electromagnetic-interference (EMI)-free optical wireless communication. Dimming technique in LED lamp is advantageous for energy efficiency. Color control can be performed in the red-green-blue (RGB) LEDs by using dimming technique. It is highly desirable to employ dimming technique to provide simultaneous color and dimming control and high speed VLC. Here, we proposed and demonstrated a LED dimming control using dimming-discrete-multi-tone (DMT) modulation. High speed DMT-based VLC with simultaneous color and dimming control is demonstrated for the first time to the best of our knowledge. Demonstration and analyses for several modulation conditions and transmission distances are performed, for instance, demonstrating the data rate of 103.5 Mb/s (using RGB LED) with fast Fourier transform (FFT) size of 512.

  11. A Coupled k-Nearest Neighbor Algorithm for Multi-Label Classification

    DTIC Science & Technology

    2015-05-22

    classification, an image may contain several concepts simultaneously, such as beach, sunset and kangaroo . Such tasks are usually denoted as multi-label...informatics, a gene can belong to both metabolism and transcription classes; and in music categorization, a song may labeled as Mozart and sad. In the

  12. Simultaneous reconstruction of multiple depth images without off-focus points in integral imaging using a graphics processing unit.

    PubMed

    Yi, Faliu; Lee, Jieun; Moon, Inkyu

    2014-05-01

    The reconstruction of multiple depth images with a ray back-propagation algorithm in three-dimensional (3D) computational integral imaging is computationally burdensome. Further, a reconstructed depth image consists of a focus and an off-focus area. Focus areas are 3D points on the surface of an object that are located at the reconstructed depth, while off-focus areas include 3D points in free-space that do not belong to any object surface in 3D space. Generally, without being removed, the presence of an off-focus area would adversely affect the high-level analysis of a 3D object, including its classification, recognition, and tracking. Here, we use a graphics processing unit (GPU) that supports parallel processing with multiple processors to simultaneously reconstruct multiple depth images using a lookup table containing the shifted values along the x and y directions for each elemental image in a given depth range. Moreover, each 3D point on a depth image can be measured by analyzing its statistical variance with its corresponding samples, which are captured by the two-dimensional (2D) elemental images. These statistical variances can be used to classify depth image pixels as either focus or off-focus points. At this stage, the measurement of focus and off-focus points in multiple depth images is also implemented in parallel on a GPU. Our proposed method is conducted based on the assumption that there is no occlusion of the 3D object during the capture stage of the integral imaging process. Experimental results have demonstrated that this method is capable of removing off-focus points in the reconstructed depth image. The results also showed that using a GPU to remove the off-focus points could greatly improve the overall computational speed compared with using a CPU.

  13. Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4 laser at 1062, 1064 and 1066 nm

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping

    2016-01-01

    We report on a diode-end-pumped simultaneous multiple wavelength Nd:YVO4 laser. Dual-wavelength laser is achieved at a π-polarized 1064 nm emission line and a σ-polarized 1066 nm emission line with total maximum output power of 1.38 W. Moreover, tri-wavelength laser emission at the π-polarized 1064 nm emission line and σ-polarized 1062 and 1066 nm emission lines can also be obtained with total maximum output power of about 1.23 W, for the first time to our knowledge. The operation of such simultaneous dual- and tri-wavelength lasers is only realized by employing a simple glass etalon to modulate the intracavity losses for these potential lasing wavelengths inside of an intracavity polarizer, which therefore makes a very compact two-mirror linear cavity and simultaneous orthogonal lasing possible. Such orthogonal linearly polarized multi-wavelength laser sources could be especially promising in THz wave generation and in efficient nonlinear frequency conversion to visible lasers.

  14. Simple-MSSM: a simple and efficient method for simultaneous multi-site saturation mutagenesis.

    PubMed

    Cheng, Feng; Xu, Jian-Miao; Xiang, Chao; Liu, Zhi-Qiang; Zhao, Li-Qing; Zheng, Yu-Guo

    2017-04-01

    To develop a practically simple and robust multi-site saturation mutagenesis (MSSM) method that enables simultaneously recombination of amino acid positions for focused mutant library generation. A general restriction enzyme-free and ligase-free MSSM method (Simple-MSSM) based on prolonged overlap extension PCR (POE-PCR) and Simple Cloning techniques. As a proof of principle of Simple-MSSM, the gene of eGFP (enhanced green fluorescent protein) was used as a template gene for simultaneous mutagenesis of five codons. Forty-eight randomly selected clones were sequenced. Sequencing revealed that all the 48 clones showed at least one mutant codon (mutation efficiency = 100%), and 46 out of the 48 clones had mutations at all the five codons. The obtained diversities at these five codons are 27, 24, 26, 26 and 22, respectively, which correspond to 84, 75, 81, 81, 69% of the theoretical diversity offered by NNK-degeneration (32 codons; NNK, K = T or G). The enzyme-free Simple-MSSM method can simultaneously and efficiently saturate five codons within one day, and therefore avoid missing interactions between residues in interacting amino acid networks.

  15. Capacity building for critical care training delivery: Development and evaluation of the Network for Improving Critical care Skills Training (NICST) programme in Sri Lanka.

    PubMed

    Stephens, Tim; De Silva, A Pubudu; Beane, Abi; Welch, John; Sigera, Chathurani; De Alwis, Sunil; Athapattu, Priyantha; Dharmagunawardene, Dilantha; Peiris, Lalitha; Siriwardana, Somalatha; Abeynayaka, Ashoka; Jayasinghe, Kosala Saroj Amarasena; Mahipala, Palitha G; Dondorp, Arjen; Haniffa, Rashan

    2017-04-01

    To deliver and evaluate a short critical care nurse training course whilst simultaneously building local training capacity. A multi-modal short course for critical care nursing skills was delivered in seven training blocks, from 06/2013-11/2014. Each training block included a Train the Trainer programme. The project was evaluated using Kirkpatrick's Hierarchy of Learning. There was a graded hand over of responsibility for course delivery from overseas to local faculty between 2013 and 2014. Sri Lanka. Participant learning assessed through pre/post course Multi-Choice Questionnaires. A total of 584 nurses and 29 faculty were trained. Participant feedback was consistently positive and each course demonstrated a significant increase (p≤0.0001) in MCQ scores. There was no significant difference MCQ scores (p=0.186) between overseas faculty led and local faculty led courses. In a relatively short period, training with good educational outcomes was delivered to nearly 25% of the critical care nursing population in Sri Lanka whilst simultaneously building a local faculty of trainers. Through use of a structured Train the Trainer programme, course outcomes were maintained following the handover of training responsibility to Sri Lankan faculty. The focus on local capacity building increases the possibility of long term course sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Four applications of a software data collection and analysis methodology

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Selby, Richard W., Jr.

    1985-01-01

    The evaluation of software technologies suffers because of the lack of quantitative assessment of their effect on software development and modification. A seven-step data collection and analysis methodology couples software technology evaluation with software measurement. Four in-depth applications of the methodology are presented. The four studies represent each of the general categories of analyses on the software product and development process: blocked subject-project studies, replicated project studies, multi-project variation studies, and single project strategies. The four applications are in the areas of, respectively, software testing, cleanroom software development, characteristic software metric sets, and software error analysis.

  17. Self-regenerating column chromatography

    DOEpatents

    Park, Woo K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  18. Combined Retrievals of Boreal Forest Fire Aerosol Properties with a Polarimeter and Lidar

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, K.; Cairns, B.; Ottaviani, M.; Ferrare, R.; Haire, J.; Hostetler, C.; Obland, M.; Rogers, R.; Redemann, J.; Shinozuka, Y.; hide

    2011-01-01

    Absorbing aerosols play an important, but uncertain, role in the global climate. Much of this uncertainty is due to a lack of adequate aerosol measurements. While great strides have been made in observational capability in the previous years and decades, it has become increasingly apparent that this development must continue. Scanning polarimeters have been designed to help resolve this issue by making accurate, multi-spectral, multi-angle polarized observations. This work involves the use of the Research Scanning Polarimeter (RSP). The RSP was designed as the airborne prototype for the Aerosol Polarimetery Sensor (APS), which was due to be launched as part of the (ultimately failed) NASA Glory mission. Field observations with the RSP, however, have established that simultaneous retrievals of aerosol absorption and vertical distribution over bright land surfaces are quite uncertain. We test a merger of RSP and High Spectral Resolution Lidar (HSRL) data with observations of boreal forest fire smoke, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). During ARCTAS, the RSP and HSRL instruments were mounted on the same aircraft, and validation data were provided by instruments on an aircraft flying a coordinated flight pattern. We found that the lidar data did indeed improve aerosol retrievals using an optimal estimation method, although not primarily because of the constraints imposed on the aerosol vertical distribution. The more useful piece of information from the HSRL was the total column aerosol optical depth, which was used to select the initial value (optimization starting point) of the aerosol number concentration. When ground based sun photometer network climatologies of number concentration were used as an initial value, we found that roughly half of the retrievals had unrealistic sizes and imaginary indices, even though the retrieved spectral optical depths agreed within uncertainties to independent observations. The convergence to an unrealistic local minimum by the optimal estimator is related to the relatively low sensitivity to particles smaller than 0.1 ( m) at large optical thicknesses. Thus, optimization algorithms used for operational aerosol retrievals of the fine mode size distribution, when the total optical depth is large, will require initial values generated from table look-ups that exclude unrealistic size/complex index mixtures. External constraints from lidar on initial values used in the optimal estimation methods will also be valuable in reducing the likelihood of obtaining spurious retrievals.

  19. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity

    NASA Astrophysics Data System (ADS)

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-11-01

    The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.

  20. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity.

    PubMed

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-11-08

    The increasing number of recording electrodes enhances the capability of capturing the network's cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.

  1. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity

    PubMed Central

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-01-01

    The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity. PMID:27824075

  2. Multi-Algorithm Particle Simulations with Spatiocyte.

    PubMed

    Arjunan, Satya N V; Takahashi, Koichi

    2017-01-01

    As quantitative biologists get more measurements of spatially regulated systems such as cell division and polarization, simulation of reaction and diffusion of proteins using the data is becoming increasingly relevant to uncover the mechanisms underlying the systems. Spatiocyte is a lattice-based stochastic particle simulator for biochemical reaction and diffusion processes. Simulations can be performed at single molecule and compartment spatial scales simultaneously. Molecules can diffuse and react in 1D (filament), 2D (membrane), and 3D (cytosol) compartments. The implications of crowded regions in the cell can be investigated because each diffusing molecule has spatial dimensions. Spatiocyte adopts multi-algorithm and multi-timescale frameworks to simulate models that simultaneously employ deterministic, stochastic, and particle reaction-diffusion algorithms. Comparison of light microscopy images to simulation snapshots is supported by Spatiocyte microscopy visualization and molecule tagging features. Spatiocyte is open-source software and is freely available at http://spatiocyte.org .

  3. Optical cryptography with biometrics for multi-depth objects.

    PubMed

    Yan, Aimin; Wei, Yang; Hu, Zhijuan; Zhang, Jingtao; Tsang, Peter Wai Ming; Poon, Ting-Chung

    2017-10-11

    We propose an optical cryptosystem for encrypting images of multi-depth objects based on the combination of optical heterodyne technique and fingerprint keys. Optical heterodyning requires two optical beams to be mixed. For encryption, each optical beam is modulated by an optical mask containing either the fingerprint of the person who is sending, or receiving the image. The pair of optical masks are taken as the encryption keys. Subsequently, the two beams are used to scan over a multi-depth 3-D object to obtain an encrypted hologram. During the decryption process, each sectional image of the 3-D object is recovered by convolving its encrypted hologram (through numerical computation) with the encrypted hologram of a pinhole image that is positioned at the same depth as the sectional image. Our proposed method has three major advantages. First, the lost-key situation can be avoided with the use of fingerprints as the encryption keys. Second, the method can be applied to encrypt 3-D images for subsequent decrypted sectional images. Third, since optical heterodyning scanning is employed to encrypt a 3-D object, the optical system is incoherent, resulting in negligible amount of speckle noise upon decryption. To the best of our knowledge, this is the first time optical cryptography of 3-D object images has been demonstrated in an incoherent optical system with biometric keys.

  4. Analysis of flood inundation in ungauged basins based on multi-source remote sensing data.

    PubMed

    Gao, Wei; Shen, Qiu; Zhou, Yuehua; Li, Xin

    2018-02-09

    Floods are among the most expensive natural hazards experienced in many places of the world and can result in heavy losses of life and economic damages. The objective of this study is to analyze flood inundation in ungauged basins by performing near-real-time detection with flood extent and depth based on multi-source remote sensing data. Via spatial distribution analysis of flood extent and depth in a time series, the inundation condition and the characteristics of flood disaster can be reflected. The results show that the multi-source remote sensing data can make up the lack of hydrological data in ungauged basins, which is helpful to reconstruct hydrological sequence; the combination of MODIS (moderate-resolution imaging spectroradiometer) surface reflectance productions and the DFO (Dartmouth Flood Observatory) flood database can achieve the macro-dynamic monitoring of the flood inundation in ungauged basins, and then the differential technique of high-resolution optical and microwave images before and after floods can be used to calculate flood extent to reflect spatial changes of inundation; the monitoring algorithm for the flood depth combining RS and GIS is simple and easy and can quickly calculate the depth with a known flood extent that is obtained from remote sensing images in ungauged basins. Relevant results can provide effective help for the disaster relief work performed by government departments.

  5. Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier

    NASA Astrophysics Data System (ADS)

    O'Brien, Kevin

    Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.

  6. Simultaneous multi-frequency imaging observations of solar microwave bursts

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; White, S. M.; Schmahl, E. J.

    1989-01-01

    The results of simultaneous two-frequency imaging observations of solar microwave bursts with the Very Large Array are reviewed. Simultaneous 2 and 6 cm observations have been made of bursts which are optically thin at both frequencies, or optically thick at the lower frequency. In the latter case, the source structure may differ at the two frequencies, but the two sources usually seem to be related. However, this is not always true of simultaneous 6 and 20 cm observations. The results have implications for the analysis of nonimaging radio data of solar and stellar flares.

  7. Stable L-band multi-wavelength SOA fiber laser based on polarization rotation.

    PubMed

    Liu, Tonghui; Jia, Dongfang; Yang, Tianxin; Wang, Zhaoying; Liu, Ying

    2017-04-01

    We propose and experimentally demonstrate a stable multi-wavelength fiber ring laser operating in the L-band with wavelength spacing of 25 GHz. The mechanism is induced by a polarization rotation intensity equalizer consisting of a semiconductor optical amplifier and polarization devices. A Fabry-Perot filter is inserted into the cavity to serve as a multi-wavelength selection device. Stable L-band multi-wavelength lasing with 3 dB uniformity of 21.2 nm, and simultaneous oscillation of 101 lines with wavelength spacing of 25 GHz, is obtained.

  8. Simultaneous observations of electromagnetically induced transparency (EIT) and absorption (EIA) in a multi-level V-type system of 87Rb and theoretical simulation of the observed spectra using a multi-mode approach

    NASA Astrophysics Data System (ADS)

    Das, Bankim Chandra; Bhattacharyya, Dipankar; Das, Arpita; Chakrabarti, Shrabana; De, Sankar

    2016-12-01

    We report here simultaneous experimental observation of Electromagnetically Induced Transparency (EIT) and Electromagnetically Induced Absorption (EIA) in a multi-level V-type system in D2 transition of 87Rb, i.e., F =2 →F' with a strong pump and a weak probe beam. We studied the probe spectrum by locking the probe beam to the transition F =2 →F'=2 while the pump is scanned from F =2 →F' . EIA is observed for the open transition (F =2 →F'=2 ) whereas EIT is observed in the closed transition (F =2 →F'=3 ). Sub natural line-width is observed for the EIA. To simulate the observed spectra theoretically, Liouville equation for the three-level V-type system is solved analytically with a multi-mode approach for the density matrix elements. We assumed both the pump and the probe beams can couple the excited states. A multi-mode approach for the coherence terms facilitates the study of all the frequency contributions due to the pump and the probe fields. Since the terms contain higher harmonics of the pump and the probe frequencies, we expressed them in Fourier transformed forms. To simulate the probe spectrum, we have solved inhomogeneous difference equations for the coherence terms using the Green's function technique and continued fraction theory. The experimental line-widths of the EIT and the EIA are compared with our theoretical model. Our system can be useful in optical switching applications as it can be precisely tuned to render the medium opaque and transparent simultaneously.

  9. Simultaneous observations of electromagnetically induced transparency (EIT) and absorption (EIA) in a multi-level V-type system of 87Rb and theoretical simulation of the observed spectra using a multi-mode approach.

    PubMed

    Das, Bankim Chandra; Bhattacharyya, Dipankar; Das, Arpita; Chakrabarti, Shrabana; De, Sankar

    2016-12-14

    We report here simultaneous experimental observation of Electromagnetically Induced Transparency (EIT) and Electromagnetically Induced Absorption (EIA) in a multi-level V-type system in D 2 transition of Rb87, i.e., F=2→F ' with a strong pump and a weak probe beam. We studied the probe spectrum by locking the probe beam to the transition F=2→F ' =2 while the pump is scanned from F=2→F ' . EIA is observed for the open transition (F=2→F ' =2) whereas EIT is observed in the closed transition (F=2→F ' =3). Sub natural line-width is observed for the EIA. To simulate the observed spectra theoretically, Liouville equation for the three-level V-type system is solved analytically with a multi-mode approach for the density matrix elements. We assumed both the pump and the probe beams can couple the excited states. A multi-mode approach for the coherence terms facilitates the study of all the frequency contributions due to the pump and the probe fields. Since the terms contain higher harmonics of the pump and the probe frequencies, we expressed them in Fourier transformed forms. To simulate the probe spectrum, we have solved inhomogeneous difference equations for the coherence terms using the Green's function technique and continued fraction theory. The experimental line-widths of the EIT and the EIA are compared with our theoretical model. Our system can be useful in optical switching applications as it can be precisely tuned to render the medium opaque and transparent simultaneously.

  10. Novel application of simultaneous multi-image display during complex robotic abdominal procedures

    PubMed Central

    2014-01-01

    Background The surgical robot offers the potential to integrate multiple views into the surgical console screen, and for the assistant’s monitors to provide real-time views of both fields of operation. This function has the potential to increase patient safety and surgical efficiency during an operation. Herein, we present a novel application of the multi-image display system for simultaneous visualization of endoscopic views during various complex robotic gastrointestinal operations. All operations were performed using the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) with the assistance of Tilepro, multi-input display software, during employment of the intraoperative scopes. Three robotic operations, left hepatectomy with intraoperative common bile duct exploration, low anterior resection, and radical distal subtotal gastrectomy with intracorporeal gastrojejunostomy, were performed by three different surgeons at a tertiary academic medical center. Results The three complex robotic abdominal operations were successfully completed without difficulty or intraoperative complications. The use of the Tilepro to simultaneously visualize the images from the colonoscope, gastroscope, and choledochoscope made it possible to perform additional intraoperative endoscopic procedures without extra monitors or interference with the operations. Conclusion We present a novel use of the multi-input display program on the da Vinci Surgical System to facilitate the performance of intraoperative endoscopies during complex robotic operations. Our study offers another potentially beneficial application of the robotic surgery platform toward integration and simplification of combining additional procedures with complex minimally invasive operations. PMID:24628761

  11. Risk assessment of storm surge disaster based on numerical models and remote sensing

    NASA Astrophysics Data System (ADS)

    Liu, Qingrong; Ruan, Chengqing; Zhong, Shan; Li, Jian; Yin, Zhonghui; Lian, Xihu

    2018-06-01

    Storm surge is one of the most serious ocean disasters in the world. Risk assessment of storm surge disaster for coastal areas has important implications for planning economic development and reducing disaster losses. Based on risk assessment theory, this paper uses coastal hydrological observations, a numerical storm surge model and multi-source remote sensing data, proposes methods for valuing hazard and vulnerability for storm surge and builds a storm surge risk assessment model. Storm surges in different recurrence periods are simulated in numerical models and the flooding areas and depth are calculated, which are used for assessing the hazard of storm surge; remote sensing data and GIS technology are used for extraction of coastal key objects and classification of coastal land use are identified, which is used for vulnerability assessment of storm surge disaster. The storm surge risk assessment model is applied for a typical coastal city, and the result shows the reliability and validity of the risk assessment model. The building and application of storm surge risk assessment model provides some basis reference for the city development plan and strengthens disaster prevention and mitigation.

  12. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine.

    PubMed

    Zhang, Susu; He, Ping; Zhang, Guangli; Lei, Wen; He, Huichao

    2015-01-01

    Graphite nanosheets prepared by thermal expansion and successive sonication were utilized for the construction of a multi-walled carbon nanotubes/graphite nanosheets based amperometric sensing platform to simultaneously determine acetaminophen and dopamine in the presence of ascorbic acid in physiological conditions. The synergistic effect of multi-walled carbon nanotubes and graphite nanosheets catalyzed the electrooxidation of acetaminophen and dopamine, leading to a remarkable potential difference up to 200 mV. The as-prepared modified electrode exhibited linear responses to acetaminophen and dopamine in the concentration ranges of 2.0 × 10(-6) - 2.4 × 10(-4) M (R = 0.999) and 2.0 × 10(-6) - 2.0 × 10(-4) M (R = 0.998), respectively. The detection limits were down to 2.3 × 10(-7) M for acetaminophen and 3.5 × 10(-7) M for dopamine (S/N = 3). Based on the simple preparation and prominent electrochemical properties, the obtained multi-walled carbon nanotubes/graphite nanosheets modified electrode would be a good candidate for the determination of acetaminophen and dopamine without the interference of ascorbic acid.

  13. Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography

    PubMed Central

    Wang, Ge; Zhang, Jie; Gao, Hao; Weir, Victor; Yu, Hengyong; Cong, Wenxiang; Xu, Xiaochen; Shen, Haiou; Bennett, James; Furth, Mark; Wang, Yue; Vannier, Michael

    2012-01-01

    We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine. PMID:22768108

  14. Simultaneous determination of multi-residue and multi-class antibiotics in aquaculture shrimps by UPLC-MS/MS.

    PubMed

    Saxena, Sushil Kumar; Rangasamy, Rajesh; Krishnan, Anoop A; Singh, Dhirendra P; Uke, Sumedh P; Malekadi, Praveen Kumar; Sengar, Anoop S; Mohamed, D Peer; Gupta, Ananda

    2018-09-15

    An accurate, reliable and fast multi-residue, multi-class method using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and validated for simultaneous determination and quantification of 24 pharmacologically active substances of three different classes (Quinolones including fluoroquinolones, sulphonamides and tetracyclines) in aquaculture shrimps. Sample preparation involves extraction with acetonitrile containing 0.1% formic acid and followed by clean up with n-hexane and 0.1% methanol in water by UPLC-MS/MS within 8 min. The method was validated according to European Commission Decision 2002/657. Acceptable values were obtained for linearity (5-200 μg kg -1 ), specificity, Limit of Quantification (5-10 μg kg -1 ), recovery (between 83 and 100%), repeatability (RSD < 9%), within lab reproducibility (RSD < 15%), reproducibility (RSD ≤ 22%), decision limit (105-116 μg kg -1 ) and detection capability (110-132 μg kg -1 ). The validated method was applied to aquaculture shrimp samples from India. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A Dual-Modality System for Both Multi-Color Ultrasound-Switchable Fluorescence and Ultrasound Imaging

    PubMed Central

    Kandukuri, Jayanth; Yu, Shuai; Cheng, Bingbing; Bandi, Venugopal; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2017-01-01

    Simultaneous imaging of multiple targets (SIMT) in opaque biological tissues is an important goal for molecular imaging in the future. Multi-color fluorescence imaging in deep tissues is a promising technology to reach this goal. In this work, we developed a dual-modality imaging system by combining our recently developed ultrasound-switchable fluorescence (USF) imaging technology with the conventional ultrasound (US) B-mode imaging. This dual-modality system can simultaneously image tissue acoustic structure information and multi-color fluorophores in centimeter-deep tissue with comparable spatial resolutions. To conduct USF imaging on the same plane (i.e., x-z plane) as US imaging, we adopted two 90°-crossed ultrasound transducers with an overlapped focal region, while the US transducer (the third one) was positioned at the center of these two USF transducers. Thus, the axial resolution of USF is close to the lateral resolution, which allows a point-by-point USF scanning on the same plane as the US imaging. Both multi-color USF and ultrasound imaging of a tissue phantom were demonstrated. PMID:28165390

  16. Seizure entrainment with polarizing low frequency electric fields in a chronic animal epilepsy model

    PubMed Central

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-01-01

    Neural activity can be modulated by applying a polarizing low frequency (≪ 100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5–25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson’s harmonic F-test, with 45/132 stimulated seizures in 4 animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in 3 of 4 animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording. PMID:19602730

  17. Simultaneous measurement of liquid absorbance and refractive index using a compact optofluidic probe.

    PubMed

    Malak, Maurine; Marty, Frédéric; Bourouina, Tarik; Angelescu, Dan

    2013-07-21

    We present a novel optical technique for simultaneously measuring the absorbance and the refractive index of a thin film using an infrared optofluidic probe. Experiments were carried on two different liquids and the results agree with the bibliographical data. The ultimate goal is to achieve a multi-functional micro-optical device for analytical applications.

  18. Whole left ventricular functional assessment from two minutes free breathing multi-slice CINE acquisition

    NASA Astrophysics Data System (ADS)

    Usman, M.; Atkinson, D.; Heathfield, E.; Greil, G.; Schaeffter, T.; Prieto, C.

    2015-04-01

    Two major challenges in cardiovascular MRI are long scan times due to slow MR acquisition and motion artefacts due to respiratory motion. Recently, a Motion Corrected-Compressed Sensing (MC-CS) technique has been proposed for free breathing 2D dynamic cardiac MRI that addresses these challenges by simultaneously accelerating MR acquisition and correcting for any arbitrary motion in a compressed sensing reconstruction. In this work, the MC-CS framework is combined with parallel imaging for further acceleration, and is termed Motion Corrected Sparse SENSE (MC-SS). Validation of the MC-SS framework is demonstrated in eight volunteers and three patients for left ventricular functional assessment and results are compared with the breath-hold acquisitions as reference. A non-significant difference (P > 0.05) was observed in the volumetric functional measurements (end diastolic volume, end systolic volume, ejection fraction) and myocardial border sharpness values obtained with the proposed and gold standard methods. The proposed method achieves whole heart multi-slice coverage in 2 min under free breathing acquisition eliminating the time needed between breath-holds for instructions and recovery. This results in two-fold speed up of the total acquisition time in comparison to the breath-hold acquisition.

  19. Short-term Variability of Extinction by Broadband Stellar Photometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musat, I.C.; Ellingson, R.G.

    2005-03-18

    Aerosol optical depth variation over short-term time intervals is determined from broadband observations of stars with a whole sky imager. The main difficulty in such measurements consists of accurately separating the star flux value from the non-stellar diffuse skylight. Using correction method to overcome this difficulty, the monochromatic extinction at the ground due to aerosols is extracted from heterochromatic measurements. A form of closure is achieved by comparison with simultaneous or temporally close measurements with other instruments, and the total error of the method, as a combination of random error of measurements and systematic error of calibration and model, ismore » assessed as being between 2.6 and 3% rms.« less

  20. An adaptive block-based fusion method with LUE-SSIM for multi-focus images

    NASA Astrophysics Data System (ADS)

    Zheng, Jianing; Guo, Yongcai; Huang, Yukun

    2016-09-01

    Because of the lenses' limited depth of field, digital cameras are incapable of acquiring an all-in-focus image of objects at varying distances in a scene. Multi-focus image fusion technique can effectively solve this problem. Aiming at the block-based multi-focus image fusion methods, the problem that blocking-artifacts often occurs. An Adaptive block-based fusion method based on lifting undistorted-edge structural similarity (LUE-SSIM) is put forward. In this method, image quality metrics LUE-SSIM is firstly proposed, which utilizes the characteristics of human visual system (HVS) and structural similarity (SSIM) to make the metrics consistent with the human visual perception. Particle swarm optimization(PSO) algorithm which selects LUE-SSIM as the object function is used for optimizing the block size to construct the fused image. Experimental results on LIVE image database shows that LUE-SSIM outperform SSIM on Gaussian defocus blur images quality assessment. Besides, multi-focus image fusion experiment is carried out to verify our proposed image fusion method in terms of visual and quantitative evaluation. The results show that the proposed method performs better than some other block-based methods, especially in reducing the blocking-artifact of the fused image. And our method can effectively preserve the undistorted-edge details in focus region of the source images.

  1. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited)

    NASA Astrophysics Data System (ADS)

    Sio, H.; Frenje, J. A.; Katz, J.; Stoeckl, C.; Weiner, D.; Bedzyk, M.; Glebov, V.; Sorce, C.; Gatu Johnson, M.; Rinderknecht, H. G.; Zylstra, A. B.; Sangster, T. C.; Regan, S. P.; Kwan, T.; Le, A.; Simakov, A. N.; Taitano, W. T.; Chacòn, L.; Keenan, B.; Shah, R.; Sutcliffe, G.; Petrasso, R. D.

    2016-11-01

    A Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D3He, and T3He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, their time differences, and measurements of Ti(t) and Te(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.

  2. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sio, H.; Frenje, J. A.; Katz, J.

    Here, a Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D 3He, and T 3He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, theirmore » time differences, and measurements of T i(t) and T e(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.« less

  3. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited)

    DOE PAGES

    Sio, H.; Frenje, J. A.; Katz, J.; ...

    2016-09-14

    Here, a Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D 3He, and T 3He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, theirmore » time differences, and measurements of T i(t) and T e(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.« less

  4. Homonegativity among first and second generation migrants in Europe: the interplay of time trends, origin, destination and religion.

    PubMed

    Van der Bracht, Koen; Van de Putte, Bart

    2014-11-01

    Previous studies reported declining disapproval of homosexuality in Europe but have simultaneously identified the decelerating effect of religiosity and the higher disapproval of homosexuality among migrants. In this paper, we address disapproval of homosexuality among first- and second-generation migrants in Europe by assessing (1) period and cohort changes, (2) origin and destination country influences and (3) the role of religiosity. We develop a specific cross-classified multilevel design enabling us to simultaneously examine these influences. We test hypotheses using a subsample of the European Social Survey (ESS), containing 19,878 first and second generation migrants. The analyses lead to three important conclusions. Firstly, disapproval of homosexuality is declining both over time and across cohorts. Secondly, migrants conform to levels of disapproval of homosexuality among natives in the destination country, and this explains the decline among migrants over time. Thirdly, religion has a multi-faceted influence on levels of disapproval of homosexuality among migrants. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A straightforward, validated liquid chromatography coupled to tandem mass spectrometry method for the simultaneous detection of nine drugs of abuse and their metabolites in hair and nails.

    PubMed

    Cappelle, Delphine; De Doncker, Mireille; Gys, Celine; Krysiak, Kamelia; De Keukeleire, Steven; Maho, Walid; Crunelle, Cleo L; Dom, Geert; Covaci, Adrian; van Nuijs, Alexander L N; Neels, Hugo

    2017-04-01

    Hair and nails allow for a stable accumulation of compounds over time and retrospective investigation of past exposure and/or consumption. Owing to their long window of detection (weeks to months), analysis of these matrices can provide information complementary to blood and urine analysis or can be used in standalone when e.g. elimination from the body has already occurred. Drugs of abuse are often used together and, therefore, multi-analyte methods capable of detecting several substances and their metabolites in a single run are of importance. This paper presents the development and validation of a method based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for the simultaneous detection of nine drugs of abuse and their metabolites in hair and nails. We focused on a simple and straightforward sample preparation to reduce costs, and allow application in routine laboratory practice. Chromatographic and mass spectrometric parameters, such as column type, mobile phase, and multiple reaction monitoring transitions were optimized. The method was validated according to the European Medicine Agency guidelines with an assessment of specificity, limit of quantification (LOQ), linearity, accuracy, precision, carry-over, matrix effects, recovery, and process efficiency. Linearity ranged from 25 to 20 000 pg mg -1 hair and from 50 to 20 000 pg mg -1 nails, and the lowest calibration point achieved the requirements for the LOQ (25 pg mg -1 for hair and 50 pg mg -1 for nails). Although it was not the main focus of the article, the reliability of the method was proven through successful participation in a proficiency test, and by investigation of authentic hair and nail samples from self-reported drug users. In the future, the method should allow comparison between the two matrices to acquire an in-depth knowledge of nail analysis and to define cutoff levels for nail analysis, as they exist for hair. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mid-infrared multi-mode absorption spectroscopy, MUMAS, using difference frequency generation

    NASA Astrophysics Data System (ADS)

    Northern, Henry; O'Hagan, Seamus; Hamilton, Michelle L.; Ewart, Paul

    2015-03-01

    Multi-mode absorption spectroscopy of ammonia and methane at 3.3 μm has been demonstrated using a source of multi-mode mid-infrared radiation based on difference frequency generation. Multi-mode radiation at 1.56 μm from a diode-pumped Er:Yb:glass laser was mixed with a single-mode Nd:YAG laser at 1.06 μm in a periodically poled lithium niobate crystal to produce multi-mode radiation in the region of 3.3 μm. Detection, by direct multi-mode absorption, of NH3 and CH4 is reported for each species individually and also simultaneously in mixtures allowing measurements of partial pressures of each species.

  7. Probabilistic Volcanic Multi-Hazard Assessment at Somma-Vesuvius (Italy): coupling Bayesian Belief Networks with a physical model for lahar propagation

    NASA Astrophysics Data System (ADS)

    Tierz, Pablo; Woodhouse, Mark; Phillips, Jeremy; Sandri, Laura; Selva, Jacopo; Marzocchi, Warner; Odbert, Henry

    2017-04-01

    Volcanoes are extremely complex physico-chemical systems where magma formed at depth breaks into the planet's surface resulting in major hazards from local to global scales. Volcano physics are dominated by non-linearities, and complicated spatio-temporal interrelationships which make volcanic hazards stochastic (i.e. not deterministic) by nature. In this context, probabilistic assessments are required to quantify the large uncertainties related to volcanic hazards. Moreover, volcanoes are typically multi-hazard environments where different hazardous processes can occur whether simultaneously or in succession. In particular, explosive volcanoes are able to accumulate, through tephra fallout and Pyroclastic Density Currents (PDCs), large amounts of pyroclastic material into the drainage basins surrounding the volcano. This addition of fresh particulate material alters the local/regional hydrogeological equilibrium and increases the frequency and magnitude of sediment-rich aqueous flows, commonly known as lahars. The initiation and volume of rain-triggered lahars may depend on: rainfall intensity and duration; antecedent rainfall; terrain slope; thickness, permeability and hydraulic diffusivity of the tephra deposit; etc. Quantifying these complex interrelationships (and their uncertainties), in a tractable manner, requires a structured but flexible probabilistic approach. A Bayesian Belief Network (BBN) is a directed acyclic graph that allows the representation of the joint probability distribution for a set of uncertain variables in a compact and efficient way, by exploiting unconditional and conditional independences between these variables. Once constructed and parametrized, the BBN uses Bayesian inference to perform causal (e.g. forecast) and/or evidential reasoning (e.g. explanation) about query variables, given some evidence. In this work, we illustrate how BBNs can be used to model the influence of several variables on the generation of rain-triggered lahars and, finally, assess the probability of occurrence of lahars of different volumes. The information utilized to parametrize the BBNs includes: (1) datasets of lahar observations; (2) numerical modelling of tephra fallout and PDCs; and (3) literature data. The BBN framework provides an opportunity to quantitatively combine these different types of evidence and use them to derive a rational approach to lahar forecasting. Lastly, we couple the BBN assessments with a shallow-water physical model for lahar propagation in order to attach probabilities to the simulated hazard footprints. We develop our methodology at Somma-Vesuvius (Italy), an explosive volcano prone to rain-triggered lahars or debris flows whether right after an eruption or during inter-eruptive periods. Accounting for the variability in tephra-fallout and dense-PDC propagation and the main geomorphological features of the catchments around Somma-Vesuvius, the areas most likely of forming medium-large lahars are the flanks of the volcano and the Sarno mountains towards the east.

  8. Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Surendra, E-mail: surendra@barc.gov.in; Basu, Saibal

    2016-05-23

    X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependentmore » structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.« less

  9. Assessment of multi-frequency electromagnetic induction for determining soil moisture patterns at the hillslope scale

    NASA Astrophysics Data System (ADS)

    Tromp-van Meerveld, H. J.; McDonnell, J. J.

    2009-04-01

    SummaryHillslopes are fundamental landscape units, yet represent a difficult scale for measurements as they are well-beyond our traditional point-scale techniques. Here we present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the hillslope scale. We test the new multi-frequency GEM-300 for spatially distributed soil moisture measurements at the well-instrumented Panola hillslope. EM-based apparent conductivity measurements were linearly related to soil moisture measured with the Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7.290, 9.090, 11.250, and 14.010 kHz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the soil moisture measurements.

  10. The late Holocene kauri chronology: assessing the potential of a 4500-year record for palaeoclimate reconstruction

    NASA Astrophysics Data System (ADS)

    Boswijk, G.; Fowler, A. M.; Palmer, J. G.; Fenwick, P.; Hogg, A.; Lorrey, A.; Wunder, J.

    2014-04-01

    Millennial and multi-millennial tree-ring chronologies can provide useful proxy records of past climate, giving insight into a more complete range of natural climate variability prior to the 20th century. Since the 1980s a multi-millennial tree-ring chronology has been developed from kauri (Agathis australis) from the upper North Island, New Zealand. Previous work has demonstrated the sensitivity of kauri to the El Niño-Southern Oscillation (ENSO). Here we present recent additions and extensions to the late Holocene kauri chronology (LHKC), and assess the potential of a composite master chronology, AGAUc13, for palaeoclimate reconstruction. The updated composite kauri chronology now spans 4491 years (2488 BCE-2002 CE) and includes data from 18 modern sites, 25 archaeological sites, and 18 sub-fossil (swamp) kauri sites. Consideration of the composition and statistical quality of AGAUc13 suggests the LHKC has utility for palaeoclimate reconstruction but there are caveats. These include: (a) differences in character between the three assemblages including growth rate and sensitivity; (b) low sample depth and low statistical quality in the 10th-13th century CE, when the record transitions from modern and archaeological material to the swamp kauri; (c) a potential difference in amplitude of the signal in the swamp kauri; (d) a westerly bias in site distribution prior to 911 CE; (e) variable statistical quality across the entire record associated with variable replication; and (f) complex changes in sample depth and tree age and size which may influence centennial scale trends in the data. Further tree ring data are required to improve statistical quality, particularly in the first half of the second millennium CE.

  11. Direct Aerosol Radiative Forcing Based on Combined A-Train Observations: Towards All-sky Estimates and Attribution to Aerosol Type

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; Burton, S.; Livingston, J.; hide

    2014-01-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) measurements for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). We discuss some of the challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed. We also discuss a methodology for using the multi-sensor aerosol retrievals for aerosol type classification based on advanced clustering techniques. The combination of research results permits conclusions regarding the attribution of aerosol radiative forcing to aerosol type.

  12. GIS prospectivity mapping and 3D modeling validation for potential uranium deposit targets in Shangnan district, China

    NASA Astrophysics Data System (ADS)

    Xie, Jiayu; Wang, Gongwen; Sha, Yazhou; Liu, Jiajun; Wen, Botao; Nie, Ming; Zhang, Shuai

    2017-04-01

    Integrating multi-source geoscience information (such as geology, geophysics, geochemistry, and remote sensing) using GIS mapping is one of the key topics and frontiers in quantitative geosciences for mineral exploration. GIS prospective mapping and three-dimensional (3D) modeling can be used not only to extract exploration criteria and delineate metallogenetic targets but also to provide important information for the quantitative assessment of mineral resources. This paper uses the Shangnan district of Shaanxi province (China) as a case study area. GIS mapping and potential granite-hydrothermal uranium targeting were conducted in the study area combining weights of evidence (WofE) and concentration-area (C-A) fractal methods with multi-source geoscience information. 3D deposit-scale modeling using GOCAD software was performed to validate the shapes and features of the potential targets at the subsurface. The research results show that: (1) the known deposits have potential zones at depth, and the 3D geological models can delineate surface or subsurface ore-forming features, which can be used to analyze the uncertainty of the shape and feature of prospectivity mapping at the subsurface; (2) single geochemistry anomalies or remote sensing anomalies at the surface require combining the depth exploration criteria of geophysics to identify potential targets; and (3) the single or sparse exploration criteria zone with few mineralization spots at the surface has high uncertainty in terms of the exploration target.

  13. Analysis of Rapid Multi-Focal Zone ARFI Imaging

    PubMed Central

    Rosenzweig, Stephen; Palmeri, Mark; Nightingale, Kathryn

    2015-01-01

    Acoustic radiation force impulse (ARFI) imaging has shown promise for visualizing structure and pathology within multiple organs; however, because the contrast depends on the push beam excitation width, image quality suffers outside of the region of excitation. Multi-focal zone ARFI imaging has previously been used to extend the region of excitation (ROE), but the increased acquisition duration and acoustic exposure have limited its utility. Supersonic shear wave imaging has previously demonstrated that through technological improvements in ultrasound scanners and power supplies, it is possible to rapidly push at multiple locations prior to tracking displacements, facilitating extended depth of field shear wave sources. Similarly, ARFI imaging can utilize these same radiation force excitations to achieve tight pushing beams with a large depth of field. Finite element method simulations and experimental data are presented demonstrating that single- and rapid multi-focal zone ARFI have comparable image quality (less than 20% loss in contrast), but the multi-focal zone approach has an extended axial region of excitation. Additionally, as compared to single push sequences, the rapid multi-focal zone acquisitions improve the contrast to noise ratio by up to 40% in an example 4 mm diameter lesion. PMID:25643078

  14. Integrated photoacoustic, ultrasound and fluorescence platform for diagnostic medical imaging-proof of concept study with a tissue mimicking phantom.

    PubMed

    James, Joseph; Murukeshan, Vadakke Matham; Woh, Lye Sun

    2014-07-01

    The structural and molecular heterogeneities of biological tissues demand the interrogation of the samples with multiple energy sources and provide visualization capabilities at varying spatial resolution and depth scales for obtaining complementary diagnostic information. A novel multi-modal imaging approach that uses optical and acoustic energies to perform photoacoustic, ultrasound and fluorescence imaging at multiple resolution scales from the tissue surface and depth is proposed in this paper. The system comprises of two distinct forms of hardware level integration so as to have an integrated imaging system under a single instrumentation set-up. The experimental studies show that the system is capable of mapping high resolution fluorescence signatures from the surface, optical absorption and acoustic heterogeneities along the depth (>2cm) of the tissue at multi-scale resolution (<1µm to <0.5mm).

  15. Transforming the legacies of childhood trauma in couple and family therapy.

    PubMed

    Basham, Kathryn

    2004-01-01

    A multi-theoretical couple/family therapy clinical social work practice model synthesizes various social, family, trauma, and psychodynamic theories to inform a biopsychosocial assessment that guides clinical interventions. The client population involves adult partners who have negotiated the impact of childhood trauma, i.e., physical, sexual, and emotional abuses, including culturally sanctioned trauma. Couples may also be dealing with the aftermath of acute trauma related to interpersonal violence, political conflict, and/or the dislocations related to refugee or new immigrant status. Clinical examples demonstrate the usefulness of the model as well as contraindications when active physical violence is present. The construct of resilience remains a central focus in assessment and treatment. Specific attention to cultural and racial diversity enriches both assessment and treatment interventions with these high-risk couples and families. This practice model will be explicated in depth in an upcoming publication from Columbia University Press titled Transforming the Legacies of Trauma in Couple Therapy.

  16. On the optimization of electromagnetic geophysical data: Application of the PSO algorithm

    NASA Astrophysics Data System (ADS)

    Godio, A.; Santilano, A.

    2018-01-01

    Particle Swarm optimization (PSO) algorithm resolves constrained multi-parameter problems and is suitable for simultaneous optimization of linear and nonlinear problems, with the assumption that forward modeling is based on good understanding of ill-posed problem for geophysical inversion. We apply PSO for solving the geophysical inverse problem to infer an Earth model, i.e. the electrical resistivity at depth, consistent with the observed geophysical data. The method doesn't require an initial model and can be easily constrained, according to external information for each single sounding. The optimization process to estimate the model parameters from the electromagnetic soundings focuses on the discussion of the objective function to be minimized. We discuss the possibility to introduce in the objective function vertical and lateral constraints, with an Occam-like regularization. A sensitivity analysis allowed us to check the performance of the algorithm. The reliability of the approach is tested on synthetic, real Audio-Magnetotelluric (AMT) and Long Period MT data. The method appears able to solve complex problems and allows us to estimate the a posteriori distribution of the model parameters.

  17. Noncontact blood perfusion mapping in clinical applications

    NASA Astrophysics Data System (ADS)

    Iakovlev, Dmitry; Dwyer, Vincent; Hu, Sijung; Silberschmidt, Vadim

    2016-04-01

    Non-contact imaging photoplethysmography (iPPG) to detect pulsatile blood microcirculation in tissue has been selected as a successor to low spatial resolution and slow scanning blood perfusion techniques currently employed by clinicians. The proposed iPPG system employs a novel illumination source constructed of multiple high power LEDs with narrow spectral emission, which are temporally modulated and synchronised with a high performance sCMOS sensor. To ensure spectrum stability and prevent thermal wavelength drift due to junction temperature variations, each LED features a custom-designed thermal management system to effectively dissipate generated heat and auto-adjust current flow. The use of a multi-wavelength approach has resulted in simultaneous microvascular perfusion monitoring at various tissue depths, which is an added benefit for specific clinical applications. A synchronous detection algorithm to extract weak photoplethysmographic pulse-waveforms demonstrated robustness and high efficiency when applied to even small regions of 5 mm2. The experimental results showed evidences that the proposed system could achieve noticeable accuracy in blood perfusion monitoring by creating complex amplitude and phase maps for the tissue under examination.

  18. Laser Digital Cinema

    NASA Astrophysics Data System (ADS)

    Takeuchi, Eric B.; Flint, Graham W.; Bergstedt, Robert; Solone, Paul J.; Lee, Dicky; Moulton, Peter F.

    2001-03-01

    Electronic cinema projectors are being developed that use a digital micromirror device (DMDTM) to produce the image. Photera Technologies has developed a new architecture that produces truly digital imagery using discrete pulse trains of red, green, and blue light in combination with a DMDTM where in the number of pulses that are delivered to the screen during a given frame can be defined in a purely digital fashion. To achieve this, a pulsed RGB laser technology pioneered by Q-Peak is combined with a novel projection architecture that we refer to as Laser Digital CameraTM. This architecture provides imagery wherein, during the time interval of each frame, individual pixels on the screen receive between zero and 255 discrete pulses of each color; a circumstance which yields 24-bit color. Greater color depth, or increased frame rate is achievable by increasing the pulse rate of the laser. Additionally, in the context of multi-screen theaters, a similar architecture permits our synchronously pulsed RGB source to simultaneously power three screens in a color sequential manner; thereby providing an efficient use of photons, together with the simplifications which derive from using a single DMDTM chip in each projector.

  19. Deglacial changes in oxygen minimum zones - the roles of physics, phytoplankton and ... fish? (Invited)

    NASA Astrophysics Data System (ADS)

    Galbraith, E. D.; bianchi, D.

    2013-12-01

    A global network of marine multi-proxy sediment records has shown that during the last deglaciation, hypoxic waters of the northern Indo-Pacific expanded, the oxygen minimum zones intensified, and denitrification within the oxygen minima accelerated. These changes would have impacted the fish and zooplankton that migrate on a daily basis down to the upper margins of hypoxic, or even suboxic waters, presumably in order to hide from predators. But the reasons behind these observed changes remain uncertain. Physical circulation changes could have altered the supply rate of oxygen to the subsurface, simultaneously modifying the resupply of nutrients to the ocean surface, while changes in dust deposition could have changed the iron nutrition of phytoplankton, further modifying export fluxes. Changes in respiration patterns could also have played an important part, either by altering the sinking depth of organic particles, or - perhaps - through changes in the respiration patterns of migrating animals, which could have acted as a strong feedback on any of the other changes. We show model simulations that explore the possible roles of these different mechanisms in natural oceanic oxygenation changes of the Quaternary.

  20. Multi-window PIV measurements around a breathing manikin

    NASA Astrophysics Data System (ADS)

    Marr, David

    2005-11-01

    The presented work includes multi-scale measurements via a stereo article Image Velocimetry (PIV) system to view a pair of two-component windows of dissimilar scale using a varied focal length. These measurements are taken in the breathing zone of an isothermal breathing manikin (from mouth) in an environmental chamber of average office cubicle dimensions without ventilation and are analogous to an oscillatory jet. From these phase-averaged measurements, we can extract information concerning length scales, turbulence quantities and low dimensional information in order to both determine correlation between data at different length scales as well as continuing research in exposure assessment for the indoor environment. In this talk we will present these turbulence quantities and interpret their influence on the breathing zone. While the largest scale is that of the room itself, we find that the relevant spatial scales associated with the breathing zone are much lower in magnitude. In future experiments, we will expand the multi window PIV technique to include PIV window configured to obtain scales of order the cubicle simultaneously with those of the breathing zone. This will aid in our understanding of the combined impact of these multiple scales on occupant exposure in the indoor environment.

  1. Preliminary Assessment of Optimal Longitudinal-Mode Control for Drag Reduction through Distributed Aeroelastic Shaping

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Nguyen, Nhan; Lohn, Jason; Dolan, John

    2014-01-01

    The emergence of advanced lightweight materials is resulting in a new generation of lighter, flexible, more-efficient airframes that are enabling concepts for active aeroelastic wing-shape control to achieve greater flight efficiency and increased safety margins. These elastically shaped aircraft concepts require non-traditional methods for large-scale multi-objective flight control that simultaneously seek to gain aerodynamic efficiency in terms of drag reduction while performing traditional command-tracking tasks as part of a complete guidance and navigation solution. This paper presents results from a preliminary study of a notional multi-objective control law for an aeroelastic flexible-wing aircraft controlled through distributed continuous leading and trailing edge control surface actuators. This preliminary study develops and analyzes a multi-objective control law derived from optimal linear quadratic methods on a longitudinal vehicle dynamics model with coupled aeroelastic dynamics. The controller tracks commanded attack-angle while minimizing drag and controlling wing twist and bend. This paper presents an overview of the elastic aircraft concept, outlines the coupled vehicle model, presents the preliminary control law formulation and implementation, presents results from simulation, provides analysis, and concludes by identifying possible future areas for research

  2. Spectral inversion of frequency-domain IP data obtained in Haenam, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, B.; Nam, M. J.; Son, J. S.

    2017-12-01

    Spectral induced polarization (SIP) method using a range of source frequencies have been performed for not only exploring minerals resources, but also engineering or environmental application. SIP interpretation first makes inversion of individual frequency data to obtain complex resistivity structures, which will further analyzed employing Cole-Cole model to explain the frequency-dependent characteristics. However, due to the difficulty in fitting Cole-Cole model, there is a movement to interpret complex resistivity structure inverted only from a single frequency data: that is so-called "complex resistivity survey". Further, simultaneous inversion of multi-frequency SIP data, rather than making a single frequency SIP data, has been studied to improve ambiguity and artefacts of independent single frequency inversion in obtaining a complex resistivity structure, even though the dispersion characteristics of complex resistivity with respect to source frequency. Employing the simultaneous inversion method, this study makes inversion of field SIP data obtained over epithermal mineralized area, Haenam, in the southernmost tip of South Korea. The area has a polarizable structure because of extensive hydrothermal alteration, gold-silver deposits. After the inversion, we compare between inversion results considering multi-frequency data and single frequency data set to evaluate the performance of simultaneous inversion of multi-frequency SIP data.

  3. Skin contamination dosimeter

    DOEpatents

    Hamby, David M [Corvallis, OR; Farsoni, Abdollah T [Corvallis, OR; Cazalas, Edward [Corvallis, OR

    2011-06-21

    A technique and device provides absolute skin dosimetry in real time at multiple tissue depths simultaneously. The device uses a phoswich detector which has multiple scintillators embedded at different depths within a non-scintillating material. A digital pulse processor connected to the phoswich detector measures a differential distribution (dN/dH) of count rate N as function of pulse height H for signals from each of the multiple scintillators. A digital processor computes in real time from the differential count-rate distribution for each of multiple scintillators an estimate of an ionizing radiation dose delivered to each of multiple depths of skin tissue corresponding to the multiple scintillators embedded at multiple corresponding depths within the non-scintillating material.

  4. Heat flow vs. atmospheric greenhouse on early Mars

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Postawko, S. E.

    1991-01-01

    Researchers derived a quantitative relationship between the effectiveness of an atmospheric greenhouse and internal heat flow in producing the morphological differences between earlier and later Martian terrains. The derivation is based on relationships previously derived by other researchers. The reasoning may be stated as follows: the CO2 mean residence time in the Martian atmosphere is almost certainly much shorter than the total time span over which early climate differences are thought to have been sustained. Therefore, recycling of previously degassed CO2 quickly becomes more important than the ongoing supply of juvenile CO2. If so, then the atmospheric CO2 pressure, and thereby the surface temperature, may be approximated mathematically as a function of the total degassed CO2 in the atmosphere plus buried material and the ratio of the atmospheric and regolith mean residence times. The latter ratio can also be expressed as a function of heat flow. Hence, it follows that the surface temperature may be expressed as a function of heat flow and the total amount of available CO2. However, the depth to the water table can simultaneously be expressed as a function of heat flow and the surface temperature (the boundary condition). Therefore, for any given values of total available CO2 and regolith conductivity, there exist coupled independent equations which relate heat flow, surface temperature, and the depth to the water table. This means we can now derive simultaneous values of surface temperature and the depth of the water table for any value of the heat flow. The derived relationship is used to evaluate the relative importance of the atmospheric greenhouse effect and the internal regolith thermal gradient in producing morphological changes for any value of the heat flow, and to assess the absolute importance of each of the values of the heat flow which are thought to be reasonable on independent geophysical grounds.

  5. Effectiveness of Social Media for Communicating Health Messages in Ghana

    ERIC Educational Resources Information Center

    Bannor, Richard; Asare, Anthony Kwame; Bawole, Justice Nyigmah

    2017-01-01

    Purpose: The purpose of this paper is to develop an in-depth understanding of the effectiveness, evolution and dynamism of the current health communication media used in Ghana. Design/methodology/approach: This paper uses a multi-method approach which utilizes a combination of qualitative and quantitative approaches. In-depth interviews are…

  6. Unsupervised learning of contextual constraints in neural networks for simultaneous visual processing of multiple objects

    NASA Astrophysics Data System (ADS)

    Marshall, Jonathan A.

    1992-12-01

    A simple self-organizing neural network model, called an EXIN network, that learns to process sensory information in a context-sensitive manner, is described. EXIN networks develop efficient representation structures for higher-level visual tasks such as segmentation, grouping, transparency, depth perception, and size perception. Exposure to a perceptual environment during a developmental period serves to configure the network to perform appropriate organization of sensory data. A new anti-Hebbian inhibitory learning rule permits superposition of multiple simultaneous neural activations (multiple winners), while maintaining contextual consistency constraints, instead of forcing winner-take-all pattern classifications. The activations can represent multiple patterns simultaneously and can represent uncertainty. The network performs parallel parsing, credit attribution, and simultaneous constraint satisfaction. EXIN networks can learn to represent multiple oriented edges even where they intersect and can learn to represent multiple transparently overlaid surfaces defined by stereo or motion cues. In the case of stereo transparency, the inhibitory learning implements both a uniqueness constraint and permits coactivation of cells representing multiple disparities at the same image location. Thus two or more disparities can be active simultaneously without interference. This behavior is analogous to that of Prazdny's stereo vision algorithm, with the bonus that each binocular point is assigned a unique disparity. In a large implementation, such a NN would also be able to represent effectively the disparities of a cloud of points at random depths, like human observers, and unlike Prazdny's method

  7. Guided fluorescence diagnosis of childhood caries: preliminary measures correlate with depth of carious decay

    NASA Astrophysics Data System (ADS)

    Timoshchuk, Mari-Alina; Zhang, Liang; Dickinson, Brian A.; Ridge, Jeremy S.; Kim, Amy S.; Baltuck, Camille T.; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.

    2014-02-01

    The current rise in childhood caries worldwide has increased the demand for portable technologies that can quickly and accurately detect and diagnose early stage carious lesions. These lesions, if identified at an early stage, can be reversed with remineralization treatments, education, and improvements in home care. A multi-modal optical prototype for detecting and diagnosing occlusal caries demineralization in vivo has been developed and pilot tested. The device uses a 405-nm laser as a scanned illumination source to obtain high resolution and high surface contrast reflectance images, which allows the user to quickly image and screen for any signs of demineralized enamel. When a suspicious region is located, the device can be switched to perform dual laser fluorescence spectroscopy using 405-nm and 532-nm laser excitations. These spectra are used to compute an auto-fluorescence (AF) ratio of the suspicious region and the percent difference of AF ratios from a healthy region of the same tooth. The device was tested on 7 children's teeth in vivo with clinically diagnosed carious lesions. Lesion depth was then visually estimated from the video image using the 405-nm scanned light source, and within a month the maximum drill depth was assessed by a clinician. The researcher and clinicians were masked from previous measurements in a blinded study protocol. Preliminary results show that the ratiometric percent difference measurement of the AF spectrum of the tooth correlates with the severity of the demineralization as assessed by the clinician after drilling.

  8. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo.

    PubMed

    Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu

    2018-03-02

    Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods.

  9. Highly Resolved Intravital Striped-illumination Microscopy of Germinal Centers

    PubMed Central

    Andresen, Volker; Sporbert, Anje

    2014-01-01

    Monitoring cellular communication by intravital deep-tissue multi-photon microscopy is the key for understanding the fate of immune cells within thick tissue samples and organs in health and disease. By controlling the scanning pattern in multi-photon microscopy and applying appropriate numerical algorithms, we developed a striped-illumination approach, which enabled us to achieve 3-fold better axial resolution and improved signal-to-noise ratio, i.e. contrast, in more than 100 µm tissue depth within highly scattering tissue of lymphoid organs as compared to standard multi-photon microscopy. The acquisition speed as well as photobleaching and photodamage effects were similar to standard photo-multiplier-based technique, whereas the imaging depth was slightly lower due to the use of field detectors. By using the striped-illumination approach, we are able to observe the dynamics of immune complex deposits on secondary follicular dendritic cells – on the level of a few protein molecules in germinal centers. PMID:24748007

  10. Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Ndiaye, C.; Zerrad, M.; Lereu, A. L.; Roche, R.; Dumas, Ph.; Lemarchand, F.; Amra, C.

    2013-09-01

    Dielectric optical thin films, as opposed to metallic, have been very sparsely explored as good candidates for absorption-based optical field enhancement. In such materials, the low imaginary part of the refractive index implies that absorption processes are usually not predominant. This leads to dielectric-based optical resonances mainly via waveguiding modes. We show here that when properly designed, a multi-layered dielectric thin films stack can give rise to optical resonances linked to total absorption. We report here, on such dielectric stack designed to possess a theoretical optical field enhancement above 1000. Using photon scanning tunneling microscopy, we experimentally evaluate the resulting field enhancement of the stack as well as the associated penetration depth. We thus demonstrate the capability of multi-dielectric stacks in generating giant optical field with tunable penetration depth (down to few dozens of nm).

  11. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo

    PubMed Central

    Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu

    2018-01-01

    Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods. PMID:29498703

  12. Identifying Differential Item Functioning in Multi-Stage Computer Adaptive Testing

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Lai, Hollis; Li, Johnson

    2013-01-01

    The purpose of this study is to evaluate the performance of CATSIB (Computer Adaptive Testing-Simultaneous Item Bias Test) for detecting differential item functioning (DIF) when items in the matching and studied subtest are administered adaptively in the context of a realistic multi-stage adaptive test (MST). MST was simulated using a 4-item…

  13. A multi-pathogen selective enrichment broth for simultaneous growth of Salmonella enteria, Escherichia coli O157:H7 and Shigella flexneri

    USDA-ARS?s Scientific Manuscript database

    Salmonella, Shigella, and Escherichia coli O157:H7 contaminate similar types of food and all three can cause foodborne disease. Traditional microbiological enrichment broths to detect these pathogens are different in terms of their composition, which limits the application of multi-pathogen detectio...

  14. The California All-sky Meteor Surveillance (CAMS) System

    NASA Astrophysics Data System (ADS)

    Gural, P. S.

    2011-01-01

    A unique next generation multi-camera, multi-site video meteor system is being developed and deployed in California to provide high accuracy orbits of simultaneously captured meteors. Included herein is a description of the goals, concept of operations, hardware, and software development progress. An appendix contains a meteor camera performance trade study made for video systems circa 2010.

  15. A Multi-Week Behavioral Sampling Tag for Sound Effects Studies: Design Trade-Offs and Prototype Evaluation

    DTIC Science & Technology

    2014-09-30

    to establish the performance of algorithms detecting dives, strokes , clicks, respiration and gait changes. We have also found that a combination of...whale click count, total click count, vocal duration, SOC2 depth, EOC3 depth) Descent 40 bits (duration, vertical speed, stroke count 0...100 m, stroke count 100-400 m, OBDA4, sum sr35) Bottom 26 bits (movement index6, OBDA, jerk events7, median jerk depth) Ascent

  16. Multi-Robot FastSLAM for Large Domains

    DTIC Science & Technology

    2007-03-01

    Derr, D. Fox, A.B. Cremers , Integrating global position estimation and position tracking for mobile robots: The dynamic markov localization approach...Intelligence (AAAI), 2000. 53. Andrew J. Davison and David W. Murray. Simultaneous Localization and Map- Building Using Active Vision. IEEE...Wyeth, Michael Milford and David Prasser. A Modified Particle Filter for Simultaneous Robot Localization and Landmark Tracking in an Indoor

  17. Multi-Target Tracking via Mixed Integer Optimization

    DTIC Science & Technology

    2016-05-13

    solving these two problems separately, however few algorithms attempt to solve these simultaneously and even fewer utilize optimization. In this paper we...introduce a new mixed integer optimization (MIO) model which solves the data association and trajectory estimation problems simultaneously by minimizing...Kalman filter [5], which updates the trajectory estimates before the algorithm progresses forward to the next scan. This process repeats sequentially

  18. Distribution and genetic diversity of the microorganisms in the biofilter for the simultaneous removal of arsenic, iron and manganese from simulated groundwater.

    PubMed

    Yang, Liu; Li, Xiangkun; Chu, Zhaorui; Ren, Yuhui; Zhang, Jie

    2014-03-01

    A biofilter was developed in this study, which showed an excellent performance with the simultaneous removal of AsIII from 150 to 10mg L(-1) during biological iron and manganese oxidation. The distribution and genetic diversity of the microorganisms along the depth of the biofilter have been investigated using DGGE. Results suggested that Iron oxidizing bacteria (IOB, such as Gallionella, Leptothrix), Manganese oxidizing bacteria (MnOB, such as Leptothrix, Pseudomonas, Hyphomicrobium, Arthrobacter) and AsIII-oxidizing bacteria (AsOB, such as Alcaligenes, Pseudomonas) are dominant in the biofilter. The spatial distribution of IOB, MnOB and AsOB at different depths of the biofilter determined the removal zone of FeII, MnII and AsIII, which site at the depths of 20, 60 and 60cm, respectively, and the corresponding removal efficiencies were 86%, 84% and 87%, respectively. This process shows great potential to the treatment of groundwater contaminated with iron, manganese and arsenic due to its stable performance and significant cost-savings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. [Personal computer-based computer monitoring system of the anesthesiologist (2-year experience in development and use)].

    PubMed

    Buniatian, A A; Sablin, I N; Flerov, E V; Mierbekov, E M; Broĭtman, O G; Shevchenko, V V; Shitikov, I I

    1995-01-01

    Creation of computer monitoring systems (CMS) for operating rooms is one of the most important spheres of personal computer employment in anesthesiology. The authors developed a PC RS/AT-based CMS and effectively used it for more than 2 years. This system permits comprehensive monitoring in cardiosurgical operations by real time processing the values of arterial and central venous pressure, pressure in the pulmonary artery, bioelectrical activity of the brain, and two temperature values. Use of this CMS helped appreciably improve patients' safety during surgery. The possibility to assess brain function by computer monitoring the EEF simultaneously with central hemodynamics and body temperature permit the anesthesiologist to objectively assess the depth of anesthesia and to diagnose cerebral hypoxia. Automated anesthesiological chart issued by the CMS after surgery reliably reflects the patient's status and the measures taken by the anesthesiologist.

  20. Multi-object Detection and Discrimination Algorithms

    DTIC Science & Technology

    2015-03-26

    with  an   algorithm  similar  to  a  depth-­‐first   search .   This  stage  of  the   algorithm  is  O(CN).  From...Multi-object Detection and Discrimination Algorithms This document contains an overview of research and work performed and published at the University...of Florida from October 1, 2009 to October 31, 2013 pertaining to proposal 57306CS: Multi-object Detection and Discrimination Algorithms

  1. Information Retrieval from SAGE II and MFRSR Multi-Spectral Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Direct beam spectral extinction measurements of solar radiation contain important information on atmospheric composition in a form that is essentially free from multiple scattering contributions that otherwise tend to complicate the data analysis and information retrieval. Such direct beam extinction measurements are available from the solar occultation satellite-based measurements made by the Stratospheric and Aerosol Gas Experiment (SAGE II) instrument and by ground-based Multi-Filter Shadowband Radiometers (MFRSRs). The SAGE II data provide cross-sectional slices of the atmosphere twice per orbit at seven wavelengths between 385 and 1020 nm with approximately 1 km vertical resolution, while the MFRSR data provide atmospheric column measurements at six wavelengths between 415 and 940 nm but at one minute time intervals. We apply the same retrieval technique of simultaneous least-squares fit to the observed spectral extinctions to retrieve aerosol optical depth, effective radius and variance, and ozone, nitrogen dioxide, and water vapor amounts from the SAGE II and MFRSR measurements. The retrieval technique utilizes a physical model approach based on laboratory measurements of ozone and nitrogen dioxide extinction, line-by-line and numerical k-distribution calculations for water vapor absorption, and Mie scattering constraints on aerosol spectral extinction properties. The SAGE II measurements have the advantage of being self-calibrating in that deep space provides an effective zero point for the relative spectral extinctions. The MFRSR measurements require periodic clear-day Langley regression calibration events to maintain accurate knowledge of instrument calibration.

  2. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation.

    PubMed

    Kamnitsas, Konstantinos; Ledig, Christian; Newcombe, Virginia F J; Simpson, Joanna P; Kane, Andrew D; Menon, David K; Rueckert, Daniel; Glocker, Ben

    2017-02-01

    We propose a dual pathway, 11-layers deep, three-dimensional Convolutional Neural Network for the challenging task of brain lesion segmentation. The devised architecture is the result of an in-depth analysis of the limitations of current networks proposed for similar applications. To overcome the computational burden of processing 3D medical scans, we have devised an efficient and effective dense training scheme which joins the processing of adjacent image patches into one pass through the network while automatically adapting to the inherent class imbalance present in the data. Further, we analyze the development of deeper, thus more discriminative 3D CNNs. In order to incorporate both local and larger contextual information, we employ a dual pathway architecture that processes the input images at multiple scales simultaneously. For post-processing of the network's soft segmentation, we use a 3D fully connected Conditional Random Field which effectively removes false positives. Our pipeline is extensively evaluated on three challenging tasks of lesion segmentation in multi-channel MRI patient data with traumatic brain injuries, brain tumours, and ischemic stroke. We improve on the state-of-the-art for all three applications, with top ranking performance on the public benchmarks BRATS 2015 and ISLES 2015. Our method is computationally efficient, which allows its adoption in a variety of research and clinical settings. The source code of our implementation is made publicly available. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Toward Interactive Scenario Analysis and Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayle, Thomas R.; Summers, Kenneth Lee; Jungels, John

    2015-01-01

    As Modeling and Simulation (M&S) tools have matured, their applicability and importance have increased across many national security challenges. In particular, they provide a way to test how something may behave without the need to do real world testing. However, current and future changes across several factors including capabilities, policy, and funding are driving a need for rapid response or evaluation in ways that many M&S tools cannot address. Issues around large data, computational requirements, delivery mechanisms, and analyst involvement already exist and pose significant challenges. Furthermore, rising expectations, rising input complexity, and increasing depth of analysis will only increasemore » the difficulty of these challenges. In this study we examine whether innovations in M&S software coupled with advances in ''cloud'' computing and ''big-data'' methodologies can overcome many of these challenges. In particular, we propose a simple, horizontally-scalable distributed computing environment that could provide the foundation (i.e. ''cloud'') for next-generation M&S-based applications based on the notion of ''parallel multi-simulation''. In our context, the goal of parallel multi- simulation is to consider as many simultaneous paths of execution as possible. Therefore, with sufficient resources, the complexity is dominated by the cost of single scenario runs as opposed to the number of runs required. We show the feasibility of this architecture through a stable prototype implementation coupled with the Umbra Simulation Framework [6]. Finally, we highlight the utility through multiple novel analysis tools and by showing the performance improvement compared to existing tools.« less

  4. Multi-hazard risk analysis using the FP7 RASOR Platform

    NASA Astrophysics Data System (ADS)

    Koudogbo, Fifamè N.; Duro, Javier; Rossi, Lauro; Rudari, Roberto; Eddy, Andrew

    2014-10-01

    Climate change challenges our understanding of risk by modifying hazards and their interactions. Sudden increases in population and rapid urbanization are changing exposure to risk around the globe, making impacts harder to predict. Despite the availability of operational mapping products, there is no single tool to integrate diverse data and products across hazards, update exposure data quickly and make scenario-based predictions to support both short and long-term risk-related decisions. RASOR (Rapid Analysis and Spatialization Of Risk) will develop a platform to perform multi-hazard risk analysis for the full cycle of disaster management, including targeted support to critical infrastructure monitoring and climate change impact assessment. A scenario-driven query system simulates future scenarios based on existing or assumed conditions and compares them with historical scenarios. RASOR will thus offer a single work environment that generates new risk information across hazards, across data types (satellite EO, in-situ), across user communities (global, local, climate, civil protection, insurance, etc.) and across the world. Five case study areas are considered within the project, located in Haiti, Indonesia, Netherlands, Italy and Greece. Initially available over those demonstration areas, RASOR will ultimately offer global services to support in-depth risk assessment and full-cycle risk management.

  5. Assessment of professionalism: a consolidation of current thinking.

    PubMed

    Goldie, John

    2013-01-01

    Professionalism has become a hot topic in medical education. Professionalism needs to be assessed if it is to be viewed as both positive and relevant. The assessment of professionalism is an evolving field. This review aims to consolidate current thinking. Assessment of professionalism has progressed from an initial focus on the development and attainment of professional identity, through identifying areas of deficiency, to the attainment of a set of identifiable positive attributes and behaviours. It is now beginning to recognise the challenge of assessing a multi-dimensional construct, looking beyond the measurement of behaviour to embrace a diversity of approaches. Professionalism should be assessed longitudinally. It requires combinations of different approaches, assessing professionalism at individual, interpersonal and societal/institutional levels. Increasing the depth and the quality of reliability and validity of existing programmes in various contexts may be more appropriate than concentrating on developing new instruments. Increasing the number of tests and the number of relevant contexts will increase the reliability of the result. Similarly increasing the number of observers increases reliability. Feedback, encouraging reflection, can promote change in behaviour and identity formation.

  6. Multi-depth valved microfluidics for biofilm segmentation

    NASA Astrophysics Data System (ADS)

    Meyer, M. T.; Subramanian, S.; Kim, Y. W.; Ben-Yoav, H.; Gnerlich, M.; Gerasopoulos, K.; Bentley, W. E.; Ghodssi, R.

    2015-09-01

    Bacterial biofilms present a societal challenge, as they occur in the majority of infections but are highly resistant to both immune mechanisms and traditional antibiotics. In the pursuit of better understanding biofilm biology for developing new treatments, there is a need for streamlined, controlled platforms for biofilm growth and evaluation. We leverage advantages of microfluidics to develop a system in which biofilms are formed and sectioned, allowing parallel assays on multiple sections of one biofilm. A microfluidic testbed with multiple depth profiles was developed to accommodate biofilm growth and sectioning by hydraulically actuated valves. In realization of the platform, a novel fabrication technique was developed for creating multi-depth microfluidic molds using sequentially patterned photoresist separated and passivated by conformal coatings using atomic layer deposition. Biofilm thickness variation within three separately tested devices was less than 13% of the average thickness in each device, while variation between devices was 23% of the average thickness. In a demonstration of parallel experiments performed on one biofilm within one device, integrated valves were used to trisect the uniform biofilms with one section maintained as a control, and two sections exposed to different concentrations of sodium dodecyl sulfate. The technology presented here for multi-depth microchannel fabrication can be used to create a host of microfluidic devices with diverse architectures. While this work focuses on one application of such a device in biofilm sectioning for parallel experimentation, the tailored architectures enabled by the fabrication technology can be used to create devices that provide new biological information.

  7. Validation of OMI erythemal doses with multi-sensor ground-based measurements in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Zempila, Melina Maria; Fountoulakis, Ilias; Taylor, Michael; Kazadzis, Stelios; Arola, Antti; Koukouli, Maria Elissavet; Bais, Alkiviadis; Meleti, Chariklia; Balis, Dimitrios

    2018-06-01

    The aim of this study is to validate the Ozone Monitoring Instrument (OMI) erythemal dose rates using ground-based measurements in Thessaloniki, Greece. In the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, a Yankee Environmental System UVB-1 radiometer measures the erythemal dose rates every minute, and a Norsk Institutt for Luftforskning (NILU) multi-filter radiometer provides multi-filter based irradiances that were used to derive erythemal dose rates for the period 2005-2014. Both these datasets were independently validated against collocated UV irradiance spectra from a Brewer MkIII spectrophotometer. Cloud detection was performed based on measurements of the global horizontal radiation from a Kipp & Zonen pyranometer and from NILU measurements in the visible range. The satellite versus ground observation validation was performed taking into account the effect of temporal averaging, limitations related to OMI quality control criteria, cloud conditions, the solar zenith angle and atmospheric aerosol loading. Aerosol optical depth was also retrieved using a collocated CIMEL sunphotometer in order to assess its impact on the comparisons. The effect of total ozone columns satellite versus ground-based differences on the erythemal dose comparisons was also investigated. Since most of the public awareness alerts are based on UV Index (UVI) classifications, an analysis and assessment of OMI capability for retrieving UVIs was also performed. An overestimation of the OMI erythemal product by 3-6% and 4-8% with respect to ground measurements is observed when examining overpass and noontime estimates respectively. The comparisons revealed a relatively small solar zenith angle dependence, with the OMI data showing a slight dependence on aerosol load, especially at high aerosol optical depth values. A mean underestimation of 2% in OMI total ozone columns under cloud-free conditions was found to lead to an overestimation in OMI erythemal doses of 1-5%.While OMI overestimated the erythemal dose rates over the range of cloudiness conditions examined, its UVIs were found to be reliable for the purpose of characterizing the ambient UV radiation impact.

  8. ZEUS-2: a second generation submillimeter grating spectrometer for exploring distant galaxies

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Irwin, Kent D.; Cho, Hsiao-Mei; Halpern, Mark

    2010-07-01

    ZEUS-2, the second generation (z)Redshift and Early Universe Spectrometer, like its predecessor is a moderate resolution (R~1000) long-slit, echelle grating spectrometer optimized for the detection of faint, broad lines from distant galaxies. It is designed for studying star-formation across cosmic time. ZEUS-2 employs three TES bolometer arrays (555 pixels total) to deliver simultaneous, multi-beam spectra in up to 4 submillimeter windows. The NIST Boulder-built arrays operate at ~100mK and are readout via SQUID multiplexers and the Multi-Channel Electronics from the University of British Columbia. The instrument is cooled via a pulse-tube cooler and two-stage ADR. Various filter configurations give ZEUS-2 access to 7 different telluric windows from 200 to 850 micron enabling the simultaneous mapping of lines from extended sources or the simultaneous detection of the 158 micron [CII] line and the [NII] 122 or 205 micron lines from z = 1-2 galaxies. ZEUS-2 is designed for use on the CSO, APEX and possibly JCMT.

  9. The new frontiers of multimodality and multi-isotope imaging

    NASA Astrophysics Data System (ADS)

    Behnam Azad, Babak; Nimmagadda, Sridhar

    2014-06-01

    Technological advances in imaging systems and the development of target specific imaging tracers has been rapidly growing over the past two decades. Recent progress in "all-in-one" imaging systems that allow for automated image coregistration has significantly added to the growth of this field. These developments include ultra high resolution PET and SPECT scanners that can be integrated with CT or MR resulting in PET/CT, SPECT/CT, SPECT/PET and PET/MRI scanners for simultaneous high resolution high sensitivity anatomical and functional imaging. These technological developments have also resulted in drastic enhancements in image quality and acquisition time while eliminating cross compatibility issues between modalities. Furthermore, the most cutting edge technology, though mostly preclinical, also allows for simultaneous multimodality multi-isotope image acquisition and image reconstruction based on radioisotope decay characteristics. These scientific advances, in conjunction with the explosion in the development of highly specific multimodality molecular imaging agents, may aid in realizing simultaneous imaging of multiple biological processes and pave the way towards more efficient diagnosis and improved patient care.

  10. Laboratory experiments on simultaneous removal of K and P from synthetic and real urine for nutrient recycle by crystallization of magnesium-potassium-phosphate-hexahydrate in a draft tube and baffle reactor.

    PubMed

    Xu, Kangning; Wang, Chengwen; Wang, Xiaoxue; Qian, Yi

    2012-06-01

    The simultaneous removal of K and P from urine for nutrient recycling by crystallization of magnesium potassium phosphate hexahydrate (MPP) in a laboratory-scale draft tube and baffle reactor (DTBR) is investigated. Results show that mixing speed and hydraulic retention time are important operating factors that influence crystallization and crystal settlement. Slurry should be discharged at a crystal retention time of 11 h to maintain fluidity in the reactor. Further applications of the DTBR using real urine (pretreated by ammonia stripping and diluted five times) showed that 76% K and 68% P were recycled to multi-nutrient products. The crystals collected were characterized and confirmed mainly as a mixture of magnesium ammonium phosphate hexahydrate, MPP, and magnesium sodium phosphate heptahydrate. Results indicate that the DTBR effectively achieved the simultaneous recycling of K and P from urine to multi-nutrient products through MPP crystallization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A RNA nanotechnology platform for a simultaneous two-in-one siRNA delivery and its application in synergistic RNAi therapy

    PubMed Central

    Jang, Mihue; Han, Hee Dong; Ahn, Hyung Jun

    2016-01-01

    Incorporating multiple copies of two RNAi molecules into a single nanostructure in a precisely controlled manner can provide an efficient delivery tool to regulate multiple gene pathways in the relation of mutual dependence. Here, we show a RNA nanotechnology platform for a two-in-one RNAi delivery system to contain polymeric two RNAi molecules within the same RNA nanoparticles, without the aid of polyelectrolyte condensation reagents. As our RNA nanoparticles lead to the simultaneous silencing of two targeted mRNAs, of which biological functions are highly interdependent, combination therapy for multi-drug resistance cancer cells, which was studied as a specific application of our two-in-one RNAi delivery system, demonstrates the efficient synergistic effects for cancer therapy. Therefore, this RNA nanoparticles approach has an efficient tool for a simultaneous co-delivery of RNAi molecules in the RNAi-based biomedical applications, and our current studies present an efficient strategy to overcome multi-drug resistance caused by malfunction of genes in chemotherapy. PMID:27562435

  12. Modification of glassy carbon electrode with poly(hydroxynaphthol blue)/multi-walled carbon nanotubes composite and construction a new voltammetric sensor for the simultaneous determination of hydroquinone, catechol, and resorcinol

    NASA Astrophysics Data System (ADS)

    Daneshinejad, Hassan; Arab Chamjangali, Mansour; Goudarzi, Nasser; Hossain Amin, Amir

    2018-03-01

    A novel voltammetric sensor is developed based on a poly(hydroxynaphthol blue)/multi-walled carbon nanotubes-modified glassy carbon electrode for the simultaneous determination of the dihydroxybenzene isomers hydroquinone (HQ), catechol (CC), and resorcinol (RS). The preparation and basic electrochemical performance of the sensor are investigated in details. The electrochemical behavior of the dihydroxybenzene isomers at the sensor is studied by the cyclic and differential pulse voltammetric techniques. The results obtained show that this new electrochemical sensor exhibits an excellent electro-catalytic activity towards oxidation of the three isomers. The mechanism of this electro-catalytic activity is discussed. Using the optimum parameters, limit of detection obtained 0.24, 0.24, and 0.26 μmol L-1 for HQ, CC, and RS, respectively. The modified electrode is also successfully applied to the simultaneous determination of dihydroxybenzene in water samples.

  13. Prediction of SOFC Performance with or without Experiments: A Study on Minimum Requirements for Experimental Data

    DOE PAGES

    Yang, Tao; Sezer, Hayri; Celik, Ismail B.; ...

    2015-06-02

    In the present paper, a physics-based procedure combining experiments and multi-physics numerical simulations is developed for overall analysis of SOFCs operational diagnostics and performance predictions. In this procedure, essential information for the fuel cell is extracted first by utilizing empirical polarization analysis in conjunction with experiments and refined by multi-physics numerical simulations via simultaneous analysis and calibration of polarization curve and impedance behavior. The performance at different utilization cases and operating currents is also predicted to confirm the accuracy of the proposed model. It is demonstrated that, with the present electrochemical model, three air/fuel flow conditions are needed to producemore » a set of complete data for better understanding of the processes occurring within SOFCs. After calibration against button cell experiments, the methodology can be used to assess performance of planar cell without further calibration. The proposed methodology would accelerate the calibration process and improve the efficiency of design and diagnostics.« less

  14. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, S.; Labanca, I.; Rech, I.

    2014-10-15

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments.more » However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.« less

  15. Scenario-based modeling for multiple allocation hub location problem under disruption risk: multiple cuts Benders decomposition approach

    NASA Astrophysics Data System (ADS)

    Yahyaei, Mohsen; Bashiri, Mahdi

    2017-12-01

    The hub location problem arises in a variety of domains such as transportation and telecommunication systems. In many real-world situations, hub facilities are subject to disruption. This paper deals with the multiple allocation hub location problem in the presence of facilities failure. To model the problem, a two-stage stochastic formulation is developed. In the proposed model, the number of scenarios grows exponentially with the number of facilities. To alleviate this issue, two approaches are applied simultaneously. The first approach is to apply sample average approximation to approximate the two stochastic problem via sampling. Then, by applying the multiple cuts Benders decomposition approach, computational performance is enhanced. Numerical studies show the effective performance of the SAA in terms of optimality gap for small problem instances with numerous scenarios. Moreover, performance of multi-cut Benders decomposition is assessed through comparison with the classic version and the computational results reveal the superiority of the multi-cut approach regarding the computational time and number of iterations.

  16. Multi-species trace gas sensing with dual-wavelength QCLs

    NASA Astrophysics Data System (ADS)

    Hundt, P. Morten; Tuzson, Béla; Aseev, Oleg; Liu, Chang; Scheidegger, Philipp; Looser, Herbert; Kapsalidis, Filippos; Shahmohammadi, Mehran; Faist, Jérôme; Emmenegger, Lukas

    2018-06-01

    Instrumentation for environmental monitoring of gaseous pollutants and greenhouse gases tends to be complex, expensive, and energy demanding, because every compound measured relies on a specific analytical technique. This work demonstrates an alternative approach based on mid-infrared laser absorption spectroscopy with dual-wavelength quantum cascade lasers (QCLs). The combination of two dual- and one single-DFB QCL yields high-precision measurements of CO (0.08 ppb), CO2 (100 ppb), NH3 (0.02 ppb), NO (0.4 ppb), NO2 (0.1 ppb), N2O (0.045 ppb), and O3 (0.11 ppb) simultaneously in a compact setup (45 × 45 cm2). The lasers are driven time-multiplexed in intermittent continuous wave mode with a repetition rate of 1 kHz. The individual spectra are real-time averaged (1 s) by an FPGA-based data acquisition system. The instrument was assessed for environmental monitoring and benchmarked with reference instrumentation to demonstrate its potential for compact multi-species trace gas sensing.

  17. Hydrological risks in anthropized watersheds: modeling of hazard, vulnerability and impacts on population from south-west of Madagascar

    NASA Astrophysics Data System (ADS)

    Mamy Rakotoarisoa, Mahefa; Fleurant, Cyril; Taibi, Nuscia; Razakamanana, Théodore

    2016-04-01

    Hydrological risks, especially for floods, are recurrent on the Fiherenana watershed - southwest of Madagascar. The city of Toliara, which is located at the outlet of the river basin, is subjected each year to hurricane hazards and floods. The stakes are of major importance in this part of the island. This study begins with the analysis of hazard by collecting all existing hydro-climatic data on the catchment. It then seeks to determine trends, despite the significant lack of data, using simple statistical models (decomposition of time series). Then, two approaches are conducted to assess the vulnerability of the city of Toliara and the surrounding villages. First, a static approach, from surveys of land and the use of GIS are used. Then, the second method is the use of a multi-agent-based simulation model. The first step is the mapping of a vulnerability index which is the arrangement of several static criteria. This is a microscale indicator (the scale used is the housing). For each House, there are several criteria of vulnerability, which are the potential water depth, the flow rate, or the architectural typology of the buildings. For the second part, simulations involving scenes of agents are used in order to evaluate the degree of vulnerability of homes from flooding. Agents are individual entities to which we can assign behaviours on purpose to simulate a given phenomenon. The aim is not to give a criterion to the house as physical building, such as its architectural typology or its strength. The model wants to know the chances of the occupants of the house to escape from a catastrophic flood. For this purpose, we compare various settings and scenarios. Some scenarios are conducted to take into account the effect of certain decision made by the responsible entities (Information and awareness of the villagers for example). The simulation consists of two essential parts taking place simultaneously in time: simulation of the rise of water and the flow using classical hydrological functions and multi agent system (transfer function and production function) and the simulation of the behaviour of the people facing the arrival of hazard.

  18. A Protocol for Functional Assessment of Whole-Protein Saturation Mutagenesis Libraries Utilizing High-Throughput Sequencing.

    PubMed

    Stiffler, Michael A; Subramanian, Subu K; Salinas, Victor H; Ranganathan, Rama

    2016-07-03

    Site-directed mutagenesis has long been used as a method to interrogate protein structure, function and evolution. Recent advances in massively-parallel sequencing technology have opened up the possibility of assessing the functional or fitness effects of large numbers of mutations simultaneously. Here, we present a protocol for experimentally determining the effects of all possible single amino acid mutations in a protein of interest utilizing high-throughput sequencing technology, using the 263 amino acid antibiotic resistance enzyme TEM-1 β-lactamase as an example. In this approach, a whole-protein saturation mutagenesis library is constructed by site-directed mutagenic PCR, randomizing each position individually to all possible amino acids. The library is then transformed into bacteria, and selected for the ability to confer resistance to β-lactam antibiotics. The fitness effect of each mutation is then determined by deep sequencing of the library before and after selection. Importantly, this protocol introduces methods which maximize sequencing read depth and permit the simultaneous selection of the entire mutation library, by mixing adjacent positions into groups of length accommodated by high-throughput sequencing read length and utilizing orthogonal primers to barcode each group. Representative results using this protocol are provided by assessing the fitness effects of all single amino acid mutations in TEM-1 at a clinically relevant dosage of ampicillin. The method should be easily extendable to other proteins for which a high-throughput selection assay is in place.

  19. Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images.

    PubMed

    Bustamante, Javier; Pacios, Fernando; Díaz-Delgado, Ricardo; Aragonés, David

    2009-05-01

    We have used Landsat-5 TM and Landsat-7 ETM+ images together with simultaneous ground-truth data at sample points in the Doñana marshes to predict water turbidity and depth from band reflectance using Generalized Additive Models. We have point samples for 12 different dates simultaneous with 7 Landsat-5 and 5 Landsat-7 overpasses. The best model for water turbidity in the marsh explained 38% of variance in ground-truth data and included as predictors band 3 (630-690 nm), band 5 (1550-1750 nm) and the ratio between bands 1 (450-520 nm) and 4 (760-900 nm). Water turbidity is easier to predict for water bodies like the Guadalquivir River and artificial ponds that are deep and not affected by bottom soil reflectance and aquatic vegetation. For the latter, a simple model using band 3 reflectance explains 78.6% of the variance. Water depth is easier to predict than turbidity. The best model for water depth in the marsh explains 78% of the variance and includes as predictors band 1, band 5, the ratio between band 2 (520-600 nm) and band 4, and bottom soil reflectance in band 4 in September, when the marsh is dry. The water turbidity and water depth models have been developed in order to reconstruct historical changes in Doñana wetlands during the last 30 years using the Landsat satellite images time series.

  20. A multi-channel photometric detector for multi-component analysis in flow injection analysis

    PubMed Central

    Tan, Aimin; Huang, Jialin; Geng, Liudi; Xu, Jinhua; Zhao, Xinna

    1994-01-01

    The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors. PMID:18924688

  1. A multi-channel photometric detector for multi-component analysis in flow injection analysis.

    PubMed

    Tan, A; Huang, J; Geng, L; Xu, J; Zhao, X

    1994-01-01

    The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors.

  2. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions

    PubMed Central

    Carrillo-Reid, Luis; Bando, Yuki; Peterka, Darcy S

    2018-01-01

    The simultaneous imaging and manipulating of neural activity could enable the functional dissection of neural circuits. Here we have combined two-photon optogenetics with simultaneous volumetric two-photon calcium imaging to measure and manipulate neural activity in mouse neocortex in vivo in three-dimensions (3D) with cellular resolution. Using a hybrid holographic approach, we simultaneously photostimulate more than 80 neurons over 150 μm in depth in layer 2/3 of the mouse visual cortex, while simultaneously imaging the activity of the surrounding neurons. We validate the usefulness of the method by photoactivating in 3D selected groups of interneurons, suppressing the response of nearby pyramidal neurons to visual stimuli in awake animals. Our all-optical approach could be used as a general platform to read and write neuronal activity. PMID:29412138

  3. Measuring and Investigating Pretrial Multi-Expectations of Service Quality within the Higher Education Context

    ERIC Educational Resources Information Center

    Prugsamatz, Sunita; Heaney, Joo-Gim; Alpert, Frank

    2007-01-01

    Understanding what consumers expect from a service provider prior to consumption is necessary for marketers because expectations provide a standard of comparison against which consumers judge the performance of that service provider. This study is an in-depth investigation into consumers' pretrial multi-expectations of service quality within a…

  4. The iMars web-GIS - spatio-temporal data queries and single image web map services

    NASA Astrophysics Data System (ADS)

    Walter, S. H. G.; Steikert, R.; Schreiner, B.; Sidiropoulos, P.; Tao, Y.; Muller, J.-P.; Putry, A. R. D.; van Gasselt, S.

    2017-09-01

    We introduce a new approach for a system dedicated to planetary surface change detection by simultaneous visualisation of single-image time series in a multi-temporal context. In the context of the EU FP-7 iMars project we process and ingest vast amounts of automatically co-registered (ACRO) images. The base of the co-registration are the high precision HRSC multi-orbit quadrangle image mosaics, which are based on bundle-block-adjusted multi-orbit HRSC DTMs.

  5. Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul

    2005-01-01

    An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.

  6. A Composite Network Approach for Assessing Multi-Species Connectivity: An Application to Road Defragmentation Prioritisation

    PubMed Central

    Saura, Santiago; Rondinini, Carlo

    2016-01-01

    One of the biggest challenges in large-scale conservation is quantifying connectivity at broad geographic scales and for a large set of species. Because connectivity analyses can be computationally intensive, and the planning process quite complex when multiple taxa are involved, assessing connectivity at large spatial extents for many species turns to be often intractable. Such limitation results in that conducted assessments are often partial by focusing on a few key species only, or are generic by considering a range of dispersal distances and a fixed set of areas to connect that are not directly linked to the actual spatial distribution or mobility of particular species. By using a graph theory framework, here we propose an approach to reduce computational effort and effectively consider large assemblages of species in obtaining multi-species connectivity priorities. We demonstrate the potential of the approach by identifying defragmentation priorities in the Italian road network focusing on medium and large terrestrial mammals. We show that by combining probabilistic species graphs prior to conducting the network analysis (i) it is possible to analyse connectivity once for all species simultaneously, obtaining conservation or restoration priorities that apply for the entire species assemblage; and that (ii) those priorities are well aligned with the ones that would be obtained by aggregating the results of separate connectivity analysis for each of the individual species. This approach offers great opportunities to extend connectivity assessments to large assemblages of species and broad geographic scales. PMID:27768718

  7. Combining multi-criteria decision analysis and mini-health technology assessment: A funding decision-support tool for medical devices in a university hospital setting.

    PubMed

    Martelli, Nicolas; Hansen, Paul; van den Brink, Hélène; Boudard, Aurélie; Cordonnier, Anne-Laure; Devaux, Capucine; Pineau, Judith; Prognon, Patrice; Borget, Isabelle

    2016-02-01

    At the hospital level, decisions about purchasing new and oftentimes expensive medical devices must take into account multiple criteria simultaneously. Multi-criteria decision analysis (MCDA) is increasingly used for health technology assessment (HTA). One of the most successful hospital-based HTA approaches is mini-HTA, of which a notable example is the Matrix4value model. To develop a funding decision-support tool combining MCDA and mini-HTA, based on Matrix4value, suitable for medical devices for individual patient use in French university hospitals - known as the IDA tool, short for 'innovative device assessment'. Criteria for assessing medical devices were identified from a literature review and a survey of 18 French university hospitals. Weights for the criteria, representing their relative importance, were derived from a survey of 25 members of a medical devices committee using an elicitation technique involving pairwise comparisons. As a test of its usefulness, the IDA tool was applied to two new drug-eluting beads (DEBs) for transcatheter arterial chemoembolization. The IDA tool comprises five criteria and weights for each of two over-arching categories: risk and value. The tool revealed that the two new DEBs conferred no additional value relative to DEBs currently available. Feedback from participating decision-makers about the IDA tool was very positive. The tool could help to promote a more structured and transparent approach to HTA decision-making in French university hospitals. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effects of simultaneous climate change and geomorphic evolution on thermal characteristics of a shallow Alaskan lake

    USGS Publications Warehouse

    Griffiths, Jennifer R.; Schindler, Daniel E.; Balistrieri, Laurie S.; Ruggerone, Gregory T.

    2011-01-01

    We used a hydrodynamics model to assess the consequences of climate warming and contemporary geomorphic evolution for thermal conditions in a large, shallow Alaskan lake. We evaluated the effects of both known climate and landscape change, including rapid outlet erosion and migration of the principal inlet stream, over the past 50 yr as well as future scenarios of geomorphic restoration. Compared to effects of air temperature during the past 50 yr, lake thermal properties showed little sensitivity to substantial (~60%) loss of lake volume, as the lake maximum depth declined from 6 m to 4 m driven by outlet erosion. The direction and magnitude of future lake thermal responses will be driven largely by the extent of inlet stream migration when it occurs simultaneously with outlet erosion. Maintaining connectivity with inlet streams had substantial effects on buffering lake thermal responses to warming climate. Failing to account for changing rates and types of geomorphic processes under continuing climate change may misidentify the primary drivers of lake thermal responses and reduce our ability to understand the consequences for aquatic organisms.

  9. A13K-0336: Airborne Multi-Wavelength High Spectral Resolution Lidar for Process Studies and Assessment of Future Satellite Remote Sensing Concepts

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris A.; Ferrare, Rich A.; Hair, Johnathan W.; Cook, Anthony L.; Harper, David B.; Mack, Terry L.; Hare, Richard J.; Cleckner, Craig S.; Rogers, Raymond R.; Muller, Detlef; hide

    2012-01-01

    NASA Langley recently developed the world's first airborne multi-wavelength high spectral resolution lidar (HSRL). This lidar employs the HSRL technique at 355 and 532 nm to make independent, unambiguous retrievals of aerosol extinction and backscatter. It also employs the standard backscatter technique at 1064 nm and is polarization-sensitive at all three wavelengths. This instrument, dubbed HSRL-2 (the secondgeneration HSRL developed by NASA Langley), is a prototype for the lidar on NASA's planned Aerosols- Clouds-Ecosystems (ACE) mission. HSRL-2 completed its first science mission in July 2012, the Two-Column Aerosol Project (TCAP) conducted by the Department of Energy (DOE) in Hyannis, MA. TCAP presents an excellent opportunity to assess some of the remote sensing concepts planned for ACE: HSRL-2 was deployed on the Langley King Air aircraft with another ACE-relevant instrument, the NASA GISS Research Scanning Polarimeter (RSP), and flights were closely coordinated with the DOE's Gulfstream-1 aircraft, which deployed a variety of in situ aerosol and trace gas instruments and the new Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR). The DOE also deployed their Atmospheric Radiation Measurement Mobile Facility and their Mobile Aerosol Observing System at a ground site located on the northeastern coast of Cape Cod for this mission. In this presentation we focus on the capabilities, data products, and applications of the new HSRL-2 instrument. Data products include aerosol extinction, backscatter, depolarization, and optical depth; aerosol type identification; mixed layer depth; and rangeresolved aerosol microphysical parameters (e.g., effective radius, index of refraction, single scatter albedo, and concentration). Applications include radiative closure studies, studies of aerosol direct and indirect effects, investigations of aerosol-cloud interactions, assessment of chemical transport models, air quality studies, present (e.g., CALIPSO) and future (e.g., EarthCARE) satellite calibration/validation, and development/assessment of advanced retrieval techniques for future satellite applications (e.g., lidar+polarimeter retrievals of aerosol and cloud properties). We will also discuss the relevance of HSRL-2 measurement capabilities to the ACE remote sensing concept.

  10. See Me Smoke-Free: Protocol for a Research Study to Develop and Test the Feasibility of an mHealth App for Women to Address Smoking, Diet, and Physical Activity.

    PubMed

    Giacobbi, Peter; Hingle, Melanie; Johnson, Thienne; Cunningham, James K; Armin, Julie; Gordon, Judith S

    2016-01-21

    This paper presents the protocol for an ongoing research study to develop and test the feasibility of a multi-behavioral mHealth app. Approximately 27 million women smoke in the US, and more than 180,000 women die of illnesses linked to smoking annually. Women report greater difficulties quitting smoking. Concerns about weight gain, negative body image, and low self-efficacy may be key factors affecting smoking cessation among women. Recent studies suggest that a multi-behavioral approach, including diet and physical activity, may be more effective at helping women quit. Guided imagery has been successfully used to address body image concerns and self-efficacy in our 3 target behaviors-exercise, diet and smoking cessation. However, it has not been used simultaneously for smoking, diet, and exercise behavior in a single intervention. While imagery is an effective therapeutic tool for behavior change, the mode of delivery has generally been in person, which limits reach. mHealth apps delivered via smart phones offer a unique channel through which to distribute imagery-based interventions. The objective of our study is to evaluate the feasibility of an mHealth app for women designed to simultaneously address smoking, diet, and physical activity behaviors. The objectives are supported by three specific aims: (1) develop guided imagery content, user interface, and resources to reduce weight concern, and increase body image and self-efficacy for behavior change among women smokers, (2) program a prototype of the app that contains all the necessary elements of text, graphics, multimedia and interactive features, and (3) evaluate the feasibility, acceptability, and preliminary efficacy of the app with women smokers. We created the program content and designed the prototype application for use on the Android platform in collaboration with 9 participants in multiple focus groups and in-depth interviews. We programmed and tested the application's usability with 6 participants in preparation for an open, pre- and posttest trial. Currently, we are testing the feasibility and acceptability of the application, evaluating the relationship of program use to tobacco cessation, dietary behaviors, and physical activity, and assessing consumer satisfaction with approximately 70 women smokers with Android-based smart phones. The study was started January 1, 2014. The app was launched and feasibility testing began in April 1, 2015. Participants were enrolled from April 1-June 30, 2015. During that time, the app was downloaded over 350 times using no paid advertising. Participants were required to use the app "most days" for 30 days or they would be dropped from the study. We enrolled 151 participants. Of those, 78 were dropped or withdrew from the study, leaving 73 participants. We have completed the 30-day assessment, with a 92% response rate. The 90-day assessment is ongoing. During the final phase of the study, we will be conducting data analyses and disseminating study findings via presentations and publications. Feasibility will be demonstrated by successful participant retention and a high level of app use. We will examine individual metrics (eg, duration of use, number of screens viewed, change in usage patterns over time) and engagement with interactive activities (eg, activity tracking). We will aggregate these data into composite exposure scores that combine number of visits and overall duration to calculate correlations between outcome and measures of program exposure and engagement. Finally, we will compare app use between participants and non-participants using Google Analytics.

  11. See Me Smoke-Free: Protocol for a Research Study to Develop and Test the Feasibility of an mHealth App for Women to Address Smoking, Diet, and Physical Activity

    PubMed Central

    Johnson, Thienne; Gordon, Judith S

    2016-01-01

    Background This paper presents the protocol for an ongoing research study to develop and test the feasibility of a multi-behavioral mHealth app. Approximately 27 million women smoke in the US, and more than 180,000 women die of illnesses linked to smoking annually. Women report greater difficulties quitting smoking. Concerns about weight gain, negative body image, and low self-efficacy may be key factors affecting smoking cessation among women. Recent studies suggest that a multi-behavioral approach, including diet and physical activity, may be more effective at helping women quit. Guided imagery has been successfully used to address body image concerns and self-efficacy in our 3 target behaviors—exercise, diet and smoking cessation. However, it has not been used simultaneously for smoking, diet, and exercise behavior in a single intervention. While imagery is an effective therapeutic tool for behavior change, the mode of delivery has generally been in person, which limits reach. mHealth apps delivered via smart phones offer a unique channel through which to distribute imagery-based interventions. Objective The objective of our study is to evaluate the feasibility of an mHealth app for women designed to simultaneously address smoking, diet, and physical activity behaviors. The objectives are supported by three specific aims: (1) develop guided imagery content, user interface, and resources to reduce weight concern, and increase body image and self-efficacy for behavior change among women smokers, (2) program a prototype of the app that contains all the necessary elements of text, graphics, multimedia and interactive features, and (3) evaluate the feasibility, acceptability, and preliminary efficacy of the app with women smokers. Methods We created the program content and designed the prototype application for use on the Android platform in collaboration with 9 participants in multiple focus groups and in-depth interviews. We programmed and tested the application’s usability with 6 participants in preparation for an open, pre- and posttest trial. Currently, we are testing the feasibility and acceptability of the application, evaluating the relationship of program use to tobacco cessation, dietary behaviors, and physical activity, and assessing consumer satisfaction with approximately 70 women smokers with Android-based smart phones. Results The study was started January 1, 2014. The app was launched and feasibility testing began in April 1, 2015. Participants were enrolled from April 1-June 30, 2015. During that time, the app was downloaded over 350 times using no paid advertising. Participants were required to use the app “most days” for 30 days or they would be dropped from the study. We enrolled 151 participants. Of those, 78 were dropped or withdrew from the study, leaving 73 participants. We have completed the 30-day assessment, with a 92% response rate. The 90-day assessment is ongoing. During the final phase of the study, we will be conducting data analyses and disseminating study findings via presentations and publications. Feasibility will be demonstrated by successful participant retention and a high level of app use. We will examine individual metrics (eg, duration of use, number of screens viewed, change in usage patterns over time) and engagement with interactive activities (eg, activity tracking). Conclusions We will aggregate these data into composite exposure scores that combine number of visits and overall duration to calculate correlations between outcome and measures of program exposure and engagement. Finally, we will compare app use between participants and non-participants using Google Analytics. PMID:26795257

  12. Real-time handling of existing content sources on a multi-layer display

    NASA Astrophysics Data System (ADS)

    Singh, Darryl S. K.; Shin, Jung

    2013-03-01

    A Multi-Layer Display (MLD) consists of two or more imaging planes separated by physical depth where the depth is a key component in creating a glasses-free 3D effect. Its core benefits include being viewable from multiple angles, having full panel resolution for 3D effects with no side effects of nausea or eye-strain. However, typically content must be designed for its optical configuration in foreground and background image pairs. A process was designed to give a consistent 3D effect in a 2-layer MLD from existing stereo video content in real-time. Optimizations to stereo matching algorithms that generate depth maps in real-time were specifically tailored for the optical characteristics and image processing algorithms of a MLD. The end-to-end process included improvements to the Hierarchical Belief Propagation (HBP) stereo matching algorithm, improvements to optical flow and temporal consistency. Imaging algorithms designed for the optical characteristics of a MLD provided some visual compensation for depth map inaccuracies. The result can be demonstrated in a PC environment, displayed on a 22" MLD, used in the casino slot market, with 8mm of panel seperation. Prior to this development, stereo content had not been used to achieve a depth-based 3D effect on a MLD in real-time

  13. Quantifying spatial variability of depth of peat burn in wetlands in relation to antecedent characteristics using field data, multi-temporal and multi-spectral LiDAR

    NASA Astrophysics Data System (ADS)

    Chasmer, L.; Flade, L.; Virk, R.; Montgomery, J. S.; Hopkinson, C.; Thompson, D. K.; Petrone, R. M.; Devito, K.

    2017-12-01

    Landscape changes in the hydrological characteristics of wetlands in some parts of the Boreal region of Canada are occurring as a result of climate-induced feedbacks and anthropogenic disturbance. Wetlands are largely resilient to wildfire, however, natural, climatic and anthropogenic disturbances can change surface water regimes and predispose wetlands to greater depth of peat burn. Over broad areas, peat loss contributes to significant pollution emissions, which can affect community health. In this study, we a) quantify depth of peat burn and relationships to antecedent conditions (species type, topography, surficial geology) within three classified wetlands found in the Boreal Plains ecoregion of western Canada; and b) examine the impacts of wildfire on post-fire ground surface energy balance to determine how peat loss might affect local hydro-climatology and surface water feedbacks. High-resolution optical imagery, pre- and post-burn multi-spectral Light Detection And Ranging (LiDAR), airborne thermal infrared imagery, and field validation data products are integrated to identify multiple complex interactions within the study wetlands. LiDAR-derived depth of peat burn is within 1 cm (average) compared with measured (RMSE = 9 cm over the control surface), demonstrating the utility of LiDAR with high point return density. Depth of burn also correlates strongly with variations in Normalised Burn Ratio (NBR) determined for ground surfaces only. Antecedent conditions including topographic position, soil moisture, soil type and wetland species also have complex interactions with depth of peat loss within wetlands observed in other studies. However, while field measurements are important for validation and understanding eco-hydrological processes, results from remote sensing are spatially continuous. Temporal LiDAR data illustrate the full range of variability in depth of burn and wetland characteristics following fire. Finally, measurements of instantaneous surface temperature indicate that the temperatures of burned wetlands are significantly warmer by up to 10oC compared to non-burned wetlands, altering locally variable sensible vs. latent energy exchanges and implications for further post-fire evaporative losses.

  14. Monitoring and evaluating the quality consistency of Compound Bismuth Aluminate tablets by a simple quantified ratio fingerprint method combined with simultaneous determination of five compounds and correlated with antioxidant activities.

    PubMed

    Liu, Yingchun; Liu, Zhongbo; Sun, Guoxiang; Wang, Yan; Ling, Junhong; Gao, Jiayue; Huang, Jiahao

    2015-01-01

    A combination method of multi-wavelength fingerprinting and multi-component quantification by high performance liquid chromatography (HPLC) coupled with diode array detector (DAD) was developed and validated to monitor and evaluate the quality consistency of herbal medicines (HM) in the classical preparation Compound Bismuth Aluminate tablets (CBAT). The validation results demonstrated that our method met the requirements of fingerprint analysis and quantification analysis with suitable linearity, precision, accuracy, limits of detection (LOD) and limits of quantification (LOQ). In the fingerprint assessments, rather than using conventional qualitative "Similarity" as a criterion, the simple quantified ratio fingerprint method (SQRFM) was recommended, which has an important quantified fingerprint advantage over the "Similarity" approach. SQRFM qualitatively and quantitatively offers the scientific criteria for traditional Chinese medicines (TCM)/HM quality pyramid and warning gate in terms of three parameters. In order to combine the comprehensive characterization of multi-wavelength fingerprints, an integrated fingerprint assessment strategy based on information entropy was set up involving a super-information characteristic digitized parameter of fingerprints, which reveals the total entropy value and absolute information amount about the fingerprints and, thus, offers an excellent method for fingerprint integration. The correlation results between quantified fingerprints and quantitative determination of 5 marker compounds, including glycyrrhizic acid (GLY), liquiritin (LQ), isoliquiritigenin (ILG), isoliquiritin (ILQ) and isoliquiritin apioside (ILA), indicated that multi-component quantification could be replaced by quantified fingerprints. The Fenton reaction was employed to determine the antioxidant activities of CBAT samples in vitro, and they were correlated with HPLC fingerprint components using the partial least squares regression (PLSR) method. In summary, the method of multi-wavelength fingerprints combined with antioxidant activities has been proved to be a feasible and scientific procedure for monitoring and evaluating the quality consistency of CBAT.

  15. Label-free, multi-contrast optical coherence tomography for study of skin melanoma mice in vivo

    NASA Astrophysics Data System (ADS)

    Lai, Pei-Yu; Lin, Tim-Han; Chou, Ya-Shuan; Chang, Chung-Hsing; Kuo, Wen-Chuan

    2018-02-01

    The lymphatic system plays an important role in inflammation and cancer such as melanoma. Due to the limitations of current developed imaging techniques, visualization of lymphatic vessels within the tissue in vivo has been challenging. Optical imaging of lymphatic vessel is gaining increased interests because it does not involve any radiation and can achieve very high resolution. Here, we developed a multi-contrast, label-free optical coherence tomography (OCT) imaging technology with an axial resolution of 5 μm and lateral resolution of 7 μm, which is capable of providing microstructural information and microcirculatory system including blood and lymphatic vessels simultaneously. Using this technique, we observed the melanoma mice in vivo. Mice were treated topically on the ear with (Z)-4- Hydroxytamoxifen(4-OHT) to elicit BRAFV600E and to silence Pten expression. Also, to observing the structural information, angiogenesis and lymphangiogenesis in the ear of the induced melanoma mouse can be done. The advantage of using OCT over other imaging modalities is its ability to assess label-free blood flow along with lymphatic vessels simultaneously for imaging the microcirculatory system within tissue beds without any exogenous agents. Because the metastasis of melanoma is highly related to the lymphatic vessels, our findings can be a powerful tool to help the diagnosis of the metastasis melanoma. In the future, this may become a helpful tool for better understanding pathologic mechanisms and treatment technique development in some diseases.

  16. War Induced Aerosol Optical, Microphysical and Radiative Effects

    NASA Astrophysics Data System (ADS)

    Munshi, Pavel; Tiwari, Shubhansh

    2017-01-01

    The effect of war on air pollution and climate is assessed in this communication. War today in respect of civil wars and armed conflict in the Middle East area is taken into consideration. Impacts of war are not only in loss of human life and property, but also in the environment. It is well known that war effects air pollution and in the long run contribute to anthropogenic climate change, but general studies on this subject are few because of the difficulties of observations involved. In the current scenario of the ongoing conflict in the Middle East regions, deductions in parameters of atmosphere are discussed. Aerosol Optical Depth, Aerosol loads, Black Carbon, Ozone,Dust, regional haze and many more are analyzed using various satellite data. Multi-model analysis is also studied to verify the analysis. Type segregation of aerosols, in-depth constraints to atmospheric chemistry, biological effects and particularly atmospheric physics in terms of radiative forcing, etc. are discussed. Undergraduate in Earth Sciences.

  17. Calibrating genomic and allelic coverage bias in single-cell sequencing.

    PubMed

    Zhang, Cheng-Zhong; Adalsteinsson, Viktor A; Francis, Joshua; Cornils, Hauke; Jung, Joonil; Maire, Cecile; Ligon, Keith L; Meyerson, Matthew; Love, J Christopher

    2015-04-16

    Artifacts introduced in whole-genome amplification (WGA) make it difficult to derive accurate genomic information from single-cell genomes and require different analytical strategies from bulk genome analysis. Here, we describe statistical methods to quantitatively assess the amplification bias resulting from whole-genome amplification of single-cell genomic DNA. Analysis of single-cell DNA libraries generated by different technologies revealed universal features of the genome coverage bias predominantly generated at the amplicon level (1-10 kb). The magnitude of coverage bias can be accurately calibrated from low-pass sequencing (∼0.1 × ) to predict the depth-of-coverage yield of single-cell DNA libraries sequenced at arbitrary depths. We further provide a benchmark comparison of single-cell libraries generated by multi-strand displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Finally, we develop statistical models to calibrate allelic bias in single-cell whole-genome amplification and demonstrate a census-based strategy for efficient and accurate variant detection from low-input biopsy samples.

  18. Characterization of fish assemblages and population structure of freshwater fish in two Tunisian reservoirs: implications for fishery management.

    PubMed

    Mili, Sami; Ennouri, Rym; Dhib, Amel; Laouar, Houcine; Missaoui, Hechmi; Aleya, Lotfi

    2016-06-01

    To monitor and assess the state of Tunisian freshwater fisheries, two surveys were undertaken at Ghezala and Lahjar reservoirs. Samples were taken in April and May 2013, a period when the fish catchability is high. The selected reservoirs have different surface areas and bathymetries. Using multi-mesh gill nets (EN 14575 amended) designed for sampling fish in lakes, standard fishing methods were applied to estimate species composition, abundance, biomass, and size distribution. Four species were caught in the two reservoirs: barbel, mullet, pike-perch, and roach. Fish abundance showed significant change according to sampling sites, depth strata, and the different mesh sizes used. From the reservoir to the tributary, it was concluded that fish biomass distribution was governed by depth and was most abundant in the upper water layers. Species size distribution differed significantly between the two reservoirs, exceeding the length at first maturity. Species composition and abundance were greater in Lahjar reservoir than in Ghezala. Both reservoirs require support actions to improve fish productivity.

  19. Calibrating genomic and allelic coverage bias in single-cell sequencing

    PubMed Central

    Francis, Joshua; Cornils, Hauke; Jung, Joonil; Maire, Cecile; Ligon, Keith L.; Meyerson, Matthew; Love, J. Christopher

    2016-01-01

    Artifacts introduced in whole-genome amplification (WGA) make it difficult to derive accurate genomic information from single-cell genomes and require different analytical strategies from bulk genome analysis. Here, we describe statistical methods to quantitatively assess the amplification bias resulting from whole-genome amplification of single-cell genomic DNA. Analysis of single-cell DNA libraries generated by different technologies revealed universal features of the genome coverage bias predominantly generated at the amplicon level (1–10 kb). The magnitude of coverage bias can be accurately calibrated from low-pass sequencing (~0.1 ×) to predict the depth-of-coverage yield of single-cell DNA libraries sequenced at arbitrary depths. We further provide a benchmark comparison of single-cell libraries generated by multi-strand displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Finally, we develop statistical models to calibrate allelic bias in single-cell whole-genome amplification and demonstrate a census-based strategy for efficient and accurate variant detection from low-input biopsy samples. PMID:25879913

  20. Measurement of the edge plasma rotation on J-TEXT tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Z. F.; Luo, J.; Wang, Z. J.

    2013-07-15

    A multi-channel high resolution spectrometer was developed for the measurement of the edge plasma rotation on J-TEXT tokamak. With the design of two opposite viewing directions, the poloidal and toroidal rotations can be measured simultaneously, and velocity accuracy is up to 1 km/s. The photon flux was enhanced by utilizing combined optical fiber. With this design, the time resolution reaches 3 ms. An assistant software “Spectra Assist” was developed for implementing the spectrometer control and data analysis automatically. A multi-channel monochromatic analyzer is designed to get the location of chosen ions simultaneously through the inversion analysis. Some preliminary experimental resultsmore » about influence of plasma density, different magnetohydrodynamics behaviors, and applying of biased electrode are presented.« less

  1. Simultaneous dual-color fluorescence microscope: a characterization study.

    PubMed

    Li, Zheng; Chen, Xiaodong; Ren, Liqiang; Song, Jie; Li, Yuhua; Zheng, Bin; Liu, Hong

    2013-01-01

    High spatial resolution and geometric accuracy is crucial for chromosomal analysis of clinical cytogenetic applications. High resolution and rapid simultaneous acquisition of multiple fluorescent wavelengths can be achieved by utilizing concurrent imaging with multiple detectors. However, such class of microscopic systems functions differently from traditional fluorescence microscopes. To develop a practical characterization framework to assess and optimize the performance of a high resolution and dual-color fluorescence microscope designed for clinical chromosomal analysis. A dual-band microscopic imaging system utilizes a dichroic mirror, two sets of specially selected optical filters, and two detectors to simultaneously acquire two fluorescent wavelengths. The system's geometric distortion, linearity, the modulation transfer function, and the dual detectors' alignment were characterized. Experiment results show that the geometric distortion at lens periphery is less than 1%. Both fluorescent channels show linear signal responses, but there exists discrepancy between the two due to the detectors' non-uniform response ratio to different wavelengths. In terms of the spatial resolution, the two contrast transfer function curves trend agreeably with the spatial frequency. The alignment measurement allows quantitatively assessing the cameras' alignment. A result image of adjusted alignment is demonstrated to show the reduced discrepancy by using the alignment measurement method. In this paper, we present a system characterization study and its methods for a specially designed imaging system for clinical cytogenetic applications. The presented characterization methods are not only unique to this dual-color imaging system but also applicable to evaluation and optimization of other similar multi-color microscopic image systems for improving their clinical utilities for future cytogenetic applications.

  2. Can single empirical algorithms accurately predict inland shallow water quality status from high resolution, multi-sensor, multi-temporal satellite data?

    NASA Astrophysics Data System (ADS)

    Theologou, I.; Patelaki, M.; Karantzalos, K.

    2015-04-01

    Assessing and monitoring water quality status through timely, cost effective and accurate manner is of fundamental importance for numerous environmental management and policy making purposes. Therefore, there is a current need for validated methodologies which can effectively exploit, in an unsupervised way, the enormous amount of earth observation imaging datasets from various high-resolution satellite multispectral sensors. To this end, many research efforts are based on building concrete relationships and empirical algorithms from concurrent satellite and in-situ data collection campaigns. We have experimented with Landsat 7 and Landsat 8 multi-temporal satellite data, coupled with hyperspectral data from a field spectroradiometer and in-situ ground truth data with several physico-chemical and other key monitoring indicators. All available datasets, covering a 4 years period, in our case study Lake Karla in Greece, were processed and fused under a quantitative evaluation framework. The performed comprehensive analysis posed certain questions regarding the applicability of single empirical models across multi-temporal, multi-sensor datasets towards the accurate prediction of key water quality indicators for shallow inland systems. Single linear regression models didn't establish concrete relations across multi-temporal, multi-sensor observations. Moreover, the shallower parts of the inland system followed, in accordance with the literature, different regression patterns. Landsat 7 and 8 resulted in quite promising results indicating that from the recreation of the lake and onward consistent per-sensor, per-depth prediction models can be successfully established. The highest rates were for chl-a (r2=89.80%), dissolved oxygen (r2=88.53%), conductivity (r2=88.18%), ammonium (r2=87.2%) and pH (r2=86.35%), while the total phosphorus (r2=70.55%) and nitrates (r2=55.50%) resulted in lower correlation rates.

  3. Further Development and Assessment of a Broadband Liner Optimization Process

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.

    2016-01-01

    The utilization of advanced fan designs (including higher bypass ratios) and shorter engine nacelles has highlighted a need for increased fan noise reduction over a broader frequency range. Thus, improved broadband liner designs must account for these constraints and, where applicable, take advantage of advanced manufacturing techniques that have opened new possibilities for novel configurations. This work focuses on the use of an established broadband acoustic liner optimization process to design a variable-depth, multi-degree of freedom liner for a high speed fan. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design a liner aimed at producing impedance spectra that most closely match the predicted optimum values. The multi-degree of freedom design is carried through design, fabrication, and testing. In-duct attenuation predictions compare well with measured data and the multi-degree of freedom liner is shown to outperform a more conventional liner over a range of flow conditions. These promising results provide further confidence in the design tool, as well as the enhancements made to the overall design process.

  4. Multi-signal FIB/SEM tomography

    NASA Astrophysics Data System (ADS)

    Giannuzzi, Lucille A.

    2012-06-01

    Focused ion beam (FIB) milling coupled with scanning electron microscopy (SEM) on the same platform enables 3D microstructural analysis of structures using FIB for serial sectioning and SEM for imaging. Since FIB milling is a destructive technique, the acquisition of multiple signals from each slice is desirable. The feasibility of collecting both an inlens backscattered electron (BSE) signal and an inlens secondary electron (SE) simultaneously from a single scan of the electron beam from each FIB slice is demonstrated. The simultaneous acquisition of two different SE signals from two different detectors (inlens vs. Everhart-Thornley (ET) detector) is also possible. Obtaining multiple signals from each FIB slice with one scan increases the acquisition throughput. In addition, optimization of microstructural and morphological information from the target is achieved using multi-signals. Examples of multi-signal FIB/SEM tomography from a dental implant will be provided where both material contrast from the bone/ceramic coating/Ti substrate phases and porosity in the ceramic coating will be characterized.

  5. Three- α particle correlations in quasi-projectile decay in 12C + 24Mg collisions at 35A MeV

    NASA Astrophysics Data System (ADS)

    Quattrocchi, L.; Acosta, L.; Amorini, F.; Anzalone, A.; Auditore, L.; Berceanu, I.; Cardella, G.; Chbihi, A.; De Filippo, E.; De Luca, S.; Dell'Aquila, D.; Francalanza, L.; Gnoffo, B.; Grzeszczuk, A.; Lanzalone, G.; Lombardo, I.; Martel, I.; Martorana, N. S.; Minniti, T.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Rosato, E.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Veselsky, M.; Vigilante, M.

    2017-11-01

    Two and multi particle correlations have been studied in peripheral 12C + 24Mg collisions at 35A MeV with CHIMERA 4 π multi detector, in order to explore resonances produced in light nuclei. Correlations techniques have become a tool to explore nuclear structure properties but also to evaluate the competition between simultaneous and sequential channels in decay of light isotopes. The exploration of features such as branching ratios with respect to different decay channels (sequential vs. simultaneous) could provide information on in-medium effects on nuclear structure properties, an important perspective for research on the nuclear interaction. The performed experiment is preliminary to further studies to be performed by coupling of CHIMERA to FARCOS (Femtoscope ARray for COrrelations and Spectroscopy, FARCOS TDR available at https://drive.google.com/file/d/0B5CgGWz8LpOOc3pGTWdOcDBoWFE) array devoted to measurements of two and multi particle correlations with high energy and angular resolutions.

  6. Multi-time scale control of demand flexibility in smart distribution networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte

    This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less

  7. Multi-time scale control of demand flexibility in smart distribution networks

    DOE PAGES

    Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte; ...

    2017-01-01

    This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less

  8. Neural Network (NN) retrievals of Stratocumulus cloud properties using multi-angle polarimetric observations during ORACLES

    NASA Astrophysics Data System (ADS)

    Segal-Rosenhaimer, M.; Knobelspiesse, K. D.; Redemann, J.; Cairns, B.; Alexandrov, M. D.

    2016-12-01

    The ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign is taking place in the South-East Atlantic during the Austral Spring for three consecutive years from 2016-2018. The study area encompasses one of the Earth's three semi-permanent subtropical Stratocumulus (Sc) cloud decks, and experiences very large aerosol optical depths, mainly biomass burning, originating from Africa. Over time, cloud optical depth (COD), lifetime and cloud microphysics (number concentration, effective radii Reff and precipitation) are expected to be influenced by indirect aerosol effects. These changes play a key role in the energetic balance of the region, and are part of the core investigation objectives of the ORACLES campaign, which acquires measurements of clean and polluted scenes of above cloud aerosols (ACA). Simultaneous retrievals of aerosol and cloud optical properties are being developed (e.g. MODIS, OMI), but still challenging, especially for passive, single viewing angle instruments. By comparison, multiangle polarimetric instruments like RSP (Research Scanning Polarimeter) show promise for detection and quantification of ACA, however, there are no operational retrieval algorithms available yet. Here we describe a new algorithm to retrieve cloud and aerosol optical properties from observations by RSP flown on the ER-2 and P-3 during the 2016 ORACLES campaign. The algorithm is based on training a NN, and is intended to retrieve aerosol and cloud properties simultaneously. However, the first step was to establish the retrieval scheme for low level Sc cloud optical properties. The NN training was based on simulated RSP total and polarized radiances for a range of COD, Reff, and effective variances, spanning 7 wavelength bands and 152 viewing zenith angles. Random and correlated noise were added to the simulations to achieve a more realistic representation of the signals. Before introducing the input variables to the network, the signals are projected on a principle component plane that retains the maximal signal information but minimizes the noise contribution. We will discuss parameter choices for the network and present preliminary results of cloud retrievals from ORACLES, compared with standard RSP low-level cloud retrieval method that has been validated against in situ observations.

  9. In situ UV curable 3D printing of multi-material tri-legged soft bot with spider mimicked multi-step forward dynamic gait

    NASA Astrophysics Data System (ADS)

    Zeb Gul, Jahan; Yang, Bong-Su; Yang, Young Jin; Chang, Dong Eui; Choi, Kyung Hyun

    2016-11-01

    Soft bots have the expedient ability of adopting intricate postures and fitting in complex shapes compared to mechanical robots. This paper presents a unique in situ UV curing three-dimensional (3D) printed multi-material tri-legged soft bot with spider mimicked multi-step dynamic forward gait using commercial bio metal filament (BMF) as an actuator. The printed soft bot can produce controllable forward motion in response to external signals. The fundamental properties of BMF, including output force, contractions at different frequencies, initial loading rate, and displacement-rate are verified. The tri-pedal soft bot CAD model is designed inspired by spider’s legged structure and its locomotion is assessed by simulating strain and displacement using finite element analysis. A customized rotational multi-head 3D printing system assisted with multiple wavelength’s curing lasers is used for in situ fabrication of tri-pedal soft-bot using two flexible materials (epoxy and polyurethane) in three layered steps. The size of tri-pedal soft-bot is 80 mm in diameter and each pedal’s width and depth is 5 mm × 5 mm respectively. The maximum forward speed achieved is 2.7 mm s-1 @ 5 Hz with input voltage of 3 V and 250 mA on a smooth surface. The fabricated tri-pedal soft bot proved its power efficiency and controllable locomotion at three input signal frequencies (1, 2, 5 Hz).

  10. On the role of density and attenuation in 3D multi-parameter visco-acoustic VTI frequency-domain FWI: an OBC case study from the North Sea

    NASA Astrophysics Data System (ADS)

    Operto, S.; Miniussi, A.

    2018-03-01

    Three-dimensional frequency-domain full waveform inversion (FWI) is applied on North Sea wide-azimuth ocean-bottom cable data at low frequencies (≤ 10 Hz) to jointly update vertical wavespeed, density and quality factor Q in the visco-acoustic VTI approximation. We assess whether density and Q should be viewed as proxy to absorb artefacts resulting from approximate wave physics or are valuable for interpretation in presence of saturated sediments and gas. FWI is performed in the frequency domain to account for attenuation easily. Multi-parameter frequency-domain FWI is efficiently performed with a few discrete frequencies following a multi-scale frequency continuation. However, grouping a few frequencies during each multi-scale step is necessary to mitigate acquisition footprint and match dispersive shallow guided waves. Q and density absorb a significant part of the acquisition footprint hence cleaning the velocity model from this pollution. Low Q perturbations correlate with low velocity zones associated with soft sediments and gas cloud. However, the amplitudes of the Q perturbations show significant variations when the inversion tuning is modified. This dispersion in the Q reconstructions is however not passed on the velocity parameter suggesting that cross-talks between first-order kinematic and second-order dynamic parameters are limited. The density model shows a good match with a well log at shallow depths. Moreover, the impedance built a posteriori from the FWI velocity and density models shows a well-focused image with however local differences with the velocity model near the sea bed where density might have absorbed elastic effects. The FWI models are finally assessed against time-domain synthetic seismogram modelling performed with the same frequency-domain modelling engine used for FWI.

  11. The influence of precipitation, vegetation and soil properties on the ecohydrology of sagebrush steppe rangelands on the INL site

    USGS Publications Warehouse

    Germino, Matthew J.

    2013-01-01

    The INL Site and other landscapes having sagebrush steppe vegetation are experiencing a simultaneous change in climate and floristics that result from increases in exotic species. Determining the separate and combined/interactive effects of climate and vegetation change is important for assessing future changes on the landscape and for hydrologic processes. This research uses the 72 experimental plots established and initially maintained for many years as the “Protective Cap Biobarrier Experiment” by Dr. Jay Anderson and the Stoller ESER program, and the experiment is also now referred to as the “INL Site Ecohydrology Study.” We are evaluating long-term impacts of different plant communities commonly found throughout Idaho subject to different precipitation regimes and to different soil depths. Treatments of amount and timing of precipitation (irrigation), soil depth, and either native/perennial or exotic grass vegetation allow researchers to investigate how vegetation, precipitation and soil interact to influence soil hydrology and ecosystem biogeochemistry. This information will be used to improve a variety of models, as well as provide data for these models.

  12. LivePhantom: Retrieving Virtual World Light Data to Real Environments.

    PubMed

    Kolivand, Hoshang; Billinghurst, Mark; Sunar, Mohd Shahrizal

    2016-01-01

    To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera's position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems.

  13. LivePhantom: Retrieving Virtual World Light Data to Real Environments

    PubMed Central

    2016-01-01

    To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera’s position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems. PMID:27930663

  14. Simultaneous dual contrast weighting using double echo rapid acquisition with relaxation enhancement (RARE) imaging.

    PubMed

    Fuchs, Katharina; Hezel, Fabian; Klix, Sabrina; Mekle, Ralf; Wuerfel, Jens; Niendorf, Thoralf

    2014-12-01

    This work proposes a dual contrast rapid acquisition with relaxation enhancement (RARE) variant (2in1-RARE), which provides simultaneous proton density (PD) and T2 * contrast in a single acquisition. The underlying concept of 2in1-RARE is the strict separation of spin echoes and stimulated echoes. This approach offers independent weighting of spin echoes and stimulated echoes. 2in1-RARE was evaluated in phantoms including signal-to-noise ratio (SNR) and point spread function assessment. 2in1-RARE was benchmarked versus coherent RARE and a split-echo RARE variant. The applicability of 2in1-RARE for brain imaging was demonstrated in a small cohort of healthy subjects (n = 10) and, exemplary, a multiple sclerosis patient at 3 Tesla as a precursor to a broader clinical study. 2in1-RARE enables the simultaneous acquisition of dual contrast weighted images without any significant image degradation and without sacrificing SNR versus split-echo RARE. This translates into a factor of two speed gain over multi-contrast, sequential split-echo RARE. A 15% broadening of the point spread function was observed in 2in1-RARE. T1 relaxation effects during the mixing time can be neglected for brain tissue. 2in1-RARE offers simultaneous acquisition of images of anatomical (PD) and functional (T2 *) contrast. It presents an alternative to address scan time constraints frequently encountered during sequential acquisition of T2 * or PD-weighted RARE. © 2013 Wiley Periodicals, Inc.

  15. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    DTIC Science & Technology

    2017-06-27

    realize high-performance spintronic and magnetic storage devices. 15. SUBJECT TERMS nano- electronics , spin, wave, magnetic, multi-functional, device 16... electronics has required us to develop high-performance and multi-functional electronic devices driven with extremely low power consumption...Spintronics”, simultaneously utilizing the charge and the spin of electrons , provides us with solutions to essential problems for semiconductor-based

  16. Probing dynamic behavior of electric fields and band diagrams in complex semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Turkulets, Yury; Shalish, Ilan

    2018-01-01

    Modern bandgap engineered electronic devices are typically made of multi-semiconductor multi-layer heterostructures that pose a major challenge to silicon-era characterization methods. As a result, contemporary bandgap engineering relies mostly on simulated band structures that are hardly ever verified experimentally. Here, we present a method that experimentally evaluates bandgap, band offsets, and electric fields, in complex multi-semiconductor layered structures, and it does so simultaneously in all the layers. The method uses a modest optical photocurrent spectroscopy setup at ambient conditions. The results are analyzed using a simple model for electro-absorption. As an example, we apply the method to a typical GaN high electron mobility transistor structure. Measurements under various external electric fields allow us to experimentally construct band diagrams, not only at equilibrium but also under any other working conditions of the device. The electric fields are then used to obtain the charge carrier density and mobility in the quantum well as a function of the gate voltage over the entire range of operating conditions of the device. The principles exemplified here may serve as guidelines for the development of methods for simultaneous characterization of all the layers in complex, multi-semiconductor structures.

  17. Untapped Therapeutic Targets in the Tumor Microenvironment

    DTIC Science & Technology

    2017-08-01

    that harbors the resistant cancer cells is simultaneously targeted. Since activated carcinoma-associated fibroblasts (CAFs) have a prominent role in...epithelial cells (IOSE) or HEYA8 epithelial ovarian cancer cells (EOC) using a Transwell membrane. Inverse -log2 values of the Robust Multi-array Average...barrier for drug transport. Thus, simultaneous targeting of CAFs and cancer cells may be necessary for chemotherapeutic accessibility. To identify

  18. Compact light-emitting-diode sun photometer for atmospheric optical depth measurements.

    PubMed

    Acharya, Y B; Jayaraman, A; Ramachandran, S; Subbaraya, B H

    1995-03-01

    A new compact light-emitting diode (LED) sun photometer, in which a LED is used as a spectrally selective photodetector as well as a nonlinear feedback element in the operational amplifier, has been developed. The output voltage that is proportional to the logarithm of the incident solar intensity permits the direct measurement of atmospheric optical depths in selected spectral bands. Measurements made over Ahmedabad, India, show good agreement, within a few percent, of optical depths derived with a LED as a photodetector in a linear mode and with a LED as both a photodetector and a feedback element in an operational amplifier in log mode. The optical depths are also found to compare well with those obtained simultaneously with a conventional filter photometer.

  19. Depth extraction method with high accuracy in integral imaging based on moving array lenslet technique

    NASA Astrophysics Data System (ADS)

    Wang, Yao-yao; Zhang, Juan; Zhao, Xue-wei; Song, Li-pei; Zhang, Bo; Zhao, Xing

    2018-03-01

    In order to improve depth extraction accuracy, a method using moving array lenslet technique (MALT) in pickup stage is proposed, which can decrease the depth interval caused by pixelation. In this method, the lenslet array is moved along the horizontal and vertical directions simultaneously for N times in a pitch to get N sets of elemental images. Computational integral imaging reconstruction method for MALT is taken to obtain the slice images of the 3D scene, and the sum modulus (SMD) blur metric is taken on these slice images to achieve the depth information of the 3D scene. Simulation and optical experiments are carried out to verify the feasibility of this method.

  20. Space-variant restoration of images degraded by camera motion blur.

    PubMed

    Sorel, Michal; Flusser, Jan

    2008-02-01

    We examine the problem of restoration from multiple images degraded by camera motion blur. We consider scenes with significant depth variations resulting in space-variant blur. The proposed algorithm can be applied if the camera moves along an arbitrary curve parallel to the image plane, without any rotations. The knowledge of camera trajectory and camera parameters is not necessary. At the input, the user selects a region where depth variations are negligible. The algorithm belongs to the group of variational methods that estimate simultaneously a sharp image and a depth map, based on the minimization of a cost functional. To initialize the minimization, it uses an auxiliary window-based depth estimation algorithm. Feasibility of the algorithm is demonstrated by three experiments with real images.

  1. Precipitable water vapor and 212 GHz atmospheric optical depth correlation at El Leoncito site

    NASA Astrophysics Data System (ADS)

    Cassiano, Marta M.; Cornejo Espinoza, Deysi; Raulin, Jean-Pierre; Giménez de Castro, Carlos G.

    2018-03-01

    Time series of precipitable water vapor (PWV) and 212 GHz atmospheric optical depth were obtained in CASLEO (Complejo Astronómico El Leoncito), at El Leoncito site, Argentinean Andes, for the period of 2011-2013. The 212 GHz atmospheric optical depth data were derived from measurements by the Solar Submillimeter Telescope (SST) and the PWV data were obtained by the AERONET CASLEO station. The correlation between PWV and 212 GHz optical depth was analyzed for the whole period, when both parameters were simultaneously available. A very significant correlation was observed. Similar correlation was found when data were analyzed year by year. The results indicate that the correlation of PWV versus 212 GHz optical depth could be used as an indirect estimation method for PWV, when direct measurements are not available.

  2. Spatial variability in distribution and prevalence of Caribbean scleractinian coral and octocoral diseases. II. Genera-level analysis.

    PubMed

    Cróquer, Aldo; Weil, Ernesto

    2009-02-25

    Geographic assessments of coral/octocoral diseases affecting major reef-building genera and abundant reef species are important to understand their local and geographic spatial-temporal variability and their impact. The status and spatial variability of major Caribbean coral/octocoral diseases affecting important reef-building coral (Montastraea, Diploria, Siderastrea, Stephanocoenia, Porites, and Agaricia) and common, widespread octocoral genera (Gorgonia and Pseudopterogorgia) was assessed along 4 permanent 10 x 2 m band-transects in each of 3 depth habitats (<4, 5-12 and >15 m) on 2 reefs in 6 countries across the wider Caribbean during the summer and fall of 2005. A permutational multivariate analysis of variance was used to test the spatial variability (countries, reef sites and depth habitats) in prevalence of major diseases in these genera. We found a significant interaction of disease prevalence in the different coral and octocoral genera between reef sites and habitats (depth intervals). Montastraea was primarily affected by both white plague (WP-II) and yellow band disease in deep (16.9 +/- SE 16% and 16.9 +/- SE 2.3%) and intermediate (8.1 +/- SE 1.6% and 15.5 +/- SE 2.3%) depth habitats of Culebrita (Puerto Rico) and Chub Cut (Bermuda), respectively. Prevalence of multiple diseases simultaneously and other compromised-health problems affecting Montastraea colonies varied between 0.2 to 2% and 0.2 to 1.8%, respectively. Agaricia and Diploria were mostly affected by WP-II (0.5 to 16%), black band disease (0.4 to 5%) and Caribbean ciliate infections (0.2 to 12%). Siderastrea and Stephanocoenia were mainly affected by dark spots disease in Curaçao, with higher prevalence in intermediate (40.5 +/- SE 6.2%) and deep (26.6 +/- SE 4.2%) habitats. Aspergillosis and other compromised-health conditions affected Gorgonia ventalina (0.2 to 8%) and other common and widespread octocoral genera (1 to 14%), respectively.

  3. Exponential Increase in Relative Biological Effectiveness Along Distal Edge of a Proton Bragg Peak as Measured by Deoxyribonucleic Acid Double-Strand Breaks

    PubMed Central

    Cuaron, John J.; Chang, Chang; Lovelock, Michael; Higginson, Daniel S.; Mah, Dennis; Cahlon, Oren; Powell, Simon

    2016-01-01

    Purpose To quantify the relative biological effectiveness (RBE) of the distal edge of the proton Bragg peak, using an in vitro assay of DNA double-strand breaks (DSBs). Methods and Materials U2OS cells were irradiated within the plateau of a spread-out Bragg peak and at each millimeter position along the distal edge using a custom slide holder, allowing for simultaneous measurement of physical dose. A reference radiation signal was generated using photons. The DNA DSBs at 3 hours (to assess for early damage) and at 24 hours (to assess for residual damage and repair) after irradiation were measured using the γH2AX assay and quantified via flow cytometry. Results were confirmed with clonogenic survival assays. A detailed map of the RBE as a function of depth along the Bragg peak was generated using γH2AX measurements as a biological endpoint. Results At 3 hours after irradiation, DNA DSBs were higher with protons at every point along the distal edge compared with samples irradiated with photons to similar doses. This effect was even more pronounced after 24 hours, indicating that the impact of DNA repair is less after proton irradiation relative to photons. The RBE demonstrated an exponential increase as a function of depth and was measured to be as high as 4.0 after 3 hours and as high as 6.0 after 24 hours. When the RBE-corrected dose was plotted as a function of depth, the peak effective dose was extended 2-3 mm beyond what would be expected with physical measurement. Conclusions We generated a highly comprehensive map of the RBE of the distal edge of the Bragg peak, using a direct assay of DNA DSBs in vitro. Our data show that the RBE of the distal edge increases with depth and is significantly higher than previously reported estimates. PMID:27084629

  4. Exponential Increase in Relative Biological Effectiveness Along Distal Edge of a Proton Bragg Peak as Measured by Deoxyribonucleic Acid Double-Strand Breaks.

    PubMed

    Cuaron, John J; Chang, Chang; Lovelock, Michael; Higginson, Daniel S; Mah, Dennis; Cahlon, Oren; Powell, Simon

    2016-05-01

    To quantify the relative biological effectiveness (RBE) of the distal edge of the proton Bragg peak, using an in vitro assay of DNA double-strand breaks (DSBs). U2OS cells were irradiated within the plateau of a spread-out Bragg peak and at each millimeter position along the distal edge using a custom slide holder, allowing for simultaneous measurement of physical dose. A reference radiation signal was generated using photons. The DNA DSBs at 3 hours (to assess for early damage) and at 24 hours (to assess for residual damage and repair) after irradiation were measured using the γH2AX assay and quantified via flow cytometry. Results were confirmed with clonogenic survival assays. A detailed map of the RBE as a function of depth along the Bragg peak was generated using γH2AX measurements as a biological endpoint. At 3 hours after irradiation, DNA DSBs were higher with protons at every point along the distal edge compared with samples irradiated with photons to similar doses. This effect was even more pronounced after 24 hours, indicating that the impact of DNA repair is less after proton irradiation relative to photons. The RBE demonstrated an exponential increase as a function of depth and was measured to be as high as 4.0 after 3 hours and as high as 6.0 after 24 hours. When the RBE-corrected dose was plotted as a function of depth, the peak effective dose was extended 2-3 mm beyond what would be expected with physical measurement. We generated a highly comprehensive map of the RBE of the distal edge of the Bragg peak, using a direct assay of DNA DSBs in vitro. Our data show that the RBE of the distal edge increases with depth and is significantly higher than previously reported estimates. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Radiological and multi-element analysis of sediments from the Proserpina reservoir (Spain) dating from Roman times.

    PubMed

    Baeza, A; Guillén, J; Ontalba Salamanca, M A; Rodríguez, A; Ager, F J

    2009-10-01

    The Proserpina dam was built in Roman times to provide drinking water to Emerita Augusta (today's Mérida in SW Spain). During maintenance work, a sediment core was extracted, offering an excellent opportunity to analyze the historical environmental impacts of the dam and its reservoir over the 2000 years since Roman times. In order to establish an accurate chronology, (14)C ages were determined by accelerator mass spectrometry (AMS). Core samples were assayed for their content in uranium and thorium series isotopes, (40)K, and the anthropogenic radionuclides (137)Cs, (90)Sr, and (239+240)Pu. Potassium-40 presented the highest activity level and was not constant with depth. The uranium and thorium series were generally in equilibrium, suggesting there had been no additional input of natural radionuclides. The presence of (137)Cs was only found in relation with the global fallout in the early 1960s. Multi-element assays were performed using the PIXE and PIGE techniques. Some variations in the multi-element concentrations were observed with depth, but the sediment core could be considered as clean, and no presumptive anthropogenic pollutants were found. Nevertheless, an unusually high Zn content was detected at depths corresponding to pre-Roman times, due to geological anomalies in the area.

  6. Clio: An Autonomous Vertical Sampling Vehicle for Global Ocean Biogeochemical Mapping

    NASA Astrophysics Data System (ADS)

    Jakuba, M.; Gomez-Ibanez, D.; Saito, M. A.; Dick, G.; Breier, J. A., Jr.

    2014-12-01

    We report the preliminary design of a fast vertical profiling autonomous underwater vehicle, called Clio, designed to cost-effectively improve the understanding of marine microorganism ecosystem dynamics on a global scale. The insights into biogeochemical cycles to be gained from illuminating the relationships between ocean life and chemistry have led to establishment of the GEOTRACES program. The nutrient and trace element profiles generated by GEOTRACES will provide insight into what is happening biogeochemically, but not how it is happening, i.e., what biochemical pathways are active? Advances in sequencing technology and in situ preservation have made it possible to study the genomics (DNA), transcriptomics (RNA), proteomics (proteins and enzymes), metabolomics (lipids and other metabolites), and metallomics (metals), associated with marine microorganisms; however, these techniques require sample collection. To this end, Clio will carry two to four SUspended Particle Rosette (SUPR) multi-samplers to depths of 6000 m. Clio is being designed specifically to complement the GEOTRACES program—to operate simultaneously and independently of the wire-based sampling protocols developed for GEOTRACES. At each GEOTRACES ocean transect sampling station, Clio will be deployed from the ship, transit vertically to the seafloor, and then ascend to, and stop at up to 32 sampling depths, where it will filter up to 150 l of seawater per sample. Filtered samples for RNA will be administered a dose of preservative (RNALater) in situ. Clio must efficiently hold station at multiple depths between the surface and 6000 m, but also move rapidly between sampling depths. It must be chemically clean and avoid disturbing the water column while sampling. Clio must be operationally friendly, requiring few personnel to operate, and have minimal impact on shipboard operations. We have selected a positively-buoyant thruster-driven design with a quasi-isopycnal construction. Our simulations indicate the vehicle can complete dives that mirror their GEOTRACES counterparts within the station time alloted. The simulation includes the effects of material/housing compressibility and thermal expansion, and employs a global average T/S profile from the Levitus 1982 climatology.

  7. Student Perceptions of Service Quality in a Multi-Campus Higher Education System in Spain

    ERIC Educational Resources Information Center

    Gallifa, Josep; Batalle, Pere

    2010-01-01

    Purpose: This paper aims to present an in-depth case study with student perceptions of service quality, discussing the relevance of these perceptions for the important issue of quality improvement in higher education. Design/methodology/approach: The paper presents institutional research carried out in a multi-campus system in Spain made up of…

  8. Validation of multi-angle imaging spectroradiometer aerosol products in China

    Treesearch

    J. Liu; X. Xia; Z. Li; P. Wang; M. Min; WeiMin Hao; Y. Wang; J. Xin; X. Li; Y. Zheng; Z. Chen

    2010-01-01

    Based on AErosol RObotic NETwork and Chinese Sun Hazemeter Network data, the Multi-angle Imaging SpectroRadiometer (MISR) level 2 aerosol optical depth (AOD) products are evaluated in China. The MISR retrievals depict well the temporal aerosol trend in China with correlation coefficients exceeding 0.8 except for stations located in northeast China and at the...

  9. Hyperspectral imaging to investigate the distribution of organic matter and iron down the soil profile

    NASA Astrophysics Data System (ADS)

    Hobley, Eleanor; Kriegs, Stefanie; Steffens, Markus

    2017-04-01

    Obtaining reliable and accurate data regarding the spatial distribution of different soil components is difficult due to issues related with sampling scale and resolution on the one hand and laboratory analysis on the other. When investigating the chemical composition of soil, studies frequently limit themselves to two dimensional characterisations, e.g. spatial variability near the surface or depth distribution down the profile, but rarely combine both approaches due to limitations to sampling and analytical capacities. Furthermore, when assessing depth distributions, samples are taken according to horizon or depth increments, resulting in a mixed sample across the sampling depth. Whilst this facilitates mean content estimation per depth increment and therefore reduces analytical costs, the sample information content with regards to heterogeneity within the profile is lost. Hyperspectral imaging can overcome these sampling limitations, yielding high resolution spectral data of down the soil profile, greatly enhancing the information content of the samples. This can then be used to augment horizontal spatial characterisation of a site, yielding three dimensional information into the distribution of spectral characteristics across a site and down the profile. Soil spectral characteristics are associated with specific chemical components of soil, such as soil organic matter or iron contents. By correlating the content of these soil components with their spectral behaviour, high resolution multi-dimensional analysis of soil chemical composition can be obtained. Here we present a hyperspectral approach to the characterisation of soil organic matter and iron down different soil profiles, outlining advantages and issues associated with the methodology.

  10. Development of 1.45-mm resolution four-layer DOI-PET detector for simultaneous measurement in 3T MRI.

    PubMed

    Nishikido, Fumihiko; Tachibana, Atsushi; Obata, Takayuki; Inadama, Naoko; Yoshida, Eiji; Suga, Mikio; Murayama, Hideo; Yamaya, Taiga

    2015-01-01

    Recently, various types of PET-MRI systems have been developed by a number of research groups. However, almost all of the PET detectors used in these PET-MRI systems have no depth-of-interaction (DOI) capability. The DOI detector can reduce the parallax error and lead to improvement of the performance. We are developing a new PET-MRI system which consists of four-layer DOI detectors positioned close to the measured object to achieve high spatial resolution and high scanner sensitivity. As a first step, we are investigating influences the PET detector and the MRI system have on each other using a prototype four-layer DOI-PET detector. This prototype detector consists of a lutetium yttrium orthosilicate crystal block and a 4 × 4 multi-pixel photon counter array. The size of each crystal element is 1.45 mm × 1.45 mm × 4.5 mm, and the crystals are arranged in 6 × 6 elements × 4 layers with reflectors. The detector and some electric components are packaged in an aluminum shielding box. Experiments were carried out with 3.0 T MRI (GE, Signa HDx) and a birdcage-type RF coil. We demonstrated that the DOI-PET detector was normally operated in simultaneous measurements with no influence of the MRI measurement. A slight influence of the PET detector on the static magnetic field of the MRI was observed near the PET detector. The signal-to-noise ratio was decreased by presence of the PET detector due to environmental noise entering the MRI room through the cables, even though the PET detector was not powered up. On the other hand, no influence of electric noise from the PET detector in the simultaneous measurement on the MRI images was observed, even though the PET detector was positioned near the RF coil.

  11. Simultaneous Multi-Slice fMRI using Spiral Trajectories

    PubMed Central

    Zahneisen, Benjamin; Poser, Benedikt A.; Ernst, Thomas; Stenger, V. Andrew

    2014-01-01

    Parallel imaging methods using multi-coil receiver arrays have been shown to be effective for increasing MRI acquisition speed. However parallel imaging methods for fMRI with 2D sequences show only limited improvements in temporal resolution because of the long echo times needed for BOLD contrast. Recently, Simultaneous Multi-Slice (SMS) imaging techniques have been shown to increase fMRI temporal resolution by factors of four and higher. In SMS fMRI multiple slices can be acquired simultaneously using Echo Planar Imaging (EPI) and the overlapping slices are un-aliased using a parallel imaging reconstruction with multiple receivers. The slice separation can be further improved using the “blipped-CAIPI” EPI sequence that provides a more efficient sampling of the SMS 3D k-space. In this paper a blipped-spiral SMS sequence for ultra-fast fMRI is presented. The blipped-spiral sequence combines the sampling efficiency of spiral trajectories with the SMS encoding concept used in blipped-CAIPI EPI. We show that blipped spiral acquisition can achieve almost whole brain coverage at 3 mm isotropic resolution in 168 ms. It is also demonstrated that the high temporal resolution allows for dynamic BOLD lag time measurement using visual/motor and retinotopic mapping paradigms. The local BOLD lag time within the visual cortex following the retinotopic mapping stimulation of expanding flickering rings is directly measured and easily translated into an eccentricity map of the cortex. PMID:24518259

  12. Accelerating Magnetic Resonance Fingerprinting (MRF) using t-Blipped Simultaneous Multi-Slice (SMS) acquisition

    PubMed Central

    Ye, Huihui; Ma, Dan; Jiang, Yun; Cauley, Stephen F.; Du, Yiping; Wald, Lawrence L.; Griswold, Mark A.; Setsompop, Kawin

    2015-01-01

    Purpose We incorporate Simultaneous Multi-Slice (SMS) acquisition into MR Fingerprinting (MRF) to accelerate the MRF acquisition. Methods The t-Blipped SMS-MRF method is achieved by adding a Gz blip before each data acquisition window and balancing it with a Gz blip of opposing polarity at the end of each TR. Thus the signal from different simultaneously excited slices are encoded with different phases without disturbing the signal evolution. Further, by varying the Gz blip area and/or polarity as a function of TR, the slices’ differential phase can also be made to vary as a function of time. For reconstruction of t-Blipped SMS-MRF data, we demonstrate a combined slice-direction SENSE and modified dictionary matching method. Results In Monte Carlo simulation, the parameter mapping from Multi-band factor (MB)=2 t-Blipped SMS-MRF shows good accuracy and precision when compared to results from reference conventional MRF data with concordance correlation coefficients (CCC) of 0.96 for T1 estimates and 0.90 for T2 estimates. For in vivo experiments, T1 and T2 maps from MB=2 t-Blipped SMS-MRF have a high agreement with ones from conventional MRF. Conclusions The MB=2 t-Blipped SMS-MRF acquisition/reconstruction method has been demonstrated and validated to provide more rapid parameter mapping in the MRF framework. PMID:26059430

  13. Spatial accessibility to healthcare services in Shenzhen, China: improving the multi-modal two-step floating catchment area method by estimating travel time via online map APIs.

    PubMed

    Tao, Zhuolin; Yao, Zaoxing; Kong, Hui; Duan, Fei; Li, Guicai

    2018-05-09

    Shenzhen has rapidly grown into a megacity in the recent decades. It is a challenging task for the Shenzhen government to provide sufficient healthcare services. The spatial configuration of healthcare services can influence the convenience for the consumers to obtain healthcare services. Spatial accessibility has been widely adopted as a scientific measurement for evaluating the rationality of the spatial configuration of healthcare services. The multi-modal two-step floating catchment area (2SFCA) method is an important advance in the field of healthcare accessibility modelling, which enables the simultaneous assessment of spatial accessibility via multiple transport modes. This study further develops the multi-modal 2SFCA method by introducing online map APIs to improve the estimation of travel time by public transit or by car respectively. As the results show, the distribution of healthcare accessibility by multi-modal 2SFCA shows significant spatial disparity. Moreover, by dividing the multi-modal accessibility into car-mode and transit-mode accessibility, this study discovers that the transit-mode subgroup is disadvantaged in the competition for healthcare services with the car-mode subgroup. The disparity in transit-mode accessibility is the main reason of the uneven pattern of healthcare accessibility in Shenzhen. The findings suggest improving the public transit conditions for accessing healthcare services to reduce the disparity of healthcare accessibility. More healthcare services should be allocated in the eastern and western Shenzhen, especially sub-districts in Dapeng District and western Bao'an District. As these findings cannot be drawn by the traditional single-modal 2SFCA method, the advantage of the multi-modal 2SFCA method is significant to both healthcare studies and healthcare system planning.

  14. Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components

    NASA Technical Reports Server (NTRS)

    Reck, Theodore (Inventor); Perez, Jose Vicente Siles (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Jung-Kubiak, Cecile (Inventor); Mehdi, Imran (Inventor); Chattopadhyay, Goutam (Inventor); Lin, Robert H. (Inventor); Peralta, Alejandro (Inventor)

    2016-01-01

    A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.

  15. Dragon Skin - How It Changed Body Armor Testing in the United States Army

    DTIC Science & Technology

    2015-09-01

    flat front surface for accurate and consistent measurement of depression depths. After the clay has been worked into the rigid frame, the clay backing...material will be simultaneously conditioned for use in filling depressions created by the drop testing and building up areas to fit non-planar body...clay consistency shall be such that a depression of [redacted] in depth is obtained when a [redacted] cylindrical steel mass (see Figure 4

  16. MTVis: tree exploration using a multitouch interface

    NASA Astrophysics Data System (ADS)

    Andrews, David; Teoh, Soon Tee

    2010-01-01

    We present MTVis, a multi-touch interactive tree visualization system. The multi-touch interface display hardware is built using the LED-LP technology, and the tree layout is based on RINGS, but enhanced with multitouch interactions. We describe the features of the system, and how the multi-touch interface enhances the user's experience in exploring the tree data structure. In particular, the multi-touch interface allows the user to simultaneously control two child nodes of the root, and rotate them so that some nodes are magnified, while preserving the layout of the tree. We also describe the other meaninful touch screen gestures the users can use to intuitively explore the tree.

  17. Multi-criteria GIS-based siting of an incineration plant for municipal solid waste.

    PubMed

    Tavares, Gilberto; Zsigraiová, Zdena; Semiao, Viriato

    2011-01-01

    Siting a municipal solid waste (MSW) incineration plant requires a comprehensive evaluation to identify the best available location(s) that can simultaneously meet the requirements of regulations and minimise economic, environmental, health, and social costs. A spatial multi-criteria evaluation methodology is presented to assess land suitability for a plant siting and applied to Santiago Island of Cape Verde. It combines the analytical hierarchy process (AHP) to estimate the selected evaluation criteria weights with Geographic Information Systems (GIS) for spatial data analysis that avoids the subjectivity of the judgements of decision makers in establishing the influences between some criteria or clusters of criteria. An innovative feature of the method lies in incorporating the environmental impact assessment of the plant operation as a criterion in the decision-making process itself rather than as an a posteriori assessment. Moreover, a two-scale approach is considered. At a global scale an initial screening identifies inter-municipal zones satisfying the decisive requirements (socio-economic, technical and environmental issues, with weights respectively, of 48%, 41% and 11%). A detailed suitability ranking inside the previously identified zones is then performed at a local scale in two phases and includes environmental assessment of the plant operation. Those zones are ranked by combining the non-environmental feasibility of Phase 1 (with a weight of 75%) with the environmental assessment of the plant operation impact of Phase 2 (with a weight of 25%). The reliability and robustness of the presented methodology as a decision supporting tool is assessed through a sensitivity analysis. The results proved the system effectiveness in the ranking process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. 3D deblending of simultaneous source data based on 3D multi-scale shaping operator

    NASA Astrophysics Data System (ADS)

    Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Gong, Fei; Huang, Weilin

    2018-04-01

    We propose an iterative three-dimensional (3D) deblending scheme using 3D multi-scale shaping operator to separate 3D simultaneous source data. The proposed scheme is based on the property that signal is coherent, whereas interference is incoherent in some domains, e.g., common receiver domain and common midpoint domain. In two-dimensional (2D) blended record, the coherency difference of signal and interference is in only one spatial direction. Compared with 2D deblending, the 3D deblending can take more sparse constraints into consideration to obtain better performance, e.g., in 3D common receiver gather, the coherency difference is in two spatial directions. Furthermore, with different levels of coherency, signal and interference distribute in different scale curvelet domains. In both 2D and 3D blended records, most coherent signal locates in coarse scale curvelet domain, while most incoherent interference distributes in fine scale curvelet domain. The scale difference is larger in 3D deblending, thus, we apply the multi-scale shaping scheme to further improve the 3D deblending performance. We evaluate the performance of 3D and 2D deblending with the multi-scale and global shaping operators, respectively. One synthetic and one field data examples demonstrate the advantage of the 3D deblending with 3D multi-scale shaping operator.

  19. Method to fabricate multi-level silicon-based microstructures via use of an etching delay layer

    DOEpatents

    Manginell, Ronald P.; Schubert, W. Kent; Shul, Randy J.

    2005-08-16

    New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Structures having features with different depth can be formed thereby in a single etching step.

  20. The (In)Effectiveness of Simulated Blur for Depth Perception in Naturalistic Images.

    PubMed

    Maiello, Guido; Chessa, Manuela; Solari, Fabio; Bex, Peter J

    2015-01-01

    We examine depth perception in images of real scenes with naturalistic variation in pictorial depth cues, simulated dioptric blur and binocular disparity. Light field photographs of natural scenes were taken with a Lytro plenoptic camera that simultaneously captures images at up to 12 focal planes. When accommodation at any given plane was simulated, the corresponding defocus blur at other depth planes was extracted from the stack of focal plane images. Depth information from pictorial cues, relative blur and stereoscopic disparity was separately introduced into the images. In 2AFC tasks, observers were required to indicate which of two patches extracted from these images was farther. Depth discrimination sensitivity was highest when geometric and stereoscopic disparity cues were both present. Blur cues impaired sensitivity by reducing the contrast of geometric information at high spatial frequencies. While simulated generic blur may not assist depth perception, it remains possible that dioptric blur from the optics of an observer's own eyes may be used to recover depth information on an individual basis. The implications of our findings for virtual reality rendering technology are discussed.

  1. The (In)Effectiveness of Simulated Blur for Depth Perception in Naturalistic Images

    PubMed Central

    Maiello, Guido; Chessa, Manuela; Solari, Fabio; Bex, Peter J.

    2015-01-01

    We examine depth perception in images of real scenes with naturalistic variation in pictorial depth cues, simulated dioptric blur and binocular disparity. Light field photographs of natural scenes were taken with a Lytro plenoptic camera that simultaneously captures images at up to 12 focal planes. When accommodation at any given plane was simulated, the corresponding defocus blur at other depth planes was extracted from the stack of focal plane images. Depth information from pictorial cues, relative blur and stereoscopic disparity was separately introduced into the images. In 2AFC tasks, observers were required to indicate which of two patches extracted from these images was farther. Depth discrimination sensitivity was highest when geometric and stereoscopic disparity cues were both present. Blur cues impaired sensitivity by reducing the contrast of geometric information at high spatial frequencies. While simulated generic blur may not assist depth perception, it remains possible that dioptric blur from the optics of an observer’s own eyes may be used to recover depth information on an individual basis. The implications of our findings for virtual reality rendering technology are discussed. PMID:26447793

  2. Virtual reality training and assessment in laparoscopic rectum surgery.

    PubMed

    Pan, Jun J; Chang, Jian; Yang, Xiaosong; Liang, Hui; Zhang, Jian J; Qureshi, Tahseen; Howell, Robert; Hickish, Tamas

    2015-06-01

    Virtual-reality (VR) based simulation techniques offer an efficient and low cost alternative to conventional surgery training. This article describes a VR training and assessment system in laparoscopic rectum surgery. To give a realistic visual performance of interaction between membrane tissue and surgery tools, a generalized cylinder based collision detection and a multi-layer mass-spring model are presented. A dynamic assessment model is also designed for hierarchy training evaluation. With this simulator, trainees can operate on the virtual rectum with both visual and haptic sensation feedback simultaneously. The system also offers surgeons instructions in real time when improper manipulation happens. The simulator has been tested and evaluated by ten subjects. This prototype system has been verified by colorectal surgeons through a pilot study. They believe the visual performance and the tactile feedback are realistic. It exhibits the potential to effectively improve the surgical skills of trainee surgeons and significantly shorten their learning curve. Copyright © 2014 John Wiley & Sons, Ltd.

  3. A novel 3D imaging system for strawberry phenotyping.

    PubMed

    He, Joe Q; Harrison, Richard J; Li, Bo

    2017-01-01

    Accurate and quantitative phenotypic data in plant breeding programmes is vital in breeding to assess the performance of genotypes and to make selections. Traditional strawberry phenotyping relies on the human eye to assess most external fruit quality attributes, which is time-consuming and subjective. 3D imaging is a promising high-throughput technique that allows multiple external fruit quality attributes to be measured simultaneously. A low cost multi-view stereo (MVS) imaging system was developed, which captured data from 360° around a target strawberry fruit. A 3D point cloud of the sample was derived and analysed with custom-developed software to estimate berry height, length, width, volume, calyx size, colour and achene number. Analysis of these traits in 100 fruits showed good concordance with manual assessment methods. This study demonstrates the feasibility of an MVS based 3D imaging system for the rapid and quantitative phenotyping of seven agronomically important external strawberry traits. With further improvement, this method could be applied in strawberry breeding programmes as a cost effective phenotyping technique.

  4. Modeling and Advanced Control for Sustainable Process ...

    EPA Pesticide Factsheets

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-inspired, multi-agent-based method. The sustainability and performance assessment of process operating points is carried out using the U.S. E.P.A.’s GREENSCOPE assessment tool that provides scores for the selected economic, material management, environmental and energy indicators. The indicator results supply information on whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous bioethanol fermentation process whose dynamics are characterized by steady-state multiplicity and oscillatory behavior. This book chapter contribution demonstrates the application of novel process control strategies for sustainability by increasing material management, energy efficiency, and pollution prevention, as needed for SHC Sustainable Uses of Wastes and Materials Management.

  5. Characterising the hydrothermal circulation patterns beneath thermal springs in the limestones of the Carboniferous Dublin Basin, Ireland: a geophysical and geochemical approach.

    NASA Astrophysics Data System (ADS)

    Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozár, Jan; Walsh, John; Rath, Volker

    2016-04-01

    A hydrogeological conceptual model of the sources, circulation pathways and temporal variations of two low-enthalpy thermal springs is derived from a multi-disciplinary approach. The springs are situated in the Carboniferous limestones of the Dublin Basin, in east-central Ireland. Kilbrook spring (Co. Kildare) has the highest recorded temperatures for any thermal spring in Ireland (maximum of 25.0 °C), and St. Gorman's Well (Co. Meath) has a complex and variable temperature profile (maximum of 21.8 °C). These temperatures are elevated with respect to average Irish groundwater temperatures (9.5 - 10.5 °C), and represent a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon audio-magnetotelluric (AMT) surveys, time-lapse temperature and chemistry measurements, and hydrochemical analysis, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The hydrochemical analysis indicates that the thermal waters flow within the limestones of the Dublin Basin, and there is evidence that Kilbrook spring receives a contribution from deep-basinal fluids. The time-lapse temperature, electrical conductivity and water level records for St. Gorman's Well indicate a strongly non-linear response to recharge inputs to the system, suggestive of fluid flow in karst conduits. The 3-D electrical resistivity models of the subsurface revealed two types of geological structure beneath the springs; (1) Carboniferous normal faults, and (2) Cenozoic strike-slip faults. These structures are dissolutionally enhanced, particularly where they intersect. The karstification of these structures, which extend to depths of at least 500 m, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 240 and 1,000 m) within the Dublin Basin. The results of this study support a hypothesis that the thermal maximum and simultaneous increased discharge observed each winter at both springs is the result of rapid infiltration, heating and re-circulation of meteoric waters within a structurally- and recharge-controlled hydrothermal circulation system.

  6. Real-time monitoring of ischemic and contralateral brain pO2 during stroke by variable length multisite resonators

    PubMed Central

    Hou, Huagang; Li, Hongbin; Dong, Ruhong; Khan, Nadeem; Swartz, Harold

    2014-01-01

    Purpose Electron paramagnetic resonance (EPR) oximetry using variable length multi-probe implantable resonator (IR), was used to investigate the temporal changes in the ischemic and contralateral brain pO2 during stroke in rats. Material and Methods The EPR signal to noise ratio (S/N) of the IR with four sensor loops at a depth of up to11 mm were compared with direct implantation of lithium phthalocyanine (LiPc, oximetry probe) deposits in vitro. These IRs were used to follow the temporal changes in pO2 at two sites in each hemisphere during ischemia induced by left middle cerebral artery occlusion (MCAO) in rats breathing 30% O2 or 100% O2. Results The S/N ratios of the IRs were significantly greater than the LiPc deposits. A similar pO2 at two sites in each hemisphere prior to the onset of ischemia was observed in rats breathing 30% O2. However, a significant decline in the pO2 of the left cortex and striatum occurred during ischemia but no change in the pO2 of the contralateral brain was observed. A significant increase in the pO2 of only the contralateral non-ischemic brain was observed in the rats breathing 100% O2. No significant difference in the infarct volume was evident between the animals breathing 30% O2 or 100% O2 during ischemia. Conclusions EPR oximetry with IRs can repeatedly assess temporal changes in the brain pO2 at four sites simultaneously during stroke. This oximetry approach can be used to test and develop interventions to rescue ischemic tissue by modulating cerebral pO2 during stroke. PMID:24629514

  7. Surface Profiling and Core Evaluation of Aluminum Honeycomb Sandwich Aircraft Panels Using Multi-Frequency Eddy Current Testing

    PubMed Central

    Reyno, Tyler; Underhill, P. Ross; Krause, Thomas W.; Marsden, Catharine; Wowk, Diane

    2017-01-01

    Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. Eddy current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm2 area with dents ranging in depth from 0.13–1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb core, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment. PMID:28906434

  8. Surface Profiling and Core Evaluation of Aluminum Honeycomb Sandwich Aircraft Panels Using Multi-Frequency Eddy Current Testing.

    PubMed

    Reyno, Tyler; Underhill, P Ross; Krause, Thomas W; Marsden, Catharine; Wowk, Diane

    2017-09-14

    Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. Eddy current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm² area with dents ranging in depth from 0.13-1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb core, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment.

  9. Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonseung; Lee, Peter; Jo, YoungJu; Lee, KyeoReh; Tuchin, Valery V.; Jeong, Yong; Park, YongKeun

    2016-12-01

    We demonstrate that simultaneous application of optical clearing agents (OCAs) and complex wavefront shaping in optical coherence tomography (OCT) can provide significant enhancement of penetration depth and imaging quality. OCA reduces optical inhomogeneity of a highly scattering sample, and the wavefront shaping of illumination light controls multiple scattering, resulting in an enhancement of the penetration depth and signal-to-noise ratio. A tissue phantom study shows that concurrent applications of OCA and wavefront shaping successfully operate in OCT imaging. The penetration depth enhancement is further demonstrated for ex vivo mouse ears, revealing hidden structures inaccessible with conventional OCT imaging.

  10. Multi-isotope SPECT imaging of the 225Ac decay chain: feasibility studies

    NASA Astrophysics Data System (ADS)

    Robertson, A. K. H.; Ramogida, C. F.; Rodríguez-Rodríguez, C.; Blinder, Stephan; Kunz, Peter; Sossi, Vesna; Schaffer, Paul

    2017-06-01

    Effective use of the {}225Ac decay chain in targeted internal radioimmunotherapy requires the retention of both {}225Ac and progeny isotopes at the target site. Imaging-based pharmacokinetic tests of these pharmaceuticals must therefore separately yet simultaneously image multiple isotopes that may not be colocalized despite being part of the same decay chain. This work presents feasibility studies demonstrating the ability of a microSPECT/CT scanner equipped with a high energy collimator to simultaneously image two components of the {}225Ac decay chain: {}221Fr (218 keV) and {}213Bi (440 keV). Image quality phantoms were used to assess the performance of two collimators for simultaneous {}221Fr and {}213Bi imaging in terms of contrast and noise. A hotrod resolution phantom containing clusters of thin rods with diameters ranging between 0.85 and 1.70 mm was used to assess resolution. To demonstrate ability to simultaneously image dynamic {}221Fr and {}213Bi activity distributions, a phantom containing a {}213Bi generator from {}225Ac was imaged. These tests were performed with two collimators, a high-energy ultra-high resolution (HEUHR) collimator and an ultra-high sensitivity (UHS) collimator. Values consistent with activity concentrations determined independently via gamma spectroscopy were observed in high activity regions of the images. In hotrod phantom images, the HEUHR collimator resolved all rods for both {}221Fr and {}213Bi images. With the UHS collimator, no rods were resolvable in {}213Bi images and only rods  ⩾1.3 mm were resolved in {}221Fr images. After eluting the {}213Bi generator, images accurately visualized the reestablishment of transient equilibrium of the {}225Ac decay chain. The feasibility of evaluating the pharmacokinetics of the {}225Ac decay chain in vivo has been demonstrated. This presented method requires the use of a high-performance high-energy collimator.

  11. An Application of Semi-parametric Estimator with Weighted Matrix of Data Depth in Variance Component Estimation

    NASA Astrophysics Data System (ADS)

    Pan, X. G.; Wang, J. Q.; Zhou, H. Y.

    2013-05-01

    The variance component estimation (VCE) based on semi-parametric estimator with weighted matrix of data depth has been proposed, because the coupling system model error and gross error exist in the multi-source heterogeneous measurement data of space and ground combined TT&C (Telemetry, Tracking and Command) technology. The uncertain model error has been estimated with the semi-parametric estimator model, and the outlier has been restrained with the weighted matrix of data depth. On the basis of the restriction of the model error and outlier, the VCE can be improved and used to estimate weighted matrix for the observation data with uncertain model error or outlier. Simulation experiment has been carried out under the circumstance of space and ground combined TT&C. The results show that the new VCE based on the model error compensation can determine the rational weight of the multi-source heterogeneous data, and restrain the outlier data.

  12. Multi-scale sustainability assessments for biomass-based and coal-based fuels in China.

    PubMed

    Man, Yi; Xiao, Honghua; Cai, Wei; Yang, Siyu

    2017-12-01

    Transportation liquid fuels production is heavily depend on oil. In recent years, developing biomass based and coal based fuels are regarded as promising alternatives for non-petroleum based fuels in China. With the rapid growth of constructing and planning b biomass based and coal based fuels production projects, sustainability assessments are needed to simultaneously consider the resource, the economic, and the environmental factors. This paper performs multi-scale analyses on the biomass based and coal based fuels in China. The production cost, life cycle cost, and ecological life cycle cost (ELCC) of these synfuels are investigated to compare their pros to cons and reveal the sustainability. The results show that BTL fuels has high production cost. It lacks of economic attractiveness. However, insignificant resource cost and environmental cost lead to a substantially lower ELCC, which may indicate better ecological sustainability. CTL fuels, on the contrary, is lower in production cost and reliable for economic benefit. But its coal consumption and pollutant emissions are both serious, leading to overwhelming resource cost and environmental cost. A shifting from petroleum to CTL fuels could double the ELCC, posing great threat to the sustainability of the entire fuels industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Multi-functional sensor system for molten salt technologies

    DOEpatents

    Redey, Laszlo [Downers Grove, IL; Gourishankar, Karthick [Downers Grove, IL; Williamson, Mark A [Naperville, IL

    2009-12-15

    The present invention relates to a multi-functional sensor system that simultaneously measures cathode and anode electrode potentials, dissolved ion (i.e. oxide) concentration, and temperatures in an electrochemical cell. One embodiment of the invented system generally comprises: a reference(saturated) electrode, a reference(sensing) electrode, and a data acquisition system. Thermocouples are built into the two reference electrodes to provide important temperature information.

  14. Multi-Sample Cluster Analysis Using Akaike’s Information Criterion.

    DTIC Science & Technology

    1982-12-20

    of Likelihood Criteria for I)fferent Hypotheses," in P. A. Krishnaiah (Ed.), Multivariate Analysis-Il, New York: Academic Press. [5] Fisher, R. A...Methods of Simultaneous Inference in MANOVA," in P. R. Krishnaiah (Ed.), rultivariate Analysis-Il, New York: Academic Press. [8) Kendall, M. G. (1966...1982), Applied Multivariate Statisti- cal-Analysis, Englewood Cliffs: Prentice-Mall, Inc. [1U] Krishnaiah , P. R. (1969), "Simultaneous Test

  15. HAI: A novel airborne multi-channel hygrometer for fast multi-phase H2O quantification: Performance of the HAI instrument during the first flights on the German HALO aircraft

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Ebert, V.; Kraemer, M.; Afchine, A.

    2014-12-01

    Common gas phase H2O measurements on fast airborne platforms e.g. using backward facing or "Rosemount"-inlets can lead to a high risk of ice and droplets contamination. In addition, currently no single hygrometer exists that allows a simultaneous, high-speed measurement of all phases (gas, liquid, ice) with the same detection principle. In the rare occasions multi-phase measurements are realized, gas-and condensed-phase observations rely on different methods, instruments and calibration strategies so that precision and accuracy levels are quite difficult to quantify. This is effectively avoided by the novel TDLAS instrument, HAI, Hygrometer for Atmospheric Investigation, which allows a simultaneous, high speed, multi-phase detection without any sensor calibration in a unique "2+2" channel concept. Hai combines two independent wavelength channels, at 1.4 µm and at 2.6 µm, for a wide dynamic range from 1 to 30 000 ppmv, with a simultaneous closed path (extractive) and open path detection. Thus, "Total", i.e. gas-phase plus condensed-phase water is measured by sampling via a forward facing inlet into "closed-path" extractive cells. A selective, sampling-free, high speed gas phase detection is realized via a dual-wavelength "open-path" cell placed outside of the aircraft fuselage. All channels can be sampled with 120 Hz (measurement cycle time Dt=1.6 ms) allowing an unprecedented spatial resolution of 30 cm at 900 km/h. The evaluation of the individual multi-channel raw-data is done post flight, without any channel interdependencies, in calibration-free mode, thus allowing fast, accurate and precise multi-phase water detection in flight. The performance could be shown in more than 200 net flights hours in three scientific flight campaigns (TACTS, ESMVal, ML-CIRRUS) on the new German HALO aircraft. In addition the level of the accuracy of the calibration free evaluation was evaluated at the German national primary water vapor standard.

  16. Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals

    PubMed Central

    Zhang, Qin; Liu, Runfeng; Chen, Wenbin; Xiong, Caihua

    2017-01-01

    In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA) and single ANN, the average estimation accuracy 91.12% (90.23%) is obtained in 70-s intra-cross validation and 87.00% (86.30%) is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA) with single ANN for multi-joint kinematics estimation in variant application conditions. PMID:28611573

  17. Inside the "African cattle complex": animal burials in the holocene central Sahara.

    PubMed

    di Lernia, Savino; Tafuri, Mary Anne; Gallinaro, Marina; Alhaique, Francesca; Balasse, Marie; Cavorsi, Lucia; Fullagar, Paul D; Mercuri, Anna Maria; Monaco, Andrea; Perego, Alessandro; Zerboni, Andrea

    2013-01-01

    Cattle pastoralism is an important trait of African cultures. Ethnographic studies describe the central role played by domestic cattle within many societies, highlighting its social and ideological value well beyond its mere function as 'walking larder'. Historical depth of this African legacy has been repeatedly assessed in an archaeological perspective, mostly emphasizing a continental vision. Nevertheless, in-depth site-specific studies, with a few exceptions, are lacking. Despite the long tradition of a multi-disciplinary approach to the analysis of pastoral systems in Africa, rarely do early and middle Holocene archaeological contexts feature in the same area the combination of settlement, ceremonial and rock art features so as to be multi-dimensionally explored: the Messak plateau in the Libyan central Sahara represents an outstanding exception. Known for its rich Pleistocene occupation and abundant Holocene rock art, the region, through our research, has also shown to preserve the material evidence of a complex ritual dated to the Middle Pastoral (6080-5120 BP or 5200-3800 BC). This was centred on the frequent deposition in stone monuments of disarticulated animal remains, mostly cattle. Animal burials are known also from other African contexts, but regional extent of the phenomenon, state of preservation of monuments, and associated rock art make the Messak case unique. GIS analysis, excavation data, radiocarbon dating, zooarchaeological and isotopic (Sr, C, O) analyses of animal remains, and botanical information are used to explore this highly formalized ritual and the lifeways of a pastoral community in the Holocene Sahara.

  18. Changes in long-term eruption dynamics at Santiaguito, Guatemala: Observations from seismic data

    NASA Astrophysics Data System (ADS)

    Lamb, O. D.; Lavallée, Y.; De Angelis, S.; Lamur, A.; Hornby, A. J.; von Aulock, F. W.; Kendrick, J. E.; Chigna, G.; Rietbrock, A.

    2016-12-01

    Santiaguito (Guatemala) is an ideal laboratory for the study of the eruption dynamics of long-lived silicic eruptions. Here we present seismic observations of ash-and-gas explosions recorded between November 2014 and June 2016 during a multi-disciplinary experiment by the University of Liverpool. The instruments, deployed around the active dome complex between 0.5 to 7 km from the vent, included 5 broadband and 6 short-period seismometers, as well as 5 infrasound sensors. The geophysical data is complemented by thermal images, optical images from a UAV, and geochemical measurements of erupted material. Regular, small-to-moderate sized explosions from the El Caliente dome at Santiaguito have been common since at least the early 1970s. However, in 2015, a shift in character took place in terms of the regularity and magnitude of the explosions. Explosions became larger and less regular, and often accompanied by pyroclastic density currents. The larger explosions have caused a major morphological change at the vent, as a rubble-filled vent was replaced by a crater of 150 m depth. This shift in behaviour likely represents a change in the eruptive mechanism in the upper conduit beneath the Caliente vent, possibly triggered by processes at a greater depth in the volcanic system. This experiment represents a unique opportunity to use multi-disciplinary research to help understand the long-term eruptive dynamics of lava dome eruptions. Our observations may have implications for hazard assessment not only at Santiaguito, but at many other volcanic systems worldwide.

  19. Suppression of self-organized surface nanopatterning on GaSb/InAs multilayers induced by low energy oxygen ion bombardment by using simultaneously sample rotation and oxygen flooding

    NASA Astrophysics Data System (ADS)

    Beainy, Georges; Cerba, Tiphaine; Bassani, Franck; Martin, Mickaël; Baron, Thierry; Barnes, Jean-Paul

    2018-05-01

    Time of flight secondary ion mass spectrometry (ToF-SIMS) is a well-adapted analytical method for the chemical characterization of concentration profiles in layered or multilayered materials. However, under ion beam bombardment, initially smooth material surface becomes morphologically unstable. This leads to abnormal secondary ion yields and depth profile distortions. In this contribution, we explore the surface topography and roughening evolution induced by O2+ ion bombardment on GaSb/InAs multilayers. We demonstrate the formation of nanodots and ripples patterning according to the ion beam energy. Since the latter are undesirable for ToF-SIMS analysis, we managed to totally stop their growth by using simultaneously sample rotation and oxygen flooding. This unprecedented coupling between these two latter mechanisms leads to a significant enhancement in depth profiles resolution.

  20. Application of plasma electrolysis method for simultaneous phenol and Cr(VI) wastewater degradation using Na2SO4 electrolyte

    NASA Astrophysics Data System (ADS)

    Harianti, Aulia Rahmi; Saksono, Nelson

    2017-11-01

    Phenol and Cr (VI) are two types of wastewater known as dangerous and difficult to degrade. Through this study, phenol and Cr (VI) metal wastewater were degraded simultaneously using plasma electrolysis method by reactive species, •OH and H•. The variation of anode depth and position of plasma formation as independent variables correlated with yield of hydroxyl radical, percentage of phenol and Cr (VI) degradation, and specific energy. Within 30 minutes, phenol was degraded to 98.4% and Cr (VI) was degraded to 93.35% with 171.05 kJ/mmol in specific energy, and 174.53 ppm in COD. The optimum condition was obtained in anodic plasma and 1.5 cm in anode depth. The highest degradation percentage of phenol and Cr (VI) were 99.79% and 97.33% achieved during 180 minutes of plasma electrolysis process.

Top