NASA Technical Reports Server (NTRS)
Desai, N.; Wu, H.; George, K.; Gonda, S. R.; Cucinotta, F. A.; Cucniotta, F. A. (Principal Investigator)
2004-01-01
Space flight results in the exposure of astronauts to a mixed field of radiation composed of energetic particles of varying energies, and biological indicators of space radiation exposure provides a better understanding of the associated long-term health risks. Current methods of biodosimetry have employed the use of cytogenetic analysis for biodosimetry, and more recently the advent of technological progression has led to advanced research in the use of genomic and proteomic expression profiling to simultaneously assess biomarkers of radiation exposure. We describe here the technical advantages of the Luminex(TM) 100 system relative to traditional methods and its potential as a tool to simultaneously profile multiple proteins induced by ionizing radiation. The development of such a bioassay would provide more relevant post-translational dynamics of stress response and will impart important implications in the advancement of space and other radiation contact monitoring. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Sequential circuit design for radiation hardened multiple voltage integrated circuits
Clark, Lawrence T [Phoenix, AZ; McIver, III, John K.
2009-11-24
The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.
Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach
NASA Technical Reports Server (NTRS)
Kuo, K. S.; Weger, R. C.; Welch, R. M.
1997-01-01
Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. The best hope we have for aerosol retrievals over bright backgrounds are observations from multiple angles, such as those provided by the MISR and POLDER instruments. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.
Hamby, David M [Corvallis, OR; Farsoni, Abdollah T [Corvallis, OR; Cazalas, Edward [Corvallis, OR
2011-06-21
A technique and device provides absolute skin dosimetry in real time at multiple tissue depths simultaneously. The device uses a phoswich detector which has multiple scintillators embedded at different depths within a non-scintillating material. A digital pulse processor connected to the phoswich detector measures a differential distribution (dN/dH) of count rate N as function of pulse height H for signals from each of the multiple scintillators. A digital processor computes in real time from the differential count-rate distribution for each of multiple scintillators an estimate of an ionizing radiation dose delivered to each of multiple depths of skin tissue corresponding to the multiple scintillators embedded at multiple corresponding depths within the non-scintillating material.
Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach
NASA Technical Reports Server (NTRS)
Kuo, K.-S.; Weger, R. C.; Welch, R. M.
1997-01-01
Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.
What happens when spins meet for ionizing radiation dosimetry?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavoni, Juliana F.; Baffa, Oswaldo, E-mail: baffa@usp.br; Neves-Junior, Wellington F. P.
2016-07-07
Electron spin resonance (ESR) and magnetic resonance imaging (MRI) can be used to measure radiation dose deposited in different milieu through its effects. Radiation can break chemical bonds and if they produce stable free radicals, ESR can measure their concentration through their spins and a dose can be inferred. Ionizing radiation can also promote polymerization and in this case proton relaxation times can be measured and an image weighed by T2 can be produced giving spatial information about dose. A review of the basics of these applications is presented concluding with an end-to-end test using a composite Gel-Alanine phantom tomore » validate 3-dimensionally dose distribution delivered in a simulation of Volume Modulated Arch Therapy on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.« less
What happens when spins meet for ionizing radiation dosimetry?
NASA Astrophysics Data System (ADS)
Pavoni, Juliana F.; Neves-Junior, Wellington F. P.; Baffa, Oswaldo
2016-07-01
Electron spin resonance (ESR) and magnetic resonance imaging (MRI) can be used to measure radiation dose deposited in different milieu through its effects. Radiation can break chemical bonds and if they produce stable free radicals, ESR can measure their concentration through their spins and a dose can be inferred. Ionizing radiation can also promote polymerization and in this case proton relaxation times can be measured and an image weighed by T2 can be produced giving spatial information about dose. A review of the basics of these applications is presented concluding with an end-to-end test using a composite Gel-Alanine phantom to validate 3-dimensionally dose distribution delivered in a simulation of Volume Modulated Arch Therapy on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.
Medium wave exposure characterisation using exposure quotients.
Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Pinar, Iván
2010-06-01
One of the aspects considered in the International Commission on Non-Ionizing Radiation Protection guidelines is that, in situations of simultaneous exposure to fields of different frequencies, exposure quotients for thermal and electrical stimulation effects should be examined. The aim of the present work was to analyse the electromagnetic radiation levels and exposure quotients for exposure to multiple-frequency sources in the vicinity of medium wave radio broadcasting antennas. The measurements were made with a spectrum analyser and a monopole antenna. Kriging interpolation was used to prepare contour maps and to estimate the levels in the towns and villages of the zone. The results showed that the exposure quotient criterion based on electrical stimulation effects to be more stringent than those based on thermal effects or power density levels. Improvement of dosimetry evaluations requires the spectral components of the radiation to be quantified, followed by application of the criteria for exposure to multiple-frequency sources.
Soft-Hair-Enhanced Entanglement Beyond Page Curves in a Black Hole Evaporation Qubit Model
NASA Astrophysics Data System (ADS)
Hotta, Masahiro; Nambu, Yasusada; Yamaguchi, Koji
2018-05-01
We propose a model with multiple qubits that reproduces the thermal properties of four-dimensional Schwarzschild black holes (BHs) by simultaneously taking account of the emission of Hawking particles and the zero-energy soft-hair evaporation at the horizon. The results verify that the entanglement entropy between a qubit and other subsystems, including emitted radiation, is much larger than the BH entropy analogue of the qubit, as opposed to the Page curve prediction. Our result suggests that early Hawking radiation is entangled with soft hair and that late Hawking radiation can be highly entangled with the degrees of freedom of a BH, avoiding the emergence of a firewall at the horizon.
Risk Assessment of Radiation Exposure using Molecular Biodosimetry
NASA Technical Reports Server (NTRS)
Elliott, Todd F.; George, K.; Hammond, D. K.; Cucinotta, F. A.
2007-01-01
Current cytogenetic biodosimetry methods would be difficult to adapt to spaceflight operations, because they require toxic chemicals and a substantial amount of time to perform. In addition, current biodosimetry techniques are limited to whole body doses over about 10cGy. Development of new techniques that assess radiation exposure response at the molecular level could overcome these limitations and have important implications in the advancement of biodosimetry. Recent technical advances include expression profiling at the transcript and protein level to assess multiple biomarkers of exposure, which may lead to the development of a radiation biomarker panel revealing possible fingerprints of individual radiation sensitivity. So far, many biomarkers of interest have been examined in their response to ionizing radiation, such as cytokines and members of the DNA repair pathway. New technology, such as the Luminex system can analyze many biomarkers simultaneously in one sample.
A dual frequency microstrip antenna for Ka band
NASA Technical Reports Server (NTRS)
Lee, R. Q.; Baddour, M. F.
1985-01-01
For fixed satellite communication systems at Ka band with downlink at 17.7 to 20.2 GHz and uplink at 27.5 to 30.0 GHz, the focused optics and the unfocused optics configurations with monolithic phased array feeds have often been used to provide multiple fixed and multiple scanning spot beam coverages. It appears that a dual frequency microstrip antenna capable of transmitting and receiving simultaneously is highly desirable as an array feed element. This paper describes some early efforts on the development and experimental testing of a dual frequency annular microstrip antenna. The antenna has potential application for use in conjunction with a monolithic microwave integrated circuit device as an active radiating element in a phased array of phased array feeds. The antenna is designed to resonate at TM sub 12 and TM sub 13 modes and tuned with a circumferential microstrip ring to vary the frequency ratio. Radiation characteristics at both the high and low frequencies are examined. Experimental results including radiating patterns and swept frequency measurements are presented.
Arcmancer: Geodesics and polarized radiative transfer library
NASA Astrophysics Data System (ADS)
Pihajoki, Pauli; Mannerkoski, Matias; Nättilä, Joonas; Johansson, Peter H.
2018-05-01
Arcmancer computes geodesics and performs polarized radiative transfer in user-specified spacetimes. The library supports Riemannian and semi-Riemannian spaces of any dimension and metric; it also supports multiple simultaneous coordinate charts, embedded geometric shapes, local coordinate systems, and automatic parallel propagation. Arcmancer can be used to solve various problems in numerical geometry, such as solving the curve equation of motion using adaptive integration with configurable tolerances and differential equations along precomputed curves. It also provides support for curves with an arbitrary acceleration term and generic tools for generating ray initial conditions and performing parallel computation over the image, among other tools.
Sub-diffraction Laser Synthesis of Silicon Nanowires
Mitchell, James I.; Zhou, Nan; Nam, Woongsik; Traverso, Luis M.; Xu, Xianfan
2014-01-01
We demonstrate synthesis of silicon nanowires of tens of nanometers via laser induced chemical vapor deposition. These nanowires with diameters as small as 60 nm are produced by the interference between incident laser radiation and surface scattered radiation within a diffraction limited spot, which causes spatially confined, periodic heating needed for high resolution chemical vapor deposition. By controlling the intensity and polarization direction of the incident radiation, multiple parallel nanowires can be simultaneously synthesized. The nanowires are produced on a dielectric substrate with controlled diameter, length, orientation, and the possibility of in-situ doping, and therefore are ready for device fabrication. Our method offers rapid one-step fabrication of nano-materials and devices unobtainable with previous CVD methods. PMID:24469704
Apparatus and method for high dose rate brachytherapy radiation treatment
Macey, Daniel J.; Majewski, Stanislaw; Weisenberger, Andrew G.; Smith, Mark Frederick; Kross, Brian James
2005-01-25
A method and apparatus for the in vivo location and tracking of a radioactive seed source during and after brachytherapy treatment. The method comprises obtaining multiple views of the seed source in a living organism using: 1) a single PSPMT detector that is exposed through a multiplicity of pinholes thereby obtaining a plurality of images from a single angle; 2) a single PSPMT detector that may obtain an image through a single pinhole or a plurality of pinholes from a plurality of angles through movement of the detector; or 3) a plurality of PSPMT detectors that obtain a plurality of views from different angles simultaneously or virtually simultaneously. The plurality of images obtained from these various techniques, through angular displacement of the various acquired images, provide the information required to generate the three dimensional images needed to define the location of the radioactive seed source within the body of the living organism.
Space Chambers Contamination Diagnostics and Analysis
1990-12-01
been used to detect organic gases surrounding the fibers via molecular absorption of the IR evanescent wave that penetrates the region near the...necessary to make measurements on multiple sample plates simultaneously, and for this reason fiber optics would have to be used to deliver laser radiation...tm-diam fused silica fiber with approximately 200-/an core diameter . Assuming a practical operating length of 30 m for the fibers , a transmission of
Numerical study of electronic impact and radiation in sonoluminescence
NASA Astrophysics Data System (ADS)
Xu, Ning; Wang, Long; Hu, Xiwei
1998-02-01
A hydrodynamic simulation of pure argon single-bubble sonoluminescence including electron collisional ionization, recombination, and radiative energy loss has been performed. We find that near the moment that the bubble reaches its minimum radius the atoms inside a very thin layer around the origin of the bubble are strongly ionized, and the light emission occurs nearly simultaneously. Therefore we conclude that multiple ionization and recombination, which mainly occur in the thin layer of plasma, play a dramatically important role in the noble gas sonoluminescence. We also find that the temperature and the intensity of luminescence are not so high as those predicted by previous models, which consider only neutral gases.
1993-04-14
flame length L simultaneously with h, and measuring the visible radiation I simultaneously with h. L(t) was found to be nearly uncorrelated with h(t...variation of 7i/2 /76 with ýh. These experiments included measuring the flame length L simultaneously with h, and measuring the visible radiation I...Measurements of Liftoff Height and Flame Length ... 66 4.5 Simultaneous Measurements of Liftoff Height and Radiation ....... 71 4.6 D scussion
Radiation Transport of Heliospheric Lyman-alpha from Combined Cassini and Voyager Data Sets
NASA Technical Reports Server (NTRS)
Pryor, W.; Gangopadhyay, P.; Sandel, B.; Forrester, T.; Quemerais, E.; Moebius, E.; Esposito, L.; Stewart, I.; McClintock, W.; Jouchoux, A.;
2008-01-01
Heliospheric neutral hydrogen scatters solar Lyman-alpha radiation from the Sun with '27-day' intensity modulations observed near Earth due to the Sun's rotation combined with Earth's orbital motion. These modulations are increasingly damped in amplitude at larger distances from the Sun due to multiple scattering in the heliosphere, providing a diagnostic of the interplanetary neutral hydrogen density independent of instrument calibration. This paper presents Cassini data from 2003-2004 obtained downwind near Saturn at approximately 10 AU that at times show undamped '27-day' waves in good agreement with the single-scattering models of Pryor et al., 1992. Simultaneous Voyager 1 data from 2003- 2004 obtained upwind at a distance of 88.8-92.6 AU from the Sun show waves damped by a factor of -0.21. The observed degree of damping is interpreted in terms of Monte Carlo multiple-scattering calculations (e.g., Keller et al., 1981) applied to two heliospheric hydrogen two-shock density distributions (discussed in Gangopadhyay et al., 2006) calculated in the frame of the Baranov-Malama model of the solar wind interaction with the two-component (neutral hydrogen and plasma) interstellar wind (Baranov and Malama 1993, Izmodenov et al., 2001, Baranov and Izmodenov, 2006). We conclude that multiple scattering is definitely occurring in the outer heliosphere. Both models compare favorably to the data, using heliospheric neutral H densities at the termination shock of 0.085 cm(exp -3) and 0.095 cm(exp -3). This work generally agrees with earlier discussions of Voyager data in Quemerais et al., 1996 showing the importance of multiple scattering but is based on Voyager data obtained at larger distances from the Sun (with larger damping) simultaneously with Cassini data obtained closer to the Sun.
Cirrus microphysics and radiative transfer: Cloud field study on October 28, 1986
NASA Technical Reports Server (NTRS)
Kinne, Stefan; Ackerman, Thomas P.; Heymsfield, Andrew J.; Valero, Francisco P. J.; Sassen, Kenneth; Spinhirne, James D.
1990-01-01
The radiative properties of cirrus clouds present one of the unresolved problems in weather and climate research. Uncertainties in ice particle amount and size and, also, the general inability to model the single scattering properties of their usually complex particle shapes, prevent accurate model predictions. For an improved understanding of cirrus radiative effects, field experiments, as those of the Cirrus IFO of FIRE, are necessary. Simultaneous measurements of radiative fluxes and cirrus microphysics at multiple cirrus cloud altitudes allows the pitting of calculated versus measured vertical flux profiles; with the potential to judge current cirrus cloud modeling. Most of the problems in this study are linked to the inhomogeneity of the cloud field. Thus, only studies on more homogeneous cirrus cloud cases promises a possibility to improve current cirrus parameterizations. Still, the current inability to detect small ice particles will remain as a considerable handicap.
A Novel Implementation of Massively Parallel Three Dimensional Monte Carlo Radiation Transport
NASA Astrophysics Data System (ADS)
Robinson, P. B.; Peterson, J. D. L.
2005-12-01
The goal of our summer project was to implement the difference formulation for radiation transport into Cosmos++, a multidimensional, massively parallel, magneto hydrodynamics code for astrophysical applications (Peter Anninos - AX). The difference formulation is a new method for Symbolic Implicit Monte Carlo thermal transport (Brooks and Szöke - PAT). Formerly, simultaneous implementation of fully implicit Monte Carlo radiation transport in multiple dimensions on multiple processors had not been convincingly demonstrated. We found that a combination of the difference formulation and the inherent structure of Cosmos++ makes such an implementation both accurate and straightforward. We developed a "nearly nearest neighbor physics" technique to allow each processor to work independently, even with a fully implicit code. This technique coupled with the increased accuracy of an implicit Monte Carlo solution and the efficiency of parallel computing systems allows us to demonstrate the possibility of massively parallel thermal transport. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48
A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51)
NASA Astrophysics Data System (ADS)
Dietmüller, Simone; Jöckel, Patrick; Tost, Holger; Kunze, Markus; Gellhorn, Catrin; Brinkop, Sabine; Frömming, Christine; Ponater, Michael; Steil, Benedikt; Lauer, Axel; Hendricks, Johannes
2016-06-01
The Modular Earth Submodel System (MESSy) provides an interface to couple submodels to a base model via a highly flexible data management facility (Jöckel et al., 2010). In the present paper we present the four new radiation related submodels RAD, AEROPT, CLOUDOPT, and ORBIT. The submodel RAD (including the shortwave radiation scheme RAD_FUBRAD) simulates the radiative transfer, the submodel AEROPT calculates the aerosol optical properties, the submodel CLOUDOPT calculates the cloud optical properties, and the submodel ORBIT is responsible for Earth orbit calculations. These submodels are coupled via the standard MESSy infrastructure and are largely based on the original radiation scheme of the general circulation model ECHAM5, however, expanded with additional features. These features comprise, among others, user-friendly and flexibly controllable (by namelists) online radiative forcing calculations by multiple diagnostic calls of the radiation routines. With this, it is now possible to calculate radiative forcing (instantaneous as well as stratosphere adjusted) of various greenhouse gases simultaneously in only one simulation, as well as the radiative forcing of cloud perturbations. Examples of online radiative forcing calculations in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model are presented.
da Cunha, Antonio Ribeiro
2015-05-01
This study aimed to assess measurements of temperature and relative humidity obtained with HOBO a data logger, under various conditions of exposure to solar radiation, comparing them with those obtained through the use of a temperature/relative humidity probe and a copper-constantan thermocouple psychrometer, which are considered the standards for obtaining such measurements. Data were collected over a 6-day period (from 25 March to 1 April, 2010), during which the equipment was monitored continuously and simultaneously. We employed the following combinations of equipment and conditions: a HOBO data logger in full sunlight; a HOBO data logger shielded within a white plastic cup with windows for air circulation; a HOBO data logger shielded within a gill-type shelter (multi-plate prototype plastic); a copper-constantan thermocouple psychrometer exposed to natural ventilation and protected from sunlight; and a temperature/relative humidity probe under a commercial, multi-plate radiation shield. Comparisons between the measurements obtained with the various devices were made on the basis of statistical indicators: linear regression, with coefficient of determination; index of agreement; maximum absolute error; and mean absolute error. The prototype multi-plate shelter (gill-type) used in order to protect the HOBO data logger was found to provide the best protection against the effects of solar radiation on measurements of temperature and relative humidity. The precision and accuracy of a device that measures temperature and relative humidity depend on an efficient shelter that minimizes the interference caused by solar radiation, thereby avoiding erroneous analysis of the data obtained.
NASA Technical Reports Server (NTRS)
Richmond, Robert; Cruz, Angela; Jansen, Heather; Bors, Karen
2003-01-01
Predicting risk of human cancer following exposure of an individual or a population to ionizing radiation is challenging. To an approximation, this is because uncertainties of uniform absorption of dose and the uniform processing of dose-related damage at the cellular level within a complex set of biological variables degrade the confidence of predicting the delayed expression of cancer as a relatively rare event. Cellular biodosimeters that simultaneously report: 1) the quantity of absorbed dose after exposure to ionizing radiation, 2) the quality of radiation delivering that dose, and 3) the risk of developing cancer by the cells absorbing that dose would therefore be useful. An approach to such a multiparametric biodosimeter will be reported. This is the demonstration of a dose responsive field effect of enhanced expression of keratin 18 (K18) in cultures of human mammary epithelial cells irradiated with cesium-1 37 gamma-rays. Dose response of enhanced K18 expression was experimentally extended over a range of 30 to 90 cGy for cells evaluated at mid-log phase. K18 has been reported to be a marker for tumor staging and for apoptosis, and thereby serves as an example of a potential marker for cancer risk, where the reality of such predictive value would require additional experimental development. Since observed radiogenic increase in expression of K18 is a field effect, ie., chronically present in all cells of the irradiated population, it may be hypothesized that K18 expression in specific cells absorbing particulate irradiation, such as the high-LET-producing atomic nuclei of space radiation, will report on both the single-cell distributions of those particles amongst cells within the exposed population, and that the relatively high dose per cell delivered by densely ionizing tracks of those intersecting particles will lead to cell-specific high-expression levels of K18, thereby providing analytical end points that may be used to resolve both the quantity and the quality of the radiation dose absorbed by individual cells. The principal value of this reported potential multiparametric cellular biodosimeter is suggested to be that it justifies a search for similar but more robust radiogenic assays. That is, K18 is only one radiation dose-sensitive expressed protein, whereas analytical techniques of genomics and proteomics can be used to simultaneously analyze multiple gene and protein expressions resulting from radiation-dose absorption. The potential usefulness of multiparametric cellular biodosimeters will be best realized from quantitatively profiling these multiple markers using these modern techniques.
Crayton, Samuel H.; Elias, Andrew; Al-Zaki, Ajlan; Cheng, Zhiliang; Tsourkas, Andrew
2011-01-01
Recent advances in material science and chemistry have led to the development of nanoparticles with diverse physicochemical properties, e.g. size, charge, shape, and surface chemistry. Evaluating which physicochemical properties are best for imaging and therapeutic studies is challenging not only because of the multitude of samples to evaluate, but also because of the large experimental variability associated with in vivo studies (e.g. differences in tumor size, injected dose, subject weight, etc.). To address this issue, we have developed a lanthanide-doped nanoparticle system and analytical method that allows for the quantitative comparison of multiple nanoparticle compositions simultaneously. Specifically, superparamagnetic iron oxide (SPIO) with a range of different sizes and charges were synthesized, each with a unique lanthanide dopant. Following the simultaneous injection of the various SPIO compositions into tumor-bearing mice, inductively coupled plasma mass spectroscopy (ICP-MS) was used to quantitatively and orthogonally assess the concentration of each SPIO composition in serial blood samples and the resected tumor and organs. The method proved generalizable to other nanoparticle platforms, including dendrimers, liposomes, and polymersomes. This approach provides a simple, cost-effective, and non-radiative method to quantitatively compare tumor localization, biodistribution, and blood clearance of more than 10 nanoparticle compositions simultaneously, removing subject-to-subject variability. PMID:22100983
Terrier, L-M; François, P
2016-06-01
Multiple meningiomas (MMs) or meningiomatosis are defined by the presence of at least 2 lesions that appear simultaneously or not, at different intracranial locations, without the association of neurofibromatosis. They present 1-9 % of meningiomas with a female predominance. The occurrence of multiple meningiomas is not clear. There are 2 main hypotheses for their development, one that supports the independent evolution of these tumors and the other, completely opposite, that suggests the propagation of tumor cells of a unique clone transformation, through cerebrospinal fluid. NF2 gene mutation is an important intrinsic risk factor in the etiology of multiple meningiomas and some exogenous risk factors have been suspected but only ionizing radiation exposure has been proven. These tumors can grow anywhere in the skull but they are more frequently observed in supratentorial locations. Their histologic types are similar to unique meningiomas of psammomatous, fibroblastic, meningothelial or transitional type and in most cases are benign tumors. The prognosis of these tumors is eventually good and does not differ from the unique tumors except for the cases of radiation-induced multiple meningiomas, in the context of NF2 or when diagnosed in children where the outcome is less favorable. Each meningioma lesion should be dealt with individually and their multiple character should not justify their resection at all costs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Magma Reservoirs Feeding Giant Radiating Dike Swarms: Insights from Venus
NASA Technical Reports Server (NTRS)
Grosfils, E. B.; Ernst, R. E.
2003-01-01
Evidence of lateral dike propagation from shallow magma reservoirs is quite common on the terrestrial planets, and examination of the giant radiating dike swarm population on Venus continues to provide new insight into the way these complex magmatic systems form and evolve. For example, it is becoming clear that many swarms are an amalgamation of multiple discrete phases of dike intrusion. This is not surprising in and of itself, as on Earth there is clear evidence that formation of both magma reservoirs and individual giant radiating dikes often involves periodic magma injection. Similarly, giant radiating swarms on Earth can contain temporally discrete subswarms defined on the basis of geometry, crosscutting relationships, and geochemical or paleomagnetic signatures. The Venus data are important, however, because erosion, sedimentation, plate tectonic disruption, etc. on Earth have destroyed most giant radiating dike swarm's source regions, and thus we remain uncertain about the geometry and temporal evolution of the magma sources from which the dikes are fed. Are the reservoirs which feed the dikes large or small, and what are the implications for how the dikes themselves form? Does each subswarm originate from a single, periodically reactivated reservoir, or do subswarms emerge from multiple discrete geographic foci? If the latter, are these discrete foci located at the margins of a single large magma body, or do multiple smaller reservoirs define the character of the magmatic center as a whole? Similarly, does the locus of magmatic activity change with time, or are all the foci active simultaneously? Careful study of giant radiating dike swarms on Venus is yielding the data necessary to address these questions and constrain future modeling efforts. Here, using giant radiating dike swarms from the Nemesis Tessera (V14) and Carson (V43) quadrangles as examples, we illustrate some of the dike swarm focal region diversity observed on Venus and briefly explore some key implications for the questions framed above.
From the speed of sound to the speed of light: Ultrasonic Cherenkov refractometry
NASA Astrophysics Data System (ADS)
Hallewell, G. D.
2017-12-01
Despite its success in the SLD CRID at the SLAC Linear Collider, ultrasonic measurement of Cherenkov radiator refractive index has been less fully exploited in more recent Cherenkov detectors employing gaseous radiators. This is surprising, since it is ideally suited to monitoring hydrostatic variations in refractive index as well as its evolution during the replacement of a light radiator passivation gas (e.g. N2, CO2) with a heavier fluorocarbon (e.g. C4F10[CF4]; mol. wt. 188[88]). The technique exploits the dependence of sound velocity on the molar concentrations of the two components at known temperature and pressure. The SLD barrel CRID used an 87%C5F12/13%N2 blend, mixed before injection into the radiator vessel: blend control based on ultrasonic mixture analysis maintained the β=1 Cherenkov ring angle to a long term variation better than ±0.3%, with refractivity monitored ultrasonically at multiple points within the radiator vessel. Recent advances using microcontroller-based electronics have led to ultrasonic instruments capable of simultaneously measuring gas flow and binary mixture composition in the fluorocarbon evaporative cooling systems of the ATLAS Inner Detector. Sound transit times are measured with multi-MHz transit time clocks in opposite directions in flowing gas for simultaneous measurement of flow rate and sound velocity. Gas composition is evaluated in real-time by comparison with a sound velocity/composition database. Such instruments could be incorporated into new and upgraded gas Cherenkov detectors for radiator gas mixture (and corresponding refractive index) measurement to a precision better than 10-3. They have other applications in binary gas analysis - including in Xenon-based anaesthesia. These possibilities are discussed.
NASA Astrophysics Data System (ADS)
Reuter, Maximilian; Bovensmann, Heinrich; Buchwitz, Michael; Burrows, John P.; Heymann, Jens; Noël, Stefan; Rozanov, Vladimir; Schneising, Oliver
2017-04-01
Carbon dioxide is the most important anthropogenic greenhouse gas. Its global increasing concentration in the Earth's atmosphere is the main driver for global climate change. In spite of its importance, there are still large uncertainties on its global sources and sinks. Satellite measurements have the potential to reduce these surface flux uncertainties. However, the demanding accuracy requirements usually involve the need for precise radiative transfer calculations in a scattering atmosphere. These can be computationally so expensive that hundreds or thousands of CPU cores are need to keep up with the data stream of an instrument like OCO-2. Future instruments will further increase the amount of soundings at least by an order of magnitude. A radiative transfer model has been developed approximating scattering effects by multiple scattering at an optically thin scattering layer reducing the computational costs by several orders of magnitude. The model can be used to simulate the radiance in all three OCO-2 spectral bands allowing the simultaneous retrieval of CO2, H2O, and chlorophyll fluorescence. First retrieval results for OCO-2 data will be presented.
On the Convenience of Using the Complete Linearization Method in Modelling the BLR of AGN
NASA Astrophysics Data System (ADS)
Patriarchi, P.; Perinotto, M.
The Complete Linearization Method (Mihalas, 1978) consists in the determination of the radiation field (at a set of frequency points), atomic level populations, temperature, electron density etc., by resolving the system of radiative transfer, thermal equilibrium, statistical equilibrium equations simultaneously and self-consistently. Since the system is not linear, it must be solved by iteration after linearization, using a perturbative method, starting from an initial guess solution. Of course the Complete Linearization Method is more time consuming than the previous one. But how great can this disadvantage be in the age of supercomputers? It is possible to approximately evaluate the CPU time needed to run a model by computing the number of multiplications necessary to solve the system.
Lee, Young Shin; Heo, Woong; Nam, Jiho; Jeung, Young Hwa; Bae, Jaeho
2018-05-01
Bortezomib, which is a potent proteasome inhibitor, has been used as a first-line drugs to treat multiple myeloma for a few decades, and radiotherapy has frequently been applied to manage acute bone lesions in the patients. Therefore, it was necessary to investigate what the benefits might be if the two therapies were applied simultaneously in the treatment of multiple myeloma. Since it was known that radiotherapy and proteasome inhibitors could increase the expression of NKG2D ligands through induction of protein synthesis and suppression of protein degradation of NKG2D ligands, respectively, we supposed that the combined treatment might further enhance the expression of NKG2D ligands. In this study, we analyzed the expression level of NKG2D ligands using multiplex PCR and flow cytometry after treatment of IM-9 and RPMI-8226 myeloma cells with bortezomib and ionizing radiation; we then assayed the susceptibility to NK-92 cells. Although the expression of only some kinds of NKG2D ligands were increased by treatment with bortezomib alone, five kinds of NKG2D ligands that we assayed were further induced at the surface protein level after combined treatment with ionizing radiation and bortezomib. Furthermore, combined treatment made myeloma cells more susceptible to NK-92 cells, compared with treatment with bortezomib alone. In conclusion, the combination therapy of ionizing radiation plus the proteasome inhibitor bortezomib is a promising therapeutical strategy for enhancing NK cell-mediated anticancer immune responses.
Ozkurt, Huseyin; Tokgoz, Safiye; Karabay, Esra; Ucan, Berna; Akdogan, Melek Pala; Basak, Muzaffer
2014-01-01
Aim To evaluate the diagnostic quality of a new multiple detector-row computed tomography angiography (MDCT-A) protocol using low dose radiation and low volume contrast medium techniques for evaluation of non-cardiac chest pain. Methods Forty-five consecutive patients with clinically suspected noncardiac chest pain and requiring contrast-enhanced chest computed tomography (CT) were examined. The patients were assigned to the protocol, with 80 kilovolt (peak) (kV[p]) and 150 effective milliampere-second (eff mA-s). In our study group, 40 mL of low osmolar contrast material was administered at 3.0 mL/s. Results In the study group, four patients with pulmonary embolism, four with pleural effusion, two with ascending aortic aneurysm and eight patients with pneumonic consolidation were detected. The mean attenuation of the pulmonary truncus and ascendant aortic locations was considered 264±44 and 249±51 HU, respectively. The mean effective radiation dose was 0.83 mSv for MDCT-A. Conclusions Pulmonary artery and the aorta scanning simultaneously was significantly reduced radiation exposure with the mentioned dose saving technique. Additionally, injection of low volume (40 cc) contrast material may reduce the risk of contrast induced nephropathy, therefore, facilitate the diagnostic approach. This technique can be applied to all cases and particularly patients at high risk of contrast induced nephropathy due to its similar diagnostic quality with a low dose and high levels of arteriovenous enhancement simultaneously. PMID:25392818
NASA Astrophysics Data System (ADS)
Nicolet, Marcel
A study comparing, in the spectral UVB region, the various components of the solar radiation field in order to explain the large difference obtained in Apr. 1939 by Goetz in Chur (green meadows), Nicolet in Arosa (adequate location in the snow) and Penndorf on the Weisshorn (above the ski slopes) (Switzerland) is presented. Numerical results from detailed theoretical calculations aimed at evaluating the various absolute effects associated with height, solar zenith angle and surface albedo were obtained for the standard atmosphere. The variations with solar zenith angles from 0 to 90 deg and albedos between 0 and 1 are presented for a spherical terrestrial atmosphere at selected wavelengths between 301 and 325 nm in the UVB region. From simultaneous measurements made at the same solar zenith angles, it was found that the values obtained in Arosa were between 5 and 10 times those obtained in Chur and on the Weisshorn. Such results are explained by a maximum of reflectivity of the snow covering the slope facing the relatively low Sun and its associated multiple scattered radiation in addition to the multiple molecular scattering of the atmosphere.
Alternative source models of very low frequency events
NASA Astrophysics Data System (ADS)
Gomberg, J.; Agnew, D. C.; Schwartz, S. Y.
2016-09-01
We present alternative source models for very low frequency (VLF) events, previously inferred to be radiation from individual slow earthquakes that partly fill the period range between slow slip events lasting thousands of seconds and low-frequency earthquakes (LFE) with durations of tenths of a second. We show that VLF events may emerge from bandpass filtering a sum of clustered, shorter duration, LFE signals, believed to be the components of tectonic tremor. Most published studies show VLF events occurring concurrently with tremor bursts and LFE signals. Our analysis of continuous data from Costa Rica detected VLF events only when tremor was also occurring, which was only 7% of the total time examined. Using analytic and synthetic models, we show that a cluster of LFE signals produces the distinguishing characteristics of VLF events, which may be determined by the cluster envelope. The envelope may be diagnostic of a single, dynamic, slowly slipping event that propagates coherently over kilometers or represents a narrowly band-passed version of nearly simultaneous arrivals of radiation from slip on multiple higher stress drop and/or faster propagating slip patches with dimensions of tens of meters (i.e., LFE sources). Temporally clustered LFE sources may be triggered by single or multiple distinct aseismic slip events or represent the nearly simultaneous chance occurrence of background LFEs. Given the nonuniqueness in possible source durations, we suggest it is premature to draw conclusions about VLF event sources or how they scale.
Alternative source models of very low frequency events
Gomberg, Joan S.; Agnew, D.C.; Schwartz, S.Y.
2016-01-01
We present alternative source models for very low frequency (VLF) events, previously inferred to be radiation from individual slow earthquakes that partly fill the period range between slow slip events lasting thousands of seconds and low-frequency earthquakes (LFE) with durations of tenths of a second. We show that VLF events may emerge from bandpass filtering a sum of clustered, shorter duration, LFE signals, believed to be the components of tectonic tremor. Most published studies show VLF events occurring concurrently with tremor bursts and LFE signals. Our analysis of continuous data from Costa Rica detected VLF events only when tremor was also occurring, which was only 7% of the total time examined. Using analytic and synthetic models, we show that a cluster of LFE signals produces the distinguishing characteristics of VLF events, which may be determined by the cluster envelope. The envelope may be diagnostic of a single, dynamic, slowly slipping event that propagates coherently over kilometers or represents a narrowly band-passed version of nearly simultaneous arrivals of radiation from slip on multiple higher stress drop and/or faster propagating slip patches with dimensions of tens of meters (i.e., LFE sources). Temporally clustered LFE sources may be triggered by single or multiple distinct aseismic slip events or represent the nearly simultaneous chance occurrence of background LFEs. Given the nonuniqueness in possible source durations, we suggest it is premature to draw conclusions about VLF event sources or how they scale.
Crayton, Samuel H; Elias, Drew R; Al Zaki, Ajlan; Cheng, Zhiliang; Tsourkas, Andrew
2012-02-01
Recent advances in material science and chemistry have led to the development of nanoparticles with diverse physicochemical properties, e.g. size, charge, shape, and surface chemistry. Evaluating which physicochemical properties are best for imaging and therapeutic studies is challenging not only because of the multitude of samples to evaluate, but also because of the large experimental variability associated with in vivo studies (e.g. differences in tumor size, injected dose, subject weight, etc.). To address this issue, we have developed a lanthanide-doped nanoparticle system and analytical method that allows for the quantitative comparison of multiple nanoparticle compositions simultaneously. Specifically, superparamagnetic iron oxide (SPIO) with a range of different sizes and charges were synthesized, each with a unique lanthanide dopant. Following the simultaneous injection of the various SPIO compositions into tumor-bearing mice, inductively coupled plasma mass spectroscopy (ICP-MS) was used to quantitatively and orthogonally assess the concentration of each SPIO composition in serial blood samples and the resected tumor and organs. The method proved generalizable to other nanoparticle platforms, including dendrimers, liposomes, and polymersomes. This approach provides a simple, cost-effective, and non-radiative method to quantitatively compare tumor localization, biodistribution, and blood clearance of more than 10 nanoparticle compositions simultaneously, removing subject-to-subject variability. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wong, Wicger K H; Leung, Lucullus H T; Kwong, Dora L W
2016-01-01
To evaluate and optimize the parameters used in multiple-atlas-based segmentation of prostate cancers in radiation therapy. A retrospective study was conducted, and the accuracy of the multiple-atlas-based segmentation was tested on 30 patients. The effect of library size (LS), number of atlases used for contour averaging and the contour averaging strategy were also studied. The autogenerated contours were compared with the manually drawn contours. Dice similarity coefficient (DSC) and Hausdorff distance were used to evaluate the segmentation agreement. Mixed results were found between simultaneous truth and performance level estimation (STAPLE) and majority vote (MV) strategies. Multiple-atlas approaches were relatively insensitive to LS. A LS of ten was adequate, and further increase in the LS only showed insignificant gain. Multiple atlas performed better than single atlas for most of the time. Using more atlases did not guarantee better performance, with five atlases performing better than ten atlases. With our recommended setting, the median DSC for the bladder, rectum, prostate, seminal vesicle and femurs was 0.90, 0.77, 0.84, 0.56 and 0.95, respectively. Our study shows that multiple-atlas-based strategies have better accuracy than single-atlas approach. STAPLE is preferred, and a LS of ten is adequate for prostate cases. Using five atlases for contour averaging is recommended. The contouring accuracy of seminal vesicle still needs improvement, and manual editing is still required for the other structures. This article provides a better understanding of the influence of the parameters used in multiple-atlas-based segmentation of prostate cancers.
Multielectron transitions in x-ray absorption of krypton
NASA Astrophysics Data System (ADS)
Ito, Yoshiaki; Nakamatsu, Hirohide; Mukoyama, Takeshi; Omote, Kazuhiko; Yoshikado, Shinzo; Takahashi, Masao; Emura, Shuichi
1992-11-01
The photoabsorption cross section near the K edge in krypton gas has been measured using synchro- tron radiation. Several features for simultaneous multielectron excitations were detected and analyzed by the use of the shakeup and shakeoff probabilities and their dependence on the photon energy. Previous observations of the [1s3p], [1s3d], and [1s4p] transitions have been confirmed. A transition is found between [1s3p] and [1s3d] multiple excitations and identified as a three-electron excitation [1s3d4p].
ERIC Educational Resources Information Center
Rao, Shaila; Mallow, Lynette
2009-01-01
This study examined effectiveness of simultaneous prompting system in teaching students with cognitive impairment to automate recall of multiplication facts. A multiple probes design with multiple sets of math facts and replicated across multiple subjects was used to assess effectiveness of simultaneous prompting on recall of basic multiplication…
NASA Technical Reports Server (NTRS)
Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.
2000-01-01
Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against monthly averaged diagnostics obtained from hourly samplings over the entire globe. Results show that differences between irregularly (satellite) and regularly (true) sampled diagnostics of the longwave net radiative budgets are the greatest at the surface and the smallest in the atmosphere and at the top-of-the-atmosphere, under both cloud-free and cloudy conditions. In contrast, differences between the satellite and the true diagnostics of the longwave cloud radiative forcings are the largest in the atmosphere and at the top-of-the-atmosphere, and the smallest at the surface. A poorer diurnal sampling of the surface temperature in the satellite simulations relative to the true simulation contributes a major part to sampling biases in the longwave net radiative budgets, while a poorer diurnal sampling of cloudiness and its optical properties directly affects diagnostics of the longwave cloud radiative forcings. A factor of 8 difference in the number of satellite overpasses between PICA705 and PICA485 and ICESAT leads to a systematic factor of 3 difference in the spatial standard deviations of all radiative and cloudiness diagnostics.
Shirai, Tomoyuki; Wang, Jianqing; Kawabe, Mayumi; Wake, Kanako; Watanabe, So-Ichi; Takahashi, Satoru; Fujiwara, Osamu
2017-01-01
In everyday life, people are exposed to radiofrequency (RF) electromagnetic fields (EMFs) with multiple frequencies. To evaluate the possible adverse effects of multifrequency RF EMFs, we performed an experiment in which pregnant rats and their delivered offspring were simultaneously exposed to eight different communication signal EMFs (two of 800 MHz band, two of 2 GHz band, one of 2.4 GHz band, two of 2.5 GHz band and one of 5.2 GHz band). Thirty six pregnant Sprague-Dawley (SD) 10-week-old rats were divided into three groups of 12 rats: one control (sham exposure) group and two experimental (low- and high-level RF EMF exposure) groups. The whole body of the mother rats was exposed to the RF EMFs for 20 h per day from Gestational Day 7 to weaning, and F 1 offspring rats (46-48 F1 pups per group) were then exposed up to 6 weeks of age also for 20 h per day. The parameters evaluated included the growth, gestational condition and organ weights of the dams; the survival rates, development, growth, physical and functional development, memory function, and reproductive ability of the F 1 offspring; and the embryotoxicity and teratogenicity in the F 2 rats. No abnormal findings were observed in the dams or F 1 offspring exposed to the RF EMFs or to the F 2 offspring for any of the parameters evaluated. Thus, under the conditions of the present experiment, simultaneous whole-body exposure to eight different communication signal EMFs at frequencies between 800 MHz and 5.2 GHz did not show any adverse effects on pregnancy or on the development of rats. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Martin, Ryan A; Riesch, Rüdiger; Heinen-Kay, Justa L; Langerhans, R Brian
2014-02-01
Sexual signal evolution can be complex because multiple factors influence the production, transmission, and reception of sexual signals, as well as receivers' responses to them. To grasp the relative importance of these factors in generating signal diversity, we must simultaneously investigate multiple selective agents and signaling traits within a natural system. We use the model system of the radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes to test the effects of resource availability, male body size and other life-history traits, key aspects of the transmission environment, sex ratio, and predation risk on variation in multiple male color traits. Consistent with previous work examining other traits in this system, several color traits have repeatedly diverged between predation regimes, exhibiting greater elaboration in the absence of predators. However, other factors proved influential as well, with variation in resource levels, body size, relative testes size, and background water color being especially important for several color traits. For one prominent signaling trait, orange dorsal fins, we further confirmed a genetic basis underlying population differences using a laboratory common-garden experiment. We illustrate a promising approach for gaining a detailed understanding of the many contributing factors in the evolution of multivariate sexual signals. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Gutierrez, Alonso Navar
2007-12-01
Recent improvements in imaging technology and radiation delivery have led to the development of advanced treatment techniques in radiotherapy which have opened the door for novel therapeutic approaches to improve the efficacy of radiation cancer treatments. Among these advances is image-guided, intensity modulated radiation therapy (IG-IMRT), in which imaging is incorporated to aid in inter-/intra-fractional target localization and to ensure accurate delivery of precise and highly conformal dose distributions. In principle, clinical implementation of IG-IMRT should improve normal tissue sparing and permit effective biological dose escalation thus widening the radiation therapeutic window and lead to increases in survival through improved local control of primary neoplastic diseases. Details of the development of three clinical applications made possible solely with IG-IMRT radiation delivery techniques are presented: (1) Laparoscopically implanted tissue expander radiotherapy (LITE-RT) has been developed to enhance conformal avoidance of normal tissue during the treatment of intra-abdominopelvic cancers. LITE-RT functions by geometrically displacing surrounding normal tissue and isolating the target volume through the interfractional inflation of a custom-shaped tissue expander throughout the course of treatment. (2) The unique delivery geometry of helical tomotherapy, a novel form of IG-IMRT, enables the delivery of composite treatment plan m which whole brain radiotherapy (WBRT) with hippocampal avoidance, hypothesized to reduce the risk of memory function decline and improve the patient's quality of life, and simultaneously integrated boost to multiple brain metastases to improve intracranial tumor control is achieved. (3) Escalation of biological dose to targets through integrated, selective subvolume boosts have been shown to efficiently increase tumor dose without significantly increasing normal tissue dose. Helical tomotherapy was used to investigate the feasibility of delivering a simultaneously integrated subvolume boost to canine nasal tumors and was found to dramatically increase estimated 1-year tumor control probability (TCP) without increasing the dose to the eyes, so as to preserve vision, and to the brain, so as to prevent neuropathy.
Ohla, Victoria; Scheiwe, Christian
2015-01-01
True multiple meningiomas are defined as meningiomas occurring at several intracranial locations simultaneously without the presence of neurofibromatosis. Though the prognosis does not differ from benign solitary meningiomas, the simultaneous occurrence of different grades of malignancy has been reported in one-third of patients with multiple meningiomas. Due to its rarity, unclear etiology, and questions related to proper management, we are presenting our case of meningiomatosis and discuss possible pathophysiological mechanisms. We illustrate the case of a 55-year-old female with multiple meningothelial meningeomas exclusively located in the left cerebral hemisphere. The patient presented with acute vigilance decrement, aphasia, and vomiting. Further deterioration with sopor and nondirectional movements required oral intubation. Emergent magnetic resonance imaging (MRI) with MR-angiography disclosed a massive midline shift to the right due to widespread, plaque-like lesions suspicious for meningeomatosis, purely restricted to the left cerebral hemisphere. Emergency partial tumor resection was performed. Postoperative computed tomography (CT) scan showed markedly reduction of cerebral edema and midline shift. After tapering the sedation a right-sided hemiparesis resolved within 2 weeks, leaving the patient neurologically intact. Although multiple meningeomas are reported frequently, the presence of meningeomatosis purely restricted to one cerebral hemisphere is very rare. As with other accessible and symptomatic lesions, the treatment of choice is complete resection with clean margins to avoid local recurrence. In case of widespread distribution a step-by-step resection with the option of postoperative radiation of tumor remnants may be an option.
Mathies, Richard A.; Singhal, Pankaj; Xie, Jin; Glazer, Alexander N.
2002-01-01
This invention relates to a microfabricated capillary electrophoresis chip for detecting multiple redox-active labels simultaneously using a matrix coding scheme and to a method of selectively labeling analytes for simultaneous electrochemical detection of multiple label-analyte conjugates after electrophoretic or chromatographic separation.
Wouters, L.F.
1960-08-30
Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.
NASA Technical Reports Server (NTRS)
Plante, I; Wu, H
2014-01-01
The code RITRACKS (Relativistic Ion Tracks) has been developed over the last few years at the NASA Johnson Space Center to simulate the effects of ionizing radiations at the microscopic scale, to understand the effects of space radiation at the biological level. The fundamental part of this code is the stochastic simulation of radiation track structure of heavy ions, an important component of space radiations. The code can calculate many relevant quantities such as the radial dose, voxel dose, and may also be used to calculate the dose in spherical and cylindrical targets of various sizes. Recently, we have incorporated DNA structure and damage simulations at the molecular scale in RITRACKS. The direct effect of radiations is simulated by introducing a slight modification of the existing particle transport algorithms, using the Binary-Encounter-Bethe model of ionization cross sections for each molecular orbitals of DNA. The simulation of radiation chemistry is done by a step-by-step diffusion-reaction program based on the Green's functions of the diffusion equation]. This approach is also used to simulate the indirect effect of ionizing radiation on DNA. The software can be installed independently on PC and tablets using the Windows operating system and does not require any coding from the user. It includes a Graphic User Interface (GUI) and a 3D OpenGL visualization interface. The calculations are executed simultaneously (in parallel) on multiple CPUs. The main features of the software will be presented.
FIRE Cirrus on October 28, 1986: LANDSAT; ER-2; King Air; theory
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A.; Suttles, John T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Parker, Lindsay; Arduini, Robert F.
1990-01-01
A simultaneous examination was conducted of cirrus clouds in the FIRE Cirrus IFO-I on 10/28/86 using a multitude of remote sensing and in-situ measurements. The focus is cirrus cloud radiative properties and their relationship to cloud microphysics. A key element is the comparison of radiative transfer model calculations and varying measured cirrus radiative properties (emissivity, reflectance vs. wavelength, reflectance vs. viewing angle). As the number of simultaneously measured cloud radiative properties and physical properties increases, more sharply focused tests of theoretical models are possible.
López-Furelos, Alberto; Leiro-Vidal, José Manuel; Salas-Sánchez, Aarón Ángel; Ares-Pena, Francisco José; López-Martín, María Elena
2016-01-01
Multiple simultaneous exposures to electromagnetic signals induced adjustments in mammal nervous systems. In this study, we investigated the non-thermal SAR (Specific Absorption Rate) in the cerebral or cerebellar hemispheres of rats exposed in vivo to combined electromagnetic field (EMF) signals at 900 and 2450 MHz. Forty rats divided into four groups of 10 were individually exposed or not exposed to radiation in a GTEM chamber for one or two hours. After radiation, we used the Chemiluminescent Enzyme-Linked Immunosorbent Assay (ChELISA) technique to measure cellular stress levels, indicated by the presence of heat shock proteins (HSP) 90 and 70, as well as caspase-3-dependent pre-apoptotic activity in left and right cerebral and cerebellar hemispheres of Sprague Dawley rats. Twenty-four hours after exposure to combined or single radiation, significant differences were evident in HSP 90 and 70 but not in caspase 3 levels between the hemispheres of the cerebral cortex at high SAR levels. In the cerebellar hemispheres, groups exposed to a single radiofrequency (RF) and high SAR showed significant differences in HSP 90, 70 and caspase-3 levels compared to control animals. The absorbed energy and/or biological effects of combined signals were not additive, suggesting that multiple signals act on nervous tissue by a different mechanism. PMID:27589837
López-Furelos, Alberto; Leiro-Vidal, José Manuel; Salas-Sánchez, Aarón Ángel; Ares-Pena, Francisco José; López-Martín, María Elena
2016-10-04
Multiple simultaneous exposures to electromagnetic signals induced adjustments in mammal nervous systems. In this study, we investigated the non-thermal SAR (Specific Absorption Rate) in the cerebral or cerebellar hemispheres of rats exposed in vivo to combined electromagnetic field (EMF) signals at 900 and 2450 MHz.Forty rats divided into four groups of 10 were individually exposed or not exposed to radiation in a GTEM chamber for one or two hours. After radiation, we used the Chemiluminescent Enzyme-Linked Immunosorbent Assay (ChELISA) technique to measure cellular stress levels, indicated by the presence of heat shock proteins (HSP) 90 and 70, as well as caspase-3-dependent pre-apoptotic activity in left and right cerebral and cerebellar hemispheres of Sprague Dawley rats.Twenty-four hours after exposure to combined or single radiation, significant differences were evident in HSP 90 and 70 but not in caspase 3 levels between the hemispheres of the cerebral cortex at high SAR levels. In the cerebellar hemispheres, groups exposed to a single radiofrequency (RF) and high SAR showed significant differences in HSP 90, 70 and caspase-3 levels compared to control animals. The absorbed energy and/or biological effects of combined signals were not additive, suggesting that multiple signals act on nervous tissue by a different mechanism.
Improved atmospheric 3D BSDF model in earthlike exoplanet using ray-tracing based method
NASA Astrophysics Data System (ADS)
Ryu, Dongok; Kim, Sug-Whan; Seong, Sehyun
2012-10-01
The studies on planetary radiative transfer computation have become important elements to disk-averaged spectral characterization of potential exoplanets. In this paper, we report an improved ray-tracing based atmospheric simulation model as a part of 3-D earth-like planet model with 3 principle sub-components i.e. land, sea and atmosphere. Any changes in ray paths and their characteristics such as radiative power and direction are computed as they experience reflection, refraction, transmission, absorption and scattering. Improved atmospheric BSDF algorithms uses Q.Liu's combined Rayleigh and aerosol Henrey-Greenstein scattering phase function. The input cloud-free atmosphere model consists of 48 layers with vertical absorption profiles and a scattering layer with their input characteristics using the GIOVANNI database. Total Solar Irradiance data are obtained from Solar Radiation and Climate Experiment (SORCE) mission. Using aerosol scattering computation, we first tested the atmospheric scattering effects with imaging simulation with HRIV, EPOXI. Then we examined the computational validity of atmospheric model with the measurements of global, direct and diffuse radiation taken from NREL(National Renewable Energy Laboratory)s pyranometers and pyrheliometers on a ground station for cases of single incident angle and for simultaneous multiple incident angles of the solar beam.
CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua
NASA Astrophysics Data System (ADS)
Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Heck, Patrick W.; Doelling, David R.; Trepte, Qing Z.
2004-02-01
The micro- and macrophysical properties of clouds play a crucial role in Earth"s radiation budget. The NASA Clouds and Earth"s Radiant Energy System (CERES) is providing simultaneous measurements of the radiation and cloud fields on a global basis to improve the understanding and modeling of the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. Cloud properties derived for CERES from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites are compared to ensure consistency between the products to ensure the reliability of the retrievals from multiple platforms at different times of day. Comparisons of cloud fraction, height, optical depth, phase, effective particle size, and ice and liquid water paths from the two satellites show excellent consistency. Initial calibration comparisons are also very favorable. Differences between the Aqua and Terra results are generally due to diurnally dependent changes in the clouds. Additional algorithm refinement is needed over the polar regions for Aqua and at night over those same areas for Terra. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.
NASA Technical Reports Server (NTRS)
Lindner, Bernhard Lee; Ackerman, Thomas P.; Pollack, James B.
1990-01-01
CO2 comprises 95 pct. of the composition of the Martian atmosphere. However, the Martian atmosphere also has a high aerosol content. Dust particles vary from less than 0.2 to greater than 3.0. CO2 is an active absorber and emitter in near IR and IR wavelengths; the near IR absorption bands of CO2 provide significant heating of the atmosphere, and the 15 micron band provides rapid cooling. Including both CO2 and aerosol radiative transfer simultaneously in a model is difficult. Aerosol radiative transfer requires a multiple scattering code, while CO2 radiative transfer must deal with complex wavelength structure. As an alternative to the pure atmosphere treatment in most models which causes inaccuracies, a treatment was developed called the exponential sum or k distribution approximation. The chief advantage of the exponential sum approach is that the integration over k space of f(k) can be computed more quickly than the integration of k sub upsilon over frequency. The exponential sum approach is superior to the photon path distribution and emissivity techniques for dusty conditions. This study was the first application of the exponential sum approach to Martian conditions.
Protection and Sensitization of Human Cells to Proton Radiation by Cerium Oxide Nanoparticles
NASA Astrophysics Data System (ADS)
Carlson, Nathan B.
In radiation therapy for the treatment of cancer, there is demand for novel approaches that will improve tumor cell killing while protecting healthy tissue. One such approach that has shown considerable promise is the application of nanoparticles as radiation sensitizers for tumor cells and as radiation protectants for healthy tissue. In this investigation, cerium oxide nanoparticles (CNPs) obtained from the University of Central Florida's NanoScience Technology Center were studied for their protective effect to charged particle radiation in non-malignant breast cells, and for their sensitizing effect in breast and prostate cancer cell lines. These experiments were conducted at East Carolina University, where human cells were grown in the cell culture facility in the Department of Biology and then irradiated with energetic protons in the Accelerator Laboratory in the Department of Physics. Prior to irradiation, the cells were treated with distinct CNP preparations ranging in concentrations from 10 nanomolar to 10 micromolar, and cell viability was assessed using multiple assays post-irradiation. Radioprotection and radiosensitization were observed for several of the CNP treatments tested. Ultimately, the goal is to find a specific nanoparticle treatment that holds the synergistic effect of enhancing the rate of killing in tumor cells while simultaneously improving the survival of normal cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández-Perea, Mónica; Soufli, Regina; Robinson, Jeff C.
2012-01-01
We have developed new, corrosion-resistant Mg/SiC multilayer coatings which can be used to efficiently and simultaneously reflect extreme ultraviolet (EUV) radiation in single or multiple narrow bands centered at wavelengths in the spectral region from 25 to 80 nm. Corrosion mitigation is achieved through the use of partially amorphous Al-Mg thin layers. Three different multilayer design concepts were developed and deposited by magnetron sputtering and the reflectance was measured at near-normal incidence in a broad spectral range. Unprotected Mg/SiC multilayers were also deposited and measured for comparison. They were shown to efficiently reflect radiation at a wavelength of 76.9 nmmore » with a peak reflectance of 40.6% at near-normal incidence, the highest experimental reflectance reported at this wavelength for a narrowband coating. The demonstration of multilayer coatings with corrosion resistance and multiplewavelength EUV performance is of great interest in the development of mirrors for space-borne solar physics telescopes and other applications requiring long-lasting coatings with narrowband response in multiple emission lines across the EUV range.« less
Simulation of Attitude and Trajectory Dynamics and Control of Multiple Spacecraft
NASA Technical Reports Server (NTRS)
Stoneking, Eric T.
2009-01-01
Agora software is a simulation of spacecraft attitude and orbit dynamics. It supports spacecraft models composed of multiple rigid bodies or flexible structural models. Agora simulates multiple spacecraft simultaneously, supporting rendezvous, proximity operations, and precision formation flying studies. The Agora environment includes ephemerides for all planets and major moons in the solar system, supporting design studies for deep space as well as geocentric missions. The environment also contains standard models for gravity, atmospheric density, and magnetic fields. Disturbance force and torque models include aerodynamic, gravity-gradient, solar radiation pressure, and third-body gravitation. In addition to the dynamic and environmental models, Agora supports geometrical visualization through an OpenGL interface. Prototype models are provided for common sensors, actuators, and control laws. A clean interface accommodates linking in actual flight code in place of the prototype control laws. The same simulation may be used for rapid feasibility studies, and then used for flight software validation as the design matures. Agora is open-source and portable across computing platforms, making it customizable and extensible. It is written to support the entire GNC (guidance, navigation, and control) design cycle, from rapid prototyping and design analysis, to high-fidelity flight code verification. As a top-down design, Agora is intended to accommodate a large range of missions, anywhere in the solar system. Both two-body and three-body flight regimes are supported, as well as seamless transition between them. Multiple spacecraft may be simultaneously simulated, enabling simulation of rendezvous scenarios, as well as formation flying. Built-in reference frames and orbit perturbation dynamics provide accurate modeling of precision formation control.
Multiple diffraction in an icosahedral Al-Cu-Fe quasicrystal
NASA Astrophysics Data System (ADS)
Fan, C. Z.; Weber, Th.; Deloudi, S.; Steurer, W.
2011-07-01
In order to reveal its influence on quasicrystal structure analysis, multiple diffraction (MD) effects in an icosahedral Al-Cu-Fe quasicrystal have been investigated in-house on an Oxford Diffraction four-circle diffractometer equipped with an Onyx™ CCD area detector and MoKα radiation. For that purpose, an automated approach for Renninger scans (ψ-scans) has been developed. Two weak reflections were chosen as the main reflections (called P) in the present measurements. As is well known for periodic crystals, it is also observed for this quasicrystal that the intensity of the main reflection may significantly increase if the simultaneous (H) and the coupling (P-H) reflections are both strong, while there is no obvious MD effect if one of them is weak. The occurrence of MD events during ψ-scans has been studied based on an ideal structure model and the kinematical MD theory. The reliability of the approach is revealed by the good agreement between simulation and experiment. It shows that the multiple diffraction effect is quite significant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delijewski, Marcin; Wrześniok, Dorota; Beberok, Ar
Nicotine is a main compound of tobacco plants and may affect more than a billion people all over the world that are permanently exposed to nicotine from cigarettes, various forms of smoking cessation therapies, electronic cigarettes or second-hand smoke. It is known that nicotine forms complexes with melanin what may lead to accumulation of this alkaloid in tissues of living organisms containing the pigment. This may affect the viability of cells and process of melanin biosynthesis that takes place in melanocytes. Although UV radiation is known to be a particular inductor of melanin biosynthesis, its simultaneous effect with nicotine onmore » this process as well as the viability of human cells containing melanin have not been assessed so far. The aim of this study was to examine the simultaneous impact of nicotine and UV radiation on viability and melanogenesis in cultured normal human melanocytes dark (HEMn-DP) and light (HEMn-LP) pigmented. Nicotine together with UV radiation induced concentration-dependent loss in melanocytes viability. The higher cell loss was observed in dark pigmented melanocytes in comparison to light pigmented cells. Simultaneous exposure of cells to nicotine and UV radiation also caused changes in melanization process in both tested cell lines. The data suggest that simultaneous exposure of melanocytes to nicotine and UV radiation up-regulates melanogenesis and affects cell viability. Observed processes are more pronounced in dark pigmented cells. - Highlights: • Nicotine and UVA induced concentration-dependent loss in melanocytes viability. • Nicotine and UVA modulated melanization process in melanocytes. • Changes in viability and melanization were more pronounced in dark pigmented cells.« less
Geometrical Effects on the Electromagnetic Radiation from Lightning Return Strokes
NASA Technical Reports Server (NTRS)
Willett, John C.; Smith, David A.; LeVine, David M.; Zukor, Dorothy J. (Technical Monitor)
2000-01-01
The Los Alamos National Laboratory (LANL) Sferic Array has recorded electric-field-change waveforms simultaneously at several stations surrounding the ground-strike points of numerous return strokes in cloud-to-ground lightning flashes. Such data are available from the five-station sub-networks in both Florida and New Mexico. With these data it has been possible for the first time to compare the waveforms radiated in different directions by a given stroke. Such comparisons are of interest to assess both the effects of channel geometry on the fine structure of subsequent-stroke radiation fields and the role of branches in the more jagged appearance of first-stroke waveforms. This paper presents multiple-station, time-domain waveforms with a 200 Hz to 500 kHz pass-band from both first and subsequent return strokes at ranges generally between 100 and 200 km. The differences among waveforms of the same stroke received at stations in different directions from the lightning channel are often obvious. These differences are illustrated and interpreted in the context of channel tortuosity and branches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pech-May, Nelson Wilbur; Department of Applied Physics, CINVESTAV Unidad Mérida, carretera Antigua a Progreso km6, A.P. 73 Cordemex, Mérida Yucatán 97310, México; Mendioroz, Arantza
2014-10-15
In this work, we have extended the front-face flash method to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of semitransparent plates. A complete theoretical model that allows calculating the front surface temperature rise of the sample has been developed. It takes into consideration additional effects, such as multiple reflections of the heating light beam inside the sample, heat losses by convection and radiation, transparency of the sample to infrared wavelengths, and heating pulse duration. Measurements performed on calibrated solids, covering a wide range of absorption coefficients (from transparent to opaque) and thermal diffusivities, validate the proposed method.
In situ TEM of radiation effects in complex ceramics.
Lian, Jie; Wang, L M; Sun, Kai; Ewing, Rodney C
2009-03-01
In situ transmission electron microscopy (TEM) has been extensively applied to study radiation effects in a wide variety of materials, such as metals, ceramics and semiconductors and is an indispensable tool in obtaining a fundamental understanding of energetic beam-matter interactions, damage events, and materials' behavior under intense radiation environments. In this article, in situ TEM observations of radiation effects in complex ceramics (e.g., oxides, silicates, and phosphates) subjected to energetic ion and electron irradiations have been summarized with a focus on irradiation-induced microstructural evolution, changes in microchemistry, and the formation of nanostructures. New results for in situ TEM observation of radiation effects in pyrochlore, A(2)B(2)O(7), and zircon, ZrSiO(4), subjected to multiple beam irradiations are presented, and the effects of simultaneous irradiations of alpha-decay and beta-decay on the microstructural evolution of potential nuclear waste forms are discussed. Furthermore, in situ TEM results of radiation effects in a sodium borosilicate glass subjected to electron-beam exposure are introduced to highlight the important applications of advanced analytical TEM techniques, including Z-contrast imaging, energy filtered TEM (EFTEM), and electron energy loss spectroscopy (EELS), in studying radiation effects in materials microstructural evolution and microchemical changes. By combining ex situ TEM and advanced analytical TEM techniques with in situ TEM observations under energetic beam irradiations, one can obtain invaluable information on the phase stability and response behaviors of materials under a wide range of irradiation conditions. (c) 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Thomé, A. M. C.; Souza, B. P.; Mendes, J. P. M.; Soares, L. C.; Trajano, E. T. L.; Fonseca, A. S.
2017-05-01
Despite the beneficial effects of low-level lasers on wound healing, their application for treatment of infected injuries is controversial because low-level lasers could stimulate bacterial growth exacerbating the infectious process. Thus, the aim of this work was to evaluate in vitro effects of low-level lasers on survival, morphology and cell aggregation of Pantoea agglomerans. P. agglomerans samples were isolated from human pressure injuries and cultures were exposed to low-level monochromatic and simultaneous dichromatic laser radiation to study the survival, cell aggregation, filamentation and morphology of bacterial cells in exponential and stationary growth phases. Fluence, wavelength and emission mode were those used in therapeutic protocols for wound healing. Data show no changes in morphology and cell aggregation, but dichromatic laser radiation decreased bacterial survival in exponential growth phase and monochromatic red and infrared lasers increased bacterial survival at the same fluence. Simultaneous dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation and simultaneous dichromatic laser could be the option for treatment of infected pressure injuries by Pantoea agglomerans.
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele
2011-06-01
Recent advances in micro-optical element fabrication using gray scale technology have opened up the opportunity to create simultaneous multi-spectral imaging with fine structure diffractive lenses. This paper will discuss an approach that uses diffractive optical lenses configured in an array (lenslet array) and placed in close proximity to the focal plane array which enables a small compact simultaneous multispectral imaging camera [1]. The lenslet array is designed so that all lenslets have a common focal length with each lenslet tuned for a different wavelength. The number of simultaneous spectral images is determined by the number of individually configured lenslets in the array. The number of spectral images can be increased by a factor of 2 when using it with a dual-band focal plane array (MWIR/LWIR) by exploiting multiple diffraction orders. In addition, modulation of the focal length of the lenslet array with piezoelectric actuation will enable spectral bin fill-in allowing additional spectral coverage while giving up simultaneity. Different lenslet array spectral imaging concept designs are presented in this paper along with a unique concept for prefiltering the radiation focused on the detector. This approach to spectral imaging has applications in the detection of chemical agents in both aerosolized form and as a liquid on a surface. It also can be applied to the detection of weaponized biological agent and IED detection in various forms from manufacturing to deployment and post detection during forensic analysis.
New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation
NASA Astrophysics Data System (ADS)
Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W.
2015-02-01
In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.
Cho, Jae Hoon; Suh, Jeffrey D; Kim, Jin Kook; Hong, Seok-Chan; Park, Il-Ho; Lee, Heung-Man
2014-01-01
Allergy test results can differ based on the method used. The most common tests include skin-prick testing (SPT) and in vitro tests to detect allergen-specific IgE. This study was designed to assess allergy test results using SPT, individual specific IgE tests, and a multiallergen IgE assay (multiple allergen simultaneous test) in patients with chronic rhinitis and controls. One hundred forty total patients were prospectively enrolled in the study, including 100 patients with chronic rhinitis and 40 control patients without atopy. All eligible patients underwent SPT, serum analysis using individual specific IgE test, and multiple allergen simultaneous test against 10 common allergens. Allergy test results were then compared to identify correlation and interest agreement. There was an 81-97% agreement between SPT and individual specific IgE test in allergen detection and an 80-98% agreement between SPT and multiple allergen simultaneous test. Individual specific IgE test and multiple allergen simultaneous test allergy detection prevalence was generally similar to SPT in patients with chronic rhinitis. All control patients had negative SPT (0/40), but low positive results were found with both individual specific IgE test (5-12.5%) and multiple allergen simultaneous test (2.5-7.5%) to some allergens, especially cockroach, Dermatophagoides farina, and ragweed. Agreement and correlation between individual specific IgE test and multiple allergen simultaneous test were good to excellent for a majority of tested allergens. This study shows good agreement and correlation between SPT with individual specific IgE test and multiple allergen simultaneous test on a majority of the tested allergens for patients with chronic rhinitis. Comparing the two in vitro tests, individual specific IgE test agrees with SPT better than multiple allergen simultaneous test.
NASA Astrophysics Data System (ADS)
Braiek, A.; Adili, A.; Albouchi, F.; Karkri, M.; Ben Nasrallah, S.
2016-06-01
The aim of this work is to simultaneously identify the conductive and radiative parameters of a semitransparent sample using a photothermal method associated with an inverse problem. The identification of the conductive and radiative proprieties is performed by the minimization of an objective function that represents the errors between calculated temperature and measured signal. The calculated temperature is obtained from a theoretical model built with the thermal quadrupole formalism. Measurement is obtained in the rear face of the sample whose front face is excited by a crenel of heat flux. For identification procedure, a genetic algorithm is developed and used. The genetic algorithm is a useful tool in the simultaneous estimation of correlated or nearly correlated parameters, which can be a limiting factor for the gradient-based methods. The results of the identification procedure show the efficiency and the stability of the genetic algorithm to simultaneously estimate the conductive and radiative properties of clear glass.
Laeseke, Paul F; Sampson, Lisa A; Haemmerich, Dieter; Brace, Chris L; Fine, Jason P; Frey, Tina M; Winter, Thomas C; Lee, Fred T
2005-12-01
A multiple-electrode radiofrequency (RF) system was developed based on switching between electrodes that allows for the simultaneous use of as many as three electrically independent electrodes. The purpose of this study was to determine if each multiple-electrode ablation zone is identical to an ablation zone created with conventional single-electrode mode. Nine female domestic pigs (mean weight, 90 kg) were used for this study. A prototype monopolar multiple-electrode RF ablation system was created with use of an RF generator and an electronic switching algorithm. A maximum of three electrodes can be used simultaneously by switching between electrodes at each impedance spike (30 omega greater than baseline levels). A total of 39 zones of ablation were created at open laparotomy in pig livers with use of a conventional single electrode (n = 9), two single electrodes simultaneously (n = 6 ablations; 12 ablation zones), or three single electrodes simultaneously (n = 6 ablations; 18 ablation zones). RF electrodes were spaced in separate lobes of the liver when multiple zones of coagulation were created simultaneously. Animals were euthanized after RF ablation, livers were removed, and ablation zones were sectioned and measured. Zones of coagulation created simultaneously with two or three electrodes were equivalent to ablation zones created with use of conventional single-electrode ablation. No significant differences were observed among control animals treated with a single electrode, those with two separate zones of ablation created simultaneously, and those with three simultaneously created ablation zones in terms of mean (+/-SD) minimum diameter (1.6 cm +/- 0.6, 1.6 cm +/- 0.5, and 1.7 cm +/- 0.4, respectively), maximum diameter (2.0 cm +/- 0.5, 2.3 cm +/- 0.5, 2.2 cm +/- 0.5, respectively), and volume (6.7 cm3 +/- 3.7, 7.4 cm3 +/- 3.8, and 7.8 cm3 +/- 3.9; P > .30, analysis of variance, pairwise t-test comparisons). A rapid-switching multiple-electrode RF system was able to simultaneously create as many as three separate ablation zones of equivalent size compared with single-electrode controls. This system would allow physicians to simultaneously treat multiple tumors, substantially reducing procedure time and anesthesia risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandur, Santosh K.; Deorukhkar, Amit; Pandey, Manoj K.
2009-10-01
Purpose: Radiation therapy is an integral part of the preoperative treatment of rectal cancers. However, only a minority of patients achieve a complete pathologic response to therapy because of resistance of these tumors to radiation therapy. This resistance may be mediated by constitutively active pro-survival signaling pathways or by inducible/acquired mechanisms in response to radiation therapy. Simultaneous inhibition of these pathways can sensitize these tumors to radiation therapy. Methods and Materials: Human colorectal cancer cells were exposed to clinically relevant doses of gamma rays, and the mechanism of their radioresistance was investigated. We characterized the transcription factor nuclear factor-{kappa}B (NF-{kappa}B)more » activation as a mechanism of inducible radioresistance in colorectal cancer and used curcumin, the active ingredient in the yellow spice turmeric, to overcome this resistance. Results: Curcumin inhibited the proliferation and the post-irradiation clonogenic survival of multiple colorectal cancer cell lines. Radiation stimulated NF-{kappa}B activity in a dose- and time-dependent manner, whereas curcumin suppressed this radiation-induced NF-{kappa}B activation via inhibition of radiation-induced phosphorylation and degradation of inhibitor of {kappa}B alpha, inhibition of inhibitor of {kappa}B kinase activity, and inhibition of Akt phosphorylation. Curcumin also suppressed NF-{kappa}B-regulated gene products (Bcl-2, Bcl-x{sub L}, inhibitor of apoptosis protein-2, cyclooxygenase-2, and cyclin D1). Conclusions: Our results suggest that transient inducible NF-{kappa}B activation provides a prosurvival response to radiation that may account for development of radioresistance. Curcumin blocks this signaling pathway and potentiates the antitumor effects of radiation therapy.« less
Simultaneous multiple non-crossing quantile regression estimation using kernel constraints
Liu, Yufeng; Wu, Yichao
2011-01-01
Quantile regression (QR) is a very useful statistical tool for learning the relationship between the response variable and covariates. For many applications, one often needs to estimate multiple conditional quantile functions of the response variable given covariates. Although one can estimate multiple quantiles separately, it is of great interest to estimate them simultaneously. One advantage of simultaneous estimation is that multiple quantiles can share strength among them to gain better estimation accuracy than individually estimated quantile functions. Another important advantage of joint estimation is the feasibility of incorporating simultaneous non-crossing constraints of QR functions. In this paper, we propose a new kernel-based multiple QR estimation technique, namely simultaneous non-crossing quantile regression (SNQR). We use kernel representations for QR functions and apply constraints on the kernel coefficients to avoid crossing. Both unregularised and regularised SNQR techniques are considered. Asymptotic properties such as asymptotic normality of linear SNQR and oracle properties of the sparse linear SNQR are developed. Our numerical results demonstrate the competitive performance of our SNQR over the original individual QR estimation. PMID:22190842
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
... relating to Auction 92. A. Auction Structure i. Simultaneous Multiple-Round Auction Design 7. The Bureau proposes to auction all licenses included in Auction 92 using the Commission's standard simultaneous... competitiveness and economic efficiency of a simultaneous multiple-round auction may be enhanced if such...
Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F
2011-04-01
To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast three-dimensional MRI data acquisition. Copyright © 2011 Wiley-Liss, Inc.
Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F.
2011-01-01
Purpose To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Materials and Methods Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in-vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Results Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. Conclusion The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast 3D MRI data acquisition. PMID:21448967
Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain
Kim, Christina K; Yang, Samuel J; Pichamoorthy, Nandini; Young, Noah P; Kauvar, Isaac; Jennings, Joshua H; Lerner, Talia N; Berndt, Andre; Lee, Soo Yeun; Ramakrishnan, Charu; Davidson, Thomas J; Inoue, Masatoshi; Bito, Haruhiko; Deisseroth, Karl
2017-01-01
Real-time activity measurements from multiple specific cell populations and projections are likely to be important for understanding the brain as a dynamical system. Here we developed frame-projected independent-fiber photometry (FIP), which we used to record fluorescence activity signals from many brain regions simultaneously in freely behaving mice. We explored the versatility of the FIP microscope by quantifying real-time activity relationships among many brain regions during social behavior, simultaneously recording activity along multiple axonal pathways during sensory experience, performing simultaneous two-color activity recording, and applying optical perturbation tuned to elicit dynamics that match naturally occurring patterns observed during behavior. PMID:26878381
NASA Astrophysics Data System (ADS)
Martín-Torres, F. J.; Zorzano-Mier, M.; Gomez-Elvira, J.
2012-12-01
The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) mission has sensors recording air and ground temperature, pressure, relative humidity, wind speed in the horizontal and vertical directions, as well as ultraviolet radiation in different bands. Typical daily REMS observations will collect 180 minutes of data from all sensors simultaneously (arranged in 5 minute hourly samples plus 60 additional minutes taken at times to be decided, daily, during the course of the mission). REMS will add significantly to the environmental record collected by prior missions through the range of simultaneous observations including water vapor; the ability to take measurements routinely through the night; the intended minimum of one Martian year of observations; and the first measurement of surface UV irradiation. The capability of multiple, consistent, and simultaneous data is essential for meaningful interpretation of near-surface processes including the characterization of soil thermal properties. The Martian atmosphere is generally transparent to solar radiation, but atmospheric dust absorbs solar radiation and heats the atmosphere, while UV radiation ionizes atmospheric gases and is harmful to any potential Martian organisms (past or present). For this reason, knowledge of the UV radiation flux at the surface of Mars is important for the understanding habitability conditions, one of the main goals of the MSL mission. Moreover UV radiation is a significant driver in the photochemistry of the atmosphere and surface. In this paper we present a first analysis of REMS measurements, the status of the different sensors and the potential of REMS for Mars environmental studies. REMS Team: C. Armiens, I. Carrasco, F. Gómez, A. Lepinette, J. Martín, J. Martínez-Frías, L. Mora, S. Navarro, V. Peinado, J. Rodríguez-Manfredi, J. Romeral, E. Sebastián, J. Torres, J. Verdasca (Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, km. 4, 28850 Torrejón de Ardoz, Madrid, Spain ) I. McEwan, M. Richardson Ashima Research, Inc., Pasadena, CA, USA L. Castañer, M. Domínguez, V. Jiménez, L. Kowalski, J. Ricart Universidad Politécnica de Cataluña, Barcelona, Spain M.A. de Pablo, M. Ramos Universidad de Alcalá de Henares, Alcalá de Henares, Madrid, Spain M. de la Torre Juárez Jet Propulsion Laboratory, Pasadena, CA, USA J. Moreno, A. Peña, J. Serrano, F. Torrero, T. Velasco EADS-CRISA, Madrid, Spain N.O. Renno Michigan University, Ann Arbor, MI, USA M. Genzer, A.-M. Harri, H. Kahanpää, J. Polkko FMI, Finland R. Haberle NASA Ames Research Center, CA, USA R. Urquí INSA, Madrid, Spain
[Role of radiotherapy in the treatment of multiple myeloma].
Mose, S; Pfitzner, D; Rahn, A; Nierhoff, C; Schiemann, M; Böttcher, H D
2000-11-01
Chemotherapy is the treatment of choice in multiple myeloma; but there are no curative options. Therefore, the treatment rationale is characterized by reduction of symptoms and inhibition of complications. Regarding reduction of pain, treatment of (impending) fractures, and spinal cord compression radiation is an important part of palliative treatment. In our retrospective study we report the effect of radiotherapy on reduction of pain, recalcification and the reduction of neurological symptoms and evaluate factors which have an impact on therapeutic outcome. From 1, Jan 1988 to 31, Dec 1998, 42 patients (19 women, 23 men; range of ages 46 to 85 years, median age 64.9 years) with 71 target volumes were irradiated (median dose 36 Gy, 2 to 3 Gy 5 times/week) because of symptomatic disease (67/71: osseous pain, 45/71: fractures/impending fractures, 13/71: spinal cord compression) (Tables 1 and 2). The median time from diagnosis to the first course of radiotherapy was 11.9 months (0.3 to 90 months). At the time of first irradiation, 5 and 37 patients were in tumor Stage II and III (Salmon/Durie), respectively. The median value of the Karnofsky performance was 70% (40 to 90%). During follow-up (at least 6 months) in 85% of target volumes complete and partial pain relief (measured by patients' perception and the use of analgetic medication) was achieved; recurrences were seen in 8.8%. In 26/56 (46.4%) lesions evaluable a recalcification was seen whereas 17.9% showed progressive disease (comparison of radiographs before and after radiation). In 22.3% of all lesions initially with impending fracture (4/18) radiotherapy failed because of fracture after treatment (Tables 3 and 4). Simultaneous chemotherapy and a Karnofsky performance > or = 70 had a significant impact on a positive response to treatment, respectively. Spinal cord compression symptoms were reduced in 7/13 (53.8%) of patients (scaled due to the classification by Findlay 1987). The median survival from diagnosis for the entire group was 34.9 months (7.5 to 119.3 months), after irradiation 13.1 months (0.2 to 105.3 months) (Figure 1). When adequately indicated radiotherapy has shown to be an effective palliative treatment. Taking under consideration that the results are retrospective we suppose that in multiple myeloma the local response to radiation is supported by a favorable performance status and simultaneous chemotherapy. Irradiation treatment does not change prognosis regarding overall survival.
Multichannel intraluminal impedance: general principles and technical issues.
Tutuian, Radu; Castell, Donald O
2005-04-01
Multichannel intraluminal impedance (MII) is a new technology that allows detection of bolus movement without the use of external radiation or radiolabeled substances. The principles of MII are based on changes in resistance to alternating electrical current (impedance) induced by the presence of various boluses within the esophagus. The timing of changes in multiple impedance-measuring segments in the esophagus allows determination of the direction of bolus movement. Combined MII and manometry (MII-EM) provides simultaneous information on intraesophageal pressures and bolus transit, offers the ability to monitor all types of reflux, and allows the detection of the physical (liquid, gas, or mixed) and chemical (acid, nonacid) characteristics of the gastroesophageal refluxate.
Multiple pinhole collimator based X-ray luminescence computed tomography
Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing
2016-01-01
X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686
Simultaneity, Sequentiality, and Speed: Organizational Messages about Multiple-Task Completion
ERIC Educational Resources Information Center
Stephens, Keri K.; Cho, Jaehee K.; Ballard, Dawna I.
2012-01-01
Workplace norms for task completion increasingly value speed and the ability to accomplish multiple tasks at once. This study situates this popularized issue of multitasking within the context of chronemics scholarship by addressing related issues of simultaneity, sequentiality, and speed. Ultimately, we consider 2 multiple-task completion…
General strategy for the protection of organs at risk in IMRT therapy of a moving body
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abolfath, Ramin M.; Papiez, Lech
2009-07-15
We investigated protection strategies of organs at risk (OARs) in intensity modulated radiation therapy (IMRT). These strategies apply to delivery of IMRT to moving body anatomies that show relative displacement of OAR in close proximity to a tumor target. We formulated an efficient genetic algorithm which makes it possible to search for global minima in a complex landscape of multiple irradiation strategies delivering a given, predetermined intensity map to a target. The optimal strategy was investigated with respect to minimizing the dose delivered to the OAR. The optimization procedure developed relies on variability of all parameters available for control ofmore » radiation delivery in modern linear accelerators, including adaptation of leaf trajectories and simultaneous modification of beam dose rate during irradiation. We showed that the optimization algorithms lead to a significant reduction in the dose delivered to OAR in cases where organs at risk move relative to a treatment target.« less
The Use of Gamma-Ray Imaging to Improve Portal Monitor Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziock, Klaus-Peter; Collins, Jeff; Fabris, Lorenzo
2008-01-01
We have constructed a prototype, rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. Our Roadside Tracker uses automated target acquisition and tracking (TAT) software to identify and track vehicles in visible light images. The field of view of the visible camera overlaps with and is calibrated to that of a one-dimensional gamma-ray imager. The TAT code passes information on when vehicles enter and exit the system field of view and when they cross gamma-ray pixel boundaries. Based on this in-formation, the gamma-ray imager "harvests"more » the gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. In this fashion we are able to generate vehicle-specific radiation signatures and avoid source confusion problems that plague nonimaging approaches to the same problem.« less
Multiple excitation regenerative amplifier inertial confinement system
George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.
1980-05-27
The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation. 11 figs.
Multiple excitation regenerative amplifier inertial confinement system
George, Victor E. [Livermore, CA; Haas, Roger A. [Pleasanton, CA; Krupke, William F. [Pleasanton, CA; Schlitt, Leland G. [Livermore, CA
1980-05-27
The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation.
NASA Astrophysics Data System (ADS)
Song, Ju-Myung; Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young Chang; Shin, Junhwa
2014-04-01
The morphology of polystyrene-grafted poly(ethylene-alt-tetrafluoroethylene) (ETFE) films prepared using a simultaneous radiation grafting method was investigated using DMA, DSC, XRD, and SAXS instruments. The DMA study indicates that the ETFE amorphous phase and PS amorphous phase are mixed well in the PS-grafted ETFE films while the ETFE crystalline phase and the PS amorphous phase are separated, suggesting that the PS chains are grafted mainly on the ETFE amorphous regions. The DSC and XRD data showed that the natural crystalline structures of ETFE in the grafted ETFE films are not affected by the degree of grafting. The SAXS profiles displayed that the inter-crystalline distance of the ETFE films increases with an increasing degree of grafting, which further implies that the PS graft chains formed by the simultaneous irradiation has a significant impact on the amorphous morphology of the resulting grafted ETFE film. Thus, these results indicate that the styrene monomers are mainly grafted on the ETFE amorphous regions during the simultaneous radiation grafting process.
Systems and methods for detecting nuclear radiation in the presence of backgrounds
Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna
2005-06-21
Systems and methods for the simultaneous detection and identification of radiation species, including neutrons, gammas/x-rays and minimum ionizing particles (MIPs). A plurality of rectangular and/or triangularly shaped radiation sensitive scintillators can be configured from a plurality of nano-sized particles, dopants and an extruded plastic material. A wavelength-shifting fiber can then be located within a central hole of each extruded scintillator, wherein the wavelength-shifting fiber absorbs scintillation light and re-emits the light at a longer wavelength, thereby piping the light to a photodetector whose response to the light indicates the presence of radiation The resulting method and system can simultaneously detect neutrons, gamma rays, x-rays and cosmic rays (MIPs) and identify each.
NASA Technical Reports Server (NTRS)
Roth, Donald J (Inventor)
2011-01-01
A process for simultaneously measuring the velocity of terahertz electromagnetic radiation in a dielectric material sample without prior knowledge of the thickness of the sample and for measuring the thickness of a material sample using terahertz electromagnetic radiation in a material sample without prior knowledge of the velocity of the terahertz electromagnetic radiation in the sample is disclosed and claimed. The process evaluates, in a plurality of locations, the sample for microstructural variations and for thickness variations and maps the microstructural and thickness variations by location. A thin sheet of dielectric material may be used on top of the sample to create a dielectric mismatch. The approximate focal point of the radiation source (transceiver) is initially determined for good measurements.
Adamec, Jiri; Yang, Wen-Chu; Regnier, Fred E
2014-01-14
Reagents and methods are provided that permit simultaneous analysis of multiple diverse small molecule analytes present in a complex mixture. Samples are labeled with chemically identical but isotopically distince forms of the labeling reagent, and analyzed using mass spectrometry. A single reagent simultaneously derivatizes multiple small molecule analytes having different reactive functional groups.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-05
..., 2004, now expired, entitled ``Method And Apparatus for Performing Multiple Simultaneous Manipulations..., 2006 entitled ``Method And Apparatus for Performing Multiple Simultaneous Manipulations of Biomolecules...
Offshore Radiation Observations for Climate Research at the CERES Ocean Validation Experiment
NASA Technical Reports Server (NTRS)
Rutledge, Charles K.; Schuster, Gregory L.; Charlock, Thomas P.; Denn, Frederick M.; Smith, William L., Jr.; Fabbri, Bryan E.; Madigan, James J., Jr.; Knapp, Robert J.
2006-01-01
When radiometers on a satellite are pointed towards the planet with the goal of understanding a phenomenon quantitatively, rather than just creating a pleasing image, the task at hand is often problematic. The signal at the detector can be affected by scattering, absorption, and emission; and these can be due to atmospheric constituents (gases, clouds, and aerosols), the earth's surface, and subsurface features. When targeting surface phenomena, the remote sensing algorithm needs to account for the radiation associated with the atmospheric constituents. Likewise, one needs to correct for the radiation leaving the surface, when atmospheric phenomena are of interest. Rigorous validation of such remote sensing products is a real challenge. In visible and near infrared wavelengths, the jumble of effects on atmospheric radiation are best accomplished over dark surfaces with fairly uniform reflective properties (spatial homogeneity) in the satellite instrument's field of view (FOV). The ocean's surface meets this criteria; land surfaces - which are brighter, more spatially inhomogeneous, and more changeable with time - generally do not. NASA's Clouds and the Earth's Radiant Energy System (CERES) project has used this backdrop to establish a radiation monitoring site in Virginia's coastal Atlantic Ocean. The project, called the CERES Ocean Validation Experiment (COVE), is located on a rigid ocean platform allowing the accurate measurement of radiation parameters that require precise leveling and pointing unavailable from ships or buoys. The COVE site is an optimal location for verifying radiative transfer models and remote sensing algorithms used in climate research; because of the platform's small size, there are no island wake effects; and suites of sensors can be simultaneously trained both on the sky and directly on ocean itself. This paper describes the site, the types of measurements made, multiple years of atmospheric and ocean surface radiation observations, and satellite validation results.
Chen, Zhidan; Coy, Stephen L; Pannkuk, Evan L; Laiakis, Evagelia C; Fornace, Albert J; Vouros, Paul
2018-05-07
High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. Graphical Abstract.
Multiparametric Determination of Radiation Risk
NASA Technical Reports Server (NTRS)
Richmond, Robert C.
2003-01-01
Predicting risk of human cancer following exposure to ionizing space radiation is challenging in part because of uncertainties of low-dose distribution amongst cells, of unknown potentially synergistic effects of microgravity upon cellular protein-expression, and of processing dose-related damage within cells to produce rare and late-appearing malignant transformation, degrade the confidence of cancer risk-estimates. The NASA- specific responsibility to estimate the risks of radiogenic cancer in a limited number of astronauts is not amenable to epidemiologic study, thereby increasing this challenge. Developing adequately sensitive cellular biodosimeters that simultaneously report 1) the quantity of absorbed close after exposure to ionizing radiation, 2) the quality of radiation delivering that dose, and 3) the risk of developing malignant transformation by the cells absorbing that dose could be useful for resolving these challenges. Use of a multiparametric cellular biodosimeter is suggested using analyses of gene-expression and protein-expression whereby large datasets of cellular response to radiation-induced damage are obtained and analyzed for expression-profiles correlated with established end points and molecular markers predictive for cancer-risk. Analytical techniques of genomics and proteomics may be used to establish dose-dependency of multiple gene- and protein- expressions resulting from radiation-induced cellular damage. Furthermore, gene- and protein-expression from cells in microgravity are known to be altered relative to cells grown on the ground at 1g. Therefore, hypotheses are proposed that 1) macromolecular expression caused by radiation-induced damage in cells in microgravity may be different than on the ground, and 2) different patterns of macromolecular expression in microgravity may alter human radiogenic cancer risk relative to radiation exposure on Earth. A new paradigm is accordingly suggested as a national database wherein genomic and proteomic datasets are registered and interrogated in order to provide statistically significant dose-dependent risk estimation of radiogenic cancer in astronauts.
NASA Astrophysics Data System (ADS)
Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Fornace, Albert J.; Vouros, Paul
2018-05-01
High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. [Figure not available: see fulltext.
TUBERCULOSIS AND LETHAL AS WELL AS SUBLETHAL WHOLE-BODY X-RAY IRRADIATION OF GUINEA PIGS (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabler, E.
1964-02-01
Lethally total-body-x-ray-irradiated (550 r) and simultaneously Tb- infected guinea pigs died earlier (1.5 to 3.2 days) than lethally irradiated control animals. A tuberculous focus formation could not be found microscopically or macroscopically in these guinea pigs or in sublethally irradiated and simultaneously infected animals. However, in tubcrculous control animals, which were killed at this time, specific foci could be found in liver, spleen, and lungs. Using sublethal irradiation (300 r) and simultaneous Tb inoculation half of the animals died a radiation death and the rest died of tuberculosis. It was found that 86.4% of the animals die a radiation deathmore » and 13.5% because of tuberculosis when irradiated sublethally 30 days after infection. The greatest tuberculosis foci in these animais appeared in lungs, spleen, and especially in the liver ( destroyed iiver''). Tuberculous giant cells of the Langhans-type were missing in case of irradiation and simultaneous tuberculosis. They appeared again about 20 to 30 days after irradiation. The native resistance to tuberculosis was very reduced in cases of simultaneous exposure; radioinduced cell shortage and cell damage permit tuberculous focus formation only after overcoming the acute radiation syndrome in case of sublethal irradiations. (auth)« less
Simultaneous Thermal and Gamma Radiation Aging of Electrical Cable Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Leonard S.
The polymers used for insulation in nuclear power plant electrical cables are susceptible to aging during long term operation. Elevated temperature is the primary contributor to changes in polymer structure that result loss of mechanical and electrical properties, but gamma radiation is also a significant source of degradation for polymers used within relevant plant locations. Despite many years of polymer degradation research, the combined effects of simultaneous exposure to thermal and radiation stress are not well understood. As nuclear operators contemplate and prepare for extended operations beyond initial license periods, a predictive understanding of exposure-based cable material degradation is becomingmore » an increasingly important input to safety, licensing, operations and economic decisions. We are focusing on carefully-controlled simultaneous thermal and gamma radiation accelerating aging and characterization of the most common nuclear cable polymers to understand the relative contributions of temperature, time, dose and dose rate to changes in cable polymer material structure and properties. Improved understanding of cable performance in long term operation will help support continued sustainable nuclear power generation.« less
USDA-ARS?s Scientific Manuscript database
The wide array of applications using quantum dots (QDs) for detection of multiple analytes reflects the versatility of the technology. In this study, a novel immunoassay using 2 types of sensors (QDs and an enzyme) were simultaneously used for detecting multiple structurally different low-molecular...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... issues relating to the conduct of Auction 96. A. Auction Design i. Simultaneous Multiple-Round Auction--With or Without Package Bidding 14. The Bureau proposes to conduct Auction 96 using a simultaneous... incorporate provisions for a simple form of package bidding into the simultaneous multiple-round auction. In...
Hokuto, Toshiki; Yasukawa, Tomoyuki; Kunikata, Ryota; Suda, Atsushi; Inoue, Kumi Y; Ino, Kosuke; Matsue, Tomokazu; Mizutani, Fumio
2016-06-01
Electrochemical imaging is an excellent technique to characterize an activity of biomaterials, such as enzymes and cells. Large scale integration-based amperometric sensor (Bio-LSI) has been developed for the simultaneous and continuous detection of the concentration distribution of redox species generated by reactions of biomolecules. In this study, the Bio-LSI system was demonstrated to be applicable for simultaneous detection of different anaytes in multiple specimens. The multiple specimens containing human immunoglobulin G (hIgG) and mouse IgG (mIgG) were introduced into each channel of the upper substrate across the antibody lines for hIgG and mIgG on the lower substrate. Hydrogen peroxide generated by the enzyme reaction of glucose oxidase captured at intersections was simultaneously detected by 400 microelectrodes of Bio-LSI chip. The oxidation current increased with increasing the concentrations of hIgG, which can be detected in the range of 0.01-1.0 µg mL(-1) . Simultaneous detection of hIgG and mIgG in multiple specimens was achieved by using line pattern of both antibodies. Therefore, the presence of different target molecules in the multiple samples would be quantitatively and simultaneously visualized as a current image by the Bio-LSI system. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Confronting the Uncertainty in Aerosol Forcing Using Comprehensive Observational Data
NASA Astrophysics Data System (ADS)
Johnson, J. S.; Regayre, L. A.; Yoshioka, M.; Pringle, K.; Sexton, D.; Lee, L.; Carslaw, K. S.
2017-12-01
The effect of aerosols on cloud droplet concentrations and radiative properties is the largest uncertainty in the overall radiative forcing of climate over the industrial period. In this study, we take advantage of a large perturbed parameter ensemble of simulations from the UK Met Office HadGEM-UKCA model (the aerosol component of the UK Earth System Model) to comprehensively sample uncertainty in aerosol forcing. Uncertain aerosol and atmospheric parameters cause substantial aerosol forcing uncertainty in climatically important regions. As the aerosol radiative forcing itself is unobservable, we investigate the potential for observations of aerosol and radiative properties to act as constraints on the large forcing uncertainty. We test how eight different theoretically perfect aerosol and radiation observations can constrain the forcing uncertainty over Europe. We find that the achievable constraint is weak unless many diverse observations are used simultaneously. This is due to the complex relationships between model output responses and the multiple interacting parameter uncertainties: compensating model errors mean there are many ways to produce the same model output (known as model equifinality) which impacts on the achievable constraint. However, using all eight observable quantities together we show that the aerosol forcing uncertainty can potentially be reduced by around 50%. This reduction occurs as we reduce a large sample of model variants (over 1 million) that cover the full parametric uncertainty to around 1% that are observationally plausible.Constraining the forcing uncertainty using real observations is a more complex undertaking, in which we must account for multiple further uncertainties including measurement uncertainties, structural model uncertainties and the model discrepancy from reality. Here, we make a first attempt to determine the true potential constraint on the forcing uncertainty from our model that is achievable using a comprehensive set of real aerosol and radiation observations taken from ground stations, flight campaigns and satellite. This research has been supported by the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund, and by the NERC funded GASSP project.
Evaluating the Effects of Emission Reductions on Multiple Pollutants Simultaneously
Modeling studies over the Philadelphia metropolitan area have examined how emission control strategies might affect several types of air pollutants simultaneously. This study supports considering effects of multiple pollutants in determining optimum pollution control strategies. ...
L.M. Hanks; J.A. Mongold-Diers; T.H. Atkinson; M.K. Fierke; M.D. Ginzel; E.E. Graham; T.M. Poland; A.B. Richards; M.L. Richardson; J.G. Millar
2018-01-01
Pheromone components of cerambycid beetles are often conserved, with a given compound serving as a pheromone component for multiple related species, including species native to different continents. Consequently, a single synthesized compound may attract multiple species to a trap simultaneously. Furthermore, our previous research in east-central Illinois had...
NASA Astrophysics Data System (ADS)
Marshall, Jonathan A.
1992-12-01
A simple self-organizing neural network model, called an EXIN network, that learns to process sensory information in a context-sensitive manner, is described. EXIN networks develop efficient representation structures for higher-level visual tasks such as segmentation, grouping, transparency, depth perception, and size perception. Exposure to a perceptual environment during a developmental period serves to configure the network to perform appropriate organization of sensory data. A new anti-Hebbian inhibitory learning rule permits superposition of multiple simultaneous neural activations (multiple winners), while maintaining contextual consistency constraints, instead of forcing winner-take-all pattern classifications. The activations can represent multiple patterns simultaneously and can represent uncertainty. The network performs parallel parsing, credit attribution, and simultaneous constraint satisfaction. EXIN networks can learn to represent multiple oriented edges even where they intersect and can learn to represent multiple transparently overlaid surfaces defined by stereo or motion cues. In the case of stereo transparency, the inhibitory learning implements both a uniqueness constraint and permits coactivation of cells representing multiple disparities at the same image location. Thus two or more disparities can be active simultaneously without interference. This behavior is analogous to that of Prazdny's stereo vision algorithm, with the bonus that each binocular point is assigned a unique disparity. In a large implementation, such a NN would also be able to represent effectively the disparities of a cloud of points at random depths, like human observers, and unlike Prazdny's method
Bigu-del-Blanco, J; Romero-Sierra, C
1977-08-01
The design of a microwave monopole radiator, using a hollow hypodermic needle, is described. This radiator has two unique features. It allows both i) irradiation of deep biological structures by simple needle injection and ii) simultaneous chemotherapic treatment of tissue. The matching characteristics of the monopole in saline solutions are given.
NASA Technical Reports Server (NTRS)
Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu
2013-01-01
Stable type chromosome aberrations that survive multiple generations of cell division include translocation and inversions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. At the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Detailed analysis of breaks participating in total chromosome exchanges within the first cell cycle post irradiation revealed a common hotspot located in the 3p21 region, which is a known fragile site corresponding to the band 6 in the mBand analysis. The breakpoint distribution in chromosomes collected at 7 days, but not at 14 days, post irradiation appeared similar to the distribution in cells collected within the first cell cycle post irradiation. The breakpoint distribution for human lymphocytes after radiation exposure was different from the previously published distribution for human mammary epithelial cells, indicating that interphase chromatin folding structures play a role in the distribution of radiation-induced breaks.
Better dual-task processing in simultaneous interpreters
Strobach, Tilo; Becker, Maxi; Schubert, Torsten; Kühn, Simone
2015-01-01
Simultaneous interpreting (SI) is a highly complex activity and requires the performance and coordination of multiple, simultaneous tasks: analysis and understanding of the discourse in a first language, reformulating linguistic material, storing of intermediate processing steps, and language production in a second language among others. It is, however, an open issue whether persons with experience in SI possess superior skills in coordination of multiple tasks and whether they are able to transfer these skills to lab-based dual-task situations. Within the present study, we set out to explore whether interpreting experience is associated with related higher-order executive functioning in the context of dual-task situations of the Psychological Refractory Period (PRP) type. In this PRP situation, we found faster reactions times in participants with experience in simultaneous interpretation in contrast to control participants without such experience. Thus, simultaneous interpreters possess superior skills in coordination of multiple tasks in lab-based dual-task situations. PMID:26528232
Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes.
Vad-Nielsen, Johan; Lin, Lin; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun
2016-11-01
The engineered CRISPR/Cas9 technology has developed as the most efficient and broadly used genome editing tool. However, simultaneously targeting multiple genes (or genomic loci) in the same individual cells using CRISPR/Cas9 remain one technical challenge. In this article, we have developed a Golden Gate Assembly method for the generation of CRISPR gRNA expression arrays, thus enabling simultaneous gene targeting. Using this method, the generation of CRISPR gRNA expression array can be accomplished in 2 weeks, and contains up to 30 gRNA expression cassettes. We demonstrated in the study that simultaneously targeting 10 genomic loci or simultaneously inhibition of multiple endogenous genes could be achieved using the multiplexed gRNA expression array vector in human cells. The complete set of plasmids is available through the non-profit plasmid repository Addgene.
González, Juan C
2009-04-10
A new type of convex Fresnel lens for linear photovoltaic concentration systems is presented. The lens designed with this method reaches 100% of geometrical optical efficiency, and the ratio (Aperture area)/(Receptor area) is up to 75% of the theoretical limit. The main goal of the design is high uniformity of the radiation on the cell surface for each input angle inside the acceptance. The ratio between the maximum and the minimum irradiance on points of the solar cell is less than 2. The lens has been designed with the simultaneous multiple surfaces (SMS) method of nonimaging optics, and ray tracing techniques have been used to characterize its performance for linear symmetry systems.
NASA Technical Reports Server (NTRS)
Malila, W. A.; Crane, R. B.; Richardson, W.
1973-01-01
Recent improvements in remote sensor technology carry implications for data processing. Multispectral line scanners now exist that can collect data simultaneously and in registration in multiple channels at both reflective and thermal (emissive) wavelengths. Progress in dealing with two resultant recognition processing problems is discussed: (1) More channels mean higher processing costs; to combat these costs, a new and faster procedure for selecting subsets of channels has been developed. (2) Differences between thermal and reflective characteristics influence recognition processing; to illustrate the magnitude of these differences, some explanatory calculations are presented. Also introduced, is a different way to process multispectral scanner data, namely, radiation balance mapping and related procedures. Techniques and potentials are discussed and examples presented.
Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure.
Wu, Hong-Wei; Chen, Hua-Jun; Xu, Hua-Feng; Fan, Ren-Hao; Li, Yang
2018-06-11
We demonstrate that directional electromagnetic scattering can be realized in an artificial Mie resonant structure that supports electric and magnetic dipole modes simultaneously. The directivity of the far-field radiation pattern can be switched by changing wavelength of the incident light as well as tailoring the geometric parameters of the structure. In addition, we further design a quasiperiodic spoof Mie resonant structure by alternately inserting two materials into the slits. The results show that multi-band directional light scattering is realized by exciting multiple electric and magnetic dipole modes with different frequencies in the quasiperiodic structure. The presented design concept is suitable for microwave to terahertz region and can be applied to various advanced optical devices, such as antenna, metamaterial and metasurface.
Swadling, G F; Lebedev, S V; Hall, G N; Patankar, S; Stewart, N H; Smith, R A; Harvey-Thompson, A J; Burdiak, G C; de Grouchy, P; Skidmore, J; Suttle, L; Suzuki-Vidal, F; Bland, S N; Kwek, K H; Pickworth, L; Bennett, M; Hare, J D; Rozmus, W; Yuan, J
2014-11-01
A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.
NASA Astrophysics Data System (ADS)
Zeng, Qinglei; Liu, Zhanli; Wang, Tao; Gao, Yue; Zhuang, Zhuo
2018-02-01
In hydraulic fracturing process in shale rock, multiple fractures perpendicular to a horizontal wellbore are usually driven to propagate simultaneously by the pumping operation. In this paper, a numerical method is developed for the propagation of multiple hydraulic fractures (HFs) by fully coupling the deformation and fracturing of solid formation, fluid flow in fractures, fluid partitioning through a horizontal wellbore and perforation entry loss effect. The extended finite element method (XFEM) is adopted to model arbitrary growth of the fractures. Newton's iteration is proposed to solve these fully coupled nonlinear equations, which is more efficient comparing to the widely adopted fixed-point iteration in the literatures and avoids the need to impose fluid pressure boundary condition when solving flow equations. A secant iterative method based on the stress intensity factor (SIF) is proposed to capture different propagation velocities of multiple fractures. The numerical results are compared with theoretical solutions in literatures to verify the accuracy of the method. The simultaneous propagation of multiple HFs is simulated by the newly proposed algorithm. The coupled influences of propagation regime, stress interaction, wellbore pressure loss and perforation entry loss on simultaneous propagation of multiple HFs are investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yiying, E-mail: yiyingyan@sjtu.edu.cn; Lü, Zhiguo, E-mail: zglv@sjtu.edu.cn; Zheng, Hang, E-mail: hzheng@sjtu.edu.cn
We present a theoretical formalism for resonance fluorescence radiating from a two-level system (TLS) driven by any periodic driving and coupled to multiple reservoirs. The formalism is derived analytically based on the combination of Floquet theory and Born–Markov master equation. The formalism allows us to calculate the spectrum when the Floquet states and quasienergies are analytically or numerically solved for simple or complicated driving fields. We can systematically explore the spectral features by implementing the present formalism. To exemplify this theory, we apply the unified formalism to comprehensively study a generic model that a harmonically driven TLS is simultaneously coupledmore » to a radiative reservoir and a dephasing reservoir. We demonstrate that the significant features of the fluorescence spectra, the driving-induced asymmetry and the dephasing-induced asymmetry, can be attributed to the violation of detailed balance condition, and explained in terms of the driving-related transition quantities between Floquet-states and their steady populations. In addition, we find the distinguished features of the fluorescence spectra under the biharmonic and multiharmonic driving fields in contrast with that of the harmonic driving case. In the case of the biharmonic driving, we find that the spectra are significantly different from the result of the RWA under the multiple resonance conditions. By the three concrete applications, we illustrate that the present formalism provides a routine tool for comprehensively exploring the fluorescence spectrum of periodically strongly driven TLSs.« less
Simultaneous Exposure to Multiple Air Pollutants Influences Alveolar Epithelial Cell Ion Transport
Purpose. Air pollution sources generally release multiple pollutants simultaneously and yet, research has historically focused on the source-to-health linkages of individual air pollutants. We recently showed that exposure of alveolar epithelial cells to a combination of particul...
Morgenstern, Hai; Rafaely, Boaz; Zotter, Franz
2015-11-01
Spatial attributes of room acoustics have been widely studied using microphone and loudspeaker arrays. However, systems that combine both arrays, referred to as multiple-input multiple-output (MIMO) systems, have only been studied to a limited degree in this context. These systems can potentially provide a powerful tool for room acoustics analysis due to the ability to simultaneously control both arrays. This paper offers a theoretical framework for the spatial analysis of enclosed sound fields using a MIMO system comprising spherical loudspeaker and microphone arrays. A system transfer function is formulated in matrix form for free-field conditions, and its properties are studied using tools from linear algebra. The system is shown to have unit-rank, regardless of the array types, and its singular vectors are related to the directions of arrival and radiation at the microphone and loudspeaker arrays, respectively. The formulation is then generalized to apply to rooms, using an image source method. In this case, the rank of the system is related to the number of significant reflections. The paper ends with simulation studies, which support the developed theory, and with an extensive reflection analysis of a room impulse response, using the platform of a MIMO system.
NASA Astrophysics Data System (ADS)
Iuchi, Tohru; Furukawa, Tohru
2004-12-01
This article describes some considerations for designing a practical radiation thermometry system for a glossy metal moving through a high temperature furnace, such as a continuous annealing furnace. In order to accomplish this task, two problems must be solved. The emissivity compensation of an object must be calculated and the furnace's background radiation noise must be eliminated. The authors have proposed a method that uses the radiance's polarized directional properties to simultaneously measure the emissivity and temperature to solve the first problem and a technique using a pseudo-blackbody installed in the furnace to solve the second problem. During heating, there is a one-to-one correspondence between the emissivity and the ratio of p- and s-polarized radiances for metals. This characteristic has successfully led to the development of a method for simultaneously measuring the emissivity and temperature of metals regardless of a potential large change in emissivity. Introducing a pseudo-blackbody radiator into a furnace removes the background radiation noise. Moreover, the blackbody radiator supplies a constant reference radiance. This reference plays an important role in maintaining the principle of emissivity-compensated radiation thermometry inside the furnace. Experimental results have simultaneously measured the emissivity and temperature of stainless steel at 1300 K with errors of 12% and 0.96%, respectively. These values were attained even though the s-polarized emissivities change from 0.25 to 0.75 at a wavelength of 0.9 μm. These errors can be achieved by designing the apparatus to have a solid angle, the aperture of the pseudo-blackbody subtended by a measuring point of the specimen, of more than 0.02π steradians. The accuracy of this method is heavily dependent upon the specimen's surface roughness. The maximum surface roughness that allows for the successful utilization of this method is Ra=0.12 μm.
The Impacts of Multiple Simultaneous Climate Variations
2016-12-01
MULTIPLE SIMULTANEOUS CLIMATE VARIATIONS by Richard E. Ilczuk Jr. December 2016 Thesis Advisor: Tom Murphree Co-Advisor: Megan Hutchins......13. ABSTRACT (maximum 200 words) Climate variations—such as El Niño–La Niña (ENLN), the Madden–Julian Oscillation (MJO), and the Arctic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karagounis, Ilias V.; Koukourakis, Michael I., E-mail: targ@her.forthnet.gr, E-mail: mkoukour@med.duth.gr; Abatzoglou, Ioannis M., E-mail: abadzoglou@yahoo.gr
Purpose: In vivo radiobiology experiments involving partial body irradiation (PBI) of mice are of major importance because they allow for the evaluation of individual organ tolerance; overcoming current limitations of experiments using lower dose, whole body irradiation. In the current study, the authors characterize and validate an effective and efficient apparatus for multiple animal PBI, directed to the head, thorax, or abdomen of mice. Methods: The apparatus is made of polymethylmethacrylate and consists of a rectangular parallelepiped prism (40 cm × 16 cm × 8 cm), in which five holes were drilled to accomodate standard 60 ml syringes, each housingmore » an unanesthetized, fully immobilized mouse. Following CT-scanning and radiotherapy treatment planning, radiation fields were designed to irradiate the head, thorax, or abdomen of the animal. Thermoluminescent dosimeters (TLDs) were used to confirm the treatment planning dosimetry for primary beam and scattered radiation. Results: Mice are efficiently placed into 60 ml syringes and immobilized, without the use of anesthetics. Although partial rotational movement around the longitudinal axis and a minor 2 mm forward/backward movement are permitted, this does not compromise the irradiation of the chosen body area. TLDs confirmed the dose values predicted by the treatment planning dosimetry, both for primary beam and scattered radiation. Conclusions: The customized PMMA apparatus described and validated is cost-effective, convenient to use, and efficient in performing PBI without the use of anesthesia. The developed apparatus permits the isolated irradiation of the mouse head, thorax, and abdomen. Importantly, the apparatus allows the delivery of PBI to five mice, simultaneously, representing an efficient way to effectively expose a large number of animals to PBI through multiple daily fractions, simulating clinical radiotherapy treatment schedules.« less
NASA Astrophysics Data System (ADS)
Cooray, Vernon; Cooray, Gerald; Marshall, Thomas; Arabshahi, Shahab; Dwyer, Joseph; Rassoul, Hamid
2014-11-01
In the present study, electromagnetic fields of accelerating charges were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This model of the avalanche was utilized to test the idea whether the source of the lightning signatures known as narrow bipolar pulses could be relativistic avalanches. The idea was tested by using the simultaneously measured electric fields of narrow bipolar pulses at two distances, one measured far away from the source and the other in the near vicinity. The avalanche parameters were extracted from the distant field and they are used to evaluate the close field. The results show that the source of the NBP can be modeled either as a single or a multiple burst of relativistic avalanches with speed of avalanches in the range of 2-3 × 108 m/s. The multiple avalanche model agrees better with the experimental data in that it can also generate the correct signature of the time derivatives and the HF and VHF radiation bursts of NBP.
Karagounis, Ilias V; Abatzoglou, Ioannis M; Koukourakis, Michael I
2016-05-01
In vivo radiobiology experiments involving partial body irradiation (PBI) of mice are of major importance because they allow for the evaluation of individual organ tolerance; overcoming current limitations of experiments using lower dose, whole body irradiation. In the current study, the authors characterize and validate an effective and efficient apparatus for multiple animal PBI, directed to the head, thorax, or abdomen of mice. The apparatus is made of polymethylmethacrylate and consists of a rectangular parallelepiped prism (40 cm × 16 cm × 8 cm), in which five holes were drilled to accomodate standard 60 ml syringes, each housing an unanesthetized, fully immobilized mouse. Following CT-scanning and radiotherapy treatment planning, radiation fields were designed to irradiate the head, thorax, or abdomen of the animal. Thermoluminescent dosimeters (TLDs) were used to confirm the treatment planning dosimetry for primary beam and scattered radiation. Mice are efficiently placed into 60 ml syringes and immobilized, without the use of anesthetics. Although partial rotational movement around the longitudinal axis and a minor 2 mm forward/backward movement are permitted, this does not compromise the irradiation of the chosen body area. TLDs confirmed the dose values predicted by the treatment planning dosimetry, both for primary beam and scattered radiation. The customized PMMA apparatus described and validated is cost-effective, convenient to use, and efficient in performing PBI without the use of anesthesia. The developed apparatus permits the isolated irradiation of the mouse head, thorax, and abdomen. Importantly, the apparatus allows the delivery of PBI to five mice, simultaneously, representing an efficient way to effectively expose a large number of animals to PBI through multiple daily fractions, simulating clinical radiotherapy treatment schedules.
Angular width of the Cherenkov radiation with inclusion of multiple scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jian, E-mail: jzheng@ustc.edu.cn
2016-06-15
Visible Cherenkov radiation can offer a method of the measurement of the velocity of charged particles. The angular width of the radiation is important since it determines the resolution of the velocity measurement. In this article, the angular width of Cherenkov radiation with inclusion of multiple scattering is calculated through the path-integral method, and the analytical expressions are presented. The condition that multiple scattering processes dominate the angular distribution is obtained.
Close, D.A.; Franks, L.A.; Kocimski, S.M.
1984-08-16
An invention is described that enables the quantitative simultaneous identification of the matrix materials in which fertile and fissile nuclides are embedded to be made along with the quantitative assay of the fertile and fissile materials. The invention also enables corrections for any absorption of neutrons by the matrix materials and by the measurement apparatus by the measurement of the prompt and delayed neutron flux emerging from a sample after the sample is interrogated by simultaneously applied neutrons and gamma radiation. High energy electrons are directed at a first target to produce gamma radiation. A second target receives the resulting pulsed gamma radiation and produces neutrons from the interaction with the gamma radiation. These neutrons are slowed by a moderator surrounding the sample and bathe the sample uniformly, generating second gamma radiation in the interaction. The gamma radiation is then resolved and quantitatively detected, providing a spectroscopic signature of the constituent elements contained in the matrix and in the materials within the vicinity of the sample. (LEW)
Fontanillas, Eric; Welch, John J; Thomas, Jessica A; Bromham, Lindell
2007-01-01
Background Molecular clock dates, which place the origin of animal phyla deep in the Precambrian, have been used to reject the hypothesis of a rapid evolutionary radiation of animal phyla supported by the fossil record. One possible explanation of the discrepancy is the potential for fast substitution rates early in the metazoan radiation. However, concerted rate variation, occurring simultaneously in multiple lineages, cannot be detected by "clock tests", and so another way to explore such variation is to look for correlated changes between rates and other biological factors. Here we investigate two possible causes of fast early rates: change in average body size or diversification rate of deep metazoan lineages. Results For nine genes for phylogenetically independent comparisons between 50 metazoan phyla, orders, and classes, we find a significant correlation between average body size and rate of molecular evolution of mitochondrial genes. The data also indicate that diversification rate may have a positive effect on rates of mitochondrial molecular evolution. Conclusion If average body sizes were significantly smaller in the early history of the Metazoa, and if rates of diversification were much higher, then it is possible that mitochondrial genes have undergone a slow-down in evolutionary rate, which could affect date estimates made from these genes. PMID:17592650
Private E-Mail Requests and the Diffusion of Responsibility.
ERIC Educational Resources Information Center
Barron, Greg; Yechiam, Eldad
2002-01-01
Discussion of e-mail technology and requesting information from multiple sources simultaneously focuses on an experiment demonstrating that addressing e-mails simultaneously to multiple recipients may actually reduce the number of helpful responses. Discusses diffusion of responsibility and implications for the application of social cueing theory…
NASA Astrophysics Data System (ADS)
Voitovich, A. P.; Kalinov, V. S.; Stupak, A. P.; Runets, L. P.
2015-03-01
Isobestic and isoemission points are recorded in the combined absorption and luminescence spectra of two types of radiation defects involved in complex processes consisting of several simultaneous parallel and sequential reactions. These points are observed if a constant sum of two terms, each formed by the product of the concentration of the corresponding defect and a characteristic integral coefficient associated with it, is conserved. The complicated processes involved in the transformation of radiation defects in lithium fluoride are studied using these points. It is found that the ratio of the changes in the concentrations of one of the components and the reaction product remains constant in the course of several simultaneous reactions.
Grant, E J; Ozasa, K; Ban, N; de González, A Berrington; Cologne, J; Cullings, H M; Doi, K; Furukawa, K; Imaoka, T; Kodama, K; Nakamura, N; Niwa, O; Preston, D L; Rajaraman, P; Sadakane, A; Saigusa, S; Sakata, R; Sobue, T; Sugiyama, H; Ullrich, R; Wakeford, R; Yasumura, S; Milder, C M; Shore, R E
2015-05-01
The RERF International Low-Dose Symposium was held on 5-6 December 2013 at the RERF campus in Hiroshima, Japan, to discuss the issues facing the Life Span Study (LSS) and other low-dose studies. Topics included the current status of low-dose risk detection, strategies for low-dose epidemiological and statistical research, methods to improve communication between epidemiologists and biologists, and the current status of radiological studies and tools. Key points made by the participants included the necessity of pooling materials over multiple studies to gain greater insight where data from single studies are insufficient; generating models that reflect epidemiological, statistical, and biological principles simultaneously; understanding confounders and effect modifiers in the current data; and taking into consideration less studied factors such as the impact of dose rate. It is the hope of all participants that this symposium be used as a trigger for further studies, especially those using pooled data, in order to reach a greater understanding of the health effects of low-dose radiation.
Rasuk, María Cecilia; Ferrer, Gabriela Mónica; Kurth, Daniel; Portero, Luciano Raúl; Farías, María Eugenia; Albarracín, Virginia Helena
2017-05-01
Polyextremophiles are present in a wide variety of extreme environments in which they must overcome various hostile conditions simultaneously such as high UVB radiation, extreme pHs and temperatures, elevated salt and heavy-metal concentration, low-oxygen pressure and scarce nutrients. High-altitude Andean lakes (HAALs; between 2000 and 4000 m) are one example of these kinds of ecosystems suffering from the highest total solar and UVB radiation on Earth where an abundant and diverse polyextremophilic microbiota was reported. In this work, we performed the first extensive isolation of UV-resistant actinobacteria from soils, water, sediments and modern stromatolites at HAALs. Based on the 16S rRNA sequence, the strains were identified as members of the genera Streptomyces, Micrococcus, Nesterenkonia, Rhodococcus, Microbacterium, Kocuria, Arthrobacter, Micromonospora, Blastococcus, Citrococcus and Brevibacterium. Most isolates displayed resistance to multiple environmental stress factors confirming their polyextremophilic nature and were able to produce effective antimicrobial compounds. HAALs constitute a largely unexplored repository of UV-resistant actinobacteria, with high potential for the biodiscovery of novel natural products. © 2017 The American Society of Photobiology.
Radiography Capabilities for Matter-Radiation Interactions in Extremes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walstrom, Peter Lowell; Garnett, Robert William; Chapman, Catherine A. B
The Matter-Radiation Interactions in Extremes (MaRIE) experimental facility will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges. This new facility will provide the new tools scientists need to develop next-generation materials that will perform predictably and on-demand for currently unattainable lifetimes in extreme environments. The MaRIE facility is based on upgrades to the existing LANSCE 800-MeV proton linac and a new 12-GeV electron linac and associated X-ray FEL to provide simultaneous multiple probe beams, and new experimental areas. In addition to the high-energy photon probe beam, both electronmore » and proton radiography capabilities will be available at the MaRIE facility. Recently, detailed radiography system studies have been performed to develop conceptual layouts of high-magnification electron and proton radiography systems that can meet the experimental requirements for the expected first experiments to be performed at the facility. A description of the radiography systems, their performance requirements, and a proposed facility layout are presented.« less
Development of an alpha/beta/gamma detector for radiation monitoring
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Hatazawa, Jun
2011-11-01
For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd2SiO5 (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required.
Bell, Zane W.
2000-01-01
A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.
Development of an alpha/beta/gamma detector for radiation monitoring.
Yamamoto, Seiichi; Hatazawa, Jun
2011-11-01
For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd(2)SiO(5) (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required. © 2011 American Institute of Physics
Multispectral information for gas and aerosol retrieval from TANSO-FTS instrument
NASA Astrophysics Data System (ADS)
Herbin, H.; Labonnote, L. C.; Dubuisson, P.
2012-11-01
The Greenhouse gases Observing SATellite (GOSAT) mission and in particular TANSO-FTS instrument has the advantage to measure simultaneously the same field of view in different spectral ranges with a high spectral resolution. These features are promising to improve, not only, gaseous retrieval in clear sky or scattering atmosphere, but also to retrieve aerosol parameters. Therefore, this paper is dedicated to an Information Content (IC) analysis of potential synergy between thermal infrared, shortwave infrared and visible, in order to obtain a more accurate retrieval of gas and aerosol. The latter is based on Shannon theory and used a sophisticated radiative transfer algorithm developed at "Laboratoire d'Optique Atmosphérique", dealing with multiple scattering. This forward model can be relied to an optimal estimation method, which allows simultaneously retrieving gases profiles and aerosol granulometry and concentration. The analysis of the information provided by the spectral synergy is based on climatology of dust, volcanic ash and biomass burning aerosols. This work was conducted in order to develop a powerful tool that allows retrieving simultaneously not only the gas concentrations but also the aerosol characteristics by selecting the so called "best channels", i.e. the channels that bring most of the information concerning gas and aerosol. The methodology developed in this paper could also be used to define the specifications of future high spectral resolution mission to reach a given accuracy on retrieved parameters.
Matsushita, Tadashi; Arakawa, Etsuo; Voegeli, Wolfgang; Yano, Yohko F.
2013-01-01
An X-ray reflectometer has been developed, which can simultaneously measure the whole specular X-ray reflectivity curve with no need for rotation of the sample, detector or monochromator crystal during the measurement. A bent-twisted crystal polychromator is used to realise a convergent X-ray beam which has continuously varying energy E (wavelength λ) and glancing angle α to the sample surface as a function of horizontal direction. This convergent beam is reflected in the vertical direction by the sample placed horizontally at the focus and then diverges horizontally and vertically. The normalized intensity distribution of the reflected beam measured downstream of the specimen with a two-dimensional pixel array detector (PILATUS 100K) represents the reflectivity curve. Specular X-ray reflectivity curves were measured from a commercially available silicon (100) wafer, a thin gold film coated on a silicon single-crystal substrate and the surface of liquid ethylene glycol with data collection times of 0.01 to 1000 s using synchrotron radiation from a bending-magnet source of a 6.5 GeV electron storage ring. A typical value of the simultaneously covered range of the momentum transfer was 0.01–0.45 Å−1 for the silicon wafer sample. The potential of this reflectometer for time-resolved X-ray studies of irreversible structural changes is discussed. PMID:23254659
Simultaneous detection of multiple adulterants in dry milk using macro-scale Raman chemical imaging
USDA-ARS?s Scientific Manuscript database
The potential of Raman chemical imaging for simultaneously detecting multiple adulterants in milk powder was investigated. Potential chemical adulterants, including ammonium sulfate, dicyandiamide, melamine, and urea, were mixed together into skim dry milk in the concentration range of 0.1–5.0% for ...
ERIC Educational Resources Information Center
Rao, Shaila; Kane, Martha T.
2009-01-01
This study assessed effectiveness of simultaneous prompting procedure in teaching two middle school students with cognitive impairment decimal subtraction using regrouping. A multiple baseline, multiple probe design replicated across subjects successfully taught two students with cognitive impairment at middle school level decimal subtraction…
Mars Radiator Characterization Experimental Program
NASA Technical Reports Server (NTRS)
Witte, Larry C.; Hollingsworth, D. Keith
2004-01-01
Radiators are an enabling technology for the human exploration and development of the moon and Mars. As standard components of the heat rejection subsystem of space vehicles, radiators are used to reject waste heat to space and/or a planetary environment. They are typically large components of the thermal control system for a space vehicle or human habitation facility, and in some cases safety factors are used to oversize them when the operating environment cannot be fully characterized. Over-sizing can impose significant weight and size penalties that might be prohibitive for future missions. Radiator performance depends on the size of the radiator surface, its emittance and absorptance, the radiator temperature, the effective sky temperature surrounding the radiator, solar radiation and atmospheric irradiation levels, convection to or from the atmosphere (on Mars), and other conditions that could affect the nature of the radiator surface, such as dust accumulation. Most particularly, dust is expected to be a major contributor to the local environmental conditions on either the lunar or Martian surface. This conclusion regarding Mars is supported by measurements of dust accumulation on the Mars Sojourner Rover solar array during the Pathfinder mission. This Final Report describes a study of the effect of Martian dust accumulation on radiator performance. It is comprised of quantitative measurements of effective emittance for a range of dust accumulation levels on surfaces of known emittance under clean conditions. The test radiator coatings were Z-93P, NS-43G, and Silver Teflon (10 mil) film. The Martian dust simulant was Carbondale Red Clay. Results were obtained under vacuum conditions sufficient to reduce convection effects virtually to zero. The experiments required the development of a calorimetric apparatus that allows simultaneous measurements of the effective emittance for all the coatings at each set of experimental conditions. A method of adding dust to multiple radiator coupons was developed and shown to be capable of depositing dust on the surfaces with acceptable uniformity. In these experiments, the dust layer accumulates under earth gravity and in the presence of an earth atmosphere. An invention disclosure for the dust deposition apparatus is being filed through NASA and University of Houston.
Simultaneous K-edge subtraction tomography for tracing strontium using parametric X-ray radiation
NASA Astrophysics Data System (ADS)
Hayakawa, Y.; Hayakawa, K.; Kaneda, T.; Nogami, K.; Sakae, T.; Sakai, T.; Sato, I.; Takahashi, Y.; Tanaka, T.
2017-07-01
The X-ray source based on parametric X-ray radiation (PXR) has been regularly providing a coherent X-ray beam for application studies at Nihon University. Recently, three dimensional (3D) computed tomography (CT) has become one of the most important applications of the PXR source. The methodology referred to as K-edge subtraction (KES) imaging is a particularly successful application utilizing the energy selectivity of PXR. In order to demonstrate the applicability of PXR-KES, a simultaneous KES experiment for a specimen containing strontium was performed using a PXR beam having an energy near the Sr K-edge of 16.1 keV. As a result, the 3D distribution of Sr was obtained by subtraction between the two simultaneously acquired tomographic images.
Immunoglobulin A multiple myeloma with cutaneous involvement in a dog.
Mayer, Monique N; Kerr, Moira E; Grier, Candace K; Macdonald, Valerie S
2008-07-01
An 8-year-old rottweiler, diagnosed with multiple myeloma and multiple sites of cutaneous involvement, was treated with chemotherapy and radiation therapy. The diagnostic criteria for canine multiple myeloma, limitations of diagnostic testing for light chain proteinuria in dogs, and the role of radiation therapy in multiple myeloma patients is discussed.
Immunoglobulin A multiple myeloma with cutaneous involvement in a dog
Mayer, Monique N.; Kerr, Moira E.; Grier, Candace K.; MacDonald, Valerie S.
2008-01-01
An 8-year-old rottweiler, diagnosed with multiple myeloma and multiple sites of cutaneous involvement, was treated with chemotherapy and radiation therapy. The diagnostic criteria for canine multiple myeloma, limitations of diagnostic testing for light chain proteinuria in dogs, and the role of radiation therapy in multiple myeloma patients is discussed. PMID:18827847
Simultaneous infield boost with helical tomotherapy for patients with 1 to 3 brain metastases.
Bauman, Glenn; Yartsev, Slav; Fisher, Barb; Kron, Tomas; Laperriere, Normand; Heydarian, Mostafa; VanDyk, Jake
2007-02-01
We sought to model the feasibility of a simultaneous in field boost (SIB) to individual brain metastases during a course of whole brain radiotherapy (WBXRT) using helical tomotherapy (HT) intensity-modulated radiation therapy. Planning computed tomography data from 14 patients with 1 to 3 brain metastases were used to model an intralesional SIB delivery that yielded a total intralesional dose of 60 Gy with a surrounding whole brain dose of 30 Gy (designed to be isoeffective to WBXRT of 30 Gy with an 18 Gy in 1 fraction radiosurgery boost). Accuracy of treatment of a phantom on the HT unit was measured. Comparisons of HT delivery versus a conventional stereotactic radiotherapy technique for a particularly challenging simulated anatomy were made. In all cases, SIB to 60 Gy with WBXRT to 30 Gy was possible while maintaining critical structures below assigned dose limits. Estimated radiation delivery time for the SIB treatment was approximately 10 minutes per fraction. Planning and treatment of the head phantom was associated with an overall accuracy of 2 mm. Comparison to conventional noncoplanar arc fractionated stereotactic radiotherapy plan demonstrated similar target coverage and improved critical tissue sparing even for a challenging anatomy with multiple lesions in the same plane as the optic apparatus. Based on this study, use of an image guided SIB using HT seemed feasible and a phase I trial initiated at our institution is described. Potential advantages of this approach include frameless stereotaxis through daily megavoltage computed tomography localization, more efficient use of resources and exploitation of radiobiologic advantages of fractionation.
2007-09-30
the behavioral ecology of marine mammals by simultaneously tracking multiple vocalizing individuals in space and time. OBJECTIVES The ...goal is to contribute to the behavioral ecology of marine mammals by simultaneously tracking multiple vocalizing individuals in space and time. 15...OA Graduate Traineeship for E-M Nosal) LONG-TERM GOALS The goal of our research is to develop systems that use a widely spaced hydrophone array
Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)
NASA Astrophysics Data System (ADS)
Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Rice, J. E.; Granetz, R.; Hubbard, A.; Irby, J.; Greenwald, M.; Marmar, E.; Tritz, K.; Stutman, D.; Stratton, B.; Efthimion, P.
2016-11-01
A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (Te, nZ, ΔZeff, and ne,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well as transient levels of metal contributions. This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.
Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.
Kondo, K; Kanesue, T; Tamura, J; Okamura, M
2010-02-01
Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.
X-ray driven reaction front dynamics at calcite-water interfaces
Laanait, Nouamane; Callagon, Erika Blanca R.; Zhang, Zhan; ...
2015-09-18
The interface of minerals with aqueous solutions is central to geochemical reactivity, hosting processes that span multiple spatiotemporal scales. Understanding such processes requires spatially and temporally resolved observations, and experimental controls that precisely manipulate the interfacial thermodynamic state. Using the intense radiation fields of a focused synchrotron X-ray beam, we drove dissolution at the calcite-aqueous interface and simultaneously probed the dynamics of the propagating reaction fronts using surface X-ray microscopy. Evolving surface structures are controlled by the time-dependent solution composition as characterized by a kinetic reaction model. At extreme disequilibria, the onset of reaction front instabilities was observed with velocitiesmore » of >30 nanometers per second. As a result, these instabilities are identified as a signature of transport-limited dissolution of calcite under extreme disequilibrium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F., E-mail: swadling@imperial.ac.uk; Lebedev, S. V.; Hall, G. N.
2014-11-15
A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7–14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnosticsmore » are used to constrain analysis, increasing the accuracy of interpretation.« less
Mirrored pyramidal wells for simultaneous multiple vantage point microscopy.
Seale, K T; Reiserer, R S; Markov, D A; Ges, I A; Wright, C; Janetopoulos, C; Wikswo, J P
2008-10-01
We report a novel method for obtaining simultaneous images from multiple vantage points of a microscopic specimen using size-matched microscopic mirrors created from anisotropically etched silicon. The resulting pyramidal wells enable bright-field and fluorescent side-view images, and when combined with z-sectioning, provide additional information for 3D reconstructions of the specimen. We have demonstrated the 3D localization and tracking over time of the centrosome of a live Dictyostelium discoideum. The simultaneous acquisition of images from multiple perspectives also provides a five-fold increase in the theoretical collection efficiency of emitted photons, a property which may be useful for low-light imaging modalities such as bioluminescence, or low abundance surface-marker labelling.
Zhou, Haibo; Liu, Junlai; Zhou, Changyang; Gao, Ni; Rao, Zhiping; Li, He; Hu, Xinde; Li, Changlin; Yao, Xuan; Shen, Xiaowen; Sun, Yidi; Wei, Yu; Liu, Fei; Ying, Wenqin; Zhang, Junming; Tang, Cheng; Zhang, Xu; Xu, Huatai; Shi, Linyu; Cheng, Leping; Huang, Pengyu; Yang, Hui
2018-03-01
Despite rapid progresses in the genome-editing field, in vivo simultaneous overexpression of multiple genes remains challenging. We generated a transgenic mouse using an improved dCas9 system that enables simultaneous and precise in vivo transcriptional activation of multiple genes and long noncoding RNAs in the nervous system. As proof of concept, we were able to use targeted activation of endogenous neurogenic genes in these transgenic mice to directly and efficiently convert astrocytes into functional neurons in vivo. This system provides a flexible and rapid screening platform for studying complex gene networks and gain-of-function phenotypes in the mammalian brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shchory, Tal; Schifter, Dan; Lichtman, Rinat
Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive trackingmore » system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.« less
Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W
2010-11-15
In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy. Copyright © 2010 Elsevier Inc. All rights reserved.
Multiscale computational modeling of a radiantly driven solar thermal collector
NASA Astrophysics Data System (ADS)
Ponnuru, Koushik
The objectives of the master's thesis are to present, discuss and apply sequential multiscale modeling that combines analytical, numerical (finite element-based) and computational fluid dynamic (CFD) analysis to assist in the development of a radiantly driven macroscale solar thermal collector for energy harvesting. The solar thermal collector is a novel green energy system that converts solar energy to heat and utilizes dry air as a working heat transfer fluid (HTF). This energy system has important advantages over competitive technologies: it is self-contained (no energy sources are needed), there are no moving parts, no oil or supplementary fluids are needed and it is environmentally friendly since it is powered by solar radiation. This work focuses on the development of multi-physics and multiscale models for predicting the performance of the solar thermal collector. Model construction and validation is organized around three distinct and complementary levels. The first level involves an analytical analysis of the thermal transpiration phenomenon and models for predicting the associated mass flow pumping that occurs in an aerogel membrane in the presence of a large thermal gradient. Within the aerogel, a combination of convection, conduction and radiation occurs simultaneously in a domain where the pore size is comparable to the mean free path of the gas molecules. CFD modeling of thermal transpiration is not possible because all the available commercial CFD codes solve the Navier Stokes equations only for continuum flow, which is based on the assumption that the net molecular mass diffusion is zero. However, thermal transpiration occurs in a flow regime where a non-zero net molecular mass diffusion exists. Thus these effects are modeled by using Sharipov's [2] analytical expression for gas flow characterized by high Knudsen number. The second level uses a detailed CFD model solving Navier Stokes equations for momentum, heat and mass transfer in the various components of the device. We have used state-of-the-art computational fluid dynamics (CFD) software, Flow3D (www.flow3d.com) to model the effects of multiple coupled physical processes including buoyancy driven flow from local temperature differences within the plenums, fluid-solid momentum and heat transfer, and coupled radiation exchange between the aerogel, top glazing and environment. In addition, the CFD models include both convection and radiation exchange between the top glazing and the environment. Transient and steady-state thermal models have been constructed using COMSOL Multiphysics. The third level consists of a lumped-element system model, which enables rapid parametric analysis and helps to develop an understanding of the system behavior; the mathematical models developed and multiple CFD simulations studies focus on simultaneous solution of heat, momentum, mass and gas volume fraction balances and succeed in accurate state variable distributions confirmed by experimental measurements.
USDA-ARS?s Scientific Manuscript database
This study investigated the effects of various processing parameters on carrot slices exposed to infrared (IR) radiation heating for achieving simultaneous infrared dry-blanching and dehydration (SIRDBD). The investigated parameters were product surface temperature, slice thickness and processing ti...
Method for measuring the density of lightweight materials
Snow, Samuel G.; Giacomelli, Edward J.
1980-01-01
This invention relates to a nondestructive method for measuring the density of articles composed of elements having a low atomic number such as plastic and carbon composites. The measurement is accomplished by striking the article with a collimated beam of X radiation, simultaneously monitoring the radiation scattered and the radiation transmitted by the article, then relating the ratio of the radiation scattered to the radiation transmitted with the density of the article. The above method is insensitive to all variables except density.
Structured plant metabolomics for the simultaneous exploration of multiple factors.
Vasilev, Nikolay; Boccard, Julien; Lang, Gerhard; Grömping, Ulrike; Fischer, Rainer; Goepfert, Simon; Rudaz, Serge; Schillberg, Stefan
2016-11-17
Multiple factors act simultaneously on plants to establish complex interaction networks involving nutrients, elicitors and metabolites. Metabolomics offers a better understanding of complex biological systems, but evaluating the simultaneous impact of different parameters on metabolic pathways that have many components is a challenging task. We therefore developed a novel approach that combines experimental design, untargeted metabolic profiling based on multiple chromatography systems and ionization modes, and multiblock data analysis, facilitating the systematic analysis of metabolic changes in plants caused by different factors acting at the same time. Using this method, target geraniol compounds produced in transgenic tobacco cell cultures were grouped into clusters based on their response to different factors. We hypothesized that our novel approach may provide more robust data for process optimization in plant cell cultures producing any target secondary metabolite, based on the simultaneous exploration of multiple factors rather than varying one factor each time. The suitability of our approach was verified by confirming several previously reported examples of elicitor-metabolite crosstalk. However, unravelling all factor-metabolite networks remains challenging because it requires the identification of all biochemically significant metabolites in the metabolomics dataset.
NASA Technical Reports Server (NTRS)
Feldkhun, Daniel (Inventor); Wagner, Kelvin H. (Inventor)
2013-01-01
Methods and systems are disclosed of sensing an object. A first radiation is spatially modulated to generate a structured second radiation. The object is illuminated with the structured second radiation such that the object produces a third radiation in response. Apart from any spatially dependent delay, a time variation of the third radiation is spatially independent. With a single-element detector, a portion of the third radiation is detected from locations on the object simultaneously. At least one characteristic of a sinusoidal spatial Fourier-transform component of the object is estimated from a time-varying signal from the detected portion of the third radiation.
Distributed Sensing for Quickest Change Detection of Point Radiation Sources
2017-02-01
point occurs simultaneously at all sensor nodes, thus neglecting signal propagation delays. For nuclear radiation , the observation period, which is on... nuclear radiation using a sensor network,” in Homeland Security (HST), 2012 IEEE Conference on Technologies for. IEEE, 2012, pp. 648–653. [8] G. Lorden...Distributed Sensing for Quickest Change Detection of Point Radiation Sources Gene T. Whipps⋆† Emre Ertin† Randolph L. Moses† †The Ohio State
ERIC Educational Resources Information Center
Catelli, Francisco; Giovannini, Odilon; Bolzan, Vicente Dall Agnol
2011-01-01
The interference fringes produced by a diffraction grating illuminated with radiation from a TV remote control and a red laser beam are, simultaneously, captured by a digital camera. Based on an image with two interference patterns, an estimate of the infrared radiation wavelength emitted by a TV remote control is made. (Contains 4 figures.)
NASA Astrophysics Data System (ADS)
Li, Jinghe; Song, Linping; Liu, Qing Huo
2016-02-01
A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.
James, Erica; Freund, Megan; Booth, Angela; Duncan, Mitch J; Johnson, Natalie; Short, Camille E; Wolfenden, Luke; Stacey, Fiona G; Kay-Lambkin, Frances; Vandelanotte, Corneel
2016-08-01
Growing evidence points to the benefits of addressing multiple health behaviors rather than single behaviors. This review evaluates the relative effectiveness of simultaneous and sequentially delivered multiple health behavior change (MHBC) interventions. Secondary aims were to identify: a) the most effective spacing of sequentially delivered components; b) differences in efficacy of MHBC interventions for adoption/cessation behaviors and lifestyle/addictive behaviors, and; c) differences in trial retention between simultaneously and sequentially delivered interventions. MHBC intervention trials published up to October 2015 were identified through a systematic search. Eligible trials were randomised controlled trials that directly compared simultaneous and sequential delivery of a MHBC intervention. A narrative synthesis was undertaken. Six trials met the inclusion criteria and across these trials the behaviors targeted were smoking, diet, physical activity, and alcohol consumption. Three trials reported a difference in intervention effect between a sequential and simultaneous approach in at least one behavioral outcome. Of these, two trials favoured a sequential approach on smoking. One trial favoured a simultaneous approach on fat intake. There was no difference in retention between sequential and simultaneous approaches. There is limited evidence regarding the relative effectiveness of sequential and simultaneous approaches. Given only three of the six trials observed a difference in intervention effectiveness for one health behavior outcome, and the relatively consistent finding that the sequential and simultaneous approaches were more effective than a usual/minimal care control condition, it appears that both approaches should be considered equally efficacious. PROSPERO registration number: CRD42015027876. Copyright © 2016 Elsevier Inc. All rights reserved.
Automated simultaneous multiple feature classification of MTI data
NASA Astrophysics Data System (ADS)
Harvey, Neal R.; Theiler, James P.; Balick, Lee K.; Pope, Paul A.; Szymanski, John J.; Perkins, Simon J.; Porter, Reid B.; Brumby, Steven P.; Bloch, Jeffrey J.; David, Nancy A.; Galassi, Mark C.
2002-08-01
Los Alamos National Laboratory has developed and demonstrated a highly capable system, GENIE, for the two-class problem of detecting a single feature against a background of non-feature. In addition to the two-class case, however, a commonly encountered remote sensing task is the segmentation of multispectral image data into a larger number of distinct feature classes or land cover types. To this end we have extended our existing system to allow the simultaneous classification of multiple features/classes from multispectral data. The technique builds on previous work and its core continues to utilize a hybrid evolutionary-algorithm-based system capable of searching for image processing pipelines optimized for specific image feature extraction tasks. We describe the improvements made to the GENIE software to allow multiple-feature classification and describe the application of this system to the automatic simultaneous classification of multiple features from MTI image data. We show the application of the multiple-feature classification technique to the problem of classifying lava flows on Mauna Loa volcano, Hawaii, using MTI image data and compare the classification results with standard supervised multiple-feature classification techniques.
Li, Laquan; Wang, Jian; Lu, Wei; Tan, Shan
2016-01-01
Accurate tumor segmentation from PET images is crucial in many radiation oncology applications. Among others, partial volume effect (PVE) is recognized as one of the most important factors degrading imaging quality and segmentation accuracy in PET. Taking into account that image restoration and tumor segmentation are tightly coupled and can promote each other, we proposed a variational method to solve both problems simultaneously in this study. The proposed method integrated total variation (TV) semi-blind de-convolution and Mumford-Shah segmentation with multiple regularizations. Unlike many existing energy minimization methods using either TV or L2 regularization, the proposed method employed TV regularization over tumor edges to preserve edge information, and L2 regularization inside tumor regions to preserve the smooth change of the metabolic uptake in a PET image. The blur kernel was modeled as anisotropic Gaussian to address the resolution difference in transverse and axial directions commonly seen in a clinic PET scanner. The energy functional was rephrased using the Γ-convergence approximation and was iteratively optimized using the alternating minimization (AM) algorithm. The performance of the proposed method was validated on a physical phantom and two clinic datasets with non-Hodgkin’s lymphoma and esophageal cancer, respectively. Experimental results demonstrated that the proposed method had high performance for simultaneous image restoration, tumor segmentation and scanner blur kernel estimation. Particularly, the recovery coefficients (RC) of the restored images of the proposed method in the phantom study were close to 1, indicating an efficient recovery of the original blurred images; for segmentation the proposed method achieved average dice similarity indexes (DSIs) of 0.79 and 0.80 for two clinic datasets, respectively; and the relative errors of the estimated blur kernel widths were less than 19% in the transversal direction and 7% in the axial direction. PMID:28603407
Chhabra, Puneet; Ranjan, Priyadarshi; Bhasin, Deepak K
2017-01-01
Introduction: Gastrointestinal complications are common after renal transplantation, including oral lesions, esophagitis, gastritis, diarrhea, and colon carcinoma. The differential diagnosis is difficult in this scenario because multiple factors such as drugs, infections, and preexisting gastrointestinal disease come into play. Case Presentation: We report a case of varicella zoster virus-induced pancreatitis and hepatitis in a renal transplant recipient. The patient underwent renal transplantation 3 years earlier and now presented with severe pain in the epigastrium radiating to his back and had raised serum lipase levels and skin lesions characteristic of varicella. Liver enzyme levels were also elevated. He was started on a regimen of acyclovir. His pain improved in 24 hours, and liver enzyme levels returned to normal in 48 hours. Discussion: There is a paucity of literature on the simultaneous occurrence of varicella zoster virus-induced hepatitis and pancreatitis in both immunocompetent and immunocompromised patients. Our case highlights the gastrointestinal complications of varicella infection in immunocompromised patients that may precede the characteristic dermatologic manifestations, and the fact that rarely both hepatitis and pancreatitis may be seen. PMID:28333601
NASA Astrophysics Data System (ADS)
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-06-01
Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter trade-off, arising from the simultaneous variations of different physical parameters, which increase the nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parametrization and acquisition arrangement. An appropriate choice of model parametrization is important to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parametrizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) data for unconventional heavy oil reservoir characterization. Six model parametrizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^' }) and velocity-impedance-II (α″, β″ and I_S^' }). We begin analysing the interparameter trade-off by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. We discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter trade-offs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter trade-offs for various model parametrizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parametrization, the inverted density profile can be overestimated, underestimated or spatially distorted. Among the six cases, only the velocity-density parametrization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. The heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson's ratios, can be identified clearly with the inverted isotropic-elastic parameters.
Resonance properties of tidal channels with multiple retention basins: role of adjacent sea
NASA Astrophysics Data System (ADS)
Roos, Pieter C.; Schuttelaars, Henk M.
2015-03-01
We present an idealised model of the tidal response in a main channel with multiple secondary basins, co-oscillating with an adjacent sea. The sea is represented as a semi-infinite strip of finite width, anywhere between the limits of a channel extension (narrow) and a half-plane (wide). The sea geometry controls the extent to which radiative damping takes place and hence the type of conditions that effectively apply at the channel mouth. These conditions range between the two extremes of prescribing elevation (deep sea limit) and prescribing the incoming wave (sea as channel extension of the same depth, as done in an earlier study). The closer to this first extreme, the stronger the oscillations in the secondary basins may feed back onto the channel mouth and thus produce an amplified or weakened response in the system as a whole. The possibly resonant response is explained by analysing the additional waves that emerge on either side of the entrance of the secondary basin. Finally, we show that the simultaneous presence of two secondary basins may amplify or weaken the accumulated responses to these basins individually.
ERIC Educational Resources Information Center
Chen, Chi-hsin; Gershkoff-Stowe, Lisa; Wu, Chih-Yi; Cheung, Hintat; Yu, Chen
2017-01-01
Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross-situational learning paradigm to test whether English speakers were able to use co-occurrences to learn word-to-object mappings and concurrently form object categories…
Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach
F. Briggs; B. Lakshminarayanan; L. Neal; X.Z. Fern; R. Raich; S.F. Hadley; A.S. Hadley; M.G. Betts
2012-01-01
Although field-collected recordings typically contain multiple simultaneously vocalizing birds of different species, acoustic species classification in this setting has received little study so far. This work formulates the problem of classifying the set of species present in an audio recording using the multi-instance multi-label (MIML) framework for machine learning...
ERIC Educational Resources Information Center
Anderson, Joan L.
2006-01-01
Data from graduate student applications at a large Western university were used to determine which factors were the best predictors of success in graduate school, as defined by cumulative graduate grade point average. Two statistical models were employed and compared: artificial neural networking and simultaneous multiple regression. Both models…
Mirrored pyramidal wells for simultaneous multiple vantage point microscopy
Seale, K.T.; Reiserer, R.S.; Markov, D.A.; Ges, I.A.; Wright, C.; Janetopoulos, C.; Wikswo, J.P.
2013-01-01
Summary We report a novel method for obtaining simultaneous images from multiple vantage points of a microscopic specimen using size-matched microscopic mirrors created from anisotropically etched silicon. The resulting pyramidal wells enable bright-field and fluorescent side-view images, and when combined with z-sectioning, provide additional information for 3D reconstructions of the specimen. We have demonstrated the 3D localization and tracking over time of the centrosome of a live Dictyostelium discoideum. The simultaneous acquisition of images from multiple perspectives also provides a five-fold increase in the theoretical collection efficiency of emitted photons, a property which may be useful for low-light imaging modalities such as bioluminescence, or low abundance surface-marker labelling. PMID:19017196
Luo, Si-Wei; Liang, Zhi; Wu, Jia-Rui
2017-01-01
Quantitatively detecting correlations of multiple protein-protein interactions (PPIs) in vivo is a big challenge. Here we introduce a novel method, termed Protein-interactome Footprinting (PiF), to simultaneously measure multiple PPIs in one cell. The principle of PiF is that each target physical PPI in the interactome is simultaneously transcoded into a specific DNA sequence based on dimerization of the target proteins fused with DNA-binding domains. The interaction intensity of each target protein is quantified as the copy number of the specific DNA sequences bound by each fusion protein dimers. Using PiF, we quantitatively reveal dynamic patterns of PPIs and their correlation network in E. coli two-component systems. PMID:28338015
Pointright: a system to redirect mouse and keyboard control among multiple machines
Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA
2008-09-30
The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.
Interaction of Polarized Light with Chalcogenide Glasses
2001-06-01
simultaneous measurement of the laser radiation transmitted through the bulk sample and radiation scattered by the sample to various angles up to 230...fixed in the central part of the lens, reflected the transmitted light beam to a second photodiode. He-Ne laser radiation (), = 633 nm) which was sub...band-gap radiation for the studied bulk glass samples (As 2S3 glass) played in this installation, by turns, a role of inducing or probing light. This
Characteristics of detectors for prevention of nuclear radiation terrorism
NASA Astrophysics Data System (ADS)
Kolesnikov, S. V.; Ryabeva, E. V.; Samosadny, V. T.
2017-01-01
There is description of one type of detectors in use for the task of nuclear terrorism cases prevention to determine the direction to the radioactive source and geometrical structure of radiation field. This type is a modular detector with anisotropic sensitivity. The principle of work of a modular detecting device is the simultaneous operation of several detecting modules with anisotropic sensitivity to gamma radiation.
Flashes of light-radiation therapy to the brain.
Blumenthal, Deborah T; Corn, Benjamin W; Shtraus, Natan
2015-08-01
We present a series of three patients who received therapeutic external beam radiation to the brain and experienced a phenomenon of the sensation of flashes of bright or blue light, simultaneous with radiation delivery. We relate this benign phenomenon to low-dose exposure to the eye fields and postulate that the occurrence is underreported in this treated population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Total-body irradiation with high-LET particles: acute and chronic effects on the immune system
NASA Technical Reports Server (NTRS)
Gridley, Daila S.; Pecaut, Michael J.; Nelson, Gregory A.
2002-01-01
Although the immune system is highly susceptible to radiation-induced damage, consequences of high linear energy transfer (LET) radiation remain unclear. This study evaluated the effects of 0.1 gray (Gy), 0.5 Gy, and 2.0 Gy iron ion (56Fe(26)) radiation on lymphoid cells and organs of C57BL/6 mice on days 4 and 113 after whole body exposure; a group irradiated with 2.0 Gy silicon ions (28Si) was euthanized on day 113. On day 4 after 56Fe irradiation, dose-dependent decreases were noted in spleen and thymus masses and all major leukocyte populations in blood and spleen. The CD19(+) B lymphocytes were most radiosensitive and NK1.1(+) natural killer (NK) cells were most resistant. CD3(+) T cells were moderately radiosensitive and a greater loss of CD3(+)/CD8(+) T(C) cells than CD3(+)/CD4(+) T(H) cells was noted. Basal DNA synthesis was elevated on day 4, but response to mitogens and secretion of interleukin-2 and tumor necrosis factor-alpha were unaffected. Signs of anemia were noted. By day 113, high B cell numbers and low T(C) cell and monocyte percents were found in the 2.0 Gy 56Fe group; the 2.0 Gy 2)Si mice had low NK cells, decreased basal DNA synthesis, and a somewhat increased response to two mitogens. Collectively, the data show that lymphoid cells and tissues are markedly affected by high linear energy transfer (LET) radiation at relatively low doses, that some aberrations persist long after exposure, and that different consequences may be induced by various densely ionizing particles. Thus simultaneous exposure to multiple radiation sources could lead to a broader spectrum of immune dysfunction than currently anticipated.
Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer
NASA Astrophysics Data System (ADS)
Pikichyan, H. V.
2017-07-01
In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.
Total-body irradiation with high-LET particles: acute and chronic effects on the immune system.
Gridley, Daila S; Pecaut, Michael J; Nelson, Gregory A
2002-03-01
Although the immune system is highly susceptible to radiation-induced damage, consequences of high linear energy transfer (LET) radiation remain unclear. This study evaluated the effects of 0.1 gray (Gy), 0.5 Gy, and 2.0 Gy iron ion (56Fe(26)) radiation on lymphoid cells and organs of C57BL/6 mice on days 4 and 113 after whole body exposure; a group irradiated with 2.0 Gy silicon ions (28Si) was euthanized on day 113. On day 4 after 56Fe irradiation, dose-dependent decreases were noted in spleen and thymus masses and all major leukocyte populations in blood and spleen. The CD19(+) B lymphocytes were most radiosensitive and NK1.1(+) natural killer (NK) cells were most resistant. CD3(+) T cells were moderately radiosensitive and a greater loss of CD3(+)/CD8(+) T(C) cells than CD3(+)/CD4(+) T(H) cells was noted. Basal DNA synthesis was elevated on day 4, but response to mitogens and secretion of interleukin-2 and tumor necrosis factor-alpha were unaffected. Signs of anemia were noted. By day 113, high B cell numbers and low T(C) cell and monocyte percents were found in the 2.0 Gy 56Fe group; the 2.0 Gy 2)Si mice had low NK cells, decreased basal DNA synthesis, and a somewhat increased response to two mitogens. Collectively, the data show that lymphoid cells and tissues are markedly affected by high linear energy transfer (LET) radiation at relatively low doses, that some aberrations persist long after exposure, and that different consequences may be induced by various densely ionizing particles. Thus simultaneous exposure to multiple radiation sources could lead to a broader spectrum of immune dysfunction than currently anticipated.
Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots.
Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M; Ichimura, Taro
2016-07-01
Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery.
Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots
Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M.; Ichimura, Taro
2016-01-01
Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery. PMID:27446684
NASA Astrophysics Data System (ADS)
White, Travis L.; Miller, William H.
1999-02-01
Researchers at the University of Missouri - Columbia have developed a three-crystal phoswich detector coupled to a digital pulse shape discrimination system for use in alpha/beta/gamma spectroscopy. Phoswich detectors use a sandwich of scintillators viewed by a single photomultiplier tube to simultaneously detect multiple types of radiation. Separation of radiation types is based upon pulse shape difference among the phosphors, which has historically been performed with analog circuitry. The system uses a GaGe CompuScope 1012, 12 bit, 10 MHz computer-based oscilloscope that digitally captures the pulses from a phoswich detector and subsequently performs pulse shape discrimination with cross-correlation analysis. The detector, based partially on previous phoswich designs by Usuda et al., uses a 10 mg/cm 2 thick layer of ZnS(Ag) for alpha detection, followed by a 0.254 cm CaF 2(Eu) crystal for beta detection, all backed by a 2.54 cm NaI(Tl) crystal for gamma detection. Individual energy spectra and count rate information for all three radiation types are displayed and updated periodically. The system shows excellent charged particle discrimination with an accuracy of greater than 99%. Future development will include a large area beta probe with gamma-ray discrimination, systems for low-energy photon detection (e.g. Bremsstrahlung or keV-range photon emissions), and other health physics instrumentation.
Multiple capillary biochemical analyzer
Dovichi, N.J.; Zhang, J.Z.
1995-08-08
A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.
Multiple capillary biochemical analyzer
Dovichi, Norman J.; Zhang, Jian Z.
1995-01-01
A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibres to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands.
Qian, Zhaosheng; Shan, Xiaoyue; Chai, Lujing; Chen, Jianrong; Feng, Hui
2014-12-01
Simultaneous detection of multiple DNA targets was achieved based on a biocompatible graphene quantum dots (GQDs) and carbon nanotubes (CNTs) platform through spontaneous assembly between dual-color GQD-based probes and CNTs and subsequently self-recognition between DNA probes and targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Scatter characterization and correction for simultaneous multiple small-animal PET imaging.
Prasad, Rameshwar; Zaidi, Habib
2014-04-01
The rapid growth and usage of small-animal positron emission tomography (PET) in molecular imaging research has led to increased demand on PET scanner's time. One potential solution to increase throughput is to scan multiple rodents simultaneously. However, this is achieved at the expense of deterioration of image quality and loss of quantitative accuracy owing to enhanced effects of photon attenuation and Compton scattering. The purpose of this work is, first, to characterize the magnitude and spatial distribution of the scatter component in small-animal PET imaging when scanning single and multiple rodents simultaneously and, second, to assess the relevance and evaluate the performance of scatter correction under similar conditions. The LabPET™-8 scanner was modelled as realistically as possible using Geant4 Application for Tomographic Emission Monte Carlo simulation platform. Monte Carlo simulations allow the separation of unscattered and scattered coincidences and as such enable detailed assessment of the scatter component and its origin. Simple shape-based and more realistic voxel-based phantoms were used to simulate single and multiple PET imaging studies. The modelled scatter component using the single-scatter simulation technique was compared to Monte Carlo simulation results. PET images were also corrected for attenuation and the combined effect of attenuation and scatter on single and multiple small-animal PET imaging evaluated in terms of image quality and quantitative accuracy. A good agreement was observed between calculated and Monte Carlo simulated scatter profiles for single- and multiple-subject imaging. In the LabPET™-8 scanner, the detector covering material (kovar) contributed the maximum amount of scatter events while the scatter contribution due to lead shielding is negligible. The out-of field-of-view (FOV) scatter fraction (SF) is 1.70, 0.76, and 0.11% for lower energy thresholds of 250, 350, and 400 keV, respectively. The increase in SF ranged between 25 and 64% when imaging multiple subjects (three to five) of different size simultaneously in comparison to imaging a single subject. The spill-over ratio (SOR) increases with increasing the number of subjects in the FOV. Scatter correction improved the SOR for both water and air cold compartments of single and multiple imaging studies. The recovery coefficients for different body parts of the mouse whole-body and rat whole-body anatomical models were improved for multiple imaging studies following scatter correction. The magnitude and spatial distribution of the scatter component in small-animal PET imaging of single and multiple subjects simultaneously were characterized, and its impact was evaluated in different situations. Scatter correction improves PET image quality and quantitative accuracy for single rat and simultaneous multiple mice and rat imaging studies, whereas its impact is insignificant in single mouse imaging.
Nonintrusive fast response oxygen monitoring system for high temperature flows
NASA Technical Reports Server (NTRS)
Oh, Daniel B.; Stanton, Alan C.
1993-01-01
A new technique has been developed for nonintrusive in situ measurement of oxygen concentration, gas temperature, and flow velocity of the test media in hypersonic wind tunnels. It is based on absorption of near-infrared radiation from inexpensive GaAlAs laser diodes used in optoelectronics industry. It is designed for simultaneous measurements along multiple lines of sight accessed by fiber optics. Molecular oxygen concentration is measured from the magnitude of absorption signals; rotational gas temperature is measured from the intensity ratio of two oxygen absorption lines; and the flow velocity is measured from the Doppler shift of the absorption line positions. This report describes the results of an extensive series of tests of the prototype instrument in laboratory flames emphasizing assessment of the instruments capabilities for quantitative measurement of O2 concentration (mole fraction) and gas temperature.
Multi-energy SXR cameras for magnetically confined fusion plasmas (invited).
Delgado-Aparicio, L F; Maddox, J; Pablant, N; Hill, K; Bitter, M; Rice, J E; Granetz, R; Hubbard, A; Irby, J; Greenwald, M; Marmar, E; Tritz, K; Stutman, D; Stratton, B; Efthimion, P
2016-11-01
A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (T e , n Z , ΔZ eff , and n e,fast ). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well as transient levels of metal contributions. This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.
Observation of local cloud and moisture feedbacks over high ocean and desert surface temperatures
NASA Technical Reports Server (NTRS)
Chahine, Moustafa T.
1995-01-01
New data on clouds and moisture, made possible by reanalysis of weather satellite observations, show that the atmosphere reacts to warm clusters of very high sea surface temperatures in the western Pacific Ocean with increased moisture, cloudiness, and convection, suggesting a negative feedback limiting the sea surface temperature rise. The reverse was observed over dry and hot deserts where both moisture and cloudiness decrease, suggesting a positive feedback perpetuating existing desert conditions. In addition, the observations show a common critical surface temperature for both oceans and land; the distribution of atmospheric moisture is observed to reach a maximum value when the daily surface temperatures approach 304 +/- 1 K. These observations reveal complex dynamic-radiative interactions where multiple processes act simultaneously at the surface as well as in the atmosphere to regulate the feedback processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Vine, David J.; Chen, Si
X-ray microscopy can be used to image whole, unsectioned cells in their native hydrated state. It complements the higher resolution of electron microscopy for submicrometer thick specimens, and the molecule-specific imaging capabilites of fluorescence light microscopy. We describe here the first use of fast, continuous x-ray scanning of frozen hydrated cells for simultaneous sub-20 nm resolution ptychographic transmission imaging with high contrast, and sub-100 nm resolution deconvolved x-ray fluorescence imaging of diffusible and bound ions at native concentrations, without the need to add specific labels. Here, by working with cells that have been rapidly frozen without the use of chemicalmore » fixatives, and imaging them under cryogenic conditions, we are able to obtain images with well preserved structural and chemical composition, and sufficient stability against radiation damage to allow for multiple images to be obtained with no observable change.« less
Background-reducing X-ray multilayer mirror
Bloch, Jeffrey J.; Roussel-Dupre', Diane; Smith, Barham W.
1992-01-01
Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."
Liu, Jialin; Zhang, Hongchao; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua
2017-01-01
Recent advancements in diffuse speckle contrast analysis (DSCA) have opened the path for noninvasive acquisition of deep tissue microvasculature blood flow. In fact, in addition to blood flow index αDB, the variations of tissue optical absorption μa, reduced scattering coefficients μs′, as well as coherence factor β can modulate temporal fluctuations of speckle patterns. In this study, we use multi-distance and multi-exposure DSCA (MDME-DSCA) to simultaneously extract multiple parameters such as μa, μs′, αDB, and β. The validity of MDME-DSCA has been validated by the simulated data and phantoms experiments. Moreover, as a comparison, the results also show that it is impractical to simultaneously obtain multiple parameters by multi-exposure DSCA (ME-DSCA). PMID:29082083
Chen, Feng; Hu, Zhe-Yi; Laizure, S Casey; Hudson, Joanna Q
2017-03-01
Optimal dosing of antibiotics in critically ill patients is complicated by the development of resistant organisms requiring treatment with multiple antibiotics and alterations in systemic exposure due to diseases and extracorporeal drug removal. Developing guidelines for optimal antibiotic dosing is an important therapeutic goal requiring robust analytical methods to simultaneously measure multiple antibiotics. An LC-MS/MS assay using protein precipitation for cleanup followed by a 6-min gradient separation was developed to simultaneously determine five antibiotics in human plasma. The precision and accuracy were within the 15% acceptance range. The formic acid concentration was an important determinant of signal intensity, peak shape and matrix effects. The method was designed to be simple and successfully applied to a clinical pharmacokinetic study.
Simultaneous beta and gamma spectroscopy
Farsoni, Abdollah T.; Hamby, David M.
2010-03-23
A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.
Buican, Tudor N.; Martin, John C.
1990-01-01
An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.
Simultaneous effects of photo- and radio- darkening in ytterbium-doped aluminosilicate fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duchez, Jean-Bernard, E-mail: jbduchez@unice.fr; Mady, Franck, E-mail: jbduchez@unice.fr; Mebrouk, Yasmine, E-mail: jbduchez@unice.fr
2014-10-21
We present original characterizations of photo-radio-darkening in ytterbium-doped silica optical fibers submitted to the simultaneous action of the pump and of an ionizing radiation. We present the interplay between both radiations, showing e.g. that the pump is able to darken or bleach the fiber depending on the ionizing dose. The photo-resistance of the fiber is shown to play a crucial role on its radio-resistance, and that photo-resistant fibers should be also radio-resistant in low dose rate conditions. All the results are thoroughly explained by a physical model presented in a separate article by Mady et al. (this conference proceeding)
Use of radiation protraction to escalate biologically effective dose to the treatment target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuperman, V. Y.; Spradlin, G. S.; Department of Mathematics, Embry-Riddle University, Daytona Beach, Florida 32114
2011-12-15
Purpose: The aim of this study is to evaluate how simultaneously increasing fraction time and dose per fraction affect biologically effective dose for the target (BED{sub tar}) while biologically effective dose for the normal tissue (BED{sub nt}) is fixed. Methods: In this investigation, BED{sub tar} and BED{sub nt} were studied by assuming mono-exponential repair of sublethal damage with tissue dependent repair half-time. Results: Our results demonstrate that under certain conditions simultaneously increasing fraction time and dose per fraction result in increased BED{sub tar} while BED{sub nt} is fixed. The dependence of biologically effective dose on fraction time is influenced bymore » the dose rate. In this investigation we analytically determined time-varying dose rate R-tilde which minimizes BED. Changes in BED with fraction time were compared for constant dose rate and for R-tilde. Conclusions: A number of recent experimental and theoretical studies have demonstrated that slow delivery of radiation (known as radiation protraction) leads to reduced therapeutic effect because of increased repair of sublethal damage. In contrast, our analysis shows that under certain conditions simultaneously increasing fraction time and dose per fraction are radiobiologically advantageous.« less
NASA Astrophysics Data System (ADS)
Xiao, Ying; Michalski, Darek; Censor, Yair; Galvin, James M.
2004-07-01
The efficient delivery of intensity modulated radiation therapy (IMRT) depends on finding optimized beam intensity patterns that produce dose distributions, which meet given constraints for the tumour as well as any critical organs to be spared. Many optimization algorithms that are used for beamlet-based inverse planning are susceptible to large variations of neighbouring intensities. Accurately delivering an intensity pattern with a large number of extrema can prove impossible given the mechanical limitations of standard multileaf collimator (MLC) delivery systems. In this study, we apply Cimmino's simultaneous projection algorithm to the beamlet-based inverse planning problem, modelled mathematically as a system of linear inequalities. We show that using this method allows us to arrive at a smoother intensity pattern. Including nonlinear terms in the simultaneous projection algorithm to deal with dose-volume histogram (DVH) constraints does not compromise this property from our experimental observation. The smoothness properties are compared with those from other optimization algorithms which include simulated annealing and the gradient descent method. The simultaneous property of these algorithms is ideally suited to parallel computing technologies.
MicroCT with energy-resolved photon-counting detectors
Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, BMW; Patt, B E; Frey, E C
2011-01-01
The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with Kabsorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527
MicroCT with energy-resolved photon-counting detectors.
Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, B M W; Patt, B E; Frey, E C
2011-05-07
The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences.
Simple method for assembly of CRISPR synergistic activation mediator gRNA expression array.
Vad-Nielsen, Johan; Nielsen, Anders Lade; Luo, Yonglun
2018-05-20
When studying complex interconnected regulatory networks, effective methods for simultaneously manipulating multiple genes expression are paramount. Previously, we have developed a simple method for generation of an all-in-one CRISPR gRNA expression array. We here present a Golden Gate Assembly-based system of synergistic activation mediator (SAM) compatible CRISPR/dCas9 gRNA expression array for the simultaneous activation of multiple genes. Using this system, we demonstrated the simultaneous activation of the transcription factors, TWIST, SNAIL, SLUG, and ZEB1 a human breast cancer cell line. Copyright © 2018 Elsevier B.V. All rights reserved.
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2008-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2007-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
Streptococcus bovis septicemia and meningitis associated with chronic radiation enterocolitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jadeja, L.; Kantarjian, H.; Bolivar, R.
1983-12-01
We describe the first patient with simultaneous S bovis septicemia and meningitis associated with chronic radiation enterocolitis. This case underlines the value of a thorough gastrointestinal evaluation of all patients with S bovis infection, and the need for a neurologic investigation even with minor neurologic manifestations.
Lightning-channel morphology by return-stroke radiation field waveforms
NASA Technical Reports Server (NTRS)
Willett, J. C.; Le Vine, D. M.; Idone, V. P.
1995-01-01
Simultaneous video and wideband electric field recordings of 32 cloud-to-ground lightning flashes in Florida were analyzed to show the formation of new channels to ground can be detected by examination of the return-stroke radiation fields alone. The return-stroke E and dE/dt waveforms were subjectively classified according to their fine structure. Then the video images were examined field by field to identify each waveform with a visible channel to ground. Fifty-five correlated waveforms and channel images were obtained. Of these, all 34 first-stroke waveforms (multiple jagged E peaks, noisy dE/dt), 8 of which were not radiated by the chronologically first stroke in the flash, came from new channels to ground (not previously seen on video). All 18 subsequent-stroke waveforms (smoothly rounded E and quiet dE/dt after initial peak) were radiated by old channels (illuminated by a previous stroke). Two double-ground waveforms (two distinct first-return-stroke pulses separated by tens of microseconds or less) coincided with video fields showing two new channels. One `anomalous-stroke' waveform (beginning like a first stroke and ending like a subsequent) was produced by a new channel segment to ground branching off an old channel. This waveform classification depends on the presence or absence of high-frequency fine structure. Fourier analysis shows that first-stroke waveforms contain about 18 dB more spectral power in the frequency interval from 500 kHz to at least 7 MHz than subsequent-stroke waveforms for at least 13 microseconds after the main peak.
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David OC.; Parker, Lindsay; Arduini, Robert F.
1989-01-01
Observations of cirrus and altocumulus clouds during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) are compared to theoretical models of cloud radiative properties. Three tests are performed. First, LANDSAT radiances are used to compare the relationship between nadir reflectance ot 0.83 micron and beam emittance at 11.5 microns with that predicted for model calculations using spherical and nonspherical phase functions. Good agreement is found between observations and theory when water droplets dominate. Poor agreement is found when ice particles dominate, especially using scattering phase functions for spherical particles. Even when compared to a laboratory measured ice particle phase function, the observations show increased side scattered radiation relative to the theoretical calculations. Second, the anisotropy of conservatively scattered radiation is examined using simultaneous multiple angle views of the cirrus from LANDSAT and ER-2 aircraft radiometers. Observed anisotropy gives good agreement with theoretical calculations using the laboratory measured ice particle phase function and poor agreement with a spherical particle phase function. Third, Landsat radiances at 0.83, 1.65, and 2.21 microns are used to infer particle phase and particle size. For water droplets, good agreement is found with King Air FSSP particle probe measurements in the cloud. For ice particles, the LANDSAT radiance observations predict an effective radius of 60 microns versus aircraft observations of about 200 microns. It is suggested that this descrepancy may be explained by uncertainty in the imaginary index of ice and by inadequate measurements of small ice particles by microphysical probes.
Davis, Andrew R.; Coleman, Daniel; Broad, Allison; Byrne, Maria; Dworjanyn, Symon A.; Przeslawski, Rachel
2013-01-01
Climate change and ocean acidification will expose marine organisms to synchronous multiple stressors, with early life stages being potentially most vulnerable to changing environmental conditions. We simultaneously exposed encapsulated molluscan embryos to three abiotic stressors—acidified conditions, elevated temperate, and solar UV radiation in large outdoor water tables in a multifactorial design. Solar UV radiation was modified with plastic filters, while levels of the other factors reflected IPCC predictions for near-future change. We quantified mortality and the rate of embryonic development for a mid-shore littorinid, Bembicium nanum, and low-shore opisthobranch, Dolabrifera brazieri. Outcomes were consistent for these model species with embryos faring significantly better at 26°C than 22°C. Mortality sharply increased at the lowest temperature (22°C) and lowest pH (7.6) examined, producing a significant interaction. Under these conditions mortality approached 100% for each species, representing a 2- to 4-fold increase in mortality relative to warm (26°C) non-acidified conditions. Predictably, development was more rapid at the highest temperature but this again interacted with acidified conditions. Development was slowed under acidified conditions at the lowest temperature. The presence of UV radiation had minimal impact on the outcomes, only slowing development for the littorinid and not interacting with the other factors. Our findings suggest that a warming ocean, at least to a threshold, may compensate for the effects of decreasing pH for some species. It also appears that stressors will interact in complex and unpredictable ways in a changing climate. PMID:23405238
Combined Space Environmental Exposure Tests of Multi-Junction GaAs/Ge Solar Array Coupons
NASA Technical Reports Server (NTRS)
Hoang, Bao; Wong, Frankie; Corey, Ron; Gardiner, George; Funderburk, Victor V.; Gahart, Richard; Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason
2010-01-01
A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The purpose of this test program is to understand the changes and degradation of the solar array panel components, including its ESD mitigation design features in their integrated form, after multiple years (up to 15) of simulated geosynchronous space environment. These tests consist of: UV radiation, electrostatic discharge (ESD), electron/proton particle radiation, thermal cycling, and ion thruster plume exposures. The solar radiation was produced using a Mercury-Xenon lamp with wavelengths in the UV spectrum ranging from 230 to 400 nm. The ESD test was performed in the inverted-gradient mode using a low-energy electron (2.6 - 6 keV) beam exposure. The ESD test also included a simulated panel coverglass flashover for the primary arc event. The electron/proton radiation exposure included both 1.0 MeV and 100 keV electron beams simultaneous with a 40 keV proton beam. The thermal cycling included simulated transient earth eclipse for satellites in geosynchronous orbit. With the increasing use of ion thruster engines on many satellites, the combined environmental test also included ion thruster exposure to determine whether solar array surface erosion had any impact on its performance. Before and after each increment of environmental exposures, the coupons underwent visual inspection under high power magnification and electrical tests that included characterization by LAPSS, Dark I-V, and electroluminescence. This paper discusses the test objective, test methodologies, and preliminary results after 5 years of simulated exposure.
2014-01-01
Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the ability to control multiple DOFs simultaneously, they choose to perform tasks that utilize multiple DOFs with simultaneous movements. Additionally, they were able to perform these tasks with higher performance (faster speed, lower length error and higher completion rates) without losing substantial performance in 1 DOF tasks. PMID:24410948
Multiple-Targeted Graphene-based Nanocarrier for Intracellular Imaging of mRNAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ying; Li, Zhaohui; Liu, Misha
Simultaneous detection and imaging of multiple intracellular messenger RNA (mRNAs) hold great significant for early cancer diagnostics and preventive medicine development. Herein, we propose a multiple-targeted graphene oxide (GO) nanocarrier that can simultaneously detect and image different type mRNAs in living cells. First of all, in vitro detection of multiple targets have been realized successfully based on the multiple-targeted GO nanocarrier with linear relationship ranging from 3 nM to 200 nM, as well as sensitive detection limit of 1.84 nM for manganese superoxide dismutase (Mn-SOD) mRNA and 2.45 nM for β-actin mRNA. Additionally, this nanosensing platform composed of fluorescent labeledmore » single strand DNA probes and GO nanocarrier can identify Mn-SOD mRNA and endogenous mRNA of β-actin in living cancer cells, showing rapid response, high specificity, nuclease stability, and good biocompatibility during the cell imaging. Thirdly, changes of the expression levels of mRNA in living cells before or after the drug treatment can be monitored successfully. By using multiple ssDNA as probes and GO nanocarrier as the cellular delivery cargo, the proposed simultaneous multiple-targeted sensing platform will be of great potential as a powerful tool for intracellular trafficking process from basic research to clinical diagnosis.« less
Multiple scattering of broadband terahertz pulses
NASA Astrophysics Data System (ADS)
Pearce, Jeremiah Glen
Propagation of single-cycle terahertz (THz) pulses through a random medium leads to dramatic amplitude and phase variations of the electric field because of multiple scattering. We present the first set of experiments that investigate the propagation of THz pulses through scattering media. The scattering of short pulses is a relevant subject to many communities in science and engineering, because the properties of multiply scattered or diffuse waves provide insights into the characteristics of the random medium. For example, the depolarization of diffuse waves has been used to form images of objects embedded in inhomogeneous media. Most of the previous scattering experiments have used narrowband optical radiation where measurements are limited to time averaged intensities or autocorrelation quantities, which contain no phase information of the pulses. In the experiments presented here, a terahertz time-domain spectrometer (THz-TDS) is used. A THz-TDS propagates single-cycle sub-picosecond pulses with bandwidths of over 1 THz into free space. The THz-TDS is a unique tool to study such phenomena, because it provides access to both the intensity and phase of those pulses through direct measurement of the temporal electric field. Because of the broad bandwidth and linear phase of the pulses, it is possible to simultaneously study Rayleigh scattering and the short wavelength limit in a single measurement. We study the diffusion of broadband single-cycle THz pulses by propagating the pulses through a highly scattering medium. Using the THz-TDS, time-domain measurements provide information on the statistics of both the amplitude and phase of the diffusive waves. We develop a theoretical description, suitable for broadband radiation, which accurately describes the experimental results. We measure the time evolution of the degree of polarization, and directly correlate it with the single-scattering regime in the time domain. Measurements of the evolution of the temporal phase of the radiation demonstrate that the average spectral content depends on the state of polarization. In the case of broadband radiation, this effect distinguishes photons that have been scattered only a few times from those that are propagating diffusively.
NASA Technical Reports Server (NTRS)
1974-01-01
Field measurements performed simultaneous with Skylab overpass in order to provide comparative calibration and performance evaluation measurements for the EREP sensors are presented. Wavelength region covered include: solar radiation (400 to 1300 nanometer), and thermal radiation (8 to 14 micrometer). Measurements consisted of general conditions and near surface meteorology, atmospheric temperature and humidity vs altitude, the thermal brightness temperature, total and diffuse solar radiation, direct solar radiation (subsequently analyzed for optical depth/transmittance), and target reflectivity/radiance. The particular instruments used are discussed along with analyses performed. Detailed instrument operation, calibrations, techniques, and errors are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokic, Vesna, E-mail: vesna.prokic@uniklinik-freiburg.de; Wiedenmann, Nicole; Fels, Franziska
2013-01-01
Purpose: To develop a new treatment planning strategy in patients with multiple brain metastases. The goal was to perform whole brain irradiation (WBI) with hippocampal sparing and dose escalation on multiple brain metastases. Two treatment concepts were investigated: simultaneously integrated boost (SIB) and WBI followed by stereotactic fractionated radiation therapy sequential concept (SC). Methods and Materials: Treatment plans for both concepts were calculated for 10 patients with 2-8 brain metastases using volumetric modulated arc therapy. In the SIB concept, the prescribed dose was 30 Gy in 12 fractions to the whole brain and 51 Gy in 12 fractions to individualmore » brain metastases. In the SC concept, the prescription was 30 Gy in 12 fractions to the whole brain followed by 18 Gy in 2 fractions to brain metastases. All plans were optimized for dose coverage of whole brain and lesions, simultaneously minimizing dose to the hippocampus. The treatment plans were evaluated on target coverage, homogeneity, and minimal dose to the hippocampus and organs at risk. Results: The SIB concept enabled more successful sparing of the hippocampus; the mean dose to the hippocampus was 7.55 {+-} 0.62 Gy and 6.29 {+-} 0.62 Gy, respectively, when 5-mm and 10-mm avoidance regions around the hippocampus were used, normalized to 2-Gy fractions. In the SC concept, the mean dose to hippocampus was 9.8 {+-} 1.75 Gy. The mean dose to the whole brain (excluding metastases) was 33.2 {+-} 0.7 Gy and 32.7 {+-} 0.96 Gy, respectively, in the SIB concept, for 5-mm and 10-mm hippocampus avoidance regions, and 37.23 {+-} 1.42 Gy in SC. Conclusions: Both concepts, SIB and SC, were able to achieve adequate whole brain coverage and radiosurgery-equivalent dose distributions to individual brain metastases. The SIB technique achieved better sparing of the hippocampus, especially when a10-mm hippocampal avoidance region was used.« less
THE ABSENCE OF RADIO EMISSION FROM THE GLOBULAR CLUSTER G1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller-Jones, J. C. A.; Wrobel, J. M.; Sivakoff, G. R.
2012-08-10
The detections of both X-ray and radio emission from the cluster G1 in M31 have provided strong support for existing dynamical evidence for an intermediate-mass black hole (IMBH) of mass (1.8 {+-} 0.5) Multiplication-Sign 10{sup 4} M{sub Sun} at the cluster center. However, given the relatively low significance and astrometric accuracy of the radio detection, and the non-simultaneity of the X-ray and radio measurements, this identification required further confirmation. Here we present deep, high angular resolution, strictly simultaneous X-ray and radio observations of G1. While the X-ray emission (L{sub X} = 1.74{sup +0.53}{sub -0.44} Multiplication-Sign 10{sup 36} (d/750 kpc){sup 2}more » erg s{sup -1} in the 0.5-10 keV band) remained fully consistent with previous observations, we detected no radio emission from the cluster center down to a 3{sigma} upper limit of 4.7 {mu}Jy beam{sup -1}. Our favored explanation for the previous radio detection is flaring activity from a black hole low-mass X-ray binary (LMXB). We performed a new regression of the 'Fundamental Plane' of black hole activity, valid for determining black hole mass from radio and X-ray observations of sub-Eddington black holes, finding log M{sub BH} = (1.638 {+-} 0.070)log L{sub R} - (1.136 {+-} 0.077)log L{sub X} - (6.863 {+-} 0.790), with an empirically determined uncertainty of 0.44 dex. This constrains the mass of the X-ray source in G1, if a black hole, to be <9.7 Multiplication-Sign 10{sup 3} M{sub Sun} at 95% confidence, suggesting that it is a persistent LMXB. This annuls what was previously the most convincing evidence from radiation for an IMBH in the Local Group, though the evidence for an IMBH in G1 from velocity dispersion measurements remains unaffected by these results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boutilier, Justin J., E-mail: j.boutilier@mail.utoronto.ca; Lee, Taewoo; Craig, Tim
Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and appliedmore » three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR weight prediction methodologies perform comparably to the LR model and can produce clinical quality treatment plans by simultaneously predicting multiple weights that capture trade-offs associated with sparing multiple OARs.« less
Two-dimensional tomographic terahertz imaging by homodyne self-mixing.
Mohr, Till; Breuer, Stefan; Giuliani, G; Elsäßer, Wolfgang
2015-10-19
We realize a compact two-dimensional tomographic terahertz imaging experiment involving only one photoconductive antenna (PCA) simultaneously serving as a transmitter and receiver of the terahertz radiation. A hollow-core Teflon cylinder filled with α-Lactose monohydrate powder is studied at two terahertz frequencies, far away and at a specific absorption line of the powder. This sample is placed between the antenna and a chopper wheel, which serves as back reflector of the terahertz radiation into the PCA. Amplitude and phase information of the continuous-wave (CW) terahertz radiation are extracted from the measured homodyne self-mixing (HSM) signal after interaction with the cylinder. The influence of refraction is studied by modeling the set-up utilizing ZEMAX and is discussed by means of the measured 1D projections. The tomographic reconstruction by using the Simultaneous Algebraic Reconstruction Technique (SART) allows to identify both object geometry and α-Lactose filling.
Sgarlata, Carmelo; Raymond, Kenneth N
2016-07-05
The entropic and enthalpic driving forces for encapsulation versus sequential exterior guest binding to the [Ga4L6](12-) supramolecular host in solution are very different, which significantly complicates the determination of these thermodynamic parameters. The simultaneous use of complementary techniques, such as NMR, UV-vis, and isothermal titration calorimetry, enables the disentanglement of such multiple host-guest interactions. Indeed, data collected by each technique measure different components of the host-guest equilibria and together provide a complete picture of the solution thermodynamics. Unfortunately, commercially available programs do not allow for global analysis of different physical observables. We thus resorted to a novel procedure for the simultaneous refinement of multiple parameters (ΔG°, ΔH°, and ΔS°) by treating different observables through a weighted nonlinear least-squares analysis of a constrained model. The refinement procedure is discussed for the multiple binding of the Et4N(+) guest, but it is broadly applicable to the deconvolution of other intricate host-guest equilibria.
Zhong, Yan; Xu, Xiao-Quan; Pan, Xiang-Long; Zhang, Wei; Xu, Hai; Yuan, Mei; Kong, Ling-Yan; Pu, Xue-Hui; Chen, Liang; Yu, Tong-Fu
2017-09-01
To evaluate the safety and efficacy of the hook wire system in the simultaneous localizations for multiple pulmonary nodules (PNs) before video-assisted thoracoscopic surgery (VATS), and to clarify the risk factors for pneumothorax associated with the localization procedure. Between January 2010 and February 2016, 67 patients (147 nodules, Group A) underwent simultaneous localizations for multiple PNs using a hook wire system. The demographic, localization procedure-related information and the occurrence rate of pneumothorax were assessed and compared with a control group (349 patients, 349 nodules, Group B). Multivariate logistic regression analyses were used to determine the risk factors for pneumothorax during the localization procedure. All the 147 nodules were successfully localized. Four (2.7%) hook wires dislodged before VATS procedure, but all these four lesions were successfully resected according to the insertion route of hook wire. Pathological diagnoses were acquired for all 147 nodules. Compared with Group B, Group A demonstrated significantly longer procedure time (p < 0.001) and higher occurrence rate of pneumothorax (p = 0.019). Multivariate logistic regression analysis indicated that position change during localization procedure (OR 2.675, p = 0.021) and the nodules located in the ipsilateral lung (OR 9.404, p < 0.001) were independent risk factors for pneumothorax. Simultaneous localizations for multiple PNs using a hook wire system before VATS procedure were safe and effective. Compared with localization for single PN, simultaneous localizations for multiple PNs were prone to the occurrence of pneumothorax. Position change during localization procedure and the nodules located in the ipsilateral lung were independent risk factors for pneumothorax.
Three-dimensional, position-sensitive radiation detection
He, Zhong; Zhang, Feng
2010-04-06
Disclosed herein is a method of determining a characteristic of radiation detected by a radiation detector via a multiple-pixel event having a plurality of radiation interactions. The method includes determining a cathode-to-anode signal ratio for a selected interaction of the plurality of radiation interactions based on electron drift time data for the selected interaction, and determining the radiation characteristic for the multiple-pixel event based on both the cathode-to-anode signal ratio and the electron drift time data. In some embodiments, the method further includes determining a correction factor for the radiation characteristic based on an interaction depth of the plurality of radiation interactions, a lateral distance between the selected interaction and a further interaction of the plurality of radiation interactions, and the lateral positioning of the plurality of radiation interactions.
NASA Technical Reports Server (NTRS)
1974-01-01
Field measurements performed simultaneously with Skylab overpasses in order to provide comparative calibration and performance evaluation measurements for the EREP sensors are presented. The solar radiation region from 400 to 1300 nanometers and the thermal radiation region from 8 to 14 micrometer region were investigated. The measurements of direct solar radiation were analyzed for atmospheric optical depth; the total and reflected solar radiation were analyzed for target reflectivity. These analyses were used in conjunction with a radiative transfer computer program in order to calculate the amount and spectral distribution of solar radiation at the apertures of the EREP sensors. The instrumentation and techniques employed, calibrations and analyses performed, and results obtained are discussed.
Development of a real-time radon monitoring system for simultaneous measurements in multiple sites
NASA Astrophysics Data System (ADS)
Yamamoto, S.; Yamasoto, K.; Iida, T.
1999-12-01
A real-time radon monitoring system that can simultaneously measure radon concentrations in multiple sites was developed and tested. The system consists of maximum of four radon detectors, optical fiber cables and a data acquisition personal computer. The radon detector uses a plastic scintillation counter that collects radon daughters in the chamber electrostatically. The applied voltage on the photocathode for the photomultiplier tube (PMT) acts as an electrode for radon daughters. The thickness of the plastic scintillator was thin, 50 /spl mu/m, so as to minimize the background counts due to the environmental gamma rays or beta particles. The energy discriminated signals from the radon detectors are fed to the data acquisition personal computer via optical fiber cables. The system made it possible to measure the radon concentrations in multiple sites simultaneously.
Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei
2016-08-16
The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.
Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang
2017-01-23
Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation.
Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang
2017-01-01
Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation. PMID:28112234
Jia, Dan; Koonce, Nathan A.; Halakatti, Roopa; Li, Xin; Yaccoby, Shmuel; Swain, Frances L.; Suva, Larry J.; Hennings, Leah; Berridge, Marc S.; Apana, Scott M.; Mayo, Kevin; Corry, Peter M.; Griffin, Robert J.
2011-01-01
The effects of ionizing radiation, with or without the antiangiogenic agent anginex (Ax), on multiple myeloma growth were tested in a SCID-rab mouse model. Mice carrying human multiple myeloma cell-containing pre-implanted bone grafts were treated weekly with various regimens for 8 weeks. Rapid multiple myeloma growth, assessed by bioluminescence intensity (IVIS), human lambda Ig light chain level in serum (ELISA), and the volume of bone grafts (caliper), was observed in untreated mice. Tumor burden in mice receiving combined therapy was reduced to 59% (by caliper), 43% (by ELISA), and 2% (by IVIS) of baseline values after 8 weeks of treatment. Ax or radiation alone slowed but did not stop tumor growth. Four weeks after the withdrawal of the treatments, tumor burden remained minimal in mice given Ax + radiation but increased noticeably in the other three groups. Multiple myeloma suppression by Ax + radiation was accompanied by a marked decrease in the number and activity of osteoclasts in bone grafts assessed by histology. Bone graft integrity was preserved by Ax + radiation but was lost in the other three groups, as assessed by microCT imaging and radiography. These results suggest that radiotherapy, when primed by anti-angiogenic agents, may be a potent therapy for focal multiple myeloma. PMID:20518660
Tobin, Jr., Kenneth W.; Bingham, Philip R.; Hawari, Ayman I.
2012-11-06
An imaging system employing a coded aperture mask having multiple pinholes is provided. The coded aperture mask is placed at a radiation source to pass the radiation through. The radiation impinges on, and passes through an object, which alters the radiation by absorption and/or scattering. Upon passing through the object, the radiation is detected at a detector plane to form an encoded image, which includes information on the absorption and/or scattering caused by the material and structural attributes of the object. The encoded image is decoded to provide a reconstructed image of the object. Because the coded aperture mask includes multiple pinholes, the radiation intensity is greater than a comparable system employing a single pinhole, thereby enabling a higher resolution. Further, the decoding of the encoded image can be performed to generate multiple images of the object at different distances from the detector plane. Methods and programs for operating the imaging system are also disclosed.
Miniature Loop Heat Pipe (MLHP) Thermal Management System
NASA Technical Reports Server (NTRS)
Ku, Jentung
2004-01-01
The MLHP Thermal Management System consists of a loop heat pipe (LHP) with multiple evaporators and condensers, thermal electrical coolers, and deployable radiators coated with variable emittance coatings (VECs). All components are miniaturized. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, versatility, and reliability of the system, including flexible locations of instruments and radiators, a single interface temperature for multiple instruments, cooling the on instruments and warming the off instruments simultaneously, improving. start-up success, maintaining a constant LHP operating temperature over a wide range of instrument powers, effecting automatic thermal switching and thermal diode actions, and reducing supplemental heater powers. It can fully achieve low mass, low power and compactness necessary for future small spacecraft. Potential applications of the MLHP thermal technology for future missions include: 1) Magnetospheric Constellation; 2) Solar Sentinels; 3) Mars Science Laboratory; 4) Mars Scouts; 5) Mars Telecom Orbiter; 6) Space Interferometry Mission; 7) Laser Interferometer Space Antenna; 8) Jupiter Icy Moon Orbiter; 9) Terrestrial Planet Finder; 10) Single Aperture Far-Infrared Observatory, and 11) Exploration Missions. The MLHP Thermal Management System combines the operating features of a variable conductance heat pipe, a thermal switch, a thermal diode, and a state-of-the-art LHP into a single integrated thermal system. It offers many advantages over conventional thermal control techniques, and can be a technology enabler for future space missions. Successful flight validation will bring the benefits of MLHP technology to the small satellite arena and will have cross-cutting applications to both Space Science and Earth Science Enterprises.
Solar radiation for Mars power systems
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Landis, Geoffrey A.
1991-01-01
Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.
1989-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. Presented here is a procedure and solar radiation related data from which the diurnally, hourly and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.
1990-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. Presented here is a procedure and solar radiation related data from which the diurnally, hourly and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.
Huang, Lin; Zheng, Lei; Chen, Yinji; Xue, Feng; Cheng, Lin; Adeloju, Samuel B; Chen, Wei
2015-04-15
Since the introduction of genetically modified organisms (GMOs), there has been on-going and continuous concern and debates on the commercialization of products derived from GMOs. There is an urgent need for development of highly efficient analytical methods for rapid and high throughput screening of GMOs components, as required for appropriate labeling of GMO-derived foods, as well as for on-site inspection and import/export quarantine. In this study, we describe, for the first time, a multi-labeling based electrochemical biosensor for simultaneous detection of multiple DNA components of GMO products on the same sensing interface. Two-round signal amplification was applied by using both an exonuclease enzyme catalytic reaction and gold nanoparticle-based bio-barcode related strategies, respectively. Simultaneous multiple detections of different DNA components of GMOs were successfully achieved with satisfied sensitivity using this electrochemical biosensor. Furthermore, the robustness and effectiveness of the proposed approach was successfully demonstrated by application to various GMO products, including locally obtained and confirmed commercial GMO seeds and transgenetic plants. The proposed electrochemical biosensor demonstrated unique merits that promise to gain more interest in its use for rapid and on-site simultaneous multiple screening of different components of GMO products. Copyright © 2014 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The energy transport in a vegetated (corn) surface layer is examined by solving the vector radiative transfer equation using a numerical iterative approach. This approach allows a higher order that includes the multiple scattering effects. Multiple scattering effects are important when the optical t...
Harmonic motion detection in a vibrating scattering medium.
Urban, Matthew W; Chen, Shigao; Greenleaf, James
2008-09-01
Elasticity imaging is an emerging medical imaging modality that seeks to map the spatial distribution of tissue stiffness. Ultrasound radiation force excitation and motion tracking using pulse-echo ultrasound have been used in numerous methods. Dynamic radiation force is used in vibrometry to cause an object or tissue to vibrate, and the vibration amplitude and phase can be measured with exceptional accuracy. This paper presents a model that simulates harmonic motion detection in a vibrating scattering medium incorporating 3-D beam shapes for radiation force excitation and motion tracking. A parameterized analysis using this model provides a platform to optimize motion detection for vibrometry applications in tissue. An experimental method that produces a multifrequency radiation force is also presented. Experimental harmonic motion detection of simultaneous multifrequency vibration is demonstrated using a single transducer. This method can accurately detect motion with displacement amplitude as low as 100 to 200 nm in bovine muscle. Vibration phase can be measured within 10 degrees or less. The experimental results validate the conclusions observed from the model and show multifrequency vibration induction and measurements can be performed simultaneously.
Harmonic Motion Detection in a Vibrating Scattering Medium
Urban, Matthew W.; Chen, Shigao; Greenleaf, James F.
2008-01-01
Elasticity imaging is an emerging medical imaging modality that seeks to map the spatial distribution of tissue stiffness. Ultrasound radiation force excitation and motion tracking using pulse-echo ultrasound have been used in numerous methods. Dynamic radiation force is used in vibrometry to cause an object or tissue to vibrate, and the vibration amplitude and phase can be measured with exceptional accuracy. This paper presents a model that simulates harmonic motion detection in a vibrating scattering medium incorporating 3-D beam shapes for radiation force excitation and motion tracking. A parameterized analysis using this model provides a platform to optimize motion detection for vibrometry applications in tissue. An experimental method that produces a multifrequency radiation force is also presented. Experimental harmonic motion detection of simultaneous multifrequency vibration is demonstrated using a single transducer. This method can accurately detect motion with displacement amplitude as low as 100 to 200 nm in bovine muscle. Vibration phase can be measured within 10° or less. The experimental results validate the conclusions observed from the model and show multifrequency vibration induction and measurements can be performed simultaneously. PMID:18986892
Testing of gallium arsenide solar cells on the CRRES vehicle
NASA Technical Reports Server (NTRS)
Trumble, T. M.
1985-01-01
A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage.
Electromagnetic field radiation model for lightning strokes to tall structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motoyama, H.; Janischewskyj, W.; Hussein, A.M.
1996-07-01
This paper describes observation and analysis of electromagnetic field radiation from lightning strokes to tall structures. Electromagnetic field waveforms and current waveforms of lightning strokes to the CN Tower have been simultaneously measured since 1991. A new calculation model of electromagnetic field radiation is proposed. The proposed model consists of the lightning current propagation and distribution model and the electromagnetic field radiation model. Electromagnetic fields calculated by the proposed model, based on the observed lightning current at the CN Tower, agree well with the observed fields at 2km north of the tower.
Establishing versus preserving impressions: Predicting success in the multiple audience problem.
Nichols, Austin Lee; Cottrell, Catherine A
2015-12-01
People sometimes seek to convey discrepant impressions of themselves to different audiences simultaneously. Research suggests people are generally successful in this "multiple audience problem." Adding to previous research, the current research sought to examine factors that may limit this success by measuring social anxiety and placing participants into situations requiring them to either establish or preserve multiple impressions simultaneously. In general, participants were more successful when preserving previously conveyed impressions than when establishing impressions for the first time. In contrast, social anxiety did not affect multiple audience success. In all, this research offers valuable insight into potential challenges that people face in many social situations. © 2015 International Union of Psychological Science.
Qu, Jingwen; Silva, Emilson Caputo Delfino
2015-03-15
We study the effects of environmental policy commitments in a futuristic world in which solar radiation management (SRM) can be utilized to reduce climate change damages. Carbon and sulfur dioxide emissions (correlated pollutants) can be reduced through tradable permits. We show that if nations simultaneously commit to carbon permit policies, national SRM levels rise with carbon quotas. Alternatively, if they simultaneously commit to SRM policies, the global temperature falls with each unit increase in the global SRM level. A nation always wishes to be a leader in policymaking, but prefers carbon to SRM policymaking. The globe prefers SRM policy commitments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Imaging performance of a dedicated radiation transparent RF coil on a 1.0 Tesla inline MRI-linac.
Liney, Gary P; Dong, Bin; Weber, Ewald; Rai, Robba; Destruel, Aurelien; Garcia-Alvarez, Roberto; Manton, David; Jelen, Urszula; Zhang, Kevin; Barton, Michael; Keall, Paul J; Crozier, Stuart
2018-05-25
This work describes the first imaging studies on a 1.0 Tesla inline MRI-Linac using a dedicated transmit/receive RF body coil that has been designed to be completely radio transparent and provide optimum imaging performance over a large patient opening. Methods: A series of experiments was performed on the MRI-Linac to investigate the performance and imaging characteristics of a new dedicated volumetric RF coil: (1) numerical electromagnetic simulations were used to measure transmit efficiency in two patient positions; (2) image quality metrics of signal-to-noise ratio (SNR), ghosting and uniformity were assessed in a large diameter phantom with no radiation beam; (3) radiation induced effects were investigated in both the raw data (k-space) and image sequences acquired with simultaneous irradiation; (4) radiation dose was measured with and without image acquisition; (5) RF heating was studied using an MR-compatible fluoroptic thermometer and; (6) the in vivo image quality and versatility of the coil was demonstrated in normal healthy subjects for both supine and standing positions. Results: Daily phantom measurements demonstrated excellent imaging performance with stable SNR over a period of 3 months (42.6 ± 0.9). Simultaneous irradiation produced no statistical change in image quality (p>0.74) and no interference in raw data for a 20 20 cm radiation field. The coil was found to be efficient over large volumes and negligible RF heating was observed. Volunteer scans acquired in both supine and standing positions provided artefact free images with good anatomical visualisation. Conclusions: The first completely radio transparent RF coil for use on a 1.0 Tesla MRI-Linac has been described. There is no impact on either the imaging or dosimetry performance with a simultaneous radiation beam. The open design enables imaging and radiotherapy guidance in a variety of positons. . © 2018 Institute of Physics and Engineering in Medicine.
Multiple feature extraction by using simultaneous wavelet transforms
NASA Astrophysics Data System (ADS)
Mazzaferri, Javier; Ledesma, Silvia; Iemmi, Claudio
2003-07-01
We propose here a method to optically perform multiple feature extraction by using wavelet transforms. The method is based on obtaining the optical correlation by means of a Vander Lugt architecture, where the scene and the filter are displayed on spatial light modulators (SLMs). Multiple phase filters containing the information about the features that we are interested in extracting are designed and then displayed on an SLM working in phase mostly mode. We have designed filters to simultaneously detect edges and corners or different characteristic frequencies contained in the input scene. Simulated and experimental results are shown.
Wafer hotspot prevention using etch aware OPC correction
NASA Astrophysics Data System (ADS)
Hamouda, Ayman; Power, Dave; Salama, Mohamed; Chen, Ao
2016-03-01
As technology development advances into deep-sub-wavelength nodes, multiple patterning is becoming more essential to achieve the technology shrink requirements. Recently, Optical Proximity Correction (OPC) technology has proposed simultaneous correction of multiple mask-patterns to enable multiple patterning awareness during OPC correction. This is essential to prevent inter-layer hot-spots during the final pattern transfer. In state-of-art literature, multi-layer awareness is achieved using simultaneous resist-contour simulations to predict and correct for hot-spots during mask generation. However, this approach assumes a uniform etch shrink response for all patterns independent of their proximity, which isn't sufficient for the full prevention of inter-exposure hot-spot, for example different color space violations post etch or via coverage/enclosure post etch. In this paper, we explain the need to include the etch component during multiple patterning OPC. We also introduce a novel approach for Etch-aware simultaneous Multiple-patterning OPC, where we calibrate and verify a lumped model that includes the combined resist and etch responses. Adding this extra simulation condition during OPC is suitable for full chip processing from a computation intensity point of view. Also, using this model during OPC to predict and correct inter-exposures hot-spots is similar to previously proposed multiple-patterning OPC, yet our proposed approach more accurately corrects post-etch defects too.
Information extraction during simultaneous motion processing.
Rideaux, Reuben; Edwards, Mark
2014-02-01
When confronted with multiple moving objects the visual system can process them in two stages: an initial stage in which a limited number of signals are processed in parallel (i.e. simultaneously) followed by a sequential stage. We previously demonstrated that during the simultaneous stage, observers could discriminate between presentations containing up to 5 vs. 6 spatially localized motion signals (Edwards & Rideaux, 2013). Here we investigate what information is actually extracted during the simultaneous stage and whether the simultaneous limit varies with the detail of information extracted. This was achieved by measuring the ability of observers to extract varied information from low detail, i.e. the number of signals presented, to high detail, i.e. the actual directions present and the direction of a specific element, during the simultaneous stage. The results indicate that the resolution of simultaneous processing varies as a function of the information which is extracted, i.e. as the information extraction becomes more detailed, from the number of moving elements to the direction of a specific element, the capacity to process multiple signals is reduced. Thus, when assigning a capacity to simultaneous motion processing, this must be qualified by designating the degree of information extraction. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamel, M. C.; Polack, J. K.; Poitrasson-Rivière, A.; Clarke, S. D.; Pozzi, S. A.
2017-01-01
In this work we present a technique for isolating the gamma-ray and neutron energy spectra from multiple radioactive sources localized in an image. Image reconstruction algorithms for radiation scatter cameras typically focus on improving image quality. However, with scatter cameras being developed for non-proliferation applications, there is a need for not only source localization but also source identification. This work outlines a modified stochastic origin ensembles algorithm that provides localized spectra for all pixels in the image. We demonstrated the technique by performing three experiments with a dual-particle imager that measured various gamma-ray and neutron sources simultaneously. We showed that we could isolate the peaks from 22Na and 137Cs and that the energy resolution is maintained in the isolated spectra. To evaluate the spectral isolation of neutrons, a 252Cf source and a PuBe source were measured simultaneously and the reconstruction showed that the isolated PuBe spectrum had a higher average energy and a greater fraction of neutrons at higher energies than the 252Cf. Finally, spectrum isolation was used for an experiment with weapons grade plutonium, 252Cf, and AmBe. The resulting neutron and gamma-ray spectra showed the expected characteristics that could then be used to identify the sources.
NASA Astrophysics Data System (ADS)
Coe, P. A.; Howell, D. F.; Nickerson, R. B.
2004-11-01
ATLAS is the largest particle detector under construction at CERN Geneva. Frequency scanning interferometry (FSI), also known as absolute distance interferometry, will be used to monitor shape changes of the SCT (semiconductor tracker), a particle tracker in the inaccessible, high radiation environment at the centre of ATLAS. Geodetic grids with several hundred fibre-coupled interferometers (30 mm to 1.5 m long) will be measured simultaneously. These lengths will be measured by tuning two lasers and comparing the resulting phase shifts in grid line interferometers (GLIs) with phase shifts in a reference interferometer. The novel inexpensive GLI design uses diverging beams to reduce sensitivity to misalignment, albeit with weaker signals. One micrometre precision length measurements of grid lines will allow 10 µm precision tracker shape corrections to be fed into ATLAS particle tracking analysis. The technique was demonstrated by measuring a 400 mm interferometer to better than 400 nm and a 1195 mm interferometer to better than 250 nm. Precise measurements were possible, even with poor quality signals, using numerical analysis of thousands of intensity samples. Errors due to drifts in interferometer length were substantially reduced using two lasers tuned in opposite directions and the precision was further improved by linking measurements made at widely separated laser frequencies.
NASA Astrophysics Data System (ADS)
Meyer, K.; Platnick, S. E.; Zhang, Z.
2013-12-01
Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer (MBL) clouds over the southeastern Atlantic Ocean, which underlie a near-persistent smoke layer produced from extensive biomass burning throughout the southern African savanna during austral winter. The absorption of the above-cloud smoke layer, which increases with decreasing wavelength, can introduce biases into the standard MODIS cloud optical and microphysical property retrievals of the underlying MBL clouds. This effect is more pronounced in the cloud optical thickness retrievals, which over ocean are derived from the wavelength channel centered near 0.86 μm (effective particle size retrievals are derived from the short and mid-wave IR channels at 1.6, 2.1, and 3.7 μm). Here, a new method is introduced to simultaneously retrieve the above-cloud smoke aerosol optical depth (AOD) and the unbiased cloud optical thickness (COT) and effective radius (CER) using multiple MODIS spectral channels in the visible and near- and shortwave-infrared. Preliminary retrieval results are shown, as are comparisons with other A-Train sensors.
Statistical technique for analysing functional connectivity of multiple spike trains.
Masud, Mohammad Shahed; Borisyuk, Roman
2011-03-15
A new statistical technique, the Cox method, used for analysing functional connectivity of simultaneously recorded multiple spike trains is presented. This method is based on the theory of modulated renewal processes and it estimates a vector of influence strengths from multiple spike trains (called reference trains) to the selected (target) spike train. Selecting another target spike train and repeating the calculation of the influence strengths from the reference spike trains enables researchers to find all functional connections among multiple spike trains. In order to study functional connectivity an "influence function" is identified. This function recognises the specificity of neuronal interactions and reflects the dynamics of postsynaptic potential. In comparison to existing techniques, the Cox method has the following advantages: it does not use bins (binless method); it is applicable to cases where the sample size is small; it is sufficiently sensitive such that it estimates weak influences; it supports the simultaneous analysis of multiple influences; it is able to identify a correct connectivity scheme in difficult cases of "common source" or "indirect" connectivity. The Cox method has been thoroughly tested using multiple sets of data generated by the neural network model of the leaky integrate and fire neurons with a prescribed architecture of connections. The results suggest that this method is highly successful for analysing functional connectivity of simultaneously recorded multiple spike trains. Copyright © 2011 Elsevier B.V. All rights reserved.
Analgesic effect of simultaneous exposure to infrared laser radiation and μT magnetic field in rats
NASA Astrophysics Data System (ADS)
Cieslar, Grzegorz; Mrowiec, Janina; Kasperczyk, Slawomir; Sieron-Stoltny, Karolina; Sieron, Aleksander
2008-03-01
The aim of the experiment was to estimate the effect of repeated simultaneous exposures to infrared laser radiation and μT variable magnetic field used in magnetostimulation on pain perception in rats, as well as the involvement of endogenous opioid system in the mechanism of this effect. In experimental group clean-shaven scull of male Wistar rats placed individually in a specially designed plastic chamber were simultaneously exposed to infrared laser radiation (wavelength - 855 nm, mean power - 4,1 mW, energy density - 30 J/cm2) and variable magnetic field of saw-like shape of impulse, at a frequency of basic impulse 180-195 Hz and mean induction value of 120 μT generated by magneto-laser applicator of device for magnetostimulation Viofor JPS (Med & Life, Poland) 12 minutes daily for 2 periods of 5 consecutive days, with 2 days-lasting break between them, while control animals were sham-exposed. The pain perception was determined by means of "hot plate" test on the basis of calculated analgesic index. As a result of repeated exposures a significant increase in analgesic index persisting also till 14 th day after the end of a cycle of exposures was observed. This analgesic effect was inhibited by prior i.p. injection of opioid antagonist - Naloxone.
X-ray ptychographic and fluorescence microscopy of frozen-hydrated cells using continuous scanning
Deng, Junjing; Vine, David J.; Chen, Si; ...
2017-03-27
X-ray microscopy can be used to image whole, unsectioned cells in their native hydrated state. It complements the higher resolution of electron microscopy for submicrometer thick specimens, and the molecule-specific imaging capabilites of fluorescence light microscopy. We describe here the first use of fast, continuous x-ray scanning of frozen hydrated cells for simultaneous sub-20 nm resolution ptychographic transmission imaging with high contrast, and sub-100 nm resolution deconvolved x-ray fluorescence imaging of diffusible and bound ions at native concentrations, without the need to add specific labels. Here, by working with cells that have been rapidly frozen without the use of chemicalmore » fixatives, and imaging them under cryogenic conditions, we are able to obtain images with well preserved structural and chemical composition, and sufficient stability against radiation damage to allow for multiple images to be obtained with no observable change.« less
Filterscope diagnostic system on the Experimental Advanced Superconducting Tokamak (EAST)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Z.; Wu, C. R.; Yao, X. J.
2016-11-15
A filterscope diagnostic system has been mounted to observe the line emission and visible bremsstrahlung emission from plasma on the experimental advanced superconducting tokamak during the 2014 campaign. By this diagnostic system, multiple wavelengths including D{sub α} (656.1 nm), D{sub γ} (433.9 nm), He II (468.5 nm), Li I (670.8 nm), Li II (548.3 nm), C III (465.0 nm), O II (441.5 nm), Mo I (386.4 nm), W I (400.9 nm), and visible bremsstrahlung radiation (538.0 nm) are monitored with corresponding wavelength filters. All these multi-channel signals are digitized at up to 200 kHz simultaneously. This diagnostic plays a crucialmore » role in studying edge localized modes and H-mode plasmas, due to the high temporal resolution and spatial resolution that have been designed into it.« less
Resolving Rapid Variation in Energy for Particle Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haut, Terry Scot; Ahrens, Cory Douglas; Jonko, Alexandra
2016-08-23
Resolving the rapid variation in energy in neutron and thermal radiation transport is needed for the predictive simulation capability in high-energy density physics applications. Energy variation is difficult to resolve due to rapid variations in cross sections and opacities caused by quantized energy levels in the nuclei and electron clouds. In recent work, we have developed a new technique to simultaneously capture slow and rapid variations in the opacities and the solution using homogenization theory, which is similar to multiband (MB) and to the finite-element with discontiguous support (FEDS) method, but does not require closure information. We demonstrated the accuracymore » and efficiency of the method for a variety of problems. We are researching how to extend the method to problems with multiple materials and the same material but with different temperatures and densities. In this highlight, we briefly describe homogenization theory and some results.« less
Optodynamic monitoring of laser tattoo removal.
Cencič, Boris; Grad, Ladislav; Možina, Janez; Jezeršek, Matija
2012-04-01
The goal of this research is to use the information contained in the mechanisms occurring during the laser tattoo removal process. We simultaneously employed a laser-beam deflection probe (LBDP) to measure the shock wave and a camera to detect the plasma radiation, both originating from a high-intensity laser-pulse interaction with a tattoo. The experiments were performed in vitro (skin phantoms), ex vivo (marking tattoos on pig skin), and in vivo (professional and amateur decorative tattoos). The LBDP signal includes the information about the energy released during the interaction and indicates textural changes in the skin, which are specific for different skin and tattoo conditions. Using both sensors, we evaluated a measurement of threshold for skin damage and studied the effect of multiple pulses. In vivo results show that a prepulse reduces the interaction strength and that a single strong pulse produces better removal results.
On the Geometry of the X-Ray Emission from Pulsars. I. Model Formulation and Tests
NASA Astrophysics Data System (ADS)
Cappallo, Rigel; Laycock, Silas G. T.; Christodoulou, Dimitris M.
2017-12-01
X-ray pulsars are complex magnetized astronomical objects in which many different attributes shape the pulse profiles of the emitted radiation. For each pulsar, the orientation of the spin axis relative to our viewing angle, the inclination of the magnetic dipole axis relative to the spin axis, and the geometries of the emission regions all play key roles in producing its unique pulse profile. In this paper, we describe in detail a new geometric computer model for X-ray emitting pulsars and the tests that we carried out in order to ensure its proper operation. This model allows for simultaneous tuning of multiple parameters for each pulsar and, by fitting observed profiles, it has the potential to determine the underlying geometries of many pulsars whose pulse profiles have been cataloged and made public in modern X-ray databases.
Software defined photon counting system for time resolved x-ray experiments.
Acremann, Y; Chembrolu, V; Strachan, J P; Tyliszczak, T; Stöhr, J
2007-01-01
The time structure of synchrotron radiation allows time resolved experiments with sub-100 ps temporal resolution using a pump-probe approach. However, the relaxation time of the samples may require a lower repetition rate of the pump pulse compared to the full repetition rate of the x-ray pulses from the synchrotron. The use of only the x-ray pulse immediately following the pump pulse is not efficient and often requires special operation modes where only a few buckets of the storage ring are filled. We designed a novel software defined photon counting system that allows to implement a variety of pump-probe schemes at the full repetition rate. The high number of photon counters allows to detect the response of the sample at multiple time delays simultaneously, thus improving the efficiency of the experiment. The system has been successfully applied to time resolved scanning transmission x-ray microscopy. However, this technique is applicable more generally.
Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.
A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (T e, n Z, ΔZ eff, and n e,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well asmore » transient levels of metal contributions. As a result, this technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.« less
Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)
Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.; ...
2016-11-14
A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (T e, n Z, ΔZ eff, and n e,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well asmore » transient levels of metal contributions. As a result, this technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.« less
System for phase-contrast x-ray radiography using X pinch radiation and a method thereof
Chandler, Katherine; Chelkovenko, Tatiana; Hammer, David; Pikuz, Sergei; Sinars, Daniel; Song, Byungmoo
2007-11-06
A radiograph system with an anode plate, a cathode plate, and a power source coupled to said anode plate and the cathode plate. At least two wires coupled between the anode plate and the cathode plate provide a configuration to form an X-pinch having a photon source size of less than five microns at energies above 2.5 keV. Material at the configuration forming the X-pinch vaporizes upon application of a suitable current to the wires forming a dense hot plasma and emitting a single x-ray pulse with sufficient photons having energies in the range of from about 2.5 keV to about 20 keV to provide a phase contrast image of an object in the path of the photons. Multiple simultaneous images may be formed of a plurality of objects. Suitable filters and x-ray detectors are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shera, E.B.; Casper, K.J.
>A technique is described which allows the angular correlations of several radiations, each in cascade with one common gamma ray, to be determined simultaneously through the use of a multichannel analyzer. Normalization is provided by simultaneously recording both the singles and coincidence spectra using the subgrouping facilities of the analyzer. A subgroup programmer has been constructed which provides this capability while maintaining identical calibration for the two spectra. (auth)
New nonlinear control algorithms for multiple robot arms
NASA Technical Reports Server (NTRS)
Tarn, T. J.; Bejczy, A. K.; Yun, X.
1988-01-01
Multiple coordinated robot arms are modeled by considering the arms as closed kinematic chains and as a force-constrained mechanical system working on the same object simultaneously. In both formulations, a novel dynamic control method is discussed. It is based on feedback linearization and simultaneous output decoupling technique. By applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, it was found that by choosing a general output equation it became possible simultaneously to superimpose the position and velocity error feedback with the force-torque error feedback in the task space.
Anderson, Christian E; Donnola, Shannon B; Jiang, Yun; Batesole, Joshua; Darrah, Rebecca; Drumm, Mitchell L; Brady-Kalnay, Susann M; Steinmetz, Nicole F; Yu, Xin; Griswold, Mark A; Flask, Chris A
2017-08-16
Injectable Magnetic Resonance Imaging (MRI) contrast agents have been widely used to provide critical assessments of disease for both clinical and basic science imaging research studies. The scope of available MRI contrast agents has expanded over the years with the emergence of molecular imaging contrast agents specifically targeted to biological markers. Unfortunately, synergistic application of more than a single molecular contrast agent has been limited by MRI's ability to only dynamically measure a single agent at a time. In this study, a new Dual Contrast - Magnetic Resonance Fingerprinting (DC - MRF) methodology is described that can detect and independently quantify the local concentration of multiple MRI contrast agents following simultaneous administration. This "multi-color" MRI methodology provides the opportunity to monitor multiple molecular species simultaneously and provides a practical, quantitative imaging framework for the eventual clinical translation of molecular imaging contrast agents.
NASA Astrophysics Data System (ADS)
Sierra, Carlos A.; Trumbore, Susan E.; Davidson, Eric A.; Vicca, Sara; Janssens, I.
2015-03-01
The sensitivity of soil organic matter decomposition to global environmental change is a topic of prominent relevance for the global carbon cycle. Decomposition depends on multiple factors that are being altered simultaneously as a result of global environmental change; therefore, it is important to study the sensitivity of the rates of soil organic matter decomposition with respect to multiple and interacting drivers. In this manuscript, we present an analysis of the potential response of decomposition rates to simultaneous changes in temperature and moisture. To address this problem, we first present a theoretical framework to study the sensitivity of soil organic matter decomposition when multiple driving factors change simultaneously. We then apply this framework to models and data at different levels of abstraction: (1) to a mechanistic model that addresses the limitation of enzyme activity by simultaneous effects of temperature and soil water content, the latter controlling substrate supply and oxygen concentration for microbial activity; (2) to different mathematical functions used to represent temperature and moisture effects on decomposition in biogeochemical models. To contrast model predictions at these two levels of organization, we compiled different data sets of observed responses in field and laboratory studies. Then we applied our conceptual framework to: (3) observations of heterotrophic respiration at the ecosystem level; (4) laboratory experiments looking at the response of heterotrophic respiration to independent changes in moisture and temperature; and (5) ecosystem-level experiments manipulating soil temperature and water content simultaneously.
Charge multiplication effect in thin diamond films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skukan, N., E-mail: nskukan@irb.hr; Grilj, V.; Sudić, I.
2016-07-25
Herein, we report on the enhanced sensitivity for the detection of charged particles in single crystal chemical vapour deposition (scCVD) diamond radiation detectors. The experimental results demonstrate charge multiplication in thin planar diamond membrane detectors, upon impact of 18 MeV O ions, under high electric field conditions. Avalanche multiplication is widely exploited in devices such as avalanche photo diodes, but has never before been reproducibly observed in intrinsic CVD diamond. Because enhanced sensitivity for charged particle detection is obtained for short charge drift lengths without dark counts, this effect could be further exploited in the development of sensors based on avalanchemore » multiplication and radiation detectors with extreme radiation hardness.« less
NASA Astrophysics Data System (ADS)
Montillo, Albert; Song, Qi; Das, Bipul; Yin, Zhye
2015-03-01
Parsing volumetric computed tomography (CT) into 10 or more salient organs simultaneously is a challenging task with many applications such as personalized scan planning and dose reporting. In the clinic, pre-scan data can come in the form of very low dose volumes acquired just prior to the primary scan or from an existing primary scan. To localize organs in such diverse data, we propose a new learning based framework that we call hierarchical pictorial structures (HPS) which builds multiple levels of models in a tree-like hierarchy that mirrors the natural decomposition of human anatomy from gross structures to finer structures. Each node of our hierarchical model learns (1) the local appearance and shape of structures, and (2) a generative global model that learns probabilistic, structural arrangement. Our main contribution is twofold. First we embed the pictorial structures approach in a hierarchical framework which reduces test time image interpretation and allows for the incorporation of additional geometric constraints that robustly guide model fitting in the presence of noise. Second we guide our HPS framework with the probabilistic cost maps extracted using random decision forests using volumetric 3D HOG features which makes our model fast to train and fast to apply to novel test data and posses a high degree of invariance to shape distortion and imaging artifacts. All steps require approximate 3 mins to compute and all organs are located with suitably high accuracy for our clinical applications such as personalized scan planning for radiation dose reduction. We assess our method using a database of volumetric CT scans from 81 subjects with widely varying age and pathology and with simulated ultra-low dose cadaver pre-scan data.
Davis, Tyler; Love, Bradley C.; Preston, Alison R.
2012-01-01
Category learning is a complex phenomenon that engages multiple cognitive processes, many of which occur simultaneously and unfold dynamically over time. For example, as people encounter objects in the world, they simultaneously engage processes to determine their fit with current knowledge structures, gather new information about the objects, and adjust their representations to support behavior in future encounters. Many techniques that are available to understand the neural basis of category learning assume that the multiple processes that subserve it can be neatly separated between different trials of an experiment. Model-based functional magnetic resonance imaging offers a promising tool to separate multiple, simultaneously occurring processes and bring the analysis of neuroimaging data more in line with category learning’s dynamic and multifaceted nature. We use model-based imaging to explore the neural basis of recognition and entropy signals in the medial temporal lobe and striatum that are engaged while participants learn to categorize novel stimuli. Consistent with theories suggesting a role for the anterior hippocampus and ventral striatum in motivated learning in response to uncertainty, we find that activation in both regions correlates with a model-based measure of entropy. Simultaneously, separate subregions of the hippocampus and striatum exhibit activation correlated with a model-based recognition strength measure. Our results suggest that model-based analyses are exceptionally useful for extracting information about cognitive processes from neuroimaging data. Models provide a basis for identifying the multiple neural processes that contribute to behavior, and neuroimaging data can provide a powerful test bed for constraining and testing model predictions. PMID:22746951
Recent Advances in Delivery of Drug-Nucleic Acid Combinations for Cancer Treatment
Li, Jing; Wang, Yan; Zhu, Yu; Oupický, David
2013-01-01
Cancer treatment that uses a combination of approaches with the ability to affect multiple disease pathways has been proven highly effective in the treatment of many cancers. Combination therapy can include multiple chemotherapeutics or combinations of chemotherapeutics with other treatment modalities like surgery or radiation. However, despite the widespread clinical use of combination therapies, relatively little attention has been given to the potential of modern nanocarrier delivery methods, like liposomes, micelles, and nanoparticles, to enhance the efficacy of combination treatments. This lack of knowledge is particularly notable in the limited success of vectors for the delivery of combinations of nucleic acids with traditional small molecule drugs. The delivery of drug-nucleic acid combinations is particularly challenging due to differences in the physicochemical properties of the two types of agents. This review discusses recent advances in the development of delivery methods using combinations of small molecule drugs and nucleic acid therapeutics to treat cancer. This review primarily focuses on the rationale used for selecting appropriate drug-nucleic acid combinations as well as progress in the development of nanocarriers suitable for simultaneous delivery of drug-nucleic acid combinations. PMID:23624358
Feasibility of one-shot-per-crystal structure determination using Laue diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornaby, Sterling; CHESS; Szebenyi, Doletha M. E.
Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Lauemore » technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.« less
NASA Astrophysics Data System (ADS)
Li, Zhi-Guo; Chen, Qi-Feng; Gu, Yun-Jun; Zheng, Jun; Chen, Xiang-Rong
2016-10-01
The accurate hydrodynamic description of an event or system that addresses the equations of state, phase transitions, dissociations, ionizations, and compressions, determines how materials respond to a wide range of physical environments. To understand dense matter behavior in extreme conditions requires the continual development of diagnostic methods for accurate measurements of the physical parameters. Here, we present a comprehensive diagnostic technique that comprises optical pyrometry, velocity interferometry, and time-resolved spectroscopy. This technique was applied to shock compression experiments of dense gaseous deuterium-helium mixtures driven via a two-stage light gas gun. The advantage of this approach lies in providing measurements of multiple physical parameters in a single experiment, such as light radiation histories, particle velocity profiles, and time-resolved spectra, which enables simultaneous measurements of shock velocity, particle velocity, pressure, density, and temperature and expands understanding of dense high pressure shock situations. The combination of multiple diagnostics also allows different experimental observables to be measured and cross-checked. Additionally, it implements an accurate measurement of the principal Hugoniots of deuterium-helium mixtures, which provides a benchmark for the impedance matching measurement technique.
NASA Astrophysics Data System (ADS)
Brasser, C.; Bruckbauer, J.; Gong, Y.; Jiu, L.; Bai, J.; Warzecha, M.; Edwards, P. R.; Wang, T.; Martin, R. W.
2018-05-01
Epitaxial overgrowth of semi-polar III-nitride layers and devices often leads to arrowhead-shaped surface features, referred to as chevrons. We report on a study into the optical, structural, and electrical properties of these features occurring in two very different semi-polar structures, a blue-emitting multiple quantum well structure, and an amber-emitting light-emitting diode. Cathodoluminescence (CL) hyperspectral imaging has highlighted shifts in their emission energy, occurring in the region of the chevron. These variations are due to different semi-polar planes introduced in the chevron arms resulting in a lack of uniformity in the InN incorporation across samples, and the disruption of the structure which could cause a narrowing of the quantum wells (QWs) in this region. Atomic force microscopy has revealed that chevrons can penetrate over 150 nm into the sample and quench light emission from the active layers. The dominance of non-radiative recombination in the chevron region was exposed by simultaneous measurement of CL and the electron beam-induced current. Overall, these results provide an overview of the nature and impact of chevrons on the luminescence of semi-polar devices.
Recent advances in delivery of drug-nucleic acid combinations for cancer treatment.
Li, Jing; Wang, Yan; Zhu, Yu; Oupický, David
2013-12-10
Cancer treatment that uses a combination of approaches with the ability to affect multiple disease pathways has been proven highly effective in the treatment of many cancers. Combination therapy can include multiple chemotherapeutics or combinations of chemotherapeutics with other treatment modalities like surgery or radiation. However, despite the widespread clinical use of combination therapies, relatively little attention has been given to the potential of modern nanocarrier delivery methods, like liposomes, micelles, and nanoparticles, to enhance the efficacy of combination treatments. This lack of knowledge is particularly notable in the limited success of vectors for the delivery of combinations of nucleic acids with traditional small molecule drugs. The delivery of drug-nucleic acid combinations is particularly challenging due to differences in the physicochemical properties of the two types of agents. This review discusses recent advances in the development of delivery methods using combinations of small molecule drugs and nucleic acid therapeutics to treat cancer. This review primarily focuses on the rationale used for selecting appropriate drug-nucleic acid combinations as well as progress in the development of nanocarriers suitable for simultaneous delivery of drug-nucleic acid combinations. Copyright © 2013 Elsevier B.V. All rights reserved.
Bingham, Stephen J; Wolverson, Daniel; Thomson, Andrew J
2008-12-01
The simultaneous excitation of paramagnetic molecules with optical (laser) and microwave radiation in the presence of a magnetic field can cause an amplitude, or phase, modulation of the transmitted light at the microwave frequency. The detection of this modulation indicates the presence of coupled optical and ESR transitions. The phenomenon can be viewed as a coherent Raman effect or, in most cases, as a microwave frequency modulation of the magnetic circular dichroism by the precessing magnetization. By allowing the optical and magnetic properties of a transition metal ion centre to be correlated, it becomes possible to deconvolute the overlapping optical or ESR spectra of multiple centres in a protein or of multiple chemical forms of a particular centre. The same correlation capability also allows the relative orientation of the magnetic and optical anisotropies of each species to be measured, even when the species cannot be obtained in a crystalline form. Such measurements provide constraints on electronic structure calculations. The capabilities of the method are illustrated by data from the dimeric mixed-valence Cu(A) centre of nitrous oxide reductase (N(2)OR) from Paracoccus pantotrophus.
Kosterev, Vladimir V; Kramer-Ageev, Evgeny A; Mazokhin, Vladimir N; van Rhoon, Gerard C; Crezee, Johannes
2015-06-01
This paper describes the development of a new type of electromagnetic hyperthermia applicator delivering dose control within large application fields and increased effectiveness by providing simultaneous action of radiation and heating (SRH) in malignant tumours, and development of a dosimetric feedback method to support SRH. Single and phased arrays of flexible applicators have been developed to allow simultaneous hyperthermia and external beam therapy. A frequency of 434 MHz is used to heat near-surface and moderately deep-seated tumours and 70 MHz for deep-seated tumours. Phase and amplitude control allows focusing of electromagnetic energy (EM) to deep-seated tumours. The specific absorption rate (SAR) dose distribution can be modified to achieve uniform heating of tumours with complex shapes and heterogeneous tissue properties. A lithium fluoride thermoluminescent dosimeter (TLD) in a flexible film cassette has been developed for real-time dose measurement. Four types of 434 MHz applicators were manufactured with 3, 4, 9 or 12 independent applicators. Two types of 70 MHz applicators were made with 4 or 6 independent applicators. Phantom tests demonstrated the ability to control the SAR pattern by phase and amplitude control. Placement of the dosimeter between bolus and phantom increased the phantom surface temperature up to 3 °C and showed that the ratio of absorbed energy in TLD to dose in water approaches (0.83 ± 3%) for photon energies >60 keV. Simultaneous and controlled radiation and local hyperthermia is technically feasible in a preclinical setting, a clinical feasibility test is the next step.
On the behavior of return stroke current and the remotely detected electric field change waveform
NASA Astrophysics Data System (ADS)
Shao, Xuan-Min; Lay, Erin; Jacobson, Abram R.
2012-04-01
After accumulating a large number of remotely recorded negative return stroke electric field change waveforms, a subtle but persistent kink was found following the main return stroke peak by several microseconds. To understand the corresponding return stroke current properties behind the kink and the general return stroke radiation waveform, we analyze strokes occurring in triggered lightning flashes for which have been measured both the channel base current and simultaneous remote electric radiation field. In this study, the channel base current is assumed to propagate along the return stroke channel in a dispersive and lossy manner. The measured channel base current is band-pass filtered, and the higher-frequency component is assumed to attenuate faster than the lower-frequency component. The radiation electric field is computed for such a current behavior and is then propagated to distant sensors. It is found that such a return stroke model is capable of very closely reproducing the measured electric waveforms at multiple stations for the triggered return strokes, and such a model is considered applicable to the common behavior of the natural return stroke as well. On the basis of the analysis, a number of other observables are derived. The time-evolving current dispersion and attenuation compare well with previously reported optical observations. The observable speed tends to agree with optical and VHF observations. Line charge density that is removed or deposited by the return stroke is derived, and the implication of the charge density distribution on leader channel decay is discussed.
Contemporaneous and recent radiations of the world's major succulent plant lineages
Arakaki, Mónica; Christin, Pascal-Antoine; Nyffeler, Reto; Lendel, Anita; Eggli, Urs; Ogburn, R. Matthew; Spriggs, Elizabeth; Moore, Michael J.; Edwards, Erika J.
2011-01-01
The cacti are one of the most celebrated radiations of succulent plants. There has been much speculation about their age, but progress in dating cactus origins has been hindered by the lack of fossil data for cacti or their close relatives. Using a hybrid phylogenomic approach, we estimated that the cactus lineage diverged from its closest relatives ≈35 million years ago (Ma). However, major diversification events in cacti were more recent, with most species-rich clades originating in the late Miocene, ≈10–5 Ma. Diversification rates of several cactus lineages rival other estimates of extremely rapid speciation in plants. Major cactus radiations were contemporaneous with those of South African ice plants and North American agaves, revealing a simultaneous diversification of several of the world's major succulent plant lineages across multiple continents. This short geological time period also harbored the majority of origins of C4 photosynthesis and the global rise of C4 grasslands. A global expansion of arid environments during this time could have provided new ecological opportunity for both succulent and C4 plant syndromes. Alternatively, recent work has identified a substantial decline in atmospheric CO2 ≈15–8 Ma, which would have strongly favored C4 evolution and expansion of C4-dominated grasslands. Lowered atmospheric CO2 would also substantially exacerbate plant water stress in marginally arid environments, providing preadapted succulent plants with a sharp advantage in a broader set of ecological conditions and promoting their rapid diversification across the landscape. PMID:21536881
Jovian aurora from Juno perijove passes: comparison of ultraviolet and infrared images
NASA Astrophysics Data System (ADS)
Gérard, J.-C.; Bonfond, B.; Adriani, A.; Gladstone, G. R.; Mura, A.; Grodent, D.; Versteeg, M. H.; Greathouse, T. K.; Hue, V.; Altieri, F.; Dinelli, B. M.; Moriconi, M. L.; Migliorini, A.; Radioti, A.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.; Fabiano, F.
2017-09-01
The electromagnetic radiation emitted by the Jovian aurora extends from the X-Rays presumably caused by heavy ion precipitation and electron bremsstrahlung to thermal infrared radiation resulting from enhanced heating by high-energy charged particles. Many observations have been made since the 1990s with the Hubble Space Telescope, which was able to image the H2 Lyman and Werner bands that are directly excited by collisions of auroral electrons with H2. Ground-based telescopes obtained spectra and images of the thermal H3+ emission produced by charge transfer between H2+ and H+ ions and neutral H2 molecules in the lower thermosphere. However, so far the geometry of the observations limited the coverage from Earth orbit and only one case of simultaneous UV and infrared emissions has been described in the literature. The Juno mission provides the unique advantage to observe both Jovian hemispheres simultaneously in the two wavelength regions simultaneously and offers a more global coverage with unprecedented spatial resolution. This was the case.
Simultaneous orthogonal plane imaging.
Mickevicius, Nikolai J; Paulson, Eric S
2017-11-01
Intrafraction motion can result in a smearing of planned external beam radiation therapy dose distributions, resulting in an uncertainty in dose actually deposited in tissue. The purpose of this paper is to present a pulse sequence that is capable of imaging a moving target at a high frame rate in two orthogonal planes simultaneously for MR-guided radiotherapy. By balancing the zero gradient moment on all axes, slices in two orthogonal planes may be spatially encoded simultaneously. The orthogonal slice groups may be acquired with equal or nonequal echo times. A Cartesian spoiled gradient echo simultaneous orthogonal plane imaging (SOPI) sequence was tested in phantom and in vivo. Multiplexed SOPI acquisitions were performed in which two parallel slices were imaged along two orthogonal axes simultaneously. An autocalibrating phase-constrained 2D-SENSE-GRAPPA (generalized autocalibrating partially parallel acquisition) algorithm was implemented to reconstruct the multiplexed data. SOPI images without intraslice motion artifacts were reconstructed at a maximum frame rate of 8.16 Hz. The 2D-SENSE-GRAPPA reconstruction separated the parallel slices aliased along each orthogonal axis. The high spatiotemporal resolution provided by SOPI has the potential to be beneficial for intrafraction motion management during MR-guided radiation therapy or other MRI-guided interventions. Magn Reson Med 78:1700-1710, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Localization Performance of Multiple Vibrotactile Cues on Both Arms.
Wang, Dangxiao; Peng, Cong; Afzal, Naqash; Li, Weiang; Wu, Dong; Zhang, Yuru
2018-01-01
To present information using vibrotactile stimuli in wearable devices, it is fundamental to understand human performance of localizing vibrotactile cues across the skin surface. In this paper, we studied human ability to identify locations of multiple vibrotactile cues activated simultaneously on both arms. Two haptic bands were mounted in proximity to the elbow and shoulder joints on each arm, and two vibrotactile motors were mounted on each band to provide vibration cues to the dorsal and palmar side of the arm. The localization performance under four conditions were compared, with the number of the simultaneously activated cues varying from one to four in each condition. Experimental results illustrate that the rate of correct localization decreases linearly with the increase in the number of activated cues. It was 27.8 percent for three activated cues, and became even lower for four activated cues. An analysis of the correct rate and error patterns show that the layout of vibrotactile cues can have significant effects on the localization performance of multiple vibrotactile cues. These findings might provide guidelines for using vibrotactile cues to guide the simultaneous motion of multiple joints on both arms.
ERIC Educational Resources Information Center
Davis, Tyler; Love, Bradley C.; Preston, Alison R.
2012-01-01
Category learning is a complex phenomenon that engages multiple cognitive processes, many of which occur simultaneously and unfold dynamically over time. For example, as people encounter objects in the world, they simultaneously engage processes to determine their fit with current knowledge structures, gather new information about the objects, and…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-09
... licenses included in Auction 89 using the Commission's standard simultaneous multiple-round auction format... sequential bidding rounds. The initial bidding schedule will be announced in a public notice to be released.... For Auction 89, the Bureau proposes to employ a simultaneous stopping rule approach. A simultaneous...
NASA Astrophysics Data System (ADS)
Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma
2017-11-01
We present our ALMA multi-transition molecular line observational results for the ultraluminous infrared galaxy IRAS 20551-4250, which is known to contain a luminous buried active galactic nucleus and shows detectable vibrationally excited (v 2 = 1f) HCN and HNC emission lines. The rotational J = 1-0, 4-3, and 8-7 of HCN, {{HCO}}+, and HNC emission lines were clearly detected at a vibrational ground level (v = 0). Vibrationally excited (v 2 = 1f) J = 4-3 emission lines were detected for HCN and HNC, but not for {{HCO}}+. Their observed flux ratios further support our previously obtained suggestion, based on J = 3-2 data, that (1) infrared radiative pumping plays a role in rotational excitation at v = 0, at least for HCN and HNC, and (2) HCN abundance is higher than {{HCO}}+ and HNC. The flux measurements of the isotopologue H13CN, {{{H}}}13{{CO}}+, and HN13C J = 3-2 emission lines support the higher HCN abundance scenario. Based on modeling with collisional excitation, we constrain the physical properties of these line-emitting molecular gases, but find that higher HNC rotational excitation than HCN and {{HCO}}+ is difficult to explain, due to the higher effective critical density of HNC. We consider the effects of infrared radiative pumping using the available 5-30 μm infrared spectrum and find that our observational results are well-explained if the radiation source is located at 30-100 pc from the molecular gas. The simultaneously covered very bright CO J = 3-2 emission line displays a broad emission wing, which we interpret as being due to molecular outflow activity with the estimated rate of ˜ 150 {M}⊙ {{yr}}-1.
Solar radiation on Mars: Update 1990
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.
1990-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. The authors present a procedure and solar radiation related data from which the diurnally and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras and computation based on multiple wavelength and multiple scattering of the solar radiation. This work is an update to NASA-TM-102299 and includes a refinement of the solar radiation model.
Kuan, Da-Han; Wang, I-Shun; Lin, Jiun-Rue; Yang, Chao-Han; Huang, Chi-Hsien; Lin, Yen-Hung; Lin, Chih-Ting; Huang, Nien-Tsu
2016-08-02
The hemoglobin-A1c test, measuring the ratio of glycated hemoglobin (HbA1c) to hemoglobin (Hb) levels, has been a standard assay in diabetes diagnosis that removes the day-to-day glucose level variation. Currently, the HbA1c test is restricted to hospitals and central laboratories due to the laborious, time-consuming whole blood processing and bulky instruments. In this paper, we have developed a microfluidic device integrating dual CMOS polysilicon nanowire sensors (MINS) for on-chip whole blood processing and simultaneous detection of multiple analytes. The micromachined polymethylmethacrylate (PMMA) microfluidic device consisted of a serpentine microchannel with multiple dam structures designed for non-lysed cells or debris trapping, uniform plasma/buffer mixing and dilution. The CMOS-fabricated polysilicon nanowire sensors integrated with the microfluidic device were designed for the simultaneous, label-free electrical detection of multiple analytes. Our study first measured the Hb and HbA1c levels in 11 clinical samples via these nanowire sensors. The results were compared with those of standard Hb and HbA1c measurement methods (Hb: the sodium lauryl sulfate hemoglobin detection method; HbA1c: cation-exchange high-performance liquid chromatography) and showed comparable outcomes. Finally, we successfully demonstrated the efficacy of the MINS device's on-chip whole blood processing followed by simultaneous Hb and HbA1c measurement in a clinical sample. Compared to current Hb and HbA1c sensing instruments, the MINS platform is compact and can simultaneously detect two analytes with only 5 μL of whole blood, which corresponds to a 300-fold blood volume reduction. The total assay time, including the in situ sample processing and analyte detection, was just 30 minutes. Based on its on-chip whole blood processing and simultaneous multiple analyte detection functionalities with a lower sample volume requirement and shorter process time, the MINS device can be effectively applied to real-time diabetes diagnostics and monitoring in point-of-care settings.
NASA Astrophysics Data System (ADS)
Fisher, Christopher M.; Paton, Chad; Pearson, D. Graham; Sarkar, Chiranjeeb; Luo, Yan; Tersmette, Daniel B.; Chacko, Thomas
2017-12-01
A robust platform to view and integrate multiple data sets collected simultaneously is required to realize the utility and potential of the Laser Ablation Split-Stream (LASS) method. This capability, until now, has been unavailable and practitioners have had to laboriously process each data set separately, making it challenging to take full advantage of the benefits of LASS. We describe a new program for handling multiple mass spectrometric data sets collected simultaneously, designed specifically for the LASS technique, by which a laser aerosol is been split into two or more separate "streams" to be measured on separate mass spectrometers. New features within Iolite (https://iolite-software.com) enable the capability of loading, synchronizing, viewing, and reducing two or more data sets acquired simultaneously, as multiple DRSs (data reduction schemes) can be run concurrently. While this version of Iolite accommodates any combination of simultaneously collected mass spectrometer data, we demonstrate the utility using case studies where U-Pb and Lu-Hf isotope composition of zircon, and U-Pb and Sm-Nd isotope composition of monazite were analyzed simultaneously, in crystals showing complex isotopic zonation. These studies demonstrate the importance of being able to view and integrate simultaneously acquired data sets, especially for samples with complicated zoning and decoupled isotope systematics, in order to extract accurate and geologically meaningful isotopic and compositional data. This contribution provides instructions and examples for handling simultaneously collected laser ablation data. An instructional video is also provided. The updated Iolite software will help to fully develop the applications of both LASS and multi-instrument mass spectrometric measurement capabilities.
NASA Astrophysics Data System (ADS)
Langer, Gregor; Buchegger, Bianca; Jacak, Jaroslaw; Pfeffer, Karoline; Wohlfarth, Sven; Hannesschläger, Günther; Klar, Thomas A.; Berer, Thomas
2018-02-01
In this paper, multimodal optical-resolution frequency-domain photoacoustic and fluorescence scanning microscopy is presented on labeled and unlabeled cells. In many molecules, excited electrons relax radiatively and non-radiatively, leading to fluorescence and photoacoustic signals, respectively. Both signals can then be detected simultaneously. There also exist molecules, e.g. hemoglobin, which do not exhibit fluorescence, but provide photoacoustic signals solely. Other molecules, especially fluorescent dyes, preferentially exhibit fluorescence. The fluorescence quantum yield of a molecule and with it the strength of photoacoustic and fluorescence signals depends on the local environment, e.g. on the pH. Therefore, the local distribution of the simultaneously recorded photoacoustic and fluorescence signals may be used in order to obtain information about the local chemistry.
1990-12-01
proflavin , a drug known to intercalate with DNA. Again, when cells were exposed simultaneously to RFR SAR = 40.8- + 13.4 (SD) W/kg or 40 W/kg at power...densities of 87 or 65 mW/cm ), no effect of the RFR on the proflavin induced mutagenicity was observed (Meltz et al., 1990). SCE Induction Previously...Meltz ML, Eagan P, and Erwin DN (1990). Proflavin and Microwave Radiation: Absence of a Mutagenic Interaction. Bioelectromagnetics 11:149-157. Ciaravino
Vacuum ultraviolet radiation/atomic oxygen synergism in materials reactivity
NASA Technical Reports Server (NTRS)
Koontz, Steven; Leger, Lubert; Albyn, Keith; Cross, Jon
1990-01-01
Experimental results are presented which indicate that low fluxes of vacuum UV (VUV) radiation exert a pronounced influence on the atomic oxygen reactivity of such fluorocarbon and fluorocarbon spacecraft materials as the FEP Teflon and PCTFE that are under consideration for the Space Station Freedom. With simultaneous exposure to VUV fluxes comparable to those experienced in LEO, the reactivity of these materials becomes comparable to that of Kapton; VUV radiation has also been shown to increase the reactivity of Kapton with thermal-energy oxygen atoms.
NASA Astrophysics Data System (ADS)
Belotitskiĭ, V. I.; Kuzin, E. A.; Ovsyannikov, D. V.; Petrov, Mikhail P.
1990-07-01
An investigation was made of the influence of weak semiconductor laser radiation on the spectrum of stimulated Raman scattering in a single-mode optical waveguide pumped by a YAG:Nd3+ laser emitting at 1.06 μm. The scattered radiation power increased by a factor exceeding 10 at the semiconductor laser wavelength. A small-signal dynamic gain reached 47 dB. Simultaneous amplification was observed of several modes of multimode semiconductor laser radiation with an intermode spectral interval of 1.3 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Y; McShan, D; Matuszak, M
Purpose: NSCLC radiotherapy treatment is a trade-off between controlling the tumor while limiting radiation-induced toxicities. Here we identify hierarchical biophysical relationships that could simultaneously influence both local control (LC) and RP by using an integrated Bayesian Networks (BN) approach. Methods: We studied 79 NSCLC patients treated on prospective protocol with 56 cases of LC and 21 events of RP. Beyond dosimetric information, each patient had 193 features including 12 clinical factors, 60 circulating blood cytokines before and during radiotherapy, 62 microRNAs, and 59 single-nucleotide polymorphisms (SNPs). The most relevant biophysical predictors for both LC and RP were identified using amore » Markov blanket local discovery algorithm and the corresponding BN was constructed using a score-learning algorithm. The area under the free-response receiver operating characteristics (AU-FROC) was used for performance evaluation. Cross-validation was employed to guard against overfitting pitfalls. Results: A BN revealing the biophysical interrelationships jointly in terms of LC and RP was developed and evaluated. The integrated BN included two SNPs, one microRNA, one clinical factor, three pre-treatment cytokines, relative changes of two cytokines between pre and during-treatment, and gEUDs of the GTV (a=-20) and lung (a=1). On cross-validation, the AUC prediction of independent LC was 0.85 (95% CI: 0.75–0.95) and RP was 0.83 (0.73–0.92). The AU-FROC of the integrated BN to predict both LC/RP was 0.81 (0.71–0.90) based on 2000 stratified bootstrap, indicating minimal loss in joint prediction power. Conclusions: We developed a new approach for multiple outcome utility application in radiotherapy based on integrated BN techniques. The BN developed from large-scale retrospective data is able to simultaneously predict LC and RP in NSCLC treatments based on individual patient characteristics. The joint prediction is only slightly compromised compared to independent predictions. Our approach shows promise for use in clinical decision support system for personalized radiotherapy subject to multiple endpoints. These studies were supported by a grant from the NCI/NIH P01-CA59827.« less
Kohno, Tadasu; Mun, Mingyon; Yoshiya, Tomoharu
2014-01-01
Myelolipoma in the mediastinum is an extremely rare entity. In this report, we present the case of a 79-year-old asymptomatic man who had three bilateral paravertebral mediastinal tumors. The three tumors were resected simultaneously using bilateral three-port video-assisted thoracoscopic surgery (VATS). There has been no evidence of recurrence within four years after the operation. Multiple bilateral mediastinal myelolipomas are extremely rare. There are no reports in the English literature of multiple bilateral thoracic myelolipomas that were resected simultaneously using bilateral VATS. We also present characteristic features of myelolipomas, which are helpful for diagnosis. PMID:24782978
Wire-chamber radiation detector with discharge control
Perez-Mendez, V.; Mulera, T.A.
1982-03-29
A wire chamber; radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or; near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.
A phoswich detector for simultaneous alpha-gamma spectroscopy
NASA Astrophysics Data System (ADS)
Moghadam, S. Rajabi; Feghhi, S. A. H.; Safari, M. J.
2015-11-01
Phoswich detectors are of value for radiation spectroscopy, especially in cases where a low-cost solution for a mixed radiation field is desired. Meanwhile, simultaneous spectroscopy of alpha particles and gamma-rays has many applications in quantification and distinguishing the alpha-emitting radionuclides which usually occur in the analysis of environmental solid samples. Here, we have developed a system for detection of radioactive actinides (e.g., 241Am) based on the alpha-gamma coincidence technique. The underlying concept, is to assemble two appropriately selected scintillators (i.e., a fast and a slow one) together with a discriminating unit for analysis of their data. Detailed Monte Carlo simulation procedure has been developed using the GEANT4 toolkit to design and find enough knowledge about the response of the system in the studied radiation field. Various comparisons were made between experimental and simulation data which showed appropriate agreement between them. The calibration was performed and the MDA was estimated as 60 mBq for the phoswich system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojanen, M.; Hahtela, O. M.; Heinonen, M.
MIKES is developing a measurement set-up for calibrating thermocouples in the temperature range 960 °C - 1500 °C. The calibration method is based on direct comparison of thermocouples and radiation thermometers. We have designed a graphite blackbody comparator cell, which is operated in a horizontal single-zone tube furnace. The cell includes two blackbody cavities for radiation temperature measurements. The cavities have openings on opposite sides of the cell, allowing simultaneous measurement with two radiation thermometers. The design of the comparator allows three thermocouples to be calibrated simultaneously. The thermocouples to be calibrated are inserted in thermometer wells around one ofmore » the measurement cavities. We characterize the blackbody comparator in terms of repeatability, temperature distribution and emissivity. Finally, we validate the uncertainty analysis by comparing calibration results obtained for type B and S thermocouples to the calibration results reported by Technical Research Institute of Sweden (SP), and MIKES. The agreement in the temperature range 1000 °C - 1500 °C is within 0.90 °C, the average deviation being 0.17 °C.« less
Simultaneous fits in ISIS on the example of GRO J1008-57
NASA Astrophysics Data System (ADS)
Kühnel, Matthias; Müller, Sebastian; Kreykenbohm, Ingo; Schwarm, Fritz-Walter; Grossberger, Christoph; Dauser, Thomas; Pottschmidt, Katja; Ferrigno, Carlo; Rothschild, Richard E.; Klochkov, Dmitry; Staubert, Rüdiger; Wilms, Joern
2015-04-01
Parallel computing and steadily increasing computation speed have led to a new tool for analyzing multiple datasets and datatypes: fitting several datasets simultaneously. With this technique, physically connected parameters of individual data can be treated as a single parameter by implementing this connection into the fit directly. We discuss the terminology, implementation, and possible issues of simultaneous fits based on the X-ray data analysis tool Interactive Spectral Interpretation System (ISIS). While all data modeling tools in X-ray astronomy allow in principle fitting data from multiple data sets individually, the syntax used in these tools is not often well suited for this task. Applying simultaneous fits to the transient X-ray binary GRO J1008-57, we find that the spectral shape is only dependent on X-ray flux. We determine time independent parameters such as, e.g., the folding energy E_fold, with unprecedented precision.
Einstein, Andrew J.; Weiner, Shepard D.; Bernheim, Adam; Kulon, Michal; Bokhari, Sabahat; Johnson, Lynne L.; Moses, Jeffrey W.; Balter, Stephen
2013-01-01
Context Myocardial perfusion imaging (MPI) is the single medical test with the highest radiation burden to the US population. While many patients undergoing MPI receive repeat MPI testing, or additional procedures involving ionizing radiation, no data are available characterizing their total longitudinal radiation burden and relating radiation burden with reasons for testing. Objective To characterize procedure counts, cumulative estimated effective doses of radiation, and clinical indications, for patients undergoing MPI. Design, Setting, Patients Retrospective cohort study evaluating, for 1097 consecutive patients undergoing index MPI during the first 100 days of 2006 at Columbia University Medical Center, all preceding medical imaging procedures involving ionizing radiation undergone beginning October 1988, and all subsequent procedures through June 2008, at that center. Main Outcome Measures Cumulative estimated effective dose of radiation, number of procedures involving radiation, and indications for testing. Results Patients underwent a median (interquartile range, mean) of 15 (6–32, 23.9) procedures involving radiation exposure; 4 (2–8, 6.5) were high-dose (≥3 mSv, i.e. one year's background radiation), including 1 (1–2, 1.8) MPI studies per patient. 31% of patients received cumulative estimated effective dose from all medical sources >100mSv. Multiple MPIs were performed in 39% of patients, for whom cumulative estimated effective dose was 121 (81–189, 149) mSv. Men and whites had higher cumulative estimated effective doses, and there was a trend towards men being more likely to undergo multiple MPIs than women (40.8% vs. 36.6%, Odds ratio 1.29, 95% confidence interval 0.98–1.69). Over 80% of initial and 90% of repeat MPI exams were performed in patients with known cardiac disease or symptoms consistent with it. Conclusion In this institution, multiple testing with MPI was very common, and in many patients associated with very high cumulative estimated doses of radiation. PMID:21078807
Edelman, Bradley J; Meng, Jianjun; Gulachek, Nicholas; Cline, Christopher C; He, Bin
2018-05-01
EEG-based brain-computer interface (BCI) technology creates non-biological pathways for conveying a user's mental intent solely through noninvasively measured neural signals. While optimizing the performance of a single task has long been the focus of BCI research, in order to translate this technology into everyday life, realistic situations, in which multiple tasks are performed simultaneously, must be investigated. In this paper, we explore the concept of cognitive flexibility, or multitasking, within the BCI framework by utilizing a 2-D cursor control task, using sensorimotor rhythms (SMRs), and a four-target visual attention task, using steady-state visual evoked potentials (SSVEPs), both individually and simultaneously. We found no significant difference between the accuracy of the tasks when executing them alone (SMR-57.9% ± 15.4% and SSVEP-59.0% ± 14.2%) and simultaneously (SMR-54.9% ± 17.2% and SSVEP-57.5% ± 15.4%). These modest decreases in performance were supported by similar, non-significant changes in the electrophysiology of the SSVEP and SMR signals. In this sense, we report that multiple BCI tasks can be performed simultaneously without a significant deterioration in performance; this finding will help drive these systems toward realistic daily use in which a user's cognition will need to be involved in multiple tasks at once.
NASA Technical Reports Server (NTRS)
Lushbaugh, C. C.
1974-01-01
The acute radiation syndrome in man is clinically bounded by death at high dose levels and by the prodromal syndrome of untoward physiological effects at minimal levels of clinically effective exposure. As in lower animals, man experiences principally three acute modes of death from radiation exposure (Bond et al., 1965). These are known collectively as the lethal radiation syndromes: central nervous system death, gastrointestinal death, and hematopoietic death. The effect of multiple exposure on lethality, the effect of multiple exposure on hematopoietic recovery, and quantitative aspects of cell and tissue repair are discussed.
Chen, Jiang; Du, Yinan; He, Xueyan; Huang, Xingxu; Shi, Yun S
2017-03-31
The most powerful way to probe protein function is to characterize the consequence of its deletion. Compared to conventional gene knockout (KO), conditional knockout (cKO) provides an advanced gene targeting strategy with which gene deletion can be performed in a spatially and temporally restricted manner. However, for most species that are amphiploid, the widely used Cre-flox conditional KO (cKO) system would need targeting loci in both alleles to be loxP flanked, which in practice, requires time and labor consuming breeding. This is considerably significant when one is dealing with multiple genes. CRISPR/Cas9 genome modulation system is advantaged in its capability in targeting multiple sites simultaneously. Here we propose a strategy that could achieve conditional KO of multiple genes in mouse with Cre recombinase dependent Cas9 expression. By transgenic construction of loxP-stop-loxP (LSL) controlled Cas9 (LSL-Cas9) together with sgRNAs targeting EGFP, we showed that the fluorescence molecule could be eliminated in a Cre-dependent manner. We further verified the efficacy of this novel strategy to target multiple sites by deleting c-Maf and MafB simultaneously in macrophages specifically. Compared to the traditional Cre-flox cKO strategy, this sgRNAs-LSL-Cas9 cKO system is simpler and faster, and would make conditional manipulation of multiple genes feasible.
The DDN (Defense Data Network) Course,
1986-04-01
devices will share the same node-to-node channels. * Simultaneous availability of source and destination is not required. * Speed and code conversion can...address multiple addresses simultaneously 3) Disadvantages of Message Switching Systems Not suited to real time or interactive use * Long and highly...transmission b) Unlike message switching, packet switching requires the -. simultaneous availability of source and destination. 64 -4 ) ..xa...e s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Steffen; Weigel, Robert; Koelpin, Alexander
2015-07-01
Signal conditioning and transmission for sensor systems and networks within the containment of nuclear power plants (NPPs) still poses a challenge to engineers, particularly in the case of equipment upgrades for existing plants, temporary measurements, decommissioning of plants, but also for new builds. This paper presents an innovative method for efficient and cost-effective instrumentation within high dose rate areas inside the containment. A transmitter-receiver topology is proposed that allows simultaneous, unidirectional point-to-point transmission of multiple sensor signals by superimposing them on existing AC or DC power supply cables using power line communication (PLC) technology. Thereby the need for costly installationmore » of additional cables and containment penetrations is eliminated. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter is designed to operate in harsh environment within the containment during full plant operation. Hardware modularity of the transmitter allows application specific tradeoffs between redundancy and channel bandwidth. At receiver side in non-radiated areas, signals are extracted from the power line, demodulated, and provided either in analog or digital output format. Laboratory qualification tests and field test results within a boiling water reactor (BWR) are validating the proof of concept of the proposed system. (authors)« less
System for inspecting large size structural components
Birks, Albert S.; Skorpik, James R.
1990-01-01
The present invention relates to a system for inspecting large scale structural components such as concrete walls or the like. The system includes a mobile gamma radiation source and a mobile gamma radiation detector. The source and detector are constructed and arranged for simultaneous movement along parallel paths in alignment with one another on opposite sides of a structural component being inspected. A control system provides signals which coordinate the movements of the source and detector and receives and records the radiation level data developed by the detector as a function of source and detector positions. The radiation level data is then analyzed to identify areas containing defects corresponding to unexpected variations in the radiation levels detected.
Ghadiri, H; Ay, M R; Shiran, M B; Soltanian-Zadeh, H
2013-01-01
Objective: Recently introduced energy-sensitive X-ray CT makes it feasible to discriminate different nanoparticulate contrast materials. The purpose of this work is to present a K-edge ratio method for differentiating multiple simultaneous contrast agents using spectral CT. Methods: The ratio of two images relevant to energy bins straddling the K-edge of the materials is calculated using an analytic CT simulator. In the resulting parametric map, the selected contrast agent regions can be identified using a thresholding algorithm. The K-edge ratio algorithm is applied to spectral images of simulated phantoms to identify and differentiate up to four simultaneous and targeted CT contrast agents. Results: We show that different combinations of simultaneous CT contrast agents can be identified by the proposed K-edge ratio method when energy-sensitive CT is used. In the K-edge parametric maps, the pixel values for biological tissues and contrast agents reach a maximum of 0.95, whereas for the selected contrast agents, the pixel values are larger than 1.10. The number of contrast agents that can be discriminated is limited owing to photon starvation. For reliable material discrimination, minimum photon counts corresponding to 140 kVp, 100 mAs and 5-mm slice thickness must be used. Conclusion: The proposed K-edge ratio method is a straightforward and fast method for identification and discrimination of multiple simultaneous CT contrast agents. Advances in knowledge: A new spectral CT-based algorithm is proposed which provides a new concept of molecular CT imaging by non-iteratively identifying multiple contrast agents when they are simultaneously targeting different organs. PMID:23934964
Goyal, Megha; Chaudhuri, Tapan K
2015-07-01
Folding of aggregation prone recombinant proteins through co-expression of chaperonin GroEL and GroES has been a popular practice in the effort to optimize preparation of functional protein in Escherichia coli. Considering the demand for functional recombinant protein products, it is desirable to apply the chaperone assisted protein folding strategy for enhancing the yield of properly folded protein. Toward the same direction, it is also worth attempting folding of multiple recombinant proteins simultaneously over-expressed in E. coli through the assistance of co-expressed GroEL-ES. The genesis of this thinking was originated from the fact that cellular GroEL and GroES assist in the folding of several endogenous proteins expressed in the bacterial cell. Here we present the experimental findings from our study on co-expressed GroEL-GroES assisted folding of simultaneously over-expressed proteins maltodextrin glucosidase (MalZ) and yeast mitochondrial aconitase (mAco). Both proteins mentioned here are relatively larger and aggregation prone, mostly form inclusion bodies, and undergo GroEL-ES assisted folding in E. coli cells during over-expression. It has been reported that the relative yield of properly folded functional forms of MalZ and mAco with the exogenous GroEL-ES assistance were comparable with the results when these proteins were overexpressed alone. This observation is quite promising and highlights the fact that GroEL and GroES can assist in the folding of multiple substrate proteins simultaneously when over-expressed in E. coli. This method might be a potential tool for enhanced production of multiple functional recombinant proteins simultaneously in E. coli. Copyright © 2015 Elsevier Ltd. All rights reserved.
Passive radio frequency peak power multiplier
Farkas, Zoltan D.; Wilson, Perry B.
1977-01-01
Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
Church, George M.; Esvelt, Kevin; Mali, Prashant
2017-03-07
Methods of modulating expression of a target nucleic acid in a cell are provided including use of multiple orthogonal Cas9 proteins to simultaneously and independently regulate corresponding genes or simultaneously and independently edit corresponding genes.
Li, Min; Tian, Ying; Zhao, Ying; Bu, Wenjun
2012-01-01
Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic.
Palma-Silva, C; Wendt, T; Pinheiro, F; Barbará, T; Fay, Michael F; Cozzolino, S; Lexer, C
2011-08-01
The roles of intra- and interspecific gene flow in speciation and species evolution are topics of great current interest in molecular ecology and evolutionary biology. Recent modelling studies call for new empirical data to test hypotheses arising from the recent shift from a 'whole-genome reproductive isolation' view to a 'genic' view of species and speciation. Particularly scarce (and thus of particular interest) are molecular genetic data on recently radiated, naturally hybridizing species in strongly structured and species-rich environments. Here, we studied four sympatric plant species (Pitcairnia spp.; Bromeliaceae) adapted to Neotropical inselbergs (isolated outcrops resembling habitat 'islands' in tropical rainforests) using nuclear and plastid DNA. Patterns of plastid DNA haplotype sharing and nuclear genomic admixture suggest the presence of both, incomplete lineage sorting and interspecific gene flow over extended periods of time. Integrity and cohesion of inselberg species of Pitcairnia are maintained despite introgression and in the face of extremely low within-species migration rates (N(e)m < 1 migrant per generation). Cross-evaluation of our genetic data against published pollination experiments indicate that species integrity is maintained by the simultaneous action of multiple prezygotic barriers, including flowering phenology, pollinator isolation and divergent mating systems. Postzygotic Bateson-Dobzhansky-Muller incompatibilities appear to contribute to isolation, as suggested by asymmetric introgression rates of single loci. Our results suggest that incomplete lineage sorting, hybridization and introgression form integral aspects of adaptive radiation in Neotropical inselberg 'archipelagos'. Inselbergs with multiple closely related co-occurring species should be of special interest to students of speciation in mountain systems, and to ongoing conservation programmes in the Atlantic Rainforest biodiversity hotspot. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
He, Cenlin; Liou, Kuo-Nan; Takano, Yoshi; Yang, Ping; Qi, Ling; Chen, Fei
2018-01-01
We quantify the effects of grain shape and multiple black carbon (BC)-snow internal mixing on snow albedo by explicitly resolving shape and mixing structures. Nonspherical snow grains tend to have higher albedos than spheres with the same effective sizes, while the albedo difference due to shape effects increases with grain size, with up to 0.013 and 0.055 for effective radii of 1,000 μm at visible and near-infrared bands, respectively. BC-snow internal mixing reduces snow albedo at wavelengths < 1.5 μm, with negligible effects at longer wavelengths. Nonspherical snow grains show less BC-induced albedo reductions than spheres with the same effective sizes by up to 0.06 at ultraviolet and visible bands. Compared with external mixing, internal mixing enhances snow albedo reduction by a factor of 1.2-2.0 at visible wavelengths depending on BC concentration and snow shape. The opposite effects on albedo reductions due to snow grain nonsphericity and BC-snow internal mixing point toward a careful investigation of these two factors simultaneously in climate modeling. We further develop parameterizations for snow albedo and its reduction by accounting for grain shape and BC-snow internal/external mixing. Combining the parameterizations with BC-in-snow measurements in China, North America, and the Arctic, we estimate that nonspherical snow grains reduce BC-induced albedo radiative effects by up to 50% compared with spherical grains. Moreover, BC-snow internal mixing enhances the albedo effects by up to 30% (130%) for spherical (nonspherical) grains relative to external mixing. The overall uncertainty induced by snow shape and BC-snow mixing state is about 21-32%.
Zhao, Ying; Bu, Wenjun
2012-01-01
Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic. PMID:22384163
ERIC Educational Resources Information Center
Cartwright, Kelly B.
2002-01-01
A reading-specific multiple classification task was designed that required children to classify printed words along phonological and semantic dimensions simultaneously. Reading-specific multiple classification skill made a unique contribution to children's reading comprehension over contributions made by age, domain-general multiple classification…
ERIC Educational Resources Information Center
Anderson, Carolyn J.; Verkuilen, Jay; Peyton, Buddy L.
2010-01-01
Survey items with multiple response categories and multiple-choice test questions are ubiquitous in psychological and educational research. We illustrate the use of log-multiplicative association (LMA) models that are extensions of the well-known multinomial logistic regression model for multiple dependent outcome variables to reanalyze a set of…
NASA Astrophysics Data System (ADS)
Jonrinaldi; Rahman, T.; Henmaidi; Wirdianto, E.; Zhang, D. Z.
2018-03-01
This paper proposed a mathematical model for multiple items Economic Production and Order Quantity (EPQ/EOQ) with considering continuous and discrete demand simultaneously in a system consisting of a vendor and multiple buyers. This model is used to investigate the optimal production lot size of the vendor and the number of shipments policy of orders to multiple buyers. The model considers the multiple buyers’ holding cost as well as transportation cost, which minimize the total production and inventory costs of the system. The continuous demand from any other customers can be fulfilled anytime by the vendor while the discrete demand from multiple buyers can be fulfilled by the vendor using the multiple delivery policy with a number of shipments of items in the production cycle time. A mathematical model is developed to illustrate the system based on EPQ and EOQ model. Solution procedures are proposed to solve the model using a Mixed Integer Non Linear Programming (MINLP) and algorithm methods. Then, the numerical example is provided to illustrate the system and results are discussed.
Method and apparatus for the simultaneous display and correlation of independently generated images
Vaitekunas, Jeffrey J.; Roberts, Ronald A.
1991-01-01
An apparatus and method for location by location correlation of multiple images from Non-Destructive Evaluation (NDE) and other sources. Multiple images of a material specimen are displayed on one or more monitors of an interactive graphics system. Specimen landmarks are located in each image and mapping functions from a reference image to each other image are calcuated using the landmark locations. A location selected by positioning a cursor in the reference image is mapped to the other images and location identifiers are simultaneously displayed in those images. Movement of the cursor in the reference image causes simultaneous movement of the location identifiers in the other images to positions corresponding to the location of the reference image cursor.
Stability of the Martian climate system under the seasonal change condition of solar radiation
NASA Astrophysics Data System (ADS)
Nakamura, Takasumi; Tajika, Eiichi
2002-11-01
Previous studies on stability of the Martian climate system used essentially zero-dimensional energy balance climate models (EBMs) under the condition of annual mean solar radiation income. However, areal extent of polar ice caps should affect the Martian climate through the energy balance and the CO2 budget, and results under the seasonal change condition of solar radiation will be different from those under the annual mean condition. We therefore construct a one-dimensional energy balance climate model with CO2-dependent outgoing radiation, seasonal changes of solar radiation income, changes of areal extent of CO2 ice caps, and adsorption of CO2 by regolith. We have investigated behaviors of the Martian climate system and, in particular, examined the effect of the seasonal changes of solar radiation by comparing the results of previous studies under the condition of annual mean solar radiation. One of the major discrepancies between them is the condition for multiple solutions of the Martian climate system. Although the Martian climate system always has multiple solutions under the annual mean condition, under the seasonal change condition, existence of multiple solutions depends on the present amounts of CO2 in the ice caps and the regolith.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.
We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less
Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.; ...
2017-02-17
We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less
Snyder, Dalton T; Szalwinski, Lucas J; Cooks, R Graham
2017-10-17
Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MS n operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.
Chen, Chi-Hsin; Gershkoff-Stowe, Lisa; Wu, Chih-Yi; Cheung, Hintat; Yu, Chen
2017-08-01
Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross-situational learning paradigm to test whether English speakers were able to use co-occurrences to learn word-to-object mappings and concurrently form object categories based on the commonalities across training stimuli. Experiment 2 replicated the first experiment and further examined whether speakers of Mandarin, a language in which final syllables of object names are more predictive of category membership than English, were able to learn words and form object categories when trained with the same type of structures. The results indicate that both groups of learners successfully extracted multiple levels of co-occurrence and used them to learn words and object categories simultaneously. However, marked individual differences in performance were also found, suggesting possible interference and competition in processing the two concurrent streams of regularities. Copyright © 2016 Cognitive Science Society, Inc.
Multiple outcomes are often measured on each experimental unit in toxicology experiments. These multiple observations typically imply the existence of correlation between endpoints, and a statistical analysis that incorporates it may result in improved inference. When both disc...
NASA Astrophysics Data System (ADS)
Orsini, Antonio; Tomasi, Claudio; Calzolari, Francescopiero; Nardino, Marianna; Cacciari, Alessandra; Georgiadis, Teodoro
2002-04-01
Simultaneous measurements of downwelling short-wave solar irradiance and incoming total radiation flux were performed at the Reeves Nevè glacier station (1200 m MSL) in Antarctica on 41 days from late November 1994 to early January 1995, employing the upward sensors of an albedometer and a pyrradiometer. The downwelling short-wave radiation measurements were analysed following the Duchon and O'Malley [J. Appl. Meteorol. 38 (1999) 132] procedure for classifying clouds, using the 50-min running mean values of standard deviation and the ratio of scaled observed to scaled clear-sky irradiance. Comparing these measurements with the Duchon and O'Malley rectangular boundaries and the local human observations of clouds collected on 17 days of the campaign, we found that the Duchon and O'Malley classification method obtained a success rate of 93% for cirrus and only 25% for cumulus. New decision criteria were established for some polar cloud classes providing success rates of 94% for cirrus, 67% for cirrostratus and altostratus, and 33% for cumulus and altocumulus. The ratios of the downwelling short-wave irradiance measured for cloudy-sky conditions to that calculated for clear-sky conditions were analysed in terms of the Kasten and Czeplak [Sol. Energy 24 (1980) 177] formula together with simultaneous human observations of cloudiness, to determine the empirical relationship curves providing reliable estimates of cloudiness for each of the three above-mentioned cloud classes. Using these cloudiness estimates, the downwelling long-wave radiation measurements (obtained as differences between the downward fluxes of total and short-wave radiation) were examined to evaluate the downwelling long-wave radiation flux normalised to totally overcast sky conditions. Calculations of the long-wave radiation flux were performed with the MODTRAN 3.7 code [Kneizys, F.X., Abreu, L.W., Anderson, G.P., Chetwynd, J.H., Shettle, E.P., Berk, A., Bernstein, L.S., Robertson, D.C., Acharya, P., Rothman, L.S., Selby, J.E.A., Gallery, W.O., Clough, S.A., 1996. In: Abreu, L.W., Anderson, G.P. (Eds.), The MODTRAN 2/3 Report and LOWTRAN 7 MODEL. Contract F19628-91-C.0132, Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom AFB, MA, 261 pp.] for both clear-sky and cloudy-sky conditions, considering various cloud types characterised by different cloud base altitudes and vertical thicknesses. From these evaluations, best-fit curves of the downwelling long-wave radiation flux were defined as a function of the cloud base height for the three polar cloud classes. Using these relationship curves, average estimates of the cloud base height were obtained from the three corresponding sub-sets of long-wave radiation measurements. The relative frequency histograms of the cloud base height defined by examining these three sub-sets were found to present median values of 4.7, 1.7 and 3.6 km for cirrus, cirrostratus/altostratus and cumulus/altocumulus, respectively, while median values of 6.5, 1.8 and 2.9 km were correspondingly determined by analysing only the measurements taken together with simultaneous cloud observations.
Simultaneous inversion of multiple land surface parameters from MODIS optical-thermal observations
NASA Astrophysics Data System (ADS)
Ma, Han; Liang, Shunlin; Xiao, Zhiqiang; Shi, Hanyu
2017-06-01
Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface variables usually focus on individual parameters separately even from the same satellite observations, resulting in inconsistent products. Moreover, no efforts have been made to generate global products from integrated observations from the optical to Thermal InfraRed (TIR) spectrum. Particularly, Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal, which contains both reflected and emitted radiation. In this paper, we propose a unified algorithm for simultaneously retrieving six land surface parameters - Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Emissivity (LSE), Land Surface Temperature (LST), and Upwelling Longwave radiation (LWUP) by exploiting MODIS visible-to-TIR observations. We incorporate a unified physical radiative transfer model into a data assimilation framework. The MODIS visible-to-TIR time series datasets include the daily surface reflectance product and MIR-to-TIR surface radiance, which are atmospherically corrected from the MODIS data using the Moderate Resolution Transmittance program (MODTRAN, ver. 5.0). LAI was first estimated using a data assimilation method that combines MODIS daily reflectance data and a LAI phenology model, and then the LAI was input to the unified radiative transfer model to simulate spectral surface reflectance and surface emissivity for calculating surface broadband albedo and emissivity, and FAPAR. LST was estimated from the MIR-TIR surface radiance data and the simulated emissivity, using an iterative optimization procedure. Lastly, LWUP was estimated using the LST and surface emissivity. The retrieved six parameters were extensively validated across six representative sites with different biome types, and compared with MODIS, GLASS, and GlobAlbedo land surface products. The results demonstrate that the unified inversion algorithm can retrieve temporally complete and physically consistent land surface parameters, and provides more accurate estimates of surface albedo, LST, and LWUP than existing products, with R2 values of 0.93 and 0.62, RMSE of 0.029 and 0.037, and BIAS values of 0.016 and 0.012 for the retrieved and MODIS albedo products, respectively, compared with field albedo measurements; R2 values of 0.95 and 0.93, RMSE of 2.7 and 4.2 K, and BIAS values of -0.6 and -2.7 K for the retrieved and MODIS LST products, respectively, compared with field LST measurements; and R2 values of 0.93 and 0.94, RMSE of 18.2 and 22.8 W/m2, and BIAS values of -2.7 and -14.6 W/m2 for the retrieved and MODIS LWUP products, respectively, compared with field LWUP measurements.
Global distributions of cloud properties for CERES
NASA Astrophysics Data System (ADS)
Sun-Mack, S.; Minnis, P.; Heck, P.; Young, D.
2003-04-01
The microphysical and macrophysical properties of clouds play a crucial role in the earth's radiation budget. Simultaneous measurement of the radiation and cloud fields on a global basis has long been recognized as a key component in understanding and modeling the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. With the implementation of the NASA Clouds and Earth's Radiant Energy System (CERES) in 1998, this need is being met. Broadband shortwave and longwave radiance measurements taken by the CERES scanners at resolutions between 10 and 20 km on the Tropical Rainfall Measuring Mission (TRMM), Terra, and Aqua satellites are matched to simultaneous retrievals of cloud height, phase, particle size, water path, and optical depth from the TRMM Visible Infrared Scanner and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. The combined cloud-radiation product has already been used for developing new, highly accurate anisotropic directional models for converting broadband radiances to flux. They also provide a consistent measure of cloud properties at different times of day over the globe since January 1998. These data will be valuable for determining the indirect effects of aerosols and for linking cloud water to cloud radiation. This paper provides an overview of the CERES cloud products from the three satellites including the retrieval methodology, validation, and global distributions. Availability and access to the datasets will also be discussed.
NASA Astrophysics Data System (ADS)
Thomé, A. M. C.; Souza, B. P.; Mendes, J. P. M.; Cardoso, A. F. R.; Soares, L. C.; Trajano, E. T. L.; Fonseca, A. S.
2018-06-01
Since infection is a common cause of delayed wound healing, it is important to understand the effect of low-level laser therapy (LLLT) in bacterial mechanisms. In this study we evaluated the effects of LLLT on antibiotic resistance, division rate, and biofilm formation of Pantoea agglomerans. P. agglomerans samples were isolated from human pressure injuries in humans and cultures were exposed to low-level monochromatic and simultaneous dichromatic laser radiation to study the susceptibility of an antimicrobial to ampicillin and piperacillin + tazobactam, quantification of areas of bacterial colonies, and biofilm formation of bacterial cells. Fluence, wavelength, and emission mode were used in the therapeutic protocols for wound healing. The data showed no changes in the areas of the colonies, but dichromatic laser radiation decreased biofilm formation, while a monochromatic red laser at low dose increased biofilm formation and infrared at high dose decreased antibiotic resistance to ampicillin. LLLT modulates antibiotic resistance and biofilm formation of P. agglomerans, but these depend on the laser irradiation parameters, since dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation. Thus, simultaneous dichromatic low-level red and infrared lasers could be a new option for the treatment of infected wounds, reducing biofilm formation, without altering antibiotic resistance and the division rate of P. agglomerans cultures.
NASA Technical Reports Server (NTRS)
Levine, D. M.
1978-01-01
Radiation from lightning in the RF band from 3-300 MHz were monitored. Radiation in this frequency range is of interest as a potential vehicle for monitoring severe storms and for studying the lightning itself. Simultaneous measurements were made of RF radiation and fast and slow field changes. Continuous analogue recordings with a system having 300 kHz of bandwidth were made together with digital records of selected events (principally return strokes) at greater temporal resolution. The data reveal patterns in the RF radiation for the entire flash which are characteristic of flash type and independent of the frequency of observation. Individual events within the flash also have characteristic RF patterns. Strong radiation occurs during the first return strokes, but delayed about 20 micron sec with respect to the begining of the return stroke; whereas, RF radiation from subsequent return strokes tends to be associated with cloud processes preceding the flash with comparatively little radiation occurring during the return stroke itself.
Noise Radiation from Single and Multiple Rod Configurations
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Brooks, Thomas F.
2006-01-01
Acoustic measurements were performed on single and multiple rod configurations to study the effect of Reynolds number, surface roughness, freestream turbulence, proximity and wake interference on the radiated noise. The Reynolds number ranged from 3.8 x 10(exp 3) to 10(exp 5). Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the different model configurations tested. The dependence of the peak Sound Pressure Level on velocity was also examined. Several concepts for the reduction of the noise radiating from cylindrical rods were tested. It was shown that wire wraps and collar distributions could be used to significantly reduce the noise radiating from rods in tandem configurations.
Laser Spiderweb Sensor Used with Portable Handheld Devices
NASA Technical Reports Server (NTRS)
Scott, David C. (Inventor); Ksendzov, Alexander (Inventor); George, Warren P. (Inventor); Smith, James A. (Inventor); Steinkraus, Joel M. (Inventor); Hofmann, Douglas C. (Inventor); Aljabri, Abdullah S. (Inventor); Bendig, Rudi M. (Inventor)
2017-01-01
A portable spectrometer, including a smart phone case storing a portable spectrometer, wherein the portable spectrometer includes a cavity; a source for emitting electromagnetic radiation that is directed on a sample in the cavity, wherein the electromagnetic radiation is reflected within the cavity to form multiple passes of the electromagnetic radiation through the sample; a detector for detecting the electromagnetic radiation after the electromagnetic radiation has made the multiple passes through the sample in the cavity, the detector outputting a signal in response to the detecting; and a device for communicating the signal to a smart phone, wherein the smart phone executes an application that performs a spectral analysis of the signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Hallaq, Hania A., E-mail: halhallaq@radonc.uchicago.edu; Chmura, Steven J.; Salama, Joseph K.
Purpose: The NRG-BR001 trial is the first National Cancer Institute–sponsored trial to treat multiple (range 2-4) extracranial metastases with stereotactic body radiation therapy. Benchmark credentialing is required to ensure adherence to this complex protocol, in particular, for metastases in close proximity. The present report summarizes the dosimetric results and approval rates. Methods and Materials: The benchmark used anonymized data from a patient with bilateral adrenal metastases, separated by <5 cm of normal tissue. Because the planning target volume (PTV) overlaps with organs at risk (OARs), institutions must use the planning priority guidelines to balance PTV coverage (45 Gy in 3 fractions) againstmore » OAR sparing. Submitted plans were processed by the Imaging and Radiation Oncology Core and assessed by the protocol co-chairs by comparing the doses to targets, OARs, and conformity metrics using nonparametric tests. Results: Of 63 benchmarks submitted through October 2015, 94% were approved, with 51% approved at the first attempt. Most used volumetric arc therapy (VMAT) (78%), a single plan for both PTVs (90%), and prioritized the PTV over the stomach (75%). The median dose to 95% of the volume was 44.8 ± 1.0 Gy and 44.9 ± 1.0 Gy for the right and left PTV, respectively. The median dose to 0.03 cm{sup 3} was 14.2 ± 2.2 Gy to the spinal cord and 46.5 ± 3.1 Gy to the stomach. Plans that spared the stomach significantly reduced the dose to the left PTV and stomach. Conformity metrics were significantly better for single plans that simultaneously treated both PTVs with VMAT, intensity modulated radiation therapy, or 3-dimensional conformal radiation therapy compared with separate plans. No significant differences existed in the dose at 2 cm from the PTVs. Conclusions: Although most plans used VMAT, the range of conformity and dose falloff was large. The decision to prioritize either OARs or PTV coverage varied considerably, suggesting that the toxicity outcomes in the trial could be affected. Several benchmarks met the dose-volume histogram metrics but produced unacceptable plans owing to low conformity. Dissemination of a frequently-asked-questions document improved the approval rate at the first attempt. Benchmark credentialing was found to be a valuable tool for educating institutions about the protocol requirements.« less
Al-Hallaq, Hania A; Chmura, Steven J; Salama, Joseph K; Lowenstein, Jessica R; McNulty, Susan; Galvin, James M; Followill, David S; Robinson, Clifford G; Pisansky, Thomas M; Winter, Kathryn A; White, Julia R; Xiao, Ying; Matuszak, Martha M
2017-01-01
The NRG-BR001 trial is the first National Cancer Institute-sponsored trial to treat multiple (range 2-4) extracranial metastases with stereotactic body radiation therapy. Benchmark credentialing is required to ensure adherence to this complex protocol, in particular, for metastases in close proximity. The present report summarizes the dosimetric results and approval rates. The benchmark used anonymized data from a patient with bilateral adrenal metastases, separated by <5 cm of normal tissue. Because the planning target volume (PTV) overlaps with organs at risk (OARs), institutions must use the planning priority guidelines to balance PTV coverage (45 Gy in 3 fractions) against OAR sparing. Submitted plans were processed by the Imaging and Radiation Oncology Core and assessed by the protocol co-chairs by comparing the doses to targets, OARs, and conformity metrics using nonparametric tests. Of 63 benchmarks submitted through October 2015, 94% were approved, with 51% approved at the first attempt. Most used volumetric arc therapy (VMAT) (78%), a single plan for both PTVs (90%), and prioritized the PTV over the stomach (75%). The median dose to 95% of the volume was 44.8 ± 1.0 Gy and 44.9 ± 1.0 Gy for the right and left PTV, respectively. The median dose to 0.03 cm 3 was 14.2 ± 2.2 Gy to the spinal cord and 46.5 ± 3.1 Gy to the stomach. Plans that spared the stomach significantly reduced the dose to the left PTV and stomach. Conformity metrics were significantly better for single plans that simultaneously treated both PTVs with VMAT, intensity modulated radiation therapy, or 3-dimensional conformal radiation therapy compared with separate plans. No significant differences existed in the dose at 2 cm from the PTVs. Although most plans used VMAT, the range of conformity and dose falloff was large. The decision to prioritize either OARs or PTV coverage varied considerably, suggesting that the toxicity outcomes in the trial could be affected. Several benchmarks met the dose-volume histogram metrics but produced unacceptable plans owing to low conformity. Dissemination of a frequently-asked-questions document improved the approval rate at the first attempt. Benchmark credentialing was found to be a valuable tool for educating institutions about the protocol requirements. Copyright © 2016 Elsevier Inc. All rights reserved.
A novel fiber-free technique for brain activity imaging in multiple freely behaving mice
NASA Astrophysics Data System (ADS)
Inagaki, Shigenori; Agetsuma, Masakazu; Nagai, Takeharu
2018-02-01
Brain functions and related psychiatric disorders have been investigated by recording electrophysiological field potential. When recording it, a conventional method requires fiber-based apparatus connected to the brain, which however hampers the simultaneous measurement in multiple animals (e.g. by a tangle of fibers). Here, we propose a fiber-free recording technique in conjunction with a ratiometric bioluminescent voltage indicator. Our method allows investigation of electrophysiological filed potential dynamics in multiple freely behaving animals simultaneously over a long time period. Therefore, this fiber-free technique opens up the way to investigate a new mechanism of brain function that governs social behaviors and animal-to-animal interaction.
Pan, Shunlong; Li, Jiansheng; Noonan, Owen; Fang, Xiaofeng; Wan, Gaojie; Yu, Chengzhong; Wang, Lianjun
2017-05-02
Simultaneous removal of multiple pollutants from aqueous solution with less energy consumption is crucial in water purification. Here, a novel concept of dual-functional ultrafiltration (DFUF) membrane is demonstrated by entrapment of nanostructured adsorbents into the finger-like pores of ultrafiltration (UF) membrane rather than in the membrane matrix in previous reports of blend membranes, resulting in an exceptionally high active content and simultaneous removal of multiple pollutants from water due to the dual functions of rejection and adsorption. As a demonstration, hollow porous Zr(OH) x nanospheres (HPZNs) were immobilized in poly(ether sulfone) (PES) UF membranes through polydopamine coating with a high content of 68.9 wt %. The decontamination capacity of DFUF membranes toward multiple model pollutants (colloidal gold, polyethylene glycol (PEG), Pb(II)) was evaluated against a blend membrane. Compared to the blend membrane, the DFUF membranes showed 2.1-fold increase in the effective treatment volume for the treatment of Pb(II) contaminated water from 100 ppb to below 10 ppb (WHO drinking water standard). Simultaneously, the DFUF membranes effectively removed the colloidal gold and PEG below instrument detection limit, however the blend membrane only achieved 97.6% and 96.8% rejection for colloidal gold and PEG, respectively. Moreover, the DFUF membranes showed negligible leakage of nanoadsorbents during testing; and the membrane can be easily regenerated and reused. This study sheds new light on the design of high performance multifunction membranes for drinking water purification.
Liu, Cuilian; Zhang, Song; Wang, Qizhi; Zhang, Xiaobo
2017-01-01
Cancer progression depends on tumor growth and metastasis, which are activated or suppressed by multiple genes. An individual microRNA may target multiple genes, suggesting that a miRNA may suppress tumor growth and metastasis via simultaneously targeting different genes. However, thus far, this issue has not been explored. In the present study, the findings showed that miR-1 could simultaneously inhibit tumor growth and metastasis of gastric and breast cancers by targeting multiple genes. The results indicated that miR-1 was significantly downregulated in cancer tissues compared with normal tissues. The miR-1 overexpression led to cell cycle arrest in the G1 phase in gastric and breast cancer cells but not in normal cells. Furthermore, the miR-1 overexpression significantly inhibited the metastasis of gastric and breast cancer cells. An analysis of the underlying mechanism revealed that the simultaneous inhibition of tumor growth and metastasis mediated by miR-1 was due to the synchronous targeting of 6 miR-1 target genes encoding cyclin dependent kinase 4, twinfilin actin binding protein 1, calponin 3, coronin 1C, WAS protein family member 2 and thymosin beta 4, X-linked. In vivo assays demonstrated that miR-1 efficiently inhibited tumor growth and metastasis of gastric and breast cancers in nude mice. Therefore, our study contributed novel insights into the miR-1′s roles in tumorigenesis of gastric and breast cancers. PMID:28159933
Liu, Cuilian; Zhang, Song; Wang, Qizhi; Zhang, Xiaobo
2017-06-27
Cancer progression depends on tumor growth and metastasis, which are activated or suppressed by multiple genes. An individual microRNA may target multiple genes, suggesting that a miRNA may suppress tumor growth and metastasis via simultaneously targeting different genes. However, thus far, this issue has not been explored. In the present study, the findings showed that miR-1 could simultaneously inhibit tumor growth and metastasis of gastric and breast cancers by targeting multiple genes. The results indicated that miR-1 was significantly downregulated in cancer tissues compared with normal tissues. The miR-1 overexpression led to cell cycle arrest in the G1 phase in gastric and breast cancer cells but not in normal cells. Furthermore, the miR-1 overexpression significantly inhibited the metastasis of gastric and breast cancer cells. An analysis of the underlying mechanism revealed that the simultaneous inhibition of tumor growth and metastasis mediated by miR-1 was due to the synchronous targeting of 6 miR-1 target genes encoding cyclin dependent kinase 4, twinfilin actin binding protein 1, calponin 3, coronin 1C, WAS protein family member 2 and thymosin beta 4, X-linked. In vivo assays demonstrated that miR-1 efficiently inhibited tumor growth and metastasis of gastric and breast cancers in nude mice. Therefore, our study contributed novel insights into the miR-1's roles in tumorigenesis of gastric and breast cancers.
Counterpropagating Radiative Shock Experiments on the Orion Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki-Vidal, F.; Clayson, T.; Stehlé, C.
We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measuredmore » via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.« less
Counterpropagating Radiative Shock Experiments on the Orion Laser.
Suzuki-Vidal, F; Clayson, T; Stehlé, C; Swadling, G F; Foster, J M; Skidmore, J; Graham, P; Burdiak, G C; Lebedev, S V; Chaulagain, U; Singh, R L; Gumbrell, E T; Patankar, S; Spindloe, C; Larour, J; Kozlova, M; Rodriguez, R; Gil, J M; Espinosa, G; Velarde, P; Danson, C
2017-08-04
We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measured via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.
Counterpropagating Radiative Shock Experiments on the Orion Laser
Suzuki-Vidal, F.; Clayson, T.; Stehlé, C.; ...
2017-08-02
We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measuredmore » via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.« less
CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W.; Almgren, A.; Bell, J.
We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunovmore » scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.« less
Comparative analysis of radioecological monitoring dosimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, A.I.; Pol`skii, O.G.; Shanin, O.B.
1995-03-01
This paper describes comparative estimates of radiation doses measured by two types of thermoluminescence dosimeters and two types of background radiation radiometers. The dosimetry systems were tested by simultaneously recording background radiation and standard radiation sources at a radioactive waste storage facility. Statistical analysis of the measurement results is summarized. The maximum recorded exposure dose rate for the experiment was 19 microrads per hour. The DTK-2 dosimeter overestimated dose rates by 6 to 43% and the DTU-2 dosimeter underestimated dose rates by 7 to 21%. Both devices are recommended for radioecological monitoring in populated areas. 4 refs., 3 figs., 5more » tabs.« less
Thermoradiation inactivation of naturally occurring organisms in soil
NASA Technical Reports Server (NTRS)
Reynolds, M. C.; Lindell, K. F.; David, T. J.
1973-01-01
Samples of soil collected from Kennedy Space Center near spacecraft assembly facilities were found to contain microorganisms very resistant to conventional sterilization techniques. The inactivation behavior of the naturally occurring spores in soil was investigated using dry heat and ionizing radiation, first separately, then in combination. Dry heat inactivation rates of spores were determined for 105 and 125 C. Radiation inactivation rates were determined for dose rates of 660 and 76 krad/hr at 25 C. Simultaneous combinations of heat and radiation were then investigated at 105, 110, 115, 120, and 125 C. Combined treatment was found to be highly synergistic requiring greatly reduced radiation doses to accomplish sterilization.
Radiation beam collimation system and method
Schmidt, Oliver A.; Ramanathan, Mohan
2015-08-18
The invention provides a method for collimating a radiation beam, the method comprising subjecting the beam to a collimator that yaws and pitches, either separately or simultaneously relative to the incident angle of the beam. Also provided is a system for collimating radiation beams, the system comprising a collimator body, and a stage for pitching and yawing the body. A feature of the invention is that a single, compact mask body defines one or a plurality of collimators having no moving surfaces relative to each other, whereby the entire mask body is moved about a point in space to provide various collimator opening dimensions to oncoming radiation beams.
Hecht, G; Bar-Nathan, C; Milite, G; Alon, I; Moshe, Y; Greenfeld, L; Dotsenko, N; Suez, J; Levy, M; Thaiss, C A; Dafni, H; Elinav, E; Harmelin, A
2014-10-01
The use of germ-free (GF) isolators for microbiome-related research is exponentially increasing, yet limited by its cost, isolator size and potential for trans-contamination. As such, current isolator technology is highly limiting to researchers engaged in short period experiments involving multiple mouse strains and employing a variety of mono-inoculated microorganisms. In this study, we evaluate the use of positive pressure Isocages as a solution for short period studies (days to 2-3 weeks) of experimentation with GF mice at multiple simultaneous conditions. We demonstrate that this new Isocage technology is cost-effective and room-sparing, and enables maintenance of multiple simultaneous groups of GF mice. Using this technology, transferring GF mice from isolators to Isocage racks for experimentation, where they are kept under fully germ-free conditions, enables parallel inoculation with different bacterial strains and simultaneous experimentation with multiple research conditions. Altogether, the new GF Isocage technology enables the expansion of GF capabilities in a safe and cost-effective manner that can facilitate the growth, elaboration and flexibility of microbiome research. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Radiation detector having a multiplicity of individual detecting elements
Whetten, Nathan R.; Kelley, John E.
1985-01-01
A radiation detector has a plurality of detector collection element arrays immersed in a radiation-to-electron conversion medium. Each array contains a multiplicity of coplanar detector elements radially disposed with respect to one of a plurality of positions which at least one radiation source can assume. Each detector collector array is utilized only when a source is operative at the associated source position, negating the necessity for a multi-element detector to be moved with respect to an object to be examined. A novel housing provides the required containment of a high-pressure gas conversion medium.
Change in the thermionic work function of semiconductor powders exposed to electromagnetic radiation
NASA Technical Reports Server (NTRS)
Bourasseau, S.; Martin, J. R.; Juillet, F.; Teichner, S. J.
1977-01-01
The variations of the thermoelectronic work function of titanium dioxide, submitted to an ultraviolet or visible and infrared radiation, in the presence of oxygen, are studied by the vibrating condenser method. It is shown that during the ultraviolet irradiation, a desorption of a first species of oxygen simultaneously occurs with the adsorption of a second species of oxygen and that this phenomenon is found for any structure of TiO2 (anatase or rutile) any texture, oxygen pressure, radiation intensity, and nature of introduced dopes.
Harari, Colin M; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T; Lubner, Meghan G; Hinshaw, J Louis; Ziemlewicz, Timothy; Brace, Christopher L
2016-01-01
To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P < .05). Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P < .05). Ablations were generally smaller in vivo compared with ex vivo. The use of multiple antennas and simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015.
Surface NMR imaging with simultaneously energized transmission loops
NASA Astrophysics Data System (ADS)
Irons, T. P.; Kass, A.; Parsekian, A.
2016-12-01
Surface nuclear magnetic resonance (sNMR) is a unique geophysical technique which allows for the direct detection of liquid-phase water. In saturated media the sNMR response also provides estimates of hydrologic properties including porosity and permeability. The most common survey deployment consists of a single coincident loop performing both transmission and receiving. Because the sNMR method is relatively slow, tomography using coincident loops is time-intensive. Surveys using multiple receiver loops (but a single transmitter) provide additional sensitivity; however, they still require iterating transmission over the loops, and do not decrease survey acquisition time. In medical rotating frame imaging, arrays of transmitters are employed in order to decrease acquisition time, whilst optimizing image resolving power-a concept which we extend to earth's field imaging. Using simultaneously energized transmission loops decreases survey time linearly with the number of channels. To demonstrate the efficacy and benefits of multiple transmission loops, we deployed simultaneous sNMR transmission arrays using minimally coupled loops and a specially modified instrument at the Red Buttes Hydrogeophysics Experiment Site-a well-characterized location near Laramie, Wyoming. The proposed survey proved capable of acquiring multiple-channel imaging data with comparable noise levels to figure-eight configurations. Finally, the channels can be combined after acquisition or inverted simultaneously to provide composite datasets and images. This capability leverages the improved near surface resolving power of small loops but retains sensitivity to deep media through the use of synthetic aperature receivers. As such, simultaneously acquired loop arrays provide a great deal of flexibility.
Low-Dimensional Nanomaterials and Molecular Dielectrics for Radiation-Hard Electronics
NASA Astrophysics Data System (ADS)
McMorrow, Julian
The electronic materials research driving Moore's law has provided several decades of increasingly powerful yet simultaneously miniaturized computer technologies. As we approach the physical and practical limits of what can be accomplished with silicon electronics, we look to new materials to drive innovation in future electronic applications. New materials paradigms require the development of understanding from first principles to the demonstration of applications that comes with mature technologies. Semiconducting single-walled carbon nanotubes (SWCNTs), single- and few-layer molybdenum disulfide (MoS2) and self-assembled nanodielectric (SAND) gate materials have all made significant impacts in the research field of unconventional electronic materials. The materials selection, interfaces between materials, processing steps to assemble them, and their interaction with their environment all have significant bearing on the operation of the overall device. Operating in harsh radiation environments, like those of satellites orbiting the Earth, present unique challenges to the functionality and reliability of electronic devices. Because the future of space-bound electronics is often informed by the technology of terrestrial devices, a proactive approach is adopted to identify and understand the radiation response of new materials systems as they emerge and develop. The work discussed here drives the innovation and development of multiple nanomaterial based electronic technologies while simultaneously exploring their relevant radiation response mechanisms. First, collaborative efforts result in the demonstration of a SWCNT-based circuit technology that is solution processed, large-area, and compatible with flexible substrates. The statistical characterization of SWCNT transistors enables the development of robust doping and encapsulation schemes, which make the SWCNT circuits stable, scalable, and low-power. These SWCNTs are then integrated into static random access memory (SRAM) cells, an accomplishment that illustrates the technological relevance of this work by implementing a highly utilized component of modern day computing. Next, these SRAM devices demonstrate functionality as true random number generators (TRNGs), which are critical components in cryptography and encryption. The randomness of these SWCNT TRNGs is verified by a suite of statistical tests. This achievement has implications for securing data and communication in future solution-processed, large-area, flexible electronics. The unprecedented integration achieved by the underlying SWCNT doping and encapsulation motivates the study of this technology in a radiation environment. Doing so results in an understanding of the fundamental charge trapping mechanisms responsible for the radiation response in this system. The integrated nature of these devices enables, for the first time, the observation of system-level effects in a SWCNT integrated circuit technology. This technology is found to be total ionizing dose-hard, a promising result for the adoption of SWCNTs in future space-bound applications. Compared to SWCNTs, the field of MoS2 electronics is relatively nascent. As a result, studies of radiation effects in MoS2 devices focus on the fundamental mechanisms at play in the materials system. Here, we reveal the critical role of atmospheric adsorbates in the radiation effects of MoS2 transistors by measuring their response to vacuum ultraviolet radiation. These results highlight the importance of controlling the atmosphere of MoS2 devices during irradiation. Furthermore, we make recommendations for radiation-hard MoS2-based devices in the future as the technology continues to mature. One such recommendation is the incorporation of specialized dielectrics with proven radiation hardness. To this end, we address the materials integration challenge of incorporating SAND gate dielectrics on arbitrary substrates. We explore a novel approach for preparing metal substrates for SAND deposition, supporting the SAND superlattice structure and its superlative electronic properties on a metal surface. This result is critical for conducting fundamental transport studies when integrating SAND with novel semiconductor materials, as well as enabling complex circuit integration and SAND on flexible substrates. Altogether, these works drive the integration of novel nanoelectronic materials for future electronics while providing an understanding of their varying radiation response mechanisms to enable their adoption in future space-bound applications.
One-step formation of w/o/w multiple emulsions stabilized by single amphiphilic block copolymers.
Hong, Liangzhi; Sun, Guanqing; Cai, Jinge; Ngai, To
2012-02-07
Multiple emulsions are complex polydispersed systems in which both oil-in-water (O/W) and water-in-oil (W/O) emulsion exists simultaneously. They are often prepared accroding to a two-step process and commonly stabilized using a combination of hydrophilic and hydrophobic surfactants. Recently, some reports have shown that multiple emulsions can also be produced through one-step method with simultaneous occurrence of catastrophic and transitional phase inversions. However, these reported multiple emulsions need surfactant blends and are usually described as transitory or temporary systems. Herein, we report a one-step phase inversion process to produce water-in-oil-in-water (W/O/W) multiple emulsions stabilized solely by a synthetic diblock copolymer. Unlike the use of small molecule surfactant combinations, block copolymer stabilized multiple emulsions are remarkably stable and show the ability to separately encapsulate both polar and nonpolar cargos. The importance of the conformation of the copolymer surfactant at the interfaces with regards to the stability of the multiple emulsions using the one-step method is discussed.
NASA Technical Reports Server (NTRS)
Smith, Laura D.; Vonder Haar, Thomas H.
1991-01-01
Simultaneously conducted observations of the earth radiation budget and the cloud amount estimates, taken during the June 1979 - May 1980 Nimbus 7 mission were used to show interactions between the cloud amount and raidation and to verify a long-term climate simulation obtained with the latest version of the NCAR Community Climate Model (CCM). The parameterization of the radiative, dynamic, and thermodynamic processes produced the mean radiation and cloud quantities that were in reasonable agreement with satellite observations, but at the expense of simulating their short-term fluctuations. The results support the assumption that the inclusion of the cloud liquid water (ice) variable would be the best mean to reduce the blinking of clouds in NCAR CCM.
Yoon, Hyejin; Leitner, Thomas
2014-12-17
Analyses of entire viral genomes or mtDNA requires comprehensive design of many primers across their genomes. In addition, simultaneous optimization of several DNA primer design criteria may improve overall experimental efficiency and downstream bioinformatic processing. To achieve these goals, we developed PrimerDesign-M. It includes several options for multiple-primer design, allowing researchers to efficiently design walking primers that cover long DNA targets, such as entire HIV-1 genomes, and that optimizes primers simultaneously informed by genetic diversity in multiple alignments and experimental design constraints given by the user. PrimerDesign-M can also design primers that include DNA barcodes and minimize primer dimerization. PrimerDesign-Mmore » finds optimal primers for highly variable DNA targets and facilitates design flexibility by suggesting alternative designs to adapt to experimental conditions.« less
Sensory mediation of stimulus-driven attentional capture in multiple-cue displays.
Wright, Richard D; Richard, Christian M
2003-08-01
Three location-cuing experiments were conducted in order to examine the stimulus-driven control of attentional capture in multiple-cue displays. These displays consisted of one to four simultaneously presented direct location cues. The results indicated that direct location cuing can produce cue effects that are mediated, in part, by nonattentional processing that occurs simultaneously at multiple locations. When single cues were presented in isolation, however, the resulting cue effect appeared to be due to a combination of sensory processing and attentional capture by the cue. This suggests that the faster responses produced by direct cues may be associated with two different components: an attention-related component that can be modulated by goal-driven factors and a nonattentional component that occurs in parallel at multiple direct-cue locations and is minimally affected by goal-driven factors.
Hamming and Accumulator Codes Concatenated with MPSK or QAM
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel
2009-01-01
In a proposed coding-and-modulation scheme, a high-rate binary data stream would be processed as follows: 1. The input bit stream would be demultiplexed into multiple bit streams. 2. The multiple bit streams would be processed simultaneously into a high-rate outer Hamming code that would comprise multiple short constituent Hamming codes a distinct constituent Hamming code for each stream. 3. The streams would be interleaved. The interleaver would have a block structure that would facilitate parallelization for high-speed decoding. 4. The interleaved streams would be further processed simultaneously into an inner two-state, rate-1 accumulator code that would comprise multiple constituent accumulator codes - a distinct accumulator code for each stream. 5. The resulting bit streams would be mapped into symbols to be transmitted by use of a higher-order modulation - for example, M-ary phase-shift keying (MPSK) or quadrature amplitude modulation (QAM). The novelty of the scheme lies in the concatenation of the multiple-constituent Hamming and accumulator codes and the corresponding parallel architectures of the encoder and decoder circuitry (see figure) needed to process the multiple bit streams simultaneously. As in the cases of other parallel-processing schemes, one advantage of this scheme is that the overall data rate could be much greater than the data rate of each encoder and decoder stream and, hence, the encoder and decoder could handle data at an overall rate beyond the capability of the individual encoder and decoder circuits.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)
2000-01-01
A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.
Effects of short-term radiation emitted by WCDMA mobile phones on teenagers and adults
2014-01-01
Background With the rapid increasing use of third generation (3 G) mobile phones, social concerns have arisen concerning the possible health effects of radio frequency-electromagnetic fields (RF-EMFs) emitted by wideband code division multiple access (WCDMA) mobile phones in humans. The number of people, who complain of various symptoms such as headache, dizziness, and fatigue, has also increased. Recently, the importance of researches on teenagers has been on the rise. However, very few provocation studies have examined the health effects of WCDMA mobile phone radiation on teenagers. Methods In this double-blind study, two volunteer groups of 26 adults and 26 teenagers were simultaneously investigated by measuring physiological changes in heart rate, respiration rate, and heart rate variability for autonomic nervous system (ANS), eight subjective symptoms, and perception of RF-EMFs during sham and real exposure sessions to verify its effects on adults and teenagers. Experiments were conducted using a dummy phone containing a WCDMA module (average power, 250 mW at 1950 MHz; specific absorption rate, 1.57 W/kg) within a headset placed on the head for 32 min. Results Short-term WCDMA RF-EMFs generated no significant changes in ANS, subjective symptoms or the percentages of those who believed they were being exposed in either group. Conclusions Considering the analyzed physiological data, the subjective symptoms surveyed, and the percentages of those who believed they were being exposed, 32 min of RF radiation emitted by WCDMA mobile phones demonstrated no effects in either adult or teenager subjects. PMID:24886241
Highly sensitive nonlinear luminescent ceramics for volumetric and multilayer data carriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martynovich, E F; Dresvyanskiy, V P; Voitovich, A P
2015-10-31
The interaction of optical ceramics based on wide-bandgap crystals with near-IR femtosecond laser radiation is studied experimentally. The formation of luminescent centres in LiF and MgF{sub 2} ceramics under the action of single laser pulses is considered. Two interaction regimes are used. In the regime of low-aperture focusing of laser radiation (800 nm, 30 fs, 0.3 mJ), multiple selffocusing and filamentation in the samples are observed. The luminescent centres are formed in thin channels induced by light filaments. The average effective self-focusing length is ∼100 μm; the formation of luminescent centres begins at this length and ceases at a wavelengthmore » of about 380 mm. The luminescent trace (spur) induced by a single laser filament was ∼30 μm long and 1.3 μm in diameter. The second regime of light interaction with the sample was based on high-aperture focusing with a simultaneous decrease in the laser pulse energy. This led to the formation of single pits with a diameter smaller than the optical diffraction limit. The luminescent centres induced by the laser radiation were aggregated colour centres. The mechanism of their creation included the highly-nonlinear generation of electron – hole pairs in the filamentation region, their recombination with the formation of anion excitons and the decay of excitons into Fresnel defects by the Lushchik – Vitol – Hersh – Pooley mechanism, as well as their recharging, migration and aggregation. (laser applications and other topics in quantum electronics)« less
Yang, Shengyan; Tang, Chengchun; Liu, Zhe; Wang, Bo; Wang, Chun; Li, Junjie; Wang, Li; Gu, Changzhi
2017-07-10
Achieving high-Q-factor resonances allows dramatic enhancement of performance of many plasmonic devices. However, the excitation of high-Q-factor resonance, especially multiple high-Q-factor resonances, has been a big challenge in traditional metamaterials due to the ohmic and radiation losses. Here, we experimentally demonstrate simultaneous excitation of double extremely sharp resonances in a terahertz metamaterial composed of mirror-symmetric-broken double split ring resonators (MBDSRRs). In a regular mirror-arranged SRR array, only the low-Q-factor dipole resonance can be excited with the external electric field perpendicular to the SRR gap. Breaking the mirror-symmetry of the metamaterial leads to the occurrence of two distinct otherwise inaccessible ultrahigh-Q-factor modes, which consists of one trapped mode in addition to an octupolar mode. By tuning the asymmetry parameter, the Q factor of the trapped mode can be linearly modulated, while the Q factor of the octupolar mode can be tailored exponentially. For specific degree of asymmetry, our simulations revealed a significantly high Q factor (Q>100) for the octupolar mode, which is more than one order of magnitude larger than that of conventional metamaterials. The mirror-symmetry-broken metamaterial offers the advantage of enabling access to two distinct high-Q-factor resonances which could be exploited for ultrasensitive sensors, multiband filters, and slow light devices.
Simultaneous orbit determination
NASA Technical Reports Server (NTRS)
Wright, J. R.
1988-01-01
Simultaneous orbit determination is demonstrated using live range and Doppler data for the NASA/Goddard tracking configuration defined by the White Sands Ground Terminal (WSGT), the Tracking and Data Relay Satellite (TDRS), and the Earth Radiation Budget Satellite (ERBS). A physically connected sequential filter-smoother was developed for this demonstration. Rigorous necessary conditions are used to show that the state error covariance functions are realistic; and this enables the assessment of orbit estimation accuracies for both TDRS and ERBS.
Toytman, I; Silbergleit, A; Simanovski, D; Palanker, D
2010-10-01
Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.
Suzuki, Teruhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko
2014-01-01
Human artificial chromosomes (HACs) are gene-delivery vectors suitable for introducing large DNA fragments into mammalian cells. Although a HAC theoretically incorporates multiple gene expression cassettes of unlimited DNA size, its application has been limited because the conventional gene-loading system accepts only one gene-loading vector (GLV) into a HAC. We report a novel method for the simultaneous or sequential integration of multiple GLVs into a HAC vector (designated as the SIM system) via combined usage of Cre, FLP, Bxb1, and φC31 recombinase/integrase. As a proof of principle, we first attempted simultaneous integration of three GLVs encoding EGFP, Venus, and TdTomato into a gene-loading site of a HAC in CHO cells. These cells successfully expressed all three fluorescent proteins. Furthermore, microcell-mediated transfer of HACs enabled the expression of those fluorescent proteins in recipient cells. We next demonstrated that GLVs could be introduced into a HAC one-by-one via reciprocal usage of recombinase/integrase. Lastly, we introduced a fourth GLV into a HAC after simultaneous integration of three GLVs by FLP-mediated DNA recombination. The SIM system expands the applicability of HAC vectors and is useful for various biomedical studies, including cell reprogramming. PMID:25303219
Suzuki, Teruhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko
2014-01-01
Human artificial chromosomes (HACs) are gene-delivery vectors suitable for introducing large DNA fragments into mammalian cells. Although a HAC theoretically incorporates multiple gene expression cassettes of unlimited DNA size, its application has been limited because the conventional gene-loading system accepts only one gene-loading vector (GLV) into a HAC. We report a novel method for the simultaneous or sequential integration of multiple GLVs into a HAC vector (designated as the SIM system) via combined usage of Cre, FLP, Bxb1, and φC31 recombinase/integrase. As a proof of principle, we first attempted simultaneous integration of three GLVs encoding EGFP, Venus, and TdTomato into a gene-loading site of a HAC in CHO cells. These cells successfully expressed all three fluorescent proteins. Furthermore, microcell-mediated transfer of HACs enabled the expression of those fluorescent proteins in recipient cells. We next demonstrated that GLVs could be introduced into a HAC one-by-one via reciprocal usage of recombinase/integrase. Lastly, we introduced a fourth GLV into a HAC after simultaneous integration of three GLVs by FLP-mediated DNA recombination. The SIM system expands the applicability of HAC vectors and is useful for various biomedical studies, including cell reprogramming.
Frequency multiplexed long range swept source optical coherence tomography
Zurauskas, Mantas; Bradu, Adrian; Podoleanu, Adrian Gh.
2013-01-01
We present a novel swept source optical coherence tomography configuration, equipped with acousto-optic deflectors that can be used to simultaneously acquire multiple B-scans originating from different depths. The sensitivity range of the configuration is evaluated while acquiring five simultaneous B-scans. Then the configuration is employed to demonstrate long range B-scan imaging by combining two simultaneous B-scans from a mouse head sample. PMID:23760762
Methods for simultaneous control of lignin content and composition, and cellulose content in plants
Chiang, Vincent Lee C.; Li, Laigeng
2005-02-15
The present invention relates to a method of concurrently introducing multiple genes into plants and trees is provided. The method includes simultaneous transformation of plants with multiple genes from the phenylpropanoid pathways including 4CL, CAld5H, AldOMT, SAD and CAD genes and combinations thereof to produce various lines of transgenic plants displaying altered agronomic traits. The agronomic traits of the plants are regulated by the orientation of the specific genes and the selected gene combinations, which are incorporated into the plant genome.
Large area silicon sheet by EFG
NASA Technical Reports Server (NTRS)
1981-01-01
A multiple growth run with three 10 cm cartridges was carried out with the best throughput rates and time percentage of simultaneous three ribbon growth achieved to date in this system. Growth speeds were between 3.2 and 3.6 cm/minute on all three cartridges and simultaneous full width growth of three ribbons was achieved 47 percent of the time over the eight hour duration of the experiment. Improvements in instrumentation and in the main zone temperature uniformity were two factors that have led to more reproducible growth conditions in the multiple ribbon furnace.
NASA Astrophysics Data System (ADS)
Ma, H.
2016-12-01
Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface parameters are generally parameter-specific algorithms and are based on instantaneous physical models, which result in spatial, temporal and physical inconsistencies in current global products. Besides, optical and Thermal Infrared (TIR) remote sensing observations are usually separated to use based on different models , and the Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal that mixes both reflected and emitted fluxes. In this paper, we proposed a unified algorithm for simultaneously retrieving a total of seven land surface parameters, including Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Temperature (LST), surface emissivity, downward and upward longwave radiation, by exploiting remote sensing observations from visible to TIR domain based on a common physical Radiative Transfer (RT) model and a data assimilation framework. The coupled PROSPECT-VISIR and 4SAIL RT model were used for canopy reflectance modeling. At first, LAI was estimated using a data assimilation method that combines MODIS daily reflectance observation and a phenology model. The estimated LAI values were then input into the RT model to simulate surface spectral emissivity and surface albedo. Besides, the background albedo and the transmittance of solar radiation, and the canopy albedo were also calculated to produce FAPAR. Once the spectral emissivity of seven MODIS MIR to TIR bands were retrieved, LST can be estimated from the atmospheric corrected surface radiance by exploiting an optimization method. At last, the upward longwave radiation were estimated using the retrieved LST, broadband emissivity (converted from spectral emissivity) and the downward longwave radiation (modeled by MODTRAN). These seven parameters were validated over several representative sites with different biome type, and compared with MODIS and GLASS product. Results showed that this unified inversion algorithm can retrieve temporally complete and physical consistent land surface parameters with high accuracy.
NASA Astrophysics Data System (ADS)
Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.
2012-10-01
Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample.
Using Infrared Thermography to Assess Emotional Responses to Infants
ERIC Educational Resources Information Center
Esposito, Gianluca; Nakazawa, Jun; Ogawa, Shota; Stival, Rita; Putnick, Diane L.; Bornstein, Marc H.
2015-01-01
Adult-infant interactions operate simultaneously across multiple domains and at multiple levels -- from physiology to behaviour. Unpackaging and understanding them, therefore, involve analysis of multiple data streams. In this study, we tested physiological responses and cognitive preferences for infant and adult faces in adult females and males.…
Simultaneous Two-Way Clustering of Multiple Correspondence Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun; Dillon, William R.
2010-01-01
A 2-way clustering approach to multiple correspondence analysis is proposed to account for cluster-level heterogeneity of both respondents and variable categories in multivariate categorical data. Specifically, in the proposed method, multiple correspondence analysis is combined with k-means in a unified framework in which "k"-means is…
Laplace Transform Based Radiative Transfer Studies
NASA Astrophysics Data System (ADS)
Hu, Y.; Lin, B.; Ng, T.; Yang, P.; Wiscombe, W.; Herath, J.; Duffy, D.
2006-12-01
Multiple scattering is the major uncertainty for data analysis of space-based lidar measurements. Until now, accurate quantitative lidar data analysis has been limited to very thin objects that are dominated by single scattering, where photons from the laser beam only scatter a single time with particles in the atmosphere before reaching the receiver, and simple linear relationship between physical property and lidar signal exists. In reality, multiple scattering is always a factor in space-based lidar measurement and it dominates space- based lidar returns from clouds, dust aerosols, vegetation canopy and phytoplankton. While multiple scattering are clear signals, the lack of a fast-enough lidar multiple scattering computation tool forces us to treat the signal as unwanted "noise" and use simple multiple scattering correction scheme to remove them. Such multiple scattering treatments waste the multiple scattering signals and may cause orders of magnitude errors in retrieved physical properties. Thus the lack of fast and accurate time-dependent radiative transfer tools significantly limits lidar remote sensing capabilities. Analyzing lidar multiple scattering signals requires fast and accurate time-dependent radiative transfer computations. Currently, multiple scattering is done with Monte Carlo simulations. Monte Carlo simulations take minutes to hours and are too slow for interactive satellite data analysis processes and can only be used to help system / algorithm design and error assessment. We present an innovative physics approach to solve the time-dependent radiative transfer problem. The technique utilizes FPGA based reconfigurable computing hardware. The approach is as following, 1. Physics solution: Perform Laplace transform on the time and spatial dimensions and Fourier transform on the viewing azimuth dimension, and convert the radiative transfer differential equation solving into a fast matrix inversion problem. The majority of the radiative transfer computation goes to matrix inversion processes, FFT and inverse Laplace transforms. 2. Hardware solutions: Perform the well-defined matrix inversion, FFT and Laplace transforms on highly parallel, reconfigurable computing hardware. This physics-based computational tool leads to accurate quantitative analysis of space-based lidar signals and improves data quality of current lidar mission such as CALIPSO. This presentation will introduce the basic idea of this approach, preliminary results based on SRC's FPGA-based Mapstation, and how we may apply it to CALIPSO data analysis.
Assessing Spurious Interaction Effects in Structural Equation Modeling
ERIC Educational Resources Information Center
Harring, Jeffrey R.; Weiss, Brandi A.; Li, Ming
2015-01-01
Several studies have stressed the importance of simultaneously estimating interaction and quadratic effects in multiple regression analyses, even if theory only suggests an interaction effect should be present. Specifically, past studies suggested that failing to simultaneously include quadratic effects when testing for interaction effects could…
barriers, both at the level of the biomass chip and the structure of the cell wall. There are multiple ) based on simultaneous saccharification and fermentation (SSF). Diagram of the traditional biomass to ) based on simultaneous saccharification and fermentation (SSF). Recently we have discovered that
Simultaneous fluorescent detection of multiple metal ions based on the DNAzymes and graphene oxide.
Yun, Wen; Wu, Hong; Liu, Xingyan; Fu, Min; Jiang, Jiaolai; Du, Yunfeng; Yang, Lizhu; Huang, Yu
2017-09-15
A novel fluorescent detection strategy for simultaneous detection of Cu 2+ , Pb 2+ and Mg 2+ based on DNAzyme branched junction structure with three kinds of DNAzymes and graphene oxide (GO) was presented. Three fluorophores labeled DNA sequences consisted with enzyme-strand (E-DNA) and substrate strand (S-DNA) were annealed to form DNAzyme branched junction structure. In the presence of target metal ion, the DNAzyme was activated to cleave the fluorophore labeled S-DNA. The S-DNA fragments were released and adsorbed onto GO surface to quench the fluorescent signal. The detection limit was calculated to be 1 nM for Cu 2+ , 200 nM for Mg 2+ , and 0.3 nM for Pb 2+ , respectively. This strategy was successfully used for simultaneous detection of Cu 2+ , Mg 2+ and Pb 2+ in human serum. Moreover, it had potential application for simultaneous detection of multiple metal ions in environmental and biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Simultaneous homicide-suicide: a case report of double drowning.
Melez, İpek Esen; Avşar, Abdullah; Başpınar, Bünyamin; Melez, Deniz Oğuzhan; Şahin, Fatih; Özdeş, Taşkın
2014-09-01
Homicide-suicide is a tragic phenomenon which typically does not result in a criminal charge or trial. However, correct diagnosis and classification of homicide-suicide cases are important to determine the perpetrators and dynamics of each category properly. The deaths in the homicide-suicide acts can be divided into two categories with respect to the number of involved individuals: dyadic deaths and triple or multiple deaths. These two categories can also be divided into two subgroups according to the chronology of the incidents: simultaneous deaths and consecutive deaths. Herein, a simultaneous homicide-suicide case of a father and daughter where both deaths occurred through drowning which was not found in the selected literature review and where the victim was a child is presented. The article aims to clarify the term discrepancies about multiple death cases in the literature and to discuss the pathological and psychosocial characteristics of the simultaneous dyadic death cases. © 2014 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
De Marchi, Luca; Marzani, Alessandro; Moll, Jochen; Kudela, Paweł; Radzieński, Maciej; Ostachowicz, Wiesław
2017-07-01
The performance of Lamb wave based monitoring systems, both in terms of diagnosis time and data complexity, can be enhanced by increasing the number of transducers used to actuate simultaneously the guided waves in the inspected medium. However, in case of multiple simultaneously-operated actuators the interference among the excited wave modes within the acquired signals has to be considered for the further processing. To this aim, in this work a code division strategy based on the Warped Frequency Transform is presented. At first, the proposed procedure encodes actuation pulses using Gold sequences. Next, for each considered actuator the acquired signals are compensated from dispersion by cross correlating the warped version of the actuated and received signals. Compensated signals form the base for a final wavenumber imaging meant at emphasizing defects and or anomalies by removing incident wavefield and edge reflections. The proposed strategy is tested numerically, and validated through an experiment in which guided waves are actuated in a plate by four piezoelectric transducers operating simultaneously.
Measuring Radiofrequency and Microwave Radiation from Varying Signal Strengths
NASA Technical Reports Server (NTRS)
Davis, Bette; Gaul, W. C.
2007-01-01
This viewgraph presentation discusses the process of measuring radiofrequency and microwave radiation from various signal strengths. The topics include: 1) Limits and Guidelines; 2) Typical Variable Standard (IEEE) Frequency Dependent; 3) FCC Standard 47 CFR 1.1310; 4) Compliance Follows Unity Rule; 5) Multiple Sources Contribute; 6) Types of RF Signals; 7) Interfering Radiations; 8) Different Frequencies Different Powers; 9) Power Summing - Peak Power; 10) Contribution from Various Single Sources; 11) Total Power from Multiple Sources; 12) Are You Out of Compliance?; and 13) In Compliance.
NASA Technical Reports Server (NTRS)
Shettle, E. P.; Green, A. E. S.
1974-01-01
An investigation is conducted regarding the increase in the UV radiation as a function of wavelength due to changes in the amounts of ozone and various other parameters affecting the radiation in the atmosphere. Attention is given to the methods that can be used to solve the problem of the transfer of radiation through an absorbing and scattering atmosphere which includes aerosols. The multiple channel solution reported by Mudgett and Richards' (1971) is extended to vertically inhomogeneous atmospheres.
Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.
Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan
2015-08-21
The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential.
Simultaneous real-time monitoring of multiple cortical systems.
Gupta, Disha; Jeremy Hill, N; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L; Schalk, Gerwin
2014-10-01
Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main Results: Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple independent brain systems. Our comparison of univariate and multivariate decoding strategies, and our analysis of the influence of their decoding parameters, provides benchmarks and guidelines for future research on this topic.
Simultaneous Real-Time Monitoring of Multiple Cortical Systems
Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin
2014-01-01
Objective Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor, or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach We study these questions using electrocorticographic (ECoG) signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (6 for offline parameter optimization, 6 for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelope. These decoders were trained separately and executed simultaneously in real time. Significance This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple independent brain systems. Our comparison of univariate and multivariate decoding strategies, and our analysis of the influence of their decoding parameters, provides benchmarks and guidelines for future research on this topic. PMID:25080161
Kaynar, Mehmet; Tekinarslan, Erdem; Keskin, Suat; Buldu, İbrahim; Sönmez, Mehmet Giray; Karatag, Tuna; Istanbulluoglu, Mustafa Okan
2015-01-01
To determine and evaluate the effective radiation exposure during a one year follow-up of urolithiasis patients following the SWL (extracorporeal shock wave lithotripsy) treatment. Total Effective Radiation Exposure (ERE) doses for each of the 129 patients: 44 kidney stone patients, 41 ureter stone patients, and 44 multiple stone location patients were calculated by adding up the radiation doses of each ionizing radiation session including images (IVU, KUB, CT) throughout a one year follow-up period following the SWL. Total mean ERE values for the kidney stone group was calculated as 15, 91 mSv (5.10-27.60), for the ureter group as 13.32 mSv (5.10-24.70), and in the multiple stone location group as 27.02 mSv (9.41-54.85). There was no statistically significant differences between the kidney and ureter groups in terms of the ERE dose values (p = 0.221) (p >0.05). In the comparison of the kidney and ureter stone groups with the multiple stone location group; however, there was a statistically significant difference (p = 0.000) (p <0.05). ERE doses should be a factor to be considered right at the initiation of any diagnostic and/or therapeutic procedure. Especially in the case of multiple stone locations, due to the high exposure to ionized radiation, different imaging modalities with low dose and/or totally without a dose should be employed in the diagnosis, treatment, and follow-up bearing the aim to optimize diagnosis while minimizing the radiation dose as much as possible.
On the Angular Variation of Solar Reflectance of Snow
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Choudhury, B. J.
1979-01-01
Spectral and integrated solar reflectance of nonhomogeneous snowpacks were derived assuming surface reflection of direct radiation and subsurface multiple scattering. For surface reflection, a bidirectional reflectance distribution function derived for an isotropic Gaussian faceted surface was considered and for subsurface multiple scattering, an approximate solution of the radiative transfer equation was studied. Solar radiation incident on the snowpack was decomposed into direct and atmospherically scattered radiation. Spectral attenuation coefficients of ozone, carbon dioxide, water vapor, aerosol and molecular scattering were included in the calculation of incident solar radiation. Illustrative numerical results were given for a case of North American winter atmospheric conditions. The calculated dependence of spectrally integrated directional reflectance (or albedo) on solar elevation was in qualitative agreement with available observations.
Multiple Authorship in Two English-Language Journals in Radiation Oncology.
ERIC Educational Resources Information Center
Halperin, Edward C.; And Others
1992-01-01
A study of multiple authorship in 1,908 papers in the "International Journal of Radiation Oncology, Biology, and Physics" and "Radiotherapy and Oncology" from 1983-87 investigated patterns and trends in number of authors per article by journal, article type, country, author's institution, author gender, and order of listing of…
Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson; ...
2018-06-14
Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson
Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less
Electron-proton spectrometer: Summary for critical design review
NASA Technical Reports Server (NTRS)
1972-01-01
The electron-proton spectrometer (EPS) is mounted external to the Skylab module complex on the command service module. It is designed to make a 2 pi omni-directional measurement of electrons and protons which result from solar flares or enhancement of the radiation belts. The EPS data will provide accurate radiation dose information so that uncertain Relative biological effectiveness factors are eliminated by measuring the external particle spectra. Astronaut radiation safety, therefore, can be ensured, as the EPS data can be used to correct or qualify radiation dose measurements recorded by other radiation measuring instrumentation within the Skylab module complex. The EPS has the capability of measuring and extremely wide dynamic radiation dose rate range, approaching 10 to the 7th power. Simultaneously the EPS has the capability to process data from extremely high radiation fields such as might be encountered in the wake of an intense solar flare.
NASA Astrophysics Data System (ADS)
Pinder, R. W.; Akhtar, F.; Loughlin, D. H.; Henze, D. K.; Bowman, K. W.
2012-12-01
Poor air quality, ecosystem damages, and climate change all are caused by the combustion of fossil fuels, yet environmental management often addresses each of these challenges separately. This can lead to sub-optimal strategies and unintended consequences. Here we present GLIMPSE -- a decision support tool for simultaneously achieving our air quality and climate change mitigation goals. GLIMPSE comprises of two types of models, (i) the adjoint of the GEOS-Chem chemical transport model, to calculate the relationship between emissions and impacts at high spatial resolution, and (ii) the MARKAL energy system model, to calculate the relationship between energy technologies and emissions. This presentation will demonstrate how GLIMPSE can be used to explore energy scenarios to better achieve both improved air quality and mitigate climate change. Second, this presentation will discuss how space-based observations can be incorporated into GLIMPSE to improve decision-making. NASA satellite products, namely ozone radiative forcing from the Tropospheric Emission Spectrometer (TES), are used to extend GLIMPSE to include the impact of emissions on ozone radiative forcing. This provides a much needed observational constraint on ozone radiative forcing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Leonard S.; Correa, Miguel
Cross-linked polyethylene (XLPE) is the most common cable insulation found in nuclear containment, and is therefore a priority material for investigation of long term aging effect from elevated temperature combined with gamma radiation exposure. Prior work has identified the possibility of anomalous aging behavior in XLPE such as the inverse temperature effect in which radiation exposure is more damaging at lower temperatures than at higher temperatures. We explored simultaneous aging of XLPE insulation from modern Firewall® III nuclear cables at 60, 90, and 115 °C, at gamma dose rates from 116 to 540 Gy/h, for exposure periods up to 25more » d. XLPE samples exposed in this way were characterized using the percent gel and uptake factor method. For the conditions and material examine, degradation behavior was seen to track proportionally with increasing temperature, rather than to exhibit greater degradation at lower temperatures. Ongoing work including similar aging at 25 °C and characterization of the XLPE samples using other methods will further elucidate these initial results« less
Microstrip patch antenna for simultaneous strain and temperature sensing
NASA Astrophysics Data System (ADS)
Mbanya Tchafa, F.; Huang, H.
2018-06-01
A patch antenna, consisting of a radiation patch, a dielectric substrate, and a ground plane, resonates at distinct fundamental frequencies that depend on the substrate dielectric constant and the dimensions of the radiation patch. Since these parameters change with the applied strain and temperature, this study investigates simultaneous strain and temperature sensing using a single antenna that has two fundamental resonant frequencies. The theoretical relationship between the antenna resonant frequency shifts, the temperature, and the applied strain was first established to guide the selection of the dielectric substrate, based on which an antenna sensor with a rectangular radiation patch was designed and fabricated. A tensile test specimen instrumented with the antenna sensor was subjected to thermo-mechanical tests. Experiment results validated the theoretical predictions that the normalized antenna resonant frequency shifts are linearly proportional to the applied strain and temperature changes. An inverse method was developed to determine the strain and temperature changes from the normalized antenna resonant frequency shifts, yielding measurement uncertainty of 0.4 °C and 17.22 μ \\varepsilon for temperature and strain measurement, respectively.
NASA Astrophysics Data System (ADS)
Caratelli, A.; Bonacini, S.; Kloukinas, K.; Marchioro, A.; Moreira, P.; De Oliveira, R.; Paillard, C.
2015-03-01
The future upgrades of the LHC experiments will increase the beam luminosity leading to a corresponding growth of the amounts of data to be treated by the data acquisition systems. To address these needs, the GBT (Giga-Bit Transceiver optical link [1,2]) architecture was developed to provide the simultaneous transfer of readout data, timing and trigger signals as well as slow control and monitoring data. The GBT-SCA ASIC, part of the GBT chip-set, has the purpose to distribute control and monitoring signals to the on-detector front-end electronics and perform monitoring operations of detector environmental parameters. In order to meet the requirements of different front-end ASICs used in the experiments, it provides various user-configurable interfaces capable to perform simultaneous operations. It is designed employing radiation tolerant design techniques to ensure robustness against SEUs and TID radiation effects and is implemented in a commercial 130 nm CMOS technology. This work presents the GBT-SCA architecture, the ASIC interfaces, the data transfer protocol, and its integration with the GBT optical link.
NASA Astrophysics Data System (ADS)
Niu, Chun-Yang; Qi, Hong; Huang, Xing; Ruan, Li-Ming; Wang, Wei; Tan, He-Ping
2015-11-01
A hybrid least-square QR decomposition (LSQR)-particle swarm optimization (LSQR-PSO) algorithm was developed to estimate the three-dimensional (3D) temperature distributions and absorption coefficients simultaneously. The outgoing radiative intensities at the boundary surface of the absorbing media were simulated by the line-of-sight (LOS) method, which served as the input for the inverse analysis. The retrieval results showed that the 3D temperature distributions of the participating media with known radiative properties could be retrieved accurately using the LSQR algorithm, even with noisy data. For the participating media with unknown radiative properties, the 3D temperature distributions and absorption coefficients could be retrieved accurately using the LSQR-PSO algorithm even with measurement errors. It was also found that the temperature field could be estimated more accurately than the absorption coefficients. In order to gain insight into the effects on the accuracy of temperature distribution reconstruction, the selection of the detection direction and the angle between two detection directions was also analyzed. Project supported by the Major National Scientific Instruments and Equipment Development Special Foundation of China (Grant No. 51327803), the National Natural Science Foundation of China (Grant No. 51476043), and the Fund of Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation University of China.
Solar radiation on Mars: Update 1991
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Landis, Geoffrey A.
1991-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data are presented from which the daily variation of the global, direct beam and diffuse insolation on Mars are calculated. Given the optical depth of the Mars atmosphere, the global radiation is calculated from the normalized net flux function based on multiple wavelength and multiple scattering of the solar radiation. The direct beam was derived from the optical depth using Beer's law, and the diffuse component was obtained from the difference of the global and the direct beam radiation. The optical depths of the Mars atmosphere were derived from images taken of the Sun with a special diode on the cameras used on the two Viking Landers.
Raman gas sensing of modified Ag nanoparticle SERS
NASA Astrophysics Data System (ADS)
Myoung, NoSoung; Yoo, Hyung Keun; Hwang, In-Wook
2014-03-01
Recent progress in modified Surface Enhanced Raman Scattering (SERS) using Ag nanoparticles makes them promising optical technique for direct gas sensing of interest. However, SERS has been shown to provide sub ppb level detection of the compounds in the vapor phase. The major problem with the sensitivity scaling-up was in the development of fabrication technology for stability and reproducibility of SERS substrates. We report an optimization of 1-propanethiol coated multiple Ag nanoparticle layers on SiO2 substrate as well as new records of real-time, simultaneous vapor phase detection of toluene and 1-2 dichlorobenzene by the radiation of fiber optic coupled 785 nm diode laser and spectrograph. Multiple depositions of Ag NPs were loaded on SiO2 and soaked in 1-propanethiol solution for 24 hours to modify the surface into hydrophobic due to the characteristics of vapor phase of our interests. Raman bands at 1003 cm-1 and 1130 cm-1 for toluene and 12DCB, respectively were compared to 1089 cm-1 and each gas concentration in 1000 mL flask were calculated as a function of each vapor phase ratio. The saturation of toluene and 12DCB were limited only by 800 ppm and the detectable range was 0.6-800 ppm.
A New Metric for Land-Atmosphere Coupling Strength: Applications on Observations and Modeling
NASA Astrophysics Data System (ADS)
Tang, Q.; Xie, S.; Zhang, Y.; Phillips, T. J.; Santanello, J. A., Jr.; Cook, D. R.; Riihimaki, L.; Gaustad, K.
2017-12-01
A new metric is proposed to quantify the land-atmosphere (LA) coupling strength and is elaborated by correlating the surface evaporative fraction and impacting land and atmosphere variables (e.g., soil moisture, vegetation, and radiation). Based upon multiple linear regression, this approach simultaneously considers multiple factors and thus represents complex LA coupling mechanisms better than existing single variable metrics. The standardized regression coefficients quantify the relative contributions from individual drivers in a consistent manner, avoiding the potential inconsistency in relative influence of conventional metrics. Moreover, the unique expendable feature of the new method allows us to verify and explore potentially important coupling mechanisms. Our observation-based application of the new metric shows moderate coupling with large spatial variations at the U.S. Southern Great Plains. The relative importance of soil moisture vs. vegetation varies by location. We also show that LA coupling strength is generally underestimated by single variable methods due to their incompleteness. We also apply this new metric to evaluate the representation of LA coupling in the Accelerated Climate Modeling for Energy (ACME) V1 Contiguous United States (CONUS) regionally refined model (RRM). This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734201
NASA Astrophysics Data System (ADS)
Nehrir, A. R.; Hoffman, D. S.; Repasky, K. S.; Todt, B.; Sharpe, T.; Half Red, C.; Carlsten, J. L.
2009-12-01
Coupled atmospheric components of the lower troposphere including aerosols and water vapor have a large affect on the chemical processes that drive the earth’s complex climate system. Aerosols can affect the earth’s global radiation budget directly by absorbing or reflecting incoming solar radiation, and indirectly by changing the microphysical properties of clouds by serving as cloud condensation nuclei (CCN). An increase in CCN results in higher cloud droplet concentration which has been shown to suppress drizzle formation and lead to more reflective clouds. The changes in the cloud microphysical structure due to the interaction of aerosols and water vapor result in more incoming solar radiation being reflected back into space, leading to a net negative radiative forcing in the global radiation budget. The uncertainty in this radiative forcing reflects the uncertainty in the understanding of the aerosol indirect effect and its role in the climate system. To better understand the aerosol direct and indirect effects, lidar measurements of aerosol properties and water vapor distributions can provide important information to enhance our understanding of the role of aerosols in the climate system. The LIDAR group at Montana State University has initiated a program to simultaneously study aerosols, water vapor, and cloud formation with high spatial and temporal resolution using both active and passive sensors. Aerosol distributions and radiative properties are currently being studied with a two-color LIDAR system at 1064 and 532 nm. In addition, a three color, high spectral resolution LIDAR system at 1064,532, and 355 nm has also been developed and is starting to take initial data. Daytime and nighttime boundary layer water vapor number density profiles are also currently being studied with an external cavity diode oscillator/diode amplifier based micro-pulsed differential absorption lidar (DIAL) instrument at the 830 nm water vapor absorption band. Cloud formation studies are being conducted by a simultaneous, spatially correlated digital sky imaging camera system where aerosol loading and water vapor distributions are monitored as a function of lateral distance to clouds. Furthermore, a commercially purchased sun/sky scanning solar radiometer (CIMEL 318) as part of the NASA run AERONET program is also being used to study aerosol loading and radiative transfer through the atmosphere. A brief description of these instruments will be presented as well as initial simultaneous results showing correlated data between lower tropospheric aerosols and boundary layer water vapor distributions over extended periods if time.
Budach, W; Hehr, T; Budach, V; Belka, C; Dietz, K
2006-01-01
Background Former meta-analyses have shown a survival benefit for the addition of chemotherapy (CHX) to radiotherapy (RT) and to some extent also for the use of hyperfractionated radiation therapy (HFRT) and accelerated radiation therapy (AFRT) in locally advanced squamous cell carcinoma (SCC) of the head and neck. However, the publication of new studies and the fact that many older studies that were included in these former meta-analyses used obsolete radiation doses, CHX schedules or study designs prompted us to carry out a new analysis using strict inclusion criteria. Methods Randomised trials testing curatively intended RT (≥60 Gy in >4 weeks/>50 Gy in <4 weeks) on SCC of the oral cavity, oropharynx, hypopharynx, and larynx published as full paper or in abstract form between 1975 and 2003 were eligible. Trials comparing RT alone with concurrent or alternating chemoradiation (5-fluorouracil (5-FU), cisplatin, carboplatin, mitomycin C) were analyzed according to the employed radiation schedule and the used CHX regimen. Studies comparing conventionally fractionated radiotherapy (CFRT) with either HFRT or AFRT without CHX were separately examined. End point of the meta-analysis was overall survival. Results Thirty-two trials with a total of 10 225 patients were included into the meta-analysis. An overall survival benefit of 12.0 months was observed for the addition of simultaneous CHX to either CFRT or HFRT/AFRT (p < 0.001). Separate analyses by cytostatic drug indicate a prolongation of survival of 24.0 months, 16.8 months, 6.7 months, and 4.0 months, respectively, for the simultaneous administration of 5-FU, cisplatin-based, carboplatin-based, and mitomycin C-based CHX to RT (each p < 0.01). Whereas no significant gain in overall survival was observed for AFRT in comparison to CFRT, a substantial prolongation of median survival (14.2 months, p < 0.001) was seen for HFRT compared to CFRT (both without CHX). Conclusion RT combined with simultaneous 5-FU, cisplatin, carboplatin, and mitomycin C as single drug or combinations of 5-FU with one of the other drugs results in a large survival advantage irrespective the employed radiation schedule. If radiation therapy is used as single modality, hyperfractionation leads to a significant improvement of overall survival. Accelerated radiation therapy alone, especially when given as split course radiation schedule or extremely accelerated treatments with decreased total dose, does not increase overall survival. PMID:16448551
Effects of Strike-Slip Fault Segmentation on Earthquake Energy and Seismic Hazard
NASA Astrophysics Data System (ADS)
Madden, E. H.; Cooke, M. L.; Savage, H. M.; McBeck, J.
2014-12-01
Many major strike-slip faults are segmented along strike, including those along plate boundaries in California and Turkey. Failure of distinct fault segments at depth may be the source of multiple pulses of seismic radiation observed for single earthquakes. However, how and when segmentation affects fault behavior and energy release is the basis of many outstanding questions related to the physics of faulting and seismic hazard. These include the probability for a single earthquake to rupture multiple fault segments and the effects of segmentation on earthquake magnitude, radiated seismic energy, and ground motions. Using numerical models, we quantify components of the earthquake energy budget, including the tectonic work acting externally on the system, the energy of internal rock strain, the energy required to overcome fault strength and initiate slip, the energy required to overcome frictional resistance during slip, and the radiated seismic energy. We compare the energy budgets of systems of two en echelon fault segments with various spacing that include both releasing and restraining steps. First, we allow the fault segments to fail simultaneously and capture the effects of segmentation geometry on the earthquake energy budget and on the efficiency with which applied displacement is accommodated. Assuming that higher efficiency correlates with higher probability for a single, larger earthquake, this approach has utility for assessing the seismic hazard of segmented faults. Second, we nucleate slip along a weak portion of one fault segment and let the quasi-static rupture propagate across the system. Allowing fractures to form near faults in these models shows that damage develops within releasing steps and promotes slip along the second fault, while damage develops outside of restraining steps and can prohibit slip along the second fault. Work is consumed in both the propagation of and frictional slip along these new fractures, impacting the energy available for further slip and for subsequent earthquakes. This suite of models reveals that efficiency may be a useful tool for determining the relative seismic hazard of different segmented fault systems, while accounting for coseismic damage zone production is critical in assessing fault interactions and the associated energy budgets of specific systems.
Hybrid Active-Passive Systems for Control of Aircraft Interior Noise
NASA Technical Reports Server (NTRS)
Fuller, Chris R.
1999-01-01
Previous work has demonstrated the large potential for hybrid active-passive systems for attenuating interior noise in aircraft fuselages. The main advantage of an active-passive system is, by utilizing the natural dynamics of the actuator system, the control actuator power and weight is markedly reduced and stability/robustness is enhanced. Three different active-passive approaches were studied in the past year. The first technique utilizes multiple tunable vibration absorbers (ATVA) for reducing narrow band sound radiated from panels and transmitted through fuselage structures. The focus is on reducing interior noise due to propeller or turbo fan harmonic excitation. Two types of tunable vibration absorbers were investigated; a solid state system based upon a piezoelectric mechanical exciter and an electromechanical system based upon a Motran shaker. Both of these systems utilize a mass-spring dynamic effect to maximize tile output force near resonance of the shaker system and so can also be used as vibration absorbers. The dynamic properties of the absorbers (i.e. resonance frequency) were modified using a feedback signal from an accelerometer mounted on the active mass, passed through a compensator and fed into the drive component of the shaker system (piezoelectric element or voice coil respectively). The feedback loop consisted of a two coefficient FIR filter, implemented on a DSP, where the input is acceleration of tile ATVA mass and the output is a force acting in parallel with the stiffness of the absorber. By separating the feedback signal into real and imaginary components, the effective natural frequency and damping of the ATVA can be altered independently. This approach gave control of the resonance frequencies while also allowing the simultaneous removal of damping from the ATVA, thus increasing the ease of controllability and effectiveness. In order to obtain a "tuned" vibration absorber the chosen resonant frequency was set to the excitation frequency. In order to minimize sound radiation a gradient descent algorithm was developed which globally adapted the resonance frequencies of multiple ATVA's while minimizing a cost based upon the radiated sound power or sound energy obtained from an array of microphones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosztyla, Robert, E-mail: rkosztyla@bccancer.bc.ca; Chan, Elisa K.; Hsu, Fred
Purpose: The objective of this study was to compare recurrent tumor locations after radiation therapy with pretreatment delineations of high-grade gliomas from magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[{sup 18}F]fluoro-L-phenylalanine ({sup 18}F-FDOPA) positron emission tomography (PET) using contours delineated by multiple observers. Methods and Materials: Nineteen patients with newly diagnosed high-grade gliomas underwent computed tomography (CT), gadolinium contrast-enhanced MRI, and {sup 18}F-FDOPA PET/CT. The image sets (CT, MRI, and PET/CT) were registered, and 5 observers contoured gross tumor volumes (GTVs) using MRI and PET. Consensus contours were obtained by simultaneous truth and performance level estimation (STAPLE). Interobserver variability was quantified bymore » the percentage of volume overlap. Recurrent tumor locations after radiation therapy were contoured by each observer using CT or MRI. Consensus recurrence contours were obtained with STAPLE. Results: The mean interobserver volume overlap for PET GTVs (42% ± 22%) and MRI GTVs (41% ± 22%) was not significantly different (P=.67). The mean consensus volume was significantly larger for PET GTVs (58.6 ± 52.4 cm{sup 3}) than for MRI GTVs (30.8 ± 26.0 cm{sup 3}, P=.003). More than 95% of the consensus recurrence volume was within the 95% isodose surface for 11 of 12 (92%) cases with recurrent tumor imaging. Ten (91%) of these cases extended beyond the PET GTV, and 9 (82%) were contained within a 2-cm margin on the MRI GTV. One recurrence (8%) was located outside the 95% isodose surface. Conclusions: High-grade glioma contours obtained with {sup 18}F-FDOPA PET had similar interobserver agreement to volumes obtained with MRI. Although PET-based consensus target volumes were larger than MRI-based volumes, treatment planning using PET-based volumes may not have yielded better treatment outcomes, given that all but 1 recurrence extended beyond the PET GTV and most were contained by a 2-cm margin on the MRI GTV.« less
NASA Astrophysics Data System (ADS)
Stolarski, David J.; Cain, Clarence P.; Schuster, Kurt J.; Imholte, Michelle; Carothers, Val C.; Buffington, Gavin D.; Edwards, Michael; Thomas, Robert J.; Rockwell, Benjamin A.
2005-04-01
To assess the retinal hazards related to simultaneous exposure from two lasers of separate wavelengths, the retinal effects of 5-second laser irradiation from 532 nm and 647 nm were determined in non-human primates. A total of six eyes were exposed using equal amounts of power to determine the damage levels. The results were combined with those of previous, two-wavelength studies done by our group and compared to damage models developed in our lab. The data were also compared to the calculations resulting from use of the currently accepted method of predicting hazards from simultaneous lasing.
Optical properties reconstruction using the adjoint method based on the radiative transfer equation
NASA Astrophysics Data System (ADS)
Addoum, Ahmad; Farges, Olivier; Asllanaj, Fatmir
2018-01-01
An efficient algorithm is proposed to reconstruct the spatial distribution of optical properties in heterogeneous media like biological tissues. The light transport through such media is accurately described by the radiative transfer equation in the frequency-domain. The adjoint method is used to efficiently compute the objective function gradient with respect to optical parameters. Numerical tests show that the algorithm is accurate and robust to retrieve simultaneously the absorption μa and scattering μs coefficients for lowly and highly absorbing medium. Moreover, the simultaneous reconstruction of μs and the anisotropy factor g of the Henyey-Greenstein phase function is achieved with a reasonable accuracy. The main novelty in this work is the reconstruction of g which might open the possibility to image this parameter in tissues as an additional contrast agent in optical tomography.
Marangoni, M; Lobino, M; Ramponi, R
2006-09-15
Third-harmonic generation (THG) in the cw regime from C-band radiation was achieved in annealed proton-exchanged periodically poled lithium niobate (PPLN) waveguides. By suitable design of fabrication parameters and operating conditions, quasi-phase-matching (QPM) is obtained simultaneously for the second-harmonic generation process (omega-->2omega, first-order QPM) and for the sum-frequency-generation process (omega+2omega-->3omega, third-order QPM), which provides the third harmonic of the pump field. The high overlap between the field profiles of the interacting modes--TM00 at omega and TM10 at 2omega and 3omega--results in what is believed to be the highest ever reported normalized conversion efficiency for THG from telecommunication wavelengths, equal to 0.72%W(-2) cm(-4).
LITERATURE REVIEW OF MOLECULAR METHODS FOR SIMULTANEOUS DETECTION OF PATHOGENS IN WATER
This literature search is a review of molecular technologies (qPCR, microarray, microfluidics and lab-on-a-chip) for simultaneous detection of multiple waterborne pathogens in order to understand the state of the technology. The search content focuses on: pathogen detection witho...
Estimating the lifetime risk of cancer associated with multiple CT scans.
Ivanov, V K; Kashcheev, V V; Chekin, S Yu; Menyaylo, A N; Pryakhin, E A; Tsyb, A F; Mettler, F A
2014-12-01
Multiple CT scans are often done on the same patient resulting in an increased risk of cancer. Prior publications have estimated risks on a population basis and often using an effective dose. Simply adding up the risks from single scans does not correctly account for the survival function. A methodology for estimating personal radiation risks attributed to multiple CT imaging using organ doses is presented in this article. The estimated magnitude of the attributable risk fraction for the possible development of radiation-induced cancer indicates the necessity for strong clinical justification when ordering multiple CT scans.
A Novel Approach to Beam Steering Using Arrays Composed of Multiple Unique Radiating Modes
NASA Astrophysics Data System (ADS)
Labadie, Nathan Richard
Phased array antennas have found wide application in both radar and wireless communications systems particularly as implementation costs continue to decrease. The primary advantages of electronically scanned arrays are speed of beam scan and versatility of beamforming compared to mechanically scanned fixed beam antennas. These benefits come at the cost of a few well known design issues including element pattern rolloff and mutual coupling between elements. Our primary contribution to the field of research is the demonstration of significant improvement in phased array scan performance using multiple unique radiating modes. In short, orthogonal radiating modes have minimal coupling by definition and can also be generated with reduced rolloff at wide scan angles. In this dissertation, we present a combination of analysis, full-wave electromagnetic simulation and measured data to support our claims. The novel folded ring resonator (FRR) antenna is introduced as a wideband and multi-band element embedded in a grounded dielectric substrate. Multiple radiating modes of a small ground plane excited by a four element FRR array were also investigated. A novel hemispherical null steering antenna composed of two collocated radiating elements, each supporting a unique radiating mode, is presented in the context of an anti-jam GPS receiver application. Both the antenna aperture and active feed network were fabricated and measured showing excellent agreement with analytical and simulated data. The concept of using an antenna supporting multiple radiating modes for beam steering is also explored. A 16 element hybrid linear phased array was fabricated and measured demonstrating significantly improved scan range and scanned gain compared to a conventional phased array. This idea is expanded to 2 dimensional scanning arrays by analysis and simulation of a hybrid phased array composed of novel multiple mode monopole on patch antenna sub-arrays. Finally, we fabricated and characterized the 2D scanning hybrid phased array demonstrating wide angle scanning with high antenna efficiency.
NASA Technical Reports Server (NTRS)
Regelson, W.; West, B.; Depaola, D. P.
1978-01-01
Simultaneous treatment utilizing pulsed radiowave and cancer chemotherapy significantly extended the life span of mice with Lewis lung transplanted carcinoma. In comparison with nontreated controls, the combination of hydroxyurea and whole body nonionizing EM radiation (at 27.12 MHz) produced differential enhancement of longevity depending on hydroxyurea combined with highest power output achieved by pulsing the radiation 600 times per second; at a 3.9% duty cycle, peak watts = 975 produced the mean extension of life 67% greater than that of the group treated with hydroxyurea alone.
Abrams, Daniel A; Nicol, Trent; White-Schwoch, Travis; Zecker, Steven; Kraus, Nina
2017-05-01
Speech perception relies on a listener's ability to simultaneously resolve multiple temporal features in the speech signal. Little is known regarding neural mechanisms that enable the simultaneous coding of concurrent temporal features in speech. Here we show that two categories of temporal features in speech, the low-frequency speech envelope and periodicity cues, are processed by distinct neural mechanisms within the same population of cortical neurons. We measured population activity in primary auditory cortex of anesthetized guinea pig in response to three variants of a naturally produced sentence. Results show that the envelope of population responses closely tracks the speech envelope, and this cortical activity more closely reflects wider bandwidths of the speech envelope compared to narrow bands. Additionally, neuronal populations represent the fundamental frequency of speech robustly with phase-locked responses. Importantly, these two temporal features of speech are simultaneously observed within neuronal ensembles in auditory cortex in response to clear, conversation, and compressed speech exemplars. Results show that auditory cortical neurons are adept at simultaneously resolving multiple temporal features in extended speech sentences using discrete coding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele
2012-06-01
Using diffractive micro-lenses configured in an array and placed in close proximity to the focal plane array will enable a small compact simultaneous multispectral imaging camera. This approach can be applied to spectral regions from the ultraviolet (UV) to the long-wave infrared (LWIR). The number of simultaneously imaged spectral bands is determined by the number of individually configured diffractive optical micro-lenses (lenslet) in the array. Each lenslet images at a different wavelength determined by the blaze and set at the time of manufacturing based on application. In addition, modulation of the focal length of the lenslet array with piezoelectric or electro-static actuation will enable spectral band fill-in allowing hyperspectral imaging. Using the lenslet array with dual-band detectors will increase the number of simultaneous spectral images by a factor of two when utilizing multiple diffraction orders. Configurations and concept designs will be presented for detection application for biological/chemical agents, buried IED's and reconnaissance. The simultaneous detection of multiple spectral images in a single frame of data enhances the image processing capability by eliminating temporal differences between colors and enabling a handheld instrument that is insensitive to motion.
Physics of cardiac imaging with multiple-row detector CT.
Mahesh, Mahadevappa; Cody, Dianna D
2007-01-01
Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.
Quantum-enhanced metrology for multiple phase estimation with noise
Yue, Jie-Dong; Zhang, Yu-Ran; Fan, Heng
2014-01-01
We present a general quantum metrology framework to study the simultaneous estimation of multiple phases in the presence of noise as a discretized model for phase imaging. This approach can lead to nontrivial bounds of the precision for multiphase estimation. Our results show that simultaneous estimation (SE) of multiple phases is always better than individual estimation (IE) of each phase even in noisy environment. The utility of the bounds of multiple phase estimation for photon loss channels is exemplified explicitly. When noise is low, those bounds possess the Heisenberg scale showing quantum-enhanced precision with the O(d) advantage for SE, where d is the number of phases. However, this O(d) advantage of SE scheme in the variance of the estimation may disappear asymptotically when photon loss becomes significant and then only a constant advantage over that of IE scheme demonstrates. Potential application of those results is presented. PMID:25090445
Sun, Chao; Yang, Shiwen; Chen, Yikai; Guo, Jixin; Qu, Shiwei
2018-01-09
Electromagnetic waves carrying orbital angular momentum (OAM) in radio frequency range have drawn great attention owing to its potential applications in increasing communication capacity. In this paper, both single-pole single-throw (SPST) switches and single-pole double-throw (SPDT) switches are designed and implemented. Optimal time sequence allows four-dimensional (4-D) circular antenna array to generate multiple OAM-carrying waves as well as enhance the field intensity of each OAM-carrying wave. A novel experimental platform is developed to measure the phase distribution when the transmitting antenna and the receiving antenna operate at different frequencies. The good agreement between the measurement and simulation results demonstrate that 4-D circular antenna array is able to generate multiple OAM modes simultaneously. Furthermore, the superiority of the 4-D circular antenna array in receiving and demodulating multiple OAM-carrying signals is validated through the filter and bit error rate (BER) simulations.
Multiple-mouse MRI with multiple arrays of receive coils.
Ramirez, Marc S; Esparza-Coss, Emilio; Bankson, James A
2010-03-01
Compared to traditional single-animal imaging methods, multiple-mouse MRI has been shown to dramatically improve imaging throughput and reduce the potentially prohibitive cost for instrument access. To date, up to a single radiofrequency coil has been dedicated to each animal being simultaneously scanned, thus limiting the sensitivity, flexibility, and ultimate throughput. The purpose of this study was to investigate the feasibility of multiple-mouse MRI with a phased-array coil dedicated to each animal. A dual-mouse imaging system, consisting of a pair of two-element phased-array coils, was developed and used to achieve acceleration factors greater than the number of animals scanned at once. By simultaneously scanning two mice with a retrospectively gated cardiac cine MRI sequence, a 3-fold acceleration was achieved with signal-to-noise ratio in the heart that is equivalent to that achieved with an unaccelerated scan using a commercial mouse birdcage coil. (c) 2010 Wiley-Liss, Inc.
Multi-pixel high-resolution three-dimensional imaging radar
NASA Technical Reports Server (NTRS)
Cooper, Ken B. (Inventor); Dengler, Robert J. (Inventor); Siegel, Peter H. (Inventor); Chattopadhyay, Goutam (Inventor); Ward, John S. (Inventor); Juan, Nuria Llombart (Inventor); Bryllert, Tomas E. (Inventor); Mehdi, Imran (Inventor); Tarsala, Jan A. (Inventor)
2012-01-01
A three-dimensional imaging radar operating at high frequency e.g., 670 GHz radar using low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform, is disclosed that operates with a multiplexed beam to obtain range information simultaneously on multiple pixels of a target. A source transmit beam may be divided by a hybrid coupler into multiple transmit beams multiplexed together and directed to be reflected off a target and return as a single receive beam which is demultiplexed and processed to reveal range information of separate pixels of the target associated with each transmit beam simultaneously. The multiple transmit beams may be developed with appropriate optics to be temporally and spatially differentiated before being directed to the target. Temporal differentiation corresponds to a different intermediate frequencies separating the range information of the multiple pixels. Collinear transmit beams having differentiated polarizations may also be implemented.
MOLECULAR ALTERATIONS IN GLIOBLASTOMA: POTENTIAL TARGETS FOR IMMUNOTHERAPY
Haque, Azizul; Banik, Naren L.; Ray, Swapan K.
2015-01-01
Glioblastoma is the most common and deadly brain tumor, possibly arising from genetic and epigenetic alterations in normal astroglial cells. Multiple cytogenetic, chromosomal, and genetic alterations have been identified in glioblastoma, with distinct expression of antigens (Ags) and biomarkers that may alter therapeutic potential of this aggressive cancer. Current therapy consists of surgical resection, followed by radiation therapy and chemotherapy. In spite of these treatments, the prognosis for glioblastoma patients is poor. Although recent studies have focused on the development of novel immunotherapeutics against glioblastoma, little is known about glioblastoma specific immune responses. A better understanding of the molecular interactions among glioblastoma tumors, host immune cells, and the tumor microenvironment may give rise to novel integrated approaches for the simultaneous control of tumor escape pathways and the activation of antitumor immune responses. This review provides a detailed overview concerning genetic alterations in glioblastoma, their effects on Ag and biomarker expression and the future design of chemoimmunotherapeutics against glioblastoma. PMID:21199773
NASA Astrophysics Data System (ADS)
Bolshakov, A. S.; Chaldyshev, V. V.; Zavarin, E. E.; Sakharov, A. V.; Lundin, W. V.; Tsatsulnikov, A. F.; Yagovkina, M. A.
2017-04-01
We studied the optical properties of periodic InGaN/GaN multiple quantum well systems with different numbers of periods. A resonant increase in the optical reflection and simultaneous suppression of the optical absorption have been revealed experimentally at room temperature when the Bragg and exciton resonances were tuned to each other. Numerical modeling with a single set of parameters gave a quantitatively accurate fit of the experimental reflection and transmission spectra in a wide wavelength range and various angles of the light incidence. The model included both exciton resonance and non-resonant band-to-band transitions in the InGaN quantum wells, as well as Rayleigh light scattering in the GaN buffer layer. The analysis also involved x-ray diffraction and photoluminescence data. It allowed us to determine the key parameters of the structure. In particular, the radiative broadening of the InGaN QW excitons was evaluated as 0.20 ± 0.02 meV.
Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease.
Kogan, Feliks; Fan, Audrey P; Gold, Garry E
2016-12-01
Early detection of musculoskeletal disease leads to improved therapies and patient outcomes, and would benefit greatly from imaging at the cellular and molecular level. As it becomes clear that assessment of multiple tissues and functional processes are often necessary to study the complex pathogenesis of musculoskeletal disorders, the role of multi-modality molecular imaging becomes increasingly important. New positron emission tomography-magnetic resonance imaging (PET-MRI) systems offer to combine high-resolution MRI with simultaneous molecular information from PET to study the multifaceted processes involved in numerous musculoskeletal disorders. In this article, we aim to outline the potential clinical utility of hybrid PET-MRI to these non-oncologic musculoskeletal diseases. We summarize current applications of PET molecular imaging in osteoarthritis (OA), rheumatoid arthritis (RA), metabolic bone diseases and neuropathic peripheral pain. Advanced MRI approaches that reveal biochemical and functional information offer complementary assessment in soft tissues. Additionally, we discuss technical considerations for hybrid PET-MR imaging including MR attenuation correction, workflow, radiation dose, and quantification.
Plant Seeds as Model Vectors for the Transfer of Life Through Space
NASA Astrophysics Data System (ADS)
Tepfer, David; Leach, Sydney
2006-12-01
We consider plant seeds as terrestrial models for a vectored life form that could protect biological information in space. Seeds consist of maternal tissue surrounding and protecting an embryo. Some seeds resist deleterious conditions found in space: ultra low vacuum, extreme temperatures and radiation, including intense UV light. In a receptive environment, seeds could liberate a viable embryo, viable higher cells or a viable free-living organism (an endosymbiont or endophyte). Even if viability is lost, seeds still contain functional macro and small molecules (DNA, RNA, proteins, amino acids, lipids, etc.) that could provide the chemical basis for starting or modifying life. The possible release of endophytes or endosymbionts from a seed-like space traveler suggests that multiple domains of life, defined in DNA sequence phylogenies, could be disseminated simultaneously from Earth. We consider the possibility of exospermia, the outward transfer of life, as well as introspermia, the inward transfer of life-both as a contemporary and ancient events.
Ko, Toshiyuki; Utanohara, Yuko; Suzuki, Yasuhiro; Kurihara, Makiko; Iguchi, Nobuo; Umemura, Jun; Sumiyoshi, Tetsuya; Tomoike, Hitonobu
2016-01-01
Simultaneous dual-isotope SPECT imaging with 201Tl and (123)I-β-methyl-p-iodophenylpentadecanoic acid (BMIPP) is used to study the perfusion-metabolism mismatch. It predicts post-ischemic functional recovery by detecting stunned myocardium. On the other hand, (99m)Tc-MIBI is another radioisotope widely used in myocardial perfusion imaging because of its better image quality and lower radiation exposure than 201Tl. However, since the photopeak energies of (99m)Tc and (123)I are very similar, crosstalk hampers the simultaneous use of these two radioisotopes. To overcome this problem, we conducted simultaneous dual-isotope imaging study using the D-SPECT scanner (Spectrum-Dynamics, Israel) which has a novel detector design and excellent energy resolution. We first conducted a basic experiment using cardiac phantom to simulate the condition of normal perfusion and impaired fatty acid metabolism. Subsequently, we prospectively recruited 30 consecutive patients who underwent successful percutaneous coronary intervention for acute myocardial infarction, and performed (99m)Tc-MIBI/(123)I-BMIPP dual-isotope imaging within 5 days after reperfusion. Images were interpreted by two experienced cardiovascular radiologists to identify the infarcted and stunned areas based on the coronary artery territories. As a result, cardiac phantom experiment revealed no significant crosstalk between (99m)Tc and (123)I. In the subsequent clinical study, (99m)Tc-MIBI/(123)I-BMIPP dual-isotope imaging in all participant yielded excellent image quality and detected infarcted and stunned areas correctly when compared with coronary angiographic findings. Furthermore, we were able to reduce radiation exposure to significantly approximately one-eighth. In conclusion, we successfully demonstrated the practical application of simultaneous assessment of myocardial perfusion and fatty acid metabolism by (99m)Tc-MIBI and (123)I-BMIPP using a D-SPECT cardiac scanner. Compared with conventional (201)TlCl/(123)I-BMIPP dual-isotope imaging, the use of (99m)Tc-MIBI instead of (201)TlCl improves image quality as well as lowers radiation exposure.
Harari, Colin M.; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T.; Lubner, Meghan G.; Hinshaw, J. Louis; Ziemlewicz, Timothy
2016-01-01
Purpose To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. Materials and Methods All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. Results On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P < .05). Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P < .05). Ablations were generally smaller in vivo compared with ex vivo. Conclusion The use of multiple antennas and simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015 PMID:26133361
Xiang, Zheng; Ni, Binbin; Zhou, Chen; ...
2016-05-03
Radiation belt electron flux dropouts are a kind of drastic variation in the Earth's magnetosphere, understanding of which is of both scientific and societal importance. We report multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an event of intense solar wind dynamic pressure pulse, using electron flux data from a group of 14 satellites. Moreover, when the pulse occurred, magnetopause and atmospheric loss could take effect concurrently contributing to the electron flux dropout. Losses through the magnetopause were observed to be efficient and significant at L ≳ 5, owing to the magnetopause intrusion into Lmore » ~6 and outward radial diffusion associated with sharp negative gradient in electron phase space density. Losses to the atmosphere were directly identified from the precipitating electron flux observations, for which pitch angle scattering by plasma waves could be mainly responsible. While the convection and substorm injections strongly enhanced the energetic electron fluxes up to hundreds of keV, they could delay other than avoid the occurrence of electron flux dropout at these energies. Finally, we demonstrate that the pulse-time radiation belt electron flux dropout depends strongly on the specific interplanetary and magnetospheric conditions and that losses through the magnetopause and to the atmosphere and enhancements of substorm injection play an essential role in combination, which should be incorporated as a whole into future simulations for comprehending the nature of radiation belt electron flux dropouts.« less
Development of Multiple-Element Flame Emission Spectrometer Using CCD Detection
ERIC Educational Resources Information Center
Seney, Caryn S.; Sinclair, Karen V.; Bright, Robin M.; Momoh, Paul O.; Bozeman, Amelia D.
2005-01-01
The full wavelength coverage of charge coupled device (CCD) detector when coupled with an echelle spectrography, the system allows for simultaneously multiple element spectroscopy to be performed. The multiple-element flame spectrometer was built and characterized through the analysis of environmentally significant elements such as Ca, K, Na, Cu,…
Endogenous Task Shift Processes in Relapsing-Remitting Multiple Sclerosis
ERIC Educational Resources Information Center
Stablum, F.; Meligrana, L.; Sgaramella, T.; Bortolon, F.; Toso, V.
2004-01-01
This paper reports a study that was aimed to evaluate executive functions in relapsing-remitting multiple sclerosis patients. The groups tested comprised 22 relapsing-remitting multiple sclerosis patients, and 22 non-brain damaged controls. When one is engaged in two speeded tasks, not simultaneously but with some form of alternation, it is slower…
Web Transfer Over Satellites Being Improved
NASA Technical Reports Server (NTRS)
Allman, Mark
1999-01-01
Extensive research conducted by NASA Lewis Research Center's Satellite Networks and Architectures Branch and the Ohio University has demonstrated performance improvements in World Wide Web transfers over satellite-based networks. The use of a new version of the Hypertext Transfer Protocol (HTTP) reduced the time required to load web pages over a single Transmission Control Protocol (TCP) connection traversing a satellite channel. However, an older technique of simultaneously making multiple requests of a given server has been shown to provide even faster transfer time. Unfortunately, the use of multiple simultaneous requests has been shown to be harmful to the network in general. Therefore, we are developing new mechanisms for the HTTP protocol which may allow a single request at any given time to perform as well as, or better than, multiple simultaneous requests. In the course of study, we also demonstrated that the time for web pages to load is at least as short via a satellite link as it is via a standard 28.8-kbps dialup modem channel. This demonstrates that satellites are a viable means of accessing the Internet.
Hagopian, Raffi; Davidson, John R; Datta, Ruchira S; Samad, Bushra; Jarvis, Glen R; Sjölander, Kimmen
2010-07-01
We present the jump-start simultaneous alignment and tree construction using hidden Markov models (SATCHMO-JS) web server for simultaneous estimation of protein multiple sequence alignments (MSAs) and phylogenetic trees. The server takes as input a set of sequences in FASTA format, and outputs a phylogenetic tree and MSA; these can be viewed online or downloaded from the website. SATCHMO-JS is an extension of the SATCHMO algorithm, and employs a divide-and-conquer strategy to jump-start SATCHMO at a higher point in the phylogenetic tree, reducing the computational complexity of the progressive all-versus-all HMM-HMM scoring and alignment. Results on a benchmark dataset of 983 structurally aligned pairs from the PREFAB benchmark dataset show that SATCHMO-JS provides a statistically significant improvement in alignment accuracy over MUSCLE, Multiple Alignment using Fast Fourier Transform (MAFFT), ClustalW and the original SATCHMO algorithm. The SATCHMO-JS webserver is available at http://phylogenomics.berkeley.edu/satchmo-js. The datasets used in these experiments are available for download at http://phylogenomics.berkeley.edu/satchmo-js/supplementary/.
Simultaneous acquisition of multiple auditory-motor transformations in speech
Rochet-Capellan, Amelie; Ostry, David J.
2011-01-01
The brain easily generates the movement that is needed in a given situation. Yet surprisingly, the results of experimental studies suggest that it is difficult to acquire more than one skill at a time. To do so, it has generally been necessary to link the required movement to arbitrary cues. In the present study, we show that speech motor learning provides an informative model for the acquisition of multiple sensorimotor skills. During training, subjects are required to repeat aloud individual words in random order while auditory feedback is altered in real-time in different ways for the different words. We find that subjects can quite readily and simultaneously modify their speech movements to correct for these different auditory transformations. This multiple learning occurs effortlessly without explicit cues and without any apparent awareness of the perturbation. The ability to simultaneously learn several different auditory-motor transformations is consistent with the idea that in speech motor learning, the brain acquires instance specific memories. The results support the hypothesis that speech motor learning is fundamentally local. PMID:21325534
Effects of multiple scattering and surface albedo on the photochemistry of the troposphere
NASA Technical Reports Server (NTRS)
Augustsson, T. R.; Tiwari, S. N.
1981-01-01
The effect of treatment of incoming solar radiation on the photochemistry of the troposphere is discussed. A one dimensional photochemical model of the troposphere containing the species of the nitrogen, oxygen, carbon, hydrogen, and sulfur families was developed. The vertical flux is simulated by use of the parameterized eddy diffusion coefficients. The photochemical model is coupled to a radiative transfer model that calculates the radiation field due to the incoming solar radiation which initiates much of the photochemistry of the troposphere. Vertical profiles of tropospheric species were compared with the Leighton approximation, radiative transfer, matrix inversion model. The radiative transfer code includes the effects of multiple scattering due to molecules and aerosols, pure absorption, and surface albedo on the transfer of incoming solar radiation. It is indicated that significant differences exist for several key photolysis frequencies and species number density profiles between the Leighton approximation and the profiles generated with, radiative transfer, matrix inversion technique. Most species show enhanced vertical profiles when the more realistic treatment of the incoming solar radiation field is included
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustsson, T.R.; Tiwari, S.N.
The effect of treatment of incoming solar radiation on the photochemistry of the troposphere is discussed. A one dimensional photochemical model of the troposphere containing the species of the nitrogen, oxygen, carbon, hydrogen, and sulfur families was developed. The vertical flux is simulated by use of the parameterized eddy diffusion coefficients. The photochemical model is coupled to a radiative transfer model that calculates the radiation field due to the incoming solar radiation which initiates much of the photochemistry of the troposphere. Vertical profiles of tropospheric species were compared with the Leighton approximation, radiative transfer, matrix inversion model. The radiative transfermore » code includes the effects of multiple scattering due to molecules and aerosols, pure absorption, and surface albedo on the transfer of incoming solar radiation. It is indicated that significant differences exist for several key photolysis frequencies and species number density profiles between the Leighton approximation and the profiles generated with, radiative transfer, matrix inversion technique. Most species show enhanced vertical profiles when the more realistic treatment of the incoming solar radiation field is included« less
NASA Astrophysics Data System (ADS)
Águila, Ana del; Gómez, Laura; Vilaplana, José Manuel; Sorribas, Mar; Córdoba-Jabonero, Carmen
2018-04-01
Cirrus (Ci) clouds are involved in Climate Change concerns since they affect the radiative balance of the atmosphere. Recently, a polarized Micro Pulse Lidar (P-MPL), standard system within NASA/MPLNET has been deployed at the INTA/Atmospheric Observatory `El Arenosillo' (ARN), located in the SW Iberian Peninsula. Hence, the INTA/P-MPL system is used for Ci detection over that station for the first time. Radiative effects of a Ci case observed over ARN are examined, as reference for future long-term Ci observations. Optical and macrophysical properties are retrieved, and used for radiative transfer simulations. Data are compared to the measured surface radiation levels and all-sky images simultaneously performed at the ARN station.
Non-destructive component separation using infrared radiant energy
Simandl, Ronald F [Knoxville, TN; Russell, Steven W [Knoxville, TN; Holt, Jerrid S [Knoxville, TN; Brown, John D [Harriman, TN
2011-03-01
A method for separating a first component and a second component from one another at an adhesive bond interface between the first component and second component. Typically the method involves irradiating the first component with infrared radiation from a source that radiates substantially only short wavelengths until the adhesive bond is destabilized, and then separating the first component and the second component from one another. In some embodiments an assembly of components to be debonded is placed inside an enclosure and the assembly is illuminated from an IR source that is external to the enclosure. In some embodiments an assembly of components to be debonded is simultaneously irradiated by a multi-planar array of IR sources. Often the IR radiation is unidirectional. In some embodiments the IR radiation is narrow-band short wavelength infrared radiation.
Bao, Zehua; Xiao, Han; Liang, Jing; Zhang, Lu; Xiong, Xiong; Sun, Ning; Si, Tong; Zhao, Huimin
2015-05-15
One-step multiple gene disruption in the model organism Saccharomyces cerevisiae is a highly useful tool for both basic and applied research, but it remains a challenge. Here, we report a rapid, efficient, and potentially scalable strategy based on the type II Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated proteins (Cas) system to generate multiple gene disruptions simultaneously in S. cerevisiae. A 100 bp dsDNA mutagenizing homologous recombination donor is inserted between two direct repeats for each target gene in a CRISPR array consisting of multiple donor and guide sequence pairs. An ultrahigh copy number plasmid carrying iCas9, a variant of wild-type Cas9, trans-encoded RNA (tracrRNA), and a homology-integrated crRNA cassette is designed to greatly increase the gene disruption efficiency. As proof of concept, three genes, CAN1, ADE2, and LYP1, were simultaneously disrupted in 4 days with an efficiency ranging from 27 to 87%. Another three genes involved in an artificial hydrocortisone biosynthetic pathway, ATF2, GCY1, and YPR1, were simultaneously disrupted in 6 days with 100% efficiency. This homology-integrated CRISPR (HI-CRISPR) strategy represents a powerful tool for creating yeast strains with multiple gene knockouts.
Simultaneous Inference Procedures for Means.
ERIC Educational Resources Information Center
Krishnaiah, P. R.
Some aspects of simultaneous tests for means are reviewed. Specifically, the comparison of univariate or multivariate normal populations based on the values of the means or mean vectors when the variances or covariance matrices are equal is discussed. Tukey's and Dunnett's tests for multiple comparisons of means, Scheffe's method of examining…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn; Jiang, Song, E-mail: jiang@iapcm.ac.cn; Xu, Kun, E-mail: makxu@ust.hk
This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region themore » transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP) scheme in all regimes. The current scheme is tested in a few frequency-dependent radiation problems, and the results are compared with the solutions from the well-defined implicit Monte Carlo (IMC) method. The UGKS is much more efficient than IMC, and the computational times of both schemes for all test cases are listed. The UGKS seems to be the first discrete ordinate method (DOM) for the accurate capturing of multiple frequency radiative transport physics from ballistic particle motion to the diffusive wave propagation.« less
NASA Astrophysics Data System (ADS)
Tryka, Stanislaw
2007-04-01
A general formula and some special integral formulas were presented for calculating radiative fluxes incident on a circular plane from a planar multiple point source within a coaxial cylindrical enclosure perpendicular to the source. These formula were obtained for radiation propagating in a homogeneous isotropic medium assuming that the lateral surface of the enclosure completely absorbs the incident radiation. Exemplary results were computed numerically and illustrated with three-dimensional surface plots. The formulas presented are suitable for determining fluxes of radiation reaching planar circular detectors, collectors or other planar circular elements from systems of laser diodes, light emitting diodes and fiber lamps within cylindrical enclosures, as well as small biological emitters (bacteria, fungi, yeast, etc.) distributed on planar bases of open nontransparent cylindrical containers.
Coherent Transition Radiation Generated from Transverse Electron Density Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.; Tyukhtin, A. V.
Coherent Transition radiation (CTR) of a given frequency is commonly generated with longitudinal electron bunch trains. In this paper, we present a study of CTR properties produced from simultaneous electron transverse and longitudinal density modulation. We demonstrate via numerical simulations a simple technique to generate THz-scale frequencies from mm-scale transversely separated electron beamlets formed into a ps-scale bunch train. The results and a potential experimental setup are discussed.
Noncontact sheet resistance measurement technique for wafer inspection
NASA Astrophysics Data System (ADS)
Kempa, Krzysztof; Rommel, J. Martin; Litovsky, Roman; Becla, Peter; Lojek, Bohumil; Bryson, Frank; Blake, Julian
1995-12-01
A new technique, MICROTHERM, has been developed for noncontact sheet resistance measurements of semiconductor wafers. It is based on the application of microwave energy to the wafer, and simultaneous detection of the infrared radiation resulting from ohmic heating. The pattern of the emitted radiation corresponds to the sheet resistance distribution across the wafer. This method is nondestructive, noncontact, and allows for measurements of very small areas (several square microns) of the wafer.
Osborne, Louis S.; Lanza, Richard C.
1984-01-01
A method and apparatus for determining the distribution of a position-emitting radioisotope into an object, the apparatus consisting of a wire mesh radiation converter, an ionizable gas for propagating ionization events caused by electrodes released by the converter, a drift field, a spatial position detector and signal processing circuitry for correlating near-simultaneous ionization events and determining their time differences, whereby the position sources of back-to-back collinear radiation can be located and a distribution image constructed.
Space environmental effects on polymeric materials
NASA Technical Reports Server (NTRS)
Kiefer, Richard L.; Orwoll, Robert A.
1988-01-01
Two of the major environmental hazards in the Geosynchronous Earth Orbit (GEO) are energetic charged particles and ultraviolet radiation. The charged particles, electrons and protons, range in energy from 0.1 to 4 MeV and each have a flux of 10 to the 8th sq cm/sec. Over a 30 year lifetime, materials in the GEO will have an absorbed dose from this radiation of 10 to the 10th rads. The ultraviolet radiation comes uninhibited from the sun with an irradiance of 1.4 kw/sq m. Radiation is known to initiate chain sission and crosslinking in polymeric materials, both of which affect their structural properties. The 30-year dose level from the combined radiation in the GEO exceeds the threshold for measurable damage in most polymer systems studied. Of further concern is possible synergistic effects from the simultaneous irradiation with charged particles and ultraviolet radiation. Most studies on radiation effects on polymeric materials use either electrons or ultraviolet radiation alone, or in a sequential combination.
Tekinarslan, Erdem; Keskin, Suat; Buldu, İbrahim; Sönmez, Mehmet Giray; Karatag, Tuna; Istanbulluoglu, Mustafa Okan
2015-01-01
Introduction To determine and evaluate the effective radiation exposure during a one year follow-up of urolithiasis patients following the SWL (extracorporeal shock wave lithotripsy) treatment. Material and methods Total Effective Radiation Exposure (ERE) doses for each of the 129 patients: 44 kidney stone patients, 41 ureter stone patients, and 44 multiple stone location patients were calculated by adding up the radiation doses of each ionizing radiation session including images (IVU, KUB, CT) throughout a one year follow-up period following the SWL. Results Total mean ERE values for the kidney stone group was calculated as 15, 91 mSv (5.10-27.60), for the ureter group as 13.32 mSv (5.10-24.70), and in the multiple stone location group as 27.02 mSv (9.41-54.85). There was no statistically significant differences between the kidney and ureter groups in terms of the ERE dose values (p = 0.221) (p >0.05). In the comparison of the kidney and ureter stone groups with the multiple stone location group; however, there was a statistically significant difference (p = 0.000) (p <0.05). Conclusions ERE doses should be a factor to be considered right at the initiation of any diagnostic and/or therapeutic procedure. Especially in the case of multiple stone locations, due to the high exposure to ionized radiation, different imaging modalities with low dose and/or totally without a dose should be employed in the diagnosis, treatment, and follow-up bearing the aim to optimize diagnosis while minimizing the radiation dose as much as possible. PMID:26568880
Kubsik, Anna; Klimkiewicz, Robert; Janczewska, Katarzyna; Klimkiewicz, Paulina; Jankowska, Agnieszka; Woldańska-Okońska, Marta
2016-01-01
Multiple sclerosis is one of the most common neurological disorders. It is a chronic inflammatory demyelinating disease of the CNS, whose etiology is not fully understood. Application of new rehabilitation methods are essential to improve functional status. The material studied consisted of 120 patients of both sexes (82 women and 38 men) aged 21-81 years. The study involved patients with a diagnosis of multiple sclerosis. The aim of the study was to evaluate the effect of laser radiation and other therapies on the functional status of patients with multiple sclerosis. Patients were randomly divided into four treatment groups. The evaluation was performed three times - before the start of rehabilitation, immediately after rehabilitation (21 days of treatment) and subsequent control - 30 days after the patients leave the clinic. The following tests were performed for all patients to assess functional status: Expanded Disability Status Scale (EDSS) of Kurtzke and Barthel Index. Results of all testing procedures show that the treatment methods are improving the functional status of patients with multiple sclerosis, with the significant advantage of the synergistic action of laser and magneto stimulation. The combination of laser and magneto stimulation significantly confirmed beneficial effect on quality of life. The results of these studies present new scientific value and are improved compared to program of rehabilitation of patients with multiple sclerosis by laser radiation which was previously used. This study showed that synergic action of laser radiation and magneto stimulation has a beneficial effect on improving functional status, and thus improves the quality of life of patients with multiple sclerosis. The effects of all methods of rehabilitation are persisted after cessation of treatment applications, with a particular advantage of the synergistic action of laser radiation and magneto stimulation, which indicates the possibility to elicitation in these methods the phenomenon of the biological hysteresis.
Modeling Environment for Total Risk-4M
MENTOR-4M uses an integrated, mechanistically consistent, source-to-dose modeling framework to quantify simultaneous exposures and doses of individuals and populations to multiple contaminants. It is an implementation of the MENTOR system for exposures to Multiple contaminants fr...
Multiple environmental contexts and preterm birth risks
Human health is affected by simultaneous exposure to numerous stressors and amenities, but research often focuses on single exposure models. To address this, a United States county-level Multiple Environmental Domain Index (MEDI) was constructed with data representing five envir...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaopei, E-mail: shix22@mcmaster.ca; Mothersi
Purpose: To determine whether chronic low-dose α-particle radiation from Ra-226 over multiple cell generations can lead to an adaptive response in CHSE/F fish embryonic cells or HaCaT human epithelial cells receiving subsequent acute high-dose γ-ray radiation. Methods: CHSE/F and HaCaT cells were exposed to very low doses of Ra-226 in medium for multiple generations prior to being challenged by a higher dose γ-ray radiation. The clonogenic assay was used to test the clonogenic survival of cells with or without being pretreated by radiation from Ra-226. Results: In general, pretreatment with chronic radiation has no significant influence on the reaction ofmore » cells to the subsequent challenge radiation. Compared to unprimed cells, the change in clonogenic survival of primed cells after receiving challenge radiation is mainly due to the influence of the chronic exposure, and there's little adaptive response induced. However at several dose points, pretreatment of CHSE/F fish cells with chronic radiation resulted in a radiosensitive response to a challenge dose of γ-ray radiation, and pretreatment of HaCaT cells resulted in no effect except for a slightly radioresistant response to the challenge radiation which was not significant. Conclusion: The results suggest that chronic low-dose radiation is not effective enough to induce adaptive response. There was a difference between human and fish cells and it may be important to consider results from multiple species before making conclusions about effects of chronic or low doses of radiation in the environment. The term “radiosensitive” or “adaptive” make no judgment about whether such responses are ultimately beneficial or harmful. - Highlights: • No obvious adaptive response is induced by chronic low-dose radiation from Ra-226. • Priming radiation from Ra-226 sensitized CHSE/F cells to the challenge radiation. • Linear model is inconsistent with current work using chronic low-dose radiation.« less
In-line assay monitor for uranium hexafluoride
Wallace, Steven A.
1981-01-01
An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The monitor is intended for uses such as safeguard applications to assure that weapons grade uranium is not being produced in an enrichment cascade. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from the uranium-235 present in the specimen. Simultaneously, the gamma emissions from the uranium-235 of the specimen and the source emissions transmitted through the sample are counted and stored in a multiple channel analyzer. The uranium-235 content of the specimen is determined from the comparison of the accumulated 185 keV energy counts and the reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen. The process eliminates the necessity of knowing the system operating conditions and yet obtains the necessary data without need for large scintillation crystals and sophisticated mechanical designs.
NASA Astrophysics Data System (ADS)
Gristey, Jake J.; Chiu, J. Christine; Gurney, Robert J.; Morcrette, Cyril J.; Hill, Peter G.; Russell, Jacqueline E.; Brindley, Helen E.
2018-04-01
A globally complete, high temporal resolution and multiple-variable approach is employed to analyse the diurnal cycle of Earth's outgoing energy flows. This is made possible via the use of Met Office model output for September 2010 that is assessed alongside regional satellite observations throughout. Principal component analysis applied to the long-wave component of modelled outgoing radiation reveals dominant diurnal patterns related to land surface heating and convective cloud development, respectively explaining 68.5 and 16.0 % of the variance at the global scale. The total variance explained by these first two patterns is markedly less than previous regional estimates from observations, and this analysis suggests that around half of the difference relates to the lack of global coverage in the observations. The first pattern is strongly and simultaneously coupled to the land surface temperature diurnal variations. The second pattern is strongly coupled to the cloud water content and height diurnal variations, but lags the cloud variations by several hours. We suggest that the mechanism controlling the delay is a moistening of the upper troposphere due to the evaporation of anvil cloud. The short-wave component of modelled outgoing radiation, analysed in terms of albedo, exhibits a very dominant pattern explaining 88.4 % of the variance that is related to the angle of incoming solar radiation, and a second pattern explaining 6.7 % of the variance that is related to compensating effects from convective cloud development and marine stratocumulus cloud dissipation. Similar patterns are found in regional satellite observations, but with slightly different timings due to known model biases. The first pattern is controlled by changes in surface and cloud albedo, and Rayleigh and aerosol scattering. The second pattern is strongly coupled to the diurnal variations in both cloud water content and height in convective regions but only cloud water content in marine stratocumulus regions, with substantially shorter lag times compared with the long-wave counterpart. This indicates that the short-wave radiation response to diurnal cloud development and dissipation is more rapid, which is found to be robust in the regional satellite observations. These global, diurnal radiation patterns and their coupling with other geophysical variables demonstrate the process-level understanding that can be gained using this approach and highlight a need for global, diurnal observing systems for Earth outgoing radiation in the future.
NASA Astrophysics Data System (ADS)
Zhou, Yatong; Han, Chunying; Chi, Yue
2018-06-01
In a simultaneous source survey, no limitation is required for the shot scheduling of nearby sources and thus a huge acquisition efficiency can be obtained but at the same time making the recorded seismic data contaminated by strong blending interference. In this paper, we propose a multi-dip seislet frame based sparse inversion algorithm to iteratively separate simultaneous sources. We overcome two inherent drawbacks of traditional seislet transform. For the multi-dip problem, we propose to apply a multi-dip seislet frame thresholding strategy instead of the traditional seislet transform for deblending simultaneous-source data that contains multiple dips, e.g., containing multiple reflections. The multi-dip seislet frame strategy solves the conflicting dip problem that degrades the performance of the traditional seislet transform. For the noise issue, we propose to use a robust dip estimation algorithm that is based on velocity-slope transformation. Instead of calculating the local slope directly using the plane-wave destruction (PWD) based method, we first apply NMO-based velocity analysis and obtain NMO velocities for multi-dip components that correspond to multiples of different orders, then a fairly accurate slope estimation can be obtained using the velocity-slope conversion equation. An iterative deblending framework is given and validated through a comprehensive analysis over both numerical synthetic and field data examples.
Radiative Cooling: Principles, Progress, and Potentials
Hossain, Md. Muntasir
2016-01-01
The recent progress on radiative cooling reveals its potential for applications in highly efficient passive cooling. This approach utilizes the maximized emission of infrared thermal radiation through the atmospheric window for releasing heat and minimized absorption of incoming atmospheric radiation. These simultaneous processes can lead to a device temperature substantially below the ambient temperature. Although the application of radiative cooling for nighttime cooling was demonstrated a few decades ago, significant cooling under direct sunlight has been achieved only recently, indicating its potential as a practical passive cooler during the day. In this article, the basic principles of radiative cooling and its performance characteristics for nonradiative contributions, solar radiation, and atmospheric conditions are discussed. The recent advancements over the traditional approaches and their material and structural characteristics are outlined. The key characteristics of the thermal radiators and solar reflectors of the current state‐of‐the‐art radiative coolers are evaluated and their benchmarks are remarked for the peak cooling ability. The scopes for further improvements on radiative cooling efficiency for optimized device characteristics are also theoretically estimated. PMID:27812478
Crosstalk between Fas and JNK determines lymphocyte apoptosis after ionizing radiation.
Praveen, Koganti; Saxena, Nandita
2013-06-01
Radiation simultaneously activate Fas and JNK pathway in lymphocytes but their precise interaction is not clearly understood. Activation of Fas pathway is required for radiation induced apoptosis, however induction of JNK pathway may or may not contribute in apoptosis. Here we report that Fas, Fas associated death domain and total JNK are activated in a dose- and time-dependent radiation exposure. A biphasic pattern of phospho-JNK was found at lower doses (1 and 2 Gy), however at higher doses of radiation phospho-JNK was continuously activated. Interestingly, Fas ligand expression remained biphasic at all the doses of radiation. Our results suggest that the Fas pathway is the major player in radiation-induced apoptosis, with JNK playing a contributory role. We also observed that Fas ligand expression by radiation is dependent on JNK activation. We also propose that radiation activates JNK pathway, but sustained activation is required for maximal induction of apoptosis at later times. Our findings define a mechanism for crosstalk between JNK and Fas pathway in radiation-induced apoptosis, which may lead to the development of new therapeutic strategies.
Temperature Distribution in a Composite of Opaque and Semitransparent Spectral Layers
NASA Technical Reports Server (NTRS)
Siegel, Robert
1997-01-01
The analysis of radiative transfer becomes computationally complex for a composite when there are multiple layers and multiple spectral bands. A convenient analytical method is developed for combined radiation and conduction in a composite of alternating semitransparent and opaque layers. The semi- transparent layers absorb, scatter, and emit radiation, and spectral properties with large scattering are included. The two-flux method is used, and its applicability is verified by comparison with a basic solution in the literature. The differential equation in the two-flux method Is solved by deriving a Green's function. The solution technique is applied to analyze radiation effects in a multilayer zirconia thermal barrier coating with internal radiation shields for conditions in an aircraft engine combustor. The zirconia radiative properties are modeled by two spectral bands. Thin opaque layers within the coating are used to decrease radiant transmission that can degrade the zirconia insulating ability. With radiation shields, the temperature distributions more closely approach the opaque limit that provides the lowest metal wall temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, W.T.; Siebers, J.V.
Purpose: To introduce quasi-constrained Multi-Criteria Optimization (qcMCO) for unsupervised radiation therapy optimization which generates alternative patient-specific plans emphasizing dosimetric tradeoffs and conformance to clinical constraints for multiple delivery techniques. Methods: For N Organs At Risk (OARs) and M delivery techniques, qcMCO generates M(N+1) alternative treatment plans per patient. Objective weight variations for OARs and targets are used to generate alternative qcMCO plans. For 30 locally advanced lung cancer patients, qcMCO plans were generated for dosimetric tradeoffs to four OARs: each lung, heart, and esophagus (N=4) and 4 delivery techniques (simple 4-field arrangements, 9-field coplanar IMRT, 27-field non-coplanar IMRT, and non-coplanarmore » Arc IMRT). Quasi-constrained objectives included target prescription isodose to 95% (PTV-D95), maximum PTV dose (PTV-Dmax)< 110% of prescription, and spinal cord Dmax<45 Gy. The algorithm’s ability to meet these constraints while simultaneously revealing dosimetric tradeoffs was investigated. Statistically significant dosimetric tradeoffs were defined such that the coefficient of determination between dosimetric indices which varied by at least 5 Gy between different plans was >0.8. Results: The qcMCO plans varied mean dose by >5 Gy to ipsilateral lung for 24/30 patients, contralateral lung for 29/30 patients, esophagus for 29/30 patients, and heart for 19/30 patients. In the 600 plans computed without human interaction, average PTV-D95=67.4±3.3 Gy, PTV-Dmax=79.2±5.3 Gy, and spinal cord Dmax was >45 Gy in 93 plans (>50 Gy in 2/600 plans). Statistically significant dosimetric tradeoffs were evident in 19/30 plans, including multiple tradeoffs of at least 5 Gy between multiple OARs in 7/30 cases. The most common statistically significant tradeoff was increasing PTV-Dmax to reduce OAR dose (15/30 patients). Conclusion: The qcMCO method can conform to quasi-constrained objectives while revealing significant variations in OAR doses including mean dose reductions >5 Gy. Clinical implementation will facilitate patient-specific decision making based on achievable dosimetry as opposed to accept/reject models based on population derived objectives.« less
Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier
NASA Astrophysics Data System (ADS)
O'Brien, Kevin
Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.
NASA Astrophysics Data System (ADS)
Lindsey, Brooks D.; Ivancevich, Nikolas M.; Whitman, John; Light, Edward; Fronheiser, Matthew; Nicoletto, Heather A.; Laskowitz, Daniel T.; Smith, Stephen W.
2009-02-01
We describe early stage experiments to test the feasibility of an ultrasound brain helmet to produce multiple simultaneous real-time 3D scans of the cerebral vasculature from temporal and suboccipital acoustic windows of the skull. The transducer hardware and software of the Volumetrics Medical Imaging real-time 3D scanner were modified to support dual 2.5 MHz matrix arrays of 256 transmit elements and 128 receive elements which produce two simultaneous 64° pyramidal scans. The real-time display format consists of two coronal B-mode images merged into a 128° sector, two simultaneous parasagittal images merged into a 128° × 64° C-mode plane, and a simultaneous 64° axial image. Real-time 3D color Doppler images acquired in initial clinical studies after contrast injection demonstrate flow in several representative blood vessels. An offline Doppler rendering of data from two transducers simultaneously scanning via the temporal windows provides an early visualization of the flow in vessels on both sides of the brain. The long-term goal is to produce real-time 3D ultrasound images of the cerebral vasculature from a portable unit capable of internet transmission, thus enabling interactive 3D imaging, remote diagnosis and earlier therapeutic intervention. We are motivated by the urgency for rapid diagnosis of stroke due to the short time window of effective therapeutic intervention.
Young, Brittany A.; Spencer, Jacqueline F.; Ying, Baoling; Toth, Karoly; Wold, William S. M.
2013-01-01
We report that radiation enhances the antitumor efficacy of the oncolytic adenovirus vector VRX-007 in Syrian hamster tumors. We used tumor-specific irradiation of subcutaneous tumors and compared treatment options of radiation alone or combined with VRX-007 and cyclophosphamide (CP). Radiation therapy further augmented the VRX-007-mediated inhibition of tumor growth, in both CP-treated and non-CP-treated hamsters, even though radiation did not lead to increased viral replication in tumors when compared to those treated with VRX-007 alone. Moreover, tumor growth inhibition was similar in tumors irradiated either one week before or after injection with VRX-007, which suggests that radiation exerts its antitumor effect independently from vector therapy. Thus, our results demonstrate that these two therapies do not have to be provided simultaneously to enhance their combined effectiveness against subcutaneous hamster tumors. PMID:23928730
Young, B A; Spencer, J F; Ying, B; Toth, K; Wold, W S M
2013-09-01
We report that radiation enhances the antitumor efficacy of the oncolytic adenovirus vector VRX-007 in Syrian hamster tumors. We used tumor-specific irradiation of subcutaneous tumors and compared treatment options of radiation alone or combined with VRX-007 and cyclophosphamide (CP). Radiation therapy further augmented the VRX-007-mediated inhibition of tumor growth, in both CP-treated and non-CP-treated hamsters, even though radiation did not lead to increased viral replication in tumors when compared with those treated with VRX-007 alone. Moreover, tumor growth inhibition was similar in tumors irradiated either 1 week before or after injection with VRX-007, which suggests that radiation exerts its antitumor effect independently from vector therapy. Thus, our results demonstrate that these two therapies do not have to be provided simultaneously to enhance their combined effectiveness against subcutaneous hamster tumors.
THz electromagnetic radiation driven by intense relativistic electron beam based on ion focus regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qing; Xu, Jin; Zhang, Wenchao
The simulation study finds that the relativistic electron beam propagating through the plasma background can produce electromagnetic (EM) radiation. With the propagation of the electron beam, the oscillations of the beam electrons in transverse and longitudinal directions have been observed simultaneously, which provides the basis for the electromagnetic radiation. The simulation results clearly show that the electromagnetic radiation frequency can reach up to terahertz (THz) wave band which may result from the filter-like property of plasma background, and the electromagnetic radiation frequency closely depends on the plasma density. To understand the above simulation results physically, the dispersion relation of themore » beam-plasma system has been derived using the field-matching method, and the dispersion curves show that the slow wave modes can couple with the electron beam effectively in THz wave band, which is an important theoretical evidence of the EM radiation.« less
NASA Astrophysics Data System (ADS)
Liu, Shenggang; Li, Jiabo; Li, Jun; Xue, Tao; Tao, Tianjiong; Ma, Heli; Wang, Xiang; Weng, Jidong; Li, Zeren
2018-04-01
A novel method based on signal superimposing has been presented to simultaneously measure the dynamic emissivity and the radiance of a shocked sample/window interface in the near-infrared wavelength. In this method, we have used three rectangle laser pulses to illuminate the sample/window interface via an integrating sphere and expect that the reflected laser pulses from the sample/window interface can be superimposed on its thermal radiation at the shocked steady state by time precision synchronization. In the two proving trials, the second laser pulse reflected from the Al/LiF interface has been successfully superimposed on its thermal radiation despite large flyer velocity uncertainty. The dynamic emissivity and the radiance at 1064 nm have been obtained simultaneously from the superimposing signals. The obtained interface temperatures are 1842 ± 82 K and 1666 ± 154 K, respectively, the corresponding release pressures are 65.7 GPa and 62.6 GPa, and the deduced Hugonoit temperatures are consistent with the theoretical calculations. In comparison, the fitting temperatures from the gray body model are 300-500 K higher than our experimental measurement results and the theoretical calculations.
NASA Astrophysics Data System (ADS)
Kumagai, Jun; Nakama, Mitsuo; Miyazaki, Tetsuo; Ise, Tamaki; Kodama, Seiji; Watanabe, Masami
2002-07-01
Effect of (-)-epigallocatechin-3- O-gallate (EGCg) on scavenging long-lived radicals and its biological significance were investigated using electron-spin-resonance spectroscopy and mutation assay in cultured human embryo cells. EGCg scavenged long-lived radicals in irradiated golden hamster embryo cells and albumin solution, and simultaneously reduced mutation frequency in the irradiated human embryo cells. These results indicate that long-lived radials are involved in the induction of mutation by radiation.
Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis
NASA Astrophysics Data System (ADS)
Liu, X.; Wu, W.; Yang, Q.
2017-12-01
Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.
NASA Technical Reports Server (NTRS)
Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal
2017-01-01
This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.
NASA Technical Reports Server (NTRS)
Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal
2017-01-01
This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.
Novel microbial fuel cell design to operate with different wastewaters simultaneously.
Mathuriya, Abhilasha Singh
2016-04-01
A novel single cathode chamber and multiple anode chamber microbial fuel cell design (MAC-MFC) was developed by incorporating multiple anode chambers into a single unit and its performance was checked. During 60 days of operation, performance of MAC-MFC was assessed and compared with standard single anode/cathode chamber microbial fuel cell (SC-MFC). The tests showed that MAC-MFC generated stable and higher power outputs compared with SC-MFC and each anode chamber contributed efficiently. Further, MAC-MFCs were incorporated with different wastewaters in different anode chambers and their behavior in MFC performance was observed. MAC-MFC efficiently treated multiple wastewaters simultaneously at low cost and small space, which claims its candidature for future possible scale-up applications. Copyright © 2015. Published by Elsevier B.V.
Multiple-channel, total-reflection optic with controllable divergence
Gibson, David M.; Downing, Robert G.
1997-01-01
An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence.
Multiple-channel, total-reflection optic with controllable divergence
Gibson, D.M.; Downing, R.G.
1997-02-18
An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence. 11 figs.
The Multiple-Use of Accountability Assessments: Implications for the Process of Validation
ERIC Educational Resources Information Center
Koch, Martha J.
2014-01-01
Implications of the multiple-use of accountability assessments for the process of validation are examined. Multiple-use refers to the simultaneous use of results from a single administration of an assessment for its intended use and for one or more additional uses. A theoretical discussion of the issues for validation which emerge from…
SU-F-T-458: Tracking Trends of TG-142 Parameters Via Analysis of Data Recorded by 2D Chamber Array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrian, A; Kabat, C; Defoor, D
Purpose: With increasing QA demands of medical physicists in clinical radiation oncology, the need for an effective method of tracking clinical data has become paramount. A tool was produced which scans through data automatically recorded by a 2D chamber array and extracts relevant information recommended by TG-142. Using this extracted information a timely and comprehensive analysis of QA parameters can be easily performed enabling efficient monthly checks on multiple linear accelerators simultaneously. Methods: A PTW STARCHECK chamber array was used to record several months of beam outputs from two Varian 2100 series linear accelerators and a Varian NovalisTx−. In conjunctionmore » with the chamber array, a beam quality phantom was used to simultaneously to determine beam quality. A minimalist GUI was created in MatLab that allows a user to set the file path of the data for each modality to be analyzed. These file paths are recorded to a MatLab structure and then subsequently accessed by a script written in Python (version 3.5.1) which then extracts values required to perform monthly checks as outlined by recommendations from TG-142. The script incorporates calculations to determine if the values recorded by the chamber array fall within an acceptable threshold. Results: Values obtained by the script are written to a spreadsheet where results can be easily viewed and annotated with a “pass” or “fail” and saved for further analysis. In addition to creating a new scheme for reviewing monthly checks, this application allows for able to succinctly store data for follow up analysis. Conclusion: By utilizing this tool, parameters recommended by TG-142 for multiple linear accelerators can be rapidly obtained and analyzed which can be used for evaluation of monthly checks.« less
[Navigated drilling for femoral head necrosis. Experimental and clinical results].
Beckmann, J; Tingart, M; Perlick, L; Lüring, C; Grifka, J; Anders, S
2007-05-01
In the early stages of osteonecrosis of the femoral head, core decompression by exact drilling into the ischemic areas can reduce pain and achieve reperfusion. Using computer aided surgery, the precision of the drilling can be improved while simultaneously lowering radiation exposure time for both staff and patients. We describe the experimental and clinical results of drilling under the guidance of the fluoroscopically-based VectorVision navigation system (BrainLAB, Munich, Germany). A total of 70 sawbones were prepared mimicking an osteonecrosis of the femoral head. In two experimental models, bone only and obesity, as well as in a clinical setting involving ten patients with osteonecrosis of the femoral head, the precision and the duration of radiation exposure were compared between the VectorVision system and conventional drilling. No target was missed. For both models, there was a statistically significant difference in terms of the precision, the number of drilling corrections as well as the radiation exposure time. The average distance to the desired midpoint of the lesion of both models was 0.48 mm for navigated drilling and 1.06 mm for conventional drilling, the average drilling corrections were 0.175 and 2.1, and the radiation exposure time less than 1 s and 3.6 s, respectively. In the clinical setting, the reduction of radiation exposure (below 1 s for navigation compared to 56 s for the conventional technique) as well as of drilling corrections (0.2 compared to 3.4) was also significant. Computer guided drilling using the fluoroscopically based VectorVision navigation system shows a clearly improved precision with a enormous simultaneous reduction in radiation exposure. It is therefore recommended for clinical routine.
NASA Astrophysics Data System (ADS)
Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Wygant, J.; Breneman, A. W.; Kersten, K.
2010-12-01
We present a statistical study of the characteristics of electron distributions associated with large amplitude whistler waves inside the terrestrial magnetosphere using waveform capture data as an addition of the study by Kellogg et al., [2010b]. We identified three types of electron distributions observed simultaneously with the whistler waves including beam-like, beam/flattop, and anisotropic distributions. The whistlers exhibited different characteristics dependent upon the observed electron distributions. The majority of the waveforms observed in our study have f/fce ≤ 0.5 and are observed primarily in the radiation belts outside the plasmapause simultaneously with anisotropic electron distributions. We also present an example waveform capture of the largest magnetic field amplitude (≥ 8 nT pk-pk) whistler wave measured in the radiation belts. The majority of the largest amplitude whistlers occur during magnetically active periods (AE > 200 nT).
NASA Technical Reports Server (NTRS)
Lau, K.-M.; Chan, P. H.
1983-01-01
Attention is given to the low-frequency variability of outgoing longwave radiation (OLR) fluctuations, their possible correlations over different parts of the globe, and their relationships with teleconnections obtained from other meteorological parameters, for example, geopotential and temperature fields. Simultaneous relationships with respect to the Southern Oscillation (Namais, 1978; Barnett, 1981) signal and the reference OLR fluctuation over the equatorial central Pacific are investigated. Emphasis is placed on the relative importance of the Southern Oscillation (SO) signal over preferred regions. Using lag cross-correlation statistics, possible lagged relationships between the tropics and midlatitudes and their relationships with the SO are then investigated. Only features that are consistent with present knowledge of the dynamics of the system are emphasized. Certain features which may not meet rigorous statistical significance tests but yet are either expected a priori from independent observations or are predicted from dynamical theories are also explored.
Borcherdt, R.D.; Johnston, M.J.S.; Glassmoyer, G.
1989-01-01
Volumetric strain meters (Sacks-Evertson design) are installed at 15 sites along the San Andreas fault system, to monitor long-term strain changes for earthquake prediction. Deployment of portable broadband, high-resolution digital recorders (GEOS) at several of the sites extends the detection band for volumetric strain to periods shorter than 5 ?? 10-2 sec and permits the simultaneous observation of seismic radiation fields using conventional short-period pendulum seismometers. Recordings of local and regional earthquakes indicate that dilatometers respond to P energy but not direct shear energy and that straingrams can be used to resolve superimposed reflect P and S waves for inference of wave characteristics not permitted by either sensor alone. Simultaneous measurements of incident P- and S-wave amplitudes are used to introduce a technique for single-station estimates of wave field inhomogeneity, free-surface reflection coefficients and local material P velocity. -from Authors
NASA Technical Reports Server (NTRS)
Wilson, Lynn B., III
2010-01-01
We present a statistical study of the characteristics of electron distributions associated with large amplitude whistler waves inside the terrestrial magnetosphere using waveform capture data as an addition of the study by Kellogg et al., [2010b]. We identified three types of electron distributions observed simultaneously with the whistler waves including beam-like, beam/flattop, and anisotropic distributions. The whistlers exhibited different characteristics dependent upon the observed electron distributions. The majority of the waveforms observed in our study have f/fce < or = 0.5 and are observed primarily in the radiation belts outside the plasmapause simultaneously with anisotropic electron distributions. We also present an example waveform capture of the largest magnetic field amplitude (> or = 8 nT pk-pk) whistler wave measured in the radiation belts. The majority of the largest amplitude whistlers occur during magnetically active periods (AE > 200 nT).
NASA Astrophysics Data System (ADS)
Shen, Liguo; Li, Jianxi; Li, Renjie; Lin, Hongjun; Chen, Jianrong; Liao, Bao-Qiang
2018-04-01
In this study, a new strategy which blends low-density polyethylene (LDPE), magnesium hydroxide (MH) and lauryl acrylate by electron-beam radiation for production of LDPE-based composites with high performance was proposed. It was found that, MH played main roles in flame retardancy but reduced processing flow and mechanical properties of the composites. Meanwhile, melt flow rate (MFR) increased while viscosity of the composites decreased with lauryl acrylate content increased, facilitating LDPE composites processing. Electron beam radiation could prompt crosslinking of lauryl acrylate, which significantly enhanced the mechanical properties of LDPE composites. Meanwhile, lauryl acrylate addition only slightly decreased the flame retardancy, suggesting that LDPE composites could remain high flame retardancy even when lauryl acrylate content was high. The study highly demonstrated the feasibility to produce LDPE-based composites simultaneously with high flame retardancy and high mechanical properties by the blending strategy provided in this study.
Solar Ellerman Bombs in 1D Radiative Hydrodynamics
NASA Astrophysics Data System (ADS)
Reid, A.; Mathioudakis, M.; Kowalski, A.; Doyle, J. G.; Allred, J. C.
2017-02-01
Recent observations from the Interface Region Imaging Spectrograph appear to show impulsive brightenings in high temperature lines, which when combined with simultaneous ground-based observations in Hα, appear co-spatial to Ellerman Bombs (EBs). We use the RADYN one-dimensional radiative transfer code in an attempt to try and reproduce the observed line profiles and simulate the atmospheric conditions of these events. Combined with the MULTI/RH line synthesis codes, we compute the Hα, Ca II 8542 Å, and Mg II h and k lines for these simulated events and compare them to previous observations. Our findings hint that the presence of superheated regions in the photosphere (>10,000 K) is not a plausible explanation for the production of EB signatures. While we are able to recreate EB-like line profiles in Hα, Ca II 8542 Å, and Mg II h and k, we cannot achieve agreement with all of these simultaneously.
Effects of He implantation on radiation induced segregation in Cu-Au and Ni-Si alloys
NASA Astrophysics Data System (ADS)
Iwase, A.; Rehn, L. E.; Baldo, P. M.; Funk, L.
Effects of He implantation on radiation induced segregation (RIS) in Cu-Au and Ni-Si alloys were investigated using in situ Rutherford backscattering spectrometry during simultaneous irradiation with 1.5-MeV He and low-energy (100 or 400-keV) He ions at elevated temperatures. RIS during single He ion irradiation, and the effects of pre-implantation with low-energy He ions, were also studied. RIS near the specimen surface, which was pronounced during 1.5-MeV He single-ion irradiation, was strongly reduced under low-energy He single-ion irradiation, and during simultaneous irradiation with 1.5-MeV He and low-energy He ions. A similar RIS reduction was also observed in the specimens pre-implanted with low-energy He ions. The experimental results indicate that the accumulated He atoms cause the formation of small bubbles, which provide additional recombination sites for freely migrating defects.
NASA Astrophysics Data System (ADS)
Kireev, S. V.; Shnyrev, S. L.
2018-02-01
This paper develops the new selective real-time method of 129I2, 129I127I, 127I2 and NO2 detection in gases. Measuring concentrations of molecular iodine is based on fluorescence exciting by the radiation of a tunable diode laser, operating in the red spectral region (632-637 nm), at two or three wavelengths corresponding to the centers of the absorption lines of 129I2, 129I127I and 127I2. Detection of NO2 is performed by measuring the intensity of the tunable diode laser radiation, which passed through the measuring cell. Measured simultaneously, boundary ratios of iodine molecule concentrations measured simultaneously are about 10-6. The sensitivity of nitrogen dioxide detection is 1016 cm-3.
Recent technologic advances in multi-detector row cardiac CT.
Halliburton, Sandra Simon
2009-11-01
Recent technical advances in multi-detector row CT have resulted in lower radiation dose, improved temporal and spatial resolution, decreased scan time, and improved tissue differentiation. Lower radiation doses have resulted from the use of pre-patient z collimators, the availability of thin-slice axial data acquisition, the increased efficiency of ECG-based tube current modulation, and the implementation of iterative reconstruction algorithms. Faster gantry rotation and the simultaneous use of two x-ray sources have led to improvements in temporal resolution, and gains in spatial resolution have been achieved through application of the flying x-ray focal-spot technique in the z-direction. Shorter scan times have resulted from the design of detector arrays with increasing numbers of detector rows and through the simultaneous use of two x-ray sources to allow higher helical pitch. Some improvement in tissue differentiation has been achieved with dual energy CT. This article discusses these recent technical advances in detail.
Lightweight Radiator System for a Spacecraft
NASA Technical Reports Server (NTRS)
Copeland, Robert J.; Mason, Georgia; Weislogel, Mark M.
2005-01-01
Three documents describe various aspects of a proposed lightweight, deployable radiator system for dissipating excess heat from the life-support system of a habitable spacecraft. The first document focuses on a radiator tube that would include a thin metal liner surrounded and supported by a thicker carbon-fiber-reinforced composite tubular structure that, in turn, would be formed as part of a unitary composite radiator-fin structure consisting mostly of a sheet of reticulated vitreous carbon laminated between carbon-fiber-reinforced face sheets. The thermal and mechanical properties, including the anisotropies, of the component materials are taken into account in the design. The second document describes thermo-structural bumpers, in the form of exterior multiple-ply carbon-fiber sheets enclosing hollows on opposite sides of a radiator fin, which would protect the radiator tube against impinging micrometeors and orbital debris. The third document describes a radiator system that would include multiple panels containing the aforementioned components, among others. The system would also include mechanisms for deploying the panels from compact stowage. Deployment would not involve breaking and remaking of fluid connections to the radiator panels.
A new set-up for in-situ probing of radiation effects in materials and electronic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peres, M.; Felizardo, M.; Catarino, N.
2015-07-01
The micro-probe facility installed at the Van de Graff accelerator at CTN/IST permits simultaneous measurements of Rutherford Backscattering Spectrometry (RBS), Particle Induced X-ray Emission (PIXE) and Iono-Luminescence (IL). Here we present a recent up-grade of the measurement chamber allowing improved optical sensitivity in IL measurements and opening the possibility to perform simultaneously electrical measurements. Combinations of all these characterization techniques make this setup a powerful tool to characterize and modify different materials with spatial resolution. In particular, it can be used to study radiation effects in different materials and electronic devices in-situ. IL is a luminescence technique that uses themore » ion beam as the excitation source. Compared with other luminescence techniques with spatial resolution like Cathodoluminescence, this technique has the advantage to probe deeper regions of the sample, several microns below the surface. The same ion beam used to produce luminescence, can create a high density of defects, in a controllable way and the new set-up allows monitoring optical and electrical properties in realtime. In this work we combine IL with I-V curve measurements to assess the response of Ga{sub 2}O{sub 3} and GaN to proton irradiation. Ga{sub 2}O{sub 3} and GaN are emerging materials for applications in high power electronics and are considered for radiation resistant electronics. We will present a systematic study of the changes in IL and conductivity in Ga{sub 2}O{sub 3} and GaN samples with the energy of the ion beam and with the time of exposure. In particular, it was observed that during the irradiation some luminescence bands related with intrinsic point defects decrease while other new bands appear. Simulations using the SRIM code were used to determine the depth profiles of ionization and displacement events, helping to correlate the optical and electrical response of the materials with certain radiation effects. These studies show the potentialities of measuring simultaneously IL and electrical conductivity and how these two characterization techniques can work as a sensitive tool to detect and quantify radiation effects. (authors)« less
Incorporation of multiple cloud layers for ultraviolet radiation modeling studies
NASA Technical Reports Server (NTRS)
Charache, Darryl H.; Abreu, Vincent J.; Kuhn, William R.; Skinner, Wilbert R.
1994-01-01
Cloud data sets compiled from surface observations were used to develop an algorithm for incorporating multiple cloud layers into a multiple-scattering radiative transfer model. Aerosol extinction and ozone data sets were also incorporated to estimate the seasonally averaged ultraviolet (UV) flux reaching the surface of the Earth in the Detroit, Michigan, region for the years 1979-1991, corresponding to Total Ozone Mapping Spectrometer (TOMS) version 6 ozone observations. The calculated UV spectrum was convolved with an erythema action spectrum to estimate the effective biological exposure for erythema. Calculations show that decreasing the total column density of ozone by 1% leads to an increase in erythemal exposure by approximately 1.1-1.3%, in good agreement with previous studies. A comparison of the UV radiation budget at the surface between a single cloud layer method and a multiple cloud layer method presented here is discussed, along with limitations of each technique. With improved parameterization of cloud properties, and as knowledge of biological effects of UV exposure increase, inclusion of multiple cloud layers may be important in accurately determining the biologically effective UV budget at the surface of the Earth.
Development of a High Throughput Assay for Rapid and Accurate 10-Plex Detection of Citrus Pathogens
USDA-ARS?s Scientific Manuscript database
The need to reliably detect and identify multiple plant pathogens simultaneously, especially in woody perennial hosts, has led to development of new molecular diagnostic approaches. In this study, a Luminex-based system was developed that provided a robust and sensitive test for simultaneous detect...
Elsharif, M; Basu, I; Phillips, D
2012-03-01
Situs inversus is a rare congenital anomaly that has reportedly been associated with caecal volvulus. We describe a case of partial situs inversus complicated by intestinal obstruction secondary to three simultaneously occurring volvuli of the stomach, caecum and sigmoid colon. To our knowledge, this is the first documented case in the literature of multiple, simultaneously occurring volvuli.
ERIC Educational Resources Information Center
Collins, Belva C.; Terrell, Misty; Test, David W.
2017-01-01
This investigation used a multiple-probe-across-participants design to examine the effects of using a simultaneous prompting procedure to teach four secondary students with mild intellectual disabilities the employment task of caring for plants in a greenhouse. The instructor also embedded photosynthesis science content as nontargeted information…
A Comparison of Simultaneous Prompting and Constant Time Delay Procedures in Teaching State Capitals
ERIC Educational Resources Information Center
Head, Kenneth David; Collins, Belva C.; Schuster, John W.; Ault, Melinda Jones
2011-01-01
This investigation compared the effectiveness and efficiency of constant time delay (CTD) and simultaneous prompting (SP) procedures in teaching discrete social studies facts to 4 high school students with learning and behavior disorders using an adapted alternating treatments design nested within a multiple probe design. The results indicated…
Narayanaswamy, Rohini; Iyer, Vignesh; Khare, Prachi; Bodziak, Mary Lou; Badgett, Darlene; Zivadinov, Robert; Weinstock-Guttman, Bianca; Rideout, Todd C.; Ramanathan, Murali; Browne, Richard W.
2015-01-01
Background Oxysterols are promising biomarkers of neurodegenerative diseases that are linked with cholesterol and vitamin D metabolism. There is an unmet need for methods capable of sensitive, and simultaneous quantitation of multiple oxysterols, vitamin D and cholesterol pathway biomarkers. Methods A method for simultaneous determination of 5 major oxysterols, 25-hydroxy vitamin D3 and cholesterol in human plasma was developed. Total oxysterols were prepared by room temperature saponification followed by solid phase extraction from plasma spiked with deuterated internal standards. Oxysterols were resolved by reverse phase HPLC using a methanol/water/0.1% formic acid gradient. Oxysterols and 25-hydroxy vitamin D3 were detected with atmospheric pressure chemical ionization mass spectrometry in positive ion mode; in-series photodiode array detection at 204nm was used for cholesterol. Method validation studies were performed. Oxysterol levels in 220 plasma samples from healthy control subjects, multiple sclerosis and other neurological disorders patients were quantitated. Results Our method quantitated 5 oxysterols, cholesterol and 25-hydroxy vitamin D3 from 200 μL plasma in 35 minutes. Recoveries were >85% for all analytes and internal standards. The limits of detection were 3-10 ng/mL for oxysterols and 25-hydroxy vitamin D3 and 1 μg/mL for simultaneous detection of cholesterol. Analytical imprecision was <10 %CV for 24(S)-, 25-, 27-, 7α-hydroxycholesterol (HC) and cholesterol and ≤15 % for 7-keto-cholesterol. Multiple Sclerosis and other neurological disorder patients had lower 27-hydroxycholesterol levels compared to controls whereas 7α-hydroxycholesterol was lower specifically in Multiple Sclerosis. Conclusion The method is suitable for measuring plasma oxysterols levels in human health and disease. Analysis of human plasma indicates that the oxysterol, bile acid precursors 7α-hydroxycholesterol and 27-hydroxycholesterol are lower in Multiple Sclerosis and may serve as potential biomarkers of disease. PMID:25875771
Ito, S; Iwao, H; Sakata, J; Inoue, M; Omori, K; Yanagisawa, Y
2016-09-01
A laboratory experiment was conducted by varying the undersurface area of nesting substratum and the number of females in an experimental tank to elucidate the determinants of the mating pattern in the stream goby, Rhinogobius sp. cross-band type. Males with larger nests tended to attract two or more females to their nest in a tank. Moreover, males spawned simultaneously with multiple females and entire brood cannibalism by males was rarely observed under a female-biased sex ratio. When males spawned with a single female with low fecundity, however, entire brood cannibalism occurred at a high frequency, suggesting that a male guarding a nest with fewer eggs consumes the brood. Therefore, spawning behaviour of females that leads to a large egg mass would decrease the risk of entire brood cannibalism. In this species, simultaneous spawning by multiple females in a nest serves as a female counter-measure against entire brood cannibalism. These results suggest that a conflict of interest between the sexes through brood cannibalism is a major determinant of simultaneous spawning. © 2016 The Fisheries Society of the British Isles.
Radiation hardness of Efratom M-100 rubidium frequency standard
NASA Technical Reports Server (NTRS)
English, T. C.; Vorwerk, H.; Rudie, N. J.
1983-01-01
The effects of nuclear radiation on rubidium gas cell frequency standards and components are presented, including the results of recent tests where a continuously operating rubidium frequency standard (Effratom, Model M-100) was subjected to simultaneous neutron/gamma radiation. At the highest neutron fluence 7.5 10 to the 12th power n/sq cm and total dose 11 krad(Si) tested, the unit operated satisfactorily; the total frequency change over the 2 1/2 hour test period due to all causes, including repeated retraction from and insertion into the reactor, was less than 1 x 10 to the -10th power. The effects of combined neutron/gamma radiation on rubidium frequency standard physics package components were also studied, and the results are presented.
NASA Technical Reports Server (NTRS)
Roth, Donald J (Inventor)
2011-01-01
A computer implemented process for simultaneously measuring the velocity of terahertz electromagnetic radiation in a dielectric material sample without prior knowledge of the thickness of the sample and for measuring the thickness of a material sample using terahertz electromagnetic radiation in a material sample without prior knowledge of the velocity of the terahertz electromagnetic radiation in the sample is disclosed and claimed. Utilizing interactive software the process evaluates, in a plurality of locations, the sample for microstructural variations and for thickness variations and maps the microstructural and thickness variations by location. A thin sheet of dielectric material may be used on top of the sample to create a dielectric mismatch. The approximate focal point of the radiation source (transceiver) is initially determined for good measurements.
Bischel, William K. [Menlo Park, CA; Jacobs, Ralph R. [Livermore, CA; Prosnitz, Donald [Hamden, CT; Rhodes, Charles K. [Palo Alto, CA; Kelly, Patrick J. [Fort Lewis, WA
1979-02-20
Method and apparatus for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH.sub.3) or methyl fluoride (CH.sub.3 F) is optically pumped by a pair of CO.sub.2 lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level.
Bischel, W.K.; Jacobs, R.R.; Prosnitz, D.P.; Rhodes, C.K.; Kelly, P.J.
1979-02-20
Method and apparatus are disclosed for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH[sub 3]) or methyl fluoride (CH[sub 3]F) is optically pumped by a pair of CO[sub 2] lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level. 3 figs.
Development of a Dual-Particle Imaging System for Nonproliferation Applications
NASA Astrophysics Data System (ADS)
Poitrasson-Riviere, Alexis Pierre Valere
A rising concern in our society is preventing the proliferation of nuclear weapons and fissionable material. This prevention can be incorporated at multiple levels, from the use of nuclear safeguards in nuclear facilities to the detection of threat objects in the field. At any level, systems used for such tasks need to be specially designed for use with Special Nuclear Material (SNM) which is defined by the NRC as plutonium and uranium enriched in U-233 or U-235 isotopes. These radioactive materials have the particularity of emitting both fast neutrons and gamma rays; thus, systems able to detect both particles simultaneously are particularly desirable. In the field of nuclear nonproliferation and safeguards, detection systems capable of accurately imaging various sources of radiation can greatly simplify any monitoring or detection task. The localization of the radiation sources can allow users of the system to focus their efforts on the areas of interest, whether it be for radiation detection or radiation characterization. This thesis describes the development of a dual-particle imaging system at the University of Michigan to address these technical challenges. The imaging system relies on the use of organic liquid scintillators that can detect both fast neutrons and gamma rays, and inorganic NaI(Tl) scintillators that are not very sensitive to neutrons yet yield photoelectric absorptions from gamma rays. A prototype of the imaging system has been constructed and operated. The system will aid the remote monitoring of nuclear materials within facilities, and it has the scalability for standoff detection in the field. A software suite has been developed to analyze measured data in real time, in an effort to obtain a system as close to field-ready as possible. The system's performance has been tested with various materials of interest, such as MOX and plutonium metal, measured at the PERLA facility of the Joint Research Center in Ispra, Italy. The robust and versatile imaging system is an attractive alternative to the current imaging systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinnix, Chelsea C.; Fontanilla, Hiral P.; Hayes-Jordan, Andrea
2012-05-01
Purpose: Desmoplastic small round cell tumor (DSCRT) is an uncommon pediatric tumor with a poor prognosis. Aggressive multimodality therapy is the current treatment approach; however. treatment toxicity is of concern. We report our results with whole abdominopelvic intensity-modulated radiation therapy (WAP-IMRT) as a component of multimodality therapy for DSCRT at a single institution. Materials/Methods: Medical records of all patients with DSCRT who received WAP-IMRT as part of definitive treatment at MD Anderson (2006-2010) were identified and reviewed. Results: Eight patients with DSRCT received WAP-IMRT with a median follow-up of 15.2 months. All patients received multiple courses of chemotherapy followed bymore » surgical debulking of intra-abdominal disease; seven also had intraoperative hyperthermic cisplatin. WAP-IMRT was delivered to a total dose of 30 Gy postoperatively; four patients received a simultaneous boost (6-10 Gy) to sites of gross residual disease. Seven patients received concurrent chemotherapy during WAP-IMRT. No Radiation Therapy Oncology Group Grade 4 nausea, vomiting, or diarrhea occurred during RT. Red-cell transfusions were given to two patients to maintain hemoglobin levels >10 g/dL. Grade 4 cytopenia requiring growth factor support occurred in only one patient; no other significant cytopenias were noted. WAP-IMRT resulted in 25% lower radiation doses to the lumbosacral vertebral bodies and pelvic bones than conventional RT plans. The median time to local or distant failure after WAP-IMRT was 8.73 months in seven patients. One patient who had completed RT 20 months before the last follow-up remains alive without evidence of disease. Five patients (63%) experienced treatment failure in the abdomen. Distant failure occurred in three patients (37.5%). Conclusions: WAP-IMRT with concurrent radiosensitizing chemotherapy was well tolerated after aggressive surgery for DSCRT. Enhanced bone sparing with IMRT probably accounts for the low hematologic toxicity (vs. conventional WAP-RT). This modality should be considered as an additional local-regional control option for DSRCT.« less
Measuring the radiative properties of astrophysical matter using the Z X-ray source
NASA Astrophysics Data System (ADS)
Bailey, James; ZAPP Team
2017-06-01
The Z Astrophysical Plasma Properties (ZAPP) collaboration is staging Z experiments that simultaneously investigate multiple topics in radiative properties of hot dense matter. The four astrophysics questions presently guiding this research are: 1) Why can’t we predict the location of the convection zone base in the Sun?; 2) How does radiation transport affect spectrum formation in accretion-powered objects?; 3) Why doesn’t spectral fitting provide the correct properties for White Dwarfs?; and 4) Why can’t we predict the heating and charge state distribution in photoionized plasmas? Recent progress using Z, the most energetic x-ray source on earth, to address these questions will be described. We emphasize the first two topics. Opacity models are an essential ingredient of stellar models and are highly sophisticated, but laboratory opacity tests have only now become possible at the conditions existing inside stars. Our opacity research emphasizes measuring iron at conditions relevant to the base of the solar convection zone, where the electron temperature and density are believed to be 190 eV and 9x1022 e/cc, respectively. The results exhibit large disagreements between iron opacity measurements and models and ongoing research is aimed at testing hypotheses for this discrepancy. The second project is motivated by the fact that emission lines from L-shell ions are not observed from iron in black hole accretion disks, but are observed from silicon in x-ray binaries. These disparate observations may be explained by differences in the radiation transport within the plasmas, but models for the spectral line formation and transport in photoionized plasmas have never been tested. We investigate photoionized silicon plasmas using absorption spectroscopy to infer the plasma conditions and emission spectroscopy to determine the dependence of spectral emission on plasma column density.++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
Multiplate Radiation Shields: Investigating Radiational Heating Errors
NASA Astrophysics Data System (ADS)
Richardson, Scott James
1995-01-01
Multiplate radiation shield errors are examined using the following techniques: (1) analytic heat transfer analysis, (2) optical ray tracing, (3) numerical fluid flow modeling, (4) laboratory testing, (5) wind tunnel testing, and (6) field testing. Guidelines for reducing radiational heating errors are given that are based on knowledge of the temperature sensor to be used, with the shield being chosen to match the sensor design. Small, reflective sensors that are exposed directly to the air stream (not inside a filter as is the case for many temperature and relative humidity probes) should be housed in a shield that provides ample mechanical and rain protection while impeding the air flow as little as possible; protection from radiation sources is of secondary importance. If a sensor does not meet the above criteria (i.e., is large or absorbing), then a standard Gill shield performs reasonably well. A new class of shields, called part-time aspirated multiplate radiation shields, are introduced. This type of shield consists of a multiplate design usually operated in a passive manner but equipped with a fan-forced aspiration capability to be used when necessary (e.g., low wind speed). The fans used here are 12 V DC that can be operated with a small dedicated solar panel. This feature allows the fan to operate when global solar radiation is high, which is when the largest radiational heating errors usually occur. A prototype shield was constructed and field tested and an example is given in which radiational heating errors were reduced from 2 ^circC to 1.2 ^circC. The fan was run continuously to investigate night-time low wind speed errors and the prototype shield reduced errors from 1.6 ^ circC to 0.3 ^circC. Part-time aspirated shields are an inexpensive alternative to fully aspirated shields and represent a good compromise between cost, power consumption, reliability (because they should be no worse than a standard multiplate shield if the fan fails), and accuracy. In addition, it is possible to modify existing passive shields to incorporate part-time aspiration, thus making them even more cost-effective. Finally, a new shield is described that incorporates a large diameter top plate that is designed to shade the lower portion of the shield. This shield increases flow through it by 60%, compared to the Gill design and it is likely to reduce radiational heating errors, although it has not been tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, X; Sun, T; Yin, Y
Purpose: To study the dosimetric impact of intensity-modulated radiotherapy (IMRT), hybrid intensity-modulated radiotherapy (h-IMRT) and volumetric modulated arc therapy(VMAT) for whole-brain radiotherapy (WBRT) with simultaneous integrated boost in patients with multiple brain metastases. Methods: Ten patients with multiple brain metastases were included in this analysis. The prescribed dose was 45 Gy to the whole brain (PTVWBRT) and 55 Gy to individual brain metastases (PTVboost) delivered simultaneously in 25 fractions. Three treatment techniques were designed: the 7 equal spaced fields IMRT plan, hybrid IMRT plan and VMAT with two 358°arcs. In hybrid IMRT plan, two fields(90°and 270°) were planned to themore » whole brain. This was used as a base dose plan. Then 5 fields IMRT plan was optimized based on the two fields plan. The dose distribution in the target, the dose to the organs at risk and total MU in three techniques were compared. Results: For the target dose, conformity and homogeneity in PTV, no statistically differences were observed in the three techniques. For the maximum dose in bilateral lens and the mean dose in bilateral eyes, IMRT and h-IMRT plans showed the highest and lowest value respectively. No statistically significant differences were observed in the dose of optic nerve and brainstem. For the monitor units, IMRT and VMAT plans showed the highest and lowest value respectively. Conclusion: For WBRT with simultaneous integrated boost in patients with multiple brain metastases, hybrid IMRT could reduce the doses to lens and eyes. It is feasible for patients with brain metastases.« less
Element-specific spectral imaging of multiple contrast agents: a phantom study
NASA Astrophysics Data System (ADS)
Panta, R. K.; Bell, S. T.; Healy, J. L.; Aamir, R.; Bateman, C. J.; Moghiseh, M.; Butler, A. P. H.; Anderson, N. G.
2018-02-01
This work demonstrates the feasibility of simultaneous discrimination of multiple contrast agents based on their element-specific and energy-dependent X-ray attenuation properties using a pre-clinical photon-counting spectral CT. We used a photon-counting based pre-clinical spectral CT scanner with four energy thresholds to measure the X-ray attenuation properties of various concentrations of iodine (9, 18 and 36 mg/ml), gadolinium (2, 4 and 8 mg/ml) and gold (2, 4 and 8 mg/ml) based contrast agents, calcium chloride (140 and 280 mg/ml) and water. We evaluated the spectral imaging performances of different energy threshold schemes between 25 to 82 keV at 118 kVp, based on K-factor and signal-to-noise ratio and ranked them. K-factor was defined as the X-ray attenuation in the K-edge containing energy range divided by the X-ray attenuation in the preceding energy range, expressed as a percentage. We evaluated the effectiveness of the optimised energy selection to discriminate all three contrast agents in a phantom of 33 mm diameter. A photon-counting spectral CT using four energy thresholds of 27, 33, 49 and 81 keV at 118 kVp simultaneously discriminated three contrast agents based on iodine, gadolinium and gold at various concentrations using their K-edge and energy-dependent X-ray attenuation features in a single scan. A ranking method to evaluate spectral imaging performance enabled energy thresholds to be optimised to discriminate iodine, gadolinium and gold contrast agents in a single spectral CT scan. Simultaneous discrimination of multiple contrast agents in a single scan is likely to open up new possibilities of improving the accuracy of disease diagnosis by simultaneously imaging multiple bio-markers each labelled with a nano-contrast agent.
NASA Astrophysics Data System (ADS)
Mera, Roberto J.; Niyogi, Dev; Buol, Gregory S.; Wilkerson, Gail G.; Semazzi, Fredrick H. M.
2006-11-01
Landuse/landcover change induced effects on regional weather and climate patterns and the associated plant response or agricultural productivity are coupled processes. Some of the basic responses to climate change can be detected via changes in radiation ( R), precipitation ( P), and temperature ( T). Past studies indicate that each of these three variables can affect LCLUC response and the agricultural productivity. This study seeks to address the following question: What is the effect of individual versus simultaneous changes in R, P, and T on plant response such as crop yields in a C 3 and a C 4 plant? This question is addressed by conducting model experiments for soybean (C 3) and maize (C 4) crops using the DSSAT: Decision Support System for Agrotechnology Transfer, CROPGRO (soybean), and CERES-Maize (maize) models. These models were configured over an agricultural experiment station in Clayton, NC [35.65°N, 78.5°W]. Observed weather and field conditions corresponding to 1998 were used as the control. In the first set of experiments, the CROPGRO (soybean) and CERES-Maize (maize) responses to individual changes in R and P (25%, 50%, 75%, 150%) and T (± 1, ± 2 °C) with respect to control were studied. In the second set, R, P, and T were simultaneously changed by 50%, 150%, and ± 2 °C, and the interactions and direct effects of individual versus simultaneous variable changes were analyzed. For the model setting and the prescribed environmental changes, results from the first set of experiments indicate: (i) precipitation changes were most sensitive and directly affected yield and water loss due to evapotranspiration; (ii) radiation changes had a non-linear effect and were not as prominent as precipitation changes; (iii) temperature had a limited impact and the response was non-linear; (iv) soybeans and maize responded differently for R, P, and T, with maize being more sensitive. The results from the second set of experiments indicate that simultaneous change analyses do not necessarily agree with those from individual changes, particularly for temperature changes. Our analysis indicates that for the changing climate, precipitation (hydrological), temperature, and radiative feedbacks show a non-linear effect on yield. Study results also indicate that for studying the feedback between the land surface and the atmospheric changes, (i) there is a need for performing simultaneous parameter changes in the response assessment of cropping patterns and crop yield based on ensembles of projected climate change, and (ii) C 3 crops are generally considered more sensitive than C 4; however, the temperature-radiation related changes shown in this study also effected significant changes in C 4 crops. Future studies assessing LCLUC impacts, including those from agricultural cropping patterns and other LCULC-climate couplings, should advance beyond the sensitivity mode and consider multivariable, ensemble approaches to identify the vulnerability and feedbacks in estimating climate-related impacts.
Non-destructive testing method and apparatus utilizing phase multiplication holography
Collins, H. Dale; Prince, James M.; Davis, Thomas J.
1984-01-01
An apparatus and method for imaging of structural characteristics in test objects using radiation amenable to coherent signal processing methods. Frequency and phase multiplication of received flaw signals is used to simulate a test wavelength at least one to two orders of magnitude smaller than the actual wavelength. The apparent reduction in wavelength between the illumination and recording radiation performs a frequency translation hologram. The hologram constructed with a high synthetic frequency and flaw phase multiplication is similar to a conventional acoustic hologram construction at the high frequency.
2013-07-01
Additionally, a physically consistent BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed... BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed photometric brightness and the attitudinal...source and the observer is ( ) VLVLH ˆˆˆˆˆ ++= (2) with angles α and β from N̂ and is used in many analytic BRDF models . There are many
Stratospheric solar geoengineering without ozone loss.
Keith, David W; Weisenstein, Debra K; Dykema, John A; Keutsch, Frank N
2016-12-27
Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric aerosol climate modification that uses a solid aerosol composed of alkaline metal salts that will convert hydrogen halides and nitric and sulfuric acids into stable salts to enable stratospheric geoengineering while reducing or reversing ozone depletion. Rather than minimizing reactive effects by reducing surface area using high refractive index materials, this method tailors the chemical reactivity. Specifically, we calculate that injection of calcite (CaCO 3 ) aerosol particles might reduce net radiative forcing while simultaneously increasing column ozone toward its preanthropogenic baseline. A radiative forcing of -1 W⋅m -2 , for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tg⋅y -1 of 275-nm radius calcite aerosol. Moreover, the radiative heating of the lower stratosphere would be roughly 10-fold less than if that same radiative forcing had been produced using sulfate aerosol. Although solar geoengineering cannot substitute for emissions cuts, it may supplement them by reducing some of the risks of climate change. Further research on this and similar methods could lead to reductions in risks and improved efficacy of solar geoengineering methods.
Radiation Exposure - Multiple Languages
... Rays) - 繁體中文 (Chinese, Traditional (Cantonese dialect)) PDF California Dental Association Nuclear or Radiation Emergencies - 繁體中文 (Chinese, Traditional (Cantonese dialect)) Bilingual PDF ...
NASA Astrophysics Data System (ADS)
Iwasaki, C.; Imasu, R.; Bril, A.; Yokota, T.; Yoshida, Y.; Morino, I.; Oshchepkov, S.; Rokotyan, N.; Zakharov, V.; Gribanov, K.
2017-12-01
Photon path length probability density function-Simultaneous (PPDF-S) method is one of effective algorithms for retrieving column-averaged concentrations of carbon dioxide (XCO2) and methane (XCH4) from Greenhouse gases Observing SATellite (GOSAT) spectra in Short Wavelength InfraRed (SWIR) [Oshchepkov et al., 2013]. In this study, we validated XCO2 and XCH4 retrieved by the PPDF-S method through comparison with the Total Carbon Column Observing Network (TCCON) data [Wunch et al., 2011] from 26 sites including additional site of the Ural Atmospheric Station at Kourovka [57.038°N and 59.545°E], Russia. Validation results using TCCON data show that bias and its standard deviation of PPDF-S data are respectively 0.48 and 2.10 ppm for XCO2, and -0.73 and 15.77 ppb for XCH4. The results for XCO2 are almost identical with those of Iwasaki et al. [2017] for which the validation data were limited at selected 11 sites. However, the bias of XCH4 shows opposite sign against that of Iwasaki et al. [2017]. Furthermore, the data at Kourouvka showed different features particularly for XCH4. In order to investigate the causes for the differences, we have carried out simulation studies mainly focusing on the effects of aerosols which modify the light path length of solar radiation [O'Brien and Rayner, 2002; Aben et al., 2007; Oshchepkov et al., 2008]. Based on the simulation studies using multiple radiation transfer code based on Discrete Ordinate Method (DOM), Polarization System for Transfer of Atmospheric Radiation3 (Pstar3) [Ota et al., 2010], sensitivity of aerosols to gas concentrations was examined.
NASA Astrophysics Data System (ADS)
Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.
2016-04-01
Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.
1999-01-01
A coupled general ocean circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. The model is driven by climatological meteorological conditions, cloud cover, and sea surface temperature. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chorophytes, and picoplankton) and three nutrient groups (nitrate, ammonium, and silicate). Phytoplankton groups are initialized as homogeneous fields horizontally and vertically, and allowed to distribute themselves according to the prevailing conditions. Basin-scale model chlorophyll results are in very good agreement with CZCS pigments in virtually every global region. Seasonal variability observed in the CZCS is also well represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are also in good conformance, although occasional departures are apparent. Agreement of nitrate distributions with in situ data is even better, including seasonal dynamics, except for the equatorial Atlantic. The good agreement of the model with satellite and in situ data sources indicates that the model dynamics realistically simulate phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization, and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.
Design of Dual-Road Transportable Portal Monitoring System for Visible Light and Gamma-Ray Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karnowski, Thomas Paul; Cunningham, Mark F; Goddard Jr, James Samuel
2010-01-01
The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they entermore » and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third alignment camera for motion compensation and are mounted on a 50 deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.« less
Design of dual-road transportable portal monitoring system for visible light and gamma-ray imaging
NASA Astrophysics Data System (ADS)
Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Bradley, E. Craig; Chesser, J.; Marchant, W.
2010-04-01
The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third "alignment" camera for motion compensation and are mounted on a 50' deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C; Peplow, Douglas E.; Mosher, Scott W
2011-01-01
This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(102-4), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less
X-ray and optical stereo-based 3D sensor fusion system for image-guided neurosurgery.
Kim, Duk Nyeon; Chae, You Seong; Kim, Min Young
2016-04-01
In neurosurgery, an image-guided operation is performed to confirm that the surgical instruments reach the exact lesion position. Among the multiple imaging modalities, an X-ray fluoroscope mounted on C- or O-arm is widely used for monitoring the position of surgical instruments and the target position of the patient. However, frequently used fluoroscopy can result in relatively high radiation doses, particularly for complex interventional procedures. The proposed system can reduce radiation exposure and provide the accurate three-dimensional (3D) position information of surgical instruments and the target position. X-ray and optical stereo vision systems have been proposed for the C- or O-arm. Two subsystems have same optical axis and are calibrated simultaneously. This provides easy augmentation of the camera image and the X-ray image. Further, the 3D measurement of both systems can be defined in a common coordinate space. The proposed dual stereoscopic imaging system is designed and implemented for mounting on an O-arm. The calibration error of the 3D coordinates of the optical stereo and X-ray stereo is within 0.1 mm in terms of the mean and the standard deviation. Further, image augmentation with the camera image and the X-ray image using an artificial skull phantom is achieved. As the developed dual stereoscopic imaging system provides 3D coordinates of the point of interest in both optical images and fluoroscopic images, it can be used by surgeons to confirm the position of surgical instruments in a 3D space with minimum radiation exposure and to verify whether the instruments reach the surgical target observed in fluoroscopic images.
Elias, Andrew; Crayton, Samuel H; Warden-Rothman, Robert; Tsourkas, Andrew
2014-07-28
Given the rapidly expanding library of disease biomarkers and targeting agents, the number of unique targeted nanoparticles is growing exponentially. The high variability and expense of animal testing often makes it unfeasible to examine this large number of nanoparticles in vivo. This often leads to the investigation of a single formulation that performed best in vitro. However, nanoparticle performance in vivo depends on many variables, many of which cannot be adequately assessed with cell-based assays. To address this issue, we developed a lanthanide-doped nanoparticle method that allows quantitative comparison of multiple targeted nanoparticles simultaneously. Specifically, superparamagnetic iron oxide (SPIO) nanoparticles with different targeting ligands were created, each with a unique lanthanide dopant. Following the simultaneous injection of the various SPIO compositions into tumor-bearing mice, inductively coupled plasma mass spectroscopy was used to quantitatively and orthogonally assess the concentration of each SPIO composition in serial blood and resected tumor samples.
Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection
Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo
2016-01-01
We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944
Multiple delivery cesium oven system for negative ion sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, G.; Bhartiya, S.; Pandya, K.
2012-02-15
Distribution of cesium in large negative ion beam sources to be operational in ITER, is presently based on the use of three or more cesium ovens, which operate simultaneously and are controlled remotely. However, use of multiple Cs ovens simultaneously is likely to pose difficulties in operation and maintenance of the ovens. An alternate method of Cs delivery, based on a single oven distribution system is proposed as one which could reduce the need of simultaneous operation of many ovens. A proof of principle experiment verifying the concept of a multinozzle distributor based Cs oven has been carried out atmore » Institute for Plasma Research. It is also observed that the Cs flux is not controlled by Cs reservoir temperature after few hours of operation but by the temperature of the distributor which starts behaving as a Cs reservoir.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Xiaodong, E-mail: lxdctopone@sina.com; Ni, Lingqin; Hu, Wei
The objective of this study was to evaluate the dose conformity and feasibility of whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in patients with 1 to 3 brain metastases. Forward intensity-modulated radiation therapy plans were generated for 10 patients with 1 to 3 brain metastases on Pinnacle 6.2 Treatment Planning System. The prescribed dose was 30 Gy to the whole brain (planning target volume [PTV]{sub wbrt}) and 40 Gy to individual brain metastases (PTV{sub boost}) simultaneously, and both doses were given in 10 fractions. The maximum diameters of individual brain metastases ranged from 1.6 tomore » 6 cm, and the summated PTVs per patient ranged from 1.62 to 69.81 cm{sup 3}. Conformity and feasibility were evaluated regarding conformation number and treatment delivery time. One hundred percent volume of the PTV{sub boost} received at least 95% of the prescribed dose in all cases. The maximum doses were less than 110% of the prescribed dose to the PTV{sub boost}, and all of the hot spots were within the PTV{sub boost}. The volume of the PTV{sub wbrt} that received at least 95% of the prescribed dose ranged from 99.2% to 100%. The mean values of conformation number were 0.682. The mean treatment delivery time was 2.79 minutes. Ten beams were used on an average in these plans. Whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in 1 to 3 brain metastases is feasible, and treatment delivery time is short.« less
Smith, Stephen W; Ivancevich, Nikolas M; Lindsey, Brooks D; Whitman, John; Light, Edward; Fronheiser, Matthew; Nicoletto, Heather A; Laskowitz, Daniel T
2009-02-01
We describe early stage experiments to test the feasibility of an ultrasound brain helmet to produce multiple simultaneous real-time three-dimensional (3D) scans of the cerebral vasculature from temporal and suboccipital acoustic windows of the skull. The transducer hardware and software of the Volumetrics Medical Imaging (Durham, NC, USA) real-time 3D scanner were modified to support dual 2.5 MHz matrix arrays of 256 transmit elements and 128 receive elements which produce two simultaneous 64 degrees pyramidal scans. The real-time display format consists of two coronal B-mode images merged into a 128 degrees sector, two simultaneous parasagittal images merged into a 128 degrees x 64 degrees C-mode plane and a simultaneous 64 degrees axial image. Real-time 3D color Doppler scans from a skull phantom with latex blood vessel were obtained after contrast agent injection as a proof of concept. The long-term goal is to produce real-time 3D ultrasound images of the cerebral vasculature from a portable unit capable of internet transmission thus enabling interactive 3D imaging, remote diagnosis and earlier therapeutic intervention. We are motivated by the urgency for rapid diagnosis of stroke due to the short time window of effective therapeutic intervention.
A gas sensor array for the simultaneous detection of multiple VOCs.
Zhang, Yumin; Zhao, Jianhong; Du, Tengfei; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju
2017-05-16
Air quality around the globe is declining and public health is seriously threatened by indoor air pollution. Typically, indoor air pollutants are composed of a series of volatile organic compounds (VOCs) that are generally harmful to the human body, especially VOCs with low molecular weights (less than 100 Da). Moreover, in some situations, more than one type of VOC is present; thus, a device that can detect one or more VOCs simultaneously would be most beneficial. Here, we synthesized a sensor array with 4 units to detect 4 VOCs: acetone (unit 1), benzene (unit 2), methanol (unit 3) and formaldehyde (unit 4) simultaneously. All units were simultaneously exposed to 2.5 ppm of all four VOCs. The sensitivity of unit 1 was 14.67 for acetone and less than 2.54 for the other VOCs. The sensitivities of units 2, 3 and 4 to benzene, methanol and formaldehyde were 2 18.64, 20.98 and 17.26, respectively, and less than 4.01 for the other VOCs. These results indicated that the sensor array exhibited good selectivity and could be used for the real-time monitoring of indoor air quality. Thus, this device will be useful in situations requiring the simultaneous detection of multiple VOCs.
NASA Astrophysics Data System (ADS)
Wason, H.; Herrmann, F. J.; Kumar, R.
2016-12-01
Current efforts towards dense shot (or receiver) sampling and full azimuthal coverage to produce high resolution images have led to the deployment of multiple source vessels (or streamers) across marine survey areas. Densely sampled marine seismic data acquisition, however, is expensive, and hence necessitates the adoption of sampling schemes that save acquisition costs and time. Compressed sensing is a sampling paradigm that aims to reconstruct a signal--that is sparse or compressible in some transform domain--from relatively fewer measurements than required by the Nyquist sampling criteria. Leveraging ideas from the field of compressed sensing, we show how marine seismic acquisition can be setup as a compressed sensing problem. A step ahead from multi-source seismic acquisition is simultaneous source acquisition--an emerging technology that is stimulating both geophysical research and commercial efforts--where multiple source arrays/vessels fire shots simultaneously resulting in better coverage in marine surveys. Following the design principles of compressed sensing, we propose a pragmatic simultaneous time-jittered time-compressed marine acquisition scheme where single or multiple source vessels sail across an ocean-bottom array firing airguns at jittered times and source locations, resulting in better spatial sampling and speedup acquisition. Our acquisition is low cost since our measurements are subsampled. Simultaneous source acquisition generates data with overlapping shot records, which need to be separated for further processing. We can significantly impact the reconstruction quality of conventional seismic data from jittered data and demonstrate successful recovery by sparsity promotion. In contrast to random (sub)sampling, acquisition via jittered (sub)sampling helps in controlling the maximum gap size, which is a practical requirement of wavefield reconstruction with localized sparsifying transforms. We illustrate our results with simulations of simultaneous time-jittered marine acquisition for 2D and 3D ocean-bottom cable survey.
Quantification of multiple simultaneously occurring nitrogen flows in the euphotic ocean
NASA Astrophysics Data System (ADS)
Xu, Min Nina; Wu, Yanhua; Zheng, Li Wei; Zheng, Zhenzhen; Zhao, Huade; Laws, Edward A.; Kao, Shuh-Ji
2017-03-01
The general features of the N cycle in the sunlit region of the ocean are well known, but methodological difficulties have previously confounded simultaneous quantification of transformation rates among the many different forms of N, e.g., ammonium (NH4+), nitrite (NO2-), nitrate (NO3-), and particulate/dissolved organic nitrogen (PN/DON). However, recent advances in analytical methodology have made it possible to employ a convenient isotope labeling technique to quantify in situ fluxes among oft-measured nitrogen species within the euphotic zone. Addition of a single 15N-labeled NH4+ tracer and monitoring of the changes in the concentrations and isotopic compositions of the total dissolved nitrogen (TDN), PN, NH4+, NO2-, and NO3- pools allowed us to quantify the 15N and 14N fluxes simultaneously. Constraints expressing the balance of 15N and 14N fluxes between the different N pools were expressed in the form of simultaneous equations, the unique solution of which via matrix inversion yielded the relevant N fluxes, including rates of NH4+, NO2-, and NO3- uptake; ammonia oxidation; nitrite oxidation; DON release; and NH4+ uptake by bacteria. The matrix inversion methodology that we used was designed specifically to analyze the results of incubations under simulated in situ conditions in the euphotic zone. By taking into consideration simultaneous fluxes among multiple N pools, we minimized potential artifacts caused by non-targeted processes in traditional source-product methods. The proposed isotope matrix method facilitates post hoc analysis of data from on-deck incubation experiments and can be used to probe effects of environmental factors (e.g., pH, temperature, and light) on multiple processes under controlled conditions.
NASA Astrophysics Data System (ADS)
Dávila, H. Olaya; Sevilla, A. C.; Castro, H. F.; Martínez, S. A.
2016-07-01
Using the Geant4 based simulation framework SciFW1, a detailed simulation was performed for a detector array in the hybrid tomography prototype for small animals called ClearPET / XPAD, which was built in the Centre de Physique des Particules de Marseille. The detector system consists of an array of phoswich scintillation detectors: LSO (Lutetium Oxy-ortosilicate doped with cerium Lu2SiO5:Ce) and LuYAP (Lutetium Ortoaluminate of Yttrium doped with cerium Lu0.7Y0.3AlO3:Ce) for Positron Emission Tomography (PET) and hybrid pixel detector XPAD for Computed Tomography (CT). Simultaneous acquisition of deposited energy and the corresponding time - position for each recorded event were analyzed, independently, for both detectors. interference between detection modules for PET and CT. Information about amount of radiation reaching each phoswich crystal and XPAD detector using a phantom in order to study the effectiveness by radiation attenuation and influence the positioning of the radioactive source 22Na was obtained. The simulation proposed will improve distribution of detectors rings and interference values will be taken into account in the new versions of detectors.
Controlled metal-semiconductor sintering/alloying by one-directional reverse illumination
Sopori, Bhushan L.
1993-01-01
Metal strips deposited on a top surface of a semiconductor substrate are sintered at one temperature simultaneously with alloying a metal layer on the bottom surface at a second, higher temperature. This simultaneous sintering of metal strips and alloying a metal layer on opposite surfaces of the substrate at different temperatures is accomplished by directing infrared radiation through the top surface to the interface of the bottom surface with the metal layer where the radiation is absorbed to create a primary hot zone with a temperature high enough to melt and alloy the metal layer with the bottom surface of the substrate. Secondary heat effects, including heat conducted through the substrate from the primary hot zone and heat created by infrared radiation reflected from the metal layer to the metal strips, as well as heat created from some primary absorption by the metal strips, combine to create secondary hot zones at the interfaces of the metal strips with the top surface of the substrate. These secondary hot zones are not as hot as the primary hot zone, but they are hot enough to sinter the metal strips to the substrate.