Karbasi, Mohamad-Hadi; Jahanparast, Babak; Shamsipur, Mojtaba; Hassan, Jalal
2009-10-15
Multielement simultaneous determination of 35 trace elements in environmental samples was carried out by inductively coupled plasma emission spectrometry (ICP-OES) after preconcentration with octadecyl silicagel, modified with aurin tricarboxylic acid (Aluminon). Optimal experimental conditions including pH of sample solution, sample volume, sample and eluent flow rate, type, concentration and volume of eluent and foreign ions effect were investigated and established. Trace element ions in aqueous solution were quantitatively adsorbed onto octadecyl silicagel modified with aurin tricarboxylic acid at pH 8.0 with a flow rate of 11.0 mL min(-1). The adsorbed element ions were eluted with 3-5 mL of 0.5 mol L(-1) HNO(3) at a flow rate of 10.0 mL min(-1) and analyzed by ICP-OES simultaneously. The proposed method has at least preconcentration factor of 100 in water samples, which results high sensitive detection of ultra-trace and trace analysis. The present methodology gave recoveries better than 70% and RSD less than 16%.
NASA Astrophysics Data System (ADS)
de Oliveira Souza, Sidnei; da Costa, Silvânio Silvério Lopes; Santos, Dayane Melo; dos Santos Pinto, Jéssica; Garcia, Carlos Alexandre Borges; Alves, José do Patrocínio Hora; Araujo, Rennan Geovanny Oliveira
2014-06-01
An analytical method for simultaneous determination of macronutrients (Ca, Mg, Na and P), micronutrients (Cu, Fe, Mn and Zn) and trace elements (Al, As, Cd, Pb and V) in mineral fertilizers was optimized. Two-level full factorial design was applied to evaluate the optimal proportions of reagents used in the sample digestion on hot plate. A Doehlert design for two variables was used to evaluate the operating conditions of the inductively coupled plasma optical emission spectrometer in order to accomplish the simultaneous determination of the analyte concentrations. The limits of quantification (LOQs) ranged from 2.0 mg kg- 1 for Mn to 77.3 mg kg- 1 for P. The accuracy and precision of the proposed method were evaluated by analysis of standard reference materials (SRMs) of Western phosphate rock (NIST 694), Florida phosphate rock (NIST 120C) and Trace elements in multi-nutrient fertilizer (NIST 695), considered to be adequate for simultaneous determination. Twenty-one samples of mineral fertilizers collected in Sergipe State, Brazil, were analyzed. For all samples, the As, Ca, Cd and Pb concentrations were below the LOQ values of the analytical method. For As, Cd and Pb the obtained LOQ values were below the maximum limit allowed by the Brazilian Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento - MAPA). The optimized method presented good accuracy and was effectively applied to quantitative simultaneous determination of the analytes in mineral fertilizers by inductively coupled plasma optical emission spectrometry (ICP OES).
Li, FuKai; Gong, AiJun; Qiu, LiNa; Zhang, WeiWei; Li, JingRui; Liu, Yu; Liu, YuNing; Yuan, HuiTing
2017-01-01
The determination of trace rare-earth elements (REEs) can be used for the assessment of environmental pollution, and is of great significance to the study of toxicity and toxicology in animals and plants. N, N, N', N'-tetraoctyl diglycolamide (TODGA) is an environmental friendly extractant that is highly selective to REEs. In this study, an analytical method was developed for the simultaneous determination of 16 trace REEs in simulated water samples by inductively coupled plasma optical emission spectroscopy (ICP-OES). With this method, TODGA was used as the extractant to perform the liquid-liquid extraction (LLE) sample pretreatment procedure. All 16 REEs were extracted from a 3 M nitric acid medium into an organic phase by a 0.025 M TODGA petroleum ether solution. A 0.03 M ethylenediaminetetraacetic acid disodium salt (EDTA) solution was used for back-extraction to strip the REEs from the organic phase into the aqueous phase. The aqueous phase was concentrated using a vacuum rotary evaporator and the concentration of the 16 REEs was detected by ICP-OES. Under the optimum experimental conditions, the limits of detection (3σ, n = 7) for the REEs ranged from 0.0405 ng mL-1 (Nd) to 0.5038 ng mL-1 (Ho). The relative standard deviations (c = 100 ng mL-1, n = 7) were from 0.5% (Eu) to 4.0% (Tm) with a linear range of 4-1000 ng mL-1 (R2 > 0.999). The recoveries of 16 REEs ranged from 95% to 106%. The LLE-ICP-OES method established in this study has the advantages of simple operation, low detection limits, fast analysis speed and the ability to simultaneously determine 16 REEs, thereby acting as a viable alternative for the simultaneous detection of trace amounts of REEs in water samples.
Li, FuKai; Qiu, LiNa; Zhang, WeiWei; Li, JingRui; Liu, Yu; Liu, YuNing; Yuan, HuiTing
2017-01-01
The determination of trace rare-earth elements (REEs) can be used for the assessment of environmental pollution, and is of great significance to the study of toxicity and toxicology in animals and plants. N, N, N′, N′-tetraoctyl diglycolamide (TODGA) is an environmental friendly extractant that is highly selective to REEs. In this study, an analytical method was developed for the simultaneous determination of 16 trace REEs in simulated water samples by inductively coupled plasma optical emission spectroscopy (ICP-OES). With this method, TODGA was used as the extractant to perform the liquid-liquid extraction (LLE) sample pretreatment procedure. All 16 REEs were extracted from a 3 M nitric acid medium into an organic phase by a 0.025 M TODGA petroleum ether solution. A 0.03 M ethylenediaminetetraacetic acid disodium salt (EDTA) solution was used for back-extraction to strip the REEs from the organic phase into the aqueous phase. The aqueous phase was concentrated using a vacuum rotary evaporator and the concentration of the 16 REEs was detected by ICP-OES. Under the optimum experimental conditions, the limits of detection (3σ, n = 7) for the REEs ranged from 0.0405 ng mL-1 (Nd) to 0.5038 ng mL-1 (Ho). The relative standard deviations (c = 100 ng mL-1, n = 7) were from 0.5% (Eu) to 4.0% (Tm) with a linear range of 4–1000 ng mL-1 (R2 > 0.999). The recoveries of 16 REEs ranged from 95% to 106%. The LLE-ICP-OES method established in this study has the advantages of simple operation, low detection limits, fast analysis speed and the ability to simultaneously determine 16 REEs, thereby acting as a viable alternative for the simultaneous detection of trace amounts of REEs in water samples. PMID:28945788
Li, Dongyue; Jia, Jianbo; Wang, Jianguo
2010-12-15
A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L(-1) for Cd(II) and 0.02 μg L(-1) for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples. Copyright © 2010 Elsevier B.V. All rights reserved.
Sanal, Hasan; Güler, Zehra; Park, Young W
2011-01-01
The objectives of this study were to determine the profiles of non-essential trace elements in ewes' and goats' milk and manufactured products, such as yoghurt, torba yoghurt and whey, as well as changes in trace element content during Torba yoghurt-making processes. Concentrations of non-essential trace elements in ewe (Awassi) and goat (Damascus) milk and their yoghurt, torba yoghurt and whey were quantitatively determined by simultaneous inductively coupled plasma optical emission spectrometer (ICP-OES), after microwave digestion. Aluminium, antimony, arsenic, boron, beryllium, cadmium, nickel, lead, silver, titanium, thallium and vanadium were determined for both types of milk and their products. Barium was not detected in goats' milk or their products. Among all trace elements, boron was the most abundant and beryllium was least present in milk and the manufactured products. The results showed that goats' and ewes' milk and their manufactured products may be a source of 13 non-essential trace elements.
Parallel Symmetric Eigenvalue Problem Solvers
2015-05-01
tutoring, and mentoring experience as an undergraduate. Last but not least, I thank my family for their love and support. v TABLE OF CONTENTS Page LIST...34 4.6.2 Choice of the Ritz shifts . . . . . . . . . . . . . . . . . . . . 38 4.7 Relationship between TraceMin and...which are determined by the Ritz values of the matrix pencil. We conclude with a discussion of the relationship between TraceMin and simultaneous
Local unitary equivalence of quantum states and simultaneous orthogonal equivalence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Naihuan, E-mail: jing@ncsu.edu; Yang, Min; Zhao, Hui, E-mail: zhaohui@bjut.edu.cn
2016-06-15
The correspondence between local unitary equivalence of bipartite quantum states and simultaneous orthogonal equivalence is thoroughly investigated and strengthened. It is proved that local unitary equivalence can be studied through simultaneous similarity under projective orthogonal transformations, and four parametrization independent algorithms are proposed to judge when two density matrices on ℂ{sup d{sub 1}} ⊗ ℂ{sup d{sub 2}} are locally unitary equivalent in connection with trace identities, Kronecker pencils, Albert determinants and Smith normal forms.
Reverse radiance: a fast accurate method for determining luminance
NASA Astrophysics Data System (ADS)
Moore, Kenneth E.; Rykowski, Ronald F.; Gangadhara, Sanjay
2012-10-01
Reverse ray tracing from a region of interest backward to the source has long been proposed as an efficient method of determining luminous flux. The idea is to trace rays only from where the final flux needs to be known back to the source, rather than tracing in the forward direction from the source outward to see where the light goes. Once the reverse ray reaches the source, the radiance the equivalent forward ray would have represented is determined and the resulting flux computed. Although reverse ray tracing is conceptually simple, the method critically depends upon an accurate source model in both the near and far field. An overly simplified source model, such as an ideal Lambertian surface substantially detracts from the accuracy and thus benefit of the method. This paper will introduce an improved method of reverse ray tracing that we call Reverse Radiance that avoids assumptions about the source properties. The new method uses measured data from a Source Imaging Goniometer (SIG) that simultaneously measures near and far field luminous data. Incorporating this data into a fast reverse ray tracing integration method yields fast, accurate data for a wide variety of illumination problems.
The analytical method used for determination of polychlorinated dibenzo-p-dioxins and -furans (PCDDs/Fs) emissions from municipal waste combustors and other stationary sources was modified and validated to enable simultaneous analysis of ultra trace levels of polybrominated diphe...
ERIC Educational Resources Information Center
Ma, T. S.; Wang, C. Y.
1984-01-01
Presents a literature review on methods used to analyze organic elements. Topic areas include methods for: (1) analyzing carbon, hydrogen, and nitrogen; (2) analyzing oxygen, sulfur, and halogens; (3) analyzing other elements; (4) simultaneously determining several elements; and (5) determing trace elements. (JN)
[Study on the determination of 28 inorganic elements in sunflower seeds by ICP-OES/ICP-MS].
Liu, Hong-Wei; Qin, Zong-Hui; Xie, Hua-Lin; Cao, Shu
2013-01-01
The present paper describes a simple method for the determination of trace elements in sunflower seeds by using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma spectrometry (ICP-MS). HNO3 + H2O2 were used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The contents of 10 trace elements (Al, B, Ca, Fe, K, Mg, Na, Si, P and S) in sunflower seeds were determined by ICP-OES while 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sr, Sn, Sb, Ti, V and Zn) were determined by ICP-MS. The rice reference material (GBW10045) was used as standard reference materials. The results showed a good agreement between measured and certified values for all analytes. The concentrations of necessary micro elements Ca, K, Mg, P and S were higher. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of sunflower seeds.
Kane, J.S.
1988-01-01
A study is described that identifies the optimum operating conditions for the accurate determination of Co, Cu, Mn, Ni, Pb, Zn, Ag, Bi and Cd using simultaneous multi-element atomic absorption spectrometry. Accuracy was measured in terms of the percentage recoveries of the analytes based on certified values in nine standard reference materials. In addition to identifying optimum operating conditions for accurate analysis, conditions resulting in serious matrix interferences and the magnitude of the interferences were determined. The listed elements can be measured with acceptable accuracy in a lean to stoicheiometric flame at measurement heights ???5-10 mm above the burner.
NASA Astrophysics Data System (ADS)
Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui
2017-02-01
A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu2 +), cobalt ions (Co2 +) and nickel ions (Ni2 +) mixture was 0.10 μg L- 1, 0.15 μg L- 1 and 0.13 μg L- 1, respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field.
Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui
2017-02-15
A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu 2+ ), cobalt ions (Co 2+ ) and nickel ions (Ni 2+ ) mixture was 0.10μgL -1 , 0.15μgL -1 and 0.13μgL -1 , respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field. Copyright © 2016 Elsevier B.V. All rights reserved.
Koen, E
1975-01-01
Using the method of factor planning of the experiment, the author studies and demonstrates the influence exerted by the potential and time of electrolysis, and by the concentration of the background and elements on the heights of anodal peaks upon simultaneous determination of zinc, cadmium, lead and copper microconcentrations. On the ground of statistical elaboration of the results, the optimal condition for polarographic determination through anodal voltamperometry are outlined. According to the cyclic voltametry method, the electrod processes reversibility for zinc, cadmium and lead, as well as the incomplete reversibility for copper are established; the number of electrons participating in the electrochemical reaction are found using the method of gas coulometry. The possibility of simultaneous determination of the four elements' ultramicroconcentrations after the method of voltamperometry with enrichment is proved. The standard deviation is in the range 3.02 to 4.9.
Ghasemi, Jahan B; Zolfonoun, E
2010-01-15
A new solid phase extraction method for separation and preconcentration of trace amounts of uranium, thorium, and zirconium in water samples is proposed. The procedure is based on the adsorption of U(VI), Th(IV) and Zr(IV) ions on a column of Amberlite XAD-2000 resin loaded with alpha-benzoin oxime prior to their simultaneous spectrophotometric determination with Arsenazo III using orthogonal signal correction partial least squares method. The enrichment factor for preconcentration of uranium, thorium, and zirconium was found to be 100. The detection limits for U(VI), Th(IV) and Zr(IV) were 0.50, 0.54, and 0.48microgL(-1), respectively. The precision of the method, evaluated as the relative standard deviation obtained by analyzing a series of 10 replicates, was below 4% for all elements. The practical applicability of the developed sorbent was examined using synthetic seawater, natural waters and ceramic samples.
Crock, J.G.; Lichte, F.E.
1982-01-01
Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.
Long, E.R.; MacDonald, D.D.; Cubbage, J.C.; Ingersoll, C.G.
1998-01-01
The relative abilities of sediment concentrations of simultaneously extracted trace metal: acid-volatile sulfide (SEM: AVS) and dry weight-normalized trace metals to correctly predict both toxicity and nontoxicity were compared by analysis of 77 field-collected samples. Relative to the SEM:AVS concentrations, sediment guidelines based upon dry weight-normalized concentrations were equally or slightly more accurate in predicting both nontoxic and toxic results in laboratory tests.
Measurement techniques for trace metals in coal-plant effluents: A brief review
NASA Technical Reports Server (NTRS)
Singh, J. J.
1979-01-01
The strong features and limitations of techniques for determining trace elements in aerosols emitted from coal plants are discussed. Techniques reviewed include atomic absorption spectroscopy, charged particle scattering and activation, instrumental neutron activation analysis, gas/liquid chromatography, gas chromatographic/mass spectrometric methods, X-ray fluorescence, and charged-particle-induced X-ray emission. The latter two methods are emphasized. They provide simultaneous, sensitive multielement analyses and lend themselves readily to depth profiling. It is recommended that whenever feasible, two or more complementary techniques should be used for analyzing environmental samples.
Distinct molecular underpinnings of Drosophila olfactory trace conditioning
Shuai, Yichun; Hu, Ying; Qin, Hongtao; Campbell, Robert A. A.; Zhong, Yi
2011-01-01
Trace conditioning is valued as a simple experimental model to assess how the brain associates events that are discrete in time. Here, we adapted an olfactory trace conditioning procedure in Drosophila melanogaster by training fruit flies to avoid an odor that is followed by foot shock many seconds later. The molecular underpinnings of the learning are distinct from the well-characterized simultaneous conditioning, where odor and punishment temporally overlap. First, Rutabaga adenylyl cyclase (Rut-AC), a putative molecular coincidence detector vital for simultaneous conditioning, is dispensable in trace conditioning. Second, dominant-negative Rac expression, thought to sustain early labile memory, significantly enhances learning of trace conditioning, but leaves simultaneous conditioning unaffected. We further show that targeting Rac inhibition to the mushroom body (MB) but not the antennal lobe (AL) suffices to achieve the enhancement effect. Moreover, the absence of trace conditioning learning in D1 dopamine receptor mutants is rescued by restoration of expression specifically in the adult MB. These results suggest the MB as a crucial neuroanatomical locus for trace conditioning, which may harbor a Rac activity-sensitive olfactory “sensory buffer” that later converges with the punishment signal carried by dopamine signaling. The distinct molecular signature of trace conditioning revealed here shall contribute to the understanding of how the brain overcomes a temporal gap in potentially related events. PMID:22123966
Krachler, M; Irgolic, K J
1999-11-01
The advantages accruing to biochemical and clinical investigations from a method that allows the simultaneous quantification (RSD < or = 10%) of many elements in blood, plasma, and serum at concentrations equal to one-hundredth of the lower limits of the normal ranges are undeniable. The suitability of inductively coupled argon plasma low-resolution quadrupole mass spectrometry (ICP-MS), a simultaneous method with low detection limits, is evaluated for the quantification of inorganic constituents in whole blood, plasma, and serum with consideration of the dilution associated with the mineralization of the samples, of isobaric and polyatomic interferences and of normal ranges. Of the 3 bulk elements, the 3 major electrolytes, the 15 essential elements, the 8 toxic elements, the 4 therapeutic elements, and the 14 elements of potential interest (total of 47 elements) only 7 elements (Ca, Cu, K, Mg, Rb, Sr, Zn) can be simultaneously quantified under these rigorous conditions in serum and only 8 elements (additional element Pb) in whole blood. Quantification of elements in the Seronorm Standards "Whole Blood" and "Serum" showed, that this list of simultaneously determinable elements in these matrices is reasonable. Although this list is disappointingly short, the number of elements determinable simultaneously by ICP-MS is still larger than that by ICP-AES or GFAAS. Improved detectors, more efficient nebulizers, avoidance of interferences, better instrument design, and high-resolution mass spectrometers promise to increase the number of elements that can be determined simultaneously.
Fractional-order Fourier analysis for ultrashort pulse characterization.
Brunel, Marc; Coetmellec, Sébastien; Lelek, Mickael; Louradour, Frédéric
2007-06-01
We report what we believe to be the first experimental demonstration of ultrashort pulse characterization using fractional-order Fourier analysis. The analysis is applied to the interpretation of spectral interferometry resolved in time (SPIRIT) traces [which are spectral phase interferometry for direct electric field reconstruction (SPIDER)-like interferograms]. First, the fractional-order Fourier transformation is shown to naturally allow the determination of the cubic spectral phase coefficient of pulses to be analyzed. A simultaneous determination of both cubic and quadratic spectral phase coefficients of the pulses using the fractional-order Fourier series expansion is further demonstrated. This latter technique consists of localizing relative maxima in a 2D cartography representing decomposition coefficients. It is further used to reconstruct or filter SPIRIT traces.
Lu, Baiyi; Ren, Yiping; Huang, Baifen; Liao, Wenqun; Cai, Zengxuan; Tie, Xiaowei
2008-03-01
A novel ultra-performance liquid chromatography electrospray ionization tandem triple quadrupole mass spectrometry method for the simultaneous determination of four water-soluble vitamins, including vitamin B5 (VB5), vitamin B8 (VB8), vitamin B9 (VB9), and vitamin B12 (VB12) in fortified infant foods is developed and validated. A reverse phase UPLC separation system consisting of a Waters ACQUITY UPLC BEH C-18 column (2.1 mm x 100 mm i.d., 1.7 microm) and a binary gradient acetonitrile-water mobile phase is applied for the separation of the four water-soluble vitamins. Formic acid is spiked into the mobile phase to enhance the ionization efficiency. Tandem MS-MS analysis is performed in multi-reaction monitoring mode (MRM). Product-ion traces at m/z 220.1 --> 89.9 for VB5, 245.1 --> 227.1 for VB8, 442.3 --> 295.2 for VB9, and 678.9 --> 147.0 for VB12 are used for quantitation of the corresponding vitamins, and traces at m/z 455.5 --> 308.0 are used for methotrexate (internal standard). Limits of quantitation (LOQs) are 0.016, 0.090, 0.020, and 0.019 microg/L for VB5, VB8, VB9, and VB12, respectively. Intra- and inter-day precisions for the determination of the four vitamins are better than 6.84% and 12.26% in relative standard deviations, and recoveries for the four vitamins are in the range of 86.0~101.5%. The developed approach is applied for the determination of the trace amounts of the vitamins in fortified milk powers and fortified rice powers.
Daytime observations of Lyrids in 2017
NASA Astrophysics Data System (ADS)
Kruchynenko, V. G.; Steklov, A. F.; Vidmachenko, A. P.; Dashkiev, G. N.; Steklov, E. A.
2017-05-01
In 2017 observers of the "Churyumov's unified network" from April 15 to 26 registered more than a hundred tracks of daytime Lyrid's invasions. The maximum number (18) of daily invasions of Lyrids we observed on April 19. Tracks had a length of 5 deg. up to 30 deg. Some of them were short, thin and rapidly disappearing (less than a minute) traces with thickening at the bottom of the track. Others - were visible 10-20 minutes. Tracks with a length more 15 were visible more than 20 minutes. The largest trace we observed about 1 hour. On April 25 from 10:20 to 11:30 three observers simultaneously, from different points, registered four tracks of Lyrid invasion with length 10-15 deg.; traces were visible for 30-50 minutes. Calculations for some dates have made it possible to determine the average altitude of the beginning of appearance of these traces of invasions >34 km.
Wu, Hongpeng; Dong, Lei; Zheng, Huadan; Yu, Yajun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang; Tittel, Frank K.
2017-01-01
Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a sensitive gas detection technique which requires frequent calibration and has a long response time. Here we report beat frequency (BF) QEPAS that can be used for ultra-sensitive calibration-free trace-gas detection and fast spectral scan applications. The resonance frequency and Q-factor of the quartz tuning fork (QTF) as well as the trace-gas concentration can be obtained simultaneously by detecting the beat frequency signal generated when the transient response signal of the QTF is demodulated at its non-resonance frequency. Hence, BF-QEPAS avoids a calibration process and permits continuous monitoring of a targeted trace gas. Three semiconductor lasers were selected as the excitation source to verify the performance of the BF-QEPAS technique. The BF-QEPAS method is capable of measuring lower trace-gas concentration levels with shorter averaging times as compared to conventional PAS and QEPAS techniques and determines the electrical QTF parameters precisely. PMID:28561065
Wen, Yingying; Li, Jinhua; Liu, Junshen; Lu, Wenhui; Ma, Jiping; Chen, Lingxin
2013-07-01
A dual cloud point extraction (dCPE) off-line enrichment procedure coupled with a hydrodynamic-electrokinetic two-step injection online enrichment technique was successfully developed for simultaneous preconcentration of trace phenolic estrogens (hexestrol, dienestrol, and diethylstilbestrol) in water samples followed by micellar electrokinetic chromatography (MEKC) analysis. Several parameters affecting the extraction and online injection conditions were optimized. Under optimal dCPE-two-step injection-MEKC conditions, detection limits of 7.9-8.9 ng/mL and good linearity in the range from 0.05 to 5 μg/mL with correlation coefficients R(2) ≥ 0.9990 were achieved. Satisfactory recoveries ranging from 83 to 108% were obtained with lake and tap water spiked at 0.1 and 0.5 μg/mL, respectively, with relative standard deviations (n = 6) of 1.3-3.1%. This method was demonstrated to be convenient, rapid, cost-effective, and environmentally benign, and could be used as an alternative to existing methods for analyzing trace residues of phenolic estrogens in water samples.
Mahmood, Shahid; Khalid, Azeem; Arshad, Muhammad; Ahmad, Riaz
2015-11-01
This study demonstrates the role of electron shuttles and trace metals in the biotransformation of azo dye reactive black-5 and hexavalent chromium (CrVI) that are released simultaneously in tannery effluent. Previously isolated bacterial strain Pseudomonas putida KI was used for the simultaneous reduction of the dye (100 mg L(-1)) and CrVI (2 mg L(-1)) in a mineral salts medium (MSM). Among various trace metals, only Cu(II) had a stimulating effect on the bacterial-mediated reduction process. Application of electron shuttles such as hydroquinone and uric acid at a low concentration (1mM) had a positive effect on the reduction process and caused simultaneous reduction of 100% dye and 97% CrVI in 12-18 h. Mannitol, EDTA and sodium benzoate at all concentrations (ranging from 1 to 9 mM) showed an inhibitory effect on the reduction of reactive black-5 and CrVI. An inverse linear relationship between the velocity of reaction (V) and the concentration [S] of electron shuttles was observed. The results imply that both types and concentration of an electron shuttle and trace metals can affect the simultaneous reduction of reactive black-5 and CrVI. Copyright © 2014 Elsevier Ltd. All rights reserved.
Taylor, Vivien F; Longerich, Henry P; Greenough, John D
2003-02-12
Trace element fingerprints were deciphered for wines from Canada's two major wine-producing regions, the Okanagan Valley and the Niagara Peninsula, for the purpose of examining differences in wine element composition with region of origin and identifying elements important to determining provenance. Analysis by ICP-MS allowed simultaneous determination of 34 trace elements in wine (Li, Be, Mg, Al, P, Cl, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Mo, Ag, Cd, Sb, I, Cs, Ba, La, Ce, Tl, Pb, Bi, Th, and U) at low levels of detection, and patterns in trace element concentrations were deciphered by multivariate statistical analysis. The two regions were discriminated with 100% accuracy using 10 of these elements. Differences in soil chemistry between the Niagara and Okanagan vineyards were evident, without a good correlation between soil and wine composition. The element Sr was found to be a good indicator of provenance and has been reported in fingerprinting studies of other regions.
NASA Astrophysics Data System (ADS)
Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.
2017-07-01
We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.
Nong, Chunyan; Niu, Zongliang; Li, Pengyao; Wang, Chunping; Li, Wanyu; Wen, Yingying
2017-04-15
Dual-cloud point extraction (dCPE) was successfully developed for simultaneous extraction of trace sulfonamides (SAs) including sulfamerazine (SMZ), sulfadoxin (SDX), sulfathiazole (STZ) in urine and water samples. Several parameters affecting the extraction were optimized, such as sample pH, concentration of Triton X-114, extraction temperature and time, centrifugation rate and time, back-extraction solution pH, back-extraction temperature and time, back-extraction centrifugation rate and time. High performance liquid chromatography (HPLC) was applied for the SAs analysis. Under the optimum extraction and detection conditions, successful separation of the SAs was achieved within 9min, and excellent analytical performances were attained. Good linear relationships (R 2 ≥0.9990) between peak area and concentration for SMZ and STZ were optimized from 0.02 to 10μg/mL, for SDX from 0.01 to 10μg/mL. Detection limits of 3.0-6.2ng/mL were achieved. Satisfactory recoveries ranging from 85 to 108% were determined with urine, lake and tap water spiked at 0.2, 0.5 and 1μg/mL, respectively, with relative standard deviations (RSDs, n=6) of 1.5-7.7%. This method was demonstrated to be convenient, rapid, cost-effective and environmentally benign, and could be used as an alternative tool to existing methods for analysing trace residues of SAs in urine and water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Simultaneous activation of parallel sensory pathways promotes a grooming sequence in Drosophila
Hampel, Stefanie; McKellar, Claire E
2017-01-01
A central model that describes how behavioral sequences are produced features a neural architecture that readies different movements simultaneously, and a mechanism where prioritized suppression between the movements determines their sequential performance. We previously described a model whereby suppression drives a Drosophila grooming sequence that is induced by simultaneous activation of different sensory pathways that each elicit a distinct movement (Seeds et al., 2014). Here, we confirm this model using transgenic expression to identify and optogenetically activate sensory neurons that elicit specific grooming movements. Simultaneous activation of different sensory pathways elicits a grooming sequence that resembles the naturally induced sequence. Moreover, the sequence proceeds after the sensory excitation is terminated, indicating that a persistent trace of this excitation induces the next grooming movement once the previous one is performed. This reveals a mechanism whereby parallel sensory inputs can be integrated and stored to elicit a delayed and sequential grooming response. PMID:28887878
Ghasemi, Ensieh; Najafi, Nahid Mashkouri; Raofie, Farhad; Ghassempour, Alireza
2010-09-15
A simple and effective speciation and preconcentration method based on hollow fiber liquid phase microextraction (HF-LPME) was developed for simultaneous separation of trace inorganic tellurium and selenium in environmental samples prior to electrothermal atomic absorption spectroscopy (ETAAS) determination. The method involves the selective extraction of the Te (IV) and Se (IV) species by HF-LPME with the use of ammonium pyrrolidinecarbodithioate (APDC) as the chelating agent. The complex compounds were extracted into 10 microL of toluene and the solutions were injected into a graphite furnace for the determination of Te (IV) and Se (IV). To determine the total tellurium and selenium in the samples, first Te (VI) and Se (VI) were reduced to Te (IV) and Se (IV), and then the microextraction method was performed. The experimental parameters of HF-LPME were optimized using a central composite design after a 2(n-1) fractional factorial experimental design. Under optimum conditions, enrichment factors of up to 520 and 480 were achieved for Te (IV) and Se (IV), respectively. The detection limits were 4 ng L(-1) with 3.5% RSD (n=5, c=2.0 microg L(-1)) for Te (IV) and 5 ng L(-1) with 3.1% RSD for Se (IV). The applicability of the developed technique was evaluated by application to spiked, environmental water and soil samples. Copyright 2010 Elsevier B.V. All rights reserved.
Wang, Lingling; Zhang, Zhenzhen; Xu, Xu; Zhang, Danfeng; Wang, Fang; Zhang, Lei
2015-09-01
A simple, rapid, sensitive and effective method for the simultaneous determination of four endocrine disrupting compounds (EDCs) (bisphenol A (BPA), bisphenol F (BPF), bisphenol AF (BPAF) and bisphenol AP (BPAP)) in environment water samples based on solid-phase microextraction (SPME) coupled with high performance liquid chromatography (HPLC) was developed. Multi-wall carbon nanotubes (MWCNTs) adsorbents showed a good affinity to the target analytes. These compounds were rapidly extracted within 10 min. Various experimental parameters that could affect the extraction efficiencies had been investigated in detail. Under the optimum conditions, the enrichment factors of the method for the target EDCs were found to be 500. Satisfactory precision and accuracy of the method were obtained in a low concentration range of 2.0-500.0 ng mL(-1). The method detection limits were in the range of 0.10-0.30 ng mL(-1). The high pre-concentration rate and efficiency of the method ensure its successful application in extraction of trace EDCs from large volumes of environmental water samples. The extraction recoveries in real samples ranged from 85.3% to 102.5% with the relative standard deviations (n=5) less than 3.74%. Copyright © 2015 Elsevier B.V. All rights reserved.
Garazhian, Elahe; Shishehbore, M. Reza
2015-01-01
A new sensitive sensor was fabricated for simultaneous determination of codeine and acetaminophen based on 4-hydroxy-2-(triphenylphosphonio)phenolate (HTP) and multiwall carbon nanotubes paste electrode at trace levels. The sensitivity of codeine determination was deeply affected by spiking multiwall carbon nanotubes and a modifier in carbon paste. Electron transfer coefficient, α, catalytic electron rate constant, k, and the exchange current density, j 0, for oxidation of codeine at the HTP-MWCNT-CPE were calculated using cyclic voltammetry. The calibration curve was linear over the range 0.2–844.7 μM with two linear segments, and the detection limit of 0.063 μM of codeine was obtained using differential pulse voltammetry. The modified electrode was separated codeine and acetaminophen signals by differential pulse voltammetry. The modified electrode was applied for the determination of codeine and acetaminophen in biological and pharmaceutical samples with satisfactory results. PMID:25945094
[Evaluation of an automated pH-monitor and its logic of calculation].
Ducrotté, P; Hubin, M; Xin, H; Roussignol, C; Denis, P
1990-01-01
The aim of this study was to compare the results of 3-hour postprandial esophageal pH recordings obtained simultaneously from a standard Beckmann pH recorder and a commercially available fully automated pH recording device, "pH 60" in 30 subjects. Both apparatuses were connected to the same pH probe and to a unique chart recorder to obtain simultaneous pH graphic tracings. The percentage of time between each pH level below pH 5, the percentage of time with pH less than 4 and Kaye's score were determined hourly and for the overall recording time. The pH graphic traces in both apparatuses were strictly identical demonstrating the accuracy of the analog-to-digital converter and the memory module to record pH changes. Moreover, we found a significant correlation (p less than 0.01) and a good overall agreement for all compared parameters between manual and computerized analysis. This study documents that the commercially available ambulatory esophageal pH instrument studied produces accurate data for the diagnosis of gastroesophageal reflux.
McComb, Jacqueline Q.; Rogers, Christian; Han, Fengxiang X.; Tchounwou, Paul B.
2014-01-01
With industrialization, great amounts of trace elements and heavy metals have been excavated and released on the surface of the earth and dissipated into the environments. Rapid screening technology for detecting major and trace elements as well as heavy metals in variety of environmental samples is most desired. The objectives of this study were to determine the detection limits, accuracy, repeatability and efficiency of a X-ray fluorescence spectrometer (Niton XRF analyzer) in comparison with the traditional analytical methods, inductively coupled plasma optical emission spectrometer (ICP-OES) and inductively coupled plasma optical emission spectrometer (ICP-MS) in screening of major and trace elements of environmental samples including estuary soils and sediments, contaminated soils, and biological samples. XRF is a fast and non-destructive method in measuring the total concentration of multi--elements simultaneously. Contrary to ICP-OES and ICP-MS, XRF analyzer is characterized by the limited preparation required for solid samples, non-destructive analysis, increased total speed and high throughout, the decreased production of hazardous waste and the low running costs as well as multi-elemental determination and portability in the fields. The current comparative study demonstrates that XRF is a good rapid non-destructive method for contaminated soils, sediments and biological samples containing higher concentrations of major and trace elements. Unfortunately, XRF does not have sensitive detection limits of most major and trace elements as ICP-OES or ICP-MS but it may serve as a rapid screening tool for locating hot spots of uncontaminated field soils and sediments. PMID:25861136
NASA Astrophysics Data System (ADS)
Shumlyanskyy, Leonid; Belousova, Elena; Petrenko, Oksana
2017-09-01
The concentrations of 26 trace elements have been determined by laser ablation ICP-MS in zircons from four samples of basic rocks of the Korosten anorthosite-mangerite-charnockite-granite plutonic complex, the Ukrainian Shield. Zircons from the Fedorivka and Torchyn gabbroic intrusions and Volynsky anorthosite massif have distinctive abundances of many trace elements (REE, Sr, Y, Mn, Th). Zircons from the gabbroic massifs are unusually enriched in trace elements, while zircons from pegmatites in anorthosite are relatively depleted in trace elements. High concentrations of trace elements in zircons from gabbroic intrusions can be explained by their crystallization from residual interstitial melts enriched in incompatible elements. The zircons studied demonstrate a wide range of Ti concentrations, which reflects their temperature of crystallization: the zircons most enriched in Ti, from mafic pegmatites of the Horbuliv quarry (20-40 ppm), have the highest temperature of crystallization (845 ± 40 °C). Lower (720-770 °C) temperatures of zircon crystallization in gabbroic rocks are explained by its crystallization from the latest portions of the interstitial melt or by simultaneous crystallization of ilmenite. The Ce anomaly in zircons correlates with the degree of oxidation of the coexisting ilmenite.
Abolhasani, Jafar; Behbahani, Mohammad
2015-01-01
Solid-phase extraction is one the most useful and efficient techniques for sample preparation, purification, cleanup, preconcentration, and determination of heavy metals at trace levels. In this paper, functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was applied for trace determination of copper, lead, cadmium, and nickel in water and seafood samples. The experimental conditions such as pH, sample and eluent flow rate, type, concentration and volume of the eluent, breakthrough volume, and effect of coexisting ions were optimized for efficient solid-phase extraction of trace heavy metals in different water and seafood samples. The content of solutions containing the mentioned heavy metals was determined by flame atomic absorption spectrometry (FAAS), and the limits of detection were 0.3, 0.4, 0.6, and 0.9 ng mL(-1) for cadmium, copper, nickel, and lead, respectively. Recoveries and precisions were >98.0 and <4%, respectively. The adsorption capacity of the modified nanoporous silica was 178 mg g(-1) for cadmium, 110 mg g(-1) for copper, 98 mg g(-1) for nickel, and 210 mg g(-1) for lead, respectively. The functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was characterized by thermogravimetry analysis (TGA), differential thermal analysis (DTA), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), elemental analysis (CHN), and N2 adsorption surface area measurement.
NASA Astrophysics Data System (ADS)
Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.
2016-08-01
The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.
Glenn, Rachel; Dantus, Marcos
2016-01-07
Recent success with trace explosives detection based on the single ultrafast pulse excitation for remote stimulated Raman scattering (SUPER-SRS) prompts us to provide new results and a Perspective that describes the theoretical foundation of the strategy used for achieving the desired sensitivity and selectivity. SUPER-SRS provides fast and selective imaging while being blind to optical properties of the substrate such as color, texture, or laser speckle. We describe the strategy of combining coherent vibrational excitation with a reference pulse in order to detect stimulated Raman gain or loss. A theoretical model is used to reproduce experimental spectra and to determine the ideal pulse parameters for best sensitivity, selectivity, and resolution when detecting one or more compounds simultaneously.
Hollow Waveguide Gas Sensor for Mid-Infrared Trace Gas Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S; Young, C; Chan, J
2007-07-12
A hollow waveguide mid-infrared gas sensor operating from 1000 cm{sup -1} to 4000 cm{sup -1} has been developed, optimized, and its performance characterized by combining a FT-IR spectrometer with Ag/Ag-halide hollow core optical fibers. The hollow core waveguide simultaneously serves as a light guide and miniature gas cell. CH{sub 4} was used as test analyte during exponential dilution experiments for accurate determination of the achievable limit of detection (LOD). It is shown that the optimized integration of an optical gas sensor module with FT-IR spectroscopy provides trace sensitivity at the few hundreds of parts-per-billion concentration range (ppb, v/v) for CH{submore » 4}.« less
The determination of trace elements in crude oil and its heavy fractions by atomic spectrometry
NASA Astrophysics Data System (ADS)
Duyck, Christiane; Miekeley, Norbert; Porto da Silveira, Carmem L.; Aucélio, Ricardo Q.; Campos, Reinaldo C.; Grinberg, Patrícia; Brandão, Geisamanda P.
2007-09-01
A literature review on the determination of trace elements in crude oil and heavy molecular mass fractions (saturates, aromatics, resins and asphaltenes) by ICP-MS, ICP OES and AAS is presented. Metal occurrences, forms and distributions are examined as well as their implications in terms of reservoir geochemistry, oil refining and environment. The particular analytical challenges for the determination of metals in these complex matrices by spectrochemical techniques are discussed. Sample preparation based on ashing, microwave-assisted digestion and combustion decomposition procedures is noted as robust and long used. However, the introduction of non-aqueous solvents and micro-emulsions into inductively coupled plasmas is cited as a new trend for achieving rapid and accurate analysis. Separation procedures for operationally defined fractions in crude oil are more systematically applied for the observation of metal distributions and their implications. Chemical speciation is of growing interest, achieved by the coupling of high efficiency separation techniques (e.g., HPLC and GC) to ICP-MS instrumentation, which allows the simultaneous determination of multiple organometallic species of geochemical and environmental importance.
SAVLOC, computer program for automatic control and analysis of X-ray fluorescence experiments
NASA Technical Reports Server (NTRS)
Leonard, R. F.
1977-01-01
A program for a PDP-15 computer is presented which provides for control and analysis of trace element determinations by using X-ray fluorescence. The program simultaneously handles data accumulation for one sample and analysis of data from previous samples. Data accumulation consists of sample changing, timing, and data storage. Analysis requires the locating of peaks in X-ray spectra, determination of intensities of peaks, identification of origins of peaks, and determination of a real density of the element responsible for each peak. The program may be run in either a manual (supervised) mode or an automatic (unsupervised) mode.
Dubascoux, Stephane; Nicolas, Marine; Rime, Celine Fragniere; Payot, Janique Richoz; Poitevin, Eric
2015-01-01
A single-laboratory validation (SLV) is presented for the simultaneous determination of 10 ultratrace elements (UTEs) including aluminum (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), mercury (Hg), molybdenum (Mo), lead (Pb), selenium (Se), and tin (Sn) in infant formulas, adult nutritionals, and milk based products by inductively coupled plasma (ICP)/MS after acidic pressure digestion. This robust and routine multielemental method is based on several official methods with modifications of sample preparation using either microwave digestion or high pressure ashing and of analytical conditions using ICP/MS with collision cell technology. This SLV fulfills AOAC method performance criteria in terms of linearity, specificity, sensitivity, precision, and accuracy and fully answers most international regulation limits for trace contaminants and/or recommended nutrient levels established for 10 UTEs in targeted matrixes.
Fabretti, Jean-François; Sauret, Nathalie; Gal, Jean-François; Maria, Pierre-Charles; Schärer, Urs
2007-09-01
An analytical methodology was developed for the determination of 21 trace elements in suspended particulate matter (PM) using a microwave digestion procedure associated with an inductively coupled plasma mass spectrometry (ICP-MS). The dynamic reaction cell (DRC) of the instrument was carefully optimized to eliminate polyatomic species causing spectral interferences for three specified elements (Cr, Fe, Mn). With this method, the detection limits based on the analysis of seven quartz fibre filters (QFF) considering a one-week sample (250 m3) varied between 0.2 and 650 pg m(-3) for trace elements and between 2.1 and 5.6 ng m(-3) for major elements (Fe, Ti, Zn). The recovery of the analytes was tested with NIST SRM 1648 urban dust within 10% of the certified values only for 3-4 mg of material. The first results were discussed for a field campaign which was carried out simultaneously in the heaviest traffic road tunnel of the centre of Nice and near the landing-taking-off runways in the international airport of Nice Côte d'Azur. The behaviour of some combustion tracers was especially studied.
Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Alizadeh Nabil, Ali Akbar
2015-12-01
In present study, a simultaneous derivatization and air-assisted liquid-liquid microextraction method combined with gas chromatography-nitrogen phosphorous detection has been developed for the determination of some phenolic compounds in biological samples. The analytes are derivatized and extracted simultaneously by a fast reaction with 1-flouro-2,4-dinitrobenzene under mild conditions. Under optimal conditions low limits of detection in the range of 0.05-0.34 ng mL(-1) are achievable. The obtained extraction recoveries are between 84 and 97% and the relative standard deviations are less than 7.2% for intraday (n = 6) and interday (n = 4) precisions. The proposed method was demonstrated to be a simple and efficient method for the analysis of phenols in biological samples. Copyright © 2015 John Wiley & Sons, Ltd.
Sediment quality in Burlington Harbor, Lake Champlain, U.S.A.
Lacey, E.M.; King, J.W.; Quinn, J.G.; Mecray, E.L.; Appleby, P.G.; Hunt, A.S.
2001-01-01
Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2 > 0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ???PAHs and ???PCBs are potentially toxic and/or bioavailable. These predictions were supported by studies of biota in the Burlington Harbor watershed. There is a clear trend of decreasing PAH and trace metal contaminant concentrations with distance from the STP outfall.Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2>0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ??PAHs and ??PCBs are potentially toxic and/or bi
[Flotation and extraction spectrophotometric determination of trace silicate in water].
Di, J; Liu, Q; Li, W
2000-12-01
In HCl solution, silicate reacted with molybdate ammonium to produce silicomolibdic, then a yellow compound which was produced from the oxidation of TMB was simultaneously isolated to benzene phase by flotation and then isolated to dimethylsulfoxideformic acid by extraction. The compound gives a high absorption at 458 nm. The apparent molar absorptivity is 1.26 x 10(5) L.mol-1.cm-1. In the range of 0.02-1 mg.L-1 Si obeys Beer's law. The proposed method which combines with enrichment and measurement is simple, rapid, selective and convenient to determine silicate in water with satisfied results.
Whole-organism clone tracing using single-cell sequencing.
Alemany, Anna; Florescu, Maria; Baron, Chloé S; Peterson-Maduro, Josi; van Oudenaarden, Alexander
2018-04-05
Embryonic development is a crucial period in the life of a multicellular organism, during which limited sets of embryonic progenitors produce all cells in the adult body. Determining which fate these progenitors acquire in adult tissues requires the simultaneous measurement of clonal history and cell identity at single-cell resolution, which has been a major challenge. Clonal history has traditionally been investigated by microscopically tracking cells during development, monitoring the heritable expression of genetically encoded fluorescent proteins and, more recently, using next-generation sequencing technologies that exploit somatic mutations, microsatellite instability, transposon tagging, viral barcoding, CRISPR-Cas9 genome editing and Cre-loxP recombination. Single-cell transcriptomics provides a powerful platform for unbiased cell-type classification. Here we present ScarTrace, a single-cell sequencing strategy that enables the simultaneous quantification of clonal history and cell type for thousands of cells obtained from different organs of the adult zebrafish. Using ScarTrace, we show that a small set of multipotent embryonic progenitors generate all haematopoietic cells in the kidney marrow, and that many progenitors produce specific cell types in the eyes and brain. In addition, we study when embryonic progenitors commit to the left or right eye. ScarTrace reveals that epidermal and mesenchymal cells in the caudal fin arise from the same progenitors, and that osteoblast-restricted precursors can produce mesenchymal cells during regeneration. Furthermore, we identify resident immune cells in the fin with a distinct clonal origin from other blood cell types. We envision that similar approaches will have major applications in other experimental systems, in which the matching of embryonic clonal origin to adult cell type will ultimately allow reconstruction of how the adult body is built from a single cell.
Simultaneous Power Deposition Detection of Two EC Beams with the BIS Analysis in Moving TCV Plasmas
NASA Astrophysics Data System (ADS)
Curchod, L.; Pochelon, A.; Decker, J.; Felici, F.; Goodman, T. P.; Moret, J.-M.; Paley, J. I.
2009-11-01
Modulation of power amplitude is a widespread to determine the radial absorption profile of externally launched power in fusion plasmas. There are many techniques to analyze the plasma response to such a modulation. The break-in-slope (BIS) analysis can draw an estimated power deposition profile for each power step up. In this paper, the BIS analysis is used to monitor the power deposition location of one or two EC power beams simultaneously in a non-stationary plasma being displaced vertically in the TCV tokamak vessel. Except from radial discrepancies, the results have high time resolution and compare well with simulations from the R2D2-C3PO-LUKE ray-tracing and Fokker-Planck code suite.
Hopkins, D.M.
1991-01-01
Trace metals that are commonly associated with mineralization were concentrated and separated from natural water by coprecipitation with ammonium pyrollidine dithiocarbamate (APDC) and cobalt and determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The method is useful in hydrogeochemical surveys because it permits preconcentration near the sample sites, and selected metals are preserved shortly after the samples are collected. The procedure is relatively simple: (1) a liter of water is filtered; (2) the pH is adjusted; (3) Co chloride and APDC are added to coprecipitate the trace metals; and (4) later, the precipitate is filtered, dissolved, and diluted to 10 ml for a 100-fold concentration enrichment of the separated metals. Sb(III), As(III), Cd, Cr, Cu, Fe, Pb, Mo, Ni, Ag, V, and Zn can then be determined simultaneously by ICP-AES. In an experiment designed to measure the coprecipitation efficiency, Sb(III), Cd and Ag were recovered at 70 to 75% of their original concentration. The remaining metals were recovered at 85 to 100% of their original concentrations, however. The range for the lower limits of determination for the metals after preconcentration is 0.1 to 3.0 ??g/l. The precision of the method was evaluated by replicate analyses of a Colorado creek water and two simulated water samples. The accuracy of the method was estimated using a water reference standard (SRM 1643a) certified by the U.S. National Bureau of Standards. In addition, the method was evaluated by analyzing groundwater samples collected near a porphyry copper deposit in Arizona and by analyzing meltwater from glacier-covered areas favorable for mineralization in south-central Alaska. The results for the ICP-AES analyses compared favorably with those obtained using the sequential technique of GFAAS on the acidified but unconcentrated water samples. ICP-AES analysis of trace-metal preconcentrates for hydrogeochemical surveys is more efficient than GFAAS because a large suite of metals is simultaneously determined with acceptable analytical accuracy and precision. The proposed analytical technique can provide direct evidence of mineralization and is useful in the exploration for unknown ore deposits. ?? 1991.
NASA Astrophysics Data System (ADS)
Matusiewicz, Henryk; Ślachciński, Mariusz
2017-07-01
A miniaturized optical emission spectrometer (OES) with capacitively coupled argon microwave microplasma (μCMP) as and excitation source and chemical vapor generation (CVG) for sample introduction was constructed for the determination of trace Hg, As, Sb and Se. The applied method enabled simultaneous determination of hydride-forming elements (As, Sb, Se) and volatile Hg. Mercury cold vapor and the hydride volatile species of As, Sb and Se were generated when standard or sample solutions were separated from the liquid phase for transport to the capacitively coupled microwave microplasma and detection of their atomic emission. A univariate approach and the simplex optimization procedure were used to achieve optimized conditions and derive analytical figures of merit. The experimental concentration detection limits (LODs) for simultaneous determination, calculated as the concentration giving a signal equal to three times of the standard deviation of the blank (LOD, 3σblank criterion, peak height) were 3.0, 1.4, 1.5 and 3.8 ng mL- 1 for Hg, As, Sb and Se, respectively. The method was validated by the analysis of three Certified Reference Materials (NIST 2711, NRCC DOLT-2, NIST 1643e) of different matrix composition and by the standard addition technique. The method offers relatively good precision (RSD ranged from 5% to 8%) for microsampling (200 μL) analysis. The measured of contents of elements in certified reference materials were in good agreement with the certified values (Hg 1.99-6.25 μg g- 1, As 16.6-105 μg g- 1, Sb 19.4-56.88 μg g- 1, Se 1.52-11.68 μg g- 1), according to the Student t-test, for a confidence level of 95%.
Behbahani, Mohammad; Najafi, Fatemeh; Bagheri, Saman; Bojdi, Majid Kalate; Hassanlou, Parmoon Ghareh; Bagheri, Akbar
2014-04-01
A simple, rapid, and efficient sample pretreatment technique, based on solvent-based de-emulsification dispersive liquid-liquid microextraction (SD-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for simultaneous preconcentration and trace detection of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) in water and urine samples. Some parameters such as acidity of solution, the amount of salt, type, and volume of extraction solvents, type of disperser/de-emulsifier solvent, and its volume were investigated and optimized. Under optimum extraction conditions, the limits of detections (LODs) of this method for MCPA and 2,4-D were 0.2 and 0.6 μg L(-1) (based on 3S(b)/m) in water and 0.4 and 1.6 μg L(-1) in urine, respectively. Furthermore, dynamic linear range of this method for MCPA and 2,4-D was 1-300 and 2-400 μg L(-1), repectively. Finally, the applicability of the proposed method was evaluated by extraction and determination of the herbicides in urine and different water samples.
Shamsipur, Mojtaba; Hashemi, Omid Reza; Safavi, Afsaneh
2005-09-01
A rapid flotation method for separation and enrichment of ultra trace amounts of copper(II), cadmium(II), nickel(II) and cobalt(II) ions from water samples is established. At pH 6.5 and with sodium dodecylsulfate used as a foaming reagent, Cu2+, Cd2+, Ni2+ and Co2+ were separated simultaneously with 2-aminocyclopentene-1-dithiocarboxylic acid (ACDA) added to 1 l of aqueous solution. The proposed procedure of preconcentration is applied prior to the determination of these four analytes using inductivity coupled plasma-atomic emission spectrometry (ICP-AES). The effects of pH, concentration of ACDA, applicability of different surfactants and foreign ions on the separation efficiency were investigated. The preconcentration factor of the method is 1000 and the detection limits of copper(II), cadmium(II), nickel(II) and cobalt(II) ions are 0.078, 0.075, 0.072 and 0.080 ng ml(-1), respectively.
Single-Shot Laser Ablation Split-Stream (SS-LASS) Analysis Depth Profiling
NASA Astrophysics Data System (ADS)
Kylander-Clark, A. R.; Stearns, M. A.; Viete, D. R.; Cottle, J. M.; Hacker, B. R.
2014-12-01
Laser ablation depth profiling of geochronometers—such as zircon, monazite, titanite and rutile—has become popular in recent years as a tool to both determine date vs. depth or trace-element (TE) composition vs. depth; the former allows the dating of thin rims and, potentially, inversion of Pb-loss profiles for thermal histories, whereas the latter can yield insight into changes in PTX or mineral parageneses and inversion of trace-element profiles for thermal histories. In this study, we combine both techniques, enabling simultaneous acquisition of U-Th/Pb isotopic ratios and trace-element compositions, by joining a 193 nm excimer laser to a multi-collector ICP-MS and single-collector ICP-MS. The simultaneous acquisition allows direct shot-by-shot linkage between time and petrology, expanding our ability to understand the evolution of complex geologic systems. We construct each depth profile by capturing the analyte with a succession of individual laser pulses (each ~100 nm deep) . This has two main advantages over a typical time-dependent analysis of a multi-shot routine composed of tens to hundreds of shots and a several μm deep hole. 1) The reference material is analyzed between each shot for a more-accurate standardization of each aliquot of ablated material. 2) There is no mixing of material ablated from successive laser pulses during transmission to the ICP. The method is limited by count rate, which depends on spot size, excavation rate, instrument sensitivity, etc., and, for single-collector ICP, the switching time, which limits the number of elements that can be analyzed and their total counts. We explore the latter theoretically and experimentally to provide insight on both the ideal number of elements to measure and the dwell time in any given sample. Examples of the utility of SS-LASS include the comparison of apparent Pb loss to diffusion profiles of trace elements in rims of metamorphic rutile and titanite, as well as the determination of the timing and petrologic conditions of thin zircon rims in metamorphic rocks.
Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Wang, Shujuan; Xu, Xuchang
2006-12-15
Sulfur dioxide (SO2) and trace elements are all pollutants derived from coal combustion. This study relates to the simultaneous removal of SO2 and trace selenium dioxide (SeO2) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range, especially the effect of SO2 presence on selenium capture. Experiments performed on a thermogravimetric analyzer (TGA) can reach the following conclusions. When the CaO conversion is relatively low and the reaction rate is controlled by chemical kinetics, the SO2 presence does not affect the selenium capture. When the CaO conversion is very high and the reaction rate is controlled by product layer diffusion, the SO2 presence and the product layer diffusion resistance jointly reduce the selenium capture. On the basis of the kinetics study, a method to estimate the trace selenium removal efficiency using kinetic parameters and the sulfur removal efficiency is developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mykytiuk, A.P.; Russell, D.S.; Sturgeon, R.E.
Trace concentrations (ng/mL) of Fe, Cd, Zn, Cu, Ni, Pb, U, and Co have been determined in seawater by stable isotope dilution spark source mass spectrometry. The seawater samples were preconcentrated on the ion exchanger Chelex-100 and the concentrate was evaporated on a graphite or silver electrode. The results are compared with those obtained by graphite furnace atomic absorption spectrometry and inductively coupled plasma emission spectrometry. The technique avoids the use of calibration standards and is capable of producing results in cases where the analyte is only partially recovered. 2 tables.
NASA Astrophysics Data System (ADS)
Griesel, S.; Mundry, R.; Kakuschke, A.; Fonfara, S.; Siebert, U.; Prange, A.
2006-11-01
Mineral and essential trace elements are involved in numerous physiological processes in mammals. Often, diseases are associated with an imbalance of the electrolyte homeostasis. In this study, the concentrations of mineral elements (P, S, K, Ca) and essential trace elements (Fe, Cu, Zn, Se, Rb, Sr) in whole blood of harbor seals ( Phoca vitulina) were determined using total-reflection X-ray fluorescence spectrometry (TXRF). Samples from 81 free-ranging harbor seals from the North Sea and two captive seals were collected during 2003-2005. Reference ranges and element correlations for health status determination were derived for P, S, K, Ca, Fe, Cu, and Zn level in whole blood. Grouping the seals by age, gender and sample location the concentration levels of the elements were compared. The blood from two captive seals with signs of diseases and four free-ranging seals showed reduced element levels of P, S, and Ca and differences in element correlation of electrolytes were ascertained. Thus, simultaneous measurements of several elements in only 500 μL volumes of whole blood provide the possibility to obtain information on both, the electrolyte balance and the hydration status of the seals. The method could therefore serve as an additional biomonitoring tool for the health assessment.
ExoMars 2016 Trace Gas Orbiter and Mars Express Coordinated Science Operations Planning
NASA Astrophysics Data System (ADS)
Cardesin Moinelo, Alejandro; Geiger, Bernhard; Costa, Marc; Breitfellner, Michel; Castillo, Manuel; Marin Yaseli de la Parra, Julia; Martin, Patrick; Merritt, Donald R.; Grotheer, Emmanuel; Aberasturi Vega, Miriam; Ashman, Mike; Frew, David; Garcia Beteta, Juan Jose; Metcalfe, Leo; Muñoz, Claudio; Muñoz, Michela; Titov, Dimitri; Svedhem, Hakan
2018-05-01
In this contribution we focus on the science opportunity analysis between the Mars Express and the ExoMars 2016 Trace Gas Orbiter missions and the observations that can be combined to improve the scientific outcome of both missions. In particular we will describe the long term analysis of geometrical conditions that allow for coordinated science observations for solar occultation and nadir pointing. We will provide details on the calculations and results for simultaneous and quasi-simultaneous opportunities, taking into account the observation requirements of the instruments and the operational requirements for feasibility checks.
Ben, Weiwei; Qiang, Zhimin; Adams, Craig; Zhang, Heqing; Chen, Liping
2008-08-22
Little is known about the contamination level of antibiotics in swine wastewater in China. The highly complex matrix of swine wastewater, which generally has a chemical oxygen demand (COD) concentration as high as 15,000 mg/L, makes it difficult to detect antibiotics at trace levels. In this work, a highly selective and sensitive analytical method was developed for simultaneous determination of three classes of commonly used veterinary antibiotics including five sulfonamides, three tetracyclines and one macrolide in swine wastewater using solid-phase extraction (SPE) and liquid chromatography-mass spectrometry (LC-MS). The method detection limits (MDL) in the swine wastewater were determined to be between 5 and 91 ng/L, depending on specific antibiotics. Except sulfamethizole, all the other eight antibiotics were detected in the swine wastewaters collected from three concentrated swine feeding plants located in the Beijing (China) area, showing a concentration range of 0.62-32.67 microg/L. These results reveal the representative concentration levels of selected antibiotics in the swine wastewaters of Beijing area.
Fate of Trace Metals in Anaerobic Digestion.
Fermoso, F G; van Hullebusch, E D; Guibaud, G; Collins, G; Svensson, B H; Carliell-Marquet, C; Vink, J P M; Esposito, G; Frunzo, L
2015-01-01
A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments--often agricultural lands receiving discharge waters from anaerobic digestion processes--simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.
Heidarizadi, Elham; Tabaraki, Reza
2016-01-01
A sensitive cloud point extraction method for simultaneous determination of trace amounts of sunset yellow (SY), allura red (AR) and brilliant blue (BB) by spectrophotometry was developed. Experimental parameters such as Triton X-100 concentration, KCl concentration and initial pH on extraction efficiency of dyes were optimized using response surface methodology (RSM) with a Doehlert design. Experimental data were evaluated by applying RSM integrating a desirability function approach. The optimum condition for extraction efficiency of SY, AR and BB simultaneously were: Triton X-100 concentration 0.0635 mol L(-1), KCl concentration 0.11 mol L(-1) and pH 4 with maximum overall desirability D of 0.95. Correspondingly, the maximum extraction efficiency of SY, AR and BB were 100%, 92.23% and 95.69%, respectively. At optimal conditions, extraction efficiencies were 99.8%, 92.48% and 95.96% for SY, AR and BB, respectively. These values were only 0.2%, 0.25% and 0.27% different from the predicted values, suggesting that the desirability function approach with RSM was a useful technique for simultaneously dye extraction. Linear calibration curves were obtained in the range of 0.02-4 for SY, 0.025-2.5 for AR and 0.02-4 μg mL(-1) for BB under optimum condition. Detection limit based on three times the standard deviation of the blank (3Sb) was 0.009, 0.01 and 0.007 μg mL(-1) (n=10) for SY, AR and BB, respectively. The method was successfully used for the simultaneous determination of the dyes in different food samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Gao, Man; Qu, Jingang; Chen, Kai; Jin, Lide; Dahlgren, Randy Alan; Wang, Huili; Tan, Chengxia; Wang, Xuedong
2017-11-01
In real aquatic environments, many occupational pollutants with a wide range of polarities coexist at nanogram to milligram per liter levels. Most reported microextraction methods focus on extracting compounds with similar properties (e.g., polarity or specific functional groups). Herein, we developed a salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan, and methyltriclosan, with log K ow ranging from -1.32 to 5.40 in complex milk and environmental water matrices. The disperser in the ionic-liquid-based dispersive liquid-liquid microextraction was converted to the extraction solvent in the subsequent salting-out-assisted microextraction procedures, and thus a single solvent performed a dual role as both extractant and disperser in the SILM-DS process. Acetonitrile was selected as the dual-role solvent because of its strong affinity for both ionic liquids and water, as well as the extractant in the salting-out step. Optimized experimental conditions were 115 μL [C 8 MIM][PF 6 ] as extractor, 1200 μL acetonitrile as dual-role solvent, pH 2.0, 5.0 min ultrasound extraction time, 3.0 g Na 2 SO 4 , and 3.0 min vortex extraction time. Under optimized conditions, the recoveries of the five pollutants ranged from 74.5 to 106.9%, and their LODs were 0.12-0.75 μg kg -1 in milk samples and 0.11-0.79 μg L -1 in environmental waters. Experimental precision based on relative standard deviation was 1.4-6.4% for intraday and 2.3-6.5% for interday analyses. Compared with previous methods, the prominent advantages of the newly developed method are simultaneous determination of pollutants with a wide range of polarities and a substantially reduced workload for ordinary environmental monitoring and food tests. Therefore, the new method has great application potential for simultaneous determination of trace pollutants with strongly contrasting polarities in several analytical fields. Graphical Abstract A salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) was developed for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan and methyltriclosan, with log K ow ranging from -1.32 to 5.40. The novelty of SILM-DS method lies in (1) simultaneous quantification of pollutants with contrasting polarity; (2) microextraction based on a dual-role solvent (as a disperser and extractant); (3) giving high recoveries for analytes with a wide range of polarities; and (4) reducing workload for ordinary environmental monitoring and food tests.
Comparative study of methodologies for pulse wave velocity estimation.
Salvi, P; Magnani, E; Valbusa, F; Agnoletti, D; Alecu, C; Joly, L; Benetos, A
2008-10-01
Arterial stiffness, estimated by pulse wave velocity (PWV), is an independent predictor of cardiovascular mortality and morbidity. However, the clinical applicability of these measurements and the elaboration of reference PWV values are difficult due to differences between the various devices used. In a population of 50 subjects aged 20-84 years, we compared PWV measurements with three frequently used devices: the Complior and the PulsePen, both of which determine aortic PWV as the delay between carotid and femoral pressure wave and the PulseTrace, which estimates the Stiffness Index (SI) by analyzing photoplethysmographic waves acquired on the fingertip. PWV was measured twice by each device. Coefficient of variation of PWV was 12.3, 12.4 and 14.5% for PulsePen, Complior and PulseTrace, respectively. These measurements were compared with the reference method, that is, a simultaneous acquisition of pressure waves using two tonometers. High correlation coefficients with the reference method were observed for PulsePen (r = 0.99) and Complior (r = 0.83), whereas for PulseTrace correlation with the reference method was much lower (r = 0.55). Upon Bland-Altman analysis, mean differences of values +/- 2s.d. versus the reference method were -0.15 +/- 0.62 m/s, 2.09 +/- 2.68 m/s and -1.12 +/- 4.92 m/s, for PulsePen, Complior and Pulse-Trace, respectively. This study confirms the reliability of Complior and PulsePen devices in estimating PWV, while the SI determined by the PulseTrace device was found to be inappropriate as a surrogate of PWV. The present results indicate the urgent need for evaluation and comparison of the different devices to standardize PWV measurements and establish reference values.
The plasma filling factor of coronal bright points. II. Combined EIS and TRACE results
NASA Astrophysics Data System (ADS)
Dere, K. P.
2009-04-01
Aims: In a previous paper, the volumetric plasma filling factor of coronal bright points was determined from spectra obtained with the Extreme ultraviolet Imaging Spectrometer (EIS). The analysis of these data showed that the median plasma filling factor was 0.015. One interpretation of this result was that the small filling factor was consistent with a single coronal loop with a width of 1-2´´, somewhat below the apparent width. In this paper, higher spatial resolution observations with the Transition Region and Corona Explorer (TRACE) are used to test this interpretation. Methods: Rastered spectra of regions of the quiet Sun were recorded by the EIS during operations with the Hinode satellite. Many of these regions were simultaneously observed with TRACE. Calibrated intensities of Fe xii lines were obtained and images of the quiet corona were constructed from the EIS measurements. Emission measures were determined from the EIS spectra and geometrical widths of coronal bright points were obtained from the TRACE images. Electron densities were determined from density-sensitive line ratios measured with EIS. A comparison of the emission measure and bright point widths with the electron densities yielded the plasma filling factor. Results: The median electron density of coronal bright points is 3 × 109 cm-3 at a temperature of 1.6 × 106 K. The volumetric plasma filling factor of coronal bright points was found to vary from 3 × 10-3 to 0.3 with a median value of 0.04. Conclusions: The current set of EIS and TRACE coronal bright-point observations indicate the median value of their plasma filling factor is 0.04. This can be interpreted as evidence of a considerable subresolution structure in coronal bright points or as the result of a single completely filled plasma loop with widths on the order of 0.2-1.5´´ that has not been spatially resolved in these measurements.
Miao, Meng; Zhao, Gaosheng; Xu, Li; Dong, Junguo; Cheng, Ping
2018-03-01
A direct analytical method based on spray-inlet microwave plasma torch tandem mass spectrometry was applied to simultaneously determine 4 phthalate esters (PAEs), namely, benzyl butyl phthalate, diethyl phthalate, dipentyl phthalate, and dodecyl phthalate with extremely high sensitivity in spirits without sample treatment. Among the 4 brands of spirit products, 3 kinds of PAE compounds were directly determined at very low concentrations from 1.30 to 114 ng·g -1 . Compared with other online and off-line methods, the spray-inlet microwave plasma torch tandem mass spectrometry technique is extremely simple, rapid, sensitive, and high efficient, providing an ideal screening tool for PAEs in spirits. Copyright © 2017 John Wiley & Sons, Ltd.
Tu, Zhifeng; He, Qun; Chang, Xijun; Hu, Zheng; Gao, Ru; Zhang, Lina; Li, Zhenhua
2009-09-07
A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n=8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.
Xiao, Ni; Deng, Jian; Huang, Kaihui; Ju, Saiqin; Hu, Canhui; Liang, Jun
2014-07-15
Two novel methods, first derivative spectrophotometric method ((1)D) and first derivative ratio spectrophotometric method ((1)DR), have been developed for the simultaneous trace determination of rhodamine B (RhB) and rhodamine 6G (Rh6G) in food samples after dispersive liquid-liquid microextraction (DLLME). The combination of derivative spectrophotometric techniques and DLLME procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimum conditions, the linear calibration curves ranged from 5 to 450 ng mL(-1), with the correlation coefficients (r) of 0.9997 for RhB and 0.9977 for Rh6G by (1)D method, and 0.9987 for RhB and 0.9958 for Rh6G by (1)DR method, respectively. The calculated limits of detection (LODs) based on the variability of the blank solutions (S/N = 3 criterion) for 11 measurements were in the range of 0.48-1.93 ng mL(-1). The recoveries ranged from 88.1% to 111.6% (with RSD less than 4.4%) and 91.5-110.5% (with RSD less than 4.7%) for (1)D and (1)DR method, respectively. The influence of interfering substances such as foreign ions and food colorants which might be present in the food samples on the signals of RhB and Rh6G was examined. The developed methods have been successfully applied to the determination of RhB and Rh6G in black tea, red wine and chilli powder samples with the characteristics of simplicity, cost-effectiveness, environmental friendliness, and could be valuable for routine analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Lv, Zhengxian; You, Jinmao; Lu, Shuaimin; Sun, Weidi; Ji, Zhongyin; Sun, Zhiwei; Song, Cuihua; Chen, Guang; Li, Guoliang; Hu, Na; Zhou, Wu; Suo, Yourui
2017-03-31
As the key aroma compounds, varietal thiols are the crucial odorants responsible for the flavor of wines. Quantitative analysis of thiols can provide crucial information for the aroma profiles of different wine styles. In this study, a rapid and sensitive method for the simultaneous determination of six thiols in wine using d 0 /d 4 -acridone-10-ethyl-N-maleimide (d 0 /d 4 -AENM) as stable isotope-coded derivatization reagent (SICD) by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) has been developed. Quantification of thiols was performed by using d 4 -AENM labeled thiols as the internal standards (IS), followed by stable isotope dilution HPLC-ESI-MS/MS analysis. The AENM derivatization combined with multiple reactions monitoring (MRM) not only allowed trace analysis of thiols due to the extremely high sensitivity, but also efficiently corrected the matrix effects during HPLC-MS/MS and the fluctuation in MS/MS signal intensity due to instrument. The obtained internal standard calibration curves for six thiols were linear over the range of 25-10,000pmol/L (R 2 ≥0.9961). Detection limits (LODs) for most of analytes were below 6.3pmol/L. The proposed method was successfully applied for the simultaneous determination of six kinds of thiols in wine samples with precisions ≤3.5% and recoveries ≥78.1%. In conclusion, the developed method is expected to be a promising tool for detection of trace thiols in wine and also in other complex matrix. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiao, Ni; Deng, Jian; Huang, Kaihui; Ju, Saiqin; Hu, Canhui; Liang, Jun
2014-07-01
Two novel methods, first derivative spectrophotometric method (1D) and first derivative ratio spectrophotometric method (1DR), have been developed for the simultaneous trace determination of rhodamine B (RhB) and rhodamine 6G (Rh6G) in food samples after dispersive liquid-liquid microextraction (DLLME). The combination of derivative spectrophotometric techniques and DLLME procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimum conditions, the linear calibration curves ranged from 5 to 450 ng mL-1, with the correlation coefficients (r) of 0.9997 for RhB and 0.9977 for Rh6G by 1D method, and 0.9987 for RhB and 0.9958 for Rh6G by 1DR method, respectively. The calculated limits of detection (LODs) based on the variability of the blank solutions (S/N = 3 criterion) for 11 measurements were in the range of 0.48-1.93 ng mL-1. The recoveries ranged from 88.1% to 111.6% (with RSD less than 4.4%) and 91.5-110.5% (with RSD less than 4.7%) for 1D and 1DR method, respectively. The influence of interfering substances such as foreign ions and food colorants which might be present in the food samples on the signals of RhB and Rh6G was examined. The developed methods have been successfully applied to the determination of RhB and Rh6G in black tea, red wine and chilli powder samples with the characteristics of simplicity, cost-effectiveness, environmental friendliness, and could be valuable for routine analysis.
2D/3D fetal cardiac dataset segmentation using a deformable model.
Dindoyal, Irving; Lambrou, Tryphon; Deng, Jing; Todd-Pokropek, Andrew
2011-07-01
To segment the fetal heart in order to facilitate the 3D assessment of the cardiac function and structure. Ultrasound acquisition typically results in drop-out artifacts of the chamber walls. The authors outline a level set deformable model to automatically delineate the small fetal cardiac chambers. The level set is penalized from growing into an adjacent cardiac compartment using a novel collision detection term. The region based model allows simultaneous segmentation of all four cardiac chambers from a user defined seed point placed in each chamber. The segmented boundaries are automatically penalized from intersecting at walls with signal dropout. Root mean square errors of the perpendicular distances between the algorithm's delineation and manual tracings are within 2 mm which is less than 10% of the length of a typical fetal heart. The ejection fractions were determined from the 3D datasets. We validate the algorithm using a physical phantom and obtain volumes that are comparable to those from physically determined means. The algorithm segments volumes with an error of within 13% as determined using a physical phantom. Our original work in fetal cardiac segmentation compares automatic and manual tracings to a physical phantom and also measures inter observer variation.
Li, Shengqing; Hu, Bin; Jiang, Zucheng; Chen, Rui
2004-08-01
A method for in-situ removal of matrix is proposed for direct determination of trace refractory elements in human serum by ETV-ICP-MS with the use of poly(tetrafluoroethylene) (PTFE) as fluorinating reagent. Attention has been paid to investigating the vaporization behavior both of refractory elements of interest and of matrix elements (Na, K, Ca, Mg, Cl, S, and P) in a graphite furnace with the PTFE modifier present or not. It was shown that potential interferences from the organic and inorganic matrices in the serum sample could be eliminated or reduced to a negligible level by appropriate dilution of the serum and deliberate optimization of the ETV temperature program. The proposed method has been applied to the direct simultaneous determination of V, Cr, Mo, Ba, La, Ce, and W in human serum. The limits of detection for fivefold diluted serum were 0.18 (V), 0.229 (Cr), 0.050 (Mo), 0.328 (Ba), 0.031 (La), 0.038 (Ce), and 0.019 ng mL(-1) (W), respectively, and the relative standard deviations of the method were in the range 4-15% (2 ng mL(-1) in serum, n=3).
NASA Astrophysics Data System (ADS)
Abu-Taha, M. I.; Abu-Teir, M. M.; Al-Jamal, A. J.; Eideh, H.
The aim of this work was to establish the feasibility of the combined photoacoustic (PA) and photopyroelectric (PPE) detection of the vapours emitted from essential oils and their corresponding uncrushed leaves or flowers. Gas traces of jasmine (Jessamine (Jasminum)), mint (Mentha arvensis L.) and Damask rose (Rosa damascena Miller) and their essential oils were tested using a combined cell fitted with both a photopyroelectric film (PVDF) and a microphone in conjunction with a pulsed wideband infrared source (PWBS) source. Infrared PA and PPE absorbances were obtained simultaneously at room temperatures with excellent reproducibility and high signal-to-noise ratios. Significant similarities found between the PA and PPE spectra of the trace gas emissions of plant parts, i.e., flowers or leaves and their related essential oils show the good correlation of their emissions and that both effects are initiated by the same absorbing molecules.
Ball, J.W.; Nordstrom, D. Kirk
1994-01-01
Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of the remaining elements, Ba, Be, Ca, Cr, Mg, Mn, Sr, and Zn have roughly equivalent accuracy, precision, and detection limit by ICP and DCP. Cobalt and Ni were determined to be better analyzed by ICP, because of lower detection limits; B, Cu, Mo, and Si were determined to be better analyzed by DCP, because of relative freedom from interferences. The determination oral by DCP was far more sensitive, owing to the use of a more sensitive wavelength, compared with the ICP. However, there is a very serious potential interference from a strong Ca emission line near the 396.15 nanometer DCP wavelength. Thus, there is no clear choice between the plasma techniques tested, for the determination oral. The ICP and DCP detection limits are typically between 0.001 and 0.5 milligrams per liter in acid mine waters. For those metals best analyzed by ICP and/or DCP, but below these limits, GFAAS is the method of choice because of its relatively greater sensitivity and specificity. Six of the elements were not determined by DCP, ICP or Zeeman-corrected GFAAS, and are not discussed in this report. These elements are: Bi, Fe(11), Li, Sb, Se, and TI.
Global sensing of gaseous and aerosol trace species using automated instrumentation on 747 airliners
NASA Technical Reports Server (NTRS)
Perkins, P. J.; Papathakos, L. C.
1978-01-01
The Global Atmospheric Sampling Program (GASP) is collecting and analyzing data on gaseous and aerosol trace contaminants in the upper troposphere and lower stratosphere. Measurements are obtained from automated systems installed on four 747 airliners flying global air routes. Improved instruments and analysis techniques are providing an expanding data base for trace species including ozone, carbon monoxide, water vapor, condensation nuclei, and mass concentration of sulfates and nitrates. Simultaneous measurements of several trace species obtained frequently can be used to identify the source of the air mass as being typically tropospheric or stratospheric.
Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique
2014-01-01
Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.
Lu, Yang; Chen, Bo; Yu, Miao; Han, Juan; Wang, Yun; Tan, Zhenjiang; Yan, Yongsheng
2016-11-01
Smart polymer aqueous two phase flotation system (SPATPF) is a new separation and enrichment technology that integrated the advantages of the three technologies, i.e., aqueous two phase system, smart polymer and flotation sublation. Ethylene oxide and propylene oxide copolymer (EOPO)-(NH4)2SO4 SPATPF is a pretreatment technique, and it is coupled with high-performance liquid chromatography to analyze the trace ciprofloxacin and lomefloxacin in real food samples. The optimized conditions of experiment were determined in the multi-factor experiment by using response surface methodology. The flotation efficiency of lomefloxacin and ciprofloxacin was 94.50% and 98.23% under the optimized conditions. The recycling experimentsshowed that the smart polymer EOPO could use repeatedly, which will reduce the cost in the future application. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dohmen, R.; Marschall, H.; Wiedenbeck, M.; Polednia, J.; Chakraborty, S.
2016-12-01
Diffusion of trace elements, often with ionic charge that differs from those of ions in the regular structural sites of a mineral, controls a number of important processes in rocks, such as: (i) Closure of radiogenic isotopic systems, (e.g. Pb diffusion in rutile; REE diffusion in garnet); (ii) Closure of trace element thermometers (e.g., Zr in rutile, Mg in plagioclase, Al in olivine); (iii) Closure of element exchange between melt inclusions and host minerals (e.g., H, REE in olivine). In addition, preserved trace element zoning profiles in minerals can be used for diffusion chronometry (e.g. Nb in rutile, Mg in plagioclase). However, experimentally determined diffusion coefficients of these trace elements are in many cases controversial (e.g., REE in olivine: [1] vs. [2]; Mg in plagioclase: [3] vs. [4]). We have carried out experiments to study the diffusion behavior in olivine, rutile, and plagioclase, and are able to show that two mechanisms of diffusion, differing in rates by up to four orders of magnitude, may operate simultaneously in a given crystal. The two mechanisms result in complex diffusion profile shapes. As a general rule, the incorporation of heterovalent substituting elements in relatively high concentrations is necessary to activate two diffusion mechanisms. This behavior is produced by the control of these elements on the point defect chemistry of a mineral - these impurities become a majority point defect when a threshold concentration limit is exceeded. In certain cases, e.g., for Li in olivine, the trace element can also be incorporated in different sites, resulting in interaction of the different species with other point defects (vacancies) during diffusion. Thus, depending on the diffusion couple used in the experiment, the associated concentration gradients within the mineral, and the analytical techniques used to measure the diffusion profile, only one diffusion mechanism may be activated or detected. These studies allow us to explain some of the differing results noted above and such considerations need to be taken into account when modelling diffusion in natural systems. [1] Cherniak 2010, Am Mineral 95:362-368; [2] Spandler and O'Neill 2010, Contrib Mineral Petrol 159:791-818; [3] Faak et al. 2013 Geochim Cosmochim Acta 123:195-217; [4] Van Orman et al. 2014 Earth Planet Sci Lett 385:79-88
Hashem, Elham Y; Abu-Bakr, Mohamed S; Hussain, Sawsan M
2004-01-01
Spectrophotometric studies have been made to investigate the reaction of Nickel and Lead with 2-carboxy-2'-hydroxy-5'-sulfoformazyl-benzene (zincon) in 50%(v/v) ethanol-water at 25 degrees C and an ionic strength of 0.1 M NaClO4. A complete picture of the complexation equilibria in the pH range (4.2-12.0) for nickel and (1.9-11.5) for lead are presented. Simple, rapid, selective and sensitive methods for the spectro-photometric determination of nickel and lead has been developed based on the color reaction of their complexes with zincon. The methods allow the determination of 4.69 microg mL(-1) of nickel at pH = 6.3 (lambdamax = 665 nm) and 10.3 microg ml(-1) of lead at pH = 5.6 (lambdamax = 610 nm). The apparent molar absorptivities were epsilon = 1.3 x 10(4) L mol(-1) cm(-1) for nickel and epsilon = 0.6 x 10(4) L mol(-1) cm(-1) for lead. The interference of a large number of foreign ions and complexing agents has been studied. Thiosulphate, as masking agent allows the simultaneous determination of nickel and lead in the presence of high concentrations of copper. Ascorbic acid, sodium cyanide and or sodium fluoride provide the elimination of many other interferences. The methods have been applied successfully to the simultaneous determination of nickel and lead in an aluminium and non-ferrous alloy.
Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Li, Yan; Xu, Xuchang
2007-04-15
Sulfur dioxide (SO2) and trace elements are pollutants derived from coal combustion. This study focuses on the simultaneous removal of S02 and trace arsenic oxide (As2O3) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range. Experiments have been performed on a thermogravimetric analyzer (TGA). The interaction mechanism between As2O3 and CaO is studied via XRD detection. Calcium arsenate [Ca3(AsO4)2] is found to be the reaction product in the range of 600-1000 degrees C. The ability of CaO to absorb As2O3 increases with the increasing temperature over the range of 400-1000 degrees C. Through kinetics analysis, it has been found that the rate constant of arsenate reaction is much higher than that of sulfate reaction. SO2 presence does not affect the trace arsenic capture either in the initial reaction stage when CaO conversion is relatively low or in the later stage when CaO conversion is very high. The product of sulfate reaction, CaS04, is proven to be able to absorb As2O3. The coexisting CO2 does not weaken the trace arsenic capture either.
Liu, Na; Shi, Yue-e; Li, Mengyan; Zhang, Ting-di; Gao, Song
2015-10-01
A simple and selective high-performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous measurement of trace levels of four estrogens (estrone, estradiol, estriol and 17α-ethynyl estradiol) in environmental matrices. For feces samples, solid-liquid extraction was applied with a 1:1 v/v mixture of acetonitrile and ethyl acetate as the extraction solvent. For liquid samples (e.g., leachate and groundwater), hydrophobic/lipophilic balanced automated solid-phase extraction disks were selected due to their high recoveries compared to conventional C18 disks. Chromatographic separations were performed on a reversed-phase C18 column gradient-eluted with a 45:55 v/v mixture of acetonitrile and water. The detection limits were down to 1.1 × 10(-2) (estrone), 4.11 × 10(-4) (estradiol), 5.2 × 10(-3) (estriol) and 7.18 × 10(-3) μg/L (17α-ethynyl estradiol) at excitation/emission wavelengths of 288/310 nm, with recoveries in the range of 96.9 ± 3.2-105.4 ± 3.2% (n = 3). The method was successfully applied to determine estrogens in feces and water samples collected at livestock farms and a major river in Northeast China. We observed relatively high abundance and widespread distribution of all four estrogens in our sample collections, implying the urgency for a comprehensive and intricate investigation of estrogenic fate and contamination in our researched area. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yin, Changhai; Iqbal, Jibran; Hu, Huilian; Liu, Bingxiang; Zhang, Lei; Zhu, Bilin; Du, Yiping
2012-09-30
A simple, sensitive and selective solid phase reflectometry method is proposed for the determination of trace mercury in aqueous samples. The complexation reagent dithizone was firstly injected into the properly buffered solution with vigorous stirring, which started a simultaneous formation of nanoparticles suspension of dithizone and its complexation reaction with the mercury(II) ions to make Hg-dithizone nanoparticles. After a definite time, the mixture was filtered with membrane, and then quantified directly on the surface of the membrane by using integrating sphere accessory of the UV-visible spectrophotometer. The quantitative analysis was carried out at a wavelength of 485 nm since it yielded the largest difference in diffuse reflectance spectra before and after reaction with mercury(II).A good linear correlation in the range of 0.2-4.0 μg/L with a squared correlation coefficient (R(2)) of 0.9944 and a detection limit of 0.12 μg/L were obtained. The accuracy of the method was evaluated by the analysis of spiked mercury(II) concentrations determined using this method along with those determined by the atomic fluorescence mercury vapourmeter and the results obtained were in good agreement. The proposed method was applied to the determination of mercury in tap water and river water samples with the recovery in an acceptable range (95.7-105.3%). Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Dong, E-mail: d.qiu@uq.edu.au; Zhang, Mingxing
2014-08-15
A simple and inclusive method is proposed for accurate determination of the habit plane between bicrystals in transmission electron microscope. Whilst this method can be regarded as a variant of surface trace analysis, the major innovation lies in the improved accuracy and efficiency of foil thickness measurement, which involves a simple tilt of the thin foil about a permanent tilting axis of the specimen holder, rather than cumbersome tilt about the surface trace of the habit plane. Experimental study has been done to validate this proposed method in determining the habit plane between lamellar α{sub 2} plates and γ matrixmore » in a Ti–Al–Nb alloy. Both high accuracy (± 1°) and high precision (± 1°) have been achieved by using the new method. The source of the experimental errors as well as the applicability of this method is discussed. Some tips to minimise the experimental errors are also suggested. - Highlights: • An improved algorithm is formulated to measure the foil thickness. • Habit plane can be determined with a single tilt holder based on the new algorithm. • Better accuracy and precision within ± 1° are achievable using the proposed method. • The data for multi-facet determination can be collected simultaneously.« less
Xu, Yan; Wang, Weilong; Li, Sam Fong Yau
2007-05-01
This report describes a method to simultaneously determine 11 low-molecular-weight (LMW) organic acids and 16 chlorinated acid herbicides within a single run by a portable CE system with contactless conductivity detection (CCD) in a poly(vinyl alcohol) (PVA)-coated capillary. Under the optimized condition, the LODs of CE-CCD ranged from 0.056 to 0.270 ppm, which were better than for indirect UV (IUV) detection of the 11 LMW organic acids or UV detection of the 16 chlorinated acid herbicides. Combined with an on-line field-amplified sample stacking (FASS) procedure, sensitivity enhancement of 632- to 1078-fold was achieved, with satisfactory reproducibility (RSDs of migration times less than 2.2%, and RSDs of peak areas less than 5.1%). The FASS-CE-CCD method was successfully applied to determine the two groups of acidic pollutants in two kinds of environmental water samples. The portable CE-CCD system shows advantages such as simplicity, cost effectiveness, and miniaturization. Therefore, the method presented in this report has great potential for onsite analysis of various pollutants at the trace level.
Li, Zhenhua; Chang, Xijun; Zou, Xiaojun; Zhu, Xiangbing; Nie, Rong; Hu, Zheng; Li, Ruijun
2009-01-26
A new method that utilizes ethylenediamine-modified activated carbon (AC-EDA) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The new sorbent was prepared by oxidative surface modification. Experimental conditions for effective adsorption of trace levels of Cr(III), Fe(III), Hg(II) and Pb(II) were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4.0. Complete elution of absorbed metal ions from the sorbent surface was carried out using 3.0 mL of 2% (%w/w) thiourea and 0.5 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.4, 28.9, 60.5 and 49.9 mg g(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The time for 94% adsorption of target metal ions was less than 2 min. The detection limits of the method was found to be 0.28, 0.22, 0.09 and 0.17 ng mL(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The precision (R.S.D.) of the method was lower 4.0% (n=8). The prepared sorbent as solid-phase extractant was successfully applied for the preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) in natural and certified samples with satisfactory results.
NASA Technical Reports Server (NTRS)
Di Rosa, Michael D.; Chang, Albert Y.; Hanson, Ronald K.
1993-01-01
Gas dynamic quantities within an underexpanded nitrogen free jet, seeded with 0.5 percent NO, were measured nonintrusively by using an intracavity-doubled, rapid-tuning, CW ring dye laser. The UV beam passed obliquely through the jet axis, and its frequency repetitively scanned across adjacent rotational lines in the NO gamma band near 225 nm at a rate of 4 kHz. Spatially resolved excitation scans were obtained by monitoring the induced broadband fluoresence. Modeling the Doppler-shifted excitation scans with Voigt profiles permitted simultaneous determinations of NO velocity, rotational temperature, and pressure. Zero Doppler shift was referenced to an absorption trace obtained across a static cell and recorded concurrently with the excitation scan. Typically, the measured and predicted axial distributions agreed within 10 percent. At high Mach numbers there was evidence of rotational freezing of NO.
Simultaneous analysis of 18 mineral elements in Cyclocarya paliurus polysaccharide by ICP-AES.
Xie, Jian-Hua; Shen, Ming-Yue; Nie, Shao-Ping; Liu, Xin; Yin, Jun-Yi; Huang, Dan-Fei; Zhang, Hui; Xie, Ming-Yong
2013-04-15
The contents of 18 kinds of mineral elements in Cyclocarya paliurus polysaccharide samples were determined by ICP-AES. The limits of detection (LOD) of the method for 18 elements were in the range of 0.01-3.80 mg/kg. The average recoveries obtained by the standard addition method were found between 94.34% and 105.69% (RSD, 1.01-4.23%). The results showed that C. paliurus polysaccharides were abundant in major and trace elements which are healthy for human body. The contents of Ca, Al, Mg, K, Fe, Mn and P were very high, ranging from 274.5±10.3 to 5980.0±102.7 mg/kg, while the contents of Zn, Na, Se, Cr, Pb, Cu and As ranged from 0.9±0.1 to 37.1±4.2 mg/kg. Finally, the levels of Ni, Cd, V and Co were not detected in the samples. ICP-AES is a simple, precise and efficient method for the determination of many mineral elements in polysaccharide samples simultaneously. Copyright © 2013 Elsevier Ltd. All rights reserved.
Herodes, K.
2017-01-01
A simultaneous method for quantitative determination of traces of fluoroquinolones (FQs) and sulfonamides (SAs) in edible plants fertilized with sewage sludge was developed. The compounds were extracted from the plants by rapid and simple liquid extraction followed by extracts clean-up using solid phase extraction. The eluent additive 1,1,1,3,3,3-hexafluoro-2-propanol was used for liquid chromatographic detection to achieve separation of structurally similar antimicrobials like ciprofloxacin and norfloxacin. Identification and quantification of the compounds were performed using high-performance liquid chromatography with electrospray ionization mass spectrometry in selected reaction monitoring mode. Method was validated and extraction recoveries of FQs and SAs ranged from 66% to 93%. The limit of quantifications was from 5 ng/g in the case of ofloxacin to 40 ng/g for norfloxacin. The method precision ranged from 1.43% to 2.61%. The developed novel method was used to evaluate the plats antimicrobial uptake (potato (Solanum tuberosum L.), carrot (Daucus carota L.), lettuce (Lactuca sativa L.), and wheat (Triticum vulgare L.)) from soil and migration of the analytes inside the plants. PMID:28695191
A multi-channel photometric detector for multi-component analysis in flow injection analysis
Tan, Aimin; Huang, Jialin; Geng, Liudi; Xu, Jinhua; Zhao, Xinna
1994-01-01
The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors. PMID:18924688
A multi-channel photometric detector for multi-component analysis in flow injection analysis.
Tan, A; Huang, J; Geng, L; Xu, J; Zhao, X
1994-01-01
The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors.
Ke, Changliang; Liu, Qi; Li, Liudong; Chen, Jiewen; Wang, Xunuo; Huang, Ke
2016-09-15
Gas chromatography (GC) coupled with triple quadrupole tandem mass spectrometry (MS/MS) operated in electron ionization mode (EI) has been shown to have advantages in the trace analysis of chemical compounds. Employing the instrument, a method has been built to simultaneously determine eugenol, isoeugenol' and methyleugenol, which have been widely used as fish anesthetic, in the fish fillet. Procedure for the sample preparation was achieved by using hexane extraction followed by phenyl solid phase extraction (SPE) cleanup, which was free of such steps as rotary evaporation and nitrogen blowing by taking the volatility of eugenol and its isomers into consideration. The method was validated by conducting recovery studies on fortified fish fillet samples at four concentrations. The linearity in the range of 5-500μg·L(-1) was forced through the origin giving a coefficient of determination (r(2)) greater than 0.9982. Limits of detection (LODs) for eugenol, isoeugenol' and methyleugenol were 0.4, 1.2' and 0.2μg·kg(-1), respectively. The limits of quantification (LOQs) were 1.2, 4' and 0.7μg·kg(-1) for eugenol, isoeugenol' and methyleugenol, respectively. The recoveries for eugenol and its isomers ranged from 76.4 to 99.9% with relative standard deviations (RSD) in a range from 2.18 to 15.5%. This method is quick, simple and suitable for determining the residues of eugenol, isoeugenol and methyleugenol simultaneously in batch samples of fish fillet. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Devès, Guillaume; Cohen-Bouhacina, Touria; Ortega, Richard
2004-10-01
We used the nuclear microprobe techniques, micro-PIXE (particle-induced X-ray emission), micro-RBS (Rutherford backscattering spectrometry) and scanning transmission ion microscopy (STIM) in order to perform the characterization of trace element content and spatial distribution within biological samples (dehydrated cultured cells, tissues). The normalization of PIXE results was usually expressed in terms of sample dry mass as determined by micro-RBS recorded simultaneously to micro-PIXE. However, the main limit of RBS mass measurement is the sample mass loss occurring during irradiation and which could be up to 30% of the initial sample mass. We present here a new methodology for PIXE normalization and quantitative analysis of trace element within biological samples based on dry mass measurement performed by mean of STIM. The validation of STIM cell mass measurements was obtained in comparison with AFM sample thickness measurements. Results indicated the reliability of STIM mass measurement performed on biological samples and suggested that STIM should be performed for PIXE normalization. Further information deriving from direct confrontation of AFM and STIM analysis could as well be obtained, like in situ measurements of cell specific gravity within cells compartment (nucleolus and cytoplasm).
Chen, YiQuan; Cheng, Xian; Mo, Fan; Huang, LiMei; Wu, Zujian; Wu, Yongning; Xu, LiangJun; Fu, FengFu
2016-04-01
A simple dispersive solid-phase extraction (DSPE) used to extract and preconcentrate ultra-trace MeHg, EtHg and Hg(2+) from water sample, and a sensitive method for the simultaneous analysis of MeHg, EtHg and Hg(2+) by using capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) with field-amplified sample stacking injection (FASI) were first reported in this study. The DSPE used thiol cotton particles as adsorbent, and is simple and effective. It can be used to extract and preconcentrate ultra-trace mercury compounds in water samples within 30 min with a satisfied recovery and no mercury species alteration during the process. The FASI enhanced the sensitivity of CE-ICP-MS with 25-fold, 29-fold and 27-fold for MeHg, EtHg and Hg(2+) , respectively. Using FASI-CE-ICP-MS together with DSPE, we have successfully determined ultra-trace MeHg, EtHg and Hg(2+) in tap water with a limits of quantification (LOQs) of 0.26-0.45 pg/mL, an RSD (n = 3) < 6% and a recovery of 92-108%. Ultra-high sensitivity, as well as much less sample and reagent consumption and low operating cost, make our method a valuable technique to the speciation analysis of ultra-trace mercury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G
2007-10-01
A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.
Electrostatic precipitator performance and trace element emissions from two Kraft recovery boilers.
Lind, Terttaliisa; Hokkinen, Jouni; Jokiniemi, Jorma K; Hillamo, Risto; Makkonen, Ulla; Raukola, Antti; Rintanen, Jaakko; Saviharju, Kari
2006-01-15
Fine particle emissions from combustion sources have gained attention recently due to their adverse effects on human health. The emission depends on the combustion process, fuel, and particulate removal technology. Particle concentrations at Kraft recovery boiler exits are very high, and the boilers are typically equipped with electrostatic precipitators (ESP). However, little data are available on the ESP performance in recovery boilers. Particle concentrations and size distributions were determined at two modern, operating recovery boilers. In addition, we determined the fractional collection efficiency of the ESPs by simultaneous measurements at the ESP inlet and outlet and the particulate emissions of trace metals. The particle mass concentration atthe ESP inlet was 11-24 g/Nm3 at the two boilers. Particle emissions were 30-40 mg/ Nm3 at boiler A and 12-15 mg/Nm3 at boiler B. The particle size distributions had a major particle mode at around 1 microm. These fume particles contained most of the particle mass. The main components in the particles were sodium and sulfate with minor amounts of chloride, potassium, and presumably some carbonate. The ESP collection efficiency was 99.6-99.8% at boiler A and 99.9% at boiler B. The particle penetration through the ESP was below 0.6% in the entire fume particle size range of 0.3-3 microm. Trace element emissions from both boilers were well below the limit values set by EU directive for waste incineration.
K. F. Zeller; N. T. Nikolov
2000-01-01
Assessing the long-term exchange of trace gases and energy between terrestrial ecosystems and the atmosphere is an important priority of the current climate change research. In this regard, it is particularly significant to provide valid data on simultaneous fluxes of carbon, water vapor and pollutants over representative ecosystems. Eddy covariance measurements and...
Assessment of trace metals pollution in estuarine sediments using SEM-AVS and ERM-ERL predictions.
Garcia, Carlos Alexandre Borges; Passos, Elisangela de Andrade; Alves, José do Patrocínio Hora
2011-10-01
This paper presents the distributions of the investigation of trace metals geochemistry in surface sediments of the Sergipe river estuary, northeast Brazil. Analyses were carried out by Flame or electrothermal atomic absorption spectrometry (FAAS or ETAAS). Principal component analysis was applied to results to identify any groupings among the different sampling sites. In order to determine the extent of contamination, taking into account natural variability within the region, metal concentrations were normalized relative to aluminium. Cr, Cu, Ni and Zn contamination was observed in sediments from the area receiving highest inputs of domestic wastes, while cadmium contamination occurred in sediments from the region affected by highest inflows of industrial effluents. Possible toxicity related to these metals was examined using the relationship simultaneously extracted metals/acid volatile sulfide and by comparing sediment chemical data with sediment quality guidelines ERL-ERM values. Results obtained using the two methods were in agreement and indicated that adverse effects on aquatic biota should rarely occur.
Zhang, Shanshan; Liu, Xiaofei; Qin, Jia'an; Yang, Meihua; Zhao, Hongzheng; Wang, Yong; Guo, Weiying; Ma, Zhijie; Kong, Weijun
2017-11-15
A simple and rapid gas chromatography-flame photometric detection (GC-FPD) method was developed for the determination of 12 organophosphorus pesticides (OPPs) in Salvia miltiorrhizae by using ultrasonication assisted one-step extraction (USAE) without any clean-up steps. Some crucial parameters such as type of extraction solvent were optimized to improve the method performance for trace analysis. Any clean-up steps were negligent as no interferences were detected in the GC-FPD chromatograms for sensitive detection. Under the optimized conditions, limits of detection (LODs) and quantitation (LOQs) for all pesticides were in the range of 0.001-0.002mg/kg and 0.002-0.01mg/kg and 0.002-0.01mg/kg, respectively, which were all below the regulatory maximum residue limits suggested. RSDs for method precision (intra- and inter-day variations) were lower than 6.8% in approval with international regulations. Average recovery rates for all pesticides at three fortification levels (0.5, 1.0 and 5.0mg/kg) were in the range of 71.2-101.0% with relative standard deviations (RSDs) <13%. The developed method was evaluated for its feasibility in the simultaneous pre-concentration and determination of 12 OPPs in 32 batches of real S. miltiorrhizae samples. Only one pesticide (dimethoate) out of the 12 targets was simultaneously detected in four samples at concentrations of 0.016-0.02mg/kg. Dichlorvos and omethoate were found in the same sample from Sichuan province at 0.004 and 0.027mg/kg, respectively. Malathion and monocrotophos were determined in the other two samples at 0.014 and 0.028mg/kg, respectively. All the positive samples were confirmed by LC-MS/MS. The simple, reliable and rapid USAE-GC-FPD method with many advantages over traditional techniques would be preferred for trace analysis of multiple pesticides in more complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Ferris, Alice T.; White, William C.
1988-01-01
Balance dynamic display unit (BDDU) is compact system conditioning six dynamic analog signals so they are monitored simultaneously in real time on single-trace oscilloscope. Typical BDDU oscilloscope display in scan mode shows each channel occupying one-sixth of total trace. System features two display modes usable with conventional, single-channel oscilloscope: multiplexed six-channel "bar-graph" format and single-channel display. Two-stage visual and audible limit alarm provided for each channel.
Polechońska, Ludmiła; Samecka-Cymerman, Aleksandra; Dambiec, Małgorzata
2017-02-01
The temporal variations in plant chemistry connected with its life cycle may affect the cycling of elements in an ecosystem as well as determine the usefulness of the species in phytoremediation and bioindication. In this context, there is a gap in knowledge on the role of floating plants for elements cycling in aquatic reservoirs. The aim of the study was to determine if there are variations in Hydrocharis morsus-ranae (European frog-bit) bioaccumulation capacity and the growth rate of its population during the growing season and to test the impact of environmental pollution on these features. The content of macroelements (Ca, K, Mg, N, Na, P, S) and trace metals (Cd, Co, Cu, Cr, Hg, Fe, Mn, Ni, Pb, Zn) was determined in H. morsus-ranae collected monthly from June to October from habitats differing in environmental contamination. The results showed that the highest content of most trace metals (Co, Cr, Cu, Hg, Mn, Ni, Zn) and some nutrients (N, P) in plants as well as the greatest bioaccumulation efficiency occurred simultaneously in the beginning of the growing season. In the following months, a dilution effect (manifested by a decrease in content) related to the rapid growth was observed. Co, Mn, and Ni content in plant tissues reflected the level of environmental contamination throughout the growing season which makes H. morsus-ranae a potential biomonitor of pollution for these metals. Considering the great bioaccumulation ability, high sensitivity to contamination, and low biomass of European frog-bit in polluted systems, further investigation is required to assess the real phytoremediation capability of the species.
Adult stem cell lineage tracing and deep tissue imaging
Fink, Juergen; Andersson-Rolf, Amanda; Koo, Bon-Kyoung
2015-01-01
Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging. [BMB Reports 2015; 48(12): 655-667] PMID:26634741
Razi-Asrami, Mahboobeh; Ghasemi, Jahan B; Amiri, Nayereh; Sadeghi, Seyed Jamal
2017-04-01
In this paper, a simple, fast, and inexpensive method is introduced for the simultaneous spectrophotometric determination of crystal violet (CV) and malachite green (MG) contents in aquatic samples using partial least squares regression (PLS) as a multivariate calibration technique after preconcentration by graphene oxide (GO). The method was based on the sorption and desorption of analytes onto GO and direct determination by ultraviolet-visible spectrophotometric techniques. GO was synthesized according to Hummers method. To characterize the shape and structure of GO, FT-IR, SEM, and XRD were used. The effective factors on the extraction efficiency such as pH, extraction time, and the amount of adsorbent were optimized using central composite design. The optimum values of these factors were 6, 15 min, and 12 mg, respectively. The maximum capacity of GO for the adsorption of CV and MG was 63.17 and 77.02 mg g -1 , respectively. Preconcentration factors and extraction recoveries were obtained and were 19.6, 98% for CV and 20, 100% for MG, respectively. LOD and linear dynamic ranges for CV and MG were 0.009, 0.03-0.3, 0.015, and 0.05-0.5 (μg mL -1 ), respectively. The intra-day and inter-day relative standard deviations were 1.99 and 0.58 for CV and 1.69 and 3.13 for MG at the concentration level of 50 ng mL -1 , respectively. Finally, the proposed DSPE/PLS method was successfully applied for the simultaneous determination of the trace amount of CV and MG in the real water samples.
Belostotsky, Inessa; Gridin, Vladimir V; Schechter, Israel; Yarnitzky, Chaim N
2003-02-01
An improved analytical method for airborne lead traces is reported. It is based on using a Venturi scrubber sampling device for simultaneous thin-film stripping and droplet entrapment of aerosol influxes. At least threefold enhancement of the lead-trace pre-concentration is achieved. The sampled traces are analyzed by square-wave anodic stripping voltammetry. The method was tested by a series of pilot experiments. These were performed using contaminant-controlled air intakes. Reproducible calibration plots were obtained. The data were validated by traditional analysis using filter sampling. LODs are comparable with the conventional techniques. The method was successfully applied to on-line and in situ environmental monitoring of lead.
Infrared measurements of atmospheric gases above Mauna Loa, Hawaii, in February 1987
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, F. H.; Blatherwick, R. D.
1988-01-01
The IR absorptions spectra of 13 minor and trace atmospheric gases, recorded by the NOAA's Geophysical Monitoring for Climate Change (GMCC) program station at Mauna Loa, Hawaii, for four days in February 1987, were analyzed to determine simultaneous total vertical column amounts for these gases. Comparisons with other data indicate that the NOAA GMCC surface volume mixing ratios are good measures of the mean volume mixing ratios of these gases in the troposphere and that Mauna Loa is a favorable site for IR monitoring of atmospheric gases. The ozone total columns deduced from the IR spectra agreed with the correlative Umkehr observations.
Development of a remote photoplethysmographic technique for human biometrics
NASA Astrophysics Data System (ADS)
Shi, Ping; Hu, Sijung; Echiadis, Angelos; Azorin Peris, Vicente; Zheng, Jia; Zhu, Yisheng
2009-02-01
Non-contact reflection photoplethysmography (NRPPG) is being developed to trace pulse features for comparison with contact photoplethysmography (CPPG). Simultaneous recordings of CPPG and NRPPG signals from 22 healthy subjects were studied. The power spectrum of PPG signals were analysed and compared between NRPPG and CPPG. The recurrence plot (RP) was used as a graphical tool to visualize the time dependent behaviour of the dynamics of the pulse signals. The agreement between NRPPG and CPPG for physiological monitoring, i.e. HRV parameters, was determined by means of the Bland-Altman plot and Pearson's correlation coefficient. The results indicated that NRPPG could be used for the assessment of cardio-physiological signals.
Zaaboub, Noureddine; Helali, Mohamed Amine; Martins, Maria Virgínia Alves; Ennouri, Rym; Béjaoui, Béchir; da Silva, Eduardo Ferreira; El Bour, Monia; Aleya, Lotfi
2016-11-01
Bizerte Lagoon is a southern Mediterranean semi-enclosed lagoon with a maximum depth of 12 m. After assessing sediment quality, the authors report on the physicochemical characteristics of the lagoon's surface sediment using SEM (simultaneously extracted metals) and AVS (acid volatile sulfides) as proxies. Biogeochemical tools are used to investigate the environmental disturbance at the water-sediment interface by means of SEM and AVS to seek conclusions concerning the study area's pollution status. Results confirm accumulation of trace elements in sediment. The use of the SEM-AVS model with organic matter in sediment (ƒOC) confirms possible bioavailability of accumulated trace elements, especially Zn, in the southern part of the lagoon, with organic matter playing an important role in SEM excess correction to affirm a nontoxic total metal sediment state. Individual trace element toxicity is dependent on the bioavailable fraction of SEM Metal on sediment, as is the influence of lagoon inflow from southern water sources on element bioavailability. Appropriate management strategies are highly recommended to mitigate any potential harmful effects on health from this heavy-metal-based pollution.
Zhou, Qingxiang; Lei, Man; Liu, Yongli; Wu, Yalin; Yuan, Yongyong
2017-12-01
Pollution resulted from heavy metal ions have absorbed much attention, and it is of great importance to develop sensitive and simultaneous determination method for them with common technologies without highly sensitive instruments. We prepared a new and functional core-shell magnetic nano-material, Fe@Ag@dimercaptobenzene (Fe@Ag@DMB), by a one-step method with sodium borohydride as the reducing agent and transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS) were used for characterisation. The mercapto functional groups on the newly synthesised magnetic nanoparticles could interact with Cd 2+ , Pb 2+ , and Hg 2+ ions in water samples and then efficient extraction for Cd 2+ , Pb 2+ , and Hg 2+ ions was achieved. DDTC-Na solution was a good elutent for elution of these ions from Fe@Ag@DMB nanoparticles. Based on these, a sensitive method was developed for simultaneous preconcentration and determination of the aforementioned ions using magnetic Fe@Ag@DMB nanoparticles as the magnetic solid phase extraction adsorbent prior to high performance liquid chromatography coupled with variable wavelength detection. Under the optimal conditions, the detection limits of the three metal ions were in the range of 0.011-0.031μgL -1 , and precisions were below 2.37% (n=6). The proposed method was evaluated with real water samples, and excellent spiked recoveries achieved indicated that the developed method would be a promising tool for monitoring these heavy metal ions in water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Determination of the MRI contrast agent Gd-DTPA by SEC-ICP-MS.
Loreti, Valeria; Bettmer, Jörg
2004-08-01
The simultaneous determination of Gd(3+) and Gd-DTPA (DTPA: diethylenetriamino-pentaacetic acid), often used as contrast agent, is described. The proposed approach combines size-exclusion chromatography (SEC) and inductively coupled plasma-mass spectrometry (ICP-MS) for element-selective detection in order to determine also high-molecular Gd-complexes if present. This method was applied to the analysis of urine samples of a patient to whom Gd-DTPA was intravenously administered. The results showed that no conversion or adsorption of Gd-DTPA could be observed in any sample, even free Gd(3+) could not be detected. Urine excretion behaviour was monitored and it was proved that Gd-DTPA was almost completely (>99%) excreted by urination within one day. Traces of Gd-DTPA could be measured in hair samples, but extraction with tetramethylammonium hydroxide (TMAH) resulted in degradation of Gd-DTPA.
Bali Prasad, Bhim; Jauhari, Darshika; Verma, Archana
2014-03-01
In simultaneous determination of group of elements, there are inter-metallic interactions which result in a non-linear relationship between the peak current and ionic concentration for each of the element, at bare (unmodified) electrode. To resolve this problem, we have resorted, for the first time, to develop a modified pencil graphite electrode using a typical ion imprinted polymer network (dual-ion imprinted polymer embedded in sol-gel matrix (inorganic-organic hybrid nano-material)) for the simultaneous analysis of a binary mixture of Cd(II) and Cu(II) ions, without any complication of inter-metallic interactions and competitive bindings, in real samples. The adequate resolution of differential pulse anodic stripping voltammetry peaks by 725 mV (cf, 615 mV with unmodified electrode), without any cross-reactivity and the stringent detection limits as low as, 0.050 and 0.034 ng mL(-1) (S/N=3) for Cd(II) and Cu(II) ions, respectively by the proposed sensor can be considered useful for the primitive diagnosis of several chronic diseases in clinical settings. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Zhijun; Ju, Enguo; Bing, Wei; Wang, Zhenzhen; Ren, Jinsong; Qu, Xiaogang
2017-07-25
A chemically engineered armour is developed for simultaneously improving bioreporter bacterial vitality and shielding infectivity. The armour can help bacteria to resist various insults and even immune phagocytosis. Meanwhile, the bacterial infectivity has proven to be greatly shielded as well. Most importantly, the original bacterial biosensing activity is well preserved, which is competent for sensing trace arsenic in water, serum, and even in vivo.
Stratospheric constituent distributions from balloon-based limb thermal emission measurements
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Kunde, Vigil G.
1990-01-01
This research task deals with an analysis of infrared thermal emission observations of the Earth's atmosphere for determination of trace constituent distributions. Infrared limb thermal emission spectra in the 700-2000 cm(exp -1) region were obtained with a liquid nitrogen cooled Michelson interferometer-spectrometer (SIRIS) on a balloon flight launched from Palestine, Texas, at nighttime on September 15-16, 1986. An important objective of this work is to obtain simultaneously measured vertical mixing ratio profiles of O3, H2O, N2O, NO2, N2O5, HNO3 and ClONO2 and compare with measurements made with a variety of techniques by other groups as well as with photochemical model calculations. A portion of the observed spectra obtained by SIRIS from the balloon flight on September 15-16, 1986, has been analyzed with a focus on calculation of the total nighttime odd nitrogen budget from the simultaneously measured profiles of important members of the NO(sub x) family. The measurements permit first direct determination of the nighttime total odd nitrogen concentrations NO(sub y) and the partitioning of the important elements of the NO(sub x) family.
Yuan, Su-Fen; Liu, Ze-Hua; Lian, Hai-Xian; Yang, Chuang-Tao; Lin, Qing; Yin, Hua; Lin, Zhang; Dang, Zhi
2018-02-01
A fast and reliable method was developed for simultaneous trace determination of nine odorous and estrogenic chloro- and bromo-phenolic compounds (CPs and BPs) in water samples using solid-phase extraction (SPE) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS). For sample preparation, the extraction efficiencies of two widely applied cartridges Oasis HLB and Sep-Pak C18 were compared, and the Oasis HLB cartridge showed much better extraction performance; pH of water sample also plays important role on extraction, and pH = 2-3 was found to be most appropriate. For separation of the target compounds, small addition of ammonium hydroxide can obviously improve the detection sensitivity, and the optimized addition concentration was determined as 0.2%. The developed efficient method was validated and showed excellent linearity (R 2 > 0.995), low limit of detection (LOD, 1.9-6.2 ng/L), and good recovery efficiencies of 57-95% in surface and tap water with low relative standard deviation (RSD, 1.3-17.4%). The developed method was finally applied to one tap and one surface water samples and most of these nine targets were detected, but all of them were below their odor thresholds, and their estrogen equivalent (EEQ) were also very low.
Applications of broadband cavity enhanced spectroscopy for measurements of trace gases and aerosols
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Attwood, A. R.; Brock, C. A.; Brown, S. S.; Dube, W. P.; Flores, J. M.; Langford, A. O.; Min, K. E.; Rudich, Y.; Stutz, J.; Wagner, N.; Young, C.; Zarzana, K. J.
2015-12-01
Broadband cavity enhanced spectroscopy (BBCES) uses a broadband light source, optical cavity, and multichannel detector to measure light extinction with high sensitivity. This method differs from cavity ringdown spectroscopy, because it uses an inexpensive, incoherent light source and allows optical extinction to be determined simultaneously across a broad wavelength region.Spectral fitting methods can be used to retrieve multiple absorbers across the observed wavelength region. We have successfully used this method to measure glyoxal (CHOCHO), nitrous acid (HONO), and nitrogen dioxide (NO2) from ground-based and aircraft-based sampling platforms. The detection limit (2-sigma) in 5 s for retrievals of CHOCHO, HONO and NO2 is 32, 250 and 80 parts per trillion (pptv).Alternatively, gas-phase absorbers can be chemically removed to allow the accurate determination of aerosol extinction. In the laboratory, we have used the aerosol extinction measurements to determine scattering and absorption as a function of wavelength. We have deployed a ground-based field instrument to measure aerosol extinction, with a detection limit of approximately 0.2 Mm-1 in 1 min.BBCES methods are most widely used in the near-ultraviolet and visible spectral region. Recently, we have demonstrated measurements at 315-350 nm for formaldehyde (CH2O) and NO2. Extending the technique further into the ultraviolet spectral region will allow important additional measurements of trace gas species and aerosol extinction.
Xu, Hongbo; Wu, Yun; Wang, Jian; Shang, Xuewei; Jiang, Xiaojun
2013-12-01
A new method that utilizes pretreated silica gel as an adsorbent has been developed for simultaneous preconcentration of trace Cd(II) and Pb(II) prior to the measurement by flame atomic absorption spectrometry. The effects of pH, the shaking time, the elution condition and the coexisting ions on the separation/preconcentration conditions of analytes were investigated. Under optimized conditions, the static adsorption capacity of Cd(II) and Pb(II) were 45.5 and 27.1mg/g, the relative standard deviations were 3.2% and 1.7% (for n = 11), and the limits of detection obtained were 4.25 and 0.60 ng/mL, respectively. The method was validated by analyzing the certified reference materials GBW 07304a (stream sediment) and successfully applied to the analysis of various treated wastewater samples with satisfactory results. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dippold, Michaela; Kuzyakov, Yakov
2015-04-01
Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino sugar 13C analysis showed that oxidizing catabolic pathways and anabolic pathways, i.e. building-up new cellular compounds, occurred in soils simultaneously. This involved an intensive C recycling within the microorganisms that was observed not only for cytosolic compounds but also for cell wall polymers. Fungal metabolism and fluxes were slower than bacterial intracellular C recycling and turnover. Furthermore, position-specific labeling of glutamate and subsequent 13C analysis of microbial phospholipid fatty acids (PLFA) revealed starvation pathways, which were only active in specific microbial groups in soils. These studies revealed that position-specific labeling enables the reconstruction of metabolic pathways of LMWOS within diverse microbial communities in complex media such as soil. Processes occurring simultaneously in soil i.e. 1) within individual, reversible metabolic pathways and 2) in various microbial groups could be traced by position-specific labeling in soils in situ. Tracing these pathways and understanding their regulating factors are crucial for soil C fluxomics, the extremely complex network of transformations towards mineralization versus the formation of microbial biomass compounds. Quantitative models to assess microbial group specific metabolic networks can be generated and parameterized by this approach. The submolecular knowledge of transformation steps and biochemical pathways in soils and their regulating factors is essential for understanding C cycling and long-term C storage in soils.
Yang, Xinghua; Guo, Xiaohui; Li, Song; Kong, Depeng; Liu, Zhihai; Yang, Jun; Yuan, Libo
2016-04-15
We report an in-fiber integrated electrophoretic trace mixture separating and detecting an optofluidic optical fiber sensor based on a specially designed optical fiber. In this design, rapid in situ separation and simultaneous detection of mixed analytes can be realized under electro-osmotic flow in the microstructured optical fiber. To visually display the in-fiber separating and detecting process, two common fluorescent indicators are adopted as the optofluidic analytes in the optical fiber. Results show that a trace amount of the mixture (0.15 μL) can be completely separated within 3.5 min under a high voltage of 5 kV. Simultaneously, the distributed information of the separated analytes in the optical fiber can be clearly obtained by scanning along the optical fiber using a 355 nm laser. The emission from the analytes can be efficiently coupled into the inner core and guides to the remote end of the optical fiber. In addition, the thin cladding around the inner core in the optical fiber can prevent the fluorescent cross talk between the analytes in this design. Compared to previous optical fiber optofluidic devices, this device first realizes simultaneously separating treatment and the detection of the mixed samples in an optical fiber. Significantly, such an in-fiber integrated separating and detecting optofluidic device can find wide applications in various analysis fields involves mixed samples, such as biology, chemistry, and environment.
Lin, Yi-Zhen; Ou, Da-Liang; Chang, Hsin-Yuan; Lin, Wei-Yu; Hsu, Chiun; Chang, Po-Ling
2017-09-01
The family of microRNAs (miRNAs) not only plays an important role in gene regulation but is also useful for the diagnosis of diseases. A reliable method with high sensitivity may allow researchers to detect slight fluctuations in ultra-trace amounts of miRNA. In this study, we propose a sensitive imaging method for the direct probing of miR-10b (miR-10b-3p, also called miR-10b*) and its target ( HOXD10 mRNA) in fixed cells based on the specific recognition of molecular beacons combined with highly inclined and laminated optical sheet (HILO) fluorescence microscopy. The designed dye-quencher-labelled molecular beacons offer excellent efficiencies of fluorescence resonance energy transfer that allow us to detect miRNA and the target mRNA simultaneously in hepatocellular carcinoma cells using HILO fluorescence microscopy. Not only can the basal trace amount of miRNA be observed in each individual cell, but the obtained images also indicate that this method is useful for monitoring the fluctuations in ultra-trace amounts of miRNA when the cells are transfected with a miRNA precursor or a miRNA inhibitor (anti-miR). Furthermore, a reasonable causal relation between the miR-10b and HOXD10 expression levels was observed in miR-10b* precursor-transfected cells and miR-10b* inhibitor-transfected cells. The trends of the miRNA alterations obtained using HILO microscopy completely matched the RT-qPCR data and showed remarkable reproducibility (the coefficient of variation [CV] = 0.86%) and sensitivity (<1.0 fM). This proposed imaging method appears to be useful for the simultaneous visualisation of ultra-trace amounts of miRNA and target mRNA and excludes the procedures for RNA extraction and amplification. Therefore, the visualisation of miRNA and the target mRNA should facilitate the exploration of the functions of ultra-trace amounts of miRNA in fixed cells in biological studies and may serve as a powerful tool for diagnoses based on circulating cancer cells.
Kristjánsson, Tómas; Thorvaldsson, Tómas Páll; Kristjánsson, Arni
2014-01-01
Previous research involving both unimodal and multimodal studies suggests that single-response change detection is a capacity-free process while a discriminatory up or down identification is capacity-limited. The trace/context model assumes that this reflects different memory strategies rather than inherent differences between identification and detection. To perform such tasks, one of two strategies is used, a sensory trace or a context coding strategy, and if one is blocked, people will automatically use the other. A drawback to most preceding studies is that stimuli are presented at separate locations, creating the possibility of a spatial confound, which invites alternative interpretations of the results. We describe a series of experiments, investigating divided multimodal attention, without the spatial confound. The results challenge the trace/context model. Our critical experiment involved a gap before a change in volume and brightness, which according to the trace/context model blocks the sensory trace strategy, simultaneously with a roaming pedestal, which should block the context coding strategy. The results clearly show that people can use strategies other than sensory trace and context coding in the tasks and conditions of these experiments, necessitating changes to the trace/context model.
Ishihara, Yukiko; Aida, Mari; Nomura, Akito; Miyahara, Hidekazu; Hokura, Akiko; Okino, Akitoshi
2015-01-01
With a view to enhance the sensitivity of analytical instruments used in the measurement of trace elements contained in a single cell, we have now equipped the previously reported micro-droplet injection system (M-DIS) with a desolvation system. This modified M-DIS was coupled to inductively coupled plasma atomic emission spectroscopy (ICP-AES) and evaluated for its ability to measure trace elements. A flow rate of 100 mL/min for the additional gas and a measurement point -7.5 mm above the load coil (ALC) have been determined to be the optimal parameters for recording the emission intensity of the Ca(II) spectral lines. To evaluate the influence of the desolvation system, we recorded the emission intensities of the Ca(I), Ca(II), and H-β spectral lines with and without inclusion of the desolvation system. The emission intensity of the H-β spectral line reduces and the magnitude of the Ca(II)/Ca(I) emission intensity ratio increases four-fold with inclusion of the desolvation system. Finally, the elements Ca, Mg, and Fe present in a single cell of Pseudococcomyxa simplex are simultaneously determined by coupling the M-DIS equipped with the desolvation system to ICP-AES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweigkofler, M.; Niessner, R.
1999-10-15
Biogases such as landfill gas and sewage gas undergo a combustion process which is generating electric energy. Since several trace compounds such as siloxanes (also halogenated and sulfur compounds) are known to cause severe problems to these gas combustion engines, they are of particular interest. In this work, a new technique for sampling, identification, and quantification of siloxanes and volatile organic carbon (VOC) in landfill gas and sewage gas is presented. After sample collection using evacuated stainless steel canisters biogas was analyzed by gas chromatography-mass spectrometry/atomic emission spectroscopy (GC-MS/AES). Using gas canisters, the sampling process was simplified (no vacuum pumpmore » needed), and multiple analysis was possible. The simultaneous application of MSD and AED allowed a rapid screening of silicon compounds in the complex biogases. Individual substances were identified independently both by MSD analysis and by determination of their elemental constitution. Quantification of trace compounds was achieved using a 30 component external standard containing siloxanes, organochlorine and organosulfur compounds, alkanes, terpenes, and aromatic compounds. Precision, linearity, and detection limits have been studied. In real samples, concentrations of silicon containing compounds (trimethylsilanol, hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, hexamethylcyclotrisiloxane, octamethylcyclotetrasilioxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane) in the mg/m{sub 3} range have been observed.« less
NASA Astrophysics Data System (ADS)
Donner, Sebastian; Shaiganfar, Reza; Riffel, Katharina; Dörner, Steffen; Lampel, Johannes; Remmers, Julia; Wagner, Thomas
2016-04-01
The DOAS (differential optical absorption spectroscopy)-method analyses the absorptions of atmospheric trace gases in spectra of scattered sun light. It is an excellent way to determine the concentrations of different trace gases (e.g. NO2, SO2, HCHO…) simultaneously. MAX (Multi-AXis)-DOAS measurements observe scattered sun light under different elevation angles. From such measurements tropospheric vertical column densities (VCDs) or even vertical profiles of the measured trace gases and aerosols can be determined. We performed mobile MAX-DOAS measurements using two instruments on the roof of a car in summer 2015 in Romania during the AROMAT2 campaign and in the Winter/Spring 2016 in the Rhein-Main area (Germany). The latter is one of the densest populated areas in Germany. One instrument is a commercial Mini-MAX-DOAS instrument from the Hoffmann company, the other a self-built instrument using an AVANTES spectrometer with better optical characteristics. The instruments were looking in two different directions (one forward and one backward). Mobile MAX-DOAS measurements cover a quite large area in a short period of time. This enables to map existing gradients of concentrations of tropospheric trace gases, e.g. NO2 and HCHO. The results of those measurements then can be used to validate satellite measurements or can be compared to model results. In this study we focus on formaldehyde (HCHO). In small amounts it is emitted directly by industries and other anthropogenic and biogenic activities. Large amounts are mostly secondary produced. As it is an intermediate product of basic oxidation cycles of other hydrocarbons its concentrations are determined by the abundances of other hydrocarbons. Therefore it can be used as an indicator for volatile organic compounds (VOCs). Furthermore HCHO plays an important role in photochemical smog chemistry and tropospheric O3 chemistry. In this work we present the measurement setup and preliminary HCHO results of the AROMAT2 campaign and first results of the measurements in the Rhein-Main area. We characterize the amounts, spatial gradients and identify potential emission sources of HCHO.
Ou, Yanqiu; Bloom, Michael S; Nie, Zhiqiang; Han, Fengzhen; Mai, Jinzhuang; Chen, Jimei; Lin, Shao; Liu, Xiaoqing; Zhuang, Jian
2017-09-01
Prenatal exposure to toxic trace elements, including heavy metals, is an important public health concern. Few studies have assessed if individual and multiple trace elements simultaneously affect cardiac development. The current study evaluated the association between maternal blood lead (Pb), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), and selenium (Se) levels and congenital heart defects (CHDs) in offspring. This hospital-based case-control study included 112 case and 107 control infants. Maternal peripheral blood draw was made during gestational weeks 17-40 and used to determine trace element levels by inductively coupled plasma mass spectrometry. Multivariable logistic regression was used to assess associations and interactions between individual and multiple trace elements and fetal CHDs, adjusted for maternal age, parity, education, newborn gender, migrant, folic acid or multivitamin intake, cigarette smoking, maternal prepregnancy body mass index, and time of sample collection. Control participants had medians of 2.61μg/dL Pb, 1.76μg/L Cd, 3.57μg/L Cr, 896.56μg/L Cu, 4.17μg/L Hg, and 186.47μg/L Se in blood. In a model including all measured trace elements and adjusted for confounders, high levels of maternal Pb (OR=12.09, 95% CI: 2.81, 51.97) and Se (OR=0.25, 95% CI: 0.08, 0.77) were harmful and protective predictors of CHDs, respectively, with positive and negative interactions suggested for Cd with Pb and Se with Pb, respectively. Similar associations were detected for subgroups of CHDs, including conotruncal defects, septal defects, and right ventricle outflow tract obstruction. Our results suggest that even under the current standard for protecting human health (10μg/dL), Pb exposure poses an important health threat. These data can be used for developing interventions and identifying high-risk pregnancies. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.
2012-12-01
Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.
NASA Astrophysics Data System (ADS)
Rapp, I.; Schlosser, C.; Gledhill, M.; Achterberg, E. P.
2016-02-01
Fe availability in surface waters determines primary production, N2 fixation and microbial community structure and thus plays an important role in ocean carbon and nitrogen cycles. Eastern boundary upwelling areas with oxygen minimum zones, such as the Mauritanian shelf region, are typically associated with elevated Fe concentrations with shelf sediments as key source of Fe to bottom and surface waters. The magnitude of vertical and horizontal Fe fluxes from shelf sediments to onshore and offshore surface waters are not well constrained and there are still large uncertainties concerning the stabilisation of Fe once released from sediments into suboxic and oxic waters. Supportive data of other trace metals can be used as an indicator of sediment release, scavenging processes and biological utilisation. Here we present soluble (<0.02 µm), dissolved (<0.2 µm) and total dissolvable (unfiltered) trace metal data collected at 10 stations on a 90 nautical mile transect across the Mauritanian shelf region in June 2014 (cruise Meteor 107). The samples were pre-concentrated using an automated off-line pre-concentration device and analysed simultaneously for Cd, Pb, Fe, Ni, Cu, Zn, Mn and Co using a high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS). First results indicate the importance of benthic sources to the overall Fe budget in this region. Both dissolved Fe and Mn showed enhanced concentrations close to the shelf at depths between 40 and 180 m corresponding with low oxygen concentrations (<50 µmol L-1). Elevated soluble, dissolved, and total dissolvable Fe and Mn concentrations at an offshore station coincided with the location of a cyclonic Eddie that was characterised by an oxygen depleted water body. To further assess the accuracy of vertical and horizontal fluxes of Fe and other trace metals, we compare diffusivity estimates determined by a microstructure profiler and the scale length method (de Jong et al. 2012) with observed isotopic Ra data.
Meteorological effects on long-range outdoor sound propagation
NASA Technical Reports Server (NTRS)
Klug, Helmut
1990-01-01
Measurements of sound propagation over distances up to 1000 m were carried out with an impulse sound source offering reproducible, short time signals. Temperature and wind speed at several heights were monitored simultaneously; the meteorological data are used to determine the sound speed gradients according to the Monin-Obukhov similarity theory. The sound speed profile is compared to a corresponding prediction, gained through the measured travel time difference between direct and ground reflected pulse (which depends on the sound speed gradient). Positive sound speed gradients cause bending of the sound rays towards the ground yielding enhanced sound pressure levels. The measured meteorological effects on sound propagation are discussed and illustrated by ray tracing methods.
[The concept of the development of the state of chemical-analytical environmental monitoring].
Rakhmanin, Iu A; Malysheva, A G
2013-01-01
Chemical and analytical monitoring of the quality of environment is based on the accounting of the trace amount of substances. Considering the multicomponent composition of the environment and running processes of transformation of substances in it, in determination of the danger of the exposure to the chemical pollution of environment on population health there is necessary evaluation based on the simultaneous account of complex of substances really contained in the environment and supplying from different sources. Therefore, in the analytical monitoring of the quality and safety of the environment there is a necessary conversion from the orientation, based on the investigation of specific target substances, to estimation of real complex of compounds.
INAA Application for Trace Element Determination in Biological Reference Material
NASA Astrophysics Data System (ADS)
Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.
2017-06-01
Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.
Chen, Xiaohong; Yao, Shanshan; Li, Xiaoping; Zhao, Yonggang; Jin, Micong
2012-11-01
Developing a rapid and sensitive analytical method based on ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) with solid-phase extraction (SPE) for the simultaneous determination of nine estrogens (dienestrol, diethylstilbestrol, estrone, hexestrol, 17-alpha-estradiol, 17-beta-estradiol, estriol, 17alpha-ethinylestradiol and estradiol valerate) in eel. After the sample was extracted by acetonitrile and cleaned by Waters Oasis HLB solid-phase extraction cartridge, the UFLC separation was performed on a Shim-pack XR-ODS II column (100 mm x 2.0 mm, 2.2 microm) with a linear gradient elution program of methanol solution containing 0.04% ammonia (v/v) and 0.04% ammonia aqueous solution (v/v) as the mobile phase. Electrospray ionization was applied and operated in the negative multiple reaction monitoring (MRM) mode. The quantitation was used by isotope internal standard dilution technique. The results showed that the limits of quantitation (LOQs, S/N(10) were in the range of 0.07-0.4 microg/kg, the calibration curves were in good linearities for the nine analytes in the range of 0.5-50.0 microg/L with the correlative coefficients (r2) more than 0.998, the recoveries were between 81.0% and 110.0% with the relative standard deviations (RSDs) of 1.92%-8.24%. Additional, the mass spectra characterization of the nine estrogens was discussed and the fragmentation pathways were speculated. The developed method is rapid, sensitive, specific and reproducible, and adapts not only to the simultaneous determination of the nine trace estrogens including the epimer of 17-alpha-estradiol and 17-beta-estradiol but also to the identified detection in other fish tissues.
Global sensing of gaseous and aerosol trace species using automated instrumentation on 747 airliners
NASA Technical Reports Server (NTRS)
Perkins, P. J.; Papathakos, L. C.
1977-01-01
The Global Atmospheric Sampling Program (GASP) by NASA is collecting and analyzing data on gaseous and aerosol trace species in the upper troposphere and lower stratosphere. Measurements are obtained from automated systems installed on four 747 airliners flying global air routes. Advances were made in airborne sampling instrumentation. Improved instruments and analysis techniques are providing an expanding data base for trace species including ozone, carbon monoxide, water vapor, condensation nuclei and mass concentrations of sulfates and nitrates. Simultaneous measurements of several trace species obtained frequently can be used to uniquely identify the source of the air mass as being typically tropospheric or stratospheric. A quantitative understanding of the tropospheric-stratospheric exchange processes leads to better knowledge of the atmospheric impact of pollution through the development of improved simulation models of the atmosphere.
Cheng, Weiwei; Sun, Da-Wen; Pu, Hongbin; Wei, Qingyi
2017-04-15
The feasibility of hyperspectral imaging (HSI) (400-1000nm) for tracing the chemical spoilage extent of the raw meat used for two kinds of processed meats was investigated. Calibration models established separately for salted and cooked meats using full wavebands showed good results with the determination coefficient in prediction (R 2 P ) of 0.887 and 0.832, respectively. For simplifying the calibration models, two variable selection methods were used and compared. The results showed that genetic algorithm-partial least squares (GA-PLS) with as much continuous wavebands selected as possible always had better performance. The potential of HSI to develop one multispectral system for simultaneously tracing the chemical spoilage extent of the two kinds of processed meats was also studied. Good result with an R 2 P of 0.854 was obtained using GA-PLS as the dimension reduction method, which was thus used to visualize total volatile base nitrogen (TVB-N) contents corresponding to each pixel of the image. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Salomone, Vanesa N.; Riera, Marina; Cerchietti, Luciana; Custo, Graciela; Muniain, Claudia
2017-05-01
Seaweed have a great capacity to accumulate heavy metals in their tissues. The chemical characterization of seaweed is important due to their use in environmental monitoring and human or animal food. The aim of the present study was to evaluate the multi-elemental composition of seaweed from San Jorge Gulf (Patagonia, Argentina) by Total Reflection X-ray Fluorescence (TXRF). The elements As, Br, Cu, Cr, Fe, Mn, Ni, Pb, Rb, Sr, V and Zn were seasonally analyzed and quantified in blades of Macrocystis pyrifera. TXRF showed to be a suitable technique for simultaneous multi-element analysis in this kind of samples. The results revealed seasonal variations in the chemical content for some elements; arsenic content was maximum in summer and autumn, iron concentration increased to the winter and zinc concentration was maximum in autumn. The sum of principal micronutrients (Fe + Zn + Mn + Cu) varied between 114 and 171 mg k- 1 g dw. The total As concentration ranged between 36 and 66 mg kg- 1. Lead, nickel and copper were not detected.
Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming
2012-08-21
The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.
Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber.
Trabold, Barbara M; Hupfer, Robert J R; Abdolvand, Amir; St J Russell, Philip
2017-09-01
We report the use of coherent anti-Stokes Raman spectroscopy (CARS) in gas-filled hollow-core photonic crystal fiber (HC-PCF) for trace gas detection. The long optical path-lengths yield a 60 dB increase in the signal level compared with free-space arrangements. This enables a relatively weak supercontinuum (SC) to be used as Stokes seed, along with a ns pump pulse, paving the way for broadband (>4000 cm -1 ) single-shot CARS with an unprecedented resolution of ∼100 MHz. A kagomé-style HC-PCF provides broadband guidance, and, by operating close to the pressure-tunable zero dispersion wavelength, we can ensure simultaneous phase-matching of all gas species. We demonstrate simultaneous measurement of the concentrations of multiple trace gases in a gas sample introduced into the core of the HC-PCF.
Sel, Sabriye; Öztürk Er, Elif; Bakırdere, Sezgin
2017-12-01
A highly sensitive and simple diode-array high-performance liquid chromatography and liquid chromatography with quadrupole time-of-flight tandem mass spectrometry method was developed for the simultaneous determination of niacin and pyridoxine in pharmaceutical drugs, tap water, and wastewater samples. To determine the in vivo behavior of niacin and pyridoxine, analytes were subjected to simulated gastric conditions. The calibration plots of the diode-array high-performance liquid chromatography and liquid chromatography with quadrupole time-of-flight tandem mass spectrometry method showed good linearity over a wide concentration range with close to 1.0 correlation coefficients for both analytes. The limit of detection/limit of quantitation values for liquid chromatography quadrupole time-of-flight tandem mass spectrometry analysis were 1.98/6.59 and 1.3/4.4 μg/L for niacin and pyridoxine, respectively, while limit of detection/limit of quantitation values for niacin and pyridoxine in high-performance liquid chromatography analysis were 3.7/12.3 and 5.7/18.9 μg/L, respectively. Recovery studies were also performed to show the applicability of the developed methods, and percentage recovery values were found to be 90-105% in tap water and 94-97% in wastewater for both analytes. The method was also successfully applied for the qualitative and quantitative determination of niacin and pyridoxine in drug samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Asadi, Mohammad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad
2016-08-17
A syringe to syringe dispersive liquid phase microextraction-solidified floating organic drop was introduced and used for the simultaneous extraction of trace amounts of albendazole and triclabendazole from different matrices. The extracted analytes were determined by high performance liquid chromatography along with fluorescence detection. The analytical parameters affecting the microextraction efficiency including the nature and volume of the extraction solvent, sample volume, sample pH, ionic strength and the cycles of extraction were optimized. The calibration curves were linear in the range of 0.1-30.0 μg L(-1) and 0.2-30.0 μg L(-1) with determination coefficients of 0.9999 and 0.9998 for albendazole and triclabendazole respectively. The detection limits defined as three folds of the signal to noise ratio were found to be 0.02 μg L(-1) for albendazole and 0.06 μg L(-1) for triclabendazole. The inter-day and intra-day precision (RSD%) for both analytes at three concentration levels (0.5, 2.0 and 10.0 μg L(-1)) were in the range of 6.3-10.1% and 5.0-7.5% respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, cow milk, honey, and urine samples. Copyright © 2016. Published by Elsevier B.V.
Standoff Detection of Trace Molecules by Remote High Gain Backward Lasing in Air
2016-09-17
vapor it is essential. Backward lasing from two simultaneously pumped, closely separated regions in the air provides a method for the reduction of pulse... inversion in an atomic species, leading to “cavityless” lasing. Lasing occurs from the population inversion that is created in the focal volume of...provide a reference that is capable of removing these pulse-to- pulse variations, a second, simultaneous backward lasing beam is generated using the same
Capson-Tojo, Gabriel; Moscoviz, Roman; Ruiz, Diane; Santa-Catalina, Gaëlle; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud
2018-07-01
The effect of supplementing granular activated carbon and trace elements on the anaerobic digestion performance of consecutive batch reactors treating food waste was investigated. The results from the first batch suggest that addition of activated carbon favored biomass acclimation, improving acetic acid consumption and enhancing methane production. Adding trace elements allowed a faster consumption of propionic acid. A second batch proved that a synergy existed when activated carbon and trace elements were supplemented simultaneously. The degradation kinetics of propionate oxidation were particularly improved, reducing significantly the batch duration and improving the average methane productivities. Addition of activated carbon favored the growth of archaea and syntrophic bacteria, suggesting that interactions between these microorganisms were enhanced. Interestingly, microbial analyses showed that hydrogenotrophic methanogens were predominant. This study shows for the first time that addition of granular activated carbon and trace elements may be a feasible solution to stabilize food waste anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Catoire, Valéry; Robert, Claude; Chartier, Michel; Jacquet, Patrick; Guimbaud, Christophe; Krysztofiak, Gisèle
2017-09-01
An infrared absorption spectrometer called SPIRIT (SPectromètre Infra-Rouge In situ Toute altitude) has been developed for airborne measurements of trace gases in the troposphere. At least three different trace gases can be measured simultaneously every 1.6 s using the coupling of a single Robert multipass optical cell with three Quantum Cascade Lasers (QCLs), easily interchangeable to select species depending on the scientific objectives. Absorptions of the mid-infrared radiations by the species in the cell at reduced pressure (<40 hPa), with path lengths adjustable up to 167.78 m, are quantified using an HgCdTe photodetector cooled by Stirling cycle. The performances of the instrument are assessed: a linearity with a coefficient of determination R 2 > 0.979 for the instrument response is found for CO, CH4, and NO2 volume mixing ratios under typical tropospheric conditions. In-flight comparisons with calibrated gas mixtures allow to show no instrumental drift correlated with atmospheric pressure and temperature changes (when vertical profiling) and to estimate the overall uncertainties in the measurements of CO, CH4, and NO2 to be 0.9, 22, and 0.5 ppbv, respectively. In-flight precision (1 σ) for these species at 1.6 s sampling is 0.3, 5, and 0.3 ppbv, respectively.
Cui, Chao; He, Man; Hu, Bin
2011-03-15
A novel alumina hollow fiber was synthesized by sol-gel template method and was characterized by scanning electron microscopy, N(2) adsorption technique and X-ray diffraction. With the use of prepared alumina hollow fiber as extraction membrane, a new method of flow injection (FI)-membrane solid phase microextraction (MSPME) on-line coupled to inductively coupled plasma-optical emission spectrometry (ICP-OES) was developed for simultaneous determination of trace metals (Cu, Mn and Ni) in environmental water samples. The adsorption capacities of the alumina hollow fiber for Cu, Mn and Ni were found to be 6.6, 8.7 and 13.3 mg g(-1), respectively. With a preconcentration factor of 10, the limits of detection (LODs) for Cu, Mn and Ni were found to be 0.88, 0.61 and 0.38 ng mL(-1), respectively, and the relative standard deviations (RSDs) were ranging from 6.2 to 7.9% (n = 7, c = 10 ng mL(-1)). To validate the accuracy, the proposed method was applied to the analysis of certified reference material GSBZ50009-88 environmental water and the determined values are in good agreement with the certified values. The developed method was also employed for the analysis of Yangtze River water and East Lake water, and the recoveries for the spiked samples were in the range of 87.4-110.2%. Copyright © 2011 Elsevier B.V. All rights reserved.
Chen, Chien-Yi
2009-01-01
Optimal conditions for the simultaneous determination of As, Sb and Sm in Chinese medicinal herbs using epithermal neutron activation analysis were investigated. The minimum detectable concentrations of 76As, 122Sb and 153Sm in lichen and medicinal herbs depended on the weight of the irradiated sample, and irradiation and decay durations. Optimal conditions were obtained by wrapping the irradiated target with 3.2 mm borated polyethylene neutron filters, which were adopted to screen the original reactor fission neutrons and to reduce the background activities of 38Cl, 24Na and 42K. Twelve medicinal herbs, commonly consumed by Taiwanese children as a diuretic treatment, were analysed since trace elements, such as As and Sb, in these herbs may be toxic when consumed in sufficiently large quantities over a long period. Various amounts of medicinal herbs, standardised powder, lichen and tomato leaves were weighed, packed into polyethylene bags, irradiated and counted under different conditions. The results indicated that about 350 mg of lichen irradiated for 24 h and counted for 20 min following a 30-60 h decay period was optimal for irradiation in a 10(11)n/cm s epithermal neutron flux. The implications of the content of the studied elements in Chinese medicinal herbs are discussed.
Asfaram, Arash; Ghaedi, Mehrorang; Goudarzi, Alireza
2016-09-01
A simple, low cost and ultrasensitive method for the simultaneous preconcentration and determination of trace amount of auramine-O and malachite green in aqueous media following accumulation on novel and lower toxicity nanomaterials by ultrasound-assisted dispersive solid phase micro-extraction (UA-DSPME) procedure combined with spectrophotometric has been described. The Mn doped ZnS nanoparticles loaded on activated carbon were characterized by Field emission scanning electron microscopy (FE-SEM), particle size distribution, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) analyses and subsequently were used as green and efficient material for dyes accumulation. Contribution of experimental variables such as ultrasonic time, ultrasonic temperature, adsorbent mass, vortex time, ionic strength, pH and elution volume were optimized through experimental design, and while the preconcentrated analytes were efficiently eluted by acetone. Preliminary Plackett-Burman design was applied for selection of most significant factors and giving useful information about their main and interaction part of significant variables like ultrasonic time, adsorbent mass, elution volume and pH were obtained by central composite design combined with response surface analysis and optimum experimental conditions was set at pH of 8.0, 1.2mg of adsorbent, 150μL eluent and 3.7min sonication. Under optimized conditions, the average recoveries (five replicates) for two dyes (spiked at 500.0ngmL(-1)) changes in the range of 92.80-97.70% with acceptable RSD% less than 4.0% over a linear range of 3.0-5000.0ngmL(-1) for the AO and MG in water samples with regression coefficients (R(2)) of 0.9975 and 0.9977, respectively. Acceptable limits of detection of 0.91 and 0.61ngmL(-1) for AO and MG, respectively and high accuracy and repeatability are unique advantages of present method to improve the figures of merit for their accurate determination at trace level in complicated materials. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yong; Peng, Guilong; He, Qiang; Zhu, Hui; Al-Hamadani, Sulala M. Z. F.
2015-04-01
In the present work, a dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of Pb, Co, Cu, Ni, Zn. The influences of analytical parameters, including pH, extraction solvent volume, disperser solvent volume, concentration of chelating agent on the quantitative recoveries of Pb, Co, Cu, Ni, Zn were investigated. The effect of the interfering ions on the analytes recovery was also investigated. Under the optimized conditions, the limits of detection were 0.97-2.18 ng L-1. The relative standard deviations (RSDs) were 2.62-4.51% (n = 7, C = 20 ng L-1). The proposed method was successfully applied for the analysis of ultra trace metals in wastewater samples.
Hyperspectral imaging for non-contact analysis of forensic traces.
Edelman, G J; Gaston, E; van Leeuwen, T G; Cullen, P J; Aalders, M C G
2012-11-30
Hyperspectral imaging (HSI) integrates conventional imaging and spectroscopy, to obtain both spatial and spectral information from a specimen. This technique enables investigators to analyze the chemical composition of traces and simultaneously visualize their spatial distribution. HSI offers significant potential for the detection, visualization, identification and age estimation of forensic traces. The rapid, non-destructive and non-contact features of HSI mark its suitability as an analytical tool for forensic science. This paper provides an overview of the principles, instrumentation and analytical techniques involved in hyperspectral imaging. We describe recent advances in HSI technology motivating forensic science applications, e.g. the development of portable and fast image acquisition systems. Reported forensic science applications are reviewed. Challenges are addressed, such as the analysis of traces on backgrounds encountered in casework, concluded by a summary of possible future applications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
A dual-trace model for visual sensory memory.
Cappiello, Marcus; Zhang, Weiwei
2016-11-01
Visual sensory memory refers to a transient memory lingering briefly after the stimulus offset. Although previous literature suggests that visual sensory memory is supported by a fine-grained trace for continuous representation and a coarse-grained trace of categorical information, simultaneous separation and assessment of these traces can be difficult without a quantitative model. The present study used a continuous estimation procedure to test a novel mathematical model of the dual-trace hypothesis of visual sensory memory according to which visual sensory memory could be modeled as a mixture of 2 von Mises (2VM) distributions differing in standard deviation. When visual sensory memory and working memory (WM) for colors were distinguished using different experimental manipulations in the first 3 experiments, the 2VM model outperformed Zhang and Luck (2008) standard mixture model (SM) representing a mixture of a single memory trace and random guesses, even though SM outperformed 2VM for WM. Experiment 4 generalized 2VM's advantages of fitting visual sensory memory data over SM from color to orientation. Furthermore, a single trace model and 4 other alternative models were ruled out, suggesting the necessity and sufficiency of dual traces for visual sensory memory. Together these results support the dual-trace model of visual sensory memory and provide a preliminary inquiry into the nature of information loss from visual sensory memory to WM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Marguí, E.; Queralt, I.; García-Ruiz, E.; García-González, E.; Rello, L.; Resano, M.
2018-01-01
Home-based collection protocols for clinical specimens are actively pursued as a means of improving life quality of patients. In this sense, dried blood spots (DBS) are proposed as a non-invasive and even self-administered alternative to sampling whole venous blood. This contribution explores the potential of energy dispersive X-ray fluorescence spectrometry for the simultaneous and direct determination of some major (S, Cl, K, Na), minor (P, Fe) and trace (Ca, Cu, Zn) elements in blood, after its deposition onto clinical filter papers, thus giving rise to DBS. For quantification purposes the best strategy was to use matrix-matched blood samples of known analyte concentrations. The accuracy and precision of the method were evaluated by analysis of a blood reference material (Seronorm™ trace elements whole blood L3). Quantitative results were obtained for the determination of P, S, Cl, K and Fe, and limits of detection for these elements were adequate, taking into account their typical concentrations in real blood samples. Determination of Na, Ca, Cu and Zn was hampered by the occurrence of high sample support (Na, Ca) and instrumental blanks (Cu, Zn). Therefore, the quantitative determination of these elements at the levels expected in blood samples was not feasible. The methodology developed was applied to the analysis of several blood samples and the results obtained were compared with those reported by standard techniques. Overall, the performance of the method developed is promising and it could be used to determine the aforementioned elements in blood samples in a simple, fast and economic way. Furthermore, its non-destructive nature enables further analyses by means of complementary techniques to be carried out.
Comparison between PGAA and ID-AMS analysis for determining chlorine content in whole rock basalt
NASA Astrophysics Data System (ADS)
di Nicola, L.; Schnabel, C.; Wilcken, K. M.; Gméling, K.
2009-04-01
Accurate determination of chlorine concentrations in terrestrial rocks is of importance for the interpretation of terrestrial in-situ cosmogenic 36Cl. Neutron capture by 35Cl, together with production from Ca and K, is one of the three major production pathways of 36Cl in rocks. Here, we present an inter-comparison of chlorine determinations by two procedures. The first approach is an independent Cl determination by prompt gamma (neutron) activation analysis (PGAA). The second method is isotope dilution based on isotopically-enriched stable chlorine carrier added during chemical sample preparation for accelerator mass spectrometry (ID-AMS). Twenty six (26) whole rock samples have been processed for PGAA and ID-AMS analyses. Elemental analysis by PGAA provides concentrations of major, minor and trace elements including the target elements for 36Cl production (K, Ca, Ti, and Fe), as well as of neutron absorbers and neutron moderators (H, B, Cl, Sm and Gd). The Cl concentrations determined during this study constitute the first inter-comparison for concentrations below 100 μCl/g. Our results show no significant difference in Cl concentrations between methods, and comparable uncertainties. This agreement guarantees that during the procedure we employ for whole rock sample no significant loss of stable chlorine from either the spike or the sample occurs before isotopic equilibration, prior to AgCl precipitation. Furthermore, we show that the elemental analysis by PGAA offers anadvance for the interpretation of 36Cl measurements. It allows simultaneous measurement of major and most trace element concentrations with a precision necessary for calculating the relative contributions to 36Cl production rates of the different mechanisms. Finally, the Cl concentration can be used to optimize the amount of isotopically-enriched spike for AMS-ID sample preparation for 36Cl.
OPTICAL TRANSCRIBING OSCILLOSCOPE
Kerns, Q.A.
1961-09-26
A device is designed for producing accurate graphed waveforms of very fast electronic pulses. The fast pulse is slowly tracked on a cathode ray tube and a pair of photomultiplier tubes, exposed to the pulse trace, view separate vertical portions thereof at each side of a fixed horizontal reference. Each phototube produces an output signal indicative of vertical movement of the exposed trace, which simultaneous signals are compared in a difference amplifier. The amplifier produces a difference signal which, when applied to the cathode ray tube, maintains the trace on the reference. A graphic recorder receives the amplified difference signal at an x-axis input, while a y-axis input is synchronized with the tracking time of the cathode ray tube and therefore graphs the enlarged waveshape.
Dual-wavelength quantum cascade laser for trace gas spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jágerská, J.; Tuzson, B.; Mangold, M.
2014-10-20
We demonstrate a sequentially operating dual-wavelength quantum cascade laser with electrically separated laser sections, emitting single-mode at 5.25 and 6.25 μm. Based on a single waveguide ridge, this laser represents a considerable asset to optical sensing and trace gas spectroscopy, as it allows probing multiple gas species with spectrally distant absorption features using conventional optical setups without any beam combining optics. The laser capability was demonstrated in simultaneous NO and NO{sub 2} detection, reaching sub-ppb detection limits and selectivity comparable to conventional high-end spectroscopic systems.
Guan, Y-G; Yu, P; Yu, S-J; Xu, X-B; Wu, X-L
2012-11-01
A simultaneous analysis of reducing sugars and 5-hydroxymethyl-2-furaldehyde of the Maillard reaction products was detailed. It was based on a high performance anion exchange chromatography with electrochemical detector system and an HPLC with refractive index detector. Results showed that high performance anion exchange chromatography with electrochemical detector using a CarboPac PA-1 column (Dionex Corp., Sunnyvale, CA) was more suitable for reducing sugars and 5-hydroxymethyl-2-furaldehyde determination, especially for trace analysis. The lowest detectable limit of reducing sugars and 5-hydroxymethyl-2-furaldehyde was 0.00005 mol/L in this experiment. However, HPLC with a refractive index detector always produces a tailing peak for 5-hydroxymethyl-2-furaldehyde, and mannose and fructose cannot be absolutely separated. The results of the present study could provide a more sensitive means for 5-hydroxymethyl-2-furaldehyde and reducing sugar detection. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Quantitative detection of the respective concentrations of chiral compounds with weak measurements
NASA Astrophysics Data System (ADS)
Xie, Linguo; Qiu, Xiaodong; Luo, Lan; Liu, Xiong; Li, Zhaoxue; Zhang, Zhiyou; Du, Jinglei; Wang, Deqiang
2017-11-01
In this letter, we determine the respective concentrations of glucose and fructose in the mixed chiral solution by simultaneously measuring the optical rotation angle (ORA) and the refractive index change (RIC) with weak measurements. The photonic spin Hall effect (PSHE) serves as a probe in our scheme. The measurement of ORA is based on the high sensitivity of the amplification factor to the polarization state in weak measurements. The measurement of RIC is based on the rapid variation of spin splitting of the PSHE. The measurement precision of the respective concentrations can be achieved to be 0.02 mg/ml. This method can detect traces of enantiomeric impurities and has a potential application in chiral sensing.
Management and systems engineering of the Kepler mission
NASA Astrophysics Data System (ADS)
Fanson, James; Livesay, Leslie; Frerking, Margaret; Cooke, Brian
2010-07-01
Kepler is the National Aeronautics and Space Administration's (NASA's) first mission capable of detecting Earth-size planets orbiting in the habitable zones around stars other than the sun. Selected for implementation in 2001 and launched in 2009, Kepler seeks to determine whether Earth-like planets are common or rare in the galaxy. The investigation requires a large, space-based photometer capable of simultaneously measuring the brightnesses of 100,000 stars at partper- million level of precision. This paper traces the development of the mission from the perspective of project management and systems engineering and describes various methodologies and tools that were found to be effective. The experience of the Kepler development is used to illuminate lessons that can be applied to future missions.
Management and Systems Engineering of the Kepler Mission
NASA Technical Reports Server (NTRS)
Fanson, James; Livesay, Leslie; Frerking, Margaret; Cooke, Brian
2010-01-01
Kepler is the National Aeronautics and Space Administration's (NASA's) first mission capable of detecting Earth-size planets orbiting in the habitable zones around stars other than the sun. Selected for implementation in 2001 and launched in 2009, Kepler seeks to determine whether Earth-like planets are common or rare in the galaxy. The investigation requires a large, space-based photometer capable of simultaneously measuring the brightnesses of 100,000 stars at part-per-million level of precision. This paper traces the development of the mission from the perspective of project management and systems engineering and describes various methodologies and tools that were found to be effective. The experience of the Kepler development is used to illuminate lessons that can be applied to future missions.
Time and number of displays impact critical signal detection in fetal heart rate tracings.
Anderson, Brittany L; Scerbo, Mark W; Belfore, Lee A; Abuhamad, Alfred Z
2011-06-01
Interest in centralized monitoring in labor and delivery units is growing because it affords the opportunity to monitor multiple patients simultaneously. However, a long history of research on sustained attention reveals these types of monitoring tasks can be problematic. The goal of the present experiment was to examine the ability of individuals to detect critical signals in fetal heart rate (FHR) tracings in one or more displays over an extended period of time. Seventy-two participants monitored one, two, or four computer-simulated FHR tracings on a computer display for the appearance of late decelerations over a 48-minute vigil. Measures of subjective stress and workload were also obtained before and after the vigil. The results showed that detection accuracy decreased over time and also declined as the number of displays increased. The subjective reports indicated that participants found the task to be stressful and mentally demanding, effortful, and frustrating. The results suggest that centralized monitoring that allows many patients to be monitored simultaneously may impose a detrimental attentional burden on the observer. Furthermore, this seemingly benign task may impose an additional source of stress and mental workload above what is commonly found in labor and delivery units. © Thieme Medical Publishers.
Uccello-Barretta, Gloria; Balzano, Federica; Aiello, Federica; Falugiani, Niccolò; Desideri, Ielizza
2015-03-25
In total parenteral nutrition (TPN), especially in the case of preterm infants, simultaneous administration of vitamins and trace elements is still a problematic issue: guidelines put in evidence the lack of specific documentation. In this work NMR spectroscopy was applied to the study of vitamins (pyridoxine hydrochloride, thiamine nitrate, riboflavin-5'-phosphate and nicotinamide) stability in presence of salts and trace elements. Vitamins in D2O were first analyzed by (1)H NMR spectroscopy in absence of salts and trace elements; changes in chemical shifts or in diffusion coefficients, measured by NMR DOSY technique, were analyzed. The effects of salts and trace elements on single vitamins and on their admixtures were then investigated by performing quantitative analyses during 48h. Selected vitamins are subject to intermolecular interactions. No degradative effects were observed in presence of salts and trace elements. Only riboflavin-5'-phosphate is subject to precipitation in presence of divalent cations; however, at low concentration and in presence of other vitamins this effect was not observed. Solutions analyzed, in the condition of this study, are stable for at least 48h and vitamins and trace elements can be administered together in TPN. Copyright © 2014 Elsevier B.V. All rights reserved.
Gilmartin, Marieke R.; Helmstetter, Fred J.
2010-01-01
The contribution of the medial prefrontal cortex (mPFC) to the formation of memory is a subject of considerable recent interest. Notably, the mechanisms supporting memory acquisition in this structure are poorly understood. The mPFC has been implicated in the acquisition of trace fear conditioning, a task that requires the association of a conditional stimulus (CS) and an aversive unconditional stimulus (UCS) across a temporal gap. In both rat and human subjects, frontal regions show increased activity during the trace interval separating the CS and UCS. We investigated the contribution of prefrontal neural activity in the rat to the acquisition of trace fear conditioning using microinfusions of the γ-aminobutyric acid type A (GABAA) receptor agonist muscimol. We also investigated the role of prefrontal N-methyl-d-aspartate (NMDA) receptor-mediated signaling in trace fear conditioning using the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV). Temporary inactivation of prefrontal activity with muscimol or blockade of NMDA receptor-dependent transmission in mPFC impaired the acquisition of trace, but not delay, conditional fear responses. Simultaneously acquired contextual fear responses were also impaired in drug-treated rats exposed to trace or delay, but not unpaired, training protocols. Our results support the idea that synaptic plasticity within the mPFC is critical for the long-term storage of memory in trace fear conditioning. PMID:20504949
Samanta, Gautam; Zhang, Shuming; Dasgupta, Purnendu
2003-01-01
A new automated instrument based on the Limulus amebocyte lysate (LAL)-chromogenic substrate kinetic assay for the determination of bacterial endotoxins is reported. A computer controlled syringe pump-multiport valve combination was used to aspirate the sample and other reagents into a holding coil. The syringe was always filled with air; liquid did not enter the syringe. The valve could address up to four individual radial paths, fully referenced optical fiber LED-based absorbance detectors that were housed collectively in a single, small (20 x 20 x 30 mm) metal block with a heater and temperature sensor, and maintained at 37 degrees C. Assay mixtures containing sample or standards were delivered to the individual detector cells for the simultaneous collection of the time based absorbance data. The automated system determined endotoxins with good accuracy and reproducibility in the range of 0.005-0.5 endotoxin units (EU)/mL (r2 > or = 0.99). Based on three times the standard deviation of the blank and the slope of the calibration curve, the lower limit of detection was < or = 0.003 EU/mL. The variability of the assay method is less than 5% (n = 10). Analysis time required for a 0.005 EU/mL standard was <100 min. Appropriately diluted tap water samples were simultaneously analyzed by the present system and a manually loaded commercial microplate reader based instrument; the data were statistically indistinguishable at the 95% confidence level.
Liu, Fengjie; Wang, Wen-Xiong
2015-09-01
Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Rudich, Y.; Brown, S. S.
2015-09-01
Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity enhanced spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99933 ± 0.00003 (670 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.49 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device (CCD) array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity enhanced spectroscopy and cavity ringdown spectroscopy agree within 2 % (slope for linear fit = 0.98 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity enhanced spectroscopy and calculated based on flow dilution are also well-correlated, with r2 = 0.9998. During constant, mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1-min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically-based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to trace gases, this approach will be appropriate for measurements of aerosol extinction in ambient air, and this spectral region is important for characterizing the strong ultraviolet absorption by brown carbon aerosol.
Nakatsuka, Seiji; Okamura, Kei; Norisuye, Kazuhiro; Sohrin, Yoshiki
2007-06-26
A new technique for the determination of suspended particulate trace metals (P-metals >0.2 microm), such as Co, Ni, Cu, Zn, Cd and Pb, in open ocean seawater has been developed by using microwave digestion coupled with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS). Suspended particulate matter (SPM) was collected from 500 mL of seawater on a Nuclepore filter (0.2 microm) using a closed filtration system. Both the SPM and filter were completely dissolved by microwave digestion. Reagents for the digestion were evaporated using a clean evaporation system, and the metals were redissolved in 0.8 M HNO3. The solution was diluted with buffer solution to give pH 5.0 and the metals were determined by FI-ICP-MS using a chelating adsorbent of 8-hydroxyquinoline immobilized on fluorinated metal alkoxide glass (MAF-8HQ). The procedure blanks with a filter were found to be 0.048+/-0.008, 10.3+/-0.3, 0.27+/-0.05, 3.3+/-1.8, 0.02+/-0.03 and 0.85+/-0.09 ng L(-1) for Co, Ni, Cu, Zn, Cd and Pb, respectively (n=14). Detection limits defined as 3 times the standard deviation of the blanks were 0.023, 0.90, 0.14, 5.3, 0.078 and 0.28 ng L(-1) for Co, Ni, Cu, Zn, Cd and Pb, respectively. Accuracy was evaluated using certified reference materials of chlorella (NES CRM No. 3) and marine sediment (HISS-1). The method was applied to the determination of vertical distributions for P-Co, Ni, Cu, Zn, Cd and Pb in the Western North Pacific.
Multiple melt bodies fed the AD 2011 eruption of Puyehue-Cordón Caulle, Chile.
Alloway, B V; Pearce, N J G; Villarosa, G; Outes, V; Moreno, P I
2015-12-02
Within the volcanological community there is a growing awareness that many large- to small-scale, point-source eruptive events can be fed by multiple melt bodies rather than from a single magma reservoir. In this study, glass shard major- and trace-element compositions were determined from tephra systematically sampled from the outset of the Puyehue-Cordón Caulle (PCC) eruption (~1 km(3)) in southern Chile which commenced on June 4(th), 2011. Three distinct but cogenetic magma bodies were simultaneously tapped during the paroxysmal phase of this eruption. These are readily identified by clear compositional gaps in CaO, and by Sr/Zr and Sr/Y ratios, resulting from dominantly plagioclase extraction at slightly different pressures, with incompatible elements controlled by zircon crystallisation. Our results clearly demonstrate the utility of glass shard major- and trace-element data in defining the contribution of multiple magma bodies to an explosive eruption. The complex spatial association of the PCC fissure zone with the Liquiñe-Ofqui Fault zone was likely an influential factor that impeded the ascent of the parent magma and allowed the formation of discrete melt bodies within the sub-volcanic system that continued to independently fractionate.
Li, Zhenhua; Chang, Xijun; Hu, Zheng; Huang, Xinping; Zou, Xiaojun; Wu, Qiong; Nie, Rong
2009-07-15
A new method that utilizes zincon-modified activated carbon (AC-ZCN) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 4, the maximum adsorption capacity of Cr(III) and Pb(II) onto the AC-ZCN were 17.9 and 26.7 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 1 mL of 0.1 mol L(-1) HCl. Common coexisting ions did not interfere with the separation. According to the definition of IUPAC, the detection limits (3 sigma) of this method for Cr(III) and Pb(II) were 0.91 and 0.65 ng mL(-1), respectively. The relative standard deviation under optimum condition is less than 3.5% (n=8). The method has been applied for the determination of Cr(III) and Pb(II) in biological materials and water samples with satisfactory results.
MultiElec: A MATLAB Based Application for MEA Data Analysis.
Georgiadis, Vassilis; Stephanou, Anastasis; Townsend, Paul A; Jackson, Thomas R
2015-01-01
We present MultiElec, an open source MATLAB based application for data analysis of microelectrode array (MEA) recordings. MultiElec displays an extremely user-friendly graphic user interface (GUI) that allows the simultaneous display and analysis of voltage traces for 60 electrodes and includes functions for activation-time determination, the production of activation-time heat maps with activation time and isoline display. Furthermore, local conduction velocities are semi-automatically calculated along with their corresponding vector plots. MultiElec allows ad hoc signal suppression, enabling the user to easily and efficiently handle signal artefacts and for incomplete data sets to be analysed. Voltage traces and heat maps can be simply exported for figure production and presentation. In addition, our platform is able to produce 3D videos of signal progression over all 60 electrodes. Functions are controlled entirely by a single GUI with no need for command line input or any understanding of MATLAB code. MultiElec is open source under the terms of the GNU General Public License as published by the Free Software Foundation, version 3. Both the program and source code are available to download from http://www.cancer.manchester.ac.uk/MultiElec/.
Chivarzin, M E; Revelsky, I A; Nikoshina, A V; Buldyzkova, A N; Chepeliansky, D A; Revelsky, A I; Buriak, A K
2016-04-01
The fast method of the simultaneous determination of F(-), Cl(-), Br(-) and SO4(2-) anions in the deionized water on the trace level by ion chromatography using thorough cleaning of respective water containers, 10 μM NaHCO3 water solution as eluent, short Metrohm (50 × 4 mm) separation column and a large water volume injection is proposed. Calculated detection limits are 10(-9)-10(-8)% depending on the element. The method for the fast screening of plant oil samples for the total fluorine-, chlorine-, bromine- and sulfur-organic compounds content (calculated for the respective elements) on the trace level is developed. It is based on the high temperature combustion of oil sample in oxygen flow, absorption of the conversion products in deionized water and whole absorbate volume analysis for F(-), Cl(-), Br(-) and SO4(2-) anions, corresponding to the respective elements, using the developed method of these anions analysis by ion chromatography. The samples of soya, olive, sunflower and cotton seed oil were analyzed. The method detection limits (for 1mg sample) were 2 × 10(-6)%, 2 × 10(-6)%, 5 × 10(-6)% and 5 × 10(-6)% for fluorine, chlorine, bromine and sulfur, respectively. The relative standard deviation was ≤ 15%. The method gives the compressed information about the total content of all target and nontarget fluorine-, chlorine-, bromine- and sulfur-organic compounds in plant oils. Copyright © 2015. Published by Elsevier B.V.
Torres-Dowdall, J.; Farmer, A.H.; Abril, M.; Bucher, E.H.; Ridley, I.
2010-01-01
Trace-element analysis has been suggested as a tool for the study of migratory connectivity because (1) trace-element abundance varies spatially in the environment, (2) trace elements are assimilated into animals' tissues through the diet, and (3) current technology permits the analysis of multiple trace elements in a small tissue sample, allowing the simultaneous exploration of several elements. We explored the potential of trace elements (B, Na, Mg, Al, Si, P, S, K, Ca, Ti, Cr, Mn, Ni, Cu, Zn, As, Sr, Cs, Hg, Tl, Pb, Bi, Th, and U) to clarify the migratory connectivity of shorebirds that breed in North America and winter in southern South America. We collected 66 recently replaced secondary feathers from Red Knots (Calidris canutus) at three sites in Patagonia and 76 from White-rumped Sandpipers (C. fuscicollis) at nine sites across Argentina. There were significant differences in trace-element abundance in shorebird feathers grown at different nonbreeding sites, and annual variability within a site was small compared to variability among sites. Across Argentina, there was no large-scale gradient in trace elements. The lack of such a gradient restricts the application of this technique to questions concerning the origin of shorebirds to a small number of discrete sites. Furthermore, our results including three additional species, the Pectoral Sandpiper (C. melanotos), Wilson's Phalarope (Phalaropus tricolor), and Collared Plover (Charadrius collaris), suggest that trace-element profiles change as feathers age. Temporal instability of trace-element values could undermine their application to the study of migratory connectivity in shorebirds. ?? The Cooper Ornithological Society 2010.
Kinematic Characteristics of Meteor Showers by Results of the Combined Radio-Television Observations
NASA Astrophysics Data System (ADS)
Narziev, Mirhusen
2016-07-01
One of the most important tasks of meteor astronomy is the study of the distribution of meteoroid matter in the solar system. The most important component to address this issue presents the results of measurements of the velocities, radiants, and orbits of both showers and sporadic meteors. Radiant's and orbits of meteors for different sets of data obtained as a result of photographic, television, electro-optical, video, Fireball Network and radar observations have been measured repeatedly. However, radiants, velocities and orbits of shower meteors based on the results of combined radar-optical observations have not been sufficiently studied. In this paper, we present a methods for computing the radiants, velocities, and orbits of the combined radar-TV meteor observations carried out at HisAO in 1978-1980. As a result of the two-year cycle of simultaneous TV-radar observations 57 simultaneous meteors have been identified. Analysis of the TV images has shown that some meteor trails appeared as dashed lines. Among the simultaneous meteors of d-Aquariids 10 produced such dashed images, and among the Perseids there were only 7. Using a known method, for such fragmented images of simultaneous meteors - together with the measured radar distance, trace length, and time interval between the segments - allowed to determine meteor velocity using combined method. In addition, velocity of the same meteors was measured using diffraction and radar range-time methods based on the results of radar observation. It has been determined that the mean values of meteoroid velocity based on the combined radar-TV observations are greater in 1 ÷ 3 km / c than the averaged velocity values measured using only radar methods. Orbits of the simultaneously observed meteors with segmented photographic images were calculated on the basis of the average velocity observed using the combined radar-TV method. The measured results of radiants velocities and orbital elements of individual meteors allowed us to calculate the average value for stream meteors. The data for the radiants, velocities and orbits of the meteor showers obtained by combined radar-TV observations to compared with data obtained by other authors.
Jin, Pengfei; Liang, Xiaoli; Xia, Lufeng; Jahouh, Farid; Wang, Rong; Kuang, Yongmei; Hu, Xin
2016-01-01
Niuhuang Jiedu tablet (NHJDT) is a realgar-containing traditional Chinese medicine. A direct inductively coupled plasma-mass spectrometry (ICP-MS) method for the simultaneous determination of 20 trace elements (Mg, K, Ca, Na, Fe, As, Zn, Sr, Ba, Cu, Mn, Ni, Pb, V, Cr, Se, Co, Mo, Cd, Hg) in NHJDT, as well as in water, gastric fluid and intestinal fluid was established. Meanwhile, a high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) method was developed for the determination of arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and for the identification of arsenobetaine (AsB) and arsenocholine (AsC) in these extracts. Both methods were fully validated in the respect of linearity, sensitivity, precision, stability and accuracy. The reliability of the ICP-MS method was further evaluated using a certified standard reference material prepared from dried tomato leaves (NIST, SRM 1572a). The analysis showed that some manufacturers formulated lower amount of realgar than required in the Chinese Pharmacopoeia (ChP) in their preparations. In addition, almost same extraction profiles for total As and inorganic As were found in water and in gastrointestinal fluids, while higher extraction rates for other 19 elements were observed in gastrointestinal fluids. Our findings show that the toxicities of Hg, Cu, Cd and Pb in NHJDP are low, while the real As toxicity in NHJDT should be deeply investigated. Copyright © 2015 Elsevier GmbH. All rights reserved.
Freire, Tiago S S; Clark, Malcolm W; Comarmond, M Josick; Payne, Timothy E; Reichelt-Brushett, Amanda J; Thorogood, Gordon J
2012-08-14
Bauxite refinery residue (BRR) is a highly caustic, iron hydroxide-rich byproduct from alumina production. Some chemical treatments of BRR reduce soluble alkalinity and lower residue pH (to values <10) and generate a modified BRR (MBRR). MBRR has excellent acid neutralizing (ANC) and trace-metal adsorption capacities, making it particularly useful in environmental remediation. However, soluble ANC makes standard acid-base isoelectric point (IEP) determination difficult. Consequently, the IEP of a BRR and five MBRR derivatives (sulfuric acid-, carbon dioxide-, seawater-, a hybrid neutralization, i.e, partial CO(2) neutralization followed by seawater, and an activated-seawater-neutralized MBRR) were determined using electroacoustic techniques. Residues showed three significantly different groups of IEPs (p < 0.05) based around the neutralization used. Where the primary mineral assemblage is effectively unchanged, the IEPs were not significantly different from BRR (pH 6.6-6.9). However, neutralizations generating neoformational minerals (alkalinity precipitation) significantly increased the IEP to pH 8.1, whereas activation (a removal of some primary mineralogy) significantly lowered the IEP to pH 6.2. Moreover, surface charging curves show that surfaces remain in the ±30 mV surface charge instability range, which provides an explanation as to why MBRRs remove trace metals and oxyanions over a broad pH range, often simultaneously. Importantly, this work shows that minor mineral components in complex mineral systems may have a disproportionate effect on the observable bulk IEP. Furthermore, this work shows the appropriateness of electroacoustic techniques in investigating samples with significant soluble mineral components (e.g., ANC).
de Viguerie, L; Beck, L; Salomon, J; Pichon, L; Walter, Ph
2009-10-01
Particle induced X-ray emission spectroscopy (PIXE) is now routinely used in the field of cultural heritage. Various setups have been developed to investigate the elemental composition of wood/canvas paintings or of cross-section samples. However, it is not possible to obtain information concerning the quantity of organic binder. Backscattering spectrometry (BS) can be a useful complementary method to overcome this limitation. In the case of paint layers, PIXE brings the elemental composition (major elements to traces) and the BS spectrum can give access to the proportion of pigment and binder. With the use of 3 MeV protons for PIXE and BS simultaneously, it was possible to perform quantitative analysis including C and O for which the non-Rutherford cross sections are intense. Furthermore, with the use of the same conditions for PIXE and BS, the experiment time and the potential damage by the ion beam were reduced. The results obtained with the external beam of the Accélérateur Grand Louvre pour l'Analyse Elementaire (AGLAE) facility on various test painting samples and on cross sections from Italian Renaissance masterpieces are shown. Simultaneous combination of PIXE and BS leads to a complete characterization of the paint layers: elemental composition and proportion of the organic binder have been determined and thus provide useful information about ancient oil painting recipes.
NASA Astrophysics Data System (ADS)
Donner, Sebastian; Gu, Myojeong; Remmers, Julia; Wang, Yang; Wagner, Thomas
2017-04-01
The Differential Optical Absorption Spectroscopy (DOAS)-method allows to investigate the distribution of different atmospheric trace gases (e.g. NO2, SO2, HCHO...) simultaneously. This is done by analysing the absorptions of these species in spectra of scattered sunlight. Multi-AXis (MAX)-DOAS measurements observe scattered sun light under different elevation angles. From such measurements tropospheric vertical column densities (VCDs) and vertical profiles of the measured trace gases and aerosols can be determined. We performed measurements using a 4 azimuth MAX-DOAS system on the roof of the Max Planck Institute for Chemistry in Mainz/Germany since 2013. This instrument observes scattered sunlight in 4 separate orthogonal azimuth directions. We derive vertical profiles of trace gases in these 4 different azimuth directions. From these results we can investigate the 3D distribution of the trace gases. Mainz is located at the edge of the Rhine-Main area which is one of the densest populated areas in Germany. Therefore it experiences episodes of high and low pollution depending on the meteorological conditions. In this study we focus on formaldehyde (HCHO). It is either emitted directly by industries and other anthropogenic and biogenic activities. Usually higher amounts are produced by photochemical reactions from precursor substances (secondary production), where it plays an important role in photochemical smog chemistry and O3 chemistry. As it is an intermediate product of basic oxidation cycles of other hydrocarbons (also referred to as volatile organic compounds (VOCs)) especially in summer its concentrations are determined by the abundances of VOCs. Therefore HCHO observations can be used as an indicator for VOCs. Up to now we have nearly 4 years (starting from May 2013) of almost continuous data which provides already a quite large dataset. In this work we present a first overview of our HCHO results including time series of HCHO columns, a first comparison of the results for different azimuth directions, a first characterisation of the corresponding spatial gradients and a comparison to mobile MAX-DOAS measurements which were performed in Winter 2015/2016.
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Vine, David J.; Chen, Si
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
Deng, Junjing; Vine, David J.; Chen, Si; ...
2015-02-24
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Vine, David J.; Chen, Si
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and similar to 90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.« less
Martín-Yerga, Daniel; Álvarez-Martos, Isabel; Blanco-López, M Carmen; Henry, Charles S; Fernández-Abedul, M Teresa
2017-08-15
In this work, we report a simple and yet efficient stencil-printed electrochemical platform that can be integrated into the caps of sample containers and thus, allows in-field quantification of Cd(II) and Pb(II) in river water samples. The device exploits the low-cost features of carbon (as electrode material) and paper/polyester transparency sheets (as substrate). Electrochemical analysis of the working electrodes prepared on different substrates (polyester transparency sheets, chromatographic, tracing and office papers) with hexaammineruthenium(III) showed that their electroactive area and electron transfer kinetics are highly affected by the porosity of the material. Electrodes prepared on transparency substrates showed the best electroanalytical performance for the simultaneous determination of Cd(II) and Pb(II) by square-wave anodic stripping voltammetry. Interestingly, the temperature and time at which the carbon ink was cured had significant effect on the electrochemical response, especially the capacitive current. The amount of Cd and Pb on the electrode surface can be increased about 20% by in situ electrodeposition of bismuth. The electrochemical platform showed a linear range comprised between 1 and 200 μg/L for both metals, sensitivity of analysis of 0.22 and 0.087 μA/ppb and limits of detection of 0.2 and 0.3 μg/L for Cd(II) and Pb(II), respectively. The analysis of river water samples was done directly in the container where the sample was collected, which simplifies the procedure and approaches field analysis. The developed point-of-need detection system allowed simultaneous determination of Cd(II) and Pb(II) in those samples using the standard addition method with precise and accurate results. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Rong; Yin, Zhibin; Leng, Yixin; Hang, Wei; Huang, Benli
2018-01-01
Laser desorption laser postionization time-of-flight mass spectrometry (LDPI-TOFMS) was employed for direct analysis and determination of typical basic dyes. It was also used for the analysis and comprehensive understanding of complex materials such as blue ballpoint pen inks. Simultaneous emergences of fragmental and molecular information largely simplify and facilitate unambiguous identification of dyes via variable energy of 266nm postionization laser. More specifically, by optimizing postionization laser energy with the same energy of desorption laser, the structurally significant results show definite differences in the fragmentation patterns, which offer opportunities for discrimination of isomeric species with identical molecular weight. Moreover, relatively high spectra resolution can be acquired without the expense of sensitivity. In contrast to laser desorption/ionization mass spectrometry (LDI-MS), LDPI-MS simultaneously offers valuable molecular information about dyes in traces, solvents and additives about inks, thereby offering direct determination and comprehensive understanding of blue ballpoint inks and giving a high level of confidence to discriminate the complicated evidentiary samples. In addition, direct analysis of the inks not only allows the avoidance of the tedious sample preparation processes, significantly shortening the overall analysis time and improving throughput, but allows minimized sample consumption which is important for rare and precious samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon
Brennan, Sean R.; Zimmerman, Christian E.; Fernandez, Diego P.; Cerling, Thure E.; McPhee, Megan V.; Wooller, Matthew J.
2015-01-01
Highly migratory organisms present major challenges to conservation efforts. This is especially true for exploited anadromous fish species, which exhibit long-range dispersals from natal sites, complex population structures, and extensive mixing of distinct populations during exploitation. By tracing the migratory histories of individual Chinook salmon caught in fisheries using strontium isotopes, we determined the relative production of natal habitats at fine spatial scales and different life histories. Although strontium isotopes have been widely used in provenance research, we present a new robust framework to simultaneously assess natal sources and migrations of individuals within fishery harvests through time. Our results pave the way for investigating how fine-scale habitat production and life histories of salmon respond to perturbations—providing crucial insights for conservation.
Boberg, P R; Tylka, A J; Adams, J H; Beahm, L P; Fluckiger, E O; Kleis, T; Kobel, E
1996-01-01
The large solar energetic particle (SEP) events and simultaneous large geomagnetic disturbances observed during October 1989 posed a significant, rapidly evolving space radiation hazard. Using data from the GOES-7, NOAA-10, IMP-8 and LDEF satellites, we determined the geomagnetic transmission, heavy ion fluences, mean Fe ionic charge state, and effective radiation hazard observed in low Earth orbit (LEO) for these SEPs. We modeled the geomagnetic transmission by tracing particles through the combination of the internal International Geomagnetic Reference Field (IGRF) and the Tsyganenko (1989) magnetospheric field models, extending the modeling to large geomagnetic disturbances. We used our results to assess the radiation hazard such very large SEP events would pose in the anticipated 52 degrees inclination space station orbit.
A, Vijaya Bhaskar Reddy; Yusop, Zulkifli; Jaafar, Jafariah; Aris, Azmi B; Majid, Zaiton A; Umar, Khalid; Talib, Juhaizah
2016-09-05
In this study a sensitive and selective gradient reverse phase UPLC-MS/MS method was developed for the simultaneous determination of six process related impurities viz., Imp-I, Imp-II, Imp-III, Imp-IV, Imp-V and Imp-VI in darunavir. The chromatographic separation was performed on Acquity UPLC BEH C18 (50 mm×2.1mm, 1.7μm) column using gradient elution of acetonitrile-methanol (80:20, v/v) and 5.0mM ammonium acetate containing 0.01% formic acid at a flow rate of 0.4mL/min. Both negative and positive electrospray ionization (ESI) modes were operated simultaneously using multiple reaction monitoring (MRM) for the quantification of all six impurities in darunavir. The developed method was fully validated following ICH guidelines with respect to specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, robustness and sample solution stability. The method was able to quantitate Imp-I, Imp-IV, Imp-V at 0.3ppm and Imp-II, Imp-III, and Imp-VI at 0.2ppm with respect to 5.0mg/mL of darunavir. The calibration curves showed good linearity over the concentration range of LOQ to 250% for all six impurities. The correlation coefficient obtained was >0.9989 in all the cases. The accuracy of the method lies between 89.90% and 104.60% for all six impurities. Finally, the method has been successfully applied for three formulation batches of darunavir to determine the above mentioned impurities, however no impurity was found beyond the LOQ. This method is a good quality control tool for the trace level quantification of six process related impurities in darunavir during its synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Tabelin, Carlito Baltazar; Hashimoto, Ayaka; Igarashi, Toshifumi; Yoneda, Tetsuro
2014-02-15
Sedimentary rocks of marine origin excavated in tunnel projects were recently identified as potentially hazardous because they could release significant amounts of toxic trace elements when exposed to the environment. This study investigated the leaching characteristics of B, As, Se and the major coexisting ions under various conditions to identify the factors and processes controlling their evolution in the leachate. In addition, we evaluated whether the parameters of the currently used leachability test for excavated rocks were adequate. Although the leachabilities of B, As and Se similarly increased at longer contact times, only those of B and As were influenced by the mixing speed and/or liquid-to-solid ratio (L/S). The majority of trace elements dissolved in the leachate originated from the dissolution of soluble salts formed from seawater of the Cretaceous trapped during the formation of the sedimentary rocks. Moreover, the alkaline pH of the leachates could be attributed to the simultaneous dissolutions at varying degrees of the mineral components of the rocks as well as the precipitation of clay minerals. In the leaching test of excavated rocks for regulatory purposes, the best values of contact time and mixing speed should represent conditions of the highest trace element extractabilities, which in this study were found at longer contact times (>48 h) and the fastest mixing speed (200 rpm). The most appropriate L/S for the leaching test is 10 because it was around this L/S that the extractabilities and leaching concentrations of the trace elements were simultaneously observed at their highest values. Copyright © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Spudich, Thomas M.; Herrmann, Jennifer K.; Fietkau, Ronald; Edwards, Grant A.
2004-01-01
An experiment is conducted to ascertain trace-level Pb in samples of bovine liver or muscle by applying graphite furnace atomic absorption spectrophotometry (GFAAS). The primary objective is to display the effects of physical and spectral intrusions in determining trace elements, and project the usual methods employed to minimize accuracy errors…
Djane, N K; Armalis, S; Ndung'u, K; Johansson, G; Mathiasson, L
1998-02-01
A method for trace metal determinations in complex matrices is presented. The method combines supported liquid membrane (SLM) sample clean-up and enrichment with potentiometric stripping analysis (PSA) in a flow system using reticulated vitreous carbon (RVC) as the electrode material. The membrane contained 40% m/m di-2-ethylhexylphosphoric acid dissolved in kerosene. Lead was used as a model substance in high-purity water and urine samples. The samples were enriched after a simple pH adjustment. The SLM enrichment time was 10 min when the last 5 min electrodeposition on the RVC electrode at -1.0 V (versus Ag/AgCl) was performed simultaneously. The influence of various experimental parameters such as deposition time, deposition potential and flow rate on the lead signal was investigated. With a 10 min SLM enrichment including a 5 min deposition time, the detection limit for lead was 0.3 microgram l-1. The relative standard deviation for lead concentrations in the range 4-20 micrograms l-1 was 0.05%. The overall SLM-PSA system was found to be stable for at least 100 urine analyses. The method was validated by running a reference urine sample. The result obtained (five replicates) was 9.7 micrograms l-1 (standard deviation 1.8 micrograms l-1) which is within the recommended range of 9.2-10.8 micrograms l-1.
Isotope pattern deconvolution as a tool to study iron metabolism in plants.
Rodríguez-Castrillón, José Angel; Moldovan, Mariella; García Alonso, J Ignacio; Lucena, Juan José; García-Tomé, Maria Luisa; Hernández-Apaolaza, Lourdes
2008-01-01
Isotope pattern deconvolution is a mathematical technique for isolating distinct isotope signatures from mixtures of natural abundance and enriched tracers. In iron metabolism studies measurement of all four isotopes of the element by high-resolution multicollector or collision cell ICP-MS allows the determination of the tracer/tracee ratio with simultaneous internal mass bias correction and lower uncertainties. This technique was applied here for the first time to study iron uptake by cucumber plants using 57Fe-enriched iron chelates of the o,o and o,p isomers of ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA) and ethylenediamine tetraacetic acid (EDTA). Samples of root, stem, leaves, and xylem sap, after exposure of the cucumber plants to the mentioned 57Fe chelates, were collected, dried, and digested using nitric acid. The isotopic composition of iron in the samples was measured by ICP-MS using a high-resolution multicollector instrument. Mass bias correction was computed using both a natural abundance iron standard and by internal correction using isotope pattern deconvolution. It was observed that, for plants with low 57Fe enrichment, isotope pattern deconvolution provided lower tracer/tracee ratio uncertainties than the traditional method applying external mass bias correction. The total amount of the element in the plants was determined by isotope dilution analysis, using a collision cell quadrupole ICP-MS instrument, after addition of 57Fe or natural abundance Fe in a known amount which depended on the isotopic composition of the sample.
Zhang, Chang; Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Zhang, Jiachao; Peng, Bo; Xie, Xia; Lai, Cui; Long, Beiqing; Zhu, Jingjing
2016-01-01
The fabrication and evaluation of a glassy carbon electrode (GCE) modified with self-doped polyaniline nanofibers (SPAN)/mesoporous carbon nitride (MCN) and bismuth for simultaneous determination of trace Cd2+ and Pb2+ by square wave anodic stripping voltammetry (SWASV) are presented here. The morphology properties of SPAN and MCN were characterized by transmission electron microscopy (TEM), and the electrochemical properties of the fabricated electrode were characterized by cyclic voltammetry (CV). Experimental parameters, such as deposition time, pulse potential, step potential, bismuth concentration and NaCl concentration, were optimized. Under the optimum conditions, the fabricated electrode exhibited linear calibration curves ranging from 5 to 80 nM for Cd2+ and Pb2+. The limits of detection (LOD) were 0.7 nM for Cd2+ and 0.2 nM for Pb2+ (S/N = 3). Additionally, the repeatability, reproducibility, anti-interference ability and application were also investigated, and the proposed electrode exhibited excellent performance. The proposed method could be extended for other heavy metal determination. PMID:28344264
Determination of total selenium in food samples by d-CPE and HG-AFS.
Wang, Mei; Zhong, Yizhou; Qin, Jinpeng; Zhang, Zehua; Li, Shan; Yang, Bingyi
2017-07-15
A dual-cloud point extraction (d-CPE) procedure was developed for the simultaneous preconcentration and determination of trace level Se in food samples by hydride generation-atomic fluorescence spectrometry (HG-AFS). The Se(IV) was complexed with ammonium pyrrolidinedithiocarbamate (APDC) in a Triton X-114 surfactant-rich phase, which was then treated with a mixture of 16% (v/v) HCl and 20% (v/v) H 2 O 2 . This converted the Se(IV)-APDC into free Se(IV), which was back extracted into an aqueous phase at the second cloud point extraction stage. This aqueous phase was analyzed directly by HG-AFS. Optimization of the experimental conditions gave a limit of detection of 0.023μgL -1 with an enhancement factor of 11.8 when 50mL of sample solution was preconcentrated to 3mL. The relative standard deviation was 4.04% (c=6.0μgL -1 , n=10). The proposed method was applied to determine the Se contents in twelve food samples with satisfactory recoveries of 95.6-105.2%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Expectancies as a Determinant of Interference Phenomena
ERIC Educational Resources Information Center
Hasher, Lynn; Greenberg, Michael
1977-01-01
One version, by Lockhart, Craik, and Jacoby, of a levels-of-processing model of memory asserts the importance of the role of expectancies about forthcoming information in determining the elaborateness of a memory trace. Confirmed expectancies result in less-elaborated memory traces; disconfirmed expectancies result in elaborate memory traces.…
Kudryavtsev, Andrey S; Makas, Alexey L; Troshkov, Mikhail L; Grachev, Mikhail А; Pod'yachev, Sergey P
2014-06-01
A method for fast simultaneous on-site determination of methyl mercaptan and dimethyl sulfide in air was developed. The target compounds were actively collected on silica gel, followed by direct flash thermal desorption, fast separation on a short chromatographic column and detection by means of mass spectrometer with atmospheric pressure chemical ionization. During the sampling of ambient air, water vapor was removed with a Nafion selective membrane. A compact mass spectrometer prototype, which was designed earlier at Trofimuk Institute of Petroleum Geology and Geophysics, was used. The minimization of gas load of the atmospheric pressure ion source allowed reducing the power requirements and size of the vacuum system and increasing its ruggedness. The measurement cycle is about 3 min. Detection limits in a 0.6 L sample are 1 ppb for methyl mercaptan and 0.2 ppb for dimethyl sulfide. Copyright © 2014 Elsevier B.V. All rights reserved.
Bertolín, J R; Joy, M; Rufino-Moya, P J; Lobón, S; Blanco, M
2018-08-15
An accurate, fast, economic and simple method to determine carotenoids, tocopherols, retinol and cholesterol in lyophilised samples of ovine milk, muscle and liver and raw samples of fat, which are difficult to lyophilise, is sought. Those analytes have been studied in animal tissues to trace forage feeding and unhealthy contents. The sample treatment consisted of mild overnight saponification, liquid-liquid extraction, evaporation with vacuum evaporator and redissolution. The quantification of the different analytes was performed by the use of ultra-high performance liquid chromatography with diode-array detector for carotenoids, retinol and cholesterol and fluorescence detector for tocopherols. The retention times of the analytes were short and the resolution between analytes was very high. The limits of detection and quantification were very low. This method is suitable for all the matrices and analytes and could be adapted to other animal species with minor changes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Microlith Based Sorber for Removal of Environmental Contaminants
NASA Technical Reports Server (NTRS)
Roychoudhury, S.; Perry, J.
2004-01-01
The development of energy efficient, lightweight sorption systems for removal of environmental contaminants in space flight applications is an area of continuing interest to NASA. The current CO2 removal system on the International Space Station employs two pellet bed canisters of 5A molecular sieve that alternate between regeneration and sorption. A separate disposable charcoal bed removes trace contaminants. An alternative technology has been demonstrated using a sorption bed consisting of metal meshes coated with a sorbent, trademarked and patented as Microlith by Precision Combustion, Inc. (PCI); thesemeshes have the potential for direct electrical heating for this application. This allows the bed to be regenerable via resistive heating and offers the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. The capability of removing both CO2 and trace contaminants within the same bed has also been demonstrated. Thus, the need for a separate trace contaminant unit is eliminated resulting in an opportunity for significant weight savings. Unlike the charcoal bed, zeolites for trace contaminant removal are amenable to periodic regeneration. This paper describes the design and performance of a prototype sorber device for simultaneous CO2 and trace contarninant removal and its attendant weight and energy savings.
NASA Astrophysics Data System (ADS)
Ansari, S.; Talebpour, Z.; Molaabasi, F.; Bijanzadeh, H. R.; Khazaeli, S.
2016-09-01
The analysis of pesticides in water samples is of primary concern for quality control laboratories due to the toxicity of these compounds and their associated public health risk. A novel analytical method based on stir bar sorptive extraction (SBSE), followed by 31P quantitative nuclear magnetic resonance (31P QNMR), has been developed for simultaneously monitoring and determining four organophosphorus pesticides (OPPs) in aqueous media. The effects of factors on the extraction efficiency of OPPs were investigated using a Draper-Lin small composite design. An optimal sample volume of 4.2 mL, extraction time of 96 min, extraction temperature of 42°C, and desorption time of 11 min were obtained. The results showed reasonable linearity ranges for all pesticides with correlation coefficients greater than 0.9920. The limit of quantification (LOQ) ranged from 0.1 to 2.60 mg/L, and the recoveries of spiked river water samples were from 82 to 94% with relative standard deviation (RSD) values less than 4%. The results show that this method is simple, selective, rapid, and can be applied to other sample matrices.
Hu, Lintong; Cheng, Qin; Chen, Danchao; Ma, Ming; Wu, Kangbing
2015-01-01
It is quite important to develop convenient and rapid analytical methods for trace levels of endocrine disruptors because they heavily affect health and reproduction of humans and animals. Herein, graphene was easily prepared via one-step exfoliation using N-methyl-2-pyrrolidone as solvent, and then used to construct an electrochemical sensor for highly-sensitive detection of diethylstilbestrol (DES) and estradiol (E2). On the surface of prepared graphene film, two independent and greatly-increased oxidation waves were observed at 0.28V and 0.49V for DES and E2. The remarkable signal enlargements indicated that the detection sensitivity was improved significantly. The influences of pH value, amount of graphene and accumulation time on the oxidation signals of DES and E2 were discussed. As a result, a highly-sensitive and rapid electrochemical method was newly developed for simultaneous detection of DES and E2. The values of detection limit were evaluated to be 10.87 nM and 4.9 nM for DES and E2. Additionally, this new method was successfully used in lake water samples and the accuracy was satisfactory. Copyright © 2014 Elsevier B.V. All rights reserved.
Yang, Rui; Liu, Yuxin; Yan, Xiangyang; Liu, Shaomin
2016-12-01
A rapid, sensitive and accurate method for the simultaneous extraction and determination of five types of trace phthalate esters (PAEs) in environmental water and beverage samples using magnetic molecularly imprinted solid-phase extraction (MMIP-SPE) coupled with gas chromatography-mass spectrometry (GC-MS) was developed. A novel type of molecularly imprinted polymers on the surface of yolk-shell magnetic mesoporous carbon (Fe 3 O 4 @void@C-MIPs) was used as an efficient adsorbent for selective adsorption of phthalate esters based on magnetic solid-phase extraction (MSPE). The real samples were first preconcentrated by Fe 3 O 4 @void@C-MIPs, subsequently extracted by eluent and finally determined by GC-MS after magnetic separation. Several variables affecting the extraction efficiency of the analytes, including the type and volume of the elution solvent, amount of adsorbent, extraction time, desorption time and pH of the sample solution, were investigated and optimized. Validation experiments indicated that the developed method presented good linearity (R 2 >0.9961), satisfactory precision (RSD<6.7%), and high recovery (86.1-103.1%). The limits of detection ranged from 1.6ng/L to 5.2ng/L and the enrichment factor was in the range of 822-1423. The results indicated that the novel method had the advantages of convenience, good sensitivity, and high efficiency, and it could also be successfully applied to the analysis of PAEs in real samples. Copyright © 2016. Published by Elsevier B.V.
Podlesáková, E; Nĕmecek, J; Vácha, R
1999-10-20
A regional study of soil contamination in North and Northwest immission-impacted Bohemian regions present the results of the assessment of soil loads of agricultural soils by hazardous trace elements and organic xenobiotic substances. The evaluation is based on the exceeding of background values of contaminants (upper limit of their variability). Two forms of soil loads by trace elements are differentiated, the anthropogenic and geogenic one. They occur simultaneously on the territory under study. Geogenic "loads" prevail (basalts, metallogenic zones). Anthropogenic contamination by both hazardous elements and organic xenobiotic substances occurs only in some parts of these severely immission-impacted regions.
He, Yabai; Kan, Ruifeng; Englich, Florian V; Liu, Wenqing; Orr, Brian J
2010-09-13
The greenhouse-gas molecules CO(2), CH(4), and H(2)O are detected in air within a few ms by a novel cavity-ringdown laser-absorption spectroscopy technique using a rapidly swept optical cavity and multi-wavelength coherent radiation from a set of pre-tuned near-infrared diode lasers. The performance of various types of tunable diode laser, on which this technique depends, is evaluated. Our instrument is both sensitive and compact, as needed for reliable environmental monitoring with high absolute accuracy to detect trace concentrations of greenhouse gases in outdoor air.
O'Sullivan, Jeanette E; Watson, Roslyn J; Butler, Edward C V
2013-10-15
An automated procedure including both in-line preconcentration and multi-element determination by an inductively coupled plasma mass spectrometer (ICP-MS) has been developed for the determination of Cd, Co, Cu, Ni, Pb and Zn in open-ocean samples. The method relies on flow injection of the sample through a minicolumn of chelating (iminodiacetate) sorbent to preconcentrate the trace metals, while simultaneously eliminating the major cations and anions of seawater. The effectiveness of this step is tested and reliability in results are secured with a rigorous process of quality assurance comprising 36 calibration and reference samples in a run for analysis of 24 oceanic seawaters in a 6-h program. The in-line configuration and procedures presented minimise analyst operations and exposure to contamination. Seawater samples are used for calibration providing a true matrix match. The continuous automated pH measurement registers that chelation occurs within a selected narrow pH range and monitors the consistency of the entire analytical sequence. The eluent (0.8M HNO3) is sufficiently strong to elute the six metals in 39 s at a flow rate of 2.0 mL/min, while being compatible for prolonged use with the mass spectrometer. Throughput is one sample of 7 mL every 6 min. Detection limits were Co 3.2 pM, Ni 23 pM, Cu 46 pM, Zn 71 pM, Cd 2.7 pM and Pb 1.5 pM with coefficients of variation ranging from 3.4% to 8.6% (n=14) and linearity of calibration established beyond the observed concentration range of each trace metal in ocean waters. Recoveries were Co 96.7%, Ni 102%, Cu 102%, Zn 98.1%, Cd 92.2% and Pb 97.6%. The method has been used to analyse ~800 samples from three voyages in the Southern Ocean and Tasman Sea. It has the potential to be extended to other trace elements in ocean waters. © 2013 Elsevier B.V. All rights reserved.
Imputation of Missing Genotypes From Sparse to High Density Using Long-Range Phasing
USDA-ARS?s Scientific Manuscript database
Related individuals in a population share long chromosome segments which trace to a common ancestor. We describe a long-range phasing algorithm that makes use of this property to phase whole chromosomes and simultaneously impute a large number of missing markers. We test our method by imputing marke...
Updating Status: Tracing College Women's Diverging Educational Pathways with Facebook
ERIC Educational Resources Information Center
Allaman, Erin
2013-01-01
As young people incorporate digital media into the ecologies of their daily lives, new technologies play an important role in how they experience higher education while simultaneously creating a digital record of their educational pathways. Little research has been conducted that explores how Millennials' forays into college life are defined…
NASA Astrophysics Data System (ADS)
Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.
2016-04-01
Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.
Simultaneous K-edge subtraction tomography for tracing strontium using parametric X-ray radiation
NASA Astrophysics Data System (ADS)
Hayakawa, Y.; Hayakawa, K.; Kaneda, T.; Nogami, K.; Sakae, T.; Sakai, T.; Sato, I.; Takahashi, Y.; Tanaka, T.
2017-07-01
The X-ray source based on parametric X-ray radiation (PXR) has been regularly providing a coherent X-ray beam for application studies at Nihon University. Recently, three dimensional (3D) computed tomography (CT) has become one of the most important applications of the PXR source. The methodology referred to as K-edge subtraction (KES) imaging is a particularly successful application utilizing the energy selectivity of PXR. In order to demonstrate the applicability of PXR-KES, a simultaneous KES experiment for a specimen containing strontium was performed using a PXR beam having an energy near the Sr K-edge of 16.1 keV. As a result, the 3D distribution of Sr was obtained by subtraction between the two simultaneously acquired tomographic images.
Adutwum, Lawrence Asamoah; Kishikawa, Naoya; Ohyama, Kaname; Harada, Shiro; Nakashima, Kenichiro; Kuroda, Naotaka
2010-09-01
A sensitive and selective high performance liquid chromatography-peroxyoxalate chemiluminescence (PO-CL) method has been developed for the simultaneous determination of chlorpheniramine (CPA) and monodesmethyl chlorpheniramine (MDCPA) in human serum. The method combines fluorescent labeling with 4-(4,5-diphenyl-1H-imidazole-2-yl)phenyl boronic acid using Suzuki coupling reaction with PO-CL detection. CPA and MDCPA were extracted from human serum by liquid-liquid extraction with n-hexane. Excess labeling reagent, which interfered with trace level determination of analytes, was removed by solid-phase extraction using a C18 cartridge. Separation of derivatives of both analytes was achieved isocratically on a silica column with a mixture of acetonitrile and 60 mM imidazole-HNO(3) buffer (pH 7.2; 85:15, v/v) containing 0.015% triethylamine. The proposed method exhibited a good linearity with a correlation coefficient of 0.999 for CPA and MDCPA within the concentration range of 0.5-100 ng/mL. The limits of detection (S/N = 3) were 0.14 and 0.16 ng/mL for CPA and MDCPA, respectively. Using the proposed method, CPA could be selectively determined in human serum after oral administration.
Sugiura, Koichi; Min, Jun Zhe; Toyo'oka, Toshimasa; Inagaki, Shinsuke
2008-09-26
The rapid, sensitive and simultaneous determination of six polyamines, i.e., ornithine (ORN), 1,3-diaminopropane (DAP), putrescine (PUT), cadaverine (CAD), spermidine (SPD) and spermine (SPM), in human hairs was performed by ultra-performance liquid chromatography (UPLC) with fluorescence (FL) detection and electrospray-ionization time-of-flight mass spectrometry (ESI-TOF-MS). The primary (-NH(2)) and secondary (-NH) amines in the polyamine structures were first labeled with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F) at 60 degrees C for 30 min in the mixture of 0.1M borax (pH 9.3) and acetonitrile (CH(3)CN). The resulting derivatives were perfectly separated using an ACQUITY UPLC BEH C(18) column (1.7 microm, 100 mm x 2.1mm i.d.) by a gradient elution with a mixture of water-acetonitrile containing 0.1% formic acid (HCOOH). The separated polyamine derivatives were sensitively detected with both FL and TOF-MS. The detection limits in FL and TOF-MS were 11-86 and 2-5 fmol, respectively. However, the determination of several polyamines by FL detection was interfered with by endogenous substances in the hair. Therefore, the simultaneous determination in hair was carried out by the combination of UPLC separation and the ESI-TOF-MS detection. The structures of the polyamines were identified from the protonated-molecular ions [M+H](+) obtained from the TOF-MS measurement. A good linearity was achieved from the calibration curves, that was obtained by plotting the peak area ratios of the analytes relative to the internal standard (IS), i.e., 1,6-diaminohexane (DAH), against the injected amounts of each polyamine (0.05-50 pmol, r(2)>0.999). The proposed method was applied to the determination in the hairs of healthy volunteers. The mean concentrations of ORN, DAP, PUT, CAD, SPD and SPM in 1mg of human hairs (n=20) were 1.46, 0.18, 1.18, 0.11, 1.97 and 0.98 pmol, respectively. Because the proposed method provides a good mass accuracy and the trace detection of the polyamines in hair, this analytical technique seems to be applicable for the determination of various biological compounds in hair.
Trends in tungsten coil atomic spectrometry
NASA Astrophysics Data System (ADS)
Donati, George L.
Renewed interest in electrothermal atomic spectrometric methods based on tungsten coil atomizers is a consequence of a world wide increasing demand for fast, inexpensive, sensitive, and portable analytical methods for trace analysis. In this work, tungsten coil atomic absorption spectrometry (WCAAS) and tungsten coil atomic emission spectrometry (WCAES) are used to determine several different metals and even a non-metal at low levels in different samples. Improvements in instrumentation and new strategies to reduce matrix effects and background signals are presented. Investigation of the main factors affecting both WCAAS and WCAES analytical signals points to the importance of a reducing, high temperature gas phase in the processes leading to atomic cloud generation. Some more refractory elements such as V and Ti were determined for the first time by double tungsten coil atomic emission spectrometry (DWCAES). The higher temperatures provided by two atomizers in DWCAES also allowed the detection of Ag, Cu and Sn emission signals for the first time. Simultaneous determination of several elements by WCAES in relatively complex sample matrices was possible after a simple acid extraction. The results show the potential of this method as an alternative to more traditional, expensive methods for fast, more effective analyses and applications in the field. The development of a new metallic atomization cell is also presented. Lower limits of detection in both WCAAS and WCAES determinations were obtained due to factors such as better control of background signal, smaller, more isothermal system, with atomic cloud concentration at the optical path for a longer period of time. Tungsten coil-based methods are especially well suited to applications requiring low sample volume, low cost, sensitivity and portability. Both WCAAS and WCAES have great commercial potential in fields as diverse as archeology and industrial quality control. They are simple, inexpensive, effective methods for trace metal determinations in several different samples, representing an important asset in today's analytical chemistry.
Kleijn, Roelco J.; van Winden, Wouter A.; Ras, Cor; van Gulik, Walter M.; Schipper, Dick; Heijnen, Joseph J.
2006-01-01
In this study we developed a new method for accurately determining the pentose phosphate pathway (PPP) split ratio, an important metabolic parameter in the primary metabolism of a cell. This method is based on simultaneous feeding of unlabeled glucose and trace amounts of [U-13C]gluconate, followed by measurement of the mass isotopomers of the intracellular metabolites surrounding the 6-phosphogluconate node. The gluconate tracer method was used with a penicillin G-producing chemostat culture of the filamentous fungus Penicillium chrysogenum. For comparison, a 13C-labeling-based metabolic flux analysis (MFA) was performed for glycolysis and the PPP of P. chrysogenum. For the first time mass isotopomer measurements of 13C-labeled primary metabolites are reported for P. chrysogenum and used for a 13C-based MFA. Estimation of the PPP split ratio of P. chrysogenum at a growth rate of 0.02 h−1 yielded comparable values for the gluconate tracer method and the 13C-based MFA method, 51.8% and 51.1%, respectively. A sensitivity analysis of the estimated PPP split ratios showed that the 95% confidence interval was almost threefold smaller for the gluconate tracer method than for the 13C-based MFA method (40.0 to 63.5% and 46.0 to 56.5%, respectively). From these results we concluded that the gluconate tracer method permits accurate determination of the PPP split ratio but provides no information about the remaining cellular metabolism, while the 13C-based MFA method permits estimation of multiple fluxes but provides a less accurate estimate of the PPP split ratio. PMID:16820467
Peng, Xiaojun; Pang, Jinshan; Deng, Aihua
2011-12-01
A novel method for the simultaneous determination of seven phenoxyacid herbicides such as dicamba, fluroxypyr, 4-chlorophenoxyacetic acid (4-CPA), 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenoxybutyric acid (2,4-DB) and 4-(2-methyl-4-chlorophenoxy) butyric acid (MCPB) in environmental water by three phase hollow fiber liquid phase microextraction (HF-LPME) coupled with high performance liquid chromatography (HPLC) was developed. In order to optimize the experimental conditions, the orthogonal test has been used. The effects of extraction solvent, pH of the donor phase and acceptor phase, extraction time, stirring speed and salt concentration on the detection were investigated. The optimal experimental conditions were as follows: octanol as organic solvent, pH 3 of donor phase, pH 12 of acceptor phase, extraction time of 30 min, stirring speed of 400 r/min. The results showed that the proposed method provided a wide linear range for 7 phenoxyacid herbicides with correlation coefficients of 0.995 3 - 0.998 8. The detection limits ranged from 0.2 to 1.0 microg/L. The enrichment factors were in the range of 76.7 - 121. The recoveries were in the range of 68% - 104% and the relative standard deviations (RSDs) were less than 8.1% for the environmental water samples. The method has the advantages of sensitivity, simplicity, fastness and the use of very small amounts of organic solvent. The method can meet the requirements of the determination of trace phenoxyacid herbicides in the environmental water samples, and the study provided a useful method for the analysis of trace substances in water samples.
Trace element zoning as a record of chemical disequilibrium during garnet growth
NASA Astrophysics Data System (ADS)
Chernoff, Carlotta B.; Carlson, William D.
1999-06-01
Trace element concentrations in pelitic garnets from the Picuris Range of New Mexico display precipitous changes coincident with abrupt variations in Ca concentration. These patterns probably arise from the transitory participation of different trace element enriched phases in the garnet forming reaction. Changes in the reactant and product assemblages occur at different times during the reaction history for crystals of different size, so they cannot be the result of any event affecting the entire rock, such as a change in pressure, temperature, or fluid composition. Instead, they reflect kinetic factors that cause Ca, Y, Yb, P, Ti, Sc, Zr, Hf, Sr, Na, and Li to fail to achieve chemical equilibrium during garnet growth. Caution is needed to avoid misinterpreting excursions in the concentration of these elements as event markers recording simultaneous rockwide changes in intensive parameters, when in fact they may record transient disequilibrium states that are local in scope, and not contemporaneous.
Diverse stoichiometry of dissolved trace metals in the Indian Ocean
Thi Dieu Vu, Huong; Sohrin, Yoshiki
2013-01-01
Trace metals in seawater are essential to organisms and important as tracers of various processes in the ocean. However, we do not have a good understanding of the global distribution and cycling of trace metals, especially in the Indian Ocean. Here we report the first simultaneous, full-depth, and basin-scale section-distribution of dissolved (D) Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in the Indian Ocean. Our data reveal widespread co-limitation for phytoplankton production by DFe and occurrence of redox-related processes. The stoichiometry of the DM/phosphorus ratio agrees within a factor of 5 between deep waters in the Indian and Pacific, whereas it shows variability up to a factor of 300 among water masses within the Indian Ocean. This indicates that a consistent mechanism controls the stoichiometry in the deep waters, which are significantly depleted in Mn, Fe, and Co compared to requirements for phytoplankton.
Li, Zhenjiang; Wang, Bin; Ge, Shufang; Yan, Lailai; Liu, Yingying; Li, Zhiwen; Ren, Aiguo
2016-12-01
Polycyclic aromatic hydrocarbons (PAHs), nicotine, cotinine, and metals in human hair have been used as important environmental exposure markers. We aimed to develop a simple method to simultaneously analyze these pollutants using a small quantity of hair. The digestion performances of tetramethylammonium hydroxide (TMAH) and sodium hydroxide (NaOH) for human hair were compared. Various solvents or their mixtures including n-hexane (HEX), dichloromethane (DCM) and trichloromethane (TCM), HEX:DCM32 (3/2) and HEX:TCM73 (7/3) were adopted to extract organics. The recoveries of metals were determined under an optimal operation of digestion and extraction. Our results showed that TMAH performed well in dissolving human hair and even better than NaOH. Overall, the recoveries for five solutions were acceptable for PAHs, nicotine in the range of 80%-110%. Except for HEX, other four extraction solutions had acceptable extraction efficiency for cotinine from HEX:TCM73 (88 ± 4.1%) to HEX:DCM32 (100 ± 2.8%). HEX:DCM32 was chosen as the optimal solvent in consideration of its extraction efficiency and lower density than water. The recoveries of 12 typical major or trace metals were mainly in the range of 90%-110% and some of them were close to 100%. In conclusion, the simultaneous analysis of PAHs, nicotine, cotinine, and metals was feasible. Our study provided a simple and low-cost technique for environmental epidemiological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mount, G.H.; Harder, J.W.
The determination of the concentration of the hydroxyl radical in the troposphere is of fundamental importance to an understanding of the chemistry of the lower atmosphere. Described here are experiments located at Fritz Peak Observatory, Colorado, that measure of OH concentration to a sensitivity limit of about 5 X 10{sup 5} cm{sup {minus}3} (0.025 pptv) with absolute error approximately {+-}30% and, simultaneously, measure the concentrations of H{sub 2}O, SO{sub 2}, CH{sub 2}O, NO{sub 2}, NO{sub 3}, HONO, O{sub 3}, and other trace gases in the troposphere that affect OH concentration to provide a test of photochemical theories of OH formationmore » and destruction. An informal OH intercomparison campaign that occurred at Fritz Peak in 1991 and the 1993 Tropospheric OH Photochemistry Experiment are discussed. 33 refs., 14 figs., 2 tabs.« less
Results from the July 1981 Workshop on Passive Remote Sensing of the Troposphere
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr.; Reichle, H. G., Jr.
1982-01-01
Potential roles of passive remote sensors in the study of the chemistry and related dynamics of the lower atmosphere were defined by a Tropospheric Passive Remote Sensing Workshop, and technology advances required to implement these roles were identified. A promising role is in making global-scale, multilayer measurements of the more abundant trace tropospheric gaseous species (e.g., O3, CO, CH4, HNO3) and of aerosol thickness and size distribution. It includes both nadirand limb-viewing measurements. Technology advances focus on both scanning- and fixed-spectra, nadir-viewing techniques with resolutions of 0.1 kaysers or better. Balloon- and Shuttle-borne experiments should be performed to study the effects of instrument noise and background fluctuations on data inversion and to determine the utility of simultaneously obtained nadir- and limb-viewing data.
Trace Norm Regularized CANDECOMP/PARAFAC Decomposition With Missing Data.
Liu, Yuanyuan; Shang, Fanhua; Jiao, Licheng; Cheng, James; Cheng, Hong
2015-11-01
In recent years, low-rank tensor completion (LRTC) problems have received a significant amount of attention in computer vision, data mining, and signal processing. The existing trace norm minimization algorithms for iteratively solving LRTC problems involve multiple singular value decompositions of very large matrices at each iteration. Therefore, they suffer from high computational cost. In this paper, we propose a novel trace norm regularized CANDECOMP/PARAFAC decomposition (TNCP) method for simultaneous tensor decomposition and completion. We first formulate a factor matrix rank minimization model by deducing the relation between the rank of each factor matrix and the mode- n rank of a tensor. Then, we introduce a tractable relaxation of our rank function, and then achieve a convex combination problem of much smaller-scale matrix trace norm minimization. Finally, we develop an efficient algorithm based on alternating direction method of multipliers to solve our problem. The promising experimental results on synthetic and real-world data validate the effectiveness of our TNCP method. Moreover, TNCP is significantly faster than the state-of-the-art methods and scales to larger problems.
Simulation of a main steam line break with steam generator tube rupture using trace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallardo, S.; Querol, A.; Verdu, G.
A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation ofmore » the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)« less
LaBar, Julie A; Nairn, Robert W
2018-05-01
A passive treatment system (PTS), including two parallel vertical flow bioreactors (VFBR), was constructed in 2008 for the treatment of unabated net-alkaline ferruginous mine drainage in the Tar Creek Superfund Site in northeastern Oklahoma. Water quality data collected since the PTS began operation indicate significant removal of trace metals in the VFBR. Results of a sequential extraction procedure (SEP) performed on substrate samples showed that the majority of Cd, Co, Fe, Ni, Pb, and Zn were retained in the refractory organic/sulfide fraction. Subsequent acid volatile sulfide/simultaneously extracted metals (AVS/SEM) analyses confirmed the retention of Cd, Fe, Pb, and Zn as sulfides, but Co and Ni results were less certain. The majority of trace metals were retained as insoluble products in the VFBR, while up to 20% of most of the trace metals were retained in soluble, bioavailable fractions. Nearly 70% of Mn was retained in the soluble and bioavailable exchangeable, carbonate, and labile organic fractions. Copyright © 2018 Elsevier Ltd. All rights reserved.
A simplified form of cardiotocography for antenatal fetal assessment.
Mahomed, K; Gupta, B K; Matikiti, L; Murape, T S
1992-12-01
Antenatal cardiotocography has become the primary method of evaluation of fetal wellbeing, and the relationship between the presence of fetal heart rate accelerations in response to fetal movement and subsequent good fetal outcome has been demonstrated. However, in areas where electronic monitors are few or not available it would be useful if such accelerations could be demonstrated using the Pinard stethoscope. A prospective study involving 200 women with a singleton pregnancy of more than 34 weeks gestation was performed at Harare Maternity Hospital, Harare, Zimbabwe, when a 6 min electronic trace using an external transducer was compared with simultaneously performed 6 min manual record using the Pinard stethoscope. The findings showed that the manual record has a sensitivity of 75% and although traces with excessive base line variability would show an acceleration on the manual record, in no case with a flat trace was an acceleration noted on the manual record. This acceptable degree of sensitivity would allow for a significant decrease in the number of women being referred for electronic tracing and would be a more appropriate use of limited resources in terms of manpower and equipment.
An in situ approach to study trace element partitioning in the laser heated diamond anvil cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petitgirard, S.; Mezouar, M.; Borchert, M.
2012-01-15
Data on partitioning behavior of elements between different phases at in situ conditions are crucial for the understanding of element mobility especially for geochemical studies. Here, we present results of in situ partitioning of trace elements (Zr, Pd, and Ru) between silicate and iron melts, up to 50 GPa and 4200 K, using a modified laser heated diamond anvil cell (DAC). This new experimental set up allows simultaneous collection of x-ray fluorescence (XRF) and x-ray diffraction (XRD) data as a function of time using the high pressure beamline ID27 (ESRF, France). The technique enables the simultaneous detection of sample meltingmore » based to the appearance of diffuse scattering in the XRD pattern, characteristic of the structure factor of liquids, and measurements of elemental partitioning of the sample using XRF, before, during and after laser heating in the DAC. We were able to detect elements concentrations as low as a few ppm level (2-5 ppm) on standard solutions. In situ measurements are complimented by mapping of the chemical partitions of the trace elements after laser heating on the quenched samples to constrain the partitioning data. Our first results indicate a strong partitioning of Pd and Ru into the metallic phase, while Zr remains clearly incompatible with iron. This novel approach extends the pressure and temperature range of partitioning experiments derived from quenched samples from the large volume presses and could bring new insight to the early history of Earth.« less
Chemical kinetic studies of atmospheric reactions using tunable diode laser spectroscopy
NASA Technical Reports Server (NTRS)
Worsnop, Douglas R.; Nelson, David D.; Zahniser, Mark S.
1993-01-01
IR absorption using tunable diode laser spectroscopy provides a sensitive and quantitative detection method for laboratory kinetic studies of atmospheric trace gases. Improvements in multipass cell design, real time signal processing, and computer controlled data acquisition and analysis have extended the applicability of the technique. We have developed several optical systems using off-axis resonator mirror designs which maximize path length while minimizing both the sample volume and the interference fringes inherent in conventional 'White' cells. Computerized signal processing using rapid scan (300 kHz), sweep integration with 100 percent duty cycle allows substantial noise reduction while retaining the advantages of using direct absorption for absolute absorbance measurements and simultaneous detection of multiple species. Peak heights and areas are determined by curve fitting using nonlinear least square methods. We have applied these techniques to measurements of: (1) heterogeneous uptake chemistry of atmospheric trace gases (HCl, H2O2, and N2O5) on aqueous and sulfuric acid droplets; (2) vapor pressure measurements of nitric acid and water over prototypical stratospheric aerosol (nitric acid trihydrate) surfaces; and (3) discharge flow tube kinetic studies of the HO2 radical using isotopic labeling for product channel and mechanistic analysis. Results from each of these areas demonstrate the versatility of TDL absorption spectroscopy for atmospheric chemistry applications.
Rapid Acceleration of a Coronal Mass Ejection in the Low Corona and Implications of Propagation
NASA Technical Reports Server (NTRS)
Gallagher, Peter T.; Lawrence, Gareth R.; Dennis, Brian R.
2003-01-01
A high-velocity Coronal Mass Ejection (CME) associated with the 2002 April 21 X1.5 flare is studied using a unique set of observations from the Transition Region and Coronal Explorer (TRACE), the Ultraviolet Coronagraph Spectrometer (UVCS), and the Large-Angle Spectrometric Coronagraph (LASCO). The event is first observed as a rapid rise in GOES X-rays, followed by simultaneous conjugate footpoint brightenings connected by an ascending loop or flux-rope feature. While expanding, the appearance of the feature remains remarkably constant as it passes through the TRACE 195 A passband and LASCO fields-of-view, allowing its height-time behavior to be accurately determined. An analytic function, having exponential and linear components, is found to represent the height-time evolution of the CME in the range 1.05-26 R. The CME acceleration rises exponentially to approx. 900 km/sq s within approximately 20-min, peaking at approx.1400 m/sq s when the leading edge is at approx. 1.7 R. The acceleration subsequently falls off as a slowly varying exponential for approx.,90-min. At distances beyond approx. 3.4 R, the height-time profile is approximately linear with a constant velocity of approx. 2400 km/s. These results are briefly discussed in light of recent kinematic models of CMEs.
Vezzosi, T; Buralli, C; Marchesotti, F; Porporato, F; Tognetti, R; Zini, E; Domenech, O
2016-10-01
The diagnostic accuracy of a smartphone electrocardiograph (ECG) in evaluating heart rhythm and ECG measurements was evaluated in 166 dogs. A standard 6-lead ECG was acquired for 1 min in each dog. A smartphone ECG tracing was simultaneously recorded using a single-lead bipolar ECG recorder. All ECGs were reviewed by one blinded operator, who judged if tracings were acceptable for interpretation and assigned an electrocardiographic diagnosis. Agreement between smartphone and standard ECG in the interpretation of tracings was evaluated. Sensitivity and specificity for the detection of arrhythmia were calculated for the smartphone ECG. Smartphone ECG tracings were interpretable in 162/166 (97.6%) tracings. A perfect agreement between the smartphone and standard ECG was found in detecting bradycardia, tachycardia, ectopic beats and atrioventricular blocks. A very good agreement was found in detecting sinus rhythm versus non-sinus rhythm (100% sensitivity and 97.9% specificity). The smartphone ECG provided tracings that were adequate for analysis in most dogs, with an accurate assessment of heart rate, rhythm and common arrhythmias. The smartphone ECG represents an additional tool in the diagnosis of arrhythmias in dogs, but is not a substitute for a 6-lead ECG. Arrhythmias identified by the smartphone ECG should be followed up with a standard ECG before making clinical decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Talebpour, Zahra; Rostami, Simindokht; Rezadoost, Hassan
2015-05-01
A simple, sensitive, and reliable procedure based on stir bar sorptive extraction coupled with high-performance liquid chromatography was applied to simultaneously extract and determine three semipolar nitrosamines including N-nitrosodibutylamine, N-nitrosodiphenylamine, and N-nitrosodicyclohexylamine. To achieve the optimum conditions, the effective parameters on the extraction efficiency including desorption solvent and time, ionic strength of sample, extraction time, and sample volume were systematically investigated. The optimized extraction procedure was carried out by stir bars coated with polydimethylsiloxane. Under optimum extraction conditions, the performance of the proposed method was studied. The linear dynamic range was obtained in the range of 0.95-1000 ng/mL (r = 0.9995), 0.26-1000 ng/mL (r = 0.9988) and both 0.32-100 ng/mL (r = 0.9999) and 100-1000 ng/mL (r = 0.9998) with limits of detection of 0.28, 0.08, and 0.09 ng/mL for N-nitrosodibutylamine, N-nitrosodiphenylamine, and N-nitrosodicyclohexylamine, respectively. The average recoveries were obtained >81%, and the reproducibility of the proposed method presented as intra- and interday precision were also found with a relative standard deviation <6%. Finally, the proposed method was successfully applied to the determination of trace amounts of selected nitrosamines in various water and wastewater samples and the obtained results were confirmed using mass spectrometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yuan, Su-Fen; Liu, Ze-Hua; Lian, Hai-Xian; Yang, Chuangtao; Lin, Qing; Yin, Hua; Dang, Zhi
2016-10-01
A simple online headspace solid-phase microextraction (HS-SPME) coupled with the gas chromatography-mass spectrometry (GC-MS) method was developed for simultaneous determination of trace amounts of nine estrogenic odorant alkylphenols and chlorophenols and their derivatives in water samples. The extraction conditions of HS-SPME were optimized including fiber selection, extraction temperature, extraction time, and salt concentration. Results showed that divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was the most appropriate one among the three selected commercial fibers, and the optimal extraction temperature, time, and salt concentration were 70 °C, 30 min, and 0.25 g/mL, respectively. The developed method was validated and showed good linearity (R (2) > 0.989), low limit of detection (LOD, 0.002-0.5 μg/L), and excellent recoveries (76-126 %) with low relative standard deviation (RSD, 0.7-12.9 %). The developed method was finally applied to two surface water samples and some of these target compounds were detected. All these detected compounds were below their odor thresholds, except for 2,4,6-TCAS and 2,4,6-TBAS wherein their concentrations were near their odor thresholds. However, in the two surface water samples, these detected compounds contributed to a certain amount of estrogenicity, which seemed to suggest that more attention should be paid to the issue of estrogenicity rather than to the odor problem.
Maliken, Bryan D; Kanisicak, Onur; Karch, Jason; Khalil, Hadi; Fu, Xing; Boyer, Justin G; Prasad, Vikram; Zheng, Yi; Molkentin, Jeffery D
2018-04-17
Background -While c-Kit + adult progenitor cells were initially reported to produce new cardiomyocytes in the heart, recent genetic evidence suggests that such events are exceedingly rare. However, to determine if these rare events represent true de novo cardiomyocyte formation we deleted the necessary cardiogenic transcription factors Gata4 and Gata6 from c-Kit-expressing cardiac progenitor cells (CPCs). Methods - Kit allele-dependent lineage tracing and fusion analysis was performed in mice following simultaneous Gata4 and Gata6 cell-type specific deletion to examine rates of putative de novo cardiomyocyte formation from c-Kit + cells. Bone marrow transplantation experiments were used to define the contribution of Kit allele-derived hematopoietic cells versus Kit lineage-dependent cells endogenous to the heart in contributing to apparent de novo lineage-traced cardiomyocytes. A Tie2 CreERT2 transgene was also used to examine the global impact of Gata4 deletion on the mature cardiac endothelial cell network, which was further evaluated with select angiogenesis assays. Results -Deletion of Gata4 in Kit lineage-derived endothelial cells or in total endothelial cells using the Tie2 CreERT2 transgene, but not from bone morrow cells, resulted in profound endothelial cell expansion, defective endothelial cell differentiation, leukocyte infiltration into the heart and a dramatic increase in Kit allele-dependent lineage-traced cardiomyocytes. However, this increase in labeled cardiomyocytes was an artefact of greater leukocyte-cardiomyocyte cellular fusion due to defective endothelial cell differentiation in the absence of Gata4 Conclusions -Past identification of presumed de novo cardiomyocyte formation in the heart from c-Kit + cells using Kit allele lineage tracing appears to be an artefact of labeled leukocyte fusion with cardiomyocytes. Deletion of Gata4 from c-Kit + endothelial progenitor cells or adult endothelial cells negatively impacted angiogenesis and capillary network integrity.
Parallel Symmetric Eigenvalue Problem Solvers
2015-05-01
get research, tutoring, and mentoring experience as an undergraduate. Last but not least, I thank my family for their love and support. v TABLE OF...32 4.6.2 Choice of the Ritz shifts . . . . . . . . . . . . . . . . . . . . 37 4.7 Relationship between...pencil. I will conclude with a discussion of the relationship between Trace- Min and simultaneous iteration. If both methods solve the linear systems
Ned Nikolova; Karl F. Zeller
2003-01-01
A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology....
Frick, Daniel A; Schuessler, Jan A; von Blanckenburg, Friedhelm
2016-09-28
Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ(30)Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ(30)Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g(-1)-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous stable isotope measurement and chemical composition analysis LASS-ICP-MS in combination with MC-ICP-MS is the method of choice. Copyright © 2016 Elsevier B.V. All rights reserved.
Pomeranz, Lisa E.; Ekstrand, Mats I.; Latcha, Kaamashri N.; Smith, Gregory A.; Enquist, Lynn W.
2017-01-01
The mesolimbic dopamine pathway receives inputs from numerous regions of the brain as part of a neural system that detects rewarding stimuli and coordinates a behavioral response. The capacity to simultaneously map and molecularly define the components of this complex multisynaptic circuit would thus advance our understanding of the determinants of motivated behavior. To accomplish this, we have constructed pseudorabies virus (PRV) strains in which viral propagation and fluorophore expression are activated only after exposure to Cre recombinase. Once activated in Cre-expressing neurons, the virus serially labels chains of presynaptic neurons. Dual injection of GFP and mCherry tracing viruses simultaneously illuminates nigrostriatal and mesolimbic circuitry and shows no overlap, demonstrating that PRV transmission is confined to synaptically connected neurons. To molecularly profile mesolimbic dopamine neurons and their presynaptic inputs, we injected Cre-conditional GFP virus into the NAc of (anti-GFP) nanobody-L10 transgenic mice and immunoprecipitated translating ribosomes from neurons infected after retrograde tracing. Analysis of purified RNA revealed an enrichment of transcripts expressed in neurons of the dorsal raphe nuclei and lateral hypothalamus that project to the mesolimbic dopamine circuit. These studies identify important inputs to the mesolimbic dopamine pathway and further show that PRV circuit-directed translating ribosome affinity purification can be broadly applied to identify molecularly defined neurons comprising complex, multisynaptic circuits. SIGNIFICANCE STATEMENT The mesolimbic dopamine circuit integrates signals from key brain regions to detect and respond to rewarding stimuli. To further define this complex multisynaptic circuit, we constructed a panel of Cre recombinase-activated pseudorabies viruses (PRVs) that enabled retrograde tracing of neural inputs that terminate on Cre-expressing neurons. Using these viruses and Retro-TRAP (translating ribosome affinity purification), a previously reported molecular profiling method, we developed a novel technique that provides anatomic as well as molecular information about the neural components of polysynaptic circuits. We refer to this new method as PRV-Circuit-TRAP (PRV circuit-directed TRAP). Using it, we have identified major projections to the mesolimbic dopamine circuit from the lateral hypothalamus and dorsal raphe nucleus and defined a discrete subset of transcripts expressed in these projecting neurons, which will allow further characterization of this important pathway. Moreover, the method we report is general and can be applied to the study of other neural circuits. PMID:28283558
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.
2016-01-01
Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to trace gases, this approach will be appropriate for measurements of aerosol extinction in ambient air, and this spectral region is important for characterizing the strong ultraviolet absorption by brown carbon aerosol.
Classroom Determination of Trace Organic Substances by Catalytic Methods.
ERIC Educational Resources Information Center
Wenck, Helmut; And Others
1988-01-01
Describes three trace determinations of organic substances utilizing a spectrophotometer. Provides procedures and absorbance wavelengths for determining acetonitrile, oxalic acid, and oxalic acid in human serum. Explores the role of acetonitrile and oxalic acid as catalysts in their respective reactions. (ML)
Plutonium oxalate precipitation for trace elemental determination in plutonium materials
Xu, Ning; Gallimore, David; Lujan, Elmer; ...
2015-05-26
In this study, an analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix.
Barron, Martin; Zhang, Siyuan
2018-01-01
Abstract Cell types in cell populations change as the condition changes: some cell types die out, new cell types may emerge and surviving cell types evolve to adapt to the new condition. Using single-cell RNA-sequencing data that measure the gene expression of cells before and after the condition change, we propose an algorithm, SparseDC, which identifies cell types, traces their changes across conditions and identifies genes which are marker genes for these changes. By solving a unified optimization problem, SparseDC completes all three tasks simultaneously. SparseDC is highly computationally efficient and demonstrates its accuracy on both simulated and real data. PMID:29140455
Carro, Antonia M; González, Paula; Lorenzo, Rosa A
2013-06-28
Pressurized liquid extraction (PLE) is an exhaustive technique used for the extraction of analytes from solid samples. Temperature, pressure, solvent type and volume, and the addition of other reagents notably influence the efficiency of the extraction. The analytical applications of this technique can be improved by coupling with appropriate derivatization reactions. The aim of this review is to discuss the recent applications of the sequential combination of PLE with derivatization and the approaches that involve simultaneous extraction and in situ derivatization. The potential of the latest developments to the trace analysis of environmental, food and biological samples is also analyzed. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hong, R.; Li, J. C.; Chakraborty Thakur, S.; Hajjar, R.; Diamond, P. H.; Tynan, G. R.
2018-05-01
This study traces the emergence of sheared axial flow from collisional drift-wave turbulence with broken symmetry in a linear plasma device—the controlled shear decorrelation experiment. As the density profile steepens, the axial Reynolds stress develops and drives a radially sheared axial flow that is parallel to the magnetic field. Results show that the nondiffusive piece of the Reynolds stress is driven by the density gradient, results from spectral asymmetry of the turbulence, and, thus, is dynamical in origin. Taken together, these findings constitute the first simultaneous demonstration of the causal link between the density gradient, turbulence, and stress with broken spectral symmetry and the mean axial flow.
Resistively-Heated Microlith-based Adsorber for Carbon Dioxide and Trace Contaminant Removal
NASA Technical Reports Server (NTRS)
Roychoudhury, S.; Walsh, D.; Perry, J.
2005-01-01
An integrated sorber-based Trace Contaminant Control System (TCCS) and Carbon Dioxide Removal Assembly (CDRA) prototype was designed, fabricated and tested. It corresponds to a 7-person load. Performance over several adsorption/regeneration cycles was examined. Vacuum regenerations at effective time/temperature conditions, and estimated power requirements were experimentally verified for the combined CO2/trace contaminant removal prototype. The current paper details the design and performance of this prototype during initial testing at CO2 and trace contaminant concentrations in the existing CDRA, downstream of the drier. Additional long-term performance characterization is planned at NASA. Potential system design options permitting associated weight, volume savings and logistic benefits, especially as relevant for long-duration space flight, are reviewed. The technology consisted of a sorption bed with sorbent- coated metal meshes, trademarked and patented as Microlith by Precision Combustion, Inc. (PCI). By contrast the current CO2 removal system on the International Space Station employs pellet beds. Preliminary bench scale performance data (without direct resistive heating) for simultaneous CO2 and trace contaminant removal was reviewed in SAE 2004-01-2442. In the prototype, the meshes were directly electrically heated for rapid response and accurate temperature control. This allowed regeneration via resistive heating with the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. A novel flow arrangement, for removing both CO2 and trace contaminants within the same bed, was demonstrated. Thus, the need for a separate trace contaminant unit was eliminated resulting in an opportunity for significant weight savings. Unlike the current disposable charcoal bed, zeolites for trace contaminant removal are amenable to periodic regeneration.
Hedfi, Amor; Boufahja, Fehmi; Ben Ali, Manel; Aïssa, Patricia; Mahmoudi, Ezzeddine; Beyrem, Hamouda
2013-06-01
The objective of this study was to test the hypotheses that (1) free-living marine nematodes respond in a differential way to diesel fuel if it is combined with three trace metals (chromium, copper, and nickel) used as smoke suppressants and that (2) the magnitude of toxicity of diesel fuel differs according to the level of trace metal mixture added. Nematodes from Sidi Salem beach (Tunisia) were subjected separately for 30 days to three doses of diesel fuel and three others of a trace metals mixture. Simultaneously, low-dose diesel was combined with three amounts of a trace metal mixture. Results from univariate and multivariate methods of data evaluation generally support our initial hypothesis that nematode assemblages exhibit various characteristic changes when exposed to different types of disturbances; the low dose of diesel fuel, discernibly non-toxic alone, became toxic when trace metals were added. For all types of treatments, biological disturbance caused severe specific changes in assemblage structure. For diesel fuel-treated microcosms, Marylynnia bellula and Chromaspirinia pontica were the best positive indicative species; their remarkable presence in given ecosystem may predict unsafe seafood. The powerful toxicity of the combination between diesel fuel and trace metals was expressed with only negative bioindicators, namely Trichotheristus mirabilis, Pomponema multipapillatum, Ditlevsenella murmanica, Desmodora longiseta, and Bathylaimus capacosus. Assemblages with high abundances of these species should be an index of healthy seafood. When nematodes were exposed to only trace metals, their response looks special with a distinction of a different list of indicative species; the high presence of seven species (T. mirabilis, P. multipapillatum, Leptonemella aphanothecae, D. murmanica, Viscosia cobbi, Gammanema conicauda, and Viscosia glabra) could indicate a good quality of seafood and that of another species (Oncholaimellus mediterraneus) appeared an index of the opposite situation.
NASA Astrophysics Data System (ADS)
Nyarko, B. J. B.; Bredwa-Mensah, Y.; Serfor-Armah, Y.; Dampare, S. B.; Akaho, E. H. K.; Osae, S.; Perbi, A.; Chatt, A.
2007-10-01
Concentrations of trace elements in ancient pottery excavated from Jenini in the Brong Ahafo region of Ghana were determined using instrumental neutron activation analysis (INAA) in conjunction with both conventional and Compton suppression counting. Jenini was a slave Camp of Samory Toure during the indigenous slavery and the Trans-Atlantic slave trade. Pottery fragments found during the excavation of the grave tombs of the slaves who died in the slave camps were analysed. In all, 26 trace elements were determined in 40 pottery fragments. These elemental concentrations were processed using multivariate statistical methods, cluster, factor and discriminant analyses in order to determine similarities and correlation between the various samples. The suitability of the two counting systems for determination of trace elements in pottery objects has been evaluated.
Farajzadeh, Mir Ali; Khorram, Parisa; Pazhohan, Azar
2016-04-01
A simple, sensitive, and efficient method has been developed for simultaneous estimation of valsartan and atorvastatin in human plasma by combination of solid-based dispersive liquid-liquid microextraction and high performance liquid chromatography-diode array detection. In the proposed method, 1,2-dibromoethane (extraction solvent) is added on a sugar cube (as a solid disperser) and it is introduced into plasma sample containing the analytes. After manual shaking and centrifugation, the resultant sedimented phase is subjected to back extraction into a small volume of sodium hydrogen carbonate solution using air-assisted liquid-liquid microextraction. Then the cloudy solution is centrifuged and the obtained aqueous phase is transferred into a microtube and analyzed by the separation system. Under the optimal conditions, extraction recoveries are obtained in the range of 81-90%. Calibration curves plotted in drug-free plasma sample are linear in the ranges of 5-5000μgL(-1) for valsartan and 10-5000μgL(-1) for atorvastatin with the coefficients of determination higher than 0.997. Limits of detection and quantification of the studied analytes in plasma sample are 0.30-2.6 and 1.0-8.2μgL(-1), respectively. Intra-day (n=6) and inter-days (n=4) precisions of the method are satisfactory with relative standard deviations less than 7.4% (at three levels of 10, 500, and 2000μgL(-1), each analyte). These data suggest that the method can be successfully applied to determine trace amounts of valsartan and atorvastatin in human plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Almeida, Carlos; Ahmad, Samir M; Nogueira, José Manuel F
2017-03-01
In the present work, bar adsorptive microextraction using miniaturized devices (7.5 × 3.0 mm) coated with suitable sorbent phases, combined with microliquid desorption (100 μL) followed by high-performance liquid chromatography with diode array detection (BAμE-μLD/HPLC-DAD), is proposed for the determination of trace level of six pharmaceuticals (furosemide, mebeverine, ketoprofen, naproxen, diclofenac and mefenamic acid) in environmental water and urine matrices. By comparing ten distinct sorbent materials (five polymeric and five activated carbons), the polymer P5 proved to be the most suitable to achieve the best selectivity and efficiency. The solvent volume minimization in the liquid desorption stage demonstrated remarkable effectiveness, being more environmentally friendly, and simultaneously increased the microextraction enrichment factor two-fold. Assays performed through BAμE(P5, 0.9 mg)-μLD(100 μL)/HPLC-DAD on 25 mL of ultrapure water samples spiked at the 4.0 μg/L level yielded average recoveries ranging from 91.4% (furosemide) to 101.0% (ketoprofen) with good precision (RSD < 10.6%), under optimized experimental conditions. The analytical performance showed convenient detection limits (25.0 - 120.0 ng/L), good linear dynamic ranges (0.1 to 24.0 μg/L), appropriate determination coefficients (r 2 > 0.9983), and excellent repeatability through intraday (RSD < 10.4%)) and interday (RSD < 10.0%) assays. By using the standard addition methodology, the application of the present analytical approach on environmental waters and urine samples revealed the occurrence of trace levels of some pharmaceuticals. The solvent minimization during the back-extraction step associated with the miniaturization of BAμE devices proved to be a very promising analytical technology for static microextraction analysis. Graphical abstract BAμE operating under the floating sampling technology for the determination of pharmaceuticals in aqueous media.
Muniraj, Sarangapani; Yan, Cheing-Tong; Shih, Hou-Kung; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon
2012-11-19
A new simultaneous derivatization and extraction method for the preconcentration of ammonia using new one-step headspace dynamic in-syringe liquid-phase microextraction with in situ derivatization was developed for the trace determination of ammonium in aqueous samples by liquid chromatography with fluorescence detection (LC-FLD). The acceptor phase (as derivatization reagent) containing o-phthaldehyde and sodium sulfite was held within a syringe barrel and immersed in the headspace of sample container. The gaseous ammonia from the alkalized aqueous sample formed a stable isoindole derivative with the acceptor phase inside the syringe barrel through the reciprocated movements of plunger. After derivatization-cum-extraction, the acceptor phase was directly injected into LC-FLD for analysis. Parameters affecting the ammonia evolution and the extraction/derivatization efficiency such as sample matrix, pH, temperature, sampling time, and the composition of derivatization reagent, reaction temperature, and frequency of reciprocated plunger, were studied thoroughly. Results indicated that the maximum extraction efficiency was obtained by using 100μL derivatization reagent in a 1-mL gastight syringe under 8 reciprocated movements of plunger per min to extract ammonia evolved from a 20mL alkalized aqueous solution at 70°C (preheated 4min) with 380rpm stirring for 8min. The detection was linear in the concentration range of 0.625-10μM with the correlation coefficient of 0.9967 and detection limit of 0.33μM (5.6ng mL(-1)) based on SN(-1)=3. The method was applied successfully to determine ammonium in real water samples without any prior cleanup of the samples, and has been proved to be a simple, sensitive, efficient and cost-effective procedure for trace ammonium determination in aqueous samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Pirsa, Sajad
2017-04-01
A portable chromatography device and a method were developed to analyze a gas mixture. The device comprises a chromatographic column for separating components of a sample of the gas mixture. It has an air pump coupled to the inlet of a chromatographic column for pumping air and an injector coupled to the inlet of chromatographic column for feeding the sample using the air as a carrier gas. A detector is arranged downstream from and coupled to the outlet of the chromatographic column. The detector is a nanostructure semiconductive microfiber. The device further comprises an evaluation unit arranged and configured to evaluate each detected component to determine the concentration. The designed portable system was used for simultaneous detection of amines. The possibility of applying dispersive liquid-liquid microextraction for the determination of analytes in trace levels is demonstrated. The reproducibility of this method is acceptable, and good standard deviations were obtained. The relative standard deviation value is less than 6% for all analytes. Finally, the method was successfully applied to the extraction and determination of analytes in water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Castillo, Cristina; Tolchinsky, Liliana
2018-01-01
Building a text is a multidimensional endeavor. Writers must work simultaneously on the content of the text, its discursive organization, the structure of the sentences, and the individual words themselves. Knowledge of vocabulary is central to this endeavor. This study intends (1) to trace the development of writer's vocabulary depth, their…
ERIC Educational Resources Information Center
Baek, Hamin
2013-01-01
In the past decade, there has been a growing interest in scientific practices as a reform focus in K-12 science education of the United States. In this context, scientific practices refer to practices that have family resemblance to scientists' professional practices and simultaneously are pedagogically accessible and useful to students. In…
Examining the Development of Students' Covariational Reasoning in the Context of Graphing
ERIC Educational Resources Information Center
Frank, Kristin Marianna
2017-01-01
Researchers have documented the importance of seeing a graph as an emergent trace of how two quantities' values vary simultaneously in order to reason about the graph in terms of quantitative relationships. If a student does not see a graph as a representation of how quantities change together then the student is limited to reasoning about…
NASA Astrophysics Data System (ADS)
Forster, Martin; Hester, Ronald E.
1982-01-01
Reduced methylviologen (MV +) is detected by conventional resonance Raman spectroscopy in photoreactions of Ru(bpy) 2+3 or proflavine (PFH +) with MV 2+ Using apparatus for modulated excitation resonance Raman (MERR) spectroscopy, the irreversible MV + production with PFH + as sensitizer is traced back to triplet-triplet annihilation with simultaneous destruction of PFH +.
Trace material detection of surfaces via single-beam femtosecond MCARS
NASA Astrophysics Data System (ADS)
Bowman Pilkington, Sherrie S.; Roberson, Stephen D.; Pellegrino, Paul M.
2016-05-01
There is a significant need for the development of optical diagnostics for rapid and accurate detection of chemical species in convoluted systems. In particular, chemical warfare agents and explosive materials are of interest, however, identification of these species is difficult for a wide variety of reasons. Low vapor pressures, for example, cause traditional Raman scattering to be ineffective due to the incredibly long signal collection times that are required. Multiplex Coherent Anti-Stokes Raman Scattering (MCARS) spectroscopy generates a complete Raman spectrum from the material of interest using a combination of a broadband pulse which drives multiple molecular vibrations simultaneously and a narrow band probe pulse. For most species, the complete Raman spectrum can be detected in milliseconds; this makes MCARS an excellent technique for trace material detection in complex systems. In this paper, we present experimental MCARS results on solid state chemical species in complex systems. The 40fs Ti:Sapphire laser used in this study has sufficient output power to produce both the broadband continuum pulse and narrow band probe pulse simultaneously. A series of explosive materials of interest have been identified and compared with spontaneous Raman spectra, showing the specificity and stability of this system.
NASA Astrophysics Data System (ADS)
Hueneke, Tilman; Grossmann, Katja; Knecht, Matthias; Raecke, Rasmus; Stutz, Jochen; Werner, Bodo; Pfeilsticker, Klaus
2016-04-01
Changing atmospheric conditions during DOAS measurements from fast moving aircraft platforms pose a challenge for trace gas retrievals. Traditional inversion techniques to retrieve trace gas concentrations from limb scattered UV/vis spectroscopy, like optimal estimation, require a-priori information on Mie extinction (e.g., aerosol concentration and cloud cover) and albedo, which determine the atmospheric radiative transfer. In contrast to satellite applications, cloud filters can not be applied because they would strongly reduce the usable amount of expensively gathered measurement data. In contrast to ground-based MAX-DOAS applications, an aerosol retrieval based on O4 is not able to constrain the radiative transfer in air-borne applications due to the rapidly decreasing amount of O4 with altitude. Furthermore, the assumption of a constant cloud cover is not valid for fast moving aircrafts, thus requiring 2D or even 3D treatment of the radiative transfer. Therefore, traditional techniques are not applicable for most of the data gathered by fast moving aircraft platforms. In order to circumvent these limitations, we have been developing the so-called X-gas scaling method. By utilising a proxy gas X (e.g. O3, O4, …), whose concentration is either a priori known or simultaneously in-situ measured as well as remotely measured, an effective absorption length for the target gas is inferred. In this presentation, we discuss the strengths and weaknesses of the novel approach along with some sample cases. A particular strength of the X-gas scaling method is its insensitivity towards the aerosol abundance and cloud cover as well as wavelength dependent effects, whereas its sensitivity towards the profiles of both gases requires a priori information on their shapes.
Chen, YiQuan; Chen, JinFa; Xi, Zhiming; Yang, Guidi; Wu, Zujian; Li, JianRong; Fu, FengFu
2015-05-01
We herein reported a method for the simultaneous detection of trace Cr(VI), Cr(III), and chromium(III) picolinate (CrPic) in foods using CE-ICP-MS together with ultrasonic-assisted extraction. The Cr(III) (Cr(3+) ) was chelated with trans-1,2-diaminocyclohexane-N,N,N´,N´-tetraacetic acid (DCTA) to form a single charged Cr-DCTA(-) complex. Then, Cr(VI) (CrO4 (2-) ), Cr-DCTA(-) , and CrPic were separated by CE within 8 min under a separation voltage of -13 KV followed by their monitoring with ICP mass spectrometer (ICP-MS). The proposed method is simple, effective, and sensitive. It has an instrument detection limit of 0.10, 0.18, and 0.20 ngCr/mL for Cr(VI), Cr(III), and CrPic, respectively. With the help of the methods, we have successfully determined Cr(VI), Cr(III), and CrPic in nutritional supplement (CrPic yeast tablet) with an RSD (n = 5) <6% and a recovery of 93-103%. The experimental results showed that CrPic was the main speciation of chromium in the nutritional supplement, with a concentration of 1514.6 μg Cr/g. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Planque, M; Arnould, T; Dieu, M; Delahaut, P; Renard, P; Gillard, N
2016-09-16
Sensitive detection of food allergens is affected by food processing and foodstuff complexity. It is therefore a challenge to detect cross-contamination in food production that could endanger an allergic customer's life. Here we used ultra-high performance liquid chromatography coupled to tandem mass spectrometry for simultaneous detection of traces of milk (casein, whey protein), egg (yolk, white), soybean, and peanut allergens in different complex and/or heat-processed foodstuffs. The method is based on a single protocol (extraction, trypsin digestion, and purification) applicable to the different tested foodstuffs: chocolate, ice cream, tomato sauce, and processed cookies. The determined limits of quantitation, expressed in total milk, egg, peanut, or soy proteins (and not soluble proteins) per kilogram of food, are: 0.5mg/kg for milk (detection of caseins), 5mg/kg for milk (detection of whey), 2.5mg/kg for peanut, 5mg/kg for soy, 3.4mg/kg for egg (detection of egg white), and 30.8mg/kg for egg (detection of egg yolk). The main advantage is the ability of the method to detect four major food allergens simultaneously in processed and complex matrices with very high sensitivity and specificity. Copyright © 2016 Elsevier B.V. All rights reserved.
PIXE analysis of ancient Chinese Qing dynasty porcelain
NASA Astrophysics Data System (ADS)
Cheng, Huansheng; He, Wenquan; Tang, Jiayong; Yang, Fujia; Wang, Jianhua
1996-09-01
The major and minor chemical compositions and trace element content of white glaze made in Qing dynasty at kuan kiln have been determined by PIXE. Experimental results show that trace element contents RbSrZr are useful to distinguish the place of production of ancient porcelain. In the porcelain from different kilns situated in a same province, the trace element contents can be different from each other. Determining and comparing the major and minor compositions and trace elemental concentrations in white glaze by PIXE technique, we can distinguish a precious Qing dynasty porcelain made at kuan kiln from a fake.
Zhang, Weihua; Ungar, Kurt; Stukel, Matthew; Mekarski, Pawel
2014-04-01
In this study, a digital gamma-gamma coincidence/anticoincidence spectrometer was developed and examined for low-level cosmogenic (22)Na and (7)Be in air-filter sample monitoring. The spectrometer consists of two bismuth germanate scintillators (BGO) and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The spectrometer design allows a more selective measurement of (22)Na with a significant background reduction by gamma-gamma coincidence events processing. Hence, the system provides a more sensitive way to quantify trace amounts of (22)Na than normal high resolution gamma spectrometry providing a critical limit of 3 mBq within a 20 h count. The use of a list-mode data acquisition technique enabled simultaneous determination of (22)Na and (7)Be activity concentrations using a single measurement by coincidence and anticoincidence mode respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ghaedi, Mehrorang; Ahmadi, Farshid; Shokrollahi, Ardeshir
2007-04-02
A sensitive and simple method for the simultaneous preconcentration of nutritionally important minerals in real samples has been reported. The method is based on the formation of metal complexes by 4,6-dihydroxy-2-mercaptopyrimidine (DHMP) loaded on activated carbon. The metals content on the complexes are then eluted using 5 mL 2M HNO(3) in acetone, which are detected by AAS at resonance line. In this procedure, minerals such as Cu, Ni, Pb and Co could be analyzed in one run by caring out the simultaneous separation and quantification of them. At optimum condition the response are linear over concentration range of 0.04-1.1 microg mL(-1) for Ni(2+) and 0.04-1.0 microg mL(-1) for Cu(2+), Pb(2+) and Co(2+). The detection limits of each element are expressed as the amount of analytes in ng mL(-1) giving a signal to noise ratio of 3 are equal to 3.5, 3.4, 2.9 and 8.4 for Ni(2+), Co(2+), Cu(2+) and Pb(2+). The sorption capacity was determined by saturating 0.5 g solid phase. The loading capacity are 0.54, 0.53, 0.63 and 0.45 mg g(-1) for Ni(2+), Co(2+), Cu(2+) and Pb(2+). The ability of method for repeatable recovery of trace ion are 99.0, 98.9, 99.2 and 98.8 with R.S.D. of 1.4, 1.3, 1.2 and 1.4 for Ni(2+), Co(2+), Cu(2+) and Pb(2+). The low detection limits of these elements in this technique make it a superior alternative to UV-vis and in several applications, also an alternative to ICP-MS techniques. The method has been successfully applied for these metals content evaluation in some real samples including natural water, leaves of spinach and cow liver.
Galbeiro, Rafaela; Garcia, Samara; Gaubeur, Ivanise
2014-04-01
Cloud point extraction (CPE) was used to simultaneously preconcentrate trace-level cadmium, nickel and zinc for determination by flame atomic absorption spectrometry (FAAS). 1-(2-Pyridilazo)-2-naphthol (PAN) was used as a complexing agent, and the metal complexes were extracted from the aqueous phase by the surfactant Triton X-114 ((1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol). Under optimized complexation and extraction conditions, the limits of detection were 0.37μgL(-1) (Cd), 2.6μgL(-1) (Ni) and 2.3μgL(-1) (Zn). This extraction was quantitative with a preconcentration factor of 30 and enrichment factor estimated to be 42, 40 and 43, respectively. The method was applied to different complex samples, and the accuracy was evaluated by analyzing a water standard reference material (NIST SRM 1643e), yielding results in agreement with the certified values. Copyright © 2013 Elsevier GmbH. All rights reserved.
Anodic stripping voltammetry with carbon paste electrodes for rapid Ag(I) and Cu(II) determinations.
Labar, C; Lamberts, L
1997-05-01
The simultaneous determination of silver(I) and copper(II) is realized for the routine analysis of trace levels of these elements by anodic stripping voltammetry (ASV) at the carbon paste electrode (CPE). The electrochemical response is studied in 14 different supporting electrolytes, ranging from acidic solutions (pH 0.1) to neutral and basic (pH 9.7) media, and the parameters governing electrodeposition and stripping steps are characterized for each medium by the use of pseudo-voltammograms. Comparison between different modes of matter transport mechanisms is also given. The dynamic range of the method is 0.05 to 150 mug 1(-1) Ag(I) in the majority of the media studied and can be extended to 400 mug l(-1) in selected media, with a general reproducibility in the +/- 2% range for five replicate measurements. The total analysis time lies between approximately 30 s and 10 min. Activation of the CPE surface has been studied, but this pretreatment is demonstrated to be unfavourable and is replaced by a simpler unique 'cleaning' procedure of dipping the CPE in diluted nitric acid.
Grodowska, Katarzyna; Parczewski, Andrzej
2013-01-01
The purpose of the present work was to find optimum conditions of headspace gas chromatography (HS-GC) determination of residual solvents which usually appear in pharmaceutical products. Two groups of solvents were taken into account in the present examination. Group I consisted of isopropanol, n-propanol, isobutanol, n-butanol and 1,4-dioxane and group II included cyclohexane, n-hexane and n-heptane. The members of the groups were selected in previous investigations in which experimental design and chemometric methods were applied. Four factors were taken into consideration in optimization which describe HS conditions: sample volume, equilibration time, equilibrium temperature and NaCl concentration in a sample. The relative GC peak area served as an optimization criterion which was considered separately for each analyte. Sequential variable size simplex optimization strategy was used and the progress of optimization was traced and visualized in various ways simultaneously. The optimum HS conditions appeared different for the groups of solvents tested, which proves that influence of experimental conditions (factors) depends on analyte properties. The optimization resulted in significant signal increase (from seven to fifteen times).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesseyre, Y.
The study allowed development of an original measuring system for mobility, involving simultaneously a repulsive electrical field and a continuous gas flow. It made it possible to define a model to calculate ionic transparency of grates, taking into account electrical fields below and above them, ion mobility, speed of gas flow and geometric transparency. Calculation of the electrical field proceeded in a plane-plane system, taking into account the space load and diffusion; a graphic method was developed to determine the field, thus avoiding numerical integration of the diffusion equation. The tracings of the mobility spectra obtained in different gases mademore » it possible to determine characteristic discrete mobility values comparable to those observed by other more sophisticated systems for measuring mobilities, such as the flight time systems. Detection of pollutants in weak concentration in dry air was shown. However, the presence of water vapor in the air forms agglomerates around the ions formed, reducing resolution of the system and making it less applicable under normal atmospheric conditions.« less
Pharmaceutical Point of View on Parenteral Nutrition
Stawny, M.; Olijarczyk, R.; Jaroszkiewicz, E.; Jelińska, A.
2013-01-01
Parenteral nutrition—a form of administering nutrients, electrolytes, trace elements, vitamins, and water—is a widely used mode of therapy applied in many diseases, in patients of different ages both at home and in hospital. The success of nutritional therapy depends chiefly on proper determination of the patient's energetic and electrolytic needs as well as preparation and administration of a safe nutritional mixture. As a parenterally administered drug, it is expected to be microbiologically and physicochemically stable, with all of the components compatible with each other. It is very difficult to obtain a stable nutritional mixture due to the fact that it is a complex, two-phase drug. Also, the risk of incompatibility between mixture components and packaging should be taken into consideration and possibly eliminated. Since parenteral nutrition is a part of therapy, simultaneous use of drugs may cause pharmacokinetic and pharmacodynamic interactions as well as those with the pharmaceutical phase. The aim of this paper is to discuss such aspects of parenteral nutrition as mixture stability, methodology, and methods for determining the stability of nutritional mixtures and drugs added to them. PMID:24453847
NASA Astrophysics Data System (ADS)
Yan, Zhengquan; Zhao, Qi; Wen, Meijun; Hu, Lei; Zhang, Xuezhong; You, Jinmao
2017-11-01
A novel polydentate ligand chromophore, 3,6-di-(N-ethyl-N-ethoxyl phenylazo) acridine (EEPA), was identified and synthesized. After its structure was characterized by FTIR, 1H NMR, mass spectra and element analyses, it was noted to find that there was a simultaneously colorimetric response to Ag+ and Fe3 + accompanying with different color changes, i.e., from brown to light purple for Ag+ and further to purple-red for Fe3 +, respectively. Their different action mechanisms, a 1:2 complex mode for EEPA-Ag+ and 1:1 for EEPA-Fe3 +, were investigated and confirmed by means of Job's plot and theoretical calculation. EEPA would be a potential colorimetric chemo-dosimeter for simultaneous detection of Ag+ and Fe3 + with the detection limits of 1.6 nmol·L- 1 and 69 nmol·L- 1, respectively.
Eswaran, Hari; Wilson, James D; Murphy, Pam; Siegel, Eric R; Lowery, Curtis L
2016-03-01
The goal was to test a newly developed pneumatic tocodynamometer (pTOCO) that is disposable and lightweight, and evaluate its equivalence to the standard strain gauge-based tocodynamometer (TOCO). The equivalence between the devices was determined by both mechanical testing and recording of contractile events on women. The data were recorded simultaneously from a pTOCO prototype and standard TOCO that were in place on women who were undergoing routine contraction monitoring in the Labor and Delivery unit at the University of Arkansas for Medical Sciences. In this prospective equivalence study, the output from 31 recordings on 28 pregnant women that had 171 measureable contractions simultaneously in both types of TOCO were analyzed. The traces were scored for contraction start, peak and end times, and the duration of the event was computed from these times. The response curve to loaded weights and applied pressure were similar for both devices, indicating their mechanical equivalence. The paired differences in times and duration between devices were subjected to mixed-models analysis to test the pTOCO for equivalence with standard TOCOs using the two-one-sided tests procedure. The event times and duration analyzed simultaneously from both TOCO types were all found to be significantly equivalent to within ±10 s (all p-values ≤0.0001). pTOCO is equivalent to the standard TOCO in the detection of the timing and duration of uterine contractions. pTOCO would provide a lightweight, disposable alternative to commercially available standard TOCOs. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.
Ionospheric gravity wave measurements with the USU dynasonde
NASA Technical Reports Server (NTRS)
Berkey, Frank T.; Deng, Jun Yuan
1992-01-01
A method for the measurement of ionospheric Gravity Wave (GW) using the USU Dynasonde is outlined. This method consists of a series of individual procedures, which includes functions for data acquisition, adaptive scaling, polarization discrimination, interpolation and extrapolation, digital filtering, windowing, spectrum analysis, GW detection, and graphics display. Concepts of system theory are applied to treat the ionosphere as a system. An adaptive ionogram scaling method was developed for automatically extracting ionogram echo traces from noisy raw sounding data. The method uses the well known Least Mean Square (LMS) algorithm to form a stochastic optimal estimate of the echo trace which is then used to control a moving window. The window tracks the echo trace, simultaneously eliminating the noise and interference. Experimental results show that the proposed method functions as designed. Case studies which extract GW from ionosonde measurements were carried out using the techniques described. Geophysically significant events were detected and the resultant processed results are illustrated graphically. This method was also developed for real time implementation in mind.
External cavity tunable quantum cascade lasers and their applications to trace gas monitoring.
Rao, Gottipaty N; Karpf, Andreas
2011-02-01
Since the first quantum cascade laser (QCL) was demonstrated approximately 16 years ago, we have witnessed an explosion of interesting developments in QCL technology and QCL-based trace gas sensors. QCLs operate in the mid-IR region (3-24 μm) and can directly access the rotational vibrational bands of most molecular species and, therefore, are ideally suited for trace gas detection with high specificity and sensitivity. These sensors have applications in a wide range of fields, including environmental monitoring, atmospheric chemistry, medical diagnostics, homeland security, detection of explosive compounds, and industrial process control, to name a few. Tunable external cavity (EC)-QCLs in particular offer narrow linewidths, wide ranges of tunability, and stable power outputs, which open up new possibilities for sensor development. These features allow for the simultaneous detection of multiple species and the study of large molecules, free radicals, ions, and reaction kinetics. In this article, we review the current status of EC-QCLs and sensor developments based on them and speculate on possible future developments.
Monitoring trace gases in downtown Toronto using open-path Fourier transform infrared spectroscopy
NASA Astrophysics Data System (ADS)
Byrne, B.; Strong, K.; Colebatch, O.; Fogal, P.; Mittermeier, R. L.; Wunch, D.; Jones, D. B. A.
2017-12-01
Emissions of greenhouse gases (GHGs) in urban environments can be highly heterogeneous. For example, vehicles produce point source emissions which can result in heterogeneous GHG concentrations on scales <10 m. The highly localized scale of these emissions can make it difficult to measure mean GHG concentrations on scales of 100-1000 m. Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) measurements offer spatial averaging and continuous measurements of several trace gases simultaneously in the same airmass. We have set up an open-path system in downtown Toronto to monitor trace gases in the urban boundary layer. Concentrations of CO2, CO, CH4, and N2O are derived from atmospheric absorption spectra recorded over a two-way atmospheric open path of 320 m using non-linear least squares fitting. Using a simple box model and co-located boundary layer height measurements, we estimate surface fluxes of these gases in downtown Toronto from our OP-FTIR observations.
Spacelab baseline ECS trace contaminant removal test program
NASA Technical Reports Server (NTRS)
Ray, C. D.; Stanley, J. B.
1977-01-01
An estimate of the Spacelab Baseline Environmental Control System's contaminated removal capability was required to allow determination of the need for a supplemental trace contaminant removal system. Results from a test program to determine this removal capability are presented.
Ramamurthy, N; Thillaivelavan, K
2005-01-01
In the present study the environmental effects on herbivores mammals in and around Coal-fired power plant were studied by collecting the various milk samples of Cow and Buffalo in clean polyethylene bottles. Milk samples collected at five different locations along the banks of the Paravanaru river in and around Neyveli area. These samples were prepared for trace metal determination. The concentration of trace metals (Cu, Zn, Ni, Cd, Cr, Mn, Co and Hg) were determined by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Cold Vapour Atomic Absorption Spectrometry (CVAAS). It is observed that the samples contain greater amounts of trace metals than that in the unexposed areas. Obviously the milk samples are contaminated with these metals due to fly ash released in such environment.
Asadi, Mohammad; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Abbasi, Bijan
2015-12-18
A novel, rapid, simple and green vortex-assisted surfactant-enhanced emulsification microextraction method based on solidification of floating organic drop was developed for simultaneous separation/preconcentration and determination of ultra trace amounts of naproxen and nabumetone with high performance liquid chromatography-fluorescence detection. Some parameters influencing the extraction efficiency of analytes such as type and volume of extractant, type and concentration of surfactant, sample pH, KCl concentration, sample volume, and vortex time were investigated and optimized. Under optimal conditions, the calibration graph exhibited linearity in the range of 3.0-300.0ngL(-1) for naproxen and 7.0-300.0ngL(-1) for nabumetone with a good coefficient of determination (R(2)>0.999). The limits of detection were 0.9 and 2.1ngL(-1). The relative standard deviations for inter- and intra-day assays were in the range of 5.8-10.1% and 3.8-6.1%, respectively. The method was applied to the determination of naproxen and nabumetone in urine, water, wastewater and milk samples and the accuracy was evaluated through recovery experiments. Copyright © 2015 Elsevier B.V. All rights reserved.
Distribution of trace elements in the coastal sea sediments of Maslinica Bay, Croatia
NASA Astrophysics Data System (ADS)
Mikulic, Nenad; Orescanin, Visnja; Elez, Loris; Pavicic, Ljiljana; Pezelj, Durdica; Lovrencic, Ivanka; Lulic, Stipe
2008-02-01
Spatial distributions of trace elements in the coastal sea sediments and water of Maslinica Bay (Southern Adriatic), Croatia and possible changes in marine flora and foraminifera communities due to pollution were investigated. Macro, micro and trace elements’ distributions in five granulometric fractions were determined for each sediment sample. Bulk sediment samples were also subjected to leaching tests. Elemental concentrations in sediments, sediment extracts and seawater were measured by source excited energy dispersive X-ray fluorescence (EDXRF). Concentrations of the elements Cr, Cu, Zn, and Pb in bulk sediment samples taken in the Maslinica Bay were from 2.1 to over six times enriched when compared with the background level determined for coarse grained carbonate sediments. A low degree of trace elements leaching determined for bulk sediments pointed to strong bonding of trace elements to sediment mineral phases. The analyses of marine flora pointed to higher eutrophication, which disturbs the balance between communities and natural habitats.
Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots.
Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M; Ichimura, Taro
2016-07-01
Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery.
Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots
Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M.; Ichimura, Taro
2016-01-01
Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery. PMID:27446684
Induction of simultaneous and sequential malolactic fermentation in durian wine.
Taniasuri, Fransisca; Lee, Pin-Rou; Liu, Shao-Quan
2016-08-02
This study represented for the first time the impact of malolactic fermentation (MLF) induced by Oenococcus oeni and its inoculation strategies (simultaneous vs. sequential) on the fermentation performance as well as aroma compound profile of durian wine. There was no negative impact of simultaneous inoculation of O. oeni and Saccharomyces cerevisiae on the growth and fermentation kinetics of S. cerevisiae as compared to sequential fermentation. Simultaneous MLF did not lead to an excessive increase in volatile acidity as compared to sequential MLF. The kinetic changes of organic acids (i.e. malic, lactic, succinic, acetic and α-ketoglutaric acids) varied with simultaneous and sequential MLF relative to yeast alone. MLF, regardless of inoculation mode, resulted in higher production of fermentation-derived volatiles as compared to control (alcoholic fermentation only), including esters, volatile fatty acids, and terpenes, except for higher alcohols. Most indigenous volatile sulphur compounds in durian were decreased to trace levels with little differences among the control, simultaneous and sequential MLF. Among the different wines, the wine with simultaneous MLF had higher concentrations of terpenes and acetate esters while sequential MLF had increased concentrations of medium- and long-chain ethyl esters. Relative to alcoholic fermentation only, both simultaneous and sequential MLF reduced acetaldehyde substantially with sequential MLF being more effective. These findings illustrate that MLF is an effective and novel way of modulating the volatile and aroma compound profile of durian wine. Copyright © 2016 Elsevier B.V. All rights reserved.
Trace analysis of high-purity graphite by LA-ICP-MS.
Pickhardt, C; Becker, J S
2001-07-01
Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a very efficient and sensitive technique for the direct analysis of solids. In this work the capability of LA-ICP-MS was investigated for determination of trace elements in high-purity graphite. Synthetic laboratory standards with a graphite matrix were prepared for the purpose of quantifying the analytical results. Doped trace elements, concentration 0.5 microg g(-1), in a laboratory standard were determined with an accuracy of 1% to +/- 7% and a relative standard deviation (RSD) of 2-13%. Solution-based calibration was also used for quantitative analysis of high-purity graphite. It was found that such calibration led to analytical results for trace-element determination in graphite with accuracy similar to that obtained by use of synthetic laboratory standards for quantification of analytical results. Results from quantitative determination of trace impurities in a real reactor-graphite sample, using both quantification approaches, were in good agreement. Detection limits for all elements of interest were determined in the low ng g(-1) concentration range. Improvement of detection limits by a factor of 10 was achieved for analyses of high-purity graphite with LA-ICP-MS under wet plasma conditions, because the lower background signal and increased element sensitivity.
[Measurement of the status of trace elements in cattle using liver biopsy samples].
Ouweltjes, W; de Zeeuw, A C; Moen, A; Counotte, G H M
2007-02-01
Serum, plasma, or urine samples are usually used for the measurement of the trace elements copper; zinc, iron, selenium, because these samples are easy to obtain; however; these samples are not always appropriate. For example, it is not possible to measure molybdenum, the major antagonist of copper; in blood or urine. Therefore measurement of trace elements in liver tissue is considered the gold standard. For the assessment of selenium the method of choice remains determination of glutathion peroxidase in erythrocytes and for the assessment of magnesium determination of magnesium in urine. We determined the accuracy and repeatability of measuring trace elements in liver biopsies and whole liver homogenates. The levels of trace elements measured were similar in both preparations (92% agreement). Liver biopsy in live animals is a relatively simple procedure but not common in The Netherlands. Reference levels of trace elements, classified as too low, low, adequate, high, and too high, were established on the basis of our research and information in the literature. In a second study we investigated the practical aspects of obtaining liver tissue samples and their use. Samples were collected from cattle on a commercial dairy farm. Liver biopsy provided additional information to that obtained from serum and urine samples. We prepared a biopsy protocol and a test package, which we tested on 14 farms where an imbalance of trace minerals was suspected. Biopsy samples taken from 4 to 6 animals revealed extreme levels of trace elements.
How well can regional fluxes be derived from smaller-scale estimates?
NASA Technical Reports Server (NTRS)
Moore, Kathleen E.; Fitzjarrald, David R.; Ritter, John A.
1992-01-01
Regional surface fluxes are essential lower boundary conditions for large scale numerical weather and climate models and are the elements of global budgets of important trace gases. Surface properties affecting the exchange of heat, moisture, momentum and trace gases vary with length scales from one meter to hundreds of km. A classical difficulty is that fluxes have been measured directly only at points or along lines. The process of scaling up observations limited in space and/or time to represent larger areas was done by assigning properties to surface classes and combining estimated or calculated fluxes using an area weighted average. It is not clear that a simple area weighted average is sufficient to produce the large scale from the small scale, chiefly due to the effect of internal boundary layers, nor is it known how important the uncertainty is to large scale model outcomes. Simultaneous aircraft and tower data obtained in the relatively simple terrain of the western Alaska tundra were used to determine the extent to which surface type variation can be related to fluxes of heat, moisture, and other properties. Surface type was classified as lake or land with aircraft borne infrared thermometer, and flight level heat and moisture fluxes were related to surface type. The magnitude and variety of sampling errors inherent in eddy correlation flux estimation place limits on how well any flux can be known even in simple geometries.
De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Pal, Mithun; Pradhan, Manik
2016-05-01
A high-resolution cavity ring-down spectroscopic (CRDS) system based on a continuous wave (cw) mode-hop-free (MHF) external-cavity quantum cascade laser (EC-QCL) operating at λ∼5.2 μm has been developed for ultrasensitive detection of nitric oxide (NO). We report the performance of the high-resolution EC-QCL based cw-CRDS instrument by measuring the rotationally resolved Λ-doublet e and f components of the P(7.5) line in the fundamental band of NO at 1850.169 cm-1 and 1850.179 cm-1. A noise-equivalent absorption coefficient of 1.01×10-9 cm-1 Hz-1/2 was achieved based on an empty cavity ring-down time of τ0=5.6 μs and standard deviation of 0.11% with averaging of six ring-down time determinations. The CRDS sensor demonstrates the advantages of measuring parts per billion NO concentrations in N2, as well as in human breath samples with ultrahigh sensitivity and specificity. The CRDS system could also be generalized to measure simultaneously many other trace molecular species within the broad tuning range of cw EC-QCL, as well as for studying the rotationally resolved hyperfine structures.
Gao, Li; Gao, Bo; Peng, Wenqi; Xu, Dongyu; Yin, Shuhua
2018-01-01
As the largest man-made reservoir in China, the Three Gorges Reservoir (TGR) has significant influence on national drinking water safety. The geochemical behavior of trace elements at the sediment-water interface (SWI) is still unknown. The mobilization characteristics of trace elements (As, Mo and W)-determined by diffusive gradients in thin films (DGT)-were studied to quantitatively calculate the release trends in the SWI in three typical tributaries and the mainstream of the TGR in the summer. The results showed that concentrations of DGT-labile As, Mo and W in the overlying water and sediment cores showed significant variations in the ranges of 0.05-50.90, 0.30-1.63 and 0.01-0.42μgL -1 , respectively. The apparent net diffusive fluxes were significantly positive in most sampling sites (77.8% for As, 88.8% for Mo and 66.6% for W), suggesting that the sediment was the source of these three elements. It was noteworthy that the maximum net diffusive fluxes of As and W were found in the upstream of Meixi tributary, which may be attributed to anthropogenic activities. In addition, As, Mo and W may be incorporated in Fe and Mn oxyhydroxides and these three elements simultaneously remobilized with Fe and Mn. Copyright © 2017 Elsevier Inc. All rights reserved.
Guo, Xiao-Feng; Wang, Jie-Yu; Wang, Hong; Zhang, Hua-Shan
2014-09-15
Phenylalanine is an essential amino acid and its metabolites relate to various physiological and immune functions of living organisms. To monitor the alteration of concentration of primary and secondary phenethylamines including N-methyltyramine, octopamine, tyramine, tyrosine and phenylalanine in the metabolic pathway of phenylalanine, a sensitive and selective reversed-phase high-performance liquid chromatographic method has been developed in this study. The identification and quantification of phenethylamines were performed by fluorescent detection after pre-column derivatization with 1,3,5,7-tetramethyl-8-(N-hydroxysuccinimidyl butyric ester)difluoroboradiaza-s-indacene, an excellent fluorescent probe which could react with both primary and secondary amino groups simultaneously. The derivatization was carried out at 25 °C for 25 min, and the separation was performed on a C18 column within 20 min. The linear ranges were from 2.0 to 100 nM for phenylalanine and tyramine to 5.0 to 250 for tyrosine and octopamine, with the detection limits of 0.1 nM for octopamine, tyramine, tyrosine and phenylalanine and 0.2 nM for N-methyltyramine (signal-to-noise ratio=3), which allowed for the sure determination of phenethylamines at trace levels in the real samples without complex pretreatment or enrichment during multitudinous samples analysis. The proposed method has been validated by the analysis of the five target compounds in biological samples with spiked recoveries of 96.4-104.4% and the relative standard deviation of 1.0 and 4.4%. Copyright © 2014 Elsevier B.V. All rights reserved.
Wu, Sizhuo; Yu, Weiwei; Sun, Caiyuan; Zheng, Kunming; Zhang, Haizhen; Huang, Min; Hu, Deyu; Zhang, Kankan
2018-04-01
A simple method was developed and validated for the simultaneous determination of metalaxyl, cyazofamid and the cyazofamid metabolite 4-chloro-5-p-tolylimidazole-2-carbonitrile (CCIM) by liquid chromatography with tandem mass spectrometry. The three target compounds were extracted from tobacco and soil with acetonitrile containing 0.1% acetic acid, and the extracts were purified using octadecylsilane. The proposed method showed satisfactory linearity (R 2 ≥ 0.9985) for the target compounds. The limits of detection for metalaxyl, cyazofamid and CCIM were 0.006, 0.06 and 0.06 mg/kg in soil and green tobacco leaves and 0.03, 0.3 and 0.3 mg/kg in cured tobacco leaves, respectively. The limits of quantification for metalaxyl, cyazofamid and CCIM were 0.02, 0.2 and 0.2 mg/kg in soil and green tobacco leaves and 0.1, 1 and 1 mg/kg in cured tobacco leaves, respectively. The average recoveries from soil and tobacco were 72.91-98.40% for metalaxyl, 76.73-105.80% for cyazofamid and 74.48-106.45% for CCIM. The relative standard deviation range was 1.23-6.99%. The developed method was successfully applied to analysis of residues of metalaxyl, cyazofamid and CCIM in real soil and tobacco samples. The results indicated that the established method could meet the requirement for the analysis of trace amounts of all three analytes in soil and tobacco. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wang, Xue-Wei; Gao, Wei; Fan, Huanhuan; Ding, Ding; Lai, Xiao-Fang; Zou, Yu-Xiu; Chen, Long; Chen, Zhuo; Tan, Weihong
2016-04-01
Controlling and monitoring the drug delivery process is critical to its intended therapeutic function. Many nanocarrier systems for drug delivery have been successfully developed. However, biocompatibility, stability, and simultaneously tracing drugs and nanocarriers present significant limitations. Herein, we have fabricated a multifunctional nanocomposite by coating the gold nanorod (AuNR) with a biocompatible, superstable and fluorescent carbon layer, obtaining the AuNR@carbon core-shell nanocapsule. In this system, the carbon shell, originally obtained in aqueous glucose solutions and, therefore, biocompatible in physiological environments, could be simply loaded with cell-specific aptamers and therapeutic molecules through π-π interactions, a useful tool for cancer-targeted cellular imaging and therapy. Moreover, such a stable and intrinsic fluorescence effect of the AuNR@carbon enabled simultaneous tracking of released therapeutic molecules and nanocarriers under thermo-chemotherapy. The AuNR@carbons had high surface areas and stable shells, as well as unique optical and photothermal properties, making them promising nanostructures for biomedical applications.Controlling and monitoring the drug delivery process is critical to its intended therapeutic function. Many nanocarrier systems for drug delivery have been successfully developed. However, biocompatibility, stability, and simultaneously tracing drugs and nanocarriers present significant limitations. Herein, we have fabricated a multifunctional nanocomposite by coating the gold nanorod (AuNR) with a biocompatible, superstable and fluorescent carbon layer, obtaining the AuNR@carbon core-shell nanocapsule. In this system, the carbon shell, originally obtained in aqueous glucose solutions and, therefore, biocompatible in physiological environments, could be simply loaded with cell-specific aptamers and therapeutic molecules through π-π interactions, a useful tool for cancer-targeted cellular imaging and therapy. Moreover, such a stable and intrinsic fluorescence effect of the AuNR@carbon enabled simultaneous tracking of released therapeutic molecules and nanocarriers under thermo-chemotherapy. The AuNR@carbons had high surface areas and stable shells, as well as unique optical and photothermal properties, making them promising nanostructures for biomedical applications. Electronic supplementary information (ESI) available: Experimental details and characterization data for all new compounds. See DOI: 10.1039/c6nr00369a
Kou, Xing-Ming; Xu, Min; Gu, Yong-Zuo
2007-06-01
An inductively coupled plasma mass spectrometry (ICP-MS) for determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense after microwave-assisted digestion of the sample has been developed. The accuracy of the method was evaluated by the analysis of corresponding trace heavy metal elements in standard reference materials (GBW 07604 and GBW 07605). By applying the proposed method, the contents of 8 trace heavy metal elements in cortex Phellodendron chinense cultivated in different areas (in Bazhong, Yibin and Yingjing, respectively) of Sichuan and different growth period (6, 8 and 10 years of samples from Yingjing) were determined. The relative standard deviation (RSD) is in the range of 3.2%-17.8% and the recoveries of standard addition are in the range of 70%-120%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense. The results also show that the concentrations of 4 harmful trace heavy metal elements As, Cd, Hg and Pb in cortex Phellodendron chinense are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation. Therefore, the cortex Phellodendron chinense is fit for use as medicine and export.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-23
... a track-and-trace system and for obtaining input from supply chain partners on potential attributes...-trace system and (2) input from supply chain partners on potential attributes and standards for the...
NASA Astrophysics Data System (ADS)
Franklin, J. E.; Drummond, J. R.; Griffin, D.; Pierce, J. R.; Waugh, D. L.; Palmer, P. I.; Parrington, M.; Lee, J. D.; Lewis, A. C.; Rickard, A. R.; Taylor, J. W.; Allan, J. D.; Coe, H.; Walker, K. A.; Chisholm, L.; Duck, T. J.; Hopper, J. T.; Blanchard, Y.; Gibson, M. D.; Curry, K. R.; Sakamoto, K. M.; Lesins, G.; Dan, L.; Kliever, J.; Saha, A.
2014-08-01
We present measurements of a long-range smoke transport event recorded on 20-21 July 2011 over Halifax, Nova Scotia, Canada, during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign. Ground-based Fourier transform spectrometers and photometers detected air masses associated with large wildland fires burning in eastern Manitoba and western Ontario. We investigate a plume with high trace gas amounts but low amounts of particles that preceded and overlapped at the Halifax site with a second plume with high trace gas loadings and significant amounts of particulate material. We show that the first plume experienced a meteorological scavenging event, but the second plume had not been similarly scavenged. This points to the necessity to account carefully for the plume history when considering long-range transport since simultaneous or near-simultaneous times of arrival are not necessarily indicative of either similar trajectories or meteorological history. We investigate the origin of the scavenged plume, and the possibility of an aerosol wet deposition event occurring in the plume ~ 24 h prior to the measurements over Halifax. The region of lofting and scavenging is only monitored on an intermittent basis by the present observing network, and thus we must consider many different pieces of evidence in an effort to understand the early dynamics of the plume. Through this discussion we also demonstrate the value of having many simultaneous remote-sensing measurements in order to understand the physical and chemical behaviour of biomass burning plumes.
NASA Astrophysics Data System (ADS)
Franklin, J. E.; Drummond, J. R.; Griffin, D.; Pierce, J. R.; Waugh, D. L.; Palmer, P. I.; Parrington, M.; Lee, J. D.; Lewis, A. C.; Rickard, A. R.; Taylor, J. W.; Allan, J. D.; Coe, H.; Walker, K. A.; Chisholm, L.; Duck, T. J.; Hopper, J. T.; Blanchard, Y.; Gibson, M. D.; Curry, K. R.; Sakamoto, K. M.; Lesins, G.; Dan, L.; Kliever, J.; Saha, A.
2014-02-01
We present measurements of a long range smoke transport event recorded on 20-21 July 2011 over Halifax, Nova Scotia, Canada, during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign. Ground-based Fourier transform spectrometers and photometers detected air masses associated with large wildland fires burning in eastern Manitoba and western Ontario. We investigate a plume with high trace gas amounts but low amounts of particles that preceded and overlapped at the Halifax site with a second plume with high trace gas loadings and significant amounts of particulate material. We show that the first plume experienced a meteorological scavenging event but the second plume had not been similarly scavenged. This points to the necessity to account carefully for the plume history when considering long range transport since simultaneous or near-simultaneous times of arrival are not necessarily indicative of either similar trajectories or meteorological history. We investigate the origin of the scavenged plume, and the possibility of an aerosol wet deposition event occurring in the plume ~24 h prior to the measurements over Halifax. The region of lofting and scavenging is only monitored on an intermittent basis by the present observing network, and thus we must consider many different pieces of evidence in an effort to understand the early dynamics of the plume. Through this discussion we also demonstrate the value of having many simultaneous remote-sensing measurements in order to understand the physical and chemical behaviour of biomass burning plumes.
Matsumiya, Hiroaki; Kato, Tatsuya; Hiraide, Masataka
2014-02-01
The analysis of high-purity materials for trace impurities is an important and challenging task. The present paper describes a facile and sensitive method for the determination of trace heavy metals in high-purity iron metal. Trace heavy metals in an iron sample solution were rapidly and selectively preconcentrated by the extraction into a tiny volume of an ionic liquid [1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] for the determination by graphite-furnace atomic absorption spectrometry (GFAAS). A nitrogen-donating neutral ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), was found to be effective in the ionic liquid-based selective extraction, allowing the nearly complete (~99.8%) elimination of the iron matrix. The combination with the optimized GFAAS was successful. The detectability reached sub-μg g(-1) levels in iron metal. The novel use of TPTZ in ionic liquid-based extraction followed by GFAAS was successfully applied to the determination of traces of Co, Ni, Cu, Cd, and Pb in certified reference materials for high-purity iron metal. © 2013 Published by Elsevier B.V.
Trace Element Analysis of Biological Samples.
ERIC Educational Resources Information Center
Veillon, Claude
1986-01-01
Reviews background of atomic absorption spectrometry techniques. Discusses problems encountered and precautions to be taken in determining trace elements in the parts-per-billion concentration range and below. Concentrates on determining chromium in biological samples by graphite furnace atomic absorption. Considers other elements, matrices, and…
Atmospheric trace metals measured at a regional background site (Welgegund) in South Africa
NASA Astrophysics Data System (ADS)
Venter, Andrew D.; van Zyl, Pieter G.; Beukes, Johan P.; Josipovic, Micky; Hendriks, Johan; Vakkari, Ville; Laakso, Lauri
2017-03-01
Atmospheric trace metals can cause a variety of health-related and environmental problems. Only a few studies on atmospheric trace metal concentrations have been conducted in South Africa. Therefore the aim of this study was to determine trace metal concentrations in aerosols collected at a regional background site, i.e. Welgegund, South Africa. PM1, PM1-2. 5 and PM2. 5-10 samples were collected for 13 months, and 31 atmospheric trace metal species were detected. Atmospheric iron (Fe) had the highest concentrations in all three size fractions, while calcium (Ca) was the second-most-abundant species. Chromium (Cr) and sodium (Na) concentrations were the third- and fourth-most-abundant species, respectively. The concentrations of the trace metal species in all three size ranges were similar, with the exception of Fe, which had higher concentrations in the PM1 size fraction. With the exception of titanium (Ti), aluminium (Al) and manganese (Mg), 70 % or more of the trace metal species detected were in the smaller size fractions, which indicated the influence of industrial activities. However, the large influence of wind-blown dust was reflected by 30 % or more of trace metals being present in the PM2. 5-10 size fraction. Comparison of trace metals determined at Welgegund to those in the western Bushveld Igneous Complex indicated that at both locations similar species were observed, with Fe being the most abundant. However, concentrations of these trace metal species were significantly higher in the western Bushveld Igneous Complex. Fe concentrations at the Vaal Triangle were similar to levels thereof at Welgegund, while concentrations of species associated with pyrometallurgical smelting were lower. Annual average Ni was 4 times higher, and annual average As was marginally higher than their respective European standard values, which could be attributed to regional influence of pyrometallurgical industries in the western Bushveld Igneous Complex. All three size fractions indicated elevated trace metal concentrations coinciding with the end of the dry season, which could partially be attributed to decreased wet removal and increases in wind generation of particulates. Principal component factor analysis (PCFA) revealed four meaningful factors in the PM1 size fraction, i.e. crustal, pyrometallurgical-related and Au slimes dams. No meaningful factors were determined for the PM1-2. 5 and PM2. 5-10 size fractions, which was attributed to the large influence of wind-blown dust on atmospheric trace metals determined at Welgegund. Pollution roses confirmed the influence of wind-blown dust on trace metal concentrations measured at Welgegund, while the impact of industrial activities was also substantiated.
Carrera, Guillem; Vegué, Lídia; Boleda, Mª Rosa; Ventura, Francesc
2017-03-03
1,4-dioxane is a synthetic industrial solvent used in various industrial processes, and it is a probable human carcinogen whose presence in the aquatic environment is frequently reported. Alkyl-1,3-dioxanes and alkyl-1,3-dioxolanes are compounds that have been identified as causing several odor episodes in waters over the last years, with the result of downtime of drinking water treatment plants. According to published studies, some of these episodes may be caused either by resins synthesis processes, or by industrial residues added to dehydrated sludge in wastewater treatment plants (WWTPs) in order to increase biogas production efficiency. Analytical methods based on closed loop stripping analysis (CLSA) are routinely used when taste and odor events appear, but this technique has demonstrated to be unsuitable to determine 1,4-dioxane at trace levels. In this context, drinking water companies tend to focus on determining odorous compounds, but not on those compounds that are potentially harmful. The suitability of a SPE method and further analysis by GC/MS-MS to simultaneously determine 1,4-dioxane and alkyl-1,3-dioxanes and dioxolanes has been demonstrated. Recoveries in surface waters spiked at 25ng/L ranged from 76% to 105%, whereas method quantification limits (MQLs) varied from 0.7 to 26ng/L for dioxanes, and dioxolanes and 50ng/L for 1,4-dioxane. Uncertainties were evaluated at two different concentrations, 0.02μg/L and 0.4μg/L, with values of 25% for 1,4-dioxane, and of 16-28% for alkyl-1,3-dioxanes and alkyl-1,3-dioxolanes for the later. The methodology has been successfully applied to samples from the aquifer of the Llobregat River (NE. Spain). Copyright © 2017 Elsevier B.V. All rights reserved.
Simultaneous deblending and interpolation using structure-oriented filters
NASA Astrophysics Data System (ADS)
Zhou, Yatong; Li, Song
2018-03-01
Simultaneous source shooting is a modern marine acquisition technology that accelerates field acquisition tremendously. However, we need to carefully remove the spike-like noise in the recorded seismic data, the process of which is called deblending. Considering the field obstacles, the recorded data may also contain missing traces. In this paper, we propose a very efficient way to simultaneously remove the spike-like noise to separate simultaneous sources and fill the data gaps in the recorded data. We propose to apply structure-oriented median and mean filters to reject the spike-like noise and restore the missing data. The commonly used median and mean filters guarantee the efficiency and convenience of the proposed algorithm framework. We use a robust slope estimation method to calculate the local slope of the structure patterns in the seismic data. Both synthetic and field data examples demonstrate the successful performance of the proposed algorithm. When compared with the state-of-the-art FK transform based projection onto convex sets (POCS) method, the presented method can obtain better performance with much less computational cost.
[Standard addition determination of impurities in Na2CrO4 by ICP-AES].
Wang, Li-ping; Feng, Hai-tao; Dong, Ya-ping; Peng, Jiao-yu; Li, Wu; Shi, Hai-qin; Wang, Yong
2015-02-01
Coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the trace impurities of Ca, Mg, Al, Fe and Si in industrial sodium chromate. Wavelengths of 167.079, 393.366, 259.940, 279.533 and 251.611 nm were selected as analytical lines for the determination of Al, Ca, Fe, Mg and Si, respectively. The analytical errors can be eliminated by adjusting the determined solution with high pure hydrochloric acid. Standard addition method was used to eliminate matrix effects. The linear correlation, detection limit, precision and recovery for the concerned trace impurities have been examined. The effect of standard addition method on the accuracy for the determination under the selected analytical lines has been studied in detail. The results show that the linear correlations of standard curves were very good (R2 = 0.9988 to 0.9996) under the determined conditions. Detection limits of these trace impurities were in the range of 0.0134 to 0.0280 mg x L(-1). Sample recoveries were within 97.30% to 107.50%, and relative standard deviations were lower than 5.86% for eleven repeated determinations. The detection limits and accuracies established by the experiment can meet the analytical requirements and the analytic procedure was used to determine trace impurities in sodium chromate by ion membrane electrolysis technique successfully. Due to sodium chromate can be changed into sodium dichromate and chromic acid by adding acids, the established method can be further used to monitor trace impurities in these compounds or other hexavalent chromium compounds.
Simultaneous mapping of the unsteady flow fields by Particle Displacement Velocimetry (PDV)
NASA Technical Reports Server (NTRS)
Huang, Thomas T.; Fry, David J.; Liu, Han-Lieh; Katz, Joseph; Fu, Thomas C.
1992-01-01
Current experimental and computational techniques must be improved in order to advance the prediction capability of the longitudinal vortical flows shed by underwater vehicles. The generation, development, and breakdown mechanisms of the shed vortices at high Reynolds numbers are not fully understood. The ability to measure hull separated vortices associated with vehicle maneuvering does not exist at present. The existing point-by-point measurement techniques can only capture approximately the large 'mean' eddies but fail to meet the dynamics of small vortices during the initial stage of generation. A new technique, which offers a previously unavailable capability to measure the unsteady cross-flow distribution in the plane of the laser light sheet, is called Particle Displacement Velocimetry (PDV). PDV consists of illuminating a thin section of the flowfield with a pulsed laser. The water is seeded with microscopic, neutrally buoyant particles containing imbedded fluorescing dye which responds with intense spontaneous fluorescence with the illuminated section. The seeded particles in the vortical flow structure shed by the underwater vehicle are illuminated by the pulse laser and the corresponding particle traces are recorded in a single photographic frame. Two distinct approaches were utilized for determining the velocity distribution from the particle traces. The first method is based on matching the traces of the same particle and measuring the distance between them. The direction of the flow can be identified by keeping one of the pulses longer than the other. The second method is based on selecting a small window within the image and finding the mean shift of all the particles within that region. The computation of the auto-correlation of the intensity distribution within the selected sample window is used to determine the mean displacement of particles. The direction of the flow is identified by varying the intensity of the laser light between pulses. Considerable computational resources are required to compute the auto-correction of the intensity distribution. Parallel processing will be employed to speed up the data reduction. A few examples of measured unsteady vortical flow structures shed by the underwater vehicles will be presented.
Lin, Yi-Zhen; Ou, Da-Liang; Chang, Hsin-Yuan; Lin, Wei-Yu; Hsu, Chiun
2017-01-01
The family of microRNAs (miRNAs) not only plays an important role in gene regulation but is also useful for the diagnosis of diseases. A reliable method with high sensitivity may allow researchers to detect slight fluctuations in ultra-trace amounts of miRNA. In this study, we propose a sensitive imaging method for the direct probing of miR-10b (miR-10b-3p, also called miR-10b*) and its target (HOXD10 mRNA) in fixed cells based on the specific recognition of molecular beacons combined with highly inclined and laminated optical sheet (HILO) fluorescence microscopy. The designed dye-quencher-labelled molecular beacons offer excellent efficiencies of fluorescence resonance energy transfer that allow us to detect miRNA and the target mRNA simultaneously in hepatocellular carcinoma cells using HILO fluorescence microscopy. Not only can the basal trace amount of miRNA be observed in each individual cell, but the obtained images also indicate that this method is useful for monitoring the fluctuations in ultra-trace amounts of miRNA when the cells are transfected with a miRNA precursor or a miRNA inhibitor (anti-miR). Furthermore, a reasonable causal relation between the miR-10b and HOXD10 expression levels was observed in miR-10b* precursor-transfected cells and miR-10b* inhibitor-transfected cells. The trends of the miRNA alterations obtained using HILO microscopy completely matched the RT-qPCR data and showed remarkable reproducibility (the coefficient of variation [CV] = 0.86%) and sensitivity (<1.0 fM). This proposed imaging method appears to be useful for the simultaneous visualisation of ultra-trace amounts of miRNA and target mRNA and excludes the procedures for RNA extraction and amplification. Therefore, the visualisation of miRNA and the target mRNA should facilitate the exploration of the functions of ultra-trace amounts of miRNA in fixed cells in biological studies and may serve as a powerful tool for diagnoses based on circulating cancer cells. PMID:28989695
Palmer, C.A.; Lyons, P.C.
1996-01-01
The four most abundant minerals generally found in Euramerican bituminous coals are quartz, kaolinite, illite and pyrite. These four minerals were isolated by density separation and handpicking from bituminous coal samples collected in the Ruhr Basin, Germany and the Appalachian basin, U.S.A. Trace-element concentrations of relatively pure (??? 99+%) separates of major minerals from these coals were determined directly by using instrumental neutron activation analysis (INAA). As expected, quartz contributes little to the trace-element mass balance. Illite generally has higher trace-element concentrations than kaolinite, but, for the concentrates analyzed in this study, Hf, Ta, W, Th and U are in lower concentrations in illite than in kaolinite. Pyrite has higher concentrations of chalcophile elements (e.g., As and Se) and is considerably lower in lithophile elements as compared to kaolinite and illite. Our study provides a direct and sensitive method of determining trace-element relationships with minerals in coal. Mass-balance calculations suggest that the trace-element content of coal can be explained mainly by three major minerals: pyrite, kaolinite and illite. This conclusion indicates that the size and textural relationships of these major coal minerals may be a more important consideration as to whether coal cleaning can effectively remove the most environmentally sensitive trace elements in coal than what trace minerals are present.
Determination of trace metals in drinking water in Irbid City-Northern Jordan.
Alomary, Ahmed
2013-02-01
Drinking water samples from Irbid, the second populated city in Jordan were analyzed for trace metals (As, Ba, Cd, Pb, Cr, Cu, Fe, Zn, Mn, Ni, and Se) content. The study was undertaken to determine if the metal concentrations were within the national and international guidelines. A total of 90 drinking water samples were collected from Al-Yarmouk University area. The samples were collected from three different water types: tap water (TW), home-purified water (HPW), and plant-purified water (PPW). All the samples were analyzed for trace metals using an inductively coupled plasma-optical emission spectrometry. All the samples analyzed were within the United States Environmental Protection Agency admissible pH limit (6.5-8.5). The results showed that concentrations of the trace metals vary significantly between the three drinking water types. The results showed that HPW samples have the lowest level of trace metals and the concentrations of some essential trace metals in these samples are less than the recommended amounts. Slight differences in the metal contents were found between HPW samples, little differences between PPW samples; however, significant differences were found between TW samples. Although some TW samples showed high levels of trace metals, however, the mean level of most elements determined in the samples were well within the Jordanian standards as well as the World Health Organization standards for drinking water.
[Global Atmospheric Chemistry/Transport Modeling and Data-Analysis
NASA Technical Reports Server (NTRS)
Prinn, Ronald G.
1999-01-01
This grant supported a global atmospheric chemistry/transport modeling and data- analysis project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for trace gases; (b) utilization of these inverse methods which use either the Model for Atmospheric Chemistry and Transport (MATCH) which is based on analyzed observed winds or back- trajectories calculated from these same winds for determining regional and global source and sink strengths for long-lived trace gases important in ozone depletion and the greenhouse effect; (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple "titrating" gases; and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important ultimate goals included determination of regional source strengths of important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements, and hydrohalocarbons now used as alternatives to the above restricted halocarbons.
[Determination of trace gallium by graphite furnace atomic absorption spectrometry in urine].
Zhou, L Z; Fu, S; Gao, S Q; He, G W
2016-06-20
To establish a method for determination trace gallium in urine by graphite furnace atomic absorption spectrometry (GFAAS). The ammonium dihydrogen phosphate was matrix modifier. The temperature effect about pyrolysis (Tpyr) and atomization temperature were optimized for determination of trace gallium. The method of technical standard about within-run, between-run and recoveries of standard were optimized. The method showed a linear relationship within the range of 0.20~80.00 μg/L (r=0.998). The within-run and between-run relative standard deviations (RSD) of repetitive measurement at 5.0, 10.0, 20.0 μg/L concentration levels were 2.1%~5.5% and 2.3%~3.0%. The detection limit was 0.06 μg/L. The recoveries of gallium were 98.2%~101.1%. This method is simple, low detection limit, accurate, reliable and reproducible. It has been applied for determination of trace gallium in urine samples those who need occupation health examination or poisoning diagnosis.
Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.; Galuszka, A.; Dolegowska, S.
2011-01-01
Trace element concentrations in plant bioindicators are often determined to assess the quality of the environment. Instrumental methods used for trace element determination require digestion of samples. There are different methods of sample preparation for trace element analysis, and the selection of the best method should be fitted for the purpose of a study. Our hypothesis is that the method of sample preparation is important for interpretation of the results. Here we compare the results of 36 element determinations performed by ICP-MS on ashed and on acid-digested (HNO3, H2O2) samples of two moss species (Hylocomium splendens and Pleurozium schreberi) collected in Alaska and in south-central Poland. We found that dry ashing of the moss samples prior to analysis resulted in considerably lower detection limits of all the elements examined. We also show that this sample preparation technique facilitated the determination of interregional and interspecies differences in the chemistry of trace elements. Compared to the Polish mosses, the Alaskan mosses displayed more positive correlations of the major rock-forming elements with ash content, reflecting those elements' geogenic origin. Of the two moss species, P. schreberi from both Alaska and Poland was also highlighted by a larger number of positive element pair correlations. The cluster analysis suggests that the more uniform element distribution pattern of the Polish mosses primarily reflects regional air pollution sources. Our study has shown that the method of sample preparation is an important factor in statistical interpretation of the results of trace element determinations. ?? 2010 Springer-Verlag.
[Determination of Trace Elements in Marine Cetaceans by ICP-MS and Health Risk Assessment].
Ding, Yu-long; Ning, Xi; Gui, Duan; Mo, Hui; Li, Yu-sen; Wu, Yu-ping
2015-09-01
The liver, kidney and muscle samples from seven cetaceans were digested by microwave digestion, and trace elements amounts of V, Cd, Cu, Zn, As, Cr, Ni, Mn, Se, Hg and Pb were determined by inductively coupled plasma mass spectrometry (ICP-MS), and the health risk assessment for Zn, Cu, Cd, Hg, Se in the liver was conducted. The results of international lobster hepatopancreas standard (TORT-2) showed acceptable agreement with the certified values, and the relative standard deviation (RSD) of eleven kinds of trace elements were less than 3.54%, showing that the method is suitable for the determination of trace elements in cetaceans. The experimental results indicated that different tissues and organs of the dolphins had different trace elements, presenting the tissue specificity. There is a certain inter-species difference among different dolphins about the bioaccumulation ability of the trace elements. The distribution of trace elements in whales presented a certain regularity: the contents of most elements in liver, kidney were much higher than the contents of muscle tissues, Cu, Mn, Hg, Se, and Zn exhibit the higher concentrations in liver, while Cd was mainly accumulated in kidney. And according to the health risk assessment in liver, the exceeding standardrate of selenium and copper in seven kinds of whales was 100%, suggesting that these whales were suffering the contamination of trace elements. The experimental results is instructive to the study of trace elements in cetaceans, while this is the first report for the concentrations in organs of Striped dolphin, Bottlenose dolphin, Fraser's Dolphin and Risso's dolphin in China, it may provide us valuable data for the conservation of cetaceans.
NASA Astrophysics Data System (ADS)
Schweitzer, S.; Kirchengast, G.; Proschek, V.
2011-10-01
LEO-LEO infrared-laser occultation (LIO) is a new occultation technique between Low Earth Orbit (LEO) satellites, which applies signals in the short wave infrared spectral range (SWIR) within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO) method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity) and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms) of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We conclude that the set of SWIR channels proposed for implementing the LMIO method (Kirchengast and Schweitzer, 2011) provides adequate sensitivity to accurately retrieve eight trace species of key importance to climate and atmospheric chemistry (H2O, CO2, 13CO2, C18OO, CH4, N2O, O3, CO) in the upper troposphere/lower stratosphere region outside clouds under all atmospheric conditions. Two further species (HDO, H218O) can be retrieved in the upper troposphere.
Ambient methods and apparatus for rapid laser trace constituent analysis
Snyder, Stuart C.; Partin, Judy K.; Grandy, Jon D.; Jeffery, Charles L.
2002-01-01
A method and apparatus are disclosed for measuring trace amounts of constituents in samples by using laser induced breakdown spectroscopy and laser induced fluorescence under ambient conditions. The laser induced fluorescence is performed at a selected wavelength corresponding to an absorption state of a selected trace constituent. The intensity value of the emission decay signal which is generated by the trace constituent is compared to calibrated emission intensity decay values to determine the amount of trace constituent present.
Herrera-Lopez, S; Hernando, M D; García-Calvo, E; Fernández-Alba, A R; Ulaszewska, M M
2014-09-01
Simultaneous high-resolution full-scan and tandem mass spectrometry (MS/MS) analysis using time of flight mass spectrometry brings an answer for increasing demand of retrospective and non-targeted data analysis. Such analysis combined with spectral library searching is a promising tool for targeted and untargeted screening of small molecules. Despite considerable extension of the panel of compounds of tandem mass spectral libraries, the heterogeneity of spectral data poses a major challenge against the effective usage of spectral libraries. Performance evaluation of available LC-MS/MS libraries will significantly increase credibility in the search results. The present work was aimed to evaluate fluctuation of MS/MS pattern, in the peak intensities distribution together with mass accuracy measurements, and in consequence, performance compliant with ion ratio and mass error criteria as principles in identification processes for targeted and untargeted contaminants at trace levels. Matrix effect and ultra-trace levels of concentration (from 50 ng l(-1) to 1000 ng l(-1) were evaluated as potential source of inaccuracy in the performance of spectral matching. Matrix-matched samples and real samples were screened for proof of applicability. By manual review of data and application of ion ratio and ppm error criteria, false negatives were obtained; this number diminished when in-house library was used, while with on-line MS/MS databases 100% of positive samples were found. In our experience, intensity of peaks across spectra was highly correlated to the concentration effect and matrix complexity. In turn, analysis of spectra acquired at trace concentrations and in different matrices results in better performance in providing correct and reliable identification. Copyright © 2014 John Wiley & Sons, Ltd.
Niu, Zhenchuan; Zhou, Weijian; Feng, Xue; Feng, Tian; Wu, Shugang; Cheng, Peng; Lu, Xuefeng; Du, Hua; Xiong, Xiaohu; Fu, Yunchong
2018-06-01
Radiocarbon ( 14 C) is the most accurate tracer available for quantifying atmospheric CO 2 derived from fossil fuel (CO 2ff ), but it is expensive and time-consuming to measure. Here, we used common hourly Air Quality Index (AQI) pollutants (AQI, PM 2.5 , PM 10 , and CO) to indirectly trace diurnal CO 2ff variations during certain days at the urban sites in Beijing and Xiamen, China, based on linear relationships between AQI pollutants and CO 2ff traced by 14 C ([Formula: see text]) for semimonthly samples obtained in 2014. We validated these indirectly traced CO 2ff (CO 2ff-in ) concentrations against [Formula: see text] concentrations traced by simultaneous diurnal 14 CO 2 observations. Significant (p < 0.05) strong correlations were observed between each of the separate AQI pollutants and [Formula: see text] for the semimonthly samples. Diurnal variations in CO 2ff traced by each of the AQI pollutants generally showed similar trends to those of [Formula: see text], with high agreement at the sampling site in Beijing and relatively poor agreement at the sampling site in Xiamen. AQI pollutant tracers showed high normalized root-mean-square (NRMS) errors for the summer diurnal samples due to low [Formula: see text] concentrations. After the removal of these summer samples, the NRMS errors for AQI pollutant tracers were in the range of 31.6-64.2%. CO generally showed a high agreement and low NRMS errors among these indirect tracers. Based on these linear relationships, monthly CO 2ff averages at the sampling sites in Beijing and Xiamen were traced using CO concentration as a tracer. The monthly CO 2ff averages at the Beijing site showed a shallow U-type variation. These results indicate that CO can be used to trace CO 2ff variations in Chinese cities with CO 2ff concentrations above 5 ppm.
Hoijemberg, Pablo A; Pelczer, István
2018-01-05
A lot of time is spent by researchers in the identification of metabolites in NMR-based metabolomic studies. The usual metabolite identification starts employing public or commercial databases to match chemical shifts thought to belong to a given compound. Statistical total correlation spectroscopy (STOCSY), in use for more than a decade, speeds the process by finding statistical correlations among peaks, being able to create a better peak list as input for the database query. However, the (normally not automated) analysis becomes challenging due to the intrinsic issue of peak overlap, where correlations of more than one compound appear in the STOCSY trace. Here we present a fully automated methodology that analyzes all STOCSY traces at once (every peak is chosen as driver peak) and overcomes the peak overlap obstacle. Peak overlap detection by clustering analysis and sorting of traces (POD-CAST) first creates an overlap matrix from the STOCSY traces, then clusters the overlap traces based on their similarity and finally calculates a cumulative overlap index (COI) to account for both strong and intermediate correlations. This information is gathered in one plot to help the user identify the groups of peaks that would belong to a single molecule and perform a more reliable database query. The simultaneous examination of all traces reduces the time of analysis, compared to viewing STOCSY traces by pairs or small groups, and condenses the redundant information in the 2D STOCSY matrix into bands containing similar traces. The COI helps in the detection of overlapping peaks, which can be added to the peak list from another cross-correlated band. POD-CAST overcomes the generally overlooked and underestimated presence of overlapping peaks and it detects them to include them in the search of all compounds contributing to the peak overlap, enabling the user to accelerate the metabolite identification process with more successful database queries and searching all tentative compounds in the sample set.
Multielement extraction system for the determination of 18 trace elements in geochemical samples
Clark, J.R.; Viets, J.G.
1981-01-01
A Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system has been developed for use in geochemical exploration which separates a maximum number of trace elements from interfering matrices. Extraction curves for 18 of these trace elements are presented: Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Ga, In, Tl, Sa, Pb, As, Sb, Bi, Se, and Te. The acid normality of the aqueous phase controls the extraction into the organic phase, and each of these 18 elements has a broad range of HCl normality over which H is quantitatively extracted, making H possible to determine all 18 trace elements from a single sample digestion or leach solution. The extract can be analyzed directly by flame atomic absorption or inductively coupled plasma emission spectroscopy. Most of these 18 elements can be determined by Nameless atomic absorption after special treatment of the organic extract.
[Determination and correlation analysis of trace elements in Boletus tomentipes].
Li, Tao; Wang, Yuan-zhong; Zhang, Ji; Zhao, Yan-li; Liu, Hong-gao
2011-07-01
The contents of eleven trace elements in Boletus tomentipes were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results showed that the fruiting bodies of B. tomentipes were very rich in Mg and Fe (>100 mg x kg(-1)) and rich in Mn, Zn and Cu (>10 mg x kg(-1)). Cr, Pb, Ni, Cd, and As were relatively minor contents (0.1-10.0 mg x kg(-1)) of this species, while Hg occurred at the smallest content (< 0.1 mg x kg(-1)). Among the determined 11 trace elements, Zn-Cu had significantly positive correlation (r = 0.659, P < 0.05), whereas, Hg-As, Ni-Fe, and Zn-Mg had significantly negative correlation (r = -0.672, -0.610, -0.617, P < 0.05). This paper presented the trace elements properties of B. tomentipes, and is expected to be useful for exploitation and quality evaluation of this species.
Non-null annular subaperture stitching interferometry for aspheric test
NASA Astrophysics Data System (ADS)
Zhang, Lei; Liu, Dong; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian
2015-10-01
A non-null annular subaperture stitching interferometry (NASSI), combining the subaperture stitching idea and non-null test method, is proposed for steep aspheric testing. Compared with standard annular subaperture stitching interferometry (ASSI), a partial null lens (PNL) is employed as an alternative to the transmission sphere, to generate different aspherical wavefronts as the references. The coverage subaperture number would thus be reduced greatly for the better performance of aspherical wavefronts in matching the local slope of aspheric surfaces. Instead of various mathematical stitching algorithms, a simultaneous reverse optimizing reconstruction (SROR) method based on system modeling and ray tracing is proposed for full aperture figure error reconstruction. All the subaperture measurements are simulated simultaneously with a multi-configuration model in a ray-tracing program, including the interferometric system modeling and subaperture misalignments modeling. With the multi-configuration model, full aperture figure error would be extracted in form of Zernike polynomials from subapertures wavefront data by the SROR method. This method concurrently accomplishes subaperture retrace error and misalignment correction, requiring neither complex mathematical algorithms nor subaperture overlaps. A numerical simulation exhibits the comparison of the performance of the NASSI and standard ASSI, which demonstrates the high accuracy of the NASSI in testing steep aspheric. Experimental results of NASSI are shown to be in good agreement with that of Zygo® VerifireTM Asphere interferometer.
Limb Spicules from the Ground and from Space
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Jacobson, William A.; Sterling, Alphonse C.
2009-11-01
We amassed statistics for quiet-sun chromosphere spicules at the limb using ground-based observations from the Swedish 1-m Solar Telescope on La Palma and simultaneously from NASA’s Transition Region and Coronal Explorer (TRACE) spacecraft. The observations were obtained in July 2006. With the 0.2 arcsecond resolution obtained after maximizing the ground-based resolution with the Multi-Object Multi-Frame Blind Deconvolution (MOMFBD) program, we obtained specific statistics for sizes and motions of over two dozen individual spicules, based on movies compiled at 50-second cadence for the series of five wavelengths observed in a very narrow band at Hα, on-band and at ± 0.035 nm and ± 0.070 nm (10 s at each wavelength) using the SOUP filter, and had simultaneous observations in the 160 nm EUV continuum from TRACE. The MOMFBD restoration also automatically aligned the images, facilitating the making of Dopplergrams at each off-band pair. We studied 40 Hα spicules, and 14 EUV spicules that overlapped Hα spicules; we found that their dynamical and morphological properties fit into the framework of several previous studies. From a preliminary comparison with spicule theories, our observations are consistent with a reconnection mechanism for spicule generation, and with UV spicules being a sheath region surrounding the Hα spicules.
Dual-excitation wavelength resonance Raman explosives detector
NASA Astrophysics Data System (ADS)
Yellampalle, Balakishore; Sluch, Mikhail; Wu, Hai-Shan; Martin, Robert; McCormick, William; Ice, Robert; Lemoff, Brian E.
2013-05-01
Deep-ultraviolet resonance Raman spectroscopy (DUVRRS) is a promising approach to stand-off detection of explosive traces due to: 1) resonant enhancement of Raman cross-section, 2) λ-4-cross-section enhancement, and 3) fluorescence and solar background free signatures. For trace detection, these signal enhancements more than offset the small penetration depth due to DUV absorption. A key challenge for stand-off sensors is to distinguish explosives, with high confidence, from a myriad of unknown background materials that may have interfering spectral peaks. To address this, we are developing a stand-off explosive sensor using DUVRRS with two simultaneous DUV excitation wavelengths. Due to complex interplay of resonant enhancement, self-absorption and laser penetration depth, significant amplitude variation is observed between corresponding Raman bands with different excitation wavelengths. These variations with excitation wavelength provide an orthogonal signature that complements the traditional Raman signature to improve specificity relative to single-excitation-wavelength techniques. As part of this effort, we are developing two novel CW DUV lasers, which have potential to be compact, and a compact dual-band high throughput DUV spectrometer, capable of simultaneous detection of Raman spectra in two spectral windows. We have also developed a highly sensitive algorithm for the detection of explosives under low signal-to-noise situations.
MC ray-tracing optimization of lobster-eye focusing devices with RESTRAX
NASA Astrophysics Data System (ADS)
Šaroun, Jan; Kulda, Jiří
2006-11-01
The enhanced functionalities of the latest version of the RESTRAX software, providing a high-speed Monte Carlo (MC) ray-tracing code to represent a virtual three-axis neutron spectrometer, include representation of parabolic and elliptic guide profiles and facilities for numerical optimization of parameter values, characterizing the instrument components. As examples, we present simulations of a doubly focusing monochromator in combination with cold neutron guides and lobster-eye supermirror devices, concentrating a monochromatic beam to small sample volumes. A Levenberg-Marquardt minimization algorithm is used to optimize simultaneously several parameters of the monochromator and lobster-eye guides. We compare the performance of optimized configurations in terms of monochromatic neutron flux and energy spread and demonstrate the effect of lobster-eye optics on beam transformations in real and momentum subspaces.
Method for producing three-dimensional real image using radiographic perspective views of an object
Ellingson, William A.; Read, Alvin A.
1976-02-24
A sequence of separate radiographs are made by indexing a radiation source along a known path relative to the object under study. Thus, each radiograph contains information from a different perspective. A holographically-recorded image is then made from each radiographic perspective by exact re-tracing of the rays through each radiographic perspective such that the re-tracing duplicates the geometry under which it was originally prepared. The holographically-stored images are simultaneously illuminated with the conjugate of the reference beam used in the original recordings. The result is the generation of a three-dimensional real image of the object such that a light-sensitive device can be moved to view the real image along any desired surface with the optical information in all other surfaces greatly suppressed.
Cabezon, L M; Caballero, M; Cela, R; Perez-Bustamante, J A
1984-08-01
A method is proposed for the simultaneous quantitative separation of traces ofCu(II), Cd(II) and Co(II) from sea-water samples by means of the co-flotation (adsorbing colloid flotation) technique with ferric hydroxide as co-precipitant and octadecylamine as collector. The experimental parameters have been studied and optimized. The drawbacks arising from the low solubility of octadecylamine and the corresponding sublates in water have been avoided by use of a 6M hydrochloric acid-MIBK-ethanol (1:2:2 v v ) mixture. The results obtained by means of the proposed method have been compared with those given by the usual ammonium pyrrolidine dithiocarbamate/MIBK extraction method.
Measurement system and model for simultaneously measuring 6DOF geometric errors.
Zhao, Yuqiong; Zhang, Bin; Feng, Qibo
2017-09-04
A measurement system to simultaneously measure six degree-of-freedom (6DOF) geometric errors is proposed. The measurement method is based on a combination of mono-frequency laser interferometry and laser fiber collimation. A simpler and more integrated optical configuration is designed. To compensate for the measurement errors introduced by error crosstalk, element fabrication error, laser beam drift, and nonparallelism of two measurement beam, a unified measurement model, which can improve the measurement accuracy, is deduced and established using the ray-tracing method. A numerical simulation using the optical design software Zemax is conducted, and the results verify the correctness of the model. Several experiments are performed to demonstrate the feasibility and effectiveness of the proposed system and measurement model.
THE PARADOX OF SIGN LANGUAGE MORPHOLOGY
Aronoff, Mark; Meir, Irit; Sandler, Wendy
2011-01-01
Sign languages have two strikingly different kinds of morphological structure: sequential and simultaneous. The simultaneous morphology of two unrelated sign languages, American and Israeli Sign Language, is very similar and is largely inflectional, while what little sequential morphology we have found differs significantly and is derivational. We show that at least two pervasive types of inflectional morphology, verb agreement and classifier constructions, are iconically grounded in spatiotemporal cognition, while the sequential patterns can be traced to normal historical development. We attribute the paucity of sequential morphology in sign languages to their youth. This research both brings sign languages much closer to spoken languages in their morphological structure and shows how the medium of communication contributes to the structure of languages.* PMID:22223926
LIDAR technology for measuring trace gases on Mars and Earth
NASA Astrophysics Data System (ADS)
Riris, H.; Abshire, J. B.; Graham, Allan; Hasselbrack, William; Rodriguez, Mike; Sun, Xiaoli; Weaver, Clark; Mao, Jianping; Kawa, Randy; Li, Steve; Numata, Kenji; Wu, Stewart
2017-11-01
Trace gases and their isotopic ratios in planetary atmospheres offer important but subtle clues as to the origins of a planet's atmosphere, hydrology, geology, and potential for biology. An orbiting laser remote sensing instrument is capable of measuring trace gases on a global scale with unprecedented accuracy, and higher spatial resolution that can be obtained by passive instruments. For Earth we have developed laser technique for the remote measurement of the tropospheric CO2, O2, and CH4 concentrations from space. Our goal is to develop a space instrument and mission approach for active CO2 measurements. Our technique uses several on and off-line wavelengths tuned to the CO2 and O2 absorption lines. This exploits the atmospheric pressure broadening of the gas lines to weigh the measurement sensitivity to the atmospheric column below 5 km and maximizes sensitivity to CO2 changes in the boundary layer where variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column use a selected region in the Oxygen A-band. Laser altimetry and atmospheric backscatter can also be measured simultaneously, which permits determining the surface height and measurements made to thick cloud tops and through aerosol layers. We use the same technique but with a different transmitter at 1.65 um to measure methane concentrations. Methane is also a very important trace gas on earth, and a stronger greenhouse gas than CO2 on a per molecule basis. Accurate, global observations are needed in order to better understand climate change and reduce the uncertainty in the carbon budget. Although carbon dioxide is currently the primary greenhouse gas of interest, methane can have a much larger impact on climate change. Methane levels have remained relatively constant over the last decade but recent observations in the Arctic have indicated that levels may be on the rise due to permafrost thawing. NASA's Decadal Survey underscored the importance of Methane as a greenhouse gas and called for a mission to measure CO2, CO and CH4. Methane has absorptions in the mid-infrared (3.3 um) and the near infrared (1.65 um). The 3.3 um spectral region is ideal for planetary (Mars) Methane monitoring, but unfortunately is not suitable for earth monitoring since the Methane absorption lines are severely interfered with by water. The near infra-red overtones of Methane at 1.65 um are relatively free of interference from other atmospheric species and are suitable for Earth observations. The methane instrument uses Optical Parametric Generation (OPG) along with sensitive detectors to achieve the necessary sensitivity. Our instrument generates and detects tunable laser signals in the 3.3 or 1.65 um spectral regions with different detectors in order to measure methane on Earth or Mars. For Mars, the main interest in methane is its importance as a biogenic marker.
Ziegler, Brady A.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.
2015-01-01
Biodegradation of organic matter, including petroleum-based fuels and biofuels, can create undesired secondary water-quality effects. Trace elements, especially arsenic (As), have strong adsorption affinities for Fe(III) (oxyhydr)-oxides and can be released to groundwater during Fe-reducing biodegradation. We investigated the mobilization of naturally occurring As, cobalt (Co), chromium (Cr), and nickel (Ni) from wetland sediments caused by the introduction of benzene, toluene, ethylbenzene, and xylenes (BTEX) and ethanol mixtures under iron- and nitrate-reducing conditions, using in situ push–pull tests. When BTEX alone was added, results showed simultaneous onset and similar rates of Fe reduction and As mobilization. In the presence of ethanol, the maximum rates of As release and Fe reduction were higher, the time to onset of reaction was decreased, and the rates occurred in multiple stages that reflected additional processes. The concentration of As increased from <1 μg/L to a maximum of 99 μg/L, exceeding the 10 μg/L limit for drinking water. Mobilization of Co, Cr, and Ni was observed in association with ethanol biodegradation but not with BTEX. These results demonstrate the potential for trace-element contamination of drinking water during biodegradation and highlight the importance of monitoring trace elements at natural and enhanced attenuation sites.
NASA Astrophysics Data System (ADS)
Point, D.; Monperrus, M.; Tessier, E.; Amouroux, D.; Chauvaud, L.; Thouzeau, G.; Jean, F.; Amice, E.; Grall, J.; Leynaert, A.; Clavier, J.; Donard, O. F. X.
2007-04-01
In situ benthic chamber experiments were conducted in the Thau Lagoon that allowed the simultaneous determination of the benthic exchanges of trace metals (Cd, Co, Cu, Mn, Pb and U) and mercury species (iHg and MMHg). Fluxes of organotin compounds (MBT, DBT and TBT) were also investigated for the first time. The benthic incubations were performed during two campaigns at four stations that presented different macrobenthic and macrophytic species distribution and abundance (see [Thouzeau, G., Grall, J., Clavier, J., Chauvaud, L., Jean, F., Leynaert, A., Longpuirt, S., Amice, E., Amouroux, D., 2007. Spatial and temporal variability of benthic biogeochemical fluxes associated with macrophytic and macrofaunal distributions in the Thau lagoon (France). Estuarine, Coastal and Shelf Science 72 (3), 432 446.]). The results indicate that most of the flux intensity as well as the temporal and spatial variability can be explained by the combined influence of microscale and macroscale processes. Microscale changes were identified using Mn flux as a good indicator of the redox conditions at the sediment water interface, and by extension, as an accurate proxy of benthic fluxes for most trace metals and mercury species. We also observed that the redox gradient at the interface is promoted by both microbial and macrobenthic species activity that governs O2 budgets. Macroscale processes have been investigated considering macrobenthic organisms activity (macrofauna and macroalgal cover). The density of such macroorganisms is able to explain most of the spatial and temporal variability of the benthic metal fluxes within a specific site. A tentative estimation of the flux of metals and organometals associated with deposit feeder and suspension feeder activity was found to be in the range of the flux determined within the chambers for most considered elements. Furthermore, a light/dark incubation investigating a dense macroalgal cover present at the sediment surface illustrates the role of photosynthetic activity in controlling benthic exchanges. Significant changes in benthic flux intensity and/or direction were reported for all redox sensitive elements (Cd, Co, Cu, Mn, Pb, U, and iHg). For MMHg and organotin species, other complimentary processes such as photodegradation/uptake and hydrophobic absorption/desorption need to be considered. This work demonstrates that the processes governing benthic exchanges are complex and that benthic organisms play a major role in the significant seasonal, diurnal and spatial variability of trace metals and organometals benthic fluxes in the lagoon.
Analytical Methods for Trace Metals. Training Manual.
ERIC Educational Resources Information Center
Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.
This training manual presents material on the theoretical concepts involved in the methods listed in the Federal Register as approved for determination of trace metals. Emphasis is on laboratory operations. This course is intended for chemists and technicians with little or no experience in analytical methods for trace metals. Students should have…
Liu, Chang-Cai; Liu, Shi-Lei; Xi, Hai-Ling; Yu, Hui-Lan; Zhou, Shi-Kun; Huang, Gui-Lan; Liang, Long-Hui; Liu, Jing-Quan
2017-04-07
Four HD urinary metabolites including hydrolysis metabolite thiodiglycol (TDG), glutathione-derived metabolite 1,1'-sulfonylbis[2-S-(N-acetylcysteinyl)ethane] (SBSNAE), as well as the β-lyase metabolites 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] (SBMSE) and 1-methylsulfinyl-2-[2-(methylthio) ethylsulfonyl]ethane (MSMTESE) are considered as important biomarkers for short-term retrospective detection of HD exposure. In this study, a single method for simultaneous quantification of the four HD metabolites in urine samples was developed using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The four urinary metabolites were simultaneously extracted from urinary samples using a solid phase extraction (SPE) method with high extraction recoveries for all four metabolites varied in the range of 71.1-103% followed by UHPLC-MS/MS analysis. The SPE is simple and high effective only requiring 0.1mL of urinary samples and 0.5h time consuming. The problem of previous co-elution of TDG and SBSNAE in UHPLC was well solved, and complete separation of TDG, SBSNAE, SBMSE and MSMTESE from SPE-processed urine matrix was obtained to increase specificity and sensitivity. A full method validation was performed for each analyte in urine matrix. The linear range of calibration curves for the four analytes were respectively from 0.50-500ngmL -1 for TDG and SBSNAE, 0.05-500ngmL -1 for SBMSE and MSMTESE with coefficient of determination value (R 2 ) ≥0.990. The limit of detection was 0.25ngmL -1 for TDG and SBSNAE, 0.01ngmL -1 for SBMSE and MSMTESE spiked in normal urine. The intra/inter-day precision for each analyte at three QC levels had relative standard deviation (%RSD) of ≤10.3%, and the intra/inter-day accuracy ranged between 88.0-108%. This developed method allows for simultaneous and trace measurement of four HD urinary metabolites within one single determination with the lowest usage amount of urine samples over all previous methods This study provides a useful tool for early diagnosis and monitoring of HD poisoning for medical treatment with high confidence, avoiding the need for application of several analysis methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Trace element release from estuarine sediments of South Mosquito Lagoon near Kennedy Space Center
NASA Technical Reports Server (NTRS)
Menon, M. P.; Ghuman, G. S.; Emeh, C. O.
1979-01-01
Analytical partitioning of four trace metals in estuarine sediments collected from eight sites in South Mosquito Lagoon near Kennedy Space Center, in terms of four different categories was accomplished using four different extraction techniques. The concentrations of the four trace metals, Zn, Mn, Cd, and Cu, released in interstitial water extract, 1 N ammonium acetate extract, conc. HCl extract and fusion extract of sediments as well as their concentrations in water samples collected from the same location were determined using flame atomic absorption technique. From the analytical results the percentages of total amount of each metal distributed among four different categories, interstitial water phase, acetate extractable, acid extractable and detrital crystalline material, were determined. Our results suggest that analytical partitioning of trace metals in estuarine sediments may be used to study the mechanism of incorporation of trace metals with sediments from natural waters. A correlation between the seasonal variation in the concentration of acetate extractable trace metals in the sediment and similar variation in their concentration in water was observed. A mechanism for the release of trace metals from estuarine sediments to natural water is also suggested.
Arhin, Emmanuel; Zango, Musah S
2017-02-01
Ten samples of 100 g weight were subsampled from 1400 g of the clay balls from which the contained trace element levels were determined by X-ray fluorescence technique. The results of trace elements in the clay balls were calibrated using certified reference materials "MAJMON" and "BH-1." The results showed elevated concentrations but with different concentration levels in the regions, particularly with arsenic, chromium, cobalt, Cs, Zr and La. These trace elements contained in the clay balls are known to be hazardous to human health. Thence the relatively high concentrations of these listed trace elements in clay balls in the three regions, namely Ashanti, Upper East and Volta, which are widely sold in markets in Ghana, could present negative health impact on consumers if consumed at 70 g per day or more and on regular basis. On the basis of these, the study concludes an investigation to establish breakeven range for trace element concentrations in the clay balls as it has been able to demonstrate the uneven and elevated values in them. The standardized safe ranges of trace elements will make the practice safer for the people that ingest clay balls in Ghana.
Zhao, Wenjie; Yang, Liu; He, Lijun; Zhang, Shusheng
2016-08-10
On the basis of the definite retention mechanism proven by the stationary phase for high-performance liquid chromatography, tetraazacalix[2]arene[2]triazine featuring multiple recognition sites was assessed as a solid-phase extraction (SPE) selector. The applicability of its silica support was used for the extraction of trace amounts of polycyclic aromatic hydrocarbons (PAHs) and Cu(2+) in aqueous samples, followed by high-performance liquid chromatography fluorometric and graphite furnace atomic absorption spectrometric determination. On the basis of the π-π interaction with PAHs and the chelating interaction with Cu(2+), the simultaneous extraction of PAHs and Cu(2+) and stepwise elution through tuning the eluent were successfully achieved, respectively. The SPE conditions affecting the extraction efficiency were optimized, including type and concentration of organic modifier, sample solution pH, flow rate, and volume. As a result of the special adsorption and desorption mechanism, high extraction efficiency was achieved with relative recoveries of 94.3-102.4% and relative standard deviations of less than 10.5%. The limits of detection were obtained with 0.4-3.1 ng L(-1) for PAHs and 15 ng L(-1) for Cu(2+), respectively. The method was applied to the analyses of PAHs and Cu(2+) in Xiliu Lake water samples collected in Zhengzhou, China.
Hu, Yinfen; Zhang, Man; Tong, Changlun; Wu, Jianmin; Liu, Weiping
2013-10-01
There have been great concerns about the persistence of steroid hormones in surface water. Since the concentrations of these compounds in water samples are usually at a trace level, the efficient enrichment of steroid hormones is vital for further analysis. In this work, a porous and hydrophobic polymer was synthesized and characterized. The composition of solvent used as porogen in the synthetic process was shown to have an effect on the morphology of the polymer, which was successfully used as an SPE sorbent for simultaneously enriching steroid hormones in surface water samples. The recoveries of the steroid hormones on the custom-made polymer ranged from 93.4 to 106.2%, whereas those on commercialized ENVI-18, LC-18, and Oasis HLB ranged from 54.8 to 104.9, 66 to 93.6, and 77.2 to 106%, respectively. Five types of steroid hormones were simultaneously measured using HPLC-UV after they were enriched by the custom-made sorbent. Based on these findings, the SPE-HPLC method was developed. The LODs of this method for estriol, estradiol, estrone, androstenedione, progesterone were 0.07, 0.43, 0.61, 0.27, and 0.42 μg/L, respectively, while precision and reproducibility RSDs were <6.40 and 7.49%, respectively. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetic analysis of commercial hematite, magnetite, and their mixtures
NASA Astrophysics Data System (ADS)
Ahmadzadeh, Mostafa; Romero, Camila; McCloy, John
2018-05-01
Magnetic techniques are suitable to detect iron oxides even in trace concentrations. However, since several iron oxides may be simultaneously present in natural and synthetic samples, mixtures of magnetic particles and magnetic interactions between grains can complicate magnetic signatures. Among the iron oxide minerals, hematite (α-Fe2O3) and magnetite (Fe3O4) are the most common. In this work, different commercial hematite powders, normally used as Fe precursor in laboratory synthesis of Fe-containing oxides, were characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). The effects of different concentrations of the hematite and magnetite on the magnetic properties of a set of mixtures (from 1 to 10 wt% magnetite) were then investigated by measuring the hysteresis loops, first order reversal curves (FORCs), thermal demagnetization, and isothermal remanent magnetization (IRM) curves. The three commercial hematite powders presented different magnetic behaviors mostly due to the effects of particle size. The magnetic results of mixtures reveal that it is very difficult to identify hematite magnetic signals by means of hysteresis loops, FORCs, or thermal demagnetization when even a small amount of magnetite (>5 wt%) is present due to magnetite's high specific magnetization. However, IRM was found to be a sensitive method to determine the presence of hematite when magnetite is simultaneously present as high as 10 wt%.
Fraker, Christopher A; Mendez, Armando J; Stabler, Cherie L
2011-09-08
Perfluorocarbons (PFCs) are compounds with increased oxygen solubility and effective diffusivity, making them ideal candidates for improving oxygen mass transfer in numerous biological applications. Historically, quantification of the mass transfer characteristics of these liquids has relied on the use of elaborate laboratory equipment and complicated methodologies, such as in-line gas chromatography coupled with temperature-controlled glass fritted diffusion cells. In this work, we present an alternative method for the determination of dissolved oxygen content in PFC emulsions and, by extrapolation, pure PFCs. We implemented a simple stirred oxygen consumption microchamber coupled with an enzymatic reaction for the quantitative determination of oxygen by optical density measurements. Chambers were also custom fitted with lifetime oxygen sensors to permit simultaneous measurement of internal chamber oxygen levels. Analyzing the consumption of oxygen during the enzymatic reaction via recorded oxygen depletion traces, we found a strong degree of correlation between the zero-order reaction rate and the total measured oxygen concentrations, relative to control solutions. The values obtained were in close agreement with published values in the literature, establishing the accuracy of this method. Overall, this method allows for easy, reliable, and reproducible measurements of oxygen content in aqueous solutions, including, but not limited to PFC emulsions.
Gong, Shuguo; Liang, Yong; Tang, Liyun; Huang, Ping; Dai, Yunhui
2017-07-08
A high performance liquid chromatography with fluorescence detection (HPLC-FLD) method was developed for the simultaneous determination of formaldehyde and acetaldehyde in packaging paper by dansylhydrazine (DNSH) derivatization. The samples were extracted by derivatization reagent for 30 min, and derived for 24 h. After purifying treatment with a PSA/C18 cartridge, a Diamonsil ® C18 column (150 mm×4.6 mm, 5 μ m) was used as stationary phase for separation, the mixtures of acetic acid aqueous solution (pH 2.55)-acetonitrile were used as mobile phases by gradient elution, and the excitation and emission wavelengths were 330 nm and 484 nm, respectively. The results showed that the recoveries of formaldehyde and acetaldehyde spiked in the samples were 81.64%-106.78%, and the relative standard deviations (RSDs) were 2.02%-5.53% ( n =5). The limits of detection of formaldehyde and acetaldehyde were 19.2 μ g/kg and 20.7 μ g/kg, respectively. The limits of quantification of formaldehyde and acetaldehyde were 63.9 μ g/kg and 69.1 μ g/kg, respectively. The method is simple, sensitive and reproducible. It provides a basic approach for the determination of trace formaldehyde and acetaldehyde.
Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry
Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.
1990-01-01
X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.
NASA Astrophysics Data System (ADS)
Muraviev, A. V.; Smolski, V. O.; Loparo, Z. E.; Vodopyanov, K. L.
2018-04-01
Mid-infrared spectroscopy offers supreme sensitivity for the detection of trace gases, solids and liquids based on tell-tale vibrational bands specific to this spectral region. Here, we present a new platform for mid-infrared dual-comb Fourier-transform spectroscopy based on a pair of ultra-broadband subharmonic optical parametric oscillators pumped by two phase-locked thulium-fibre combs. Our system provides fast (7 ms for a single interferogram), moving-parts-free, simultaneous acquisition of 350,000 spectral data points, spaced by a 115 MHz intermodal interval over the 3.1-5.5 µm spectral range. Parallel detection of 22 trace molecular species in a gas mixture, including isotopologues containing isotopes such as 13C, 18O, 17O, 15N, 34S, 33S and deuterium, with part-per-billion sensitivity and sub-Doppler resolution is demonstrated. The technique also features absolute optical frequency referencing to an atomic clock, a high degree of mutual coherence between the two mid-infrared combs with a relative comb-tooth linewidth of 25 mHz, coherent averaging and feasibility for kilohertz-scale spectral resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V.; Irick, Steve C.; MacDowell, Alastair A.
2005-04-28
A data acquisition technique and relevant program for suppression of one of the systematic effects, namely the ''ghost'' effect, of a second generation long trace profiler (LTP) is described. The ''ghost'' effect arises when there is an unavoidable cross-contamination of the LTP sample and reference signals into one another, leading to a systematic perturbation in the recorded interference patterns and, therefore, a systematic variation of the measured slope trace. Perturbations of about 1-2 {micro}rad have been observed with a cylindrically shaped X-ray mirror. Even stronger ''ghost'' effects show up in an LTP measurement with a mirror having a toroidal surfacemore » figure. The developed technique employs separate measurement of the ''ghost''-effect-related interference patterns in the sample and the reference arms and then subtraction of the ''ghost'' patterns from the sample and the reference interference patterns. The procedure preserves the advantage of simultaneously measuring the sample and reference signals. The effectiveness of the technique is illustrated with LTP metrology of a variety of X-ray mirrors.« less
Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticles
NASA Astrophysics Data System (ADS)
Santillán-Urquiza, Esmeralda; Arteaga-Cardona, Fernando; Torres-Duarte, Cristina; Cole, Bryan; Wu, Bing; Méndez-Rojas, Miguel A.; Cherr, Gary N.
2017-09-01
Trace elements such as zinc and iron are essential for the proper function of biochemical processes, and their uptake and bioavailability are dependent on their chemical form. Supplementation of trace metals through nanostructured materials is a new field, but its application raises concerns regarding their toxicity. Here, we compared the intracellular zinc uptake of different sources of zinc: zinc sulfate, and ZnO and core-shell α-Fe2O3@ZnO nanoparticles, coated or uncoated with inulin, an edible and biocompatible polysaccharide. Using mussel haemocytes, a well-known model system to assess nanomaterial toxicity, we simultaneously assessed zinc accumulation and multiple cellular response endpoints. We found that intracellular zinc uptake was strongly enhanced by inulin coating, in comparison to the uncoated nanoparticles, while no significant effects on cell death, cell viability, mitochondrial membrane integrity, production of reactive oxygen species or lysosome abundance were observed at concentrations up to 20 ppm. Since no significant increments in toxicity were observed, the coated nanomaterials may be useful to increase in vivo zinc uptake for nutritional applications.
Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K S
2014-08-28
An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system.
Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K. S.
2014-01-01
An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system. PMID:25164252
Cazorla-Reyes, Rocío; Fernández-Moreno, José Luis; Romero-González, Roberto; Frenich, Antonia Garrido; Vidal, José Luis Martínez
2011-07-15
A new multiresidue method has been developed and validated for the simultaneous extraction of more than two hundred pesticides, including non-polar and polar pesticides (carbamates, organochlorine, organophosphorous, pyrethroids, herbicides and insecticides) in urine at trace levels by gas and ultra high pressure liquid chromatography coupled to ion trap and triple quadrupole mass spectrometry, respectively (GC-IT-MS/MS, UHPLC-QqQ-MS/MS). Non-polar and polar pesticides were simultaneously extracted from urine samples by a simple and fast solid phase extraction (SPE) procedure using C(18) cartridges as sorbent, and dichloromethane as elution solvent. Recovery was in the range of 60-120%. Precision values expressed as relative standard deviation (RSD) were lower than 25%. Identification and confirmation of the compounds were performed by the use of retention time windows, comparison of spectra (GC-amenable compounds) or the estimation of the ion ratio (LC-amenable compounds). For GC-amenable pesticides, limits of detection (LODs) ranged from 0.001 to 0.436 μg L(-1) and limits of quantification (LOQs) from 0.003 to 1.452 μg L(-1). For LC-amenable pesticides, LODs ranged from 0.003 to 1.048 μg L(-1) and LOQs ranged from 0.011 to 3.494 μg L(-1). Finally, the optimized method was applied to the analysis of fourteen real samples of infants from agricultural population. Some pesticides such as methoxyfenozide, tebufenozide, piperonyl butoxide and propoxur were found at concentrations ranged from 1.61 to 24.4 μg L(-1), whereas methiocarb sulfoxide was detected at trace levels in two samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Laser-Induced Breakdown Spectroscopy of Trace Metals
NASA Technical Reports Server (NTRS)
Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.
2004-01-01
An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.
ERIC Educational Resources Information Center
Lavilla, Isela; Costas, Marta; Pena-Pereira, Francisco; Gil, Sandra; Bendicho, Carlos
2011-01-01
Ultrasound-assisted extraction (UAE) is introduced to upper-level analytical chemistry students as a simple strategy focused on sample preparation for trace-metal determination in biological tissues. Nickel extraction in seafood samples and quantification by electrothermal atomic absorption spectrometry (ETAAS) are carried out by a team of four…
NASA Astrophysics Data System (ADS)
Ho, Arthur; Erickson, Paul; Manns, Fabrice; Pham, Therese; Parel, Jean-Marie A.
2001-06-01
Recent developments in surgical procedures for restoring accommodation saw the availability of Phaco-ersatz as a feasible procedure returning near vision to the presbyopies. In Phaco-ersatz, the presbyopic crystalline lens is extracted and replaced by a flexible polymer gel in the intact lens capsule. The ability to simultaneously correct ametropia while restoring accommodation with this procedure is seen to be extremely attractive. One strategy by which this may be achieved within the Phaco-ersatz procedure is by making use of polymer gel of different refractive indices. We assessed the feasibility of simultaneously correcting ametropia while restoring accommodation using phaco-ersatz using this approach. Two model eyes (Gullstrand and Navarro) were used to evaluate this approach. Computation results using paraxial equations and ray tracing indicated that while this approach might be feasible for the hypermetrope, its usefulness for correcting myopia is limited due to significant reductions in the resultant amplitude of accommodation. A number of practical considerations may also influence the applicability of this approach.
Sablayrolles, Caroline; Montréjaud-Vignoles, Mireille; Silvestre, Jérôme; Treilhou, Michel
2009-01-01
Surfactants are widely used in household and industrial products. The risk of incorporation of linear alkylbenzene sulfonates (LAS) from biosolids, wastewater, and fertilizers land application to the food chain is being assessed at present by the European Union. In the present work, a complete analytical method for LAS trace determination has been developed and successfully applied to LAS (C10–C13) uptake in carrot plants used as model. These carrots were grown in soil with the trace organics compounds added directly into the plant containers in pure substances form. LAS trace determination (μg kg−1 dry matter) in carrots samples was achieved by Soxtec apparatus and high-performance liquid chromatography-fluorescence detection. The methodology developed provides LAS determination at low detection limits (5 μg kg−1 dry matter) for carrot sample (2 g dry matter) with good recoveries rate (>90%). Transfer of LAS has been followed into the various parts of the carrot plant. LAS are generally found in the carrot leaves and percentage transfer remains very low (0.02%). PMID:20107562
NASA Astrophysics Data System (ADS)
Kim, W.; Hahm, I.; Ahn, S. J.; Lim, D. H.
2005-12-01
This paper introduces a powerful method for determining hypocentral parameters for local earthquakes in 1-D using a genetic algorithm (GA) and two-point ray tracing. Using existing algorithms to determine hypocentral parameters is difficult, because these parameters can vary based on initial velocity models. We developed a new method to solve this problem by applying a GA to an existing algorithm, HYPO-71 (Lee and Larh, 1975). The original HYPO-71 algorithm was modified by applying two-point ray tracing and a weighting factor with respect to the takeoff angle at the source to reduce errors from the ray path and hypocenter depth. Artificial data, without error, were generated by computer using two-point ray tracing in a true model, in which velocity structure and hypocentral parameters were known. The accuracy of the calculated results was easily determined by comparing calculated and actual values. We examined the accuracy of this method for several cases by changing the true and modeled layer numbers and thicknesses. The computational results show that this method determines nearly exact hypocentral parameters without depending on initial velocity models. Furthermore, accurate and nearly unique hypocentral parameters were obtained, although the number of modeled layers and thicknesses differed from those in the true model. Therefore, this method can be a useful tool for determining hypocentral parameters in regions where reliable local velocity values are unknown. This method also provides the basic a priori information for 3-D studies. KEY -WORDS: hypocentral parameters, genetic algorithm (GA), two-point ray tracing
Zhao, Jiao; Lu, Yunhui; Fan, Chongyang; Wang, Jun; Yang, Yaling
2015-02-05
A novel and simple method for the sensitive determination of trace amounts of nitrite in human urine and blood has been developed by combination of cloud point extraction (CPE) and microplate assay. The method is based on the Griess reaction and the reaction product is extracted into nonionic surfactant Triton-X114 using CPE technique. In this study, decolorization treatment of urine and blood was applied to overcome the interference of matrix and enhance the sensitivity of nitrite detection. Multi-sample can be simultaneously detected thanks to a 96-well microplate technique. The effects of different operating parameters such as type of decolorizing agent, concentration of surfactant (Triton X-114), addition of (NH4)2SO4, extraction temperature and time, interfering elements were studied and optimum conditions were obtained. Under the optimum conditions, a linear calibration graph was obtained in the range of 10-400 ng mL(-1) of nitrite with limit of detection (LOD) of 2.5 ng mL(-1). The relative standard deviation (RSD) for determination of 100 ng mL(-1) of nitrite was 2.80%. The proposed method was successfully applied for the determination of nitrite in the urine and blood samples with recoveries of 92.6-101.2%. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hernández-Caraballo, Edwin A.; Burguera, Marcela; Burguera, José L.
2002-12-01
A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH 4OH+0.05% w/v Triton X-100 ®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO 3) 2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1 -1 Se, corresponding to 30 μg l -1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l -1, with a mean value of 114±22 μg l -1.
Methodology for processing pressure traces used as inputs for combustion analyses in diesel engines
NASA Astrophysics Data System (ADS)
Rašić, Davor; Vihar, Rok; Žvar Baškovič, Urban; Katrašnik, Tomaž
2017-05-01
This study proposes a novel methodology for designing an optimum equiripple finite impulse response (FIR) filter for processing in-cylinder pressure traces of a diesel internal combustion engine, which serve as inputs for high-precision combustion analyses. The proposed automated workflow is based on an innovative approach of determining the transition band frequencies and optimum filter order. The methodology is based on discrete Fourier transform analysis, which is the first step to estimate the location of the pass-band and stop-band frequencies. The second step uses short-time Fourier transform analysis to refine the estimated aforementioned frequencies. These pass-band and stop-band frequencies are further used to determine the most appropriate FIR filter order. The most widely used existing methods for estimating the FIR filter order are not effective in suppressing the oscillations in the rate- of-heat-release (ROHR) trace, thus hindering the accuracy of combustion analyses. To address this problem, an innovative method for determining the order of an FIR filter is proposed in this study. This method is based on the minimization of the integral of normalized signal-to-noise differences between the stop-band frequency and the Nyquist frequency. Developed filters were validated using spectral analysis and calculation of the ROHR. The validation results showed that the filters designed using the proposed innovative method were superior compared with those using the existing methods for all analyzed cases. Highlights • Pressure traces of a diesel engine were processed by finite impulse response (FIR) filters with different orders • Transition band frequencies were determined with an innovative method based on discrete Fourier transform and short-time Fourier transform • Spectral analyses showed deficiencies of existing methods in determining the FIR filter order • A new method of determining the FIR filter order for processing pressure traces was proposed • The efficiency of the new method was demonstrated by spectral analyses and calculations of rate-of-heat-release traces
Wang, Feng; Xu, Shaochun; Zhou, Yi; Wang, Pengmei; Zhang, Xiaomei
2017-06-30
Trace element poisoning remains a great threat to various waterfowl and waterbirds throughout the world. In this study, we determined the trace element exposure of herbivorous whooper swans (Cygnus cygnus) wintering in Swan Lake (Rongcheng), an important swan protection area in northern China. A total of 70 samples including abiotic factors (seawater, sediments), food sources (seagrass, macroalgae), feathers and feces of whooper swans were collected from the marine lagoon during the winters of 2014/2015 and 2015/2016. Concentrations of Cu, Zn, Pb, Cr, Cd, Hg and As were determined to investigate the trace element exposure of whooper swans wintering in the area. Results showed that there was an increasing trend in sediment trace element concentrations, compared with historical data. The trace element concentrations in swan feces most closely resembled those of Zostera marina leaves, especially for Cd and Cr. The Zn and Hg concentrations in the swan feces (49.57 and 0.01mg/kg, respectively) were lower than the minimum values reported in the literature for other waterfowls, waterbirds and terrestrial birds. However, the concentrations of the other five trace elements fell within the lower and mediate range of values reported for birds across the world. These results suggest that the whooper swans wintering in Swan Lake, Rongcheng are not suffering severe trace element exposure; however, with the increasing input of trace elements to the lagoon, severe adverse impacts may occur in the future, and we therefore suggest that the input of trace elements to this area should be curbed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Merkel, Ronny; Gruhn, Stefan; Dittmann, Jana; Vielhauer, Claus; Bräutigam, Anja
2012-03-01
Determining the age of latent fingerprint traces found at crime scenes is an unresolved research issue since decades. Solving this issue could provide criminal investigators with the specific time a fingerprint trace was left on a surface, and therefore would enable them to link potential suspects to the time a crime took place as well as to reconstruct the sequence of events or eliminate irrelevant fingerprints to ensure privacy constraints. Transferring imaging techniques from different application areas, such as 3D image acquisition, surface measurement and chemical analysis to the domain of lifting latent biometric fingerprint traces is an upcoming trend in forensics. Such non-destructive sensor devices might help to solve the challenge of determining the age of a latent fingerprint trace, since it provides the opportunity to create time series and process them using pattern recognition techniques and statistical methods on digitized 2D, 3D and chemical data, rather than classical, contact-based capturing techniques, which alter the fingerprint trace and therefore make continuous scans impossible. In prior work, we have suggested to use a feature called binary pixel, which is a novel approach in the working field of fingerprint age determination. The feature uses a Chromatic White Light (CWL) image sensor to continuously scan a fingerprint trace over time and retrieves a characteristic logarithmic aging tendency for 2D-intensity as well as 3D-topographic images from the sensor. In this paper, we propose to combine such two characteristic aging features with other 2D and 3D features from the domains of surface measurement, microscopy, photography and spectroscopy, to achieve an increase in accuracy and reliability of a potential future age determination scheme. Discussing the feasibility of such variety of sensor devices and possible aging features, we propose a general fusion approach, which might combine promising features to a joint age determination scheme in future. We furthermore demonstrate the feasibility of the introduced approach by exemplary fusing the binary pixel features based on 2D-intensity and 3D-topographic images of the mentioned CWL sensor. We conclude that a formula based age determination approach requires very precise image data, which cannot be achieved at the moment, whereas a machine learning based classification approach seems to be feasible, if an adequate amount of features can be provided.
Anazawa, Takashi; Yokoi, Takahide; Uchiho, Yuichi
2015-09-01
A simple and highly sensitive technique for laser-induced fluorescence detection on multiple channels in a plastic microchip was developed, and its effectiveness was demonstrated by laser-beam ray-trace simulations and experiments. In the microchip, with refractive index nC, A channels and B channels are arrayed alternately and respectively filled with materials with refractive indexes nA for electrophoresis analysis and nB for laser-beam control. It was shown that a laser beam entering from the side of the channel array traveled straight and irradiated all A channels simultaneously and effectively because the refractive actions by the A and B channels were counterbalanced according to the condition nA < nC < nB. This technique is thus called "side-entry laser-beam zigzag irradiation". As a demonstration of the technique, when nC = 1.53, nA = 1.41, nB = 1.66, and the cross sections of both eight A channels and seven B channels were the same isosceles trapezoids with 97° base angle, laser-beam irradiation efficiency on the eight A channels by the simulations was 89% on average and coefficient of variation was 4.4%. These results are far superior to those achieved by other conventional methods such as laser-beam expansion and scanning. Furthermore, fluorescence intensity on the eight A channels determined by the experiments agreed well with that determined by the simulations. Therefore, highly sensitive and uniform fluorescence detection on eight A channels was achieved. It is also possible to fabricate the microchips at low cost by plastic-injection molding and to make a simple and compact detection system, thereby promoting actual use of the proposed side-entry laser-beam zigzag irradiation in various fields.
Trace element analysis of soil type collected from the Manjung and central Perak
NASA Astrophysics Data System (ADS)
Azman, Muhammad Azfar; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che
2015-04-01
Trace elements in soils primarily originated from their parent materials. Parents' material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.
Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Krasner, Stuart W; Templeton, Michael R
2012-04-27
The haloacetamides (HAcAms) are disinfection by-products (DBPs) in drinking water which are currently receiving increased scientific attention due to their elevated toxicity relative to regulated disinfection by-products. A simultaneous determination method of 13 HAcAms, combining solid-phase extraction (SPE) enrichment, liquid chromatographic (LC) separation, and triple quadrupole mass spectrometry (tqMS) detection with atmospheric pressure chemical ionization (APCI) using selective reaction monitoring in positive mode, was developed to measure HAcAms, including chlorinated, brominated, and iodinated analogs. Ammonium chloride and Oasis HLB were selected as the dechlorinating reagent and polymeric SPE sorbent of HAcAm samples. The used tqMS apparatus showed higher sensitivity for the studied HAcAms in the APCI mode than electrospray ionization. 13 HAcAms were separated by LC in 9.0 min, and the detection limits ranged from 7.6 to 19.7 ng/L. The SPE-LC/tqMS method was successfully applied to quantify 13 HAcAms in drinking water samples for the first time, and first indentified tribromoacetamide and chloroiodoacetamide as DBPs in drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.
Gibb, Stuart W.; Wood, John W.; Fauzi, R.; Mantoura, C.
1995-01-01
The automation and improved design and performance of Flow Injection Gas Diffusion-Ion Chromatography (FIGD-IC), a novel technique for the simultaneous analysis of trace ammonia (NH3) and methylamines (MAs) in aqueous media, is presented. Automated Flow Injection Gas Diffusion (FIGD) promotes the selective transmembrane diffusion of MAs and NH3 from aqueous sample under strongly alkaline (pH > 12, NaOH), chelated (EDTA) conditions into a recycled acidic acceptor stream. The acceptor is then injected onto an ion chromatograph where NH3 and the MAs are fully resolved as their cations and detected conductimetrically. A versatile PC interfaced control unit and data capture unit (DCU) are employed in series to direct the selonoid valve switching sequence, IC operation and collection of data. Automation, together with other modifications improved both linearily (R2 > 0.99 MAs 0-100 nM, NH3 0-1000 nM) and precision (<8%) of FIGD-IC at nanomolar concentrations, compared with the manual procedure. The system was successfully applied to the determination of MAs and NH3 in seawater and in trapped particulate and gaseous atmospheric samples during an oceanographic research cruise. PMID:18925047
Stahl, Jessica; Zessel, Katrin; Schulz, Jochen; Finke, Jan Henrik; Müller-Goymann, Christel Charlotte; Kietzmann, Manfred
2016-04-01
Due to antibiotic treatment of humans and animals, the prevalence of bacterial resistances increases worldwide. Especially in livestock farming, large quantities of faeces contaminated with antibiotics pose a risk of the carryover of the active ingredient to the environment. Accordingly, the aim of the present study was the evaluation of the benefit of different oral dosage forms (powder, pellets, granula) in pigs concerning the environmental pollution of sulfadiazine. Two subtherapeutic dosages were evaluated in powder mixtures to gain information about their potential to pollute the pig barn. Furthermore, a new group of pigs was kept in the stable after powder feeding of another pig group to determine the possible absorption of environmentally distributed antibiotics. Pigs were orally treated with three dosage forms. Simultaneously, sedimentation and airborne dust were collected and plasma and urine levels were determined. All formulations result in comparable plasma and urine levels, but massive differences in environmental pollution (powder > pellets, granula). Pigs housing in a contaminated barn exhibit traces of sulfadiazine in plasma and urine. Using pharmaceutical formulations like pellets or granula, the environmental pollution of sulfonamides can significantly be diminished due to massive dust reduction during feeding.
Samadi, Fatemeh; Sarafraz-Yazdi, Ali; Es'haghi, Zarrin
2018-05-30
A vortex assisted dispersive solid phase extraction approach (VADSPE) based on crab shell powder as biodegradable and biocompatible μ-sorbent was developed for simultaneous analysis of three benzodiazepines (BZPs): Oxazepam, Flurazepamand Diazepam, in biological matrixes included blood, nail, hair and urine samples. The effective parameters in VADSPE process, including the volume of uptake solvent, the dosage of sorbent, extraction time and back extraction time, were optimized using response surface methodology(RSM) based on central composite design(CCD). The suggested technique allows successful trapping of BZPs in a single-step extraction. Under the optimized extraction conditions, the proposed approach was exhibited low limits of detection (0.003-1.2 μg·mL -1 ), an acceptable linearity (0.04-20 μg·mL -1 ). Method performance was assessed by recovery experiments at spiking levels of 10 μg·mL -1 (n = 5) for BZPs in blood, nail, hair and urine samples. Relative recoveries were determined by HPLC, which were between 36%and 95.6%. Copyright © 2018. Published by Elsevier B.V.
Hurtado-Sánchez, María Del Carmen; Lozano, Valeria A; Rodríguez-Cáceres, María Isabel; Durán-Merás, Isabel; Escandar, Graciela M
2015-03-01
An eco-friendly strategy for the simultaneous quantification of three emerging pharmaceutical contaminants is presented. The proposed analytical method, which involves photochemically induced fluorescence matrix data combined with second-order chemometric analysis, was used for the determination of carbamazepine, ofloxacin and piroxicam in water samples of different complexity without the need of chromatographic separation. Excitation-emission photoinduced fluorescence matrices were obtained after UV irradiation, and processed with second-order algorithms. Only one of the tested algorithms was able to overcome the strong spectral overlapping among the studied pollutants and allowed their successful quantitation in very interferent media. The method sensitivity in superficial and underground water samples was enhanced by a simple solid-phase extraction with C18 membranes, which was successful for the extraction/preconcentration of the pollutants at trace levels. Detection limits in preconcentrated (1:125) real water samples ranged from 0.04 to 0.3 ng mL(-1). Relative prediction errors around 10% were achieved. The proposed strategy is significantly simpler and greener than liquid chromatography-mass spectrometry methods, without compromising the analytical quality of the results. Copyright © 2014 Elsevier B.V. All rights reserved.
On-line MSPD-SPE-HPLC/FLD analysis of polycyclic aromatic hydrocarbons in bovine tissues.
Gutiérrez-Valencia, Tania M; García de Llasera, Martha P
2017-05-15
A fast method was optimized and validated for simultaneous trace determination of four polycyclic aromatic hydrocarbons: benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[a]pyrene in bovine tissues. The determination was performed by matrix solid-phase dispersion (MSPD) coupled on-line to solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with fluorescence detection (FLD). The sample was dispersed on C 18 silica sorbent and then the on-line MSPD-SPE-HPLC/FLD method was applied. Several parameters were optimized: cleaning and elution sequences applied to the MSPD cartridge, the flow rate and dilution of extract used for SPE loading. The on-line method was validated over a concentration range of 0.1-0.6ngg -1 obtaining good linearity (r⩾0.998) and precision (RSD)⩽10%. Recovery ranged from 96 to 99% and the limits of detection were 0.012ngg -1 . This methodology was applied to liver samples from unhealthy animals. The results demonstrate that MSDP-SPE-HPLC/FLD method provides reliable, sensitive, accurate and fast data to the food control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhao, Yan; Yang, Xing-Bin; Jiang, Ru; Sun, Xiao-Li; Li, Xiao-Ye; Liu, Wen-Min; Zhang, Sheng-Yong
2006-02-01
A new capillary electrophoresis (CE) method has been achieved for simultaneous separation and quantification of phenylalanine, N-acetylphenylalanine enantiomers, and prochiral N-acetylaminocinnamic acid, possibly co-existent in reaction systems or synthesized products of D-phenylalanine. The separation was carried out in an uncoated capillary under reversed-electrophoretic mode. Among the diverse charged cyclodextrins (CDs) examined, highly sulfated (HS)-beta-CD as the chiral selector exhibited the best enantioselectivity. The complete separation of the analytes was obtained under the optimum conditions of pH 2.5, 35 mM Tris buffer containing 4% HS-beta-CD, applied voltage -15 kV, and capillary temperature 25 degrees C. Furthermore, the proposed method was applied to the determination of optical purity and trace impurities in three batches of the asymmetric synthetic samples of D-phenylalanine, and satisfactory results were obtained. The determination recoveries of the samples were in the range of 97.8-103.8%, and precisions fell within 2.3-5.0% (RSD). The results demonstrate that this CE method is a useful, simple technique and is applicable to purity assays of D-phenylalanine. (c) 2005 Wiley-Liss, Inc.
Malone, E; Elliott, C; Kennedy, G; Savage, D; Regan, L
2011-05-01
A simple, new method permitting the simultaneous determination and confirmation of trace residues of 24 different growth promoters and metabolites using liquid chromatography-mass spectrometry was developed and validated. The compounds were extracted from bovine tissue using acetonitrile; sodium sulphate was also added at this stage to aid with purification. The resulting mixture was then evaporated to approximately 1 ml and subsequently centrifuged at high speed and an aliquot injected onto the LC-MS/MS system. The calculated CCα values ranged between 0.11 and 0.46 µg kg(-1); calculated CCβ were in the range 0.19-0.79 µg kg(-1). Accuracy, measurement of uncertainty, repeatability and linearity were also determined for each analyte. The analytical method was applied to a number of bovine tissue samples imported into Ireland from third countries. Levels of progesterone were found in a number of samples at concentrations ranging between 0.28 and 30.30 µg kg(-1). Levels of alpha- and beta-testosterone were also found in a number of samples at concentrations ranging between 0.22 and 8.63 µg kg(-1) and between 0.16 and 2.08 µg kg(-1) respectively.
Liu, Jia-Ming; Lin, Li-ping; Jiao, Li; Cui, Ma-Lin; Wang, Xin-Xing; Zhang, Li-Hong; Zheng, Zhi-Yong
2012-08-30
The CdS/TiO(2)-fluorescein isothiocyanate (FITC) luminescent nanoparticles (CdS/TiO(2)-FITC) with the particle size of 20 nm have been synthesized by sol-gel method. CdS/TiO(2)-FITC could emit the fluorescence of both FITC and CdS/TiO(2). The fluorescence resonance energy transfer (FRET) occurred between the donor CdS/TiO(2) and the acceptor FITC in the CdS/TiO(2)-FITC. Taking advantages of the excellent characteristics of FRET, a new CdS/TiO(2)-FITC FRET labeling reagent and a CdS/TiO(2)-FITC-wheat germ agglutinin (CdS/TiO(2)-FITC-WGA) fluorescent probe have been developed. The FRET occurring between the donor CdS/TiO(2) and the acceptor FITC in the labelled product CdS/TiO(2)-FITC-WGA-AP, formed in the affinity adsorption reaction between the WGA in this CdS/TiO(2)-FITC-WGA fluorescent probe and alkaline phosphatase (AP), sharply enhanced the fluorescence signal of FITC and quench the fluorescence signal of CdS/TiO(2). Moreover, the ΔF (the change of the fluorescence signal) of FITC and CdS/TiO(2) were proportional to the content of AP, respectively. Thus, a new method that CdS/TiO(2)-fluorescein isothiocyanate nanoparticles for the determination of trace AP based on FRET-affinity adsorption assay has been established. The limit of quantification (LOQ) of the method was 1.3×10(-17) g AP mL(-1) for CdS/TiO(2) and 1.1×10(-17) g AP mL(-1) for FITC, respectively. This sensitive, rapid, high selective and precise method has been applied to the determination of AP in human serum and the prediction of human disease with the results agreed well with enzyme-linked immunosorbent assay (ELISA) in Zhangzhou Municipal Hospital of Fujian Province. Simultaneously, the reaction mechanism for the determination of AP was also discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Li, Xiang; Yuan, Yan; Huang, Yong; Liu, Heng-Wei; Bi, Zhen; Yuan, Yi; Yang, Peng-Bin
2018-08-01
The feasibility of using Feammox coupled with nitrate-dependent Fe(II) oxidizing (NAFO) to cause the simultaneous conversion of NH 4 + and NO 3 - was explored by inoculation with Feammox sludge and the use Fe cycling as catalyst. After 61days operation, the simultaneous conversion of NO 3 - and NH 4 + occurred with the presence of interconversion between Fe(III) and Fe(II). The conversion ratio of NH 4 + to NO 3 - stabilized at 0.9-1. The results of isotopic tracing and microbial diversity analysis indicated that NH 4 + was first oxidized to NO 2 - by Fe(III), then NO 3 - was reduced to NO 2 - and N 2 by the Fe(II) produced in Feammox process, and finally, the NO 2 - produced in NAFO process underwent an Anammox process with the remaining NH 4 + to yield N 2 . The results showed the simultaneous continuous conversion process of NO 3 - and NH 4 + with limited Fe as a catalyst was a coupled process of Feammox, Anammox, and NAFO under the anaerobic conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Yao, Lipeng
2014-08-01
Portable X-ray fluorescence (PXRF) spectrometry may be very suitable for a fast and effective environmental assessment and source identification of trace metals in soils. In this study, topsoils (0-10 cm) at 139 sites were in situ scanned for total trace metals (Cr, Cu, Ni, Pb and Zn) and arsenic concentrations by PXRF in a typical town in Yangtze Delta region of Jiangsu province, China. To validate the utility of PXRF, 53 samples were collected from the scanning sites for the determination of selected trace metals using conventional methods. Based on trace metal concentrations detected by in situ PXRF, the contamination extent and sources of trace metals were studied via geo-accumulation index, multivariate analysis and geostatistics. The trace metal concentrations determined by PXRF were similar to those obtained via conventional chemical analysis. The median concentration of As, Cr, Cu, Ni, Pb and Zn in soils were 10.8, 56.4, 41.5, 43.5, 33.5, and 77.7 mg kg(-1), respectively. The distribution patterns of Cr, Cu, Ni, Pb, and Zn were mostly affected by anthropogenic sources, while As was mainly derived from lithogenic sources. Overall, PXRF has been successfully applied to contamination assessment and source identification of trace metals in soils.
Pirat, Bahar; McCulloch, Marti L; Zoghbi, William A
2006-09-01
This study sought to demonstrate that a novel speckle-tracking method can be used to assess right ventricular (RV) global and regional systolic function. Fifty-eight patients with pulmonary arterial hypertension (11 men; mean age 53 +/- 14 years) and 19 age-matched controls were studied. Echocardiographic images in apical planes were analyzed by conventional manual tracing for volumes and ejection fractions and by novel software (Axius Velocity Vector Imaging). Myocardial velocity, strain rate, and strain were determined at the basal, mid, and apical segments of the RV free wall and ventricular septum by Velocity Vector Imaging. RV volumes and ejection fractions obtained with manual tracing correlated strongly with the same indexes obtained by the Velocity Vector Imaging method in all subjects (r = 0.95 to 0.98, p < 0.001 for all). Peak systolic myocardial velocities, strain rate, and strain were significantly impaired in patients with pulmonary arterial hypertension compared with controls and were most altered in patients with the most severe pulmonary arterial hypertension (p < 0.05 for all). Pulmonary artery systolic pressure and a Doppler index of pulmonary vascular resistance were independent predictors of RV strain (r = -0.61 and r = -0.65, respectively, p < 0.05 for both). In conclusion, the new automated Velocity Vector Imaging method provides simultaneous quantitation of global and regional RV function that is angle independent and can be applied retrospectively to already stored digital images.
Studies of LA-ICP-MS on quartz glasses at different wavelengths of a Nd:YAG laser.
Becker, J S; Tenzler, D
2001-07-01
The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9-1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1-10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.
NASA Astrophysics Data System (ADS)
Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing
2013-08-01
Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.
Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing
2013-01-01
Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring. PMID:23982222
Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing
2013-01-01
Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.
NASA Technical Reports Server (NTRS)
Lindstrom, David J.; Lindstrom, Richard M.
1989-01-01
Prompt gamma activation analysis (PGAA) is a well-developed analytical technique. The technique involves irradiation of samples in an external neutron beam from a nuclear reactor, with simultaneous counting of gamma rays produced in the sample by neutron capture. Capture of neutrons leads to excited nuclei which decay immediately with the emission of energetic gamma rays to the ground state. PGAA has several advantages over other techniques for the analysis of cometary materials: (1) It is nondestructive; (2) It can be used to determine abundances of a wide variety of elements, including most major and minor elements (Na, Mg, Al, Si, P, K, Ca, Ti, Cr, Mn, Fe, Co, Ni), volatiles (H, C, N, F, Cl, S), and some trace elements (those with high neutron capture cross sections, including B, Cd, Nd, Sm, and Gd); and (3) It is a true bulk analysis technique. Recent developments should improve the technique's sensitivity and accuracy considerably.
NASA Technical Reports Server (NTRS)
Sears, B.; Narayanan, R.; Anderson, T. J.; Fripp, A. L.
1992-01-01
An electrochemical titration method was used to investigate the dynamic states in a cylindrical layer of convecting tin. The liquid tin was contained in a cell, with curved boundaries made of quartz and flat boundaries made of a solid state electrolyte - yttria-stabilized zirconia (YSZ). The electrolyte acted as a window through which a trace amount of oxygen could be pumped in or out by the application of a constant voltage. The concentration at the YSZ interface was monitored by operating the electrochemical cell in the galvanic mode. Experimentally determined effective diffusivities of oxygen were compared with the molecular diffusivity. Dynamic states in the convective flow were thus inferred. Temperature measurements were simultaneously made in order to identify the onset of oscillations from a steady convective regime. The experiments were conducted for two different aspect ratios for various imposed temperature gradients and two different orientations with respect to gravity. Transcritical states were identified and comparison to two-dimensional numerical models were made.
Multiplexed HTS rf SQUID magnetometer array for eddy current testing of aircraft rivet joints
NASA Astrophysics Data System (ADS)
Gärtner, S.; Krause, H.-J.; Wolters, N.; Lomparski, D.; Wolf, W.; Schubert, J.; Kreutzbruck, M. v.; Allweins, K.
2002-05-01
Using three rf SQUID magnetometers, a multiplexed SQUID array was implemented. The SQUIDs are positioned in line with 7 mm spacing and operated using one feedback electronics with sequential read out demodulation at different radio frequencies (rf). The cross-talk between SQUID channels was determined to be negligible. To show the performance of the SQUID array, eddy current (EC) measurements of aluminum aircraft samples in conjunction with a differential (double-D) EC excitation and lock-in readout were carried out. With computer-controlled continuous switching of the SQUIDs during the scan, three EC signal traces of the sample are obtained simultaneously. We performed measurements with an EC excitation frequency of 135 Hz to localize an artificial crack (sawcut flaw) of 20 mm length in an aluminum sheet with 0.6 mm thickness. The flaw was still detected when covered with aluminum of up to 10 mm thickness. In addition, measurements with varying angles between scanning direction and flaw orientation are presented.
Martin-Esteban, A; Slowikowski, B; Grobecker, K H
2004-06-17
Solid sampling-electrothermal vaporisation-inductively coupled plasma-mass spectrometry (SS-ETV-ICP-MS) is an attractive technique for the direct simultaneous determination of trace elements in solid samples and especially in long-term studies (i.e. assessment of the homogeneity of reference materials). However, during these studies a downward drift in the instrument sensitivity has been observed due likely to deposits on the sampling and skimmer cones and on the ion lens of the mass spectrometer. Accordingly, in this paper, several means of correcting and/or suppressing sensitivity drift are proposed and evaluated for the monitoring of Cd, Cu, Hg, Mn, Pb, Sb, Se, Sn, Tl, U and V in different reference materials of inorganic and organic (biological) origin. From that studies, the combination of the use of the argon dimer as internal standard together with a modification in the ETV-ICP connection tube seems to be the best mean of getting stable sensitivity during at least 60 consecutive ETV runs.
Navarrete, Andres; Avula, Bharathi; Choi, Young-Whan; Khan, Ikhlas A
2006-01-01
The roots and rhizomes of various valeriana species are currently used as a sleeping aid or mild sedative. A liquid chromatography method has been developed that permits the analysis of chlorogenic acid, lignans, flavonoids, valerenic acids, and valpotrates in various valerian samples. The best results were obtained with a Phenomenex Luna C18(2) column using gradient elution with a mobile phase consisting of water and 0.05% phosphoric acid and 2-100% acetonitrile-methanol (1 + 1) with 0.05% phosphoric acid. The flow rate was 0.8 mL/min and ultraviolet detection was at 207, 225, 254, 280, and 325 nm. Different valerian species and commercial products showed remarkable quantitative variations. Chlorogenic acid (0.2-1.2%), 3 lignans, linarin (0.002-0.24%), and valepotriates were detected in all the valeriana species analyzed. Highest amounts of valerenic acids were detected in V. officinalis L., trace amounts in V. sitchensis, and none in the other species analyzed.
Nuclear microscopy of diffuse plaques in the brains of transgenic mice
NASA Astrophysics Data System (ADS)
Rajendran, Reshmi; Ren, Minqin; Casadesus, Gemma; Smith, Mark A.; Perry, George; Huang, En; Ong, Wei Yi; Halliwell, Barry; Watt, Frank
2005-04-01
Using nuclear microscopy, extracellular diffuse amyloid deposits in fresh unstained brain tissue from Alzheimer's disease transgenic mice Tg2576 have been identified and analyzed for trace element content. Off-axis scanning transmission ion microscopy (STIM) images can be obtained which are similar to the images produced using direct STIM. Since the proton beam current required for off-axis STIM is compatible with PIXE and RBS, we can identify the plaque location and analyze for trace elements simultaneously. Analysis of the diffuse plaques showed an increase in the transition metals iron and zinc compared with the surrounding area of comparable areal density. This supports the theory that redox interactions between Aβ and metals could be at the heart of a pathological feedback system wherein Aβ amyloidosis and oxidative stress promote each other, possibly via Fenton chemistry.
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Guo, J.; Carli, B.; Mencaraglia, F.; Bonetti, A.
1987-01-01
FIR limb thermal emission spectra obtained from balloon-borne measurements made as a part of the Balloon Intercomparison Campaign (BIC) have been analyzed for retrieval of stratospheric trace-constituent distributions. The measurements were made with a high-resolution Michelson interferometer and covered the 15-180/cm spectral range with an unapodized spectral resolution of 0.0033/cm. The retrieved vertical profiles of O3, H2O, HDO, HCN, CO, and isotopes of O3 are presented. The results are compared with the BIC measurements for O3 and H2O made from the same balloon gondola and with other published data. A comparison of the simultaneously retrieved profiles for several gases with the published data shows good agreement and indicates the validity of the FIR data and retrieval techniques and the accuracy of the inferred profiles.
We describe an inexpensive, compact parallel plate diffusion denuder coupled capillary IC system for the determination of soluble ionogenic atmospheric trace gases. The active sampling area (0.6×10 cm) of the denuder is formed in a novel manner by thermally bonding silica ge...
Nie, Feng; Hao, Liang; Gao, Mei; Wu, Yingchun; Li, Xinsheng; Yu, Sha
2011-01-01
The Cu(2+)-imprinted cross-linked chitosan resin was synthesized and the binding characteristic of the resin to Cu(2+) was evaluated. The prepared resin was packed into a micro-glass column and used as micro-separating column. The micro-separating column was connected into the chemiluminescence flow system and placed in front of the window of the photomultiplier tube. Based on the luminol-hydrogen peroxide chemiluminescence system, a flow injection online chemiluminescence method for determination of trace copper was developed and trace Cu(2+) in complex samples was successfully determined. The proposed method improved the shortcomings of chemiluminescence method's poor selectivity. Copyright © 2010 John Wiley & Sons, Ltd.
Determination of Trace Concentration in TMD Detectors using PGAA
NASA Astrophysics Data System (ADS)
Tomandl, I.; Viererbl, L.; Kudějová, P.; Lahodová, Z.; Klupák, V.; Fikrle, M.
2015-05-01
Transmutation detectors could be alternative to the traditional activation detector method for neutron fluence dosimetry at power nuclear reactors. This new method require an isotopically highly-sensitive, non-destructive in sense of compactness as well as isotopic content, precise and standardly used analytical method for trace concentration determination. The capability of Prompt Gamma-ray Activation Analysis (PGAA) for determination of trace concentrations of transmuted stable nuclides in the metallic foils of Ni, Au, Cu and Nb, which were irradiated for 21 days in the reactor core at the LVR-15 research reactor in Řež, is reported. The PGAA measurements of these activation foils were performed at the PGAA facility at Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII) in Garching.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markel, D; Levesque, I R.; Larkin, J
Purpose: To produce multi-modality compatible, realistic datasets for the joint evaluation of segmentation and registration with a reliable ground truth using a 4D biomechanical lung phantom. The further development of a computer controlled air flow system for recreation of real patient breathing patterns is incorporated for additional evaluation of motion prediction algorithms. Methods: A pair of preserved porcine lungs was pneumatically manipulated using an in-house computer controlled respirator. The respirator consisted of a set of bellows actuated by a 186 W computer controlled industrial motor. Patient breathing traces were recorded using a respiratory bellows belt during CT simulation and inputmore » into a control program incorporating a proportional-integral-derivative (PID) feedback controller in LabVIEW. Mock tumors were created using dual compartment vacuum sealed sea sponges. 65% iohexol,a gadolinium-based contrast agent and 18F-FDG were used to produce contrast and thus determine a segmentation ground truth. The intensity distributions of the compartments were then digitally matched for the final dataset. A bifurcation tracking pipeline provided a registration ground truth using the bronchi of the lung. The lungs were scanned using a GE Discovery-ST PET/CT scanner and a Phillips Panorama 0.23T MRI using a T1 weighted 3D fast field echo (FFE) protocol. Results: The standard deviation of the error between the patient breathing trace and the encoder feedback from the respirator was found to be ±4.2%. Bifurcation tracking error using CT (0.97×0.97×3.27 mm{sup 3} resolution) was found to be sub-voxel up to 7.8 cm displacement for human lungs and less than 1.32 voxel widths in any axis up to 2.3 cm for the porcine lungs. Conclusion: An MRI/PET/CT compatible anatomically and temporally realistic swine lung phantom was developed for the evaluation of simultaneous registration and segmentation algorithms. With the addition of custom software and mock tumors, the entire package offers ground truths for benchmarking performance with high fidelity.« less
Gramlich, John W.; Murphy, Thomas J.
1989-01-01
A method has been developed for the determination of trace level iodine in biological and botanical materials. The method consists of spiking a sample with 129I, equilibration of the spike with the natural iodine, wet ashing under carefully controlled conditions, and separation of the iodine by co-precipitation with silver chloride. Measurement of the 129I/127I ratio is accomplished by negative thermal ionization mass spectrometry using LaB6 for ionization enhancement. The application of the method to the certification of trace iodine in two Standard Reference Materials is described. PMID:28053411
Fuhrer, Gregory J.; Cain, Daniel J.; McKenzie, Stuart W.; Rinella, Joseph F.; Crawford, J. Kent; Skach, Kenneth A.; Hornberger, Michelle I.; Gannett, Marshall W.
1999-01-01
The report describes the distribution of trace elements in sediment, water, and aquatic biota in the Yakima River basin, Washington. Trace elements were determined from streambed sediment, suspended sediment, filtered and unfiltered water samples, aquatic insects, clams, fish livers, and fish fillets between 1987 and 1991. The distribution of trace elements in these media was related to local geology and anthropogenic sources. Additionally, annual and instantaneous loads were estimated for trace elements associated with suspended sediment and trace elements in filtered water samples. Trace elements also were screened against U.S. Environmental Protection Agency guidelines established for the protection of human health and aquatic life.
Mofidi, Zahra; Norouzi, Parviz; Sajadian, Masumeh; Ganjali, Mohammad Reza
2018-04-01
A novel, simple, and inexpensive analytical technique based on flat sheet supported liquid membrane microextraction coupled with fast Fourier transform stripping cyclic voltammetry on a reduced graphene oxide carbon paste electrode was used for the extraction and online determination of diclofenac in whole blood. First, diclofenac was extracted from blood samples using a polytetrafluoroethylene membrane impregnated with 1-octanol and then into an acceptor solution, subsequently it was oxidized on a carbon paste electrode modified with reduced graphene oxide nanosheets. The optimal values of the key parameters influencing the method were as follows: scan rate, 6 V/s; stripping potential, 200 mV; stripping time, 5 s; pH of the sample solution, 5; pH of the acceptor solution,7; and extraction time, 240 min. The calibration curves were plotted for the whole blood samples and the method was found to have a good linearity within the range of 1-25 μg/mL with a determination coefficient of 0.99. The limits of detection and quantification were 0.1 and 1.0 μg/mL, respectively. Using this coupled method, the extraction and determination were merged into one step. Accordingly, the speed of detection for sensitive determination of diclofenac in complex samples, such as blood, increased considerably. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of ray-traced tropospheric slant delays to geodetic VLBI analysis
NASA Astrophysics Data System (ADS)
Hofmeister, Armin; Böhm, Johannes
2017-08-01
The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC) (Eriksson and MacMillan in http://lacerta.gsfc.nasa.gov/tropodelays, 2016) with respect to the analysis performances in terms of BLR results. If tropospheric gradient estimation is included in the analysis, 51.3% of the baselines benefit from the RADIATE ray-traced delays at sub-mm difference level. If no tropospheric gradients are estimated within the analysis, the RADIATE ray-traced delays deliver a better BLR at 63% of the baselines compared to the NASA GSFC ray-traced delays.
Temperature and Gravity Dependence of Trace Element Abundances in Hot DA White Dwarfs (94-EUVE-094)
NASA Technical Reports Server (NTRS)
Finley, David S.
1998-01-01
EUV spectroscopy has shown that DA white dwarfs hotter than about 45,000 K may contain trace heavy elements, while those hotter than about 50,000 K almost always have significant abundances of trace heavy elements. One of our continuing challenges is to identify and determine the abundances of these trace constituents, and then to relate the observed abundance patterns to the present conditions and previous evolutionary histories of the hot DA white dwarfs.
Ray-trace analysis of glancing-incidence X-ray optical systems
NASA Technical Reports Server (NTRS)
Foreman, J. W., Jr.; Cardone, J. M.
1976-01-01
The results of a ray-trace analysis of several glancing-incidence X-ray optical systems are presented. The object of the study was threefold. First, the vignetting characteristics of the S-056 X-ray telescope were calculated using experimental data to determine mirror reflectivities. Second, a small Wolter Type I X-ray telescope intended for possible use in the Geostationary Operational Environmental Satellite program was designed and ray traced. Finally, a ray-trace program was developed for a Wolter-Schwarzschild X-ray telescope.
NASA Astrophysics Data System (ADS)
Tsai, J.; Pikelnaya, O.; Hurlock, S. C.; Wong, K.; Cheung, R.; Haman, C. L.; Lefer, B. L.; Stutz, J.
2010-12-01
Nocturnal chemistry, through the conversion and removal of air pollutants, plays an important role in determining the initial condition for photochemistry during the following day. In the stable nocturnal boundary layer (NBL) the interplay between suppressed vertical mixing and surface emissions of NOx and VOCs can result in pronounced vertical trace gas profiles. The resulting altitude dependence of nocturnal chemistry makes the interpretation of ground observations challenging. In particular, the quantification of the nocturnal loss of NOx, due to NO3 and N2O5 chemistry, requires observations throughout the entire vertical extent of the NBL. The formation of daytime radical precursors, such as HONO, is also altitude dependent. An accurate assessment of their impact on daytime chemistry requires measurements of their profiles during the night and morning. Here we present observations from the CalNex-LA experiment, which took place from May 15 to June 15, 2010 on the east side of the Los Angeles Basin, CA. A Long-Path Differential Optical Absorption Spectrometer (LP-DOAS) was set up on the roof of the Millikan library (265 m asl, 35m agl) on the campus of the California Institute of Technology. Four retroreflector arrays were mounted about 5 -7 km North-East of the instrument at 310m, 353m, 487m and 788 m asl. The vertical profiles of NO3, HONO, NO2, O3, HCHO, and SO2 were retrieved at altitude intervals of 35-78m, 78-121m, 121-255m and 255-556m above the ground. During many nights vertical gradients were observed, with elevated NO2 and HONO concentrations near the surface and larger ozone and NO3 concentrations aloft. Simultaneous ceilometer observations of the NBL structure show the impact of meteorology on the vertical trace gas distributions. We will discuss the consequences of trace gases gradients on the nocturnal NOx budget.
NASA Astrophysics Data System (ADS)
Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen
2014-05-01
Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was humidified. The difference in perceived CO concentration showed a clear correlation to the water vapor content in the sample air. For COS we could show that changes in water vapor also impacted on the perceived COS concentrations; the raise of the water vapor concentration would lead to an increasing underestimation of the COS concentration. Drying the air using a Nafion Dryer before entering the COS/CO Analyzer eliminated any water vapor induced artifacts and showed no adverse effects on the quality of the conducted measurements. *Integrated cavity output spectroscopy
Canovas, Carmen; van der Mooren, Marrie; Rosén, Robert; Piers, Patricia A; Wang, Li; Koch, Douglas D; Artal, Pablo
2015-05-01
To determine the impact of the equivalent refractive index (ERI) on intraocular lens (IOL) power prediction for eyes with previous myopic laser in situ keratomileusis (LASIK) using custom ray tracing. AMO B.V., Groningen, the Netherlands, and the Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA. Retrospective data analysis. The ERI was calculated individually from the post-LASIK total corneal power. Two methods to account for the posterior corneal surface were tested; that is, calculation from pre-LASIK data or from post-LASIK data only. Four IOL power predictions were generated using a computer-based ray-tracing technique, including individual ERI results from both calculation methods, a mean ERI over the whole population, and the ERI for normal patients. For each patient, IOL power results calculated from the four predictions as well as those obtained with the Haigis-L were compared with the optimum IOL power calculated after cataract surgery. The study evaluated 25 patients. The mean and range of ERI values determined using post-LASIK data were similar to those determined from pre-LASIK data. Introducing individual or an average ERI in the ray-tracing IOL power calculation procedure resulted in mean IOL power errors that were not significantly different from zero. The ray-tracing procedure that includes an average ERI gave a greater percentage of eyes with an IOL power prediction error within ±0.5 diopter than the Haigis-L (84% versus 52%). For IOL power determination in post-LASIK patients, custom ray tracing including a modified ERI was an accurate procedure that exceeded the current standards for normal eyes. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Naga Raju, G. J.; Sarita, P.; Murthy, K. S. R.
2017-08-01
Particle Induced X-ray Emission (PIXE), an accelerator based analytical technique has been employed in this work for the analysis of trace elements in the cancerous and non-cancerous tissues of rectal cancer patients. A beam of 3 MeV protons generated from 3 MV Pelletron accelerator at the Ion Beam Laboratory of Institute of Physics, Bhubaneswar, India was used as projectile to excite the atoms present in the tissues samples. PIXE technique, with its capability to detect simultaneously several elements present at very low concentrations, offers an excellent tool for trace element analysis. The characteristic X-rays emitted by the samples were recorded by a high resolution Si (Li) detector. On the basis of the PIXE spectrum obtained for each sample, the elements Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Br were identified and their relative concentrations were estimated in the cancerous and non-cancerous tissues of rectum. The levels of Mn, Fe, Co, Cu, Zn, and As were higher (p < 0.005) while the levels of Ca, Cr and Ni were lower (p < 0.005) in the cancer tissues relative to the normal tissues. The alterations in the levels of the trace elements observed in the present work are discussed in this paper with respect to their potential role in the initiation, promotion and inhibition of cancer of the rectum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slavic, I.; Draskovic, R.; Tasovac, T.
1973-03-01
A computer program for the determination of trace elements in components of the water systems bed material, suspended material, dissolved substances, plankton, algae) by nondestructive activation analysis was developed. Results of the determination of Cr, Sb, Sc, Fe, Co, Na, and La concentrations in suspended materials from the Danube river, obtained by interpretation of data with a CDC- 3600 computer (64 k words), are presented. (auth)
NASA Astrophysics Data System (ADS)
Yu, Jie; Zhang, Xiaomin; Lu, Quanfang; Sun, Duixiong; Wang, Xing; Zhu, Shuwen; Zhang, Zhichao; Yang, Wu
2018-07-01
In this paper, a novel liquid cathode glow discharge (LCGD) was established as a micro-plasma excitation source of atomic emission spectrometry (AES) for simultaneous detection of trace Cu, Co and Ni in aqueous solution. In order to evaluate the analytical performance, the operating parameters such as discharge voltage, supporting electrolyte, solution pH and flow rate were thoroughly investigated. The results showed that the optimal conditions are 640 V discharge voltage, pH = 1 HNO3 as supporting electrolyte and 4.5 mL min-1 flow rate. The R2 of Cu, Co and Ni are 0.9977, 0.9991 and 0.9977, respectively. The relative standard deviation (RSD) is 1.4% for Cu, 3.2% for Co and 0.8% for Ni. Under this condition, the power of LCGD is below 55 W and the plasma is quite stable. The limits of detections (LODs) for Cu, Co and Ni are 0.380, 0.080, and 0.740 mg L-1, respectively, which are basically consistent with the closed-type electrolyte cathode atmospheric glow discharge (ELCAD). Compared with ICP-AES, the LCGD-AES has small size, low power consumption, no inert gas requirement and low cost in set-up. It may be developed as a portable instrument for in-site and real-time monitoring of metals in solution samples with further improvement.
Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities
NASA Astrophysics Data System (ADS)
Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel
2014-05-01
Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which is determined by calcination and pH. For the determination of mercury, an aliquot of 10 mL of sample with 5 mL of the reducing agent 2 % SnCl2, purged with air by atomic absorption spectrophotometry by cold vapor, EAAVF is being used. The determination of other trace elements (Zn, Cd and Pb) is analyzed by flame atomic absorption spectroscopy (FAAS).
Hoffman, Gerald L.
1996-01-01
A method for the chemical preparation of tissue samples that are subsequently analyzed for 22 trace metals is described. The tissue-preparation procedure was tested with three National Institute of Standards and Technology biological standard reference materials and two National Water Quality Laboratory homogenized biological materials. A low-temperature (85 degrees Celsius) nitric acid digestion followed by the careful addition of hydrogen peroxide (30-percent solution) is used to decompose the biological material. The solutions are evaporated to incipient dryness, reconstituted with 5 percent nitric acid, and filtered. After filtration the solutions were diluted to a known volume and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-atomic emission spectrometry (ICP-AES), and cold vapor-atomic absorption spectrophotometry (CV-AAS). Many of the metals were determined by both ICP-MS and ICP-AES. This report does not provide a detailed description of the instrumental procedures and conditions used with the three types of instrumentation for the quantitation of trace metals determined in this study. Statistical data regarding recovery, accuracy, and precision for individual trace metals determined in the biological material tested are summarized.
Determination of trace amount of formaldehyde base on a bromate-Malachite Green system.
Tang, Yufang; Chen, Hao; Weng, Chao; Tang, Xiaohui; Zhang, Miaoling; Hu, Tao
2015-01-25
A novel catalytic kinetic spectrophotometric method for determination of trace amount of formaldehyde (FA) has been established, based on catalytic effect of trace amount of FA on the oxidation of Malachite Green (MG) by potassium bromate in presence of sulfuric acid medium, and was reported for the first time. The method was monitored by measuring the decrease in absorbance of MG at 617 nm and allowed a precise determination of FA in the range of 0.003-0.08 μg mL(-1), with a limit of detection down to 1 ng mL(-1). The relative standard deviation of 10 replicate measurements was 1.63%. The method developed was approved to be sensitive, selective and accurate, and adopted to determinate free FA in samples directly with good accuracy and reproducibility. Copyright © 2014 Elsevier B.V. All rights reserved.
Trace determination of zinc by substoichiometric isotope dilution analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhya, D.; Priya, S.; Subramanian, M.O.S.
1996-09-01
A radiometric method based on substoichiometric isotope dilution analysis using 1,10-phenanthroline and a substoichiometric amount of eosin was developed for determining trace amounts of zinc. Evaluation of various metal ion interferences shows that as little as 0.2 {mu}g Zn could be determined in an aqueous-phase volume of 60 mL. The method has been successfully applied to the determination of Zn in city waste incineration ash, cadmium metal, Fourts-B tablets, Boro-plus ointment, and magnesium alloy samples. 12 refs., 3 figs., 3 tabs.
Microbial imprint on soil-atmosphere H2, COS, and CO2 fluxes
NASA Astrophysics Data System (ADS)
Meredith, L. K.; Commane, R.; Munger, J. W.; Wofsy, S. C.; Prinn, R. G.
2013-12-01
Microorganisms drive large trace gas fluxes between soil and atmosphere, but the signal can be difficult to detect and quantify in the presence of stronger exchange processes in an ecosystem. Partitioning methods are often needed to estimate trace gas budgets and to develop process-based models to explore the sensitivity of microbe-mediated fluxes. In this study, we test the performance of trace gases with predominantly microbe-mediated soil fluxes as a metric of the soil microbial uptake activity of other trace gases. Using simultaneous, collocated measurements at Harvard Forest, we consider three trace gases with microbe-mediated soil fluxes of various importance relative to their other (mainly plant-mediated) ecosystem fluxes: molecular hydrogen (H2), carbonyl sulfide (COS), and carbon dioxide (CO2). These gases probe different aspects of the soil trace-gas microbiology. Soil H2 uptake is a redox reaction driving the energy metabolism of a portion of the microbial community, while soil CO2 respiration is a partial proxy for the overall soil microbial metabolism. In comparison, very little is understood about the microbiological and environmental drivers of soil COS uptake and emissions. In this study, we find that H2, COS, and CO2 soil uptake rates are often correlated, but the relative soil uptake between gases is not constant, and is influenced by seasonality and local environmental conditions. We also consider how differences in the microbial communities and pathways involved in the soil fluxes may explain differences in the observations. Our results are important for informing previous studies using tracer approaches. For example, H2 has been used to estimate COS soil uptake, which must be accounted for to use COS as a carbon cycle tracer. Furthermore, the global distribution of H2 deposition velocity has been inferred from net primary productivity (CO2). Given that insufficient measurement frequency and spatial distribution exists to partition global net ecosystem fluxes of many climate-relevant trace gases, insight into the use of certain trace gases to estimate rates of more general biogeochemical processes is useful.
Developing a Trace Element Biosignature for Early Earth and Mars
NASA Astrophysics Data System (ADS)
Gangidine, A.; Czaja, A. D.; Havig, J.
2018-04-01
Due to metamorphism and diagenesis, determining the biogenicity of ancient fossils is difficult and often contentious. Using trace element concentrations, we propose a novel biosignature independent from organic and morphological preservation.
Huque, Roksana; Munshi, M. Kamruzzaman; Khatun, Afifa; Islam, Mahfuza; Hossain, Afzal; Hossain, Arzina; Akter, Shirin; Kabir, Jamiul; Nahar Jolly, Yeasmin; Islam, Ashraful
2014-01-01
Trace metals concentration and proximate composition of raw and boiled silver pomfret (Pampus argenteus) from coastal area and retail market were determined to gain the knowledge of the risk and benefits associated with indiscriminate consumption of marine fishes. The effects of cooking (boiling) on trace metal and proximate composition of silver pomfret fish were also investigated. Trace element results were determined by the Energy Dispersive X-ray Fluorescence (EDXRF) Spectrometer wherein fish samples from both areas exceeded the standard limits set by FAO/WHO for manganese, lead, cadmiumm and chromium and boiling has no significant effects on these three metal concentrations. Long-term intake of these contaminated fish samples can pose a health risk to humans who consume them. PMID:26904650
Measurement of trace nitrate concentrations in seawater by ion chromatography with valve switching
NASA Astrophysics Data System (ADS)
Du, Juan; Fa, Yun; Zheng, Yue; Li, Xuebing; Du, Fanglin; Yang, Haiyan
2014-05-01
An ion chromatographic method with a valve switching facility was developed to determine trace nitrate concentrations in seawater using two pumps, two different suppressors, and two columns. A carbohydrate membrane desalter was used to reduce the high concentrations of sodium salts in samples. In this method, trace nitrate was eluted from the concentrator column to the analytical columns, while the matrix fl owed to waste. Neither chemical pre-treatment nor sample dilution was required. In the optimized separation conditions, the method showed good linearity ( R >0.99) in the 0.05 and 50 mg/L concentration range, and satisfactory repeatability (RSD<5%, n =6). The limit of detection for nitrate was 0.02 mg/L. Results showed that the valve switching system was suitable and practical for the determination of trace nitrate in seawater.
Trace element analysis of soil type collected from the Manjung and central Perak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azman, Muhammad Azfar, E-mail: m-azfar@nuclearmalaysia.gov.my; Hamzah, Suhaimi; Rahman, Shamsiah Abdul
2015-04-29
Trace elements in soils primarily originated from their parent materials. Parents’ material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. Themore » enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.« less
CORFIG- CORRECTOR SURFACE DESIGN SOFTWARE
NASA Technical Reports Server (NTRS)
Dantzler, A.
1994-01-01
Corrector Surface Design Software, CORFIG, calculates the optimum figure of a corrector surface for an optical system based on real ray traces. CORFIG generates the corrector figure in the form of a spline data point table and/or a list of polynomial coefficients. The number of spline data points as well as the number of coefficients is user specified. First, the optical system's parameters (thickness, radii of curvature, etc.) are entered. CORFIG will trace the outermost axial real ray through the uncorrected system to determine approximate radial limits for all rays. Then, several real rays are traced backwards through the system from the image to the surface that originally followed the object, within these radial limits. At this first surface, the local curvature is adjusted on a small scale to direct the rays toward the object, thus removing any accumulated aberrations. For each ray traced, this adjustment will be different, so that at the end of this process the resultant surface is made up of many local curvatures. The equations that describe these local surfaces, expressed as high order polynomials, are then solved simultaneously to yield the final surface figure, from which data points are extracted. Finally, a spline table or list of polynomial coefficients is extracted from these data points. CORFIG is intended to be used in the late stages of optical design. The system's design must have at least a good paraxial foundation. Preferably, the design should be at a stage where traditional methods of Seidel aberration correction will not bring about the required image spot size specification. CORFIG will read the system parameters of such a design and calculate the optimum figure for the first surface such that all of the original parameters remain unchanged. Depending upon the system, CORFIG can reduce the RMS image spot radius by a factor of 5 to 25. The original parameters (magnification, back focal length, etc.) are maintained because all rays upon which the corrector figure is based are traced within the bounds of the original system's outermost ray. For this reason the original system must have a certain degree of integrity. CORFIG optimizes the corrector surface figure for on-axis images at a single wavelength only. However, it has been demonstrated many times that CORFIG's method also significantly improves the quality of field images and images formed from wavelengths other than the center wavelength. CORFIG is written completely in VAX FORTRAN. It has been implemented on a DEC VAX series computer under VMS with a central memory requirement of 55 K bytes. This program was developed in 1986.
Chung, Y T; Ling, Y C; Yang, C S; Sun, Y C; Lee, P L; Lin, C Y; Hong, C C; Yang, M H
2007-12-01
We have developed an on-line analytical system involving microdialysis (MD) sampling, a carbohydrate membrane desalter (CMD), and an inductively coupled plasma mass spectrometer (ICPMS) system for the simultaneous determination of multiple trace metals in the extracellular fluid (ECF) in the brains of anesthetized rats. The microdialysate that perfused from the animal at a flow rate of 0.5 microL/min was on-line transferred to the CMD to remove the high-sodium matrix, followed by ICPMS measurement. The role of the CMD in this on-line system was investigated in detail. With prior addition of EDTA to the microdialysate to form anionic complexes of the metal analytes and the use of NH4Cl as a regenerant to exchange Na(+) with NH4(+) ions, both quantitative recovery of the trace metal analytes and quantitative removal of the sodium matrix could be achieved. Two experimental modes of the monitoring system were constructed. For those metals (e.g., Cu, Zn, and Mn) that existed at (sub)nanogram-per-milliliter concentrations in the microdialysate, the temporal resolution was 10 min when using a 10 microL loop for sample collection, followed by CMD and ICPMS; for those elements (e.g., Ca and Mg) that existed at microgram-per-milliliter levels (or greater), near-real-time analysis was possible because the microdialysate could be led, bypassing the sample loop, directly to the CMD for desalting without any time delay. Further improvement of the temporal resolution for the low-concentration elements was not possible without decreasing the detection limits of mass detection. Among the eight trace metals tested using this on-line system, the method detection limits for Cu, Zn, Mn, Co, Ni, and Pb reached subnanogram-per-milliliter levels; for electrolyte species such as Ca and Mg, the detection limits were in the range of 50-100 ng/mL. Analytical accuracy, expressed as spike recovery, was 100% +/- 15% for all of the elements tested. We demonstrate the applicability of the proposed system through the successful measurement of the basal values of Ca, Mg, Cu, Zn, and Mn in the ECF of a living rat brain and through in vivo monitoring of the concentration profiles of Mn and Pt in the ECF after the injection of drugs (MnCl2 and cisplatin) into the rats. This microdialysis system is the first to offer real-time, in vivo monitoring of trace elements such as Ca and Mg.
Determination of trace and heavy metals in some commonly used medicinal herbs in Ayurveda.
Nema, Neelesh K; Maity, Niladri; Sarkar, Birendra K; Mukherjee, Pulok K
2014-11-01
Traditionally, the herbal drugs are well established for their therapeutic benefits. Depending upon their geographical sources sometimes the trace and heavy metals' content may differ, which may lead to severe toxicity. So, the toxicological and safety assessment of these herbal drugs are one of the major issues in recent days. Eight different plant species including Aloe vera, Centella asiatica, Calendula officinalis, Cucumis sativus, Camellia sinensis, Clitoria ternatea, Piper betel and Tagetes erecta were selected to determine their heavy and trace metals content and thereby to assure their safer therapeutic application. The trace and heavy metals were detected through atomic absorption spectrometry analysis. The selected medicinal plant materials were collected from the local cultivated regions of West Bengal, India, and were digested with nitric acid and hydrochloric acid as specified. Absorbance was measured through atomic absorption spectrometer (AA 303) and the concentration of different trace and heavy metals in the plant samples were calculated. The quantitative determinations were carried out using standard calibration curve obtained by the standard solutions of different metals. The contents of heavy metals were found to be within the prescribed limit. Other trace metals were found to be present in significant amount. Thus, on the basis of experimental outcome, it can be concluded that the plant materials collected from the specific region are safe and may not produce any harmful effect of metal toxicity during their therapeutic application. The investigated medicinal plants contain trace metals such as copper (Cu), chromium (Cr), manganese (Mn), iron (Fe) and nickel (Ni) as well as heavy metals such as arsenic (As), lead (Pb) and mercury (Hg), which were present within the permissible limit. © The Author(s) 2012.
Chau, Lily S.; Prakapenka, Alesia V.; Zendeli, Liridon; Davis, Ashley S.; Galvez, Roberto
2014-01-01
Studies utilizing general learning and memory tasks have suggested the importance of neocortical structural plasticity for memory consolidation. However, these learning tasks typically result in learning of multiple different tasks over several days of training, making it difficult to determine the synaptic time course mediating each learning event. The current study used trace-eyeblink conditioning to determine the time course for neocortical spine modification during learning. With eyeblink conditioning, subjects are presented with a neutral, conditioned stimulus (CS) paired with a salient, unconditioned stimulus (US) to elicit an unconditioned response (UR). With multiple CS-US pairings, subjects learn to associate the CS with the US and exhibit a conditioned response (CR) when presented with the CS. Trace conditioning is when there is a stimulus free interval between the CS and the US. Utilizing trace-eyeblink conditioning with whisker stimulation as the CS (whisker-trace-eyeblink: WTEB), previous findings have shown that primary somatosensory (barrel) cortex is required for both acquisition and retention of the trace-association. Additionally, prior findings demonstrated that WTEB acquisition results in an expansion of the cytochrome oxidase whisker representation and synaptic modification in layer IV of barrel cortex. To further explore these findings and determine the time course for neocortical learning-induced spine modification, the present study utilized WTEB conditioning to examine Golgi-Cox stained neurons in layer IV of barrel cortex. Findings from this study demonstrated a training-dependent spine proliferation in layer IV of barrel cortex during trace associative learning. Furthermore, findings from this study showing that filopodia-like spines exhibited a similar pattern to the overall spine density further suggests that reorganization of synaptic contacts set the foundation for learning-induced neocortical modifications through the different neocortical layers. PMID:24760074
Temporally rendered automatic cloud extraction (TRACE) system
NASA Astrophysics Data System (ADS)
Bodrero, Dennis M.; Yale, James G.; Davis, Roger E.; Rollins, John M.
1999-10-01
Smoke/obscurant testing requires that 2D cloud extent be extracted from visible and thermal imagery. These data are used alone or in combination with 2D data from other aspects to make 3D calculations of cloud properties, including dimensions, volume, centroid, travel, and uniformity. Determining cloud extent from imagery has historically been a time-consuming manual process. To reduce time and cost associated with smoke/obscurant data processing, automated methods to extract cloud extent from imagery were investigated. The TRACE system described in this paper was developed and implemented at U.S. Army Dugway Proving Ground, UT by the Science and Technology Corporation--Acuity Imaging Incorporated team with Small Business Innovation Research funding. TRACE uses dynamic background subtraction and 3D fast Fourier transform as primary methods to discriminate the smoke/obscurant cloud from the background. TRACE has been designed to run on a PC-based platform using Windows. The PC-Windows environment was chosen for portability, to give TRACE the maximum flexibility in terms of its interaction with peripheral hardware devices such as video capture boards, removable media drives, network cards, and digital video interfaces. Video for Windows provides all of the necessary tools for the development of the video capture utility in TRACE and allows for interchangeability of video capture boards without any software changes. TRACE is designed to take advantage of future upgrades in all aspects of its component hardware. A comparison of cloud extent determined by TRACE with manual method is included in this paper.
An R package for state-trace analysis.
Prince, Melissa; Hawkins, Guy; Love, Jonathon; Heathcote, Andrew
2012-09-01
State-trace analysis (Bamber, Journal of Mathematical Psychology, 19, 137-181, 1979) is a graphical analysis that can determine whether one or more than one latent variable mediates an apparent dissociation between the effects of two experimental manipulations. State-trace analysis makes only ordinal assumptions and so, is not confounded by range effects that plague alternative methods, especially when performance is measured on a bounded scale (such as accuracy). We describe and illustrate the application of a freely available GUI driven package, StateTrace, for the R language. StateTrace automates many aspects of a state-trace analysis of accuracy and other binary response data, including customizable graphics and the efficient management of computationally intensive Bayesian methods for quantifying evidence about the outcomes of a state-trace experiment, developed by Prince, Brown, and Heathcote (Psychological Methods, 17, 78-99, 2012).
Chen, H L; Wang, J K; Ren, Y Q; Wu, Z Y
2001-03-01
Determine and compare the contents of ten trace elements in crude E. acuminatum and its three different processed products. Using flame atomic absorption spectrometry. The ten trace elements were found in both the crude drug and its three processed products, and in terms of contents some of the trace elements in all the three processed products are higher than those in the crude drug. According to the trace element contents, the three processed products of E. acuminatum have their own advantages. It is thus suggested that thoroughgoing clinical and experimental researches be performed anew for the long-shelved processing methods.
Trace gas emissions from chaparral and boreal forest fires
NASA Technical Reports Server (NTRS)
Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggan, Philip J.; Stocks, Brian J.; Brass, James A.; Ambrosia, Vincent G.
1989-01-01
Using smoke samples collected during low-level helicopter flights, the mixing ratios of CO2, CO, CH4, total nonmethane hydrocarbons, H2, and N2O over burning chaparral in southern California and over a burning boreal forest site in northern Ontario, Canada, were determined. Carbon dioxide-normalized emission ratios were determined for each trace gas for conditions of flaming, mixed, and smoldering combustion. The emission ratios for these trace gases were found to be highest for the smoldering combustion, generally thought to be the least efficient combustion stage. However, high emission ratios for these gases could be also produced during very vigorous flaming combustion.
NASA Astrophysics Data System (ADS)
Jagadeesha, B. G.; Narayana, Y.; Sudarshan, M.; Banerjee, Shamayita
2018-03-01
The transfer factors of trace elements from soil to medicinal plants were determined in the region of Hassan district of south India. The trace element concentration was determined using the Energy Dispersive X-ray Fluorescence (ED-XRF) spectrometer. The transfer factors were found in the order Rb > Sr > Ca > K > Zn > Cu > Mn. The transfer factors were found to be high, for most of the plants. The concentration of Rb and Sr was found to be high in medicinal plants, which can be attributed to the mineralogy of the region and plant morphology.
Practical applications of trace minerals for dairy cattle.
Overton, T R; Yasui, T
2014-02-01
Trace minerals have critical roles in the key interrelated systems of immune function, oxidative metabolism, and energy metabolism in ruminants. To date, the primary trace elements of interest in diets for dairy cattle have included Zn, Cu, Mn, and Se although data also support potentially important roles of Cr, Co, and Fe in diets. Trace minerals such as Zn, Cu, Mn, and Se are essential with classically defined roles as components of key antioxidant enzymes and proteins. Available evidence indicates that these trace minerals can modulate aspects of oxidative metabolism and immune function in dairy cattle, particularly during the transition period and early lactation. Chromium has been shown to influence both immune function and energy metabolism of cattle; dairy cows fed Cr during the transition period and early lactation have evidence of improved immune function, increased milk production, and decreased cytological endometritis. Factors that complicate trace mineral nutrition at the farm level include the existence of a large number of antagonisms affecting bioavailability of individual trace minerals and uncertainty in terms of requirements under all physiological and management conditions; therefore, determining the optimum level and source of trace minerals under each specific situation continues to be a challenge. Typical factorial approaches to determine requirements for dairy cattle do not account for nuances in biological function observed with supplementation with various forms and amounts of trace minerals. Trace mineral nutrition modulates production, health, and reproduction in cattle although both formal meta-analysis and informal survey of the literature reveal substantial heterogeneity of response in these outcome variables. The industry has largely moved away from oxide-based programs toward sulfate-based programs; however, some evidence favors shifting supplementation strategies further toward more bioavailable forms of inorganic and organic trace minerals. Furthermore, opportunities for specific modulation of aspects of health, milk production, and reproduction through supplementation strategies for diets of transition dairy cows are attractive because of the known dynamics of energy metabolism, immune function, and oxidative metabolism during this timeframe.
Remote Sensing from Geostationary Orbit: GEO TROPSAT, A New Concept for Atmospheric Remote Sensing
NASA Technical Reports Server (NTRS)
Little, Alan D.; Neil, Doreen O.; Sachse, Glen W.; Fishman, Jack; Krueger, Arlin J.
1997-01-01
The Geostationary Tropospheric Pollution Satellite (GEO TROPSAT) mission is a new approach to measuring the critical constituents of tropospheric ozone chemistry: ozone, carbon monoxide, nitrogen dioxide, and aerosols. The GEO TROPSAT mission comprises a constellation of three instruments flying as secondary payloads on geostationary communications satellites around the world. This proposed approach can significantly reduce the cost of getting a science payload to geostationary orbit and also generates revenue for the satellite owners. The geostationary vantage point enables simultaneous high temporal and spatial resolution measurement of tropospheric trace gases, leading to greatly improved atmospheric ozone chemistry knowledge. The science data processing, conducted as a research (not operational) activity, will provide atmospheric trace gas data many times per day over the same region at better than 25 km ground footprint. The high temporal resolution identifies short time scale processes, diurnal variations, seasonal trends, and interannual variation.
An Optical Sensor for Measuring the Position and Slanting Direction of Flat Surfaces
Chen, Yu-Ta; Huang, Yen-Sheng; Liu, Chien-Sheng
2016-01-01
Automated optical inspection is a very important technique. For this reason, this study proposes an optical non-contact slanting surface measuring system. The essential features of the measurement system are obtained through simulations using the optical design software Zemax. The actual propagation of laser beams within the measurement system is traced by using a homogeneous transformation matrix (HTM), the skew-ray tracing method, and a first-order Taylor series expansion. Additionally, a complete mathematical model that describes the variations in light spots on photoelectric sensors and the corresponding changes in the sample orientation and distance was established. Finally, a laboratory prototype system was constructed on an optical bench to verify experimentally the proposed system. This measurement system can simultaneously detect the slanting angles (x, z) in the x and z directions of the sample and the distance (y) between the biconvex lens and the flat sample surface. PMID:27409619
An Optical Sensor for Measuring the Position and Slanting Direction of Flat Surfaces.
Chen, Yu-Ta; Huang, Yen-Sheng; Liu, Chien-Sheng
2016-07-09
Automated optical inspection is a very important technique. For this reason, this study proposes an optical non-contact slanting surface measuring system. The essential features of the measurement system are obtained through simulations using the optical design software Zemax. The actual propagation of laser beams within the measurement system is traced by using a homogeneous transformation matrix (HTM), the skew-ray tracing method, and a first-order Taylor series expansion. Additionally, a complete mathematical model that describes the variations in light spots on photoelectric sensors and the corresponding changes in the sample orientation and distance was established. Finally, a laboratory prototype system was constructed on an optical bench to verify experimentally the proposed system. This measurement system can simultaneously detect the slanting angles (x, z) in the x and z directions of the sample and the distance (y) between the biconvex lens and the flat sample surface.
Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.
1992-01-01
Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.
Recent advances in quartz enhanced photoacoustic sensing
NASA Astrophysics Data System (ADS)
Patimisco, Pietro; Sampaolo, Angelo; Dong, Lei; Tittel, Frank K.; Spagnolo, Vincenzo
2018-03-01
This review aims to discuss the latest advancements in quartz-enhanced photoacoustic spectroscopy (QEPAS) based trace-gas sensing. Starting from the QEPAS basic physical principles, the most used QEPAS configurations will be described. This is followed by a detailed theoretical analysis and experimental study regarding the influence of quartz tuning forks (QTFs) geometry on their optoacoustic transducer performance. Furthermore, an overview of the latest developments in QEPAS trace-gas sensor technology employing custom QTFs will be reported. Results obtained by exploiting novel micro-resonator configurations, capable of increasing the QEPAS signal-to-noise ratio by more than two orders of magnitude and the utilization of QTF overtone flexural modes for QEPAS based sensing will be presented. A comparison of the QEPAS performance of different spectrophone configurations is reported based upon signal-to-noise ratio. Finally, a novel QEPAS approach allowing simultaneous dual-gas detection will be described.
Althaf Hussain, Shaik; Kareem, Mohammed Abdul; Rasool, Shaik Nayab; Al Omar, Suliman Yousef; Saleh, Alwasel; Al-Fwuaires, Manal Abdulrahman; Daddam, Jayasimha Rayalu; Devi, Kodidhela Lakshmi
2018-01-01
The trace elements and minerals in Terminalia pallida fruit ethanolic extract (TpFE) were determined by the instrument inductively coupled plasma-mass spectrometry (ICP-MS), and the cardioprotection of TpFE against isoproterenol (ISO)-administered rats was studied. Rats were pretreated with TpFE (100, 300, and 500 mg/kg bw) for 30 days, with concurrent administration of ISO (85 mg/kg bw) for two consecutive days. The levels of trace elements and minerals in TpFE were below the permitted limits of World Health Organization standards. ISO administration significantly increased the heart weight and cardiac marker enzymes in serum, xanthine oxidase, sodium, and calcium in the heart, whereas significantly decreased body weight, reduced glutathione, glutathione-S-transferase, superoxide dismutase, and potassium in the heart. Oral pretreatment of TpFE significantly prevented the ISO-induced alterations. This is the first report that revealed the determination of trace elements and mineral nutrients of TpFE by ICP-MS which plays a principal role in the herbal drug discovery for the treatment of cardiovascular diseases.
NASA Astrophysics Data System (ADS)
Zhang, Airui; Jin, Axiang; Wang, Hai; Wang, Xiaokang; Zha, Pengfei; Wang, Meiling; Song, Xiaoping; Gao, Sitian
2018-03-01
Quantitative determination of trace elements like S, Fe, Cu, Mn and Pb in gasoline and S in diesel is of great importance due to the growing concerns over air pollution, human health and engine failure caused by utilization of gasoline and diesel with these harmful elements. A method of total reflection X-ray fluorescence (TXRF) was developed to measure these harmful trace elements in gasoline and diesel. A variety of factors to affect measurement results, including TXRF parameters, microwave-assisted digestion conditions and internal standard element and its addition, were examined to optimize these experimental procedures. The hydrophobic treatment of the surface of quartz reflectors to support the analyte with neutral silicone solutions could prepare thin films of gasoline and diesel digestion solutions for subsequent TXRF analysis. The proposed method shows good potential and reliability to determine the content of harmful trace elements in gasoline and diesel with high sensitivity and accuracy without drawing different standard calibration curves, and can be easily employed to screen gasoline and diesel in routine quality control and assurance.
Trace elements in seminal plasma of men from infertile couples.
Guzikowski, Wojciech; Szynkowska, Małgorzata I; Motak-Pochrzęst, Hanna; Pawlaczyk, Aleksandra; Sypniewski, Stanisław
2015-06-19
An analysis of lead, zinc, cadmium and other trace elements in semen of men from infertile couples was performed to determine the association between abnormal semen parameters and enviromental or occupational exposure to some trace metals. Presence of manganese, cobalt, nickel, copper, zinc, molybdenum, cadmium, tin and lead was measured in seminal plasma of 34 men from infertile couples using spectrometry with time-of-flight analysis. Correlations among sperm parameters and trace metals were determined using cluster analysis and Pearson's correlation coefficient. Abnormally high concentrations of lead, cadmium, zinc and cobalt were found in 23 seminal plasma of men from infertile couples. The most consistent evidence was determined for an association between high cadmium concentration in seminal plasma and sperm count, motility and morphology below reference limits (p < 0.01). A correlation of significantly increased tin level and reduced sperm count in semen of men with limited fertility potential was observed (p = 0.04). In our study we observed a correlation of tin level with sperm count in semen of men with limited fertility potential.
Generalized Higher Order Orthogonal Iteration for Tensor Learning and Decomposition.
Liu, Yuanyuan; Shang, Fanhua; Fan, Wei; Cheng, James; Cheng, Hong
2016-12-01
Low-rank tensor completion (LRTC) has successfully been applied to a wide range of real-world problems. Despite the broad, successful applications, existing LRTC methods may become very slow or even not applicable for large-scale problems. To address this issue, a novel core tensor trace-norm minimization (CTNM) method is proposed for simultaneous tensor learning and decomposition, and has a much lower computational complexity. In our solution, first, the equivalence relation of trace norm of a low-rank tensor and its core tensor is induced. Second, the trace norm of the core tensor is used to replace that of the whole tensor, which leads to two much smaller scale matrix TNM problems. Finally, an efficient alternating direction augmented Lagrangian method is developed to solve our problems. Our CTNM formulation needs only O((R N +NRI)log(√{I N })) observations to reliably recover an N th-order I×I×…×I tensor of n -rank (r,r,…,r) , compared with O(rI N-1 ) observations required by those tensor TNM methods ( I > R ≥ r ). Extensive experimental results show that CTNM is usually more accurate than them, and is orders of magnitude faster.
Antoniotti, M; Park, F; Policriti, A; Ugel, N; Mishra, B
2003-01-01
The analysis of large amounts of data, produced as (numerical) traces of in vivo, in vitro and in silico experiments, has become a central activity for many biologists and biochemists. Recent advances in the mathematical modeling and computation of biochemical systems have moreover increased the prominence of in silico experiments; such experiments typically involve the simulation of sets of Differential Algebraic Equations (DAE), e.g., Generalized Mass Action systems (GMA) and S-systems. In this paper we reason about the necessary theoretical and pragmatic foundations for a query and simulation system capable of analyzing large amounts of such trace data. To this end, we propose to combine in a novel way several well-known tools from numerical analysis (approximation theory), temporal logic and verification, and visualization. The result is a preliminary prototype system: simpathica/xssys. When dealing with simulation data simpathica/xssys exploits the special structure of the underlying DAE, and reduces the search space in an efficient way so as to facilitate any queries about the traces. The proposed system is designed to give the user possibility to systematically analyze and simultaneously query different possible timed evolutions of the modeled system.
Method for remote detection of trace contaminants
Simonson, Robert J.; Hance, Bradley G.
2003-09-09
A method for remote detection of trace contaminants in a target area comprises applying sensor particles that preconcentrate the trace contaminant to the target area and detecting the contaminant-sensitive fluorescence from the sensor particles. The sensor particles can have contaminant-sensitive and contaminant-insensitive fluorescent compounds to enable the determination of the amount of trace contaminant present in the target are by relative comparison of the emission of the fluorescent compounds by a local or remote fluorescence detector. The method can be used to remotely detect buried minefields.
Trace elements study of high purity nanocrystalline silicon carbide (3C-SiC) using k0-INAA method
NASA Astrophysics Data System (ADS)
Huseynov, Elchin; Jazbec, Anze
2017-07-01
Silicon carbide (3C-SiC) nanoparticles have been irradiated by neutron flux (2×1013 n·cm-2·s-1) at TRIGA Mark II type research reactor. After neutron irradiation, the radioisotopes of trace elements in the nanocrystalline 3C-SiC were studied as time functions. The identification of isotopes which significantly increased the activity of the samples as a result of neutron radiation was carried out. Nanocrystalline 3C-SiC are synthesized by standard laser technique and the purity of samples was determined by the k0-based Instrumental Neutron Activation Analysis (k0-INAA) method. Trace elements concentration in the 3C-SiC nanoparticles were determined by the radionuclides of appropriate elements. The trace element isotopes concentration have been calculated in percentage according to k0-INAA method.
Determination of equivalent sound speed profiles for ray tracing in near-ground sound propagation.
Prospathopoulos, John M; Voutsinas, Spyros G
2007-09-01
The determination of appropriate sound speed profiles in the modeling of near-ground propagation using a ray tracing method is investigated using a ray tracing model which is capable of performing axisymmetric calculations of the sound field around an isolated source. Eigenrays are traced using an iterative procedure which integrates the trajectory equations for each ray launched from the source at a specific direction. The calculation of sound energy losses is made by introducing appropriate coefficients to the equations representing the effect of ground and atmospheric absorption and the interaction with the atmospheric turbulence. The model is validated against analytical and numerical predictions of other methodologies for simple cases, as well as against measurements for nonrefractive atmospheric environments. A systematic investigation for near-ground propagation in downward and upward refractive atmosphere is made using experimental data. Guidelines for the suitable simulation of the wind velocity profile are derived by correlating predictions with measurements.
Badran, M; Morsy, R; Soliman, H; Elnimr, T
2016-01-01
The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.
Numerical models analysis of energy conversion process in air-breathing laser propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong Yanji; Song Junling; Cui Cunyan
Energy source was considered as a key essential in this paper to describe energy conversion process in air-breathing laser propulsion. Some secondary factors were ignored when three independent modules, ray transmission module, energy source term module and fluid dynamic module, were established by simultaneous laser radiation transportation equation and fluid mechanics equation. The incidence laser beam was simulated based on ray tracing method. The calculated results were in good agreement with those of theoretical analysis and experiments.
Three-dimensional ballistocardiography in weightlessness
NASA Technical Reports Server (NTRS)
Scano, A.
1981-01-01
An experiment is described the aim of which is to record a three dimensional ballistocardiogram under the condition of weightlessness and to compare it with tracings recorded on the same subject on the ground as a means of clarifying the meaning of ballistocardiogram waves in different physiological and perphaps pathological conditions. Another purpose is to investigate cardiovascular and possibly fluid adaptations to weightlessness from data collected almost simultaneously on the same subjects during the other cardiovascular during the other cardiovascular and metabolic experiments.
Specificity of Good Manufacturing Practice (GMP) for Biomedical Cell Products.
Tulina, M A; Pyatigorskaya, N V
2018-03-01
The article describes special aspects of Good Manufacturing Practice (GMP) for biomedical cell products (BMCP) that imply high standards of aseptics throughout the entire productio process, strict requirements to donors and to the procedure of biomaterial isolation, guaranty of tracing BMCP products, defining processing procedures which allow to identify BMCP as minimally manipulated; continuous quality control and automation of the control process at all stages of manufacturing, which will ensure product release simultaneously with completion of technological operations.
Quarterly technical progress report, April-June 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1984-04-01
Progress reports are presented for the following tasks: (1) preparation of low-rank coals; application of liquefaction processes to low-rank coals; (2) slagging fixed-bed gasification; (3) atmospheric fluidized-bed combustion of low-rank coal; (4) ash fouling and combustion modification for low-rank coal; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization and disposal; and (9) exploratory research.
A multifunctional azobenzene-based polymeric adsorbent for effective water remediation
Wan, Decheng; Chen, Feng; Geng, Qingrui; Lu, Hang; Willcock, Helen; Liu, Qiuming; Wang, Fangyingkai; Zou, Kaidian; Jin, Ming; Pu, Hongting; Du, Jianzhong
2014-01-01
The efficient removal of trace carcinogenic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and ionic dyes, from water is an important technical challenge. We report a highly effective recyclable multifunctional azobenzene (AZ)-based silica-supported polymeric adsorbent which can simultaneously remove both PAHs and anionic dyes from water to below parts per billion (ppb) level based on multiple interactions such as the hydrophobic effect, π–π stacking and electrostatic interactions, thus providing a new strategy for designer water remediation materials. PMID:25465671
Sensing Impacts of the Fate of Trace Explosives Signatures Under Environmental Conditions
2010-01-01
vial with a pair of clean metal tweezers. A 10 mL aliquot of CHROMASOLV® Plus HPLC -grade acetone was dispensed on the wide surfaces of the sample...Evaporator Workstation under a nitrogen purge stream in a 50 ºC water bath and reconstituted with CHROMASOLV® HPLC -grade acetonitrile to 500 L... simultaneously on the two parallel GC columns, using a refrigerated (ɠ °C) 100-vial autosampler and two parallel auto-injectors. Column 1 (Restek 562719
Peng, Jun; Xiao, Deli; He, Hua; Zhao, Hongyan; Wang, Cuixia; Shi, Tian; Shi, Kexin
2016-01-01
In this study, molecularly imprinting technology and stir bar absorption technology were combined to develop a microextraction approach based on a molecularly imprinted polymeric stir bar. The molecularly imprinted polymer stir bar has a high performance, is specific, economical, and simple to prepare. The obtained naftopidil-imprinted polymer-coated bars could simultaneously agitate and adsorb naftopidil in the sample solution. The ratio of template/monomer/cross-linker and conditions of template removal were optimized to prepare a stir bar with highly efficient adsorption. Fourier transform infrared spectroscopy, scanning electron microscopy, selectivity, and extraction capacity experiments showed that the molecularly imprinted polymer stir bar was prepared successfully. To utilize the molecularly imprinted polymer stir bar for the determination of naftopidil in complex body fluid matrices, the extraction time, stirring speed, eluent, and elution time were optimized. The limits of detection of naftopidil in plasma and urine sample were 7.5 and 4.0 ng/mL, respectively, and the recoveries were in the range of 90-112%. The within-run precision and between-run precision were acceptable (relative standard deviation <7%). These data demonstrated that the molecularly imprinted polymeric stir bar based microextraction with high-performance liquid chromatography was a convenient, rapid, efficient, and specific method for the precise determination of trace naftopidil in clinical analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Lei; Zhou, Jia-Bin; Wang, Xia; Wang, Zhen-Hua; Zhao, Ru-Song
2016-06-01
Recently, a sponge-like material called carbon nanotube sponges (CNT sponges) has drawn considerable attention because it can remove large-area oil, nanoparticles, and organic dyes from water. In this paper, the feasibility of CNT sponges as a novel solid-phase extraction (SPE) adsorbent for the enrichment and determination of heavy metal ions (Co(2+), Cu(2+), and Hg(2+)) was investigated for the first time. Sodium diethyldithiocarbamate (DDTC) was used as the chelating agent and high performance liquid chromatography (HPLC) for the final analysis. Important factors which may influence extraction efficiency of SPE were optimized, such as the kind and volume of eluent, volume of DDTC, sample pH, flow rate, etc. Under the optimized conditions, wide range of linearity (0.5-400 μg L(-1)), low limits of detection (0.089~0.690 μg L(-1); 0.018~0.138 μg), and good repeatability (1.27~3.60 %, n = 5) were obtained. The developed method was applied for the analysis of the three metal ions in real water samples, and satisfactory results were achieved. All of these findings demonstrated that CNT sponges will be a good choice for the enrichment and determination of target ions at trace levels in the future.
Goto, Yoshiyuki; Takeda, Shiho; Araki, Toshinori; Fuchigami, Takayuki
2011-10-01
Stir bar sorptive extraction is a technique used for extracting target substances from various aqueous matrixes such as environmental water, food, and biological samples. This type of extraction is carried out by rotating a coated stir bar is rotated in the sample solution. In particular, Twister bar is a commercial stir bar that is coated with polydimethylsiloxane (PDMS) and used to perform sorptive extraction. In this study, we developed a method for simultaneous detection of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, and a Δ(9)-tetrahydrocannabiniol (THC) metabolite in human urine. For extracting the target analytes, the Twister bar was simply stirred in the sample in the presence of a derivatizing agent. Using this technique, phenethylamines and the acidic THC metabolite can be simultaneously extracted from human urine. This method also enables the extraction of trace amounts of these substances with good reproducibility and high selectivity. The proposed method offers many advantages over other extraction-based approaches and is therefore well suited for screening psychoactive substances in urine specimens.
NASA Astrophysics Data System (ADS)
Liu, Jia-Ming; Lin, Li-Ping; Wang, Hong-Xin; Lin, Shao-Qin; Zhang, Li-Hong; Cai, Wen-Lian; Lin, Xuan; Pan, You-Zhu; Wang, Xin-Xing; Li, Zhi-Ming; Jiao, Li; Cui, Ma-Lin
2011-12-01
Calcein (R) could not only emit strong and stable room temperature phosphorescence (RTP) on filter paper using I - as perturber, but also could be oxidized by H 2O 2 to form a non-phosphorescence compound (R'), resulting in the quenching of RTP signal of R. Moreover, the ortho-hydrogen of phenolic hydroxyl in R took condensation reaction with rhamnose (Rha) to produce non-phosphorescence compound (R-Rha) causing the RTP signal of R to further quench, and R-Rha was oxidized by H 2O 2 to form R' and Rha, bringing about the sharp RTP signal quenching of R. Thus, a new solid substrate room temperature phosphorimetry (SSRTP) for the determination of trace Rha based on its strong catalytic effect on H 2O 2 oxidizing R has been established, with the detection limit (LD) of 7.8 zg spot -1 (corresponding concentration: 2.0 × 10 -17 g ml -1, sample volume: 0.40 μl spot -1). This method has been applied to determine trace Rha in cigarettes and jujubes, with the results coinciding well with those determined by a high performance liquid chromatography (HPLC). The component of R-Rha also was analyzed by means of HPLC, mass spectrometer and nuclear magnetic resonance (NMR) measurements. The mechanism of catalytic SSRTP for the determination of trace Rha was discussed.
Es’haghi, Zarrin; Hoseini, Hasan Ali; Mohammadi-Nokhandani, Saeed; Ebrahimi, Javad
2013-01-01
A new procedure is presented for the determination of low concentrations of lead and cadmium in water samples. Ligand assisted pseudo-stir bar hollow fiber solid/liquid phase microextraction using sol–gel sorbent reinforced with carbon nanotubes was combined with differential pulse anodic stripping voltammetry for simultaneous determination of cadmium and lead in tap water, and Darongar river water samples. In the present work, differential pulse anodic stripping voltammetry (DPASV) using a hanging mercury drop electrode (HMDE) was used in order to determine the ultra trace level of lead and cadmium ions in real samples. This method is based on accumulation of lead and cadmium ions on the electrode using different ligands; Quinolin-8-ol, 5,7-diiodo quinoline-8-ol, 4,5-diphenyl-1H-imidazole-2(3H)-one and 2-{[2-(2-Hydroxy-ethylamino)-ethylamino]-methyl}-phenol as the complexing agent. The optimized conditions were obtained. The relationship between the peak current versus concentration was linear over the range of 0.05–500 ng mL−1 for Cd (II) and Pb (II). The limits of detection for lead and cadmium were 0.015 ng mL−1 and 0.012 ng mL−1, respectively. Under the optimized conditions, the pre-concentration factors are 2440 and 3710 for Cd (II) and Pb (II) in 5 mL of water sample, respectively. PMID:25685537
Electrodialytic in-line preconcentration for ionic solute analysis.
Ohira, Shin-Ichi; Yamasaki, Takayuki; Koda, Takumi; Kodama, Yuko; Toda, Kei
2018-04-01
Preconcentration is an effective way to improve analytical sensitivity. Many types of methods are used for enrichment of ionic solute analytes. However, current methods are batchwise and include procedures such as trapping and elution. In this manuscript, we propose in-line electrodialytic enrichment of ionic solutes. The method can enrich ionic solutes within seconds by quantitative transfer of analytes from the sample solution to the acceptor solution under an electric field. Because of quantitative ion transfer, the enrichment factor (the ratio of the concentration in the sample and to that in the obtained acceptor solution) only depends on the flow rate ratio of the sample solution to the acceptor solution. The ratios of the concentrations and flow rates are equal for ratios up to 70, 20, and 70 for the tested ionic solutes of inorganic cations, inorganic anions, and heavy metal ions, respectively. The sensitivity of ionic solute determinations is also improved based on the enrichment factor. The method can also simultaneously achieve matrix isolation and enrichment. The method was successively applied to determine the concentrations of trace amounts of chloroacetic acids in tap water. The regulated concentration levels cannot be determined by conventional high-performance liquid chromatography with ultraviolet detection (HPLC-UV) without enrichment. However, enrichment with the present method is effective for determination of tap water quality by improving the limits of detection of HPLC-UV. The standard addition test with real tap water samples shows good recoveries (94.9-109.6%). Copyright © 2017 Elsevier B.V. All rights reserved.
Ullah, Zia; Ullah, Muhammad Ikram; Hussain, Shabbir; Kaul, Haiba; Lone, Khalid P
2017-01-01
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease, which mainly involves the joints. RA is prevalent worldwide with increasing prevalence in elderly people. The mechanism of RA pathogenesis is still undefined, and it is interplaying between genetic susceptibility and environmental factors. Although risk factors for RA are not fully established, various studies have focused on the role of trace elements in association with RA. Trace elements act as co-factors for most of the enzymes, and their deficiency is associated with many untoward effects on human health. The homeostatic alterations in the metabolism of trace elements may partly be due to inflammatory response in RA. The objective of the present study was to determine the serum concentrations and correlation of zinc, copper, and iron in RA patients and healthy controls. The study comprised of 61 RA patients and 61 age- and sex-related healthy individuals of Pakistani population. Serum levels of Zn, Cu, and Fe were measured in all the participants by atomic absorption spectrophotometer. Serum Zn and Fe were significantly reduced in the RA patients than those in the healthy controls. Serum Cu concentrations were found elevated in the RA patients. Correlation studies of trace elements determine that there was negative correlation between Zn and Cu in the RA patients and no correlation in the control group. It is very important to explore the deficiency of essential trace metals in biological samples of the RA patients in different populations which may be helpful for diagnosis and supplementary management of rheumatoid arthritis patients.
Ordering Traces Logically to Identify Lateness in Message Passing Programs
Isaacs, Katherine E.; Gamblin, Todd; Bhatele, Abhinav; ...
2015-03-30
Event traces are valuable for understanding the behavior of parallel programs. However, automatically analyzing a large parallel trace is difficult, especially without a specific objective. We aid this endeavor by extracting a trace's logical structure, an ordering of trace events derived from happened-before relationships, while taking into account developer intent. Using this structure, we can calculate an operation's delay relative to its peers on other processes. The logical structure also serves as a platform for comparing and clustering processes as well as highlighting communication patterns in a trace visualization. We present an algorithm for determining this idealized logical structure frommore » traces of message passing programs, and we develop metrics to quantify delays and differences among processes. We implement our techniques in Ravel, a parallel trace visualization tool that displays both logical and physical timelines. Rather than showing the duration of each operation, we display where delays begin and end, and how they propagate. As a result, we apply our approach to the traces of several message passing applications, demonstrating the accuracy of our extracted structure and its utility in analyzing these codes.« less
Evaluation of trace element status of organic dairy cattle.
Orjales, I; Herrero-Latorre, C; Miranda, M; Rey-Crespo, F; Rodríguez-Bermúdez, R; López-Alonso, M
2018-06-01
The present study aimed to evaluate trace mineral status of organic dairy herds in northern Spain and the sources of minerals in different types of feed. Blood samples from organic and conventional dairy cattle and feed samples from the respective farms were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of the essential trace elements (cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn)) and toxic trace elements (arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb)). Overall, no differences between organic and conventional farms were detected in serum concentrations of essential and toxic trace elements (except for higher concentrations of Cd on the organic farms), although a high level of inter-farm variation was detected in the organic systems, indicating that organic production greatly depends on the specific local conditions. The dietary concentrations of the essential trace elements I, Cu, Se and Zn were significantly higher in the conventional than in the organic systems, which can be attributed to the high concentration of these minerals in the concentrate feed. No differences in the concentrations of trace minerals were found in the other types of feed. Multivariate chemometric analysis was conducted to determine the contribution of different feed sources to the trace element status of the cattle. Concentrate samples were mainly associated with Co, Cu, I, Se and Zn (i.e. with the elements supplemented in this type of feed). However, pasture and grass silage were associated with soil-derived elements (As, Cr, Fe and Pb) which cattle may thus ingest during grazing.
Huang, Xiao-Mei; Liu, Zhen-Bo; Li, Fei-Ming; Lin, Li-Ping; Wang, Xin-Xing; Lin, Chang-Qing; Huang, Ya-Hong; Li, Zhi-Ming; Lin, Shao-Qin
2010-01-01
Using Pb2+ as ion perturber, phenosafranine (PF) and fluorescein isothiocyanate (FITC) could emit strong and stable room temperature phosphorescence (RTP) signal on the filter paper, respectively. When they were mixed, the phenomenon that the RTP signal of PF and FITC enhanced significantly was found. And 1.12 ag DNA spot−1 (sample volume was 0.40 μL, corresponding concentration was 2.8 × 10–15 g mL–1) could cause the RTP signal of both PF and FITC to enhance sharply. The content of DNA was proportional to the ΔIp of PF and FITC in the system at 634 and 659 nm. Thus, a new solid substrate room temperature phosphorimetry (SSRTP) for the determination of trace DNA was established by using FITC-PF as double-luminescent phosphorescence probe. The detection limit (LD) of this method calculated by 3Sb/k was 14 zg DNA spot–1 for PF and 18 zg DNA spot–1 for FITC, respectively, showing high sensitivity. It has been applied to the determination of trace DNA in practical samples and the analysis results were in accordance with those of fluorescence probe. The reaction mechanism of SSRTP for the determination of trace DNA was also discussed. PMID:20665096
Wang, Bo-Shian; Lee, Chih-Ping; Ho, Tung-Yuan
2014-10-01
A fully automated high pressure pretreatment system with Nobias Chelate-PA1 resin (PA1) was developed for trace metal determination by ICP-MS in natural waters. By varying the concentrations of Mg and Ca to mimic the concentrations in the eluate obtained by PA1 or iminodiacetate type resins, the overall analytical performance of the system was assessed for the determination of Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Cd, Ag, Pb and REE. Comparing with the low mM level Mg and Ca (both ranging from 1 to 4mM) eluted by iminodiacetate type resins, the eluate obtained by PA1 contains sub-μM level Mg and Ca, which remarkably decrease matrix effect in ICP-MS analysis and significantly improve the analytical performance. With recovery better than 90% for most the trace metals examined, the accuracy was further verified through the analysis of five natural water reference materials with salinity spanning from 0 to 35‰. We have successfully applied the pretreatment system to determine trace metals in the seawater samples collected in the Western Philippine Sea through Taiwan GEOTRACES cruise. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steill, Jeffrey D.; Huang, Haifeng; Hoops, Alexandra A.
This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to thesemore » species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.« less
NASA Technical Reports Server (NTRS)
Goldman, A.; Murcray, F. J.; Rinsland, C. P.; Blatherwick, R. D.; Murcray, F. H.; Murcray, D. G.
1991-01-01
Recent results and ongoing studies of high resolution solar absorption spectra will be presented. The analysis of these spectra is aimed at the identification and quantification of trace constituents important in atmospheric chemistry of the stratosphere and upper troposphere. Analysis of balloon-borne and ground-based spectra obtained at 0.0025/ cm covering the 700-2200/ cm interval will be presented. Results from ground-based 0.02/ cm solar spectra, from several locations such as Denver, South Pole, M. Loa, and New Zealand will also be shown. The 0.0025/ cm spectra show many new spectroscopic features. The analysis of these spectra, along with corresponding laboratory spectra, improves the spectral line parameters, and thus the accuracy of trace constituents quantification. The combination of the recent balloon flights, with earlier flights data since 1978 at 0.02/ cm resolution, provides trends analysis of several stratospheric trace species. Results for COF2, F22, SF6, and other species will be presented. Analysis of several ground-based solar spectra provides trends for HCl, HF and other species. The retrieval methods used for total column density and altitude distribution for both ground-based and balloon-borne spectra will be presented. These are extended for the analysis of the ground-based spectra to be obtained by the high resolution interferometers of the Network for Detection of Stratospheric Change (NDSC). Progress or the University of Denver studies for the NDSC will be presented. This will include intercomparison of solar spectra and trace gases retrievals obtained from simultaneous scans by the high resolution (0.0025/ cm) interferometers of BRUKER and BOMEM.
Strontium and Trace Metals in the Mississippi River Mixing Zone
NASA Astrophysics Data System (ADS)
Xu, Y.; Marcantonio, F.
2001-12-01
Strontium is generally believed to be a conservative element, i.e., it is assumed that dissolved Sr moves directly from rivers through estuaries to the ocean. More recently, however, detailed sampling of rivers suggests a weak non-conservative behavior for Sr. Here, we present dissolved and suspended load Sr and trace metal data for samples retrieved along salinity transects in the estuarine mixing zone of the Mississippi River. Our cruises took place during times representing high, falling, and low Mississippi River discharge. Sr concentration and isotopic composition were analyzed for both dissolved particulate loads. Selected particle-reactive or redox-sensitive trace metals (Mn, Fe, U, V, Mo, Ti, and Pb) were analyzed simultaneously. In the dissolved load, Sr showed conservative behavior in both high- and low- discharge periods. Non-conservative behavior of Sr predominated during falling discharge in the summer. Significant positive correlations were found between Sr, Mo and Ti. U and V distributions were found to be essentially controlled by mixing of river water and seawater, but with significantly lower riverine concentrations during high-flow stage. Particulate element concentrations can be quite variable and heterogeneous. In this study, strong correlations were found between particulate Mn (and Fe) concentrations and particulate concentrations of Ti, U, V, and Pb. No such correlations with Mn (or Fe) were found for particulate Sr and Mo. There is a vast hypoxic zone along the coast of Louisiana in the Gulf of Mexico that exists during the summer months. Based on the Sr isotope systematics and the relationships between Sr and trace metals, we believe that this eutrophication may contribute to the non-conservative behaviors of Sr and other trace metals. We discuss the potential implications of this hypothesis on the Sr mass balance of present-day and past seawater.
Trace-fossil assemblages with a new ichnogenus in "spotted"
NASA Astrophysics Data System (ADS)
Šimo, Vladimír; Tomašových, Adam
2013-10-01
Highly-bioturbated "spotted" limestones and marls (Fleckenmergel-Fleckenkalk facies) of the Early Jurassic, which were deposited in broad and recurrent deep-shelf habitats of the Northern Tethys, are characterized by rare benthic carbonate-producing macroinvertebrates. To address this paradox, we analyse trace-fossil assemblages in a ~85 m-thick succession of Pliensbachian spotted deposits (Zliechov Basin, Western Carpathians). They are dominated by infaunal and semi-infaunal deposit-feeders, with 9 ichnogenera and pyritized tubes of the semi-infaunal foraminifer Bathysiphon, being dominated by Chondrites, Lamellaeichnus (new ichnogenus), and Teichichnus. Lamellaeichnus, represented by a horizontal basal cylindrical burrow and an upper row of stacked convex-up gutters, was produced by a mobile deposit-feeder inhabiting shallow tiers because it is crossed by most other trace fossils. We show that the spotty appearance of the deposits is generated by a mixture of (1) dark, organic-rich shallow- and deep-tier traces (TOC = 0.16-0.36), and (2) light grey, organic-poor mottled or structurless sediment (TOC = 0.09-0.22). The higher TOC in shallow-tier burrows of Lamellaeichnus demonstrates that uppermost sediment layers were affected by poor redox cycling. Such conditions imply a limited mixed-layer depth and inefficient nutrient recycling conditioned by hypoxic bottom-waters, allowed by poor circulation and high sedimentation rates in depocenters of the Zliechov Basin. Hypoxic conditions are further supported by (1) dominance of trace-fossils produced by infaunal deposit feeders, (2) high abundance of hypoxiatolerant agglutinated foraminifer Bathysiphon, and (3) high abundance of Chondrites with ~0.5 mm-sized branches. Oxygen-deficient bottom-conditions can thus simultaneously explain the rarity of benthic carbonate-producing macroinvertebrates and high standing abundance of tolerant soft-shell and agglutinated organisms in spotted deposits.
Gabbert, Dominik D; Entenmann, Andreas; Jerosch-Herold, Michael; Frettlöh, Felicitas; Hart, Christopher; Voges, Inga; Pham, Minh; Andrade, Ana; Pardun, Eileen; Wegner, P; Hansen, Traudel; Kramer, Hans-Heiner; Rickers, Carsten
2013-12-01
The determination of right ventricular volumes and function is of increasing interest for the postoperative care of patients with congenital heart defects. The presentation of volumetry data in terms of volume-time curves allows a comprehensive functional assessment. By using manual contour tracing, the generation of volume-time curves is exceedingly time-consuming. This study describes a fast and precise method for determining volume-time curves for the right ventricle and for the right ventricular outflow tract. The method applies contour detection and includes a feature for identifying the right ventricular outflow tract volume. The segregation of the outflow tract is performed by four-dimensional curved smooth boundary surfaces defined by prespecified anatomical landmarks. The comparison with manual contour tracing demonstrates that the method is accurate and improves the precision of the measurement. Compared to manual contour tracing the bias is <0.1% ± 4.1% (right ventricle) and -2.6% ± 20.0% (right ventricular outflow tract). The standard deviations of inter- and intraobserver variabilities for determining the volume of the right ventricular outflow tract are reduced to less than half the values of manual contour tracing. The time consumption per patient is reduced from 341 ± 80 min (right ventricle) and 56 ± 11 min (right ventricular outflow tract) using manual contour tracing to 46 ± 9 min for a combined analysis of right ventricle and right ventricular outflow tract. The analysis of volume-time curves for the right ventricle and its outflow tract discloses new evaluation methods in clinical routine and science. Copyright © 2013 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Correia, Paulo R. M.; Oliveira, Pedro V.
2004-01-01
The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…
NASA Astrophysics Data System (ADS)
Givianrad, M. H.; Saber-Tehrani, M.; Aberoomand-Azar, P.; Mohagheghian, M.
2011-03-01
The applicability of H-point standard additions method (HPSAM) to the resolving of overlapping spectra corresponding to the sulfamethoxazole and trimethoprim is verified by UV-vis spectrophotometry. The results show that the H-point standard additions method with simultaneous addition of both analytes is suitable for the simultaneous determination of sulfamethoxazole and trimethoprim in aqueous media. The results of applying the H-point standard additions method showed that the two drugs could be determined simultaneously with the concentration ratios of sulfamethoxazole to trimethoprim varying from 1:18 to 16:1 in the mixed samples. Also, the limits of detections were 0.58 and 0.37 μmol L -1 for sulfamethoxazole and trimethoprim, respectively. In addition the means of the calculated RSD (%) were 1.63 and 2.01 for SMX and TMP, respectively in synthetic mixtures. The proposed method has been successfully applied to the simultaneous determination of sulfamethoxazole and trimethoprim in some synthetic, pharmaceutical formulation and biological fluid samples.
Givianrad, M H; Saber-Tehrani, M; Aberoomand-Azar, P; Mohagheghian, M
2011-03-01
The applicability of H-point standard additions method (HPSAM) to the resolving of overlapping spectra corresponding to the sulfamethoxazole and trimethoprim is verified by UV-vis spectrophotometry. The results show that the H-point standard additions method with simultaneous addition of both analytes is suitable for the simultaneous determination of sulfamethoxazole and trimethoprim in aqueous media. The results of applying the H-point standard additions method showed that the two drugs could be determined simultaneously with the concentration ratios of sulfamethoxazole to trimethoprim varying from 1:18 to 16:1 in the mixed samples. Also, the limits of detections were 0.58 and 0.37 μmol L(-1) for sulfamethoxazole and trimethoprim, respectively. In addition the means of the calculated RSD (%) were 1.63 and 2.01 for SMX and TMP, respectively in synthetic mixtures. The proposed method has been successfully applied to the simultaneous determination of sulfamethoxazole and trimethoprim in some synthetic, pharmaceutical formulation and biological fluid samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Qiu, Chen; Zhu, Hongbin; Ruzicka, Connie; Keire, David; Ye, Hongping
2018-05-15
Penicillins and some non-penicillin β-lactams may cause potentially life-threatening allergic reactions. Thus, possible cross contamination of β-lactams in food or drugs can put people at risk. Therefore, when there is a reasonable possibility that a non-penicillin product could be contaminated by penicillin, the drug products are tested for penicillin contamination. Here, a sensitive and rapid method for simultaneous determination of multiple β-lactam antibiotics using high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated. Mass spectral acquisition was performed on a Q-Exactive HF mass spectrometer in positive ion mode with parallel reaction monitoring (PRM). The method was validated for seven β-lactam antibiotics including one or two from each class and a synthetic intermediate. The quantification precision and accuracy at 200 ppb were in the range of ± 1.84 to ± 4.56 and - 5.20 to 3.44%, respectively. The limit of detection (LOD) was 0.2 ppb, and the limit of quantitation (LOQ) was 2 ppb with a linear dynamic range (LDR) of 2-2000 ppb for all eight β-lactams. From various drug products, the recoveries of eight β-lactams at 200 and 2 ppb ranged from 93.8 ± 3.2 to 112.1 ± 4.2% and 89.7 ± 4.6 to 110.6 ± 1.9%, respectively. The application of the method for detecting cross contamination of trace β-lactams (0.2 ppb) and for monitoring facility surface cleaning was also investigated. This sensitive and fast method was fit-for-purpose for detecting and quantifying trace amount of β-lactam contamination, monitoring cross contamination in manufacturing processes, and determining potency for regulatory purposes and for quality control.
NASA Astrophysics Data System (ADS)
Eyer, S.; Tuzson, B.; Popa, M. E.; van der Veen, C.; Röckmann, T.; Rothe, M.; Brand, W. A.; Fisher, R.; Lowry, D.; Nisbet, E. G.; Brennwald, M. S.; Harris, E.; Zellweger, C.; Emmenegger, L.; Fischer, H.; Mohn, J.
2015-08-01
In situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called TRace gas EXtractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, μmole/mole) methane is 0.1 and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. Based on replicate measurements of compressed air during a two-week intercomparison campaign, the repeatability of the TREX-QCLAS was determined to be 0.19 and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to isotope-ratio mass-spectrometry (IRMS) based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers. Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX-QCLAS data and bag/flask sampling-IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and δD-CH4, respectively. Thus, the intercomparison also reveals the need for reference air samples with accurately determined isotopic composition of CH4 to further improve the interlaboratory compatibility.
Li, Wen-Tao; Majewsky, Marius; Abbt-Braun, Gudrun; Horn, Harald; Jin, Jing; Li, Qiang; Zhou, Qing; Li, Ai-Min
2016-09-15
This work aims to correlate signals of LED UV/fluorescence sensor with the degradation of dissolved organic matter (DOM) and trace-level organic contaminants (TOrCs) during ozonation process. Six sets of bench-scale ozonation kinetic experiments incorporated with three different water matrices and 14 TOrCs of different reactivity (group I ∼ V) were conducted. Calibrated by tryptophan and humic substances standards and verified by the lab benchtop spectroscopy, the newly developed portable/online LED sensor, which measures the UV280 absorbance, protein-like and humic-like fluorescence simultaneously, was feasible to monitor chromophores and fluorophores with good sensitivity and accuracy. The liquid chromatography with organic carbon detector combined with 2D synchronous correlation analysis further demonstrated how the DOM components of large molecular weight were transformed into small moieties as a function of the decrease of humic-like fluorescence. For TOrCs, their removal rates were well correlated with the decrease of the LED UV/fluorescence signals, and their elimination patterns were mainly determined by their reactivity with O3 and hydroxyl radicals. At approximately 50% reduction of humic-like fluorescence almost complete oxidation of TOrCs of group I and II was reached, a similar removal percentage (25-75%) of TOrCs of group III and IV, and a poor removal percentage (<25%) of group V. This study might contribute to the smart control of advanced oxidation processes for the water and wastewater treatment in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analytical possibilities of highly focused ion beams in biomedical field
NASA Astrophysics Data System (ADS)
Ren, M. Q.; Ji, X.; Vajandar, S. K.; Mi, Z. H.; Hoi, A.; Walczyk, T.; van Kan, J. A.; Bettiol, A. A.; Watt, F.; Osipowicz, T.
2017-09-01
At the Centre for Ion Beam Applications (CIBA), a 3.5 MV HVEE Singletron™ accelerator serves to provide MeV ion beams (mostly protons or He+) to six state-of-the-art beam lines, four of which are equipped with Oxford triplet magnetic quadrupole lens systems. This facility is used for a wide range of research projects, many of which are in the field of biomedicine. Here we presented a discussion of currently ongoing biomedical work carried out using two beamlines: The Nuclear Microscopy (NM) beamline is mainly used for trace elemental quantitative mapping using a combination of Particle Induced X-ray Emission (PIXE), to measure the trace elemental concentration of inorganic elements, Rutherford Backscattering Spectrometry (RBS), to characterise the organic matrix, and Scanning Transmission Ion Microscopy (STIM) to provide information on the lateral areal density variations of the specimen. Typically, a 2.1 MeV proton beam, focused to 1-2 μm spot size with a current of 100 pA is used. The high resolution single cell imaging beamline is equipped with direct STIM to image the interior structure of single cells with proton and alpha particles of sub-50 nm beam spot sizes. Simultaneously, forward scattering transmission ion microscopy (FSTIM) is utilized to generate images with improved contrast of nanoparticles with higher atomic numbers, such as gold nanoparticles, and fluorescent nanoparticles can be imaged using Proton Induced Fluorescence (PIF). Lastly, in this facility, RBS has been included as an option if required to determine the depth distribution of nanoparticles in cells, albeit with reduced spatial resolution.
In vitro and in vivo toxicity of urban and rural particulate matter from California
NASA Astrophysics Data System (ADS)
Mirowsky, Jaime E.; Jin, Lan; Thurston, George; Lighthall, David; Tyner, Tim; Horton, Lori; Galdanes, Karen; Chillrud, Steven; Ross, James; Pinkerton, Kent E.; Chen, Lung Chi; Lippmann, Morton; Gordon, Terry
2015-02-01
Particulate matter (PM) varies in chemical composition and mass concentration based on location, source, and particle size. This study sought to evaluate the in vitro and in vivo toxicity of coarse (PM10-2.5) and fine (PM2.5) PM samples collected at 5 diverse sites within California. Coarse and fine PM samples were collected simultaneously at 2 rural and 3 urban sites within California during the summer. A human pulmonary microvascular endothelial cell line (HPMEC-ST1.6R) was exposed to PM suspensions (50 μg/mL) and analyzed for reactive oxygen species (ROS) after 5 h of treatment. In addition, FVB/N mice were exposed by oropharyngeal aspiration to 50 μg PM, and lavage fluid was collected 24 h post-exposure and analyzed for total protein and %PMNs. Correlations between trace metal concentrations, endotoxin, and biological endpoints were calculated, and the effect of particle size range, locale (urban vs. rural), and location was determined. Absolute principal factor analysis was used to identify pollution sources of PM from elemental tracers of those sources. Ambient PM elicited an ROS and pro-inflammatory-related response in the cell and mouse models, respectively. These responses were dependent on particle size, locale, and location. Trace elements associated with soil and traffic markers were most strongly linked to the adverse effects in vitro and in vivo. Particle size, location, source, and composition of PM collected at 5 locations in California affected the ROS response in human pulmonary endothelial cells and the inflammatory response in mice.
Tracing iron-carbon redox from surface to core
NASA Astrophysics Data System (ADS)
McCammon, C. A.; Cerantola, V.; Bykova, E.; Kupenko, I.; Bykov, M.; Chumakov, A. I.; Rüffer, R.; Dubrovinsky, L. S.
2017-12-01
Numerous redox reactions separate the Earth's oxidised surface from its reduced core. Many involve iron, the Earth's most abundant element and the mantle's most abundant transition element. Most iron redox reactions (although not all) also involve other elements, including carbon, where iron-carbon interactions drive a number of important processes within the Earth, for example diamond formation. Many of the Earth's redox boundaries are sharp, much like the seismic properties that define them, for example between the lower mantle and the core. Other regions that appear seismically homogeneous, for example the lower mantle, harbour a wealth of reactions between oxidised and reduced phases of iron and carbon. We have undertaken many experiments at high pressure and high temperature on phases containing iron and carbon using synchrotron-based X-rays to probe structures and iron oxidation states. Results demonstrate the dominant role that crystal structures play in determining the stable oxidation states of iron and carbon, even when oxygen fugacity (and common sense) would suggest otherwise. Iron in bridgmanite, for example, occurs predominantly in its oxidised form (ferric iron) throughout the lower mantle, despite the inferred reducing conditions. Newly discovered structures of iron carbonate also stabilise ferric iron, while simultaneously reducing some carbon to diamond to balance charge. Other high-pressure iron carbonates appear to be associated with the emerging zoo of iron oxide phases, involving transitions between ferrous and ferric iron through the exchange of oxygen. The presentation will trace redox relations between iron and carbon from the Earth's surface to its core, with an emphasis on recent experimental results.
Ribeiro, C; Couto, C; Ribeiro, A R; Maia, A S; Santos, M; Tiritan, M E; Pinto, E; Almeida, A A
2018-10-15
The present study evaluated the content and distribution of several trace elements (Li, Be, Al, V, Cr, Co, Ni, Cu, Zn, Se, Mo, Ag, Cd, Sb, Ba, Tl, Pb, and U) in the Douro River estuary. For that, three matrices were collected (water, sediments and native local flora) to assess the extent of contamination by these elements in this estuarine ecosystem. Results showed their occurrence in estuarine water and sediments, but significant differences were recorded on the concentration levels and pattern of distribution among both matrices and sampling points. Generally, the levels of trace elements were higher in the sediments than in the respective estuarine water. Nonetheless, no correlation among trace elements was determined between water and sediments, except for Cd. Al was the trace element found at highest concentration at both sediments and water followed by Zn. Pollution indices such as geo-accumulation (I geo ), enrichment factor (EF) and contamination factor (CF) were determined to understand the levels and sources of trace elements pollution. I geo showed strong contamination by anthropogenic activities for Li, Al, V, Cr, Ni, Cu, Zn, Ba and Pb at all sampling points while EF and CF demonstrated severe enrichment and contamination by Se, Sb and Pb. Levels of trace elements were compared to acceptable values for aquatic organisms and Sediment Quality Guidelines. The concentration of some trace elements, namely Al, Pb and Cu, were higher than those considered acceptable, with potential negative impact on local living organisms. Nevertheless, permissible values for all trace elements are still not available, demonstrating that further studies are needed in order to have a complete assessment of environmental risk. Furthermore, the occurrence and possible accumulation of trace elements by local plant species and macroalgae were investigated as well as their potential use as bioindicators of local pollution and for phytoremediation purposes. Copyright © 2018 Elsevier B.V. All rights reserved.
Maher, K.; Wooden, J.L.; Paces, J.B.; Miller, D.M.
2007-01-01
We used the sensitive high-resolution ion microprobe reverse-geometry (SHRIMP-RG) to date pedogenic opal using the 230Th-U system. Due to the high-spatial resolution of an ion microprobe (typically 30 ??m), regions of pure opal within a sample can be targeted and detrital material can be avoided. In addition, because the technique is non-destructive, the sample can be preserved for other types of analyses including electron microprobe or other stable isotope or trace element ion microprobe measurements. The technique is limited to material with U concentrations greater than ???50 ppm. However, the high spatial resolution, small sample requirements, and the ability to avoid detrital material make this technique a suitable technique for dating many Pleistocene deposits formed in semi-arid environments. To determine the versatility of the method, samples from several different deposits were analyzed, including silica-rich pebble coatings from pedogenic carbonate horizons, a siliceous sinter deposit, and opaline silica deposited as a spring mound. U concentrations for 30-??m-diameter spots ranged from 50 to 1000 ppm in these types of materials. The 230Th/232Th activity ratios also ranged from ???100 to 106, eliminating the need for detrital Th corrections that reduce the precision of traditional U-Th ages for many milligram- and larger-sized samples. In pedogenic material, layers of high-U opal (ca. 500 ppm) are commonly juxtaposed next to layers of calcite with much lower U concentrations (1-2 ppm). If these types of samples are not analyzed using a technique with the appropriate spatial resolution, the ages may be strongly biased towards the age of the opal. Comparison with standard TIMS (Thermal Ionization Mass Spectrometry) measurements from separate microdrilled samples suggests that although the analytical precision of the ion microprobe (SHRIMP-RG) measurements is less than TIMS, the high spatial resolution results in better accuracy in the age determination for finely layered or complex deposits. The ion microprobe approach also may be useful for pre-screening samples to determine the age and degree of post-depositional alteration, analyzing finely layered samples or samples with complex growth histories, and obtaining simultaneous measurements of trace elements.
Interpretation of Trace Gas Data Using Inverse Methods and Global Chemical Transport Models
NASA Technical Reports Server (NTRS)
Prinn, Ronald G.
1997-01-01
This is a theoretical research project aimed at: (1) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for long lived gases important in ozone depletion and climate forcing, (2) utilization of inverse methods to determine these source/sink strengths which use the NCAR/Boulder CCM2-T42 3-D model and a global 3-D Model for Atmospheric Transport and Chemistry (MATCH) which is based on analyzed observed wind fields (developed in collaboration by MIT and NCAR/Boulder), (3) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple titrating gases, and, (4) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3-D models. Important goals include determination of regional source strengths of methane, nitrous oxide, and other climatically and chemically important biogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements and hydrohalocarbons used as alternatives to the restricted halocarbons.
NASA Astrophysics Data System (ADS)
Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.
2012-12-01
Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and stored in pre-cleaned low-density polyethylene bottles, and kept frozen until acidification (2% v/v ultra-pure HNO3). Determination of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was repeated at different times after acidification using the same aliquot. Analyses show a mean increase of 40-50% in trace element concentration in all the samples during the first 15 days of storage after acidification, except Al, Fe, V and Cr, which show a larger increase (90-100%). After 15 days the trace element concentrations reach generally stable values (with small increases within measurement uncertainty), except for the Naimonanyi and Kilimanjaro samples which continue to increase. In contrast, Ag concentration decreases after one week, likely due to its low stability in the acidified solution that may depend on the Cl- concentration. We froze the samples 43 days after the acidification. After two weeks the samples were melted and re-analyzed by ICP-SFMS in two different laboratories as an inter-calibration exercise. The results show a good correspondence between the measured concentrations determined by the two instruments and a consistent additional increase of 20-30% of measured trace element concentrations in almost all samples.
Achterberg, E. P.; Bowie, A. R.; Cannizzaro, V.; Charles, S.; Costa, J. M.; Dubois, F.; Pereiro, R.; San Vicente, B.; Sanz-Medel, A.; Vandeloise, R.; Donckt, E. Vander; Wollast, P.; Yunus, S.
2002-01-01
The paper describes an integrated luminometer able to perform fluorescence (FL), room temperature phosphorescence (RTP) and chemiluminescence (CL) measurements on seawater samples. The technical details of the instrumentation are presented together with flow injection (FI) manifolds for the determination of cadmium and zinc (by FL), lead (RTP) and cobalt (CL). The analytical figures of merit are given for each manifold and results are presented for the determination of the four trace metals in seawater reference materials (NASS-5, SLEW-2) and Scheldt estuarine water samples. PMID:18924742
Yang, Zhenzhou; Chen, Yan; Sun, Yongqi; Liu, Lili; Zhang, Zuotai; Ge, Xinlei
2016-07-01
In the present study, the trace elements partitioning behavior during cement manufacture process were systemically investigated as well as their distribution behaviors in the soil surrounding a cement plant using hazardous waste as raw materials. In addition to the experimental analysis, the thermodynamic equilibrium calculations were simultaneously conducted. The results demonstrate that in the industrial-scale cement manufacture process, the trace elements can be classified into three groups according to their releasing behaviors. Hg is recognized as a highly volatile element, which almost totally partitions into the vapor phase. Co, Cu, Mn, V, and Cr are considered to be non-volatile elements, which are largely incorporated into the clinker. Meanwhile, Cd, Ba, As, Ni, Pb, and Zn can be classified into semi-volatile elements, as they are trapped into clinker to various degrees. Furthermore, the trace elements emitted into the flue gas can be adsorbed onto the fine particles, transport and deposit in the soil, and it is clarified here that the soil around the cement plant is moderately polluted by Cd, slightly polluted by As, Cr, Ba, Zn, yet rarely influenced by Co, Mn, Ni, Cu, Hg, and V elements. It was also estimated that the addition of wastes can efficiently reduce the consumption of raw materials and energy. The deciphered results can thus provide important insights for estimating the environmental impacts of the cement plant on its surroundings by utilizing wastes as raw materials.
Survey of Instrumentation for the Measurement of Stratospheric Trace Gases and Particulates (CIAP)
DOT National Transportation Integrated Search
1971-11-01
A survey was conducted to determine the applicability of presently available instrumentation to the direct and/or remote measure of trace gases and particulates within the stratosphere. Consideration was also given to techniques under development whe...
Multielement extraction system for determining 19 trace elements in gold exploration samples
Clark, J. Robert; Viets, John G.; ,
1990-01-01
A multielement extraction system is being used successfully to provide essentially interference-free geochemical analyses to aid in gold exploration. The Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system separates Ag, As, Au, Bi, Cd, Cu, Ga, Hg, In, Mo, Pb, Pd, Pt, Sb, Se, Sn, Te, Tl, and Zn from interfering geological matrices. Quantitative extraction of these elements is accomplished over a broad range of acid normality making it possible to economically determine all 19 elements from a single digestion or leach solution. The resulting organic extracts are amenable to analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and flame atomic absorption spectroscopy (FAAS). For many years the principal shortcoming of ICP-AES was the complex spectral and stray-light interferences that were caused by the extreme variability of components such as Fe, Na, and Ca in common geological matrices. The MAGIC extraction allows determination of the extracted elements with enhanced sensitivity, from a virtually uniform matrix, by ICP-AES and FAAS. Because of its simultaneous multichannel capabilities, ICP-AES is the ideal instrumental technique for determining these 19 extracted elements. Ultratrace (sub-part-per-billion) determinations of Au and many of the other extracted elements can be made by graphite furnace atomic absorption spectroscopy (GFAAS), following back stripping of the extracts. The combination of the extraction followed by stripping of the organic phase eliminates 99.999% of potential interferences for Au. Gold determination by GFAAS from these extracts under the specified conditions yields a fourfold improvement in sensitivity over conventional GFAAS methods. This sensitivity enhancement and the interference-free matrix allow highly reliable determinations well into the parts-per-trillion range.
Grotti, Marco; Abelmoschi, Maria Luisa; Dalla Riva, Simona; Soggia, Francesco; Frache, Roberto
2005-04-01
A new procedure for determining low levels of lead in bone tissues has been developed. After wet acid digestion in a pressurized microwave-heated system, the solution was analyzed by inductively coupled plasma multichannel-based emission spectrometry. Internal standardization using the Co 228.615 nm reference line was chosen as the optimal method to compensate for the matrix effects from the presence of calcium and nitric acid at high concentration levels. The detection limit of the procedure was 0.11 microg Pb g(-1) dry mass. Instrumental precision at the analytical concentration of approximately 10 microg l(-1) ranged from 6.1 to 9.4%. Precision of the sample preparation step was 5.4%. The concentration of lead in SRM 1486 (1.32+/-0.04 microg g(-1)) found using the new procedure was in excellent agreement with the certified level (1.335+/-0.014 microg g(-1)). Finally, the method was applied to determine the lead in various fish bone tissues, and the analytical results were found to be in good agreement with those obtained through differential pulse anodic stripping voltammetry. The method is therefore suitable for the reliable determination of lead at concentration levels of below 1 microg g(-1) in bone samples. Moreover, the multi-element capability of the technique allows us to simultaneously determine other major or trace elements in order to investigate inter-element correlation and to compute enrichment factors, making the proposed procedure particularly useful for investigating lead occurrence and pathways in fish bone tissues in order to find suitable biomarkers for the Antarctic marine environment.
Johnsen, Jacob Clarke; Reese, Susan Anne; Mackay, Mark; Anderson, Collin R; Jackson, Daniel; Paul, Irasema Libertad
2017-08-01
Pediatric patients who are receiving parenteral nutrition (PN) unsupplemented with trace minerals can become deficient. Due to shortages in trace mineral products and the 2004 American Society for Parenteral and Enteral Nutrition report stating that individualized trace element supplementation may be warranted, a review was conducted concerning the trace minerals selenium (Se), manganese (Mn), and iodine (I). A retrospective review of pediatric patients receiving PN that contained Se and Mn was conducted to determine if a difference existed between them and patients receiving PN without Se and Mn. Statistical analysis was done to assess a difference between trace mineral levels and the time to deficiency between supplemented and unsupplemented patients. Unsupplemented I patients had urine I levels assessed to determine deficiencies in patients receiving PN. Plasma Se levels were measured at a mean of 20 days for supplemented patients (n = 131) and 19 days for nonsupplemented patients (n = 57) with no difference between groups ( P = .2973). Plasma Mn levels were measured at a mean of 28 days, showing no statistical difference ( P = .721). Of the 177 nonsupplemented I patients, 74% demonstrated I deficiencies without supplementation. Time to the development of a Se, Mn, or I deficiency is important to guide supplementation of exclusive PN in children when trace mineral products are short in supply. Our retrospective experience supports assessment of the trace minerals Se at 21 days and Mn at 30 days. It also suggests that some pediatric patients receiving PN are deficient in I.
Advances in Current Rating Techniques for Flexible Printed Circuits
NASA Technical Reports Server (NTRS)
Hayes, Ron
2014-01-01
Twist Capsule Assemblies are power transfer devices commonly used in spacecraft mechanisms that require electrical signals to be passed across a rotating interface. Flexible printed circuits (flex tapes, see Figure 2) are used to carry the electrical signals in these devices. Determining the current rating for a given trace (conductor) size can be challenging. Because of the thermal conditions present in this environment the most appropriate approach is to assume that the only means by which heat is removed from the trace is thru the conductor itself, so that when the flex tape is long the temperature rise in the trace can be extreme. While this technique represents a worst-case thermal situation that yields conservative current ratings, this conservatism may lead to overly cautious designs when not all traces are used at their full rated capacity. A better understanding of how individual traces behave when they are not all in use is the goal of this research. In the testing done in support of this paper, a representative flex tape used for a flight Solar Array Drive Assembly (SADA) application was tested by energizing individual traces (conductors in the tape) in a vacuum chamber and the temperatures of the tape measured using both fine-gauge thermocouples and infrared thermographic imaging. We find that traditional derating schemes used for bundles of wires do not apply for the configuration tested. We also determine that single active traces located in the center of a flex tape operate at lower temperatures than those on the outside edges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, Emily K.; Aalseth, Craig E.; Day, Anthony R.
Abstract Simultaneous measurement of tritium and 14C would provide an added tool for tracing organic compounds through environmental systems and is possible via beta energy spectroscopy of sample-derived methane in internal-source gas proportional counters. Since the mid-1960’s atmospheric tritium and 14C have fallen dramatically as the isotopic injections from above-ground nuclear testing have been diluted into the ocean and biosphere. In this work, the feasibility of simultaneous tritium and 14C measurements via proportional counters is revisited in light of significant changes in both the atmospheric and biosphere isotopics and the development of new ultra-low-background gas proportional counting capabilities for smallmore » samples (roughly 50 cc methane). A Geant4 Monte Carlo model of a Pacific Northwest National Laboratory (PNNL) proportional counter response to tritium and 14C is used to analyze small samples of two different methane sources to illustrate the range of applicability of contemporary simultaneous measurements and their limitations. Because the two methane sources examined were not sample size limited, we could compare the small-sample measurements performed at PNNL with analysis of larger samples performed at a commercial laboratory. The dual-isotope simultaneous measurement is well matched for methane samples that are atmospheric or have an elevated source of tritium (i.e. landfill gas). For samples with low/modern tritium isotopics (rainwater), commercial separation and counting is a better fit.« less
Liddell, Mark R; Li, S Kevin; Higuchi, William I
2011-07-01
The purpose of this study was to characterize changes that occur in the iontophoretic transport of nonionic probe permeants in hairless mouse skin epidermal membrane from the anode to cathode when polystyrene sulfonate (PSS) oligomers are cotransported from the cathode to anode. The experiments were conducted with trace levels of the nonionic probe permeants: urea, mannitol, and raffinose. In order to systematically assess changes that occur as a result of having PSS in the cathodal chamber, the steady-state transport parameters of the membrane and the experimental permeability coefficients of the probe permeants were determined and compared with results obtained from earlier baseline experiments where both the cathodal and anodal chamber media were phosphate buffered saline. In addition, the physicochemical properties of the PSS solutions were determined including the solution viscosity and conductance as well as the mobilities of individual PSS oligomers. The effective pore radii of the transport pathways were calculated using a theoretical expression based on simultaneous diffusion and electroosmosis. Compared with the baseline results, the calculated radii were found to have increased up to around twofold and the iontophoretic fluxes of the probe permeants increased by as much sixfold. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association
Alothman, Zeid A; Yilmaz, Erkan; Habila, Mohamed; Soylak, Mustafa
2015-02-01
1-(2-Pyridylazo)-2-naphthol impregnated activated carbon cloth (PAN-imp-ACC) was prepared as a solid phase sorbent and, for the first time, was used for the simultaneous separation and preconcentration of trace amounts of lead, cadmium and nickel in water, soil and sewage sludge samples prior to determination by flame atomic absorption spectrometry (FAAS). The parameters governing the efficiency of the method were optimized, including the pH, the eluent type and volume, the sample and eluent flow rates, diverse ions effects and the sample volume. A preconcentration factor of 100 was achieved for all the metal ions, with detection limits of 0.1-2.8 µg L(-1) and relative standard deviations below 6.3%. The adsorption capacity of the PAN-imp-ACC for Pb(II), Cd(II) and Ni(II) ions was found to be 45.0 mg g(-1), 45.0 mg g(-1) and 43.2 mg g(-1), respectively. The method was validated by the analysis of the certified reference materials TMDA-64.2 fortified Lake Ontario water and BCR-146R Sewage Sludge Amended Soil (Industrial Origin). The procedure was applied to determine the analytes content in real samples. Copyright © 2014 Elsevier Inc. All rights reserved.
Cholinergic dependence of taste memory formation: evidence of two distinct processes.
Gutiérrez, Ranier; Rodriguez-Ortiz, Carlos J; De La Cruz, Vanesa; Núñez-Jaramillo, Luis; Bermudez-Rattoni, Federico
2003-11-01
Learning the aversive or positive consequences associated with novel taste solutions has a strong significance for an animal's survival. A lack of recognition of a taste's consequences could prevent ingestion of potential edibles or encounter death. We used conditioned taste aversion (CTA) and attenuation of neophobia (AN) to study aversive and safe taste memory formation. To determine if muscarinic receptors in the insular cortex participate differentially in both tasks, we infused the muscarinic antagonists scopolamine at distinct times before or after the presentation of a strong concentration of saccharin, followed by either an i.p. injection of a malaise-inducing agent or no injection. Our results showed that blockade of muscarinic receptors before taste presentation disrupts both learning tasks. However, the same treatment after the taste prevents AN but not CTA. These results clearly demonstrate that cortical cholinergic activity participates in the acquisition of both safe and aversive memory formation, and that cortical muscarinic receptors seem to be necessary for safe but not for aversive taste memory consolidation. These results suggest that the taste memory trace is processed in the insular cortex simultaneously by at least two independent mechanisms, and that their interaction would determine the degree of aversion or preference learned to a novel taste.
Baki, Mostafa Hossein; Shemirani, Farzaneh; Khani, Rouhollah
2013-05-01
Application of treated sawdust with NaOH as a green and economical sorbent for simultaneous preconcentration of trace amounts of Cd(II), Co(II), and Pb(II) ions from liver, lettuce, fish, and water as test samples with complicated matrices was investigated. Various parameters, such as effect of pH and contact time, breakthrough volume, type, and concentration of eluent and interference of ions were studied. The sorption was quantitative in the pH of 5.0 to 7.0 and desorption occurred instantaneously with 5.0 mL of mixed solutions of ethanol and 2.0 mol/L HNO3 -HCl and the amount of ions was measured by using flame atomic absorption spectrometry. Linearity was maintained at 3 to 500 μg/L for cobalt, 5.0 to 800 μg/L for lead, and 2.0 to 300 μg/L for cadmium in the original solution. The relative standard deviation was less than 1.80% (n = 6, with concentration of 0.3 mg/L for cadmium and 0.5 mg/L for lead and cobalt). Detection limits and maximum capacity of the sorbent for Co (II), Cd (II), and Pb (II) in the original solution were 0.86, 0.50, and 1.7 μg/L and 28.5, 30.6, and 47.3 mg/g, respectively. The results for spiked real samples, effect of interfering ions, and adsorption capacity indicated that the applicability of this method for lead preconcentration is better than cadmium and cobalt preconcentration from complicated matrices. Practical Application: Sawdust can be applied as a green and economical sorbent for simultaneous preconcentration and solid-phase extraction of metal ions from food and environmental samples with complicated matrices. © 2013 Institute of Food Technologists®
Karimi, H; Ghaedi, M; Shokrollahi, A; Rajabi, H R; Soylak, M; Karami, B
2008-02-28
A simple, selective and rapid flotation method for the separation-preconcentration of trace amounts of cobalt, nickel, iron and copper ions using phenyl 2-pyridyl ketone oxime (PPKO) has been developed prior to their flame atomic absorption spectrometric determinations. The influence of pH, amount of PPKO as collector, type and amount of eluting agent, type and amount of surfactant as floating agent and ionic strength was evaluated on the recoveries of analytes. The influences of the concomitant ions on the recoveries of the analyte ions were also examined. The enrichment factor was 93. The detection limits based on 3 sigma for Cu, Ni, Co and Fe were 0.7, 0.7, 0.8, and 0.7 ng mL(-1), respectively. The method has been successfully applied for determination of trace amounts of ions in various real samples.
NASA Technical Reports Server (NTRS)
McIntosh, E. Carrie; Porrachia, Magali; McCubbin, Francis M.; Day, James M. D.
2017-01-01
Since their recognition as pyroclastic glasses generated by volcanic fire fountaining on the Moon, 74220 and 15426 have garnered significant scientific interest. Early studies recognized that the glasses were particularly enriched in volatile elements on their surfaces. More recently, detailed analyses of the interiors of the glasses, as well as of melt inclusions within olivine grains associated with the 74220 glass beads, have determined high H2O, F, Cl and S contents. Such elevated volatile contents seem at odds with evidence from moderately volatile elements (MVE), such as Zn and K, for a volatile- depleted Moon. In this study, we present initial results from an analytical campaign to study trace element abundances within the pyroclastic glass beads. We report trace element data determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for 15426 and 74220.
NASA Astrophysics Data System (ADS)
Shao-Qin, Lin; Xuan, Lin; Shi-Rong, Hu; Li-Qing, Zeng; Yan, Wang; Li, Chen; Jia-Ming, Liu; Long-Di, Li
2005-11-01
A new method for the determination of trace aluminum has been proposed. It is based on the fact that alizarin red can emit strong and stable fluorescence at 80 °C for 30 min and Al 3+ can effectively catalyze potassium chlorate oxidizing alizarin red to form non-fluorescence complex which cause the fluorescence quenching. The linear dynamic range of this method is 0.040-4.00 ng l -1 with a detection limit of 5.3 pg l -1. The regression equation can be expressed as Δ If = 8.731 + 21.73 c (ng l -1), with the correlation coefficient r = 0.9992 ( n = 6). This sensitive, rapid and accurate method has been applied to the determination of trace aluminum(III) in human hair and tea samples successfully. What is more, the mechanism of catalyzing potassium chlorate oxidizing alizarin red by the fluorescence quenching method is also discussed.
Shao-Qin, Lin; Xuan, Lin; Shi-Rong, Hu; Li-Qing, Zeng; Yan, Wang; Li, Chen; Jia-Ming, Liu; Long-Di, Li
2005-11-01
A new method for the determination of trace aluminum has been proposed. It is based on the fact that alizarin red can emit strong and stable fluorescence at 80 degrees C for 30 min and Al(3+) can effectively catalyze potassium chlorate oxidizing alizarin red to form non-fluorescence complex which cause the fluorescence quenching. The linear dynamic range of this method is 0.040-4.00 ngl(-1) with a detection limit of 5.3 pgl(-1). The regression equation can be expressed as DeltaI(f)=8.731+21.73c(Al(3+)) (ngl(-1)), with the correlation coefficient r=0.9992 (n=6). This sensitive, rapid and accurate method has been applied to the determination of trace aluminum(III) in human hair and tea samples successfully. What is more, the mechanism of catalyzing potassium chlorate oxidizing alizarin red by the fluorescence quenching method is also discussed.
NASA Astrophysics Data System (ADS)
S., Sr.; Saxena, M., , Dr; Mandal, T. K., , Dr; Kotnala, R. K.; Sharma, S. K., , Dr
2017-12-01
Ambient ammonia, SO2 and NOx are primary precursor gases for the formation of particulate matter (PM2.5) which result in photochemical smog and haze formation specifically in winter season. The ambient ammonia, other trace gases and fine particles were monitored in winter season from Jan 2013 to Dec 2015 at CSIR-NPL, Delhi. The average mixing ratios of ambient NH3, NO, NO2 and SO2 over the entire period of winter season were recorded as 25.3±4.6 (ppb), 21.4±7.2 (ppb), 20.8±5.9 (ppb) and 1.9±0.5 (ppm), respectively. The NH4+ and other ionic species in PM2.5 were also simultaneously observed at the the study site to see the transformation of NH3 and NH4+. The results indicated that the concentration level of NH3 and NH4+/NH3 ratios grew simultaneously with the increase of PM2.5 levels. NH3 enhanced the formation of ammonium sulphate and ammonium nitrate and exert a significant impact on ion chemistry of PM2.5. In the wintertime atmosphere of urban Delhi, NH3 was sufficient in fully neutralizing the fine particulates. The important role of ammonia is recognized in increasing PM2.5 mass concentration as it help in formation of ammonium aerosol due to reaction with acid gases. Keywords: Air quality, Ammonia, Trace Gases, Particulates
NASA Astrophysics Data System (ADS)
Trokhimovskiy, Alexander; Korablev, Oleg; Ivanov, Yurii; Syniavskyi, Ivan; Montmessin, Franck; Fedorova, Anna
2017-11-01
The Atmospheric Chemistry Suite (ACS) package is a part of Russian contribution to ExoMars ESARoscosmos mission for studies of the Martian atmosphere and climate. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. The mid-infrared (MIR) channel is a cross-dispersion high resolution echelle instrument dedicated to solar occultation measurements and sensitive studies of trace gases. The MIR channel is a spectrometer working in 2.3-4.2 μm spectral range, covering simultaneously up to almost 300 nm per exposure, targeting the resolving power of 50,000. A crossdispersion concept on echelle and ordinary diffraction grating allows acquisition of the wide wavelength domain at once. That provides a strategic advantage for maximizing the number of gaseous species detected simultaneously and good special resolution of measurements during fast occultation sessions. Moving the second grating allows to switch from one group of the diffraction orders to another prior to a series of measurements, or desired positions during one measurement sequence. The concept of the cross-dispersion echelle instrument, which is widely accepted in astronomy, has been already employed in planetary missions with VIRTIS-H instrument presently in flight on Rosetta and Venus Express missions. Targeting very high spectral resolution the MIR channel operates in solar occultation only. A telescope with relative aperture of 1∶3 forms the image of the solar disk on the slit. The FOV is determined by the slit and it consists 0.1×2.9 mrad. The spectral resolution of the spectrometer is fully slit-limited, and the resolving power of λ/Δλ >= 50000 at 3.3 μm is supported. Two secondary cross-dispersion diffraction gratings (plain, 180 and 361 grooves per mm) are mounted back-to-back on a stepper motor to change observed echelle orders. We have chosen two secondary gratings philosophy to switch between them depending on the long or short wavelength range we are on. Changing the position of the secondary grating in angular steps of 1.8°, from 10 to 30 echelle orders are available for simultaneous record depending on the wavelength. 100 steps are evidently used to switch between gratings prior measurements. The full spectral range is covered on diffraction orders from 142 to 248. For each observation detector area is covered by 10 to 30 stripes, each corresponding to single echelle diffraction order. Given the complexity of the diffraction orders pattern, full detector frames will be transmitted to the ground, with lossless compression. However, the onboard averaging will be possible. Single data frame will be accumulated for 0.5 seconds, stacking of a number of shorter exposures.
NASA Astrophysics Data System (ADS)
Liang, S. W.; Chang, Y. W.; Chen, Chih
2006-04-01
Three-dimensional thermoelectrical simulation was conducted to investigate the influence of Al-trace dimension on Joule heating and current crowding in flip-chip solder joints. It is found that the dimension of the Al-trace effects significantly on the Joule heating, and thus directly determines the mean time to failure (MTTF). Simulated at a stressing current of 0.6A at 70°C, we estimate that the MTTF of the joints with Al traces in 100μm width was 6.1 times longer than that of joints with Al traces in 34μm width. Lower current crowding effect and reduced hot-spot temperature are responsible for the improved MTTF.
Trace elements levels in the serum, urine, and semen of patients with infertility.
Sağlam, Hasan Salih; Altundağ, Hüseyin; Atik, Yavuz Tarık; Dündar, Mustafa Şahin; Adsan, Öztug
2015-01-01
Studies suggest that trace elements may have an adverse impact on male reproduction, even at low levels. We tried to investigate the relationships between these metals and semen quality in various body fluids among men with infertility. A total of 255 samples of blood, semen, and urine were collected from 85 men suffering from infertility. Inductively coupled plasma-optical emission spectrometry was used for the determination of 22 trace elements. We compared the results of the semen parameters with the results of the element determinations. Because of the high proportion of samples with values lower than the limit of detection for a number of the elements, only 8 of a total 22 trace elements were determined in the samples. When the concentrations of sperm were classified according to the World Health Organization's guidelines for normospermia, oligospermia, and azoospermia, statistically significant differences were found among Zn, Ca, Al, Cu, Mg, Se, and Sr concentrations in various serum, sperm, and urine samples (P < 0.05). In the present study, we found significant correlations between concentrations of Zn, Ca, Al, Cu, Mg, Se, and Sr and semen parameters in various body fluids.
Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning.
Catlow, Briony J; Song, Shijie; Paredes, Daniel A; Kirstein, Cheryl L; Sanchez-Ramos, Juan
2013-08-01
Drugs that modulate serotonin (5-HT) synaptic concentrations impact neurogenesis and hippocampal (HPC)-dependent learning. The primary objective is to determine the extent to which psilocybin (PSOP) modulates neurogenesis and thereby affects acquisition and extinction of HPC-dependent trace fear conditioning. PSOP, the 5-HT2A agonist 25I-NBMeO and the 5-HT2A/C antagonist ketanserin were administered via an acute intraperitoneal injection to mice. Trace fear conditioning was measured as the amount of time spent immobile in the presence of the conditioned stimulus (CS, auditory tone), trace (silent interval) and post-trace interval over 10 trials. Extinction was determined by the number of trials required to resume mobility during CS, trace and post-trace when the shock was not delivered. Neurogenesis was determined by unbiased counts of cells in the dentate gyrus of the HPC birth-dated with BrdU co-expressing a neuronal marker. Mice treated with a range of doses of PSOP acquired a robust conditioned fear response. Mice injected with low doses of PSOP extinguished cued fear conditioning significantly more rapidly than high-dose PSOP or saline-treated mice. Injection of PSOP, 25I-NBMeO or ketanserin resulted in significant dose-dependent decreases in number of newborn neurons in hippocampus. At the low doses of PSOP that enhanced extinction, neurogenesis was not decreased, but rather tended toward an increase. Extinction of "fear conditioning" may be mediated by actions of the drugs at sites other than hippocampus such as the amygdala, which is known to mediate the perception of fear. Another caveat is that PSOP is not purely selective for 5-HT2A receptors. PSOP facilitates extinction of the classically conditioned fear response, and this, and similar agents, should be explored as potential treatments for post-traumatic stress disorder and related conditions.
Headridge, J B; Smith, D R
1972-07-01
An induction-heated graphite furnace, coupled to a Unicam SP 90 atomic-absorption spectrometer, is described for the direct determination of trace elements in metals and alloys. The furnace is capable of operation at temperatures up to 2400 degrees , and has been used to obtain calibration graphs for the determination of ppm quantities of bismuth in lead-base alloys, cast irons and stainless steels, and for the determination of cadmium at the ppm level in zinc-base alloys. Milligram samples of the alloys were atomized directly. Calibration graphs for the determination of the elements in solutions were obtained for comparison. The accuracy and precision of the determination are presented and discussed.
Determination of trace arsenic on hanging copper amalgam drop electrode.
Piech, Robert; Baś, Bogusław; Niewiara, Ewa; Kubiak, Władysław W
2007-04-30
Hanging copper amalgam drop electrode has been applied for trace determination of arsenic by cathodic stripping analysis. Detection limit for As(III) as low as 0.33nM (0.02mug/L) at deposition time (240s) could be obtained. For seven successive determinations of As(III) at concentration of 5nM relative standard deviation was 2.5% (n=7). Interferences from selected metals and surfactant substances were examined. Absence of copper ions in sample solution causes easier optimization and makes method less vulnerable on contamination. The developed method was validated by analysis of certified reference materials (CRMs) and applied to arsenic determinations in natural water samples.
Budakoglu, Murat; Karaman, Muhittin; Kumral, Mustafa; Zeytuncu, Bihter; Doner, Zeynep; Yildirim, Demet Kiran; Taşdelen, Suat; Bülbül, Ali; Gumus, Lokman
2018-02-23
The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acıgöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acıgöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.
da Silva, Yuri Jacques Agra Bezerra; Cantalice, José Ramon Barros; Singh, Vijay P; do Nascimento, Clístenes Williams Araújo; Piscoya, Victor Casimiro; Guerra, Sérgio M S
2015-10-01
Data regarding trace element concentrations and fluxes in suspended sediments and bedload are scarce. To fill this gap and meet the international need to include polluted rivers in future world estimation of trace element fluxes, this study aimed to determine the trace element fluxes in suspended sediment and bedload of an environmentally impacted river in Brazil. Water, suspended sediment, and bedload from both the upstream and the downstream cross sections were collected. To collect both the suspended sediment and water samples, we used the US DH-48. Bedload measurements were carried out using the US BLH 84 sampler. Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined by inductively coupled plasma (ICP-OES). As and Hg were determined by an atomic absorption spectrophotometer (AA-FIAS). The suspended sediments contributed more than 99 % of the trace element flux. By far Pb and to a less extent Zn at the downstream site represents major concerns. The yields of Pb and Zn in suspended sediments were 4.20 and 2.93 kg km(2) year(-1), respectively. These yields were higher than the values reported for Pb and Zn for Tuul River (highly impacted by mining activities), 1.60 and 1.30 kg km(2) year(-1), respectively, as well as the Pb yield (suspended + dissolved) to the sea of some Mediterranean rivers equal to 3.4 kg km(2) year(-1). Therefore, the highest flux and yield of Pb and Zn in Ipojuca River highlighted the importance to include medium and small rivers-often overlooked in global and regional studies-in the future estimation of world trace element fluxes in order to protect estuaries and coastal zones.
Identification of deposit types of natural corundum by PIXE
NASA Astrophysics Data System (ADS)
Chulapakorn, T.; Intarasiri, S.; Bootkul, D.; Singkarat, S.
2014-07-01
Natural corundum, one of the most important exports of Thailand, is a rare, durable and valuable gemstone. The value of these precious stones is determined by their visual appearances, including brilliance, color, fire (light dispersion) and luster. Corundum is an allochromatic mineral whose trace element concentration depends on the origin and has influence on price setting. This work attempts to use an alternative method to identify the geological deposits of rubies and sapphires found in the Thai market which came from various countries, e.g., Africa, Cambodia, Myanmar, Sri Lanka, Thailand and USA. Interrelations between most important major trace elements are the main results of this work. Quantitative analysis of trace elements were performed by particle-induced X-ray emission (PIXE) technique, using 2-MeV proton beam generated and accelerated by the 1.7 MV tandem accelerator at Chiang Mai University. The trace elements of interest are Ti, Cr, Fe and Ga. We have found that the relationships between the ratios of trace element concentration can be used to classify the deposit type. Moreover, this method shows a clear separation between two main types of geological deposits, basaltic and metamorphic deposits, which further helps in determining the gemstone origin. For example, the gemstones from Cambodia, Thailand and the USA can be classified as the basaltic deposits with their high concentration in Fe but low in Ti, while the gemstones from Africa, Myanmar and Sri Lanka are metamorphic deposits because they have low Fe but high Ti concentrations. Both deposits required plots of pairs of trace elements and their ratios in population field appearance in order to distinguish their origins. The advantageous of these methods appear to be a new and a sustainable procedure for determining gemstone origins.
Hagerman, Amy D; Ward, Michael P; Anderson, David P; Looney, J Chris; McCarl, Bruce A
2013-07-01
In this study our aim was to value the benefits of rapid effective trace-back capability-based on a livestock identification system - in the event of a foot and mouth disease (FMD) outbreak. We simulated an FMD outbreak in the Texas High Plains, an area of high livestock concentration, beginning in a large feedlot. Disease spread was simulated under different time dependent animal tracing scenarios. In the specific scenario modeled (incursion of FMD within a large feedlot, detection within 14 days and 90% effective tracing), simulation suggested that control costs of the outbreak significantly increase if tracing does not occur until day 10 as compared to the baseline of tracing on day 2. In addition, control costs are significantly increased if effectiveness were to drop to 30% as compared to the baseline of 90%. Results suggest potential benefits from rapid effective tracing in terms of reducing government control costs; however, a variety of other scenarios need to be explored before determining in which situations rapid effective trace-back capability is beneficial. Copyright © 2012 Elsevier B.V. All rights reserved.
Luke, Paul
1996-01-01
An ionization detector electrode and signal subtraction apparatus and method provides at least one first conductive trace formed onto the first surface of an ionization detector. The first surface opposes a second surface of the ionization detector. At least one second conductive trace is also formed on the first surface of the ionization detector in a substantially interlaced and symmetrical pattern with the at least one first conductive trace. Both of the traces are held at a voltage potential of a first polarity type. By forming the traces in a substantially interlaced and symmetric pattern, signals generated by a charge carrier are substantially of equal strength with respect to both of the traces. The only significant difference in measured signal strength occurs when the charge carrier moves to within close proximity of the traces and is received at the collecting trace. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge and to determine the position at which the charge carrier originated within the ionization detector.
Luke, P.
1996-06-25
An ionization detector electrode and signal subtraction apparatus and method provide at least one first conductive trace formed onto the first surface of an ionization detector. The first surface opposes a second surface of the ionization detector. At least one second conductive trace is also formed on the first surface of the ionization detector in a substantially interlaced and symmetrical pattern with the at least one first conductive trace. Both of the traces are held at a voltage potential of a first polarity type. By forming the traces in a substantially interlaced and symmetric pattern, signals generated by a charge carrier are substantially of equal strength with respect to both of the traces. The only significant difference in measured signal strength occurs when the charge carrier moves to within close proximity of the traces and is received at the collecting trace. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge and to determine the position at which the charge carrier originated within the ionization detector. 9 figs.
Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data
Pnevmatikakis, Eftychios A.; Soudry, Daniel; Gao, Yuanjun; Machado, Timothy A.; Merel, Josh; Pfau, David; Reardon, Thomas; Mu, Yu; Lacefield, Clay; Yang, Weijian; Ahrens, Misha; Bruno, Randy; Jessell, Thomas M.; Peterka, Darcy S.; Yuste, Rafael; Paninski, Liam
2016-01-01
SUMMARY We present a modular approach for analyzing calcium imaging recordings of large neuronal ensembles. Our goal is to simultaneously identify the locations of the neurons, demix spatially overlapping components, and denoise and deconvolve the spiking activity from the slow dynamics of the calcium indicator. Our approach relies on a constrained nonnegative matrix factorization that expresses the spatiotemporal fluorescence activity as the product of a spatial matrix that encodes the spatial footprint of each neuron in the optical field and a temporal matrix that characterizes the calcium concentration of each neuron over time. This framework is combined with a novel constrained deconvolution approach that extracts estimates of neural activity from fluorescence traces, to create a spatiotemporal processing algorithm that requires minimal parameter tuning. We demonstrate the general applicability of our method by applying it to in vitro and in vivo multineuronal imaging data, whole-brain light-sheet imaging data, and dendritic imaging data. PMID:26774160
PCF-Based Cavity Enhanced Spectroscopic Sensors for Simultaneous Multicomponent Trace Gas Analysis
Nakaema, Walter M.; Hao, Zuo-Qiang; Rohwetter, Philipp; Wöste, Ludger; Stelmaszczyk, Kamil
2011-01-01
A multiwavelength, multicomponent CRDS gas sensor operating on the basis of a compact photonic crystal fibre supercontinuum light source has been constructed. It features a simple design encompassing one radiation source, one cavity and one detection unit (a spectrograph with a fitted ICCD camera) that are common for all wavelengths. Multicomponent detection capability of the device is demonstrated by simultaneous measurements of the absorption spectra of molecular oxygen (spin-forbidden b-X branch) and water vapor (polyads 4v, 4v + δ) in ambient atmospheric air. Issues related to multimodal cavity excitation, as well as to obtaining the best signal-to-noise ratio are discussed together with methods for their practical resolution based on operating the cavity in a “quasi continuum” mode and setting long camera gate widths, respectively. A comprehensive review of multiwavelength CRDS techniques is also given. PMID:22319372
A signal processing framework for simultaneous detection of multiple environmental contaminants
NASA Astrophysics Data System (ADS)
Chakraborty, Subhadeep; Manahan, Michael P.; Mench, Matthew M.
2013-11-01
The possibility of large-scale attacks using chemical warfare agents (CWAs) has exposed the critical need for fundamental research enabling the reliable, unambiguous and early detection of trace CWAs and toxic industrial chemicals. This paper presents a unique approach for the identification and classification of simultaneously present multiple environmental contaminants by perturbing an electrochemical (EC) sensor with an oscillating potential for the extraction of statistically rich information from the current response. The dynamic response, being a function of the degree and mechanism of contamination, is then processed with a symbolic dynamic filter for the extraction of representative patterns, which are then classified using a trained neural network. The approach presented in this paper promises to extend the sensing power and sensitivity of these EC sensors by augmenting and complementing sensor technology with state-of-the-art embedded real-time signal processing capabilities.
NASA Astrophysics Data System (ADS)
Warneke, Thorsten; Müller, Denise; Caldow, Christopher; Rixen, Tim; Notholt, Justus
2015-04-01
We have coupled a Fourier-Transform InfraRed (FTIR) trace gas analyser to an equilibrator, which allows the simultaneous and continuous measurement of dissolved CO2, CH4, N2O and CO in water. The FTIR-technique has a high precision over a wide range of concentrations, making it very suitable for the measurement of these gases in freshwater systems. We have employed this measurement system on a commercial river barge on the Elbe river (Czech Republic, Germany) and on a fisher boat in the coastal area of Sarawak (Malaysia). In addition we have performed stationary continuous measurements at a small river in Northern Germany over the duration of 3 months. The presentation will outline the advantages and disadvantages of the FTIR-technique for freshwater measurements and will present results from the measurement campaigns.
Zhang, Jie; Fan, Yeqin; Gong, Yajun; Chen, Xiaoyong; Wan, Luosheng; Zhou, Chenggao; Zhou, Jiewen; Ma, Shuangcheng; Wei, Feng; Chen, Jiachun; Nie, Jing
2017-11-15
Snake bile is one of the most expensive traditional Chinese medicines (TCMs). However, due to the complicated constitutes of snake bile and the poor ultraviolet absorbance of some trace bile acids (BAs), effective analysis methods for snake bile acids were still unavailable, making it difficult to solve adulteration problems. In present study, ultrahigh-performance liquid chromatography with triple quadrupole linear ion trap mass spectrometry (UHPLC-QqQ-MS/MS) was applied to conduct a quantitative analysis on snake BAs. The mass spectrometer was monitored in the negative ion mode, and multiple-reaction monitoring (MRM) program was used to determine the contents of BAs in snake bile. In all, 61 snake bile from 17 commonly used species of three families (Elapidae, Colubridae and Viperidae), along with five batches of commercial snake bile from four companies, were collected and detected. Nine components, Tauro-3α,12α-dihydroxy-7-oxo-5β-cholenoic acid (T1), Tauro-3α,7α,12α,23R-tetrahydroxy-5β-cholenoic acid (T2), taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), taurodeoxycholic acid (TDCA), cholic acid (CA), Tauro-3α,7α-dihydroxy-12-oxo-5β-cholenoic acid (T3), and Tauro-3α,7α,9α,16α-tetrahydroxy-5β-cholenoic acid (T4) were simultaneously and rapidly determined for the first time. In these BAs, T1 and T2, self-prepared with purity above 90%, were first reported with their quantitative determination, and the latter two (T3 and T4) were tentatively determined by quantitative analysis multi-components by single marker (QAMS) method for roughly estimating the components without reference. The developed method was validated with acceptable linearity (r 2 ≥0.995), precision (RSD<6.5%) and recovery (RSD<7.5%). It turned out that the contents of BAs among different species were also significantly different; T1 was one of the principle bile acids in some common snake bile, and also was the characteristic one in Viperidae and Elapidae; T2 was the dominant components in Enhydris chinensis. This quantitative study of BAs in snake bile is a remarkable improvement for clarifying the bile acid compositions and evaluating the quality of snake bile. Copyright © 2017 Elsevier B.V. All rights reserved.
THE DETERMINATION OF TRACES OF IRON IN SAMPLES OF PLATINUM BY NE TRON- ACTIVATION ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, D.F.C.; Killick, R.A.
1963-11-01
A neutron-activation analysis method for the determination of traces of iron in samples of purified platinum is described. The nuclear reactor BEPO at Harwell was used as the neutron source. A rapid radiochemical separation procedure using carriers was employed to decontaminate the iron activity from most other induced activities. The analysis is completed by discriminated gamma scintillation counting. Results of analyses of seven samples of platinum are quoted. The method of analysis has the advantage that it obviates difficulties caused by reagent blanks or by contamination from traces of inactive iron after irradiation. Interference resulting from nuclear reactions of elementsmore » other than iron in the samples appears to be of no consequence. (auth)« less
Niu, Yumin; Wang, Bin; Zhao, Yunfeng; Zhang, Jing; Shao, Bing
2017-12-06
The structural analogs of bisphenol A (BPA) and their halogenated derivatives (together termed BPs) have been found in the environment, food, and even the human body. Limited research showed that some of them exhibited toxicities that were similar to or even greater than that of BPA. Therefore, adverse health effects for BPs were expected for humans with low-dose exposure in early life. Breast milk is an excellent matrix and could reflect fetuses' and babies' exposure to contaminants. Some of the emerging BPs may present with trace or ultratrace levels in humans. However, existing analytical methods for breast milk cannot quantify these BPs simultaneously with high sensitivity using a small sampling weight, which is important for human biomonitoring studies. In this paper, a method based on Bond Elut Enhanced Matrix Removal-Lipid purification, pyridine-3-sulfonyl chloride derivatization, and liquid chromatography electrospray tandem mass spectrometry was developed. The method requires only a small quantity of sample (200 μL) and allowed for the simultaneous determination of 24 BPs in breast milk with ultrahigh sensitivity. The limits of quantitation of the proposed method were 0.001-0.200 μg L -1 , which were 1-6.7 times lower than the only study for the simultaneous analysis of bisphenol analogs in breast milk based on a 3 g sample weight. The mean recoveries ranged from 86.11% to 119.05% with relative standard deviation (RSD) ≤ 19.5% (n = 6). Matrix effects were within 20% with RSD < 10% for six different lots of samples. The proposed method was successfully applied to 20 breast milk samples. BPA, bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF) were detected. BPA was still the dominant BP, followed by BPF. This is the first report describing the occurrence of BPF and BPAF in breast milk.
Differential Effects of the Cannabinoid Agonist WIN55,212-2 on Delay and Trace Eyeblink Conditioning
Steinmetz, Adam B.; Freeman, John H.
2014-01-01
Central cannabinoid-1 receptors (CB1R) play a role in the acquisition of delay eyeblink conditioning but not trace eyeblink conditioning in humans and animals. However, it is not clear why trace conditioning is immune to the effects of cannabinoid receptor compounds. The current study examined the effects of variants of delay and trace conditioning procedures to elucidate the factors that determine the effects of CB1R agonists on eyeblink conditioning. In Experiment 1 rats were administered the cannabinoid agonist WIN55,212-2 during delay, long delay, or trace conditioning. Rats were impaired during delay and long delay but not trace conditioning; the impairment was greater for long delay than delay conditioning. Trace conditioning was further examined in Experiment 2 by manipulating the trace interval and keeping constant the conditioned stimulus (CS) duration. It was found that when the trace interval was 300 ms or less WIN55,212-2 administration impaired the rate of learning. Experiment 3 tested whether the trace interval duration or the relative durations of the CS and trace interval were critical parameters influencing the effects of WIN55,212-2 on eyeblink conditioning. Rats were not impaired with a 100 ms CS, 200 ms trace paradigm but were impaired with a 1000 ms CS, 500 ms trace paradigm, indicating that the duration of the trace interval does not matter but the proportion of the interstimulus interval occupied by the CS relative to the trace period is critical. Taken together the results indicate that cannabinoid agonists affect cerebellar learning the CS is longer than the trace interval. PMID:24128358
Effect of supplemental trace mineral level and form on peripubertal bulls
USDA-ARS?s Scientific Manuscript database
The objectives were to determine if different supplemental trace mineral levels and /or forms (sulfate and metal amino acid complexes) influence age at puberty, semen quality, endocrine status and scrotal circumference in peripubertal bulls. Fifty crossbred, peripubertal bulls were blocked by age (...
Long Creek Creek Mine Drainage Study: South Fork Reservation: Final Report
To characterize water quality in streams affected by historical mining it is necessary to determine the seasonal and spatial distribution patterns of trace metals concentrations. Identification of these patterns is used to identify the trace metals that are of ecological concern ...
Seasonal Distribution of African Savanna Fires
NASA Technical Reports Server (NTRS)
Cahoon, Donald R.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; O'Neill, Katherine P.
1992-01-01
Savannas consist of a continuous layer of grass interspersed with scattered trees or shrubs, and cover approx. 10 million square kilometers of tropical Africa. African savanna fires, almost all resulting from human activities, may produce as much as a third of the total global emissions from biomass burning. Little is known, however, about the frequency and location of these fires, and the area burned each year. Emissions from African savanna burning are known to be transported over the mid-Atlantic, south Pacific and Indian oceans; but to study fully the transport of regional savanna burning and the seasonality of the atmospheric circulation must be considered simultaneously. Here we describe the temporal and spatial distribution of savanna fires over the entire African continent, as determined from night-time satellite imagery. We find that, contrary to expectations, most fires are left to burn uncontrolled, so that there is no strong diurnal cycle in the fire frequency. The knowledge gained from this study regarding the distribution and variability of fires will aid monitoring of the climatically important trace gases emitted from burning biomass.
Polatoğlu, Kaan; Arsal, Seniha; Demirci, Betül; Başer, Kemal Hüsnü Can
2015-01-01
The essential oil of the aerial parts of edible Lathyrus ochrus L. was investigated by simultaneous GC, GC/MS analyses under the same conditions. Trace amount of oil (0.01> mL) obtained by hydro distillation of 200 g fresh plants was trapped in 1 mL n-hexane. Twenty components were detected representing 91.55 ± 0.56 % of the oil. The main components were phytol 49.39 ± 0.44 %, hexadecanoic acid 20.64 ± 0.89 % and pentacosane 4.20 ± 0.09 %. Essential oil solution (1% oil: n-hexane) afforded similar DPPH scavenging activity (9.28 ± 1.30 %) when compared with positive controls α-tocopherol (9.74 ± 0.21 %) and BHT (7.79 ± 0.26 %) at the same concentrations. Antioxidant activity of the oil was determined using a new HPTLC-PRAP assay. The oil afforded two fold higher reducing activity of phosphomolybdenum complex (594.85 ± 5.14 AU) when compared with positive controls α- tocopherol (271.10 ± 2.86 AU) and BHT (210.53 ± 1.81 AU) at the same concentration.
Reinhard, J; Hayes-Gill, B R; Schiermeier, S; Löser, H; Niedballa, L M; Haarmann, E; Sonnwald, A; Hatzmann, W; Heinrich, T M; Louwen, F
2011-10-01
The aim of this study was to determine the quality of intrapartum uterine activity (UA) monitoring in daily practice during the first and second stages of labour. The total duration of inadequate UA monitoring is quantified in relation to the technique applied, namely, external tocodynamometry (TOCO) or electrohysterography (EHG). 144 UA recordings, collected from 1st September 2008 until 15th October 2009 from deliveries at the Marien-Hospital Witten, Germany, were analysed by obstetricians based at different centres. The included recordings were from singleton and simultaneously with external TOCO and EHG monitored pregnancies. External TOCO and EHG UA recordings were blinded. The percentages of "adequate" UA recordings in the first and second stages of labour were much higher for the external EHG than the external TOCO mode (p<0.001). All doctors evaluated the UA assessment as "easier" (p <0.001) using the EHG compared with TOCO. Intrapartum UA monitoring in -daily practice via the EHG mode provides a more recognisable UA trace than the TOCO. © Georg Thieme Verlag KG Stuttgart · New York.
Beesley, Luke; Inneh, Onyeka S; Norton, Gareth J; Moreno-Jimenez, Eduardo; Pardo, Tania; Clemente, Rafael; Dawson, Julian J C
2014-03-01
Amending contaminated soils with organic wastes can influence trace element mobility and toxicity. Soluble concentrations of metals and arsenic were measured in pore water and aqueous soil extracts following the amendment of a heavily contaminated mine soil with compost and biochar (10% v:v) in a pot experiment. Speciation modelling and toxicity assays (Vibrio fischeri luminescence inhibition and Lolium perenne germination) were performed to discriminate mechanisms controlling metal mobility and assess toxicity risk thereafter. Biochar reduced free metal concentrations furthest but dissolved organic carbon primarily controlled metal mobility after compost amendment. Individually, both amendments induced considerable solubilisation of arsenic to pore water (>2500 μg l(-1)) related to pH and soluble phosphate but combining amendments most effectively reduced toxicity due to simultaneous reductions in extractable metals and increases in soluble nutrients (P). Thus the measure-monitor-model approach taken determined that combining the amendments was most effective at mitigating attendant toxicity risk. Copyright © 2013 Elsevier Ltd. All rights reserved.
Novel applications of photoacoustic spectroscopy in life sciences
NASA Astrophysics Data System (ADS)
Stolik, S.
2004-10-01
The Photoacoustic Spectroscopy, based on the generation of acoustic waves following the absorption of the modulated light by an enclosed material, was discovered in 1880 by Alexander Graham Bell. There are a lot of remarkable achievements in this topic since those days. It has been intended to present a relatively new tool to the researchers in biological areas and, simultaneously, to propose new fields of investigation to those who have been attracted by physics. The application of Photoacoustic trace gas detection to the determination of ethylene content in mice exhalation is described as a biomarker of free radicals production. It has been demonstrated the feasibility of studying the lipid peroxidation in vivo by this technique. Specifically, the results of δ-aminolevulinic acid administration in mice are presented. This drug has been used to induce Protoporphyrin IX production and ultimately to apply the Photodynamic Therapy, a recent method in cancer treatment. A kinetic study of Protoporphyrin IX production in mice skin and blood after δ-aminolevulinic acid administration in different doses is also shown. This study was performed using Photoacoustic Spectroscopy in solids.
Human expiration content diagnostics by tunable diode lasers in middle infrared
NASA Astrophysics Data System (ADS)
Kouznetsov, Andrian I.; Moskalenko, Konstantin L.; Nadezhdinskii, Alexander I.; Stepanov, Eugene V.
1992-04-01
Results on the application of tunable diode laser gas analysis to determining the trace components of human breath are presented. Schemes of the analyzers specially developed for measurement of both carbon oxides in expiration are described. A few results illuminating possible applications of TDL in high sensitive medical diagnostics have been obtained. For nonsmokers, the expired concentration of CO is slightly higher than inhaled air. Specific surplus value depends on the person's age. The surplus CO content increased significantly just after intensive physical exercises like jogging. For smokers, the farmacokinetical curve of abundant CO removal from the organism could be investigated. The smoking status of tested individuals becomes easy available. Breath-hold simultaneous measurements of CO and CO2 have shown the difference in the dependencies of their concentrations on breath-holding time. The possibility to investigate phenomena like molecular pulmonary diffusion of the alveolar-capillary membrane and an organism's compensation reactions to oxygen shortage seems to become real. Perspective leads for development and the application of diode laser spectroscopy methods to the analysis of gaseous microimpurities in medicine are also discussed.
Zheng, Lan; Hao, Long; Ma, Hua; Tian, Chengye; Li, Tong; Sun, Xinyi; Jia, Mengshi; Jia, Le
2014-09-01
Cordyceps sinensis, a traditionally edible and medicinal fungus in China, cannot be artificially solid-cultured. Zinc (Zn), germanium (Ge), and selenium (Se) are the essential trace elements for human body. In this work, C. sinensis SU-01 was cultivated in liquid medium simultaneously containing Zn, Ge, and Se. The bioactive ingredients and in vivo antioxidant activities of Zn, Ge, Se-enriched mycelia (ZGSM) of C. sinensis SU-01 were investigated. Under the determined conditions, the Zn, Ge, and Se contents of ZGSM were 2543.16 ± 158.92, 1873.85 ± 81.82, and 1260.16 ± 107.12 μg/g, respectively. The optimal concentrations of Zn, Ge, and Se had a positive effect on biosynthesis of protein, polysaccharide, cordycepic acid, and amino acids. The activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) of mice blood were 3.72 ± 0.15 and 28.74 ± 2.53 % higher than that of control, respectively, and the content of malondialdehyde (MDA) was 41.01 ± 3.66 % lower than that of control.
Gong, Hui; Xu, Dongli; Yuan, Jing; Li, Xiangning; Guo, Congdi; Peng, Jie; Li, Yuxin; Schwarz, Lindsay A.; Li, Anan; Hu, Bihe; Xiong, Benyi; Sun, Qingtao; Zhang, Yalun; Liu, Jiepeng; Zhong, Qiuyuan; Xu, Tonghui; Zeng, Shaoqun; Luo, Qingming
2016-01-01
The precise annotation and accurate identification of neural structures are prerequisites for studying mammalian brain function. The orientation of neurons and neural circuits is usually determined by mapping brain images to coarse axial-sampling planar reference atlases. However, individual differences at the cellular level likely lead to position errors and an inability to orient neural projections at single-cell resolution. Here, we present a high-throughput precision imaging method that can acquire a co-localized brain-wide data set of both fluorescent-labelled neurons and counterstained cell bodies at a voxel size of 0.32 × 0.32 × 2.0 μm in 3 days for a single mouse brain. We acquire mouse whole-brain imaging data sets of multiple types of neurons and projections with anatomical annotation at single-neuron resolution. The results show that the simultaneous acquisition of labelled neural structures and cytoarchitecture reference in the same brain greatly facilitates precise tracing of long-range projections and accurate locating of nuclei. PMID:27374071
NASA Technical Reports Server (NTRS)
Orton, G. S.; Robiette, A. G.
1980-01-01
Line parameters (transition frequencies, line strengths, line widths, ground state energies and quantum identifications) for the nu2 and nu4 bands of (C-12)H4 and (C-13)H4 have been calculated for J-prime equal to or less than 25 using the simultaneous coupled fitting procedure of Gray and Robiette. Molecular constants for the nu2 band of (C-13)H4 were estimated from isotopic shifts from (C-12)H4 values. Agreement with laboratory spectra, where available, is always well within 1 kayser over the entire spectral range covered by the list. The most serious problem in comparison with laboratory data is the omission of lines belonging to 'hot' bands in this spectral region. This list is valuable in remote sensing problems for sorting out lines of trace species from weak methane lines and for determining the atmospheric opacity in relatively transparent spectral regions. Applications of the parameter list are demonstrated for remote sounding of the Jovian atmosphere.
Trace fossils as environment indicators in the Rocky Mountains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, B.
Throughout time, organisms have left various types of traces while engaged in different activities. The two major types of lebensspuren were made by suspension feeders found in turbulent water where organic matter is held in suspension, and by deposit feeders whose habitat is found in quiet, deeper waters where large quantities of organic matter settle from suspension. The different activities which occur in these two environments are the cause of the traces found in sediments. These include escape structures resulting from degradation or aggradation of sediments, feeding structures, dwelling structures, grazing traces, crawling traces, and resting traces. The use ofmore » trace fossils in hydrocarbon exploration is especially helpful in the Cretaceous sandstones of the Rocky Mountains because of the relative abundance of outcrops and the scarcity of body fossils. By combining the interpretation of physical processes with the biological traces, one more tool is made available in the determination of rock environments as an aid in hydrocarbon exploration. Materials exhibited include 8 x 10 color prints of different Cretaceous lebensspuren, hand-drawn cartoons of the six different trace activities, and a regional cross section of the Eagle sandstone illustrated by photographs of different traces near each location, as well as a variety of rock samples.« less
NASA Astrophysics Data System (ADS)
Jochum, K. P.; Seufert, H. M.
1995-09-01
We have developed new spark source mass spectrometric (SSMS) techniques for simultaneous analysis of platinum-group elements (PGE) together with other trace elements in stony meteorites. We have measured elemental abundances of Rh, Ru, Os, Ir, Pt, Au in carbonaceous chondrites of different types including the two CI chondrites Orgueil and Ivuna. These data are relevant for the determination of solar-system abundances. Whereas the solar-system abundances of most PGE are well known, this is not the case for Rh, and no literature data exist for carbonaceous chondrites, mainly because of analytical difficulties. The SSMS techniques include new calibration procedures and the use of a recently developed multi-ion counting (MIC) system [1]. The mono-isotopic element Rh and the other PGE were determined by using internal standard elements (e.g., Nd, U) that were measured by isotope dilution in the same sample electrode material. The data were calibrated with certified standard solutions of PGE which were doped on trace-element poor rock samples. Ion abundances were measured using both the conventional photoplate detection and the ion-counting techniques. The new MIC technique that uses up to 20 small channeltrons for ion counting measurements has the advantage of improved precision, detection limits and analysis time compared to photoplate detection. Tab. 1 shows the Rh analyses for the meteorites Orgueil, Ivuna, Murchison, Allende and Karoonda obtained by conventional photoplate detection. These are the first Rh results for carbonaceous chondrites. The data for the two CI chondrites Orgueil and Ivuna are identical and agree within 4 % with the CI estimate of Anders and Grevesse [2] which was derived indirectly from analyses for H-chondrites. The PGE Os, Ir, Pt, Au and W, Re, Th, U concentrations were determined by both detection systems. Data obtained with the MIC system are more precise (about 4% for concentrations in the ppb range) compared to the photoplate detection system (about 10 - 15 %). Both data sets agree within error limits. Rhodium correlates well with Pt and other PGE indicating no significant fractionation between the different types of carbonaceous chondrites (Tab. 1). References: [1] Jochum K. P. et al. (1994) Fresenius J. Anal. Chem., 350, 642-644. [2] Anders E. and Grevesse N. (1989) GCA, 53, 197-214.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Jonna Elizabeth
This dissertation describes a variety of studies on the determination of trace elements in samples with forensic importance. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine the trace element composition of numerous lipstick samples. Lipstick samples were determined to be homogeneous. Most lipstick samples of similar colors were readily distinguishable at a 95% confidence interval based on trace element composition. Numerous strands of a multi-strand speaker cable were analyzed by LA-ICP-MS. The strands in this study are spatially heterogeneous in trace element composition. In actual forensic applications, the possibility of spatial heterogeneity must be considered, especially in casesmore » where only small samples (e.g., copper wire fragments after an explosion) are available. The effects of many unpredictable variables, such as weather, temperature, and human activity, on the retention of gunshot residue (GSR) around projectile wounds were assessed with LAICP- MS. Skin samples around gunshot and stab wounds and larvae feeding in and around the wounds on decomposing pig carcasses were analyzed for elements consistent with GSR (Sb, Pb, Ba, and Cu). These elements were detected at higher levels in skin and larvae samples around the gunshot wounds compared to the stab wounds for an extended period of time throughout decomposition in both a winter and summer study. After decomposition, radiographic images of the pig bones containing possible damage from bullets revealed metallic particles embedded within a number of bones. Metallic particles within the bones were analyzed with x-ray, K-edge densitometry and determined to contain lead, indicating that bullet residue can be retained throughout decomposition and detected within bones containing projectile trauma.« less
Modeling of laser interactions with composite materials
Rubenchik, Alexander M.; Boley, Charles D.
2013-05-07
In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.
NASA Astrophysics Data System (ADS)
Chen, Z.; Jones, C. M.
2002-05-01
Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.
Ahmed, Manan; Chin, Ying Hui; Guo, Xinxin; Zhao, Xing-Min
2017-05-01
The study of trace metals in the atmosphere and lake water is important due to their critical effects on humans, aquatic animals and the geochemical balance of ecosystems. The objective of this study was to investigate the concentration of trace metals in atmospheric and lake water samples during the rainy season (before and after precipitation) between November and December 2015. Typical methods of sample preparation for trace metal determination such as cloud point extraction, solid phase extraction and dispersive liquid-liquid micro-extraction are time-consuming and difficult to perform; therefore, there is a crucial need for development of more effective sample preparation procedure. A convection microwave assisted digestion procedure for extraction of trace metals was developed for use prior to inductively couple plasma-mass spectrometric determination. The result showed that metals like zinc (133.50-419.30μg/m 3 ) and aluminum (53.58-378.93μg/m 3 ) had higher concentrations in atmospheric samples as compared to lake samples before precipitation. On the other hand, the concentrations of zinc, aluminum, chromium and arsenic were significantly higher in lake samples after precipitation and lower in atmospheric samples. The relationship between physicochemical parameters (pH and turbidity) and heavy metal concentrations was investigated as well. Furthermore, enrichment factor analysis indicated that anthropogenic sources such as soil dust, biomass burning and fuel combustion influenced the metal concentrations in the atmosphere. Copyright © 2016. Published by Elsevier B.V.
The role of the seagrass Posidonia oceanica in the cycling of trace elements
NASA Astrophysics Data System (ADS)
Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.
2012-03-01
The aim of this work was to study the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in the different compartments of P. oceanica (leaves, rhizomes, roots and epibiota) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epibiota was the compartment which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. For most trace elements, translocation seemed to be low and acropetal. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.
The role of the seagrass Posidonia oceanica in the cycling of trace elements
NASA Astrophysics Data System (ADS)
Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.
2012-07-01
The aim of this study was to investigate the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in different compartments of P. oceanica (leaves, rhizomes, roots and epiphytes) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epiphytes were the compartment, which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. Trace element translocation in P. oceanica seemed to be low and acropetal in most cases. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi showed the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.
NASA Technical Reports Server (NTRS)
Kornacki, Alan S.; Fegley, Bruce, Jr.
1986-01-01
The relative volatilities of lithophile refractory trace elements (LRTE) were determined using calculated 50-percent condensation temperatures. Then, the refractory trace-element abundances were measured in about 100 Allende inclusions. The abundance patterns found in Allende Ca,Al-rich inclusions (CAIs) and ultrarefractory inclusions were used to empirically modify the calculated LRTE volatility sequence. In addition, the importance of crystal-chemical effects, diffusion constraints, and grain transport for the origin of the trace-element chemistry of Allende CAIs (which have important implications for chemical and physical processes in the solar nebula) is discussed.