Equilibrium isotope effects on noncovalent interactions in a supramolecular host-guest system.
Mugridge, Jeffrey S; Bergman, Robert G; Raymond, Kenneth N
2012-02-01
The self-assembled supramolecular complex [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) can act as a molecular host in aqueous solution and bind cationic guest molecules to its highly charged exterior surface or within its hydrophobic interior cavity. The distinct internal cavity of host 1 modifies the physical properties and reactivity of bound guest molecules and can be used to catalyze a variety of chemical transformations. Noncovalent host-guest interactions in large part control guest binding, molecular recognition and the chemical reactivity of bound guests. Herein we examine equilibrium isotope effects (EIEs) on both exterior and interior guest binding to host 1 and use these effects to probe the details of noncovalent host-guest interactions. For both interior and exterior binding of a benzylphosphonium guest in aqueous solution, protiated guests are found to bind more strongly to host 1 (K(H)/K(D) > 1) and the preferred association of protiated guests is driven by enthalpy and opposed by entropy. Deuteration of guest methyl and benzyl C-H bonds results in a larger EIE than deuteration of guest aromatic C-H bonds. The observed EIEs can be well explained by considering changes in guest vibrational force constants and zero-point energies. DFT calculations further confirm the origins of these EIEs and suggest that changes in low-frequency guest C-H/D vibrational motions (bends, wags, etc.) are primarily responsible for the observed EIEs. © 2011 American Chemical Society
Sgarlata, Carmelo; Raymond, Kenneth N
2016-07-05
The entropic and enthalpic driving forces for encapsulation versus sequential exterior guest binding to the [Ga4L6](12-) supramolecular host in solution are very different, which significantly complicates the determination of these thermodynamic parameters. The simultaneous use of complementary techniques, such as NMR, UV-vis, and isothermal titration calorimetry, enables the disentanglement of such multiple host-guest interactions. Indeed, data collected by each technique measure different components of the host-guest equilibria and together provide a complete picture of the solution thermodynamics. Unfortunately, commercially available programs do not allow for global analysis of different physical observables. We thus resorted to a novel procedure for the simultaneous refinement of multiple parameters (ΔG°, ΔH°, and ΔS°) by treating different observables through a weighted nonlinear least-squares analysis of a constrained model. The refinement procedure is discussed for the multiple binding of the Et4N(+) guest, but it is broadly applicable to the deconvolution of other intricate host-guest equilibria.
Simulation optimization of spherical non-polar guest recognition by deep-cavity cavitands
Wanjari, Piyush P.; Gibb, Bruce C.; Ashbaugh, Henry S.
2013-01-01
Biomimetic deep-cavity cavitand hosts possess unique recognition and encapsulation properties that make them capable of selectively binding a range of non-polar guests within their hydrophobic pocket. Adamantane based derivatives which snuggly fit within the pocket of octa-acid deep cavity cavitands exhibit some of the strongest host binding. Here we explore the roles of guest size and attractiveness on optimizing guest binding to form 1:1 complexes with octa-acid cavitands in water. Specifically we simulate the water-mediated interactions of the cavitand with adamantane and a range of simple Lennard-Jones guests of varying diameter and attractive well-depth. Initial simulations performed with methane indicate hydrated methanes preferentially reside within the host pocket, although these guests frequently trade places with water and other methanes in bulk solution. The interaction strength of hydrophobic guests increases with increasing size from sizes slightly smaller than methane to Lennard-Jones guests comparable in size to adamantane. Over this guest size range the preferential guest binding location migrates from the bottom of the host pocket upwards. For guests larger than adamantane, however, binding becomes less favorable as the minimum in the potential-of-mean force shifts to the cavitand face around the portal. For a fixed guest diameter, the Lennard-Jones well-depth is found to systematically shift the guest-host potential-of-mean force to lower free energies, however, the optimal guest size is found to be insensitive to increasing well-depth. Ultimately our simulations show that adamantane lies within the optimal range of guest sizes with significant attractive interactions to match the most tightly bound Lennard-Jones guests studied. PMID:24359375
Raghupathi, Krishna R.; Azagarsamy, Malar A.; Thayumanavan, S.
2012-01-01
Stimuli sensitive, facially amphiphilic dendrimers have been synthesized and their enzyme-responsive nature has been determined with dual fluorescence responses of both covalently conjugated and non-covalently bound reporter units. These dual responses are correlated to ascertain the effect of enzymatic action on micellar aggregates and the consequential guest release. The release of the guest molecule is conveniently tuned by stabilizing the micellar aggregates through photochemical crosslinking of hydrophobic coumarin units. This photo-crosslinking is also utilized as a tool to investigate the mode of enzyme-substrate interaction in the context of aggregate-monomer equilibrium. PMID:21887830
Xia, Yu; Wang, Chuan-Zeng; Tian, Mengkui; Tao, Zhu; Ni, Xin-Long; Prior, Timothy J; Redshaw, Carl
2018-01-15
The host-guest interaction of a series of cyclohexyl-appended guests with cucurbit[8]uril (Q[8]) was studied by ¹H NMR spectroscopy, isothermal titration calorimetry (ITC), and X-ray crystallography. The X-ray structure revealed that two cycloalkane moieties can be simultaneously encapsulated in the hydrophobic cavity of the Q[8] host to form a ternary complex for the first time.
Effects of Facilitation Context on Attitude toward Sustainable Seafood
NASA Astrophysics Data System (ADS)
Denton, Kristen E.
This study examined how adult guests to the California Science Center engage with a specific conservation education topic: sustainable seafood. Sustainable seafood is a common education message delivered in informal science institutions. This study also investigated whether engaging in an activity about sustainable seafood while simultaneously viewing live fish species would have a greater impact on guests than participating in the same activity while viewing a laboratory space. The data showed that guests who participated in a hands-on activity about sustainable seafood knew more about conservation-related topics and were more likely to adopt behaviors conducive to sustainable seafood consumption than guests who participated in a different hands-on activity. The data also showed that the settings in which guests participate in this Sustainable Seafood activity do not influence their knowledge or behavior. This indicates that this Sustainable Seafood activity is effective in educating adult guests, regardless of the setting.
Electrospun Lipid Binding Proteins Composite Nanofibers with Antibacterial Properties.
Tomaselli, Simona; Ramirez, Diego Omar Sanchez; Carletto, Riccardo Andrea; Varesano, Alessio; Vineis, Claudia; Zanzoni, Serena; Molinari, Henriette; Ragona, Laura
2017-04-01
Electrospinning is here used for the first time to prepare nanofibers including a host/guest complex in a keratin/poly(ethylene oxide) matrix. The host is a lipid binding protein and the guest is an insoluble bactericidal molecule, irgasan, bound within the protein internal cavity. The obtained nanofibers, characterized by scanning electron microscopy, exhibit excellent antibacterial activity toward Gram positive and negative bacteria, even with a moderate protein/irgasan cargo. Solution NMR studies, employed to provide molecular information on the cargo system, points to a micromolar affinity, compatible with both the electrospinning process and slow guest release. The versatility of the carrier protein, capable of interacting with a variety of druggable hydrophobic molecules, is exploitable for the development of innovative biomedical devices, whose properties can be tuned by the selected guest. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stability of bound species during alkene reactions on solid acids
NASA Astrophysics Data System (ADS)
Sarazen, Michele L.; Iglesia, Enrique
2017-05-01
This study reports the thermodynamics of bound species derived from ethene, propene, n-butene, and isobutene on solid acids with diverse strength and confining voids. Density functional theory (DFT) and kinetic data indicate that covalently bound alkoxides form C-C bonds in the kinetically relevant step for dimerization turnovers on protons within TON (0.57 nm) and MOR (0.67 nm) zeolitic channels and on stronger acids HPW (polyoxometalate clusters on silica). Turnover rates for mixed alkenes give relative alkoxide stabilities; the respective adsorption constants are obtained from in situ infrared spectra. Tertiary alkoxides (from isobutene) within larger voids (MOR, HPW) are more stable than less substituted isomers but are destabilized within smaller concave environments (TON) because framework distortions are required to avoid steric repulsion. Adsorption constants are similar on MOR and HPW for each alkoxide, indicating that binding is insensitive to acid strength for covalently bound species. DFT-derived formation free energies for alkoxides with different framework attachments and backbone length/structure agree with measurements when dispersion forces, which mediate stabilization by confinement in host-guest systems, are considered. Theory reveals previously unrecognized framework distortions that balance the C-O bond lengths required for covalency with host-guest distances that maximize van der Waals contacts. These distortions, reported here as changes in O-atom locations and dihedral angles, become stronger for larger, more substituted alkoxides. The thermodynamic properties reported here for alkoxides and acid hosts differing in size and conjugate-anion stability are benchmarked against DFT-derived free energies; their details are essential to design host-guest pairs that direct alkoxide species toward specific products.
NMR Investigation of Chloromethane Complexes of Cryptophane-A and Its Analogue with Butoxy Groups
2014-01-01
Host–guest complexes between cryptophane-A as host and dichloromethane and chloroform as guests are investigated using 1H and 13C NMR spectroscopy. Moreover, a related cryptophane, with the methoxy groups replaced by butoxy units (cryptophane-But), and its complexes with the same guests were also studied. Variable temperature spectra showed effects of chemical exchange between the free and bound guests, as well as of conformational exchange of the host. The guest exchange was studied quantitatively by exchange spectroscopy or line shape analysis. Extraction of kinetic and thermodynamic parameters led to the characterization of the affinity between guests and hosts. On the other hand, the host exchange was investigated by means of 13C Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion which aims at the determination of the transverse relaxation rate R2, the inverse of the transverse relaxation time T2, as a function of the repetition of the π pulses in a CPMG train. The variation of the measured transverse relaxation rate with the repetition rate νCPMG indicated conformational exchange occurring on the microsecond–millisecond time scale. Structural information was obtained through measurements of cross-relaxation rates, both within the host and between the host and the guest protons. The NMR results were supported by DFT calculations. PMID:24472055
NASA Astrophysics Data System (ADS)
Payne, Molly; Jarand, Curtis; Grayson, Scott; Reed, Wayne
While living systems spontaneously heal injuries, most man made materials cannot recover from damage. Incorporating self-healing properties into synthetic polymers could significantly extend product lifetime, safety, and applications. Most reported approaches to incorporate healing into synthetic materials, however, require external stimuli such as chemical additives, heat, and light exposure. Although dynamic bonds have been explored, particularly using a hydrogen bond motif, this has not been fully investigated in an aqueous environment. To address this, hosts and guests that dynamically associate in water have been investigated to build aqueous self-healing materials. These association values were probed for various host/guest complexes using Simultaneous Multiple Sample Light Scattering (SMSLS), a technique that measures the size of aggregates via light scattering while varying concentration and other environmental factors. NSF EPSCoR IIA1430280.
Georgiev, Anton; Yordanov, Dancho; Dimov, Dean; Assa, Jacob; Spassova, Erinche; Danev, Gencho
2015-04-05
Nanocomposite layers 250 nm copper phthalocyanine/polyimide prepared by simultaneous vapour deposition of three different sources were studied. Different concentrations of copper phthalocyanine as a "guest" in polyimide matrix as a function of conditions of the preparation have been determined by FTIR (Fourier Transform Infrared) and UV-VIS (Ultraviolet-Visible) spectroscopies. The aim was to estimate the possibility of the spectroscopic methods for quantitative determination of the "guest" and compare with the quality of the polyimide thin films in relation to the "guest" concentration. The band at 1334 cm(-1) has been used for quantitative estimation of "guest" in polyimide matrix. The concentrations of the copper phthalocyanine less than 20% require curve fitting techniques with Fourier self deconvolution. The relationship between "guest" concentrations and degree of imidization, as well as the electronic UV-VIS spectra are discussed in relation to the composition, imidization degree and the two crystallographic modification of the embedded chromophore. Copyright © 2015 Elsevier B.V. All rights reserved.
Moreno-Olivares, Surisadai I; Cervantes, Ruy; Tiburcio, Jorge
2013-11-01
A new series of linear molecules derived from 1,2-bis(imidazopyridin-2-yl)ethane can fully or partially penetrate the cavity of the dibenzo-24-crown-8 macrocycle to produce a new family of host-guest complexes. Protonation or alkylation of the nitrogen atoms on the pyridine rings led to an increase in the guest total positive charge up to 4+ and simultaneously generated two new recognition sites (pyridinium motifs) that are in competition with the 1,2-bis(benzimidazole)ethane motif for the crown ether. The relative position of the pyridine ring and the chemical nature of the N-substituent determined the preferred motif and the host-guest complex geometry: (i) for linear guests with relatively bulky groups (i.e., a benzyl substituent), the 1,2-bis(benzimidazole)ethane motif is favored, leading to a fully threaded complex with a [2]pseudorotaxane geometry; (ii) for small substituents, such as -H and -CH3 groups, regardless of the guest shape, the pyridinium motifs are preferred, leading to external partially threaded complexes in a 2:1 host to guest stoichiometry.
Guest Controlled Nonmonotonic Deep Cavity Cavitand Assembly State Switching.
Tang, Du; Barnett, J Wesley; Gibb, Bruce C; Ashbaugh, Henry S
2017-11-30
Octa-acid (OA) and tetra-endo-methyl octa-acid (TEMOA) are water-soluble, deep-cavity cavitands with nanometer-sized nonpolar pockets that readily bind complementary guests, such as n-alkanes. Experimentally, OA exhibits a progression of 1:1 to 2:2 to 2:1 host/guest complexes (X:Y where X is the number of hosts and Y is the number of guests) with increasing alkane chain length from methane to tetradecane. Differing from OA only by the addition of four methyl groups ringing the portal of the pocket, TEMOA exhibits a nonmonotonic progression of assembly states from 1:1 to 2:2 to 1:1 to 2:1 with increasing guest length. Here we present a systematic molecular simulation study to parse the molecular and thermodynamic determinants that distinguish the succession of assembly stoichiometries observed for these similar hosts. Potentials of mean force between hosts and guests, determined via umbrella sampling, are used to characterize association free energies. These free energies are subsequently used in a reaction network model to predict the equilibrium distributions of assemblies. Our models accurately reproduce the experimentally observed trends, showing that TEMOA's endo-methyl units constrict the opening of the binding pocket, limiting the conformations available to bound guests and disrupting the balance between monomeric complexes and dimeric capsules. The success of our simulations demonstrate their utility at interpreting the impact of even simple chemical modifications on supramolecular assembly and highlight their potential to aid bottom-up design.
Gholami, Hadi; Anyika, Mercy; Zhang, Jun; Vasileiou, Chrysoula; Borhan, Babak
2016-06-27
The absolute stereochemistry of cyanohydrins, derived from ketones and aldehydes, is obtained routinely, in a microscale and derivatization-free manner, upon their complexation with Zn-MAPOL, a zincated porphyrin host with a binding pocket comprised of a biphenol core. The host-guest complex leads to observable exciton-coupled circular dichroism (ECCD), the sign of which is easily correlated to the absolute stereochemistry of the bound cyanohydrin. A working model, based on the ECCD signal of cyanohydrins with known configuration, is proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Calculation of Cyclodextrin Binding Affinities: Energy, Entropy, and Implications for Drug Design
Chen, Wei; Chang, Chia-En; Gilson, Michael K.
2004-01-01
The second generation Mining Minima method yields binding affinities accurate to within 0.8 kcal/mol for the associations of α-, β-, and γ-cyclodextrin with benzene, resorcinol, flurbiprofen, naproxen, and nabumetone. These calculations require hours to a day on a commodity computer. The calculations also indicate that the changes in configurational entropy upon binding oppose association by as much as 24 kcal/mol and result primarily from a narrowing of energy wells in the bound versus the free state, rather than from a drop in the number of distinct low-energy conformations on binding. Also, the configurational entropy is found to vary substantially among the bound conformations of a given cyclodextrin-guest complex. This result suggests that the configurational entropy must be accounted for to reliably rank docked conformations in both host-guest and ligand-protein complexes. In close analogy with the common experimental observation of entropy-enthalpy compensation, the computed entropy changes show a near-linear relationship with the changes in mean potential plus solvation energy. PMID:15339804
Kopilevich, Sivil; Müller, Achim; Weinstock, Ira A
2015-10-14
Using the hydrolysis of epoxides in water as a model reaction, the effect of multiple active sites on Michaelis-Menten compliant rate accelerations in a porous capsule is demonstrated. The capsule is a water-soluble Ih-symmetry Keplerate-type complex of the form, [{Mo(VI)6O21(H2O)6}12{Mo(V)2O4(L)}30](42-), in which 12 pentagonal "ligands," {(Mo(VI))Mo(VI)5O21(H2O)6}(6-), are coordinated to 30 dimolybdenum sites, {Mo(V)2O4L}(1+) (L = an endohedrally coordinated η(2)-bound carboxylate anion), resulting in 20 Mo9O9 pores. When "up-regulated" by removal of ca. one-third of the blocking ligands, L, an equal number of dimolybdenum sites are activated, and the newly freed-up space allows for encapsulation of nearly twice as many substrate guests, leading to a larger effective molarity (amplification), and an increase in the rate acceleration (k(cat)/k(uncat)) from 16,000 to an enzyme-like value of 182,800.
Molecular printboards: monolayers of beta-cyclodextrins on silicon oxide surfaces.
Onclin, Steffen; Mulder, Alart; Huskens, Jurriaan; Ravoo, Bart Jan; Reinhoudt, David N
2004-06-22
Monolayers of beta-cyclodextrin host molecules have been prepared on SiO2 surfaces. An ordered and stable cyano-terminated monolayer was modified in three consecutive surface reactions. First, the cyanide groups were reduced to their corresponding free amines using Red Al as a reducing agent. Second, 1,4-phenylene diisothiocyanate was used to react with the amine monolayer where it acts as a linking molecule, exposing isothiocyanates that can be derivatized further. Finally, per-6-amino beta-cyclodextrin was reacted with these isothiocyanate functions to yield a monolayer exposing beta-cyclodextrin. All monolayers were characterized by contact angle measurements, ellipsometric thickness measurements, Brewster angle Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry, which indicate the formation of a densely packed cyclodextrin surface. It was demonstrated that the beta-cyclodextrin monolayer could bind suitable guest molecules in a reversible manner. A fluorescent molecule (1), equipped with two adamantyl groups for complexation, was adsorbed onto the host monolayer from solution to form a monolayer of guest molecules. Subsequently, the guest molecules were desorbed from the surface by competition with increasing beta-cyclodextrin concentration in solution. The data were fitted using a model. An intrinsic binding constant of 3.3 +/- 1 x 10(5) M(-1) was obtained, which corresponds well to previously obtained results with a divalent guest molecule on beta-cyclodextrin monolayers on gold. In addition, the number of guest molecules bound to the host surface was determined, and a surface coverage of ca. 30% was found.
The New Instrument Suite of the TSU/Fairborn 2m Automatic Spectroscopic Telescope
NASA Astrophysics Data System (ADS)
Muterspaugh, Matthew W.; Maxwell, T.; Williamson, M. W.; Fekel, F. C.; Ge, J.; Kelly, J.; Ghasempour, A.; Powell, S.; Zhao, B.; Varosi, F.; Schofield, S.; Liu, J.; Warner, C.; Jakeman, H.; Avner, L.; Swihart, S.; Harrison, C.; Fishler, D.
2014-01-01
Tied with the Liverpool Telescope as the world's largest fully robotic optical research telescope, Tennessee State University's (TSU) 2m Automatic Spectroscopic Telescope (AST) has recently been upgraded to improve performance and increase versatility by supporting multiple instruments. Its second-generation instrument head enables us to rapidly switch between any of up to twelve fibers optics, each of which can supply light to a different instrument. In 2013 construction was completed on a new temperature-controlled guest instrument building, and two new high resolution spectrographs were commissioned. The current set of instrumentation includes (1) the telescope's original R=30,000 echelle spectrograph (0.38--0.83 microns simultaneous), (2) a single order R=7,000 spectrograph centered at Ca H&K features, (3) a single-mode-fiber fed miniature echelle spectrograph (R=100,000; 0.48--0.62 microns simultaneous), (4) the University of Florida's EXPERT-3 spectrograph (R=100,000; 0.38--0.9 microns simultaneous; vacuum and temperature controlled) and (5) the University of Florida's FIRST spectrograph (R=70,000$; 0.8--1.35 or 1.4--1.8 microns simultaneous; vacuum and temperature controlled). Future instruments include the Externally Dispersed Interferometry (EDI) Testbed, a combination low resolution dispersed spectrograph and Fourier Transform Spectrograph. We welcome inquiries from the community in regards to observing access and/or proposals for future guest instruments.
Selective Co-Encapsulation Inside an M6 L4 Cage.
Leenders, Stefan H A M; Becker, René; Kumpulainen, Tatu; de Bruin, Bas; Sawada, Tomohisa; Kato, Taito; Fujita, Makoto; Reek, Joost N H
2016-10-17
There is broad interest in molecular encapsulation as such systems can be utilized to stabilize guests, facilitate reactions inside a cavity, or give rise to energy-transfer processes in a confined space. Detailed understanding of encapsulation events is required to facilitate functional molecular encapsulation. In this contribution, it is demonstrated that Ir and Rh-Cp-type metal complexes can be encapsulated inside a self-assembled M 6 L 4 metallocage only in the presence of an aromatic compound as a second guest. The individual guests are not encapsulated, suggesting that only the pair of guests can fill the void of the cage. Hence, selective co-encapsulation is observed. This principle is demonstrated by co-encapsulation of a variety of combinations of metal complexes and aromatic guests, leading to several ternary complexes. These experiments demonstrate that the efficiency of formation of the ternary complexes depends on the individual components. Moreover, selective exchange of the components is possible, leading to formation of the most favorable complex. Besides the obvious size effect, a charge-transfer interaction may also contribute to this effect. Charge-transfer bands are clearly observed by UV/Vis spectrophotometry. A change in the oxidation potential of the encapsulated electron donor also leads to a shift in the charge-transfer energy bands. As expected, metal complexes with a higher oxidation potential give rise to a higher charge-transfer energy and a larger hypsochromic shift in the UV/Vis spectrum. These subtle energy differences may potentially be used to control the binding and reactivity of the complexes bound in a confined space. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Miller, Laurence J.
2010-01-01
It is useful to consider seven transmembrane receptors (7TMRs) as disordered proteins able to allosterically respond to a number of binding partners. Considering 7TMRs as allosteric systems, affinity and efficacy can be thought of in terms of energy flow between a modulator, conduit (the receptor protein), and a number of guests. These guests can be other molecules, receptors, membrane-bound proteins, or signaling proteins in the cytosol. These vectorial flows of energy can yield standard canonical guest allostery (allosteric modification of drug effect), effects along the plane of the cell membrane (receptor oligomerization), or effects directed into the cytosol (differential signaling as functional selectivity). This review discusses these apparently diverse pharmacological effects in terms of molecular dynamics and protein ensemble theory, which tends to unify 7TMR behavior toward cells. Special consideration will be given to functional selectivity (biased agonism and biased antagonism) in terms of mechanism of action and potential therapeutic application. The explosion of technology that has enabled observation of diverse 7TMR behavior has also shown how drugs can have multiple (pluridimensional) efficacies and how this can cause paradoxical drug classification and nomenclatures. PMID:20392808
The Thermodynamics of Anion Complexation to Nonpolar Pockets.
Sullivan, Matthew R; Yao, Wei; Tang, Du; Ashbaugh, Henry S; Gibb, Bruce C
2018-02-08
The interactions between nonpolar surfaces and polarizable anions lie in a gray area between the hydrophobic and Hofmeister effects. To assess the affinity of these interactions, NMR and ITC were used to probe the thermodynamics of eight anions binding to four different hosts whose pockets each consist primarily of hydrocarbon. Two classes of host were examined: cavitands and cyclodextrins. For all hosts, anion affinity was found to follow the Hofmeister series, with associations ranging from 1.6-5.7 kcal mol -1 . Despite the fact that cavitand hosts 1 and 2 possess intrinsic negative electrostatic fields, it was determined that these more enveloping hosts generally bound anions more strongly. The observation that the four hosts each possess specific anion affinities that cannot be readily explained by their structures, points to the importance of counter cations and the solvation of the "empty" hosts, free guests, and host-guest complexes, in defining the affinity.
Use of Twitter to Encourage Interaction in a Multi-campus Pharmacy Management Course
Fox, Brent I.; Varadarajan, Ranjani
2011-01-01
Objective. To implement and assess the effectiveness of using Twitter to encourage interaction between faculty members, guests, and students in a pharmacy management course taught simultaneously on 2 campuses. Design. Students were required to tweet a minimum of 10 times over several class sessions. The course instructor and guest professionals also participated. Assessment. More than eighteen hundred tweets were made by students, guests, and the instructor. Students tweeted most frequently with each other and found value in reading each others’ tweets. One hundred thirty-one students completed an optional evaluation survey. Seventy-one percent indicated that Twitter was distracting, 69% believed it prevented note taking, and more than 80% indicated that it facilitated class participation and allowed an opportunity to voice opinions. Conclusion. Educators who wish to use Twitter in pharmacy courses must balance the potentially positive aspects of the technology, such as increased interaction among students, with potentially negative aspects, such as the interruptive nature of Twitter use and the large volume of tweets generated by a class assignment. PMID:21829262
In situ Low-temperature Pair Distribution Function (PDF) Analysis of CH4 and CO2 Hydrates
NASA Astrophysics Data System (ADS)
Cladek, B.; Everett, M.; McDonnell, M.; Tucker, M.; Keffer, D.; Rawn, C.
2017-12-01
Gas hydrates occur in ocean floor and sub-surface permafrost deposits and are stable at moderate to high pressures and low temperatures. They are a clathrate structure composed of hydrogen bonded water cages that accommodate a wide variety of guest molecules. CO2 and CH4 hydrates both crystallize as the cubic sI hydrate and can form a solid solution. Natural gas hydrates are interesting as a potential methane source and for CO2 sequestration. Long-range diffraction studies on gas hydrates give valuable structural information but do not provide a detailed understanding of the disordered gas molecule interactions with the host lattice. In-situ low temperature total scattering experiments combined with pair distribution function (PDF) analysis are used to investigate the gas molecule motions and guest-cage interactions. CO2 and methane hydrates exhibit different decomposition behavior, and CO2 hydrate has a smaller lattice parameter despite it being a relatively larger molecule. Total scattering studies characterizing both the short- and long-range order simultaneously help to elucidate the structural source of these phenomena. Low temperature neutron total scattering data were collected using the Nanoscale Ordered MAterials Diffractometer (NOMAD) beamline at the Spallation Neutron Source (SNS) on CO2 and CH4 hydrates synthesized with D2O. Guest molecule motion within cages and interactions between gases and cages are investigated through the hydrate stability and decomposition regions. Data were collected from 2-80 K at a pressure of 55 mbar on CO2 and CH4 hydrates, and from 80-270 K at 25 bar on CH4 hydrate. The hydrate systems were modeled with classical molecular dynamic (MD) simulations to provide an analysis of the total energy into guest-guest, guest-host and host-host contributions. Combined Reitveld and Reverse Monte Carlo (RMC) structure refinement were used to fit models of the data. This combined modeling and simulation characterizes the effects of CO2 and CH4 as guest molecules on the structure and decomposition of gas hydrates. Structure and thermodynamic studies will provide a more comprehensive understanding of CO2-CH4 solid solutions, exchange kinetics, and implications on hydrate structure.
Multifunctional guest-host particles engineered by reversal nanoimprint lithography
NASA Astrophysics Data System (ADS)
Ha, Uh-Myong; Kaban, Burhan; Tomita, Andreea; Krekić, Kristijan; Klintuch, Dieter; Pietschnig, Rudolf; Ehresmann, Arno; Holzinger, Dennis; Hillmer, Hartmut
2018-03-01
Particulate polymeric microfibers with incorporated europium(III)oxide (Eu2O3) nanoparticles were introduced as a magneto-photoluminescent multifunctional material fabricated via reversal nanoimprint lithography. To specifically address the volume properties of these guest-host particles, the guest, Eu2O3, was milled down to an average particle size of 350 nm in diameter and mixed with the host-polymer, AMONIL®, before in situ hardening in the imprint stamp. The variation of the fabrication process parameters, i.e. delay time, spin coating speed, as well as the concentration of Eu2O3 nanoparticles was proven to have a significant impact on both the structure quality and the stamp release of the microfibers with respect to the formation of a thinner residual layer. Structural characterization performed by SEM revealed optimum fabrication process parameters for a homogeneous spatial distribution of Eu2O3 nanoparticles within the microfibers while simultaneously avoiding the formation of undesired agglomerates. The magneto-photoluminescent properties of Eu2O3 nanoparticles, i.e. a red emission at 613 nm and a paramagnetic response, were found to be superimposed to the optic and the diamagnetic behaviors of AMONIL®. The results imply that guest-host interdependence of these properties can be excluded and that the suggested technique enables for specific tailoring of particulate multifunctional materials with focus on their volume properties.
Briggs, R.; Gorman, M. G.; Coleman, A. L.; ...
2017-01-09
Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Furthermore, shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearancemore » of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.« less
Briggs, R; Gorman, M G; Coleman, A L; McWilliams, R S; McBride, E E; McGonegle, D; Wark, J S; Peacock, L; Rothman, S; Macleod, S G; Bolme, C A; Gleason, A E; Collins, G W; Eggert, J H; Fratanduono, D E; Smith, R F; Galtier, E; Granados, E; Lee, H J; Nagler, B; Nam, I; Xing, Z; McMahon, M I
2017-01-13
Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearance of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.
Chen, Wei-Hai; Lei, Qi; Luo, Guo-Feng; Jia, Hui-Zhen; Hong, Sheng; Liu, Yu-Xin; Cheng, Yin-Jia; Zhang, Xian-Zheng
2015-08-12
A versatile gold nanoparticle-based multifunctional nanocomposite AuNP@CD-AD-DOX/RGD was constructed flexibly via host-guest interaction for targeted cancer chemotherapy. The pH-sensitive anticancer prodrug AD-Hyd-DOX and the cancer-targeted peptide AD-PEG8-GRGDS were modified on the surface of AuNP@CD simultaneously, which endowed the resultant nanocomposite with the capability to selectively eliminate cancer cells. In vitro studies indicated that the AuNP@CD-AD-DOX/RGD nanocomposite was preferentially uptaken by cancer cells via receptor-mediated endocytosis. Subsequently, anticancer drug DOX was released rapidly upon the intracellular trigger of the acid microenvirenment of endo/lysosomes, inducing apoptosis in cancer cells. As the ideal drug nanocarrier, the multifunctional gold nanoparticles with the active targeting and controllable intracellular release ability hold the great potential in cancer therapy.
Protocols Utilizing Constant pH Molecular Dynamics to Compute pH-Dependent Binding Free Energies
2015-01-01
In protein–ligand binding, the electrostatic environments of the two binding partners may vary significantly in bound and unbound states, which may lead to protonation changes upon binding. In cases where ligand binding results in a net uptake or release of protons, the free energy of binding is pH-dependent. Nevertheless, conventional free energy calculations and molecular docking protocols typically do not rigorously account for changes in protonation that may occur upon ligand binding. To address these shortcomings, we present a simple methodology based on Wyman’s binding polynomial formalism to account for the pH dependence of binding free energies and demonstrate its use on cucurbit[7]uril (CB[7]) host–guest systems. Using constant pH molecular dynamics and a reference binding free energy that is taken either from experiment or from thermodynamic integration computations, the pH-dependent binding free energy is determined. This computational protocol accurately captures the large pKa shifts observed experimentally upon CB[7]:guest association and reproduces experimental binding free energies at different levels of pH. We show that incorrect assignment of fixed protonation states in free energy computations can give errors of >2 kcal/mol in these host–guest systems. Use of the methods presented here avoids such errors, thus suggesting their utility in computing proton-linked binding free energies for protein–ligand complexes. PMID:25134690
Dey, Sandeep Kumar; Das, Gopal
2012-08-07
A tren-based tris(thiourea) receptor, L with electron-withdrawing p-nitrophenyl terminals has been established as a competent hydrogen-bonding scaffold that can selectively encapsulate PO(4)(3-) within persistent and rigid dimeric capsules, assembled by aromatic π-stacking interactions between the receptor side-arms. A quaternary ammonium salt of PO(4)(3-) capsules (complexes 1 and 1b, 2:1 host-guest) can reproducibly be obtained in quantitative yields by a solution-state deprotonation of [HL](+) moieties and a bound HPO(4)(2-) anion of complex 1a (HPO(4)(2-) complex of protonated L, 2:1 host-guest), induced by the presence of a large excess of anions such as HCO(3)(-), CH(3)CO(2)(-), and F(-). Qualitative as well as quantitative (1)H and (31)P NMR experiments (DMSO-d(6)) have been carried out in detail to demonstrate the selective and preferential inclusion of PO(4)(3-) by L in solution-states. Competitive crystallization experiments performed in the presence of an excess of anions such as HCO(3)(-), HSO(4)(-), CH(3)CO(2)(-), NO(3)(-) and halides (F(-) and Cl(-)) further establish the phenomenon of selective PO(4)(3-) encapsulation as confirmed by (1)H NMR, (31)P NMR, FT-IR and powder X-ray diffraction patterns of the isolated crystals. X-ray structural analyses and (31)P NMR studies of the isolated crystals of phosphate complexes (1, 1a and 1b) provide evidence of the binding discrepancy of inorganic phosphates with protonated and neutral form of L. Furthermore, extensive studies have been carried out with other anions of different sizes and dimensions in solid- and solution-states (complexes 2a, 3, 4 and 5). Crystal structure elucidation revealed the formation of a solvent (DMSO) sealed unimolecular capsule in the F(-) encapsulated complex, 2a (1:1 host-guest), a CO(3)(2-) encapsulated centrosymmetric molecular capsule in 3 (2:1 host-guest) and a cation (tetrabutylammonium) sealed SO(4)(2-) encapsulated unimolecular capsule in 4 (1:1 host-guest). 2D-NOESY NMR experiments carried out on these capsule complexes further confirm the relevant binding stoichiometry of complexes (2a-4) except for the PO(4)(3-)-encapsulated complex (1b) which showed a 1:1 host-guest stoichiometry in solution.
A spectroscopic study of the structure and occupancies of clathrate hydrates incorporating hydrogen
NASA Astrophysics Data System (ADS)
Grim, R. Gary
With the ability to store and concentrate gases inside a clean and abundant water framework, clathrate hydrates are considered to be a promising material for many applications related to gas storage, separation, and sequestration. Hydrates of hydrogen are particularly interesting, for in addition to these potential applications, the small molecular size provides an opportunity for use as a model guest in many fundamental studies such as guest diffusion, multiple guest occupancy, and quantum mechanical effects upon confinement. In attempt to study these effects and the viability of H 2 hydrates as an energy storage material, a combined experimental and theoretical approach incorporating Raman spectroscopy, X-ray and neutron diffraction, nuclear magnetic resonance, ab-initio calculations, and molecular dynamic simulations was performed. One of the most significant challenges in the application of H2 clathrate hydrates is the demanding thermodynamic requirements needed for stability. In recent years, a mechanism known as the `tuning' effect had reportedly solved this issue where thermodynamic requirements could be reduced while simultaneously maintaining high storage capacities. In this work, the viability and validity of this technique is explored and alternative explanations in the form of epitaxial hydrate growth under high driving force conditions are discussed. A second, and equally important challenge facing clathrate hydrates as a future storage material is the overall storage capacity of H2. In previous work, H2 has only been experimentally verified to occupy the small 512 and 43566 3 cages and also in the large 51264 cages of the type II clathrate, often with an energy deficient promoter. In order to achieve more robust energy densities, other hydrate cages must be accessible. Herein a new method for increasing overall hydrate energy densities is presented involving the incorporation of H2 in the large cages of the type I clathrate with CH4 as a co-guest molecule. Finally, for all of the collective research on gas hydrates since their discovery in 1810 by Sir Humphrey Davy, the one common theme that unites them is the assumption that guest molecules are trapped at the center (or near center) of the host water cages that makes up the respective crystal structure. For the first time, this work provides evidence suggesting that this definition of clathrate hydrate guest occupancy is possibly incomplete, and should include the addition of interstitial sites within the water crystal lattice. Specifically, H2 is found within the shared heptagonal faces of the large (4 3596273) cage and in cavities formed from the disruption of smaller (445 4) water cages in structure VI hydrates. The ability of H2 to occupy these interstitial sites and fluctuate position in the crystal lattice demonstrates the dynamic behavior of H2 in solids and reveals new insight into guest-guest and guest-host interactions in clathrate hydrates with potential implications in increasing overall energy storage properties.
Paul, Bijan K; Ray, Debarati; Ganguly, Aniruddha; Guchhait, Nikhil
2013-12-01
The present contribution demonstrates the photophysics of a prospective cancer cell photosensitizer Harmane (HM) belonging to the family of β-carboline in mixed microheterogeneous environments of β-cyclodextrin (β-CD) and surfactants having varying surface charges using steady-state and time-resolved fluorescence spectroscopic techniques. The remarkable modulations in prototropic activities of the micelle-bound drug in the presence of β-CD evinces for disruption of the micellar structural integrity by β-CD. The results are meticulously discussed in relevance to the effect of a potential drug delivery vehicle (CD) on the membrane-mimetic micellar system. Further, application of an extrinsic fluorescence probe for monitoring such interactions is fraught by the possibilities of no less than three equilibria that can operate simultaneously viz., (i) surfactant-cyclodextrin, (ii) surfactant-fluorophore and (iii) cyclodextrin-fluorophore. This aspect highlights the enormous importance of the issue of suitability of the fluorescence probe to study such complicated systems and interaction phenomena. Also the varying interaction scenario of β-CD with the nature of the surfactant highlights the importance of precise knowledge of the strength and locus of drug binding in delineating such complex interactions. The results of the present investigation advocate for the potential applicability of the drug (HM) itself as a fluorescence reporter in study of such complex microheterogeneous interactions. Copyright © 2013 Elsevier Inc. All rights reserved.
Hussein, Mohd Zobir; Rahman, Nor Shazlirah Shazlyn Abdul; Sarijo, Siti H.; Zainal, Zulkarnain
2012-01-01
Herbicides, namely 4-(2,4-dichlorophenoxy) butyrate (DPBA) and 2-(3-chlorophenoxy) propionate (CPPA), were intercalated simultaneously into the interlayers of zinc layered hydroxide (ZLH) by direct reaction of zinc oxide with both anions under aqueous environment to form a new nanohybrid containing both herbicides labeled as ZCDX. Successful intercalation of both anions simultaneously into the interlayer gallery space of ZLH was studied by PXRD, with basal spacing of 28.7 Å and supported by FTIR, TGA/DTG and UV-visible studies. Simultaneous release of both CPPA and DPBA anions into the release media was found to be governed by a pseudo second-order equation. The loading and percentage release of the DPBA is higher than the CPPA anion, which indicates that the DPBA anion was preferentially intercalated into and released from the ZLH interlayer galleries. This work shows that layered single metal hydroxide, particularly ZLH, is a suitable host for the controlled release formulation of two herbicides simultaneously. PMID:22837696
NASA Astrophysics Data System (ADS)
Nagaoka, Hiroshi
We study the problem of minimizing a quadratic quantity defined for given two Hermitian matrices X, Y and a positive-definite Hermitian matrix. This problem is reduced to the simultaneous diagonalization of X, Y when XY = YX. We derive a lower bound for the quantity, and in some special cases solve the problem by showing that the lower bound is achievable. This problem is closely related to a simultaneous measurement of quantum mechanical observables which are not commuting and has an application in the theory of quantum state estimation.
Stimuli-controlled self-assembly of diverse tubular aggregates from one single small monomer
NASA Astrophysics Data System (ADS)
Shi, Qixun; Javorskis, Tomas; Bergquist, Karl-Erik; Ulčinas, Artūras; Niaura, Gediminas; Matulaitienė, Ieva; Orentas, Edvinas; Wärnmark, Kenneth
2017-04-01
The design and synthesis of new stimuli-responsive hydrogen-bonding monomers that display a diversity of self-assembly pathways is of central importance in supramolecular chemistry. Here we describe the aggregation properties of a simple, intrinsically C2-symmetric enantiopure bicyclic cavity compound bearing a terminally unsubstituted ureidopyrimidinone fragment fused with a pyrrole moiety in different solvents and in the absence and presence of C60 and C70 guests. The tetrameric cyclic aggregate is selectively obtained in chlorinated solvents, where only part of the available hydrogen bonding sites are utilized, whereas in toluene or upon addition of C70 guests, further aggregation into tubular supramolecular polymers is achieved. The open-end cyclic assemblies rearrange into a closed-shell capsule upon introduction of C60 with an accompanied symmetry breaking of the monomer. Our study demonstrates that a C60 switch can be used to simultaneously control the topology and occupancy of tubular assemblies resulting from the aggregation of small monomers.
Yang, Sihai; Ramirez-Cuesta, Anibal J.; Newby, Ruth; ...
2014-12-01
Supramolecular interactions are fundamental to host–guest binding in many chemical and biological processes. Direct visualization of such supramolecular interactions within host–guest systems is extremely challenging, but crucial to understanding their function. Within this paper, we report a comprehensive study that combines neutron scattering, synchrotron X-ray and neutron diffraction, and computational modelling to define the detailed binding at a molecular level of acetylene, ethylene and ethane within the porous host NOTT-300. This study reveals simultaneous and cooperative hydrogen-bonding, π···π stacking interactions and intermolecular dipole interactions in the binding of acetylene and ethylene to give up to 12 individual weak supramolecular interactionsmore » aligned within the host to form an optimal geometry for the selective binding of hydrocarbons. In addition, we also report the cooperative binding of a mixture of acetylene and ethylene within the porous host, together with the corresponding breakthrough experiments and analysis of adsorption isotherms of gas mixtures.« less
Luo, Guo-Feng; Xu, Xiao-Ding; Zhang, Jing; Yang, Juan; Gong, Yu-Hui; Lei, Qi; Jia, Hui-Zhen; Li, Cao; Zhuo, Ren-Xi; Zhang, Xian-Zheng
2012-10-24
Supramolecular microcapsules (SMCs) with the drug-loaded wall layers for pH-controlled drug delivery were designed and prepared. By using layer-by-layer (LbL) technique, the SMCs were constructed based on the self-assembly between polyaldenhyde dextran-graft-adamantane (PAD-g-AD) and carboxymethyl dextran-graft-β-CD (CMD-g-β-CD) on CaCO(3) particles via host-guest interaction. Simultaneously, adamantine-modified doxorubicin (AD-Dox) was also loaded on the LbL wall via host-guest interaction. The in vitro drug release study was carried out at different pHs. Because the AD groups were linked with PAD (PAD-g-AD) or Dox (AD-Dox) by pH-cleavable hydrazone bonds, AD moieties can be removed under the weak acidic condition, leading to destruction of SMCs and release of Dox. The pH-controlled drug release can enhance the uptake by tumor cells and thus achieve improved cancer therapy efficiency.
Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework
Lu, Zhenzhong; Godfrey, Harry G. W.; da Silva, Ivan; Cheng, Yongqiang; Savage, Mathew; Tuna, Floriana; McInnes, Eric J. L.; Teat, Simon J.; Gagnon, Kevin J.; Frogley, Mark D.; Manuel, Pascal; Rudić, Svemir; Ramirez-Cuesta, Anibal J.; Easun, Timothy L.; Yang, Sihai; Schröder, Martin
2017-01-01
Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host–guest systems. Here we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(VIII) {[VIII2(OH)2(L)], LH4=biphenyl-3,3′,5,5′-tetracarboxylic acid} can be oxidized to isostructural MFM-300(VIV), [VIV2O2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(VIII) shows the second highest CO2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g−1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO2, which binds in an end-on manner, =1.863(1) Å. In contrast, CO2-loaded MFM-300(VIV) shows CO2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique ···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. The macroscopic packing of CO2 in the pores is directly influenced by these primary binding sites. PMID:28194014
Liu, Nan; Higashi, Kenjirou; Ueda, Keisuke; Moribe, Kunikazu
2017-10-15
Various ternary Guest 2/(Guest 1/γ-cyclodextrin (CD)) complexes were prepared using a cogrinding and subsequent heating method, wherein Guest 1 was incorporated in the cavity of γ-CD and Guest 2 was incorporated into the intermolecular spaces between γ-CD columns. Dissolution fluxes of Guest 1 and Guest 2 from all ternary complexes were almost identical. The dissolution flux of flurbiprofen (Guest 1) from the ternary complexes depended on the solubility of Guest 2 drugs (naproxen
NASA Astrophysics Data System (ADS)
Usman, Muhammad Sani; Hussein, Mohd Zobir; Kura, Aminu Umar; Fakurazi, Sharida; Masarudin, Mas Jaffri; Saad, Fathinul Fikri Ahmad
2018-03-01
A theranostic nanocomposite was developed using anticancer agent, protocatechuic acid (PA) and magnetic resonance imaging (MRI) contrast agent gadolinium nitrate (Gd) for simultaneous delivery using layered double hydroxide (LDH) as the delivery agent. Gold nanoparticles (AuNPs) were adsorbed on the surface of the LDH, which served as a complementary contrast agent. Based on the concept of supramolecular chemistry (SPC) and multimodal delivery system (MDS), the PA and Gd guests were first intercalated into the LDH host and subsequently AuNPs were surface adsorbed as the third guest. The nanohybrid developed was named MAPGAu. The MAPGAu was exposed to various characterizations at different stages of synthesis, starting with XRD analysis, which was used to confirm the intercalation episode and surface adsorption of the guest molecules. Consequently, FESEM, Hi-TEM, XRD, ICP-OES, CHNS, FTIR and UV-Vis analyses were done on the nanohybrids. The result of XRD analysis indicated successful intercalation of the Gd and PA as well the adsorption of AuNPs. The UV-Vis release study showed 90% of the intercalated drug was released at pH 4.8, which is the pH of the cancer cells. The FESEM and TEM micrographs obtained equally confirmed the formation of MAGPAu nanocomposite, with AuNPs conspicuously deposited on the LDH surface. The cytotoxicity study of the nanohybrid also showed insignificant toxicity to normal cell lines and significant toxicity to cancer cell lines. The developed MAGPAu nanocomposite has shown prospects for future theranostic cancer treatment.
From flavoenzymes to devices: The role of electronic effects in recognition
NASA Astrophysics Data System (ADS)
Deans, Robert
Acylated aminopyridines provide models for specific flavoenzyme-cofactor interactions, allowing isolation and observation of the effects of hydrogen bonding on flavin NMR. To determine the relative hydrogen bond affinities of O(2) and O(4) of the flavin, a 2-aminopyridine based receptor was investigated. Additionally, this receptor allowed the effects of hydrogen bonding at O(2) and O(4) on the electron distribution in the flavin nucleus to be determined using sp{13}C NMR. A new family of receptors for flavins based on 6-aryl-2,4-(acyldiamino)-s-triazines was synthesized. In these synthetic hosts, systematic variation of the spatially remote substituents on the 6-aryl ring altered the hydrogen bond donating abilities of the amide functionality and the hydrogen bond accepting properties of the triazine N(3). This variation resulted in a strong modulation of the efficiency of flavin binding, with association constants for the receptor flavin complexes ranging over an 8-fold range. In addition, the communication of electronic information over extended distances was also investigated. Polymers can provide relevant media for the modeling of biological processes, including molecular recognition. To explore this possibility, a diaminotriazine-functionalized polymer was synthesized, starting from Merrifield's peptide resin. This polymer selectively bound a flavin derivative through hydrogen bonding, efficiently extracting it from a chloroform solution, as monitored by UV-vis extraction studies. The temperature profile of this polymer-flavin binding was also investigated and compared to the analogous solution-phase triazine-flavin dyad. Hydrogen bonding and aromatic stacking are fundamental interactions in molecular recognition. These interactions are sensitive to the redox states of the components of the host-guest complex. To explore the interplay of recognition and redox processes, a system consisting of two hosts and one guest, where guest binding interactions (hydrogen bonding and aromatic stacking) were modulated via choice of redox state was examined. Proper choice of receptors then provided a device where the competition between the two hosts was controlled by the redox state of the guest. The efficient reversal of host preference in this assembly provided an electrochemically-controlled three-component, two-pole, molecular switch.
Incorporation of large guest molecules into liposomes via chemical reactions in lipid membranes.
Tsuchiya, Yuki; Sugikawa, Kouta; Ueda, Masafumi; Ikeda, Atsushi
2017-02-22
The incorporation of hydrophobic guest molecules into lipid membranes by the exchange of the guest molecule from a cyclodextrin (CDx) complex to a liposome is limited to guest molecules that can be included in CDxs. To solve this problem, large guest molecules were incorporated into liposomes by chemical reactions of guest molecules in lipid membranes. Stable lipid-membrane-incorporated fullerene derivatives with large substituent(s) were prepared by Diels-Alder reactions in lipid membranes.
Rancan, Marzio; Tessarolo, Jacopo; Casarin, Maurizio; Zanonato, Pier Luigi; Quici, Silvio; Armelao, Lidia
2014-07-21
A constitutional dynamic library (CDL) of Cu(II) metallo-supramolecular polygons has been studied as a bench test to examine an interesting selection case based on molecular recognition. Sorting of the CDL polygons is achieved through a proper guest that is hosted into the triangular metallo-macrocycle constituent. Two selection mechanisms are observed, a guest induced path and a guest templated self-assembly (virtual library approach). Remarkably, the triangular host can accommodate several guests with a degree of selectivity ranging from ∼1 to ∼10(4) for all possible guest pairs. A double level selection operates: guests drive the CDL toward the triangular polygon, and, at the same time, this is able to pick a specific guest from a set of competitive molecules, according to a selectivity-affinity correlation. Association constants of the host-guest systems have been determined. Guest competition and exchange studies have been analyzed through variable temperature UV-Vis absorption spectroscopy and single crystal X-ray diffraction studies. Molecular structures and electronic properties of the triangular polygon and of the host-guest systems also have been studied by means of all electrons density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations including dispersive contributions. DFT outcomes ultimately indicate the dispersive nature of the host-guest interactions, while TDDFT results allow a thorough assignment of the host and host-guests spectral features.
Environment-Dependent Guest Exchange in Supramolecular Hosts
2015-01-01
Dynamic exchange of guest molecules, encapsulated in host assemblies, is a phenomenon in supramolecular chemistry that has important implications in several applications. While the mechanism of exchange in micellar assemblies has been previously investigated, the effect of host and guest environment upon the guest-exchange dynamics has received little attention, if any. In this paper, we study the guest-exchange mechanism in pH-sensitive nanogels along with pH-insensitive nanogels as a control. By systematically comparing the behavior of these nanogels, we show that size, concentration, and hydrophobicity can all play a critical role in guest-exchange dynamics. More importantly, these studies reveal that the dominant mechanism of guest exchange can intimately depend on environmental factors. PMID:25244305
Responsive Guest Encapsulation of Dynamic Conjugated Microporous Polymers.
Xu, Lai; Li, Youyong
2016-06-30
The host-guest complexes of conjugated microporous polymers encapsulating C60 and dye molecules have been investigated systematically. The orientation of guest molecules inside the cavities, have different terms: inside the open cavities of the polymer, or inside the cavities formed by packing different polymers. The host backbone shows responsive dynamic behavior in order to accommodate the size and shape of incoming guest molecule or guest aggregates. Simulations show that the host-guest binding of conjugated polymers is stronger than that of non-conjugated polymers. This detailed study could provide a clear picture for the host-guest interaction for dynamic conjugated microporous polymers. The mechanism obtained could guide designing new conjugated microporous polymers.
Electronegative Guests in CoSb 3
Duan, Bo; Yang, Jiong; Salvador, James R.; ...
2016-04-19
Introducing guests into a host framework to form a so called inclusion compound can be used to design materials with new and fascinating functionalities. The vast majority of inclusion compounds have electropositive guests with neutral or negatively charged frameworks. Here, we show a series of electronegative guest filled skutterudites with inverse polarity. The strong covalent guest-host interactions observed for the electronegative group VIA guests, i.e., S and Se, feature a unique localized cluster vibration which significantly influences the lattice dynamics, together with the point-defect scattering caused by element substitutions, resulting in very low lattice thermal conductivity values. The findings ofmore » electronegative guests provide a new perspective for guest-filling in skutterudites, and the covalent filler/lattice interactions lead to an unusual lattice dynamics phenomenon which can be used for designing high-efficiency thermoelectric materials and novel functional inclusion compounds with open structures.« less
NASA Technical Reports Server (NTRS)
Heise, James; Hull, Bethanne J.
2012-01-01
Iowa State University's Lunabotics Club, Team LunaCY, has worked hard to generate enthusiasm for robotics, engineering, and lunar activities. Team LunaCY participated in a variety of different outreach events making a strong impression on Iowa youth. These events led the chair of the mechanical engineering department, Dr. Ted Heindel, to refer to the club's outreach program as "the model that all other engineering clubs should follow." Team LunaCY's outreach activities totaled over 200 hours and captivated over 3000 students and adults throughout the course of this acaden1ic year, reaching out to people all over Iowa and to several special guests. These guests included Vice-President Joe Biden, during a visit to Iowa State University in March 2012, and astronaut Clayton Anderson, during a visit to Iowa State's campus in the fall 2011. Team LunaCY's outreach events created hands on learning opportunities for local youth ranging in age from elementary school children to high school students. The team strove to make a positive impression on Iowa youth and to encourage interest and involvement in scientific fields. The full list of events is shown in Table 1. Three of the major outreach events the team participated in were the FIRST LEGO League, Science Bound, and iExplore STEM Festival.
Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework
Lu, Zhenzhong; Godfrey, Harry G. W.; da Silva, Ivan; ...
2017-02-13
Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host–guest systems. Here in this paper we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(V III) {[V III 2(OH) 2(L)], LH 4=biphenyl-3,3',5,5'-tetracarboxylic acid} can be oxidized to isostructural MFM-300(V IV), [V IV 2O 2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(V III) shows the second highest CO 2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g -1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO 2, which binds in an end-on manner, OH∙∙∙ =1.863(1) Å. In contrast, CO 2-loaded MFM-300(V IV) shows CO 2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique O COmore » $$_2$$···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. Lastly, the macroscopic packing of CO 2 in the pores is directly influenced by these primary binding sites.« less
Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pluth, Michael; Bergman, Robert; Raymond, Kenneth
2009-04-10
Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expandingmore » to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization of protonated guests was translated into chemical catalysis by taking advantage of the potential for accelerating reactions that take place via positively charged transition states, which could be potentially stabilized by encapsulation. Orthoformates, generally stable in neutral or basic solution, were found to be suitable substrates for catalytic hydrolysis by the assembly. Orthoformates small enough to undergo encapsulation were readily hydrolyzed by the assembly in basic solution, with rate acceleration factors up to 3900 compared with those of the corresponding uncatalyzed reactions. Furthering the analogy to enzymes that obey Michaelis-Menten kinetics, we observed competitive inhibition with the inhibitor NPr{sub 4}{sup +}, thereby confirming that the interior cavity of the assembly was the active site for catalysis. Mechanistic studies revealed that the assembly is required for catalysis and that the rate-limiting step of the reaction involves proton transfer from hydronium to the encapsulated substrate. Encapsulation in the assembly changes the orthoformate hydrolysis from an A-1 mechanism (in which decomposition of the protonated substrate is the rate-limiting step) to an A-S{sub E}2 mechanism (in which proton transfer is the rate-limiting step). The study of hydrolysis in the assembly was next extended to acetals, which were also catalytically hydrolyzed by the assembly in basic solution. Acetal hydrolysis changed from the A-1 mechanism in solution to an A-2 mechanism inside the assembly, where attack of water on the protonated substrate is rate limiting. This work provides rare examples of assembly-catalyzed reactions that proceed with substantial rate accelerations despite the absence of functional groups in the cavity and with mechanisms fully elucidated by quantitative kinetic studies.« less
McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.
2016-08-02
Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.
McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.
2014-08-05
Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.
NASA Astrophysics Data System (ADS)
Nicolai, H. T.; Hof, A. J.; Lu, M.; Blom, P. W. M.; de Vries, R. J.; Coehoorn, R.
2011-11-01
The charge transport in a polyspirobifluorene derivative with copolymerized N,N,N',N'-tetraaryldiamino biphenyl (TAD) hole transport units is investigated as a function of the TAD content. For TAD concentrations larger than 5%, guest-to-guest transport is observed. It is demonstrated that in this regime the charge carrier density dependent mobility can be described consistently with the extended Gaussian disorder model, with a density of hopping sites which is proportional to the TAD concentration and comparable to the molecular density.
Das, Subhadip; Baghel, Vikesh Singh; Roy, Sudip; Kumar, Rajnish
2015-04-14
One of the options suggested for methane recovery from natural gas hydrates is molecular replacement of methane by suitable guests like CO2 and N2. This approach has been found to be feasible through many experimental and molecular dynamics simulation studies. However, the long term stability of the resultant hydrate needs to be evaluated; the decomposition rate of these hydrates is expected to depend on the interaction between these guest and water molecules. In this work, molecular dynamics simulation has been performed to illustrate the effect of guest molecules with different sizes and interaction strengths with water on structure I (SI) hydrate decomposition and hence the stability. The van der Waals interaction between water of hydrate cages and guest molecules is defined by Lennard Jones potential parameters. A wide range of parameter spaces has been scanned by changing the guest molecules in the SI hydrate, which acts as a model gas for occupying the small and large cages of the SI hydrate. All atomistic simulation results show that the stability of the hydrate is sensitive to the size and interaction of the guest molecules with hydrate water. The increase in the interaction of guest molecules with water stabilizes the hydrate, which in turn shows a slower rate of hydrate decomposition. Similarly guest molecules with a reasonably small (similar to Helium) or large size increase the decomposition rate. The results were also analyzed by calculating the structural order parameter to understand the dynamics of crystal structure and correlated with the release rate of guest molecules from the solid hydrate phase. The results have been explained based on the calculation of potential energies felt by guest molecules in amorphous water, hydrate bulk and hydrate-water interface regions.
VizieR Online Data Catalog: GJ 1214b optical and near-IR transit phot. (Angerhausen+, 2017)
NASA Astrophysics Data System (ADS)
Angerhausen, D.; Dreyer, C.; Placek, B.; Csizmadia, Sz.; Eigmueller, P.; Godolt, M.; Kitzmann, D.; Mallonn, M.; Becklin, E.; Collins, P.; Dunham, E. W.; Grenfell, J. L.; Hamilton, R. T.; Kabath, P.; Logsdon, S. E.; Mandell, A.; Mandushev, G.; McElwain, M.; McLean, I. S.; Pfueller, E.; Rauer, H.; Savage, M.; Shenoy, S.; Vacca, W. D.; van Cleve, J. E.; Wiedemann, M.; Wolf, J.
2017-11-01
The joint US-German Cycle 2 Guest Investigator (GI) programme - US-proposal: Angerhausen (2013); Germanproposal: Dreyer (2013) - was performed on SOFIAs flight number 149 on UT February 27, 2014. Observations were simultaneously conducted in two optical HIPO channels: open blue at 0.3-0.6um and Sloan z' at 0.9-m; and one infrared FLITECAM fiter: Paschen-α cont. at 1.9um. Complementary data were also obtained with the optical focal plane guiding camera FPI+ in the Sloan i' band (0.8um). (5 data files).
Taylor, Christopher G P; Piper, Jerico R; Ward, Michael D
2016-05-07
Cubic coordination cages act as competent hosts for several alkyl phosphonates used as chemical warfare agent simulants; a range of cage/guest structures have been determined, contributions to guest binding analysed, and a fluorescent response to guest binding demonstrated.
Aniline-containing guests recognized by α,α',δ,δ'-tetramethyl-cucurbit[6]uril host.
Lin, Rui-Lian; Fang, Guo-Sheng; Sun, Wen-Qi; Liu, Jing-Xin
2016-12-13
The host-guest complexation of symmetrical α,α',δ,δ'-tetramethyl-cucurbit[6]uril (TMeQ[6]) and cucurbit[7]uril (Q[7]) with a series of aniline-containing guests has been investigated by various experimental techniques including NMR, ITC, and X-ray crystallography. Experimental results indicate that both TMeQ[6] and Q[7] hosts can encapsulate aniline-containing guests to form stable inclusion complexes. However, the oval cavity of TMeQ[6] is more complementary in size and shape to the aromatic ring of the guests than the spherical cavity of Q[7]. Shielding and deshielding effects of the aromatic ring on guests lead to the remarkable chemical shifts of the TMeQ[6] host protons. The rotational restriction of the guests in the oval cavity of TMeQ[6] results in the large negative values of entropy. The X-ray crystal structure of the 1:1 inclusion complex between TMeQ[6] and N,N'-diethyl-benzene-1,4-diamine unambiguously reveals that the aromatic ring of the guest resides in the oval cavity of TMeQ[6].
Nurses as 'guests'--a study of a concept in light of Jacques Derrida's philosophy of hospitality.
Oresland, Stina; Lutzén, Kim; Norberg, Astrid; Rasmussen, Birgit H; Määttä, Sylvia
2013-04-01
As revealed in previous empirical research, nurses describe their position in home-based nursing care (HBNC) as that of 'guests' in the patient's home. Such a description is problematic as 'guests' might not be considered to belong to the realm of professionalism. As Jacques Derrida's work on hospitality has received wide publicity, sparking theoretical and philosophical discussion about host and guest, the aim of this study was to explore how the concept 'guests' can be understood in the light of Derrida's philosophy of hospitality. The study revealed that (a) guest must be considered a binary concept; and (b) hospitality should be regarded as an exchange of giving and receiving between a host and a guest. The present study demonstrated that it is important to reflect on the meaning of the concepts used by nurses in HBNC. Further theoretical and empirical exploration of the concept 'hospitality' would be fruitful, i.e. what is patients' understanding of 'hospitality' and 'hostility' related to nurses' descriptions of themselves as 'guests' in the patient's home. © 2013 Blackwell Publishing Ltd.
PPII propensity of multiple-guest amino acids in a proline-rich environment.
Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher
2011-07-07
There has been considerable debate about the intrinsic PPII propensity of amino acid residues in denatured polypeptides. Experimentally, this scale is based on the behavior of guest amino acid residues placed in the middle of proline-based hosts. We have used classical molecular dynamics simulations combined with replica-exchange methods to carry out a comprehensive analysis of the conformational equilibria of proline-based host oligopeptides with multiple guest amino acids including alanine, glutamine, valine, and asparagine. The tracked structural characteristics include the secondary structural motifs based on the Ramachandran angles and the cis/trans isomerization of the prolyl bonds. In agreement with our recent study of single amino acid guests, we did not observe an intrinsic PPII propensity in any of the guest amino acids in a multiple-guest setting. Instead, the experimental results can be explained in terms of (i) the steric restrictions imposed on the C-terminal guest amino acid that is immediately followed by a proline residue and (ii) an increase in the trans content of the prolyl bonds due to the presence of guest residues. In terms of the latter, we found that the more guests added to the system, the larger the increase in the trans content of the prolyl bonds, which results in an effective increase in the PPII content of the peptide.
Nucleation pathways of clathrate hydrates: effect of guest size and solubility.
Jacobson, Liam C; Hujo, Waldemar; Molinero, Valeria
2010-11-04
Understanding the microscopic mechanism of nucleation of clathrate hydrates is important for their use in hydrogen storage, CO(2) sequestration, storage and transport of natural gas, and the prevention of the formation of hydrate plugs in oil and gas pipelines. These applications involve hydrate guests of varied sizes and solubility in water that form different hydrate crystal structures. Nevertheless, molecular studies of the mechanism of nucleation of hydrates have focused on the single class of small hydrophobic guests that stabilize the sI crystal. In this work, we use molecular dynamics simulations with a very efficient coarse-grained model to elucidate the mechanisms of nucleation of clathrate hydrates of four model guests that span a 2 orders of magnitude range in solubility in water and that encompass sizes which stabilize each one a different hydrate structure (sI and sII, with and without occupancy of the dodecahedral cages). We find that the overall mechanism of clathrate nucleation is similar for all guests and involves a first step of formation of blobs, dense clusters of solvent-separated guest molecules that are the birthplace of the clathrate cages. Blobs of hydrophobic guests are rarer and longer-lived than those for soluble guests. For each guest, we find multiple competing channels to form the critical nuclei, filled dodecahedral (5(12)) cages, empty 5(12) cages, and a variety of filled large (5(12)6(n) with n = 2, 3, and 4) clathrate cages. Formation of empty dodecahedra is an important nucleation channel for all but the smallest guest. The empty 5(12) cages are stabilized by the presence of guests from the blob in their first solvation shell. Under conditions of high supercooling, the structure of the critical and subcritical nuclei is mainly determined by the size of the guest and does not reflect the cage composition or ordering of the stable or metastable clathrate crystals.
Rotational and constitutional dynamics of caged supramolecules
Kühne, Dirk; Klappenberger, Florian; Krenner, Wolfgang; Klyatskaya, Svetlana; Ruben, Mario; Barth, Johannes V.
2010-01-01
The confinement of molecular species in nanoscale environments leads to intriguing dynamic phenomena. Notably, the organization and rotational motions of individual molecules were controlled by carefully designed, fully supramolecular host architectures. Here we use an open 2D coordination network on a smooth metal surface to steer the self-assembly of discrete trimeric guest units, identified as noncovalently bound dynamers. Each caged chiral supramolecule performs concerted, chirality-preserving rotary motions within the template honeycomb pore, which are visualized and quantitatively analyzed using temperature-controlled scanning tunneling microscopy. Furthermore, with higher thermal energies, a constitutional system dynamics appears, which is revealed by monitoring repetitive switching events of the confined supramolecules’ chirality signature, reflecting decay and reassembly of the caged units. PMID:21098303
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Chao; Long, Hai; Jin, Yinghua
2016-06-17
Cyclic porphyrin trimers were synthesized through one-step cyclooligomerization via alkyne metathesis from diyne monomers. These macrocycles show interesting host-guest binding interactions with fullerenes, selectively binding C70 (6 x 103 M-1) over C60 and C84 (no binding observed). The fullerene-encapsulated host-guest complex can undergo guest or host exchange in the presence of another guest (2,4,6-tri(4-pyridyl)-1,3,5-triazine) or host (cage COP5) molecule with higher binding affinity.
Hydrogen bonding assemblies in host guest complexes with 18-crown-6
NASA Astrophysics Data System (ADS)
Fonari, M. S.; Simonov, Yu. A.; Kravtsov, V. Ch.; Lipkowski, J.; Ganin, E. V.; Yavolovskii, A. A.
2003-02-01
Recent X-ray crystal structural data for two novel 1:2 host-guest complexes of 18-crown-6 with neutral organic molecules, thiaamide hydrazide of 2-aminobenzoic acid and thiaamide hydrazide of 4-amino-1,2,5-thiadiazole-3-carbonic acid are reported. The supramolecular structures of these two and five relative complexes are discussed from the point of view of participation of donor groups in coordination with the crown ether, and donor and acceptor groups in the self-assembly of the guest molecules. Guest molecules have incorporated amine and hydrazine moieties as proton donors and carbonyl oxygen and sulfur (in thiadiazole and in thiaamine moieties) as proton acceptors. The guest-guest interactions appeared to be crucial in the final architecture.
Stefl, Martin; Kułakowska, Anna; Hof, Martin
2009-08-05
A new (to our knowledge) robust approach for the determination of lateral diffusion coefficients of weakly bound proteins is applied for the phosphatidylserine specific membrane interaction of bovine prothrombin. It is shown that z-scan fluorescence correlation spectroscopy in combination with pulsed interleaved dual excitation allows simultaneous monitoring of the lateral diffusion of labeled protein and phospholipids. Moreover, from the dependencies of the particle numbers on the axial sample positions at different protein concentrations phosphatidylserine-dependent equilibrium dissociation constants are derived confirming literature values. Increasing the amount of membrane-bound prothrombin retards the lateral protein and lipid diffusion, indicating coupling of both processes. The lateral diffusion coefficients of labeled lipids are considerably larger than the simultaneously determined lateral diffusion coefficients of prothrombin, which contradicts findings reported for the isolated N-terminus of prothrombin.
What the ultimate polymeric electro-optic materials will be: guest-host, crosslinked, or side-chain?
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Zhang, Hua; Oh, Min-Cheol; Dalton, Larry R.; Steier, William H.
2003-07-01
Material processing and device fabrication of many different electro-optic (EO) polymers developed at USC are reviewed. Detailed discussion is given to guest-host CLD/APCs, crosslinking perfluorocyclobutane (PFCB) polymer CX1, and thermally stable side-chain polymers CX2 and CX3. Excellent EO performance (1.4V at 1.31 μm, 2.1 V at 1.55 μm) was achieved in CLD/APC Mach-Zehnder modulators (2-cm, push-pull). CLD/APCs also possess low optical losses (1.2 dB/cm in slab waveguides and in thick core channel waveguides). However, the guest-host materials only have limited thermal stability (110-132 °C in short term, <60 °C in long term) and require special techniques in device fabrication. The crosslinking polymer CX1 was able to provide long-term stability at 85 oC when fully cured. It also has a low optical loss (comparable to CLD/APCs) before curing and decent EO coefficient when poled at 180 °C. However, after the films were poled at the crosslinking temperatures (200 °C or above), the transmissions of the waveguides and EO activity became very poor due to poling-induced chromophore degradation. By judicial molecular design of both chromophore and monomer structures to suppress thermal motion of polymer segments, we were able to realize the same or even better thermal stability in side-chain polymers CX2 and CX3. Since no curing is needed, devices can be poled at their optimal poling temperatures, and all good properties can be obtained simultaneously. Despite the excellent solubility in chlorinated solvents, these side-chain polymers are resistant to some other organic solvents or solutions such as acetone, photoresist and various UV-curable liquids.
Quantum-enhanced metrology for multiple phase estimation with noise
Yue, Jie-Dong; Zhang, Yu-Ran; Fan, Heng
2014-01-01
We present a general quantum metrology framework to study the simultaneous estimation of multiple phases in the presence of noise as a discretized model for phase imaging. This approach can lead to nontrivial bounds of the precision for multiphase estimation. Our results show that simultaneous estimation (SE) of multiple phases is always better than individual estimation (IE) of each phase even in noisy environment. The utility of the bounds of multiple phase estimation for photon loss channels is exemplified explicitly. When noise is low, those bounds possess the Heisenberg scale showing quantum-enhanced precision with the O(d) advantage for SE, where d is the number of phases. However, this O(d) advantage of SE scheme in the variance of the estimation may disappear asymptotically when photon loss becomes significant and then only a constant advantage over that of IE scheme demonstrates. Potential application of those results is presented. PMID:25090445
Noncommuting observables in quantum detection and estimation theory
NASA Technical Reports Server (NTRS)
Helstrom, C. W.
1972-01-01
Basing decisions and estimates on simultaneous approximate measurements of noncommuting observables in a quantum receiver is shown to be equivalent to measuring commuting projection operators on a larger Hilbert space than that of the receiver itself. The quantum-mechanical Cramer-Rao inequalities derived from right logarithmic derivatives and symmetrized logarithmic derivatives of the density operator are compared, and it is shown that the latter give superior lower bounds on the error variances of individual unbiased estimates of arrival time and carrier frequency of a coherent signal. For a suitably weighted sum of the error variances of simultaneous estimates of these, the former yield the superior lower bound under some conditions.
Quality of customer service: perceptions from guests in all-inclusive resorts in Jamaica
Joel L. Frater
2007-01-01
With data collected from guests in all-inclusive resorts in Jamaica, West Indies, the purposes of this study were to: (1) delineate unique dimensions of customer service perceptions among guests and (2) report the finding of a study that measured guests' perceptions of the quality of customer service in all-inclusive resorts. The study asked the following research...
22 CFR 2.4 - Designation of official guests.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Designation of official guests. 2.4 Section 2.4... Protocol. The designation of a person as an official guest is final. Pursuant to section 2658 of title 22... official guests is hereby delegated to the Chief of Protocol. (22 U.S.C. 2658) [45 FR 55716, Aug. 21, 1980] ...
Walkosz, Barbara J; Buller, David B; Andersen, Peter A; Scott, Michael D; Dignan, Mark B; Cutter, Gary R; Liu, Xia; Maloy, Julie A
2014-09-01
Go Sun Smart is a theory-based health communication program designed to influence sun-protection behaviors of employees and guests at high-altitude ski areas to reduce skin cancer risk. The effects of Go Sun Smart, in a Phase IV dissemination randomized posttest-only trial, on sun-protection behaviors of ski area guests are reported. Program use was assessed by on-site observation and guest message exposure, and sun protection was measured in intercept surveys at ski areas. Dissemination strategy-enhanced versus basic-was not significantly related to sun safety practices. Additional analyses examined the relation between message exposure and guests' sun safety practices. Ski areas displaying at least 6 Go Sun Smart materials in guest-only areas and 9 Go Sun Smart materials throughout the area increased guests' message exposure. Higher message exposure within the high-use ski areas was associated with improved sun protection by guests but not within the low-use ski areas. The authors underscore the importance of program implementation and message exposure on the success of evidence-based health communication efforts applied industrywide.
Hermann, Keith; Rieth, Stephen; Taha, Hashem A; Wang, Bao-Yu; Hadad, Christopher M
2012-01-01
Summary We used dynamic 1H NMR spectroscopic methods to examine the kinetics and thermodynamics of CH3CCl3 (2) entering and leaving the gated molecular basket 1. We found that the encapsulation is first-order in basket 1 and guest 2, while the decomplexation is zeroth-order in the guest. Importantly, the interchange mechanism in which a molecule of CH3CCl3 directly displaces the entrapped CH3CCl3 was not observed. Furthermore, the examination of the additivity of free energies characterizing the encapsulation process led to us to deduce that the revolving motion of the gates and in/out trafficking of guests is synchronized, yet still a function of the affinity of the guest for occupying the basket: Specifically, the greater the affinity of the guest for occupying the basket, the less effective the gates are in “sweeping” the guest as the gates undergo their revolving motion. PMID:22423275
Sgarlata, Carmelo; Mugridge, Jeffrey S; Pluth, Michael D; Tiedemann, Bryan E F; Zito, Valeria; Arena, Giuseppe; Raymond, Kenneth N
2010-01-27
NMR, UV-vis, and isothermal titration calorimetry (ITC) measurements probe different aspects of competing host-guest equilibria as simple alkylammonium guest molecules interact with both the exterior (ion-association) and interior (encapsulation) of the [Ga(4)L(6)](12-) supramolecular assembly in water. Data obtained by each independent technique measure different components of the host-guest equilibria and only when analyzed together does a complete picture of the solution thermodynamics emerge. Striking differences between the internal and external guest binding are found. External binding is enthalpy driven and mainly due to attractive interactions between the guests and the exterior surface of the assembly while encapsulation is entropy driven as a result of desolvation and release of solvent molecules from the host cavity.
Curvature bound from gravitational catalysis
NASA Astrophysics Data System (ADS)
Gies, Holger; Martini, Riccardo
2018-04-01
We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.
NASA Astrophysics Data System (ADS)
Kalenda, Peter
Research on exhibit design over the past twenty years has started to identify many different methods to increase the learning that occurs in informal education environments. This study utilized relevant research on exhibit design to create and study the effectiveness of a mobile interactive exhibit at the Seneca Park Zoo that promotes socialization, engagement in science, and conservation-related practices among guests. This study will serve as one component of a major redesign project at the Seneca Park Zoo for their Rocky Coasts exhibit. This action research study targeted the following question, "How can interactive exhibits be designed to promote socialization, engagement in science, and real-world conservation-related practices (RCPs) among zoo guests?" Specific research questions included: 1. In what ways did guests engage with the exhibit? 2. In what ways were guests impacted by the exhibit? a) What evidence exists, if any, of guests learning science content from the exhibit? b) What evidence exists, if any, of guests being emotionally affected by the exhibit? c) What evidence exists, if any, of guests changing their RCPs after visiting the exhibit? Data were collected through zoo guest surveys completed by zoo guests comparing multiple exhibits, interviews with guests before and after they used the prototype exhibit, observations and audio recordings of guests using the prototype exhibit, and follow-up phone interviews with guests who volunteered to participate. Data were analyzed collaboratively with members of the zoo's exhibit Redesign Team using grounded theory qualitative data analysis techniques to find patterns and trends among data. Initial findings from data analysis were used to develop shifts in the exhibit in order to increase visitor engagement and learning. This process continued for two full action research spirals, which resulted in three iterations of the prototype exhibit. The overall findings of this study highlight the ways in which guests engaged with and were impacted by this exhibit. Findings revealed the importance of the location of interactives and signage as well as a range of readability concerns for visitor engagement. In addition, findings highlight the roles of parents in informal learning environments, and the impact of exhibit design on dwell time and questioning. This study demonstrates the value and importance of utilizing an iterative design process informed by action research when creating learning experiences in zoos. This study also reinforces how difficult it can be to both influence and measure the shifting of guests' RCPs.
Chemically armed mercenary ants protect fungus-farming societies.
Adams, Rachelle M M; Liberti, Joanito; Illum, Anders A; Jones, Tappey H; Nash, David R; Boomsma, Jacobus J
2013-09-24
The ants are extraordinary in having evolved many lineages that exploit closely related ant societies as social parasites, but social parasitism by distantly related ants is rare. Here we document the interaction dynamics among a Sericomyrmex fungus-growing ant host, a permanently associated parasitic guest ant of the genus Megalomyrmex, and a raiding agro-predator of the genus Gnamptogenys. We show experimentally that the guest ants protect their host colonies against agro-predator raids using alkaloid venom that is much more potent than the biting defenses of the host ants. Relatively few guest ants are sufficient to kill raiders that invariably exterminate host nests without a cohabiting guest ant colony. We also show that the odor of guest ants discourages raider scouts from recruiting nestmates to host colonies. Our results imply that Sericomyrmex fungus-growers obtain a net benefit from their costly guest ants behaving as a functional soldier caste to meet lethal threats from agro-predator raiders. The fundamentally different life histories of the agro-predators and guest ants appear to facilitate their coexistence in a negative frequency-dependent manner. Because a guest ant colony is committed for life to a single host colony, the guests would harm their own interests by not defending the host that they continue to exploit. This conditional mutualism is analogous to chronic sickle cell anemia enhancing the resistance to malaria and to episodes in human history when mercenary city defenders offered either net benefits or imposed net costs, depending on the level of threat from invading armies.
Wu, Ling; Tang, Hailin; Hu, Shengqiang; Xia, Yonghong; Lu, Zhixuan; Fan, Yujuan; Wang, Zixiao; Yi, Xinyao; Zhou, Feimeng; Wang, Jianxiu
2018-04-30
Murine double minute 2 (MDM2) is an oncoprotein mediating the degradation of the tumor suppressor p53 protein. The physiological levels of MDM2 protein are closely related to malignant transformation and tumor growth. In this work, the simultaneous and label-free determination of free and p53-bound MDM2 proteins from sarcoma tissue extracts was conducted using a dual-channel surface plasmon resonance (SPR) instrument. Free MDM2 protein was measured in one fluidic channel covered with the consensus double-stranded (ds)-DNA/p53 conjugate, while MDM2 bound to p53 was captured by the consensus ds-DNA immobilized onto the other channel. To achieve higher sensitivity and to confirm specificity, an MDM2-specific monoclonal antibody (2A10) was used to recognize both the free and p53-bound MDM2 proteins. The resultant method afforded a detection limit of 0.55 pM of MDM2. The amenability of the method to the analysis of free and p53-bound MDM2 proteins was demonstrated for normal and sarcoma tissue extracts from three patients. Our data reveal that both free and total MDM2 (free and bound forms combined) proteins from sarcoma tissue extracts are of much higher concentrations than those from normal tissue extracts and the p53-bound MDM2 protein only constitutes a small fraction of the total MDM2 concentration. In comparison with enzyme-linked immunosorbent assay (ELISA), the proposed method possesses higher sensitivity, is more cost-effective, and is capable of determining free and p53-bound MDM2 proteins in clinical samples.
NASA Technical Reports Server (NTRS)
Sloss, J. M.; Kranzler, S. K.
1972-01-01
The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.
NASA Astrophysics Data System (ADS)
Hogan, Greg Anthony
The process of molecular transport and intercalation has been widely studied for many years, resulting in the discovery of molecular frameworks that are capable of hosting guest molecules or ions. Layered and porous metal-organic frameworks (MOFs) have been found to have applications in the field of catalysis, storage, separations, and ion-exchange. More recently, molecular components with peripheral hydrogen-bonding moieties have been used to affect the synthesis of hydrogen-bonded metal-organic frameworks (HMOFs) as an alternative to MOFs, which are interconnected via coordinate-covalent bonds. While MOFs are perhaps stronger materials, HMOFs have the advantage of being easily modifiable and more flexible. Because HMOFs have not been extensively studied for their ability to host molecules, and because their ability to withstand guest loss and guest exchange is essentially unknown, here we report the synthesis and molecular transport properties of both close-packed and porous HMOFs. Layered materials can mimic the behavior of naturally occurring clays, where guest molecules are absorbed and the layer will expand to accommodate the entering guest molecule. We have created a clay mimic composed of a metal pyridine-dicarboxylates and ammonium counterions (a layered HMOF), which is suitable for studying the ability of such materials to absorb guest molecules. We can control the distance of the interlayer region, as well as the chemical nature (hydrophobic or hydrophilic) by varying the organic amine. The metal complex contains axial water ligands that are replaceable, and such ligand exchange has precedence in coordination polymer (MOF) systems, and has been termed "coordinative intercalation". Using the synthesized layered material we examined the process of intercalation, having chosen a variety of guest molecules ranging from alkyl to aryl molecules, each of which have substituents varying in size, shape and electronics. The first set of guest molecules are non-coordinating and are theoretically capable of entering the layer and anchoring freely through the use of non-covalent interactions. The second set of guest molecules contain a pyridine moiety that can exchange with the coordinated water ligand through coordinative-intercalation. The products have been characterized by TGA, DSC, UV-Vis, and powder XRD. Further work was dedicated to examining porous materials, which were created using organic diamines, rather than simple primary amines, as starting materials. The resulting diammonium cations act as pillars, forming open channels. The predefined channel dimensions allow the insertion of specific sized guest molecules. The walls of the channel are close-packed, so that in theory guest molecules can travel in one direction through the solid. Using the synthesized pillared structure we investigated guest inclusion and selectivity through the process of co-crystallization. The stability of the pillared structure in the absence of guests is also reported, as well as the potential for the empty pillared structure to withstand guest re-insertion and removal.
A room with a viewpoint revisited: descriptive norms and hotel guests' towel reuse behavior.
Bohner, Gerd; Schlüter, Lena E
2014-01-01
Field experiments on descriptive norms as a means to increase hotel guests' towel reuse [1] were replicated and extended. In two hotels in Germany (Study 1: N = 724; Study 2: N = 204), descriptive norm messages suggesting that 75% of guests had reused their towels, or a standard message appealing to environmental concerns, were placed in guests' bathrooms. Descriptive norm messages varied in terms of proximity of the reference group ("hotel guests" vs. "guests in this room") and temporal proximity (currently vs. two years previous). Reuse of towels was unobtrusively recorded. Results showed that reuse rates were high overall and that both standard and descriptive norm messages increased reuse rates compared to a no-message baseline. However, descriptive norm messages were not more effective than the standard message, and effects of proximity were inconsistent across studies. Discussion addresses cultural and conceptual issues in comparing the present findings with previous ones.
High Throughput Synthesis of 2,3,6-Trisubstituted-5,6-Dihydroimidazo[2,1-b]thiazole Derivatives
Li, Yangmei; Giulianotti, Marc; Houghten, Richard A.
2011-01-01
A facile approach to the synthesis of 2,3,6-trisubstituted-5,6-dihydroimidazo[2,1-b]thiazole was reported. A resin bound cyclic thiourea was formed by the treatment of a resin bound diamine with 1,1′-thiocarbonyldiimidazole, and then reacted with a α-haloketone to generate a resin bound isothiourea. HF treatment of the resin bound isothiourea resulted in the cleavage of the product and simultaneous formation of an enamine bond. This led to the formation of the 2,3,6-trisubstituted-5,6-dihydroimidazo[2,1-b]thiazole in high yield and purity. PMID:21461055
High Throughput Synthesis of 2,3,6-Trisubstituted-5,6-Dihydroimidazo[2,1-b]thiazole Derivatives.
Li, Yangmei; Giulianotti, Marc; Houghten, Richard A
2011-02-09
A facile approach to the synthesis of 2,3,6-trisubstituted-5,6-dihydroimidazo[2,1-b]thiazole was reported. A resin bound cyclic thiourea was formed by the treatment of a resin bound diamine with 1,1'-thiocarbonyldiimidazole, and then reacted with a α-haloketone to generate a resin bound isothiourea. HF treatment of the resin bound isothiourea resulted in the cleavage of the product and simultaneous formation of an enamine bond. This led to the formation of the 2,3,6-trisubstituted-5,6-dihydroimidazo[2,1-b]thiazole in high yield and purity.
Nicolas, Henning; Yuan, Bin; Zhang, Xi; Schönhoff, Monika
2016-03-15
The powerful host-guest chemistry of cucurbit[8]uril (CB[8]) was employed to obtain photoresponsive polyelectrolyte multilayer films for the reversible and photocontrolled binding and release of an organic guest molecule. For this purpose, we designed and synthesized a polyelectrolyte with azobenzene side groups. Then, CB[8] was associated with the azo side group to obtain a supramolecular host-guest complex that was further used as building block in order to prepare photoresponsive and CB[8]-containing polyelectrolyte multilayer films. Ultraviolet spectroscopy and a dissipative quartz crystal microbalance are employed to monitor the formation of the host-guest complex and the layer-by-layer self-assembly of the multilayer films, respectively. We demonstrate that the photoresponsive properties of the azo side groups are maintained before and after host-guest complexation with CB[8] in solution and within the multilayer films, respectively. A guest molecule was then specifically included as second binding partner into the CB[8]-containing multilayer films. Subsequently, the release of the guest was performed by UV light irradiation due to the trans-cis isomerization of the adjacent azo side groups. Re-isomerization of the azo side groups was achieved by VIS light irradiation and enabled the rebinding of the guest into CB[8]. Finally, we demonstrate that the photocontrolled binding and release within CB[8]-containing multilayer films can reliably and reversibly be performed over a period of more than 2 weeks with constant binding efficiency. Therefore, we expect such novel type of photosensitive films to have promising future applications in the field of stimuli-responsive nanomaterials.
ESI-MS of Cucurbituril Complexes Under Negative Polarity.
Rodrigues, Maria A A; Mendes, Débora C; Ramamurthy, Vaidhyanathan; Da Silva, José P
2017-11-01
Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool to study host-guest supramolecular interactions. ESI-MS can be used for detailed gas-phase reactivity studies, to clarify the structure, or simply to verify the formation of complexes. Depending on the structure of the host and of the guest, negative and/or positive ESI are used. Here we report the unexpected formation of host-guest complexes between cucurbit[n]urils (n = 7, 8, CB[n]) and amine, styryl pyridine, and styryl pyridine dimer cations, under negative ESI. Non-complexed CB[n] form double charged halide (Br - , Cl - , F - ) adducts. Under negative ESI, halide ions interact with CB[n] outer surface hydrogen atoms. One to one host-guest complexes (1:1) of CB[n] with positive charged guests were also observed as single and double charged ions under negative ESI. The positive charge of guests is neutralized by ion-pairing with halide anions. Depending on the number of positive charges guests retain in the gas phase, one or two additional halide ions are required for neutralization. Complexes 1:2 of CB[8] with styryl pyridines retain two halide ions in the gas phase, one per guest. Styryl pyridine dimers form 1:1 complexes possessing a single extra halide ion and therefore a single positive charge. Negative ESI is sensitive to small structural differences between complexes, distinguishing between 1:2 complexes of styryl pyridine-CB[8] and corresponding 1:1 complexes with the dimer. Negative ESI gives simpler spectra than positive ESI and allows the determination of guest charge state of CB[n] complexes in the gas phase. Graphical Abstract ᅟ.
Chemically armed mercenary ants protect fungus-farming societies
Adams, Rachelle M. M.; Liberti, Joanito; Illum, Anders A.; Jones, Tappey H.; Nash, David R.; Boomsma, Jacobus J.
2013-01-01
The ants are extraordinary in having evolved many lineages that exploit closely related ant societies as social parasites, but social parasitism by distantly related ants is rare. Here we document the interaction dynamics among a Sericomyrmex fungus-growing ant host, a permanently associated parasitic guest ant of the genus Megalomyrmex, and a raiding agro-predator of the genus Gnamptogenys. We show experimentally that the guest ants protect their host colonies against agro-predator raids using alkaloid venom that is much more potent than the biting defenses of the host ants. Relatively few guest ants are sufficient to kill raiders that invariably exterminate host nests without a cohabiting guest ant colony. We also show that the odor of guest ants discourages raider scouts from recruiting nestmates to host colonies. Our results imply that Sericomyrmex fungus-growers obtain a net benefit from their costly guest ants behaving as a functional soldier caste to meet lethal threats from agro-predator raiders. The fundamentally different life histories of the agro-predators and guest ants appear to facilitate their coexistence in a negative frequency-dependent manner. Because a guest ant colony is committed for life to a single host colony, the guests would harm their own interests by not defending the host that they continue to exploit. This conditional mutualism is analogous to chronic sickle cell anemia enhancing the resistance to malaria and to episodes in human history when mercenary city defenders offered either net benefits or imposed net costs, depending on the level of threat from invading armies. PMID:24019482
NASA Astrophysics Data System (ADS)
Suryanti, Venty; Bhadbhade, Mohan; Black, David StC; Kumar, Naresh
2017-10-01
N-Nitrophenylglyoxylic amides 1 and 2 in presence of tetrabutylammonium cation (TBA) act as receptors for anions HSO4-, Cl-, Br- and NO3- as investigated by NMR studies. The receptors formed 1:1 host-guest complexes in solution. X-ray structure of 1 along with TBA that bind a chloride anion is reported. Molecule 1 showed the highest selectivity for HSO4- anion over others measured. X-ray structure of the bound Cl- revealed a pocket containing the anion making strong (Nsbnd H⋯Cl) and weak hydrogen bonds (Csbnd H⋯Cl) that contribute to the recognition of the chloride anion. Nsbnd H and Csbnd H hydrogen bonds resulted in a relatively strong binding for chloride ions.
Xu, Jun; Sinelnikov, Regina; Huang, Yining
2016-06-07
Metal-organic frameworks (MOFs) are promising porous materials for gas separation and storage as well as sensing. In particular, a series of isostructural MOFs with coordinately unsaturated metal centers, namely, CPO-27-M or M-MOF-74 (M = Mg, Zn, Mn, Fe, Ni, Co, Cu), have shown exceptional adsorption capacity and selectivity compared to those of classical MOFs that contain only fully coordinated metal sites. Although it is widely accepted that the interaction between guest molecules and exposed metal centers is responsible for good selectivity and large maximum uptake, the investigation of such guest-metal interaction is very challenging because adsorbed molecules are usually disordered in the pores and undergo rapid thermal motions. (2)H solid-state NMR (SSNMR) spectroscopy is one of the most extensively used techniques for capturing guest dynamics in porous materials. In this work, variable-temperature (2)H wide-line SSNMR experiments were performed on CPO-27-M (M = Mg, Zn) loaded with four prototypical guest molecules: D2O, CD3CN, acetone-d6, and C6D6. The results indicate that different guest molecules possess distinct dynamic behaviors inside the channel of CPO-27-M. For a given guest molecule, its dynamic behavior also depends on the nature of the metal centers. The binding strength of guest molecules is discussed on the basis of the (2)H SSNMR data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guha, Saikat; Shapiro, Jeffrey H.; Erkmen, Baris I.
Previous work on the classical information capacities of bosonic channels has established the capacity of the single-user pure-loss channel, bounded the capacity of the single-user thermal-noise channel, and bounded the capacity region of the multiple-access channel. The latter is a multiple-user scenario in which several transmitters seek to simultaneously and independently communicate to a single receiver. We study the capacity region of the bosonic broadcast channel, in which a single transmitter seeks to simultaneously and independently communicate to two different receivers. It is known that the tightest available lower bound on the capacity of the single-user thermal-noise channel is thatmore » channel's capacity if, as conjectured, the minimum von Neumann entropy at the output of a bosonic channel with additive thermal noise occurs for coherent-state inputs. Evidence in support of this minimum output entropy conjecture has been accumulated, but a rigorous proof has not been obtained. We propose a minimum output entropy conjecture that, if proved to be correct, will establish that the capacity region of the bosonic broadcast channel equals the inner bound achieved using a coherent-state encoding and optimum detection. We provide some evidence that supports this conjecture, but again a full proof is not available.« less
Roper, Nitin; Korenstein, Deborah
2015-10-01
Journals have increased disclosure requirements in recent years, in part to deter guest authorship. The prevalence of guest authorship among primary authors (first and last) in the current era of increased disclosure requirements is unknown. Our aim was to examine the self-reported prevalence of guest authorship among primary authors from a sample of randomized clinical trials with and without industry funding and industry collaboration in the design, analysis or reporting of trials. Cross-sectional analysis of randomized, drug/device clinical trials with published details on the "Role of the Funding Source/Sponsor" published in high-impact biomedical journals between 1 December 2011 and 31 November 2012. Phase 1 or 2 trials, secondary trial analyses, and trials that were not listed on ClinicalTrials.gov were excluded. Primary guest authorship was defined, based on International Committee of Medical Journal Editors (ICMJE) criteria, when neither the first nor last author contributed to either of the following: 1) the design of the trial or the analysis/interpretation of data; or 2) drafting part or all of the manuscript. One hundred and sixty-eight randomized clinical trials that met inclusion criteria were included. We measured differences in the prevalence of guest authorship between trials with neither industry funding nor collaboration and 1) trials with industry funding without collaboration, and 2) trials with industry funding with collaboration. The overall prevalence of primary guest authorship was 6 % (10/168). Primary guest authorship was significantly more common in trials with industry funding with collaboration than in those with neither industry funding nor collaboration [13.2 % (10/76) vs. 0 % (0/39); p < 0.02]. Primary guest authorship did not differ between trials with industry funding without collaboration and trials with neither industry funding nor collaboration. Among a sample of randomized, drug/device clinical trials in high-impact biomedical journals, primary guest authorship was overall uncommon and occurred exclusively among trials with industry funding with collaboration.
Polarization response of clathrate hydrates capsulated with guest molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Qun; Li, Jinshan, E-mail: ljs915@263.net, E-mail: myang@scu.edu.cn; Huang, Hui
2016-05-28
Clathrate hydrates are characterized by their water cages encapsulating various guest atoms or molecules. The polarization effect of these guest-cage complexes was studied with combined density functional theory and finite-field calculations. An addition rule was noted for these systems whose total polarizability is approximately equal to the polarizability sum of the guest and the cage. However, their distributional polarizability computed with Hirshfeld partitioning scheme indicates that the guest–cage interaction has considerable influence on their polarization response. The polarization of encapsulated guest is reduced while the polarization of water cage is enhanced. The counteraction of these two opposite effects leads tomore » the almost unchanged total polarizability. Further analysis reveals that the reduced polarizability of encapsulated guest results from the shielding effect of water cage against the external field and the enhanced polarizability of water cage from the enhanced bonding of hydrogen bonds among water molecules. Although the charge transfer through the hydrogen bonds is rather small in the water cage, the polarization response of clathrate hydrates is sensitive to the changes of hydrogen bonding strength. The guest encapsulation strengthens the hydrogen bonding network and leads to enhanced polarizability.« less
New Horizons Pluto Flyby Guest Operations
NASA Astrophysics Data System (ADS)
Simon, M.; Turney, D.; Fisher, S.; Carr, S. S.
2015-12-01
On July 14, 2015, after 9.5 years of cruise, NASA's New Horizons spacecraft flew past the Pluto system to gather first images humankind had ever seen on Pluto and its five moons. While much has been discovered about the Pluto system since New Horizons launch in 2006, the system has never been imaged at high resolution and anticipation of the "First Light" of the Pluto system had been anticipated by planetary enthusiasts for decades. The Johns Hopkins Applied Physics Laboratory (APL), which built and operates New Horizons, was the focal point for gathering three distinct groups: science and engineering team members; media and public affairs representatives; and invited public, including VIP's. Guest operations activities were focused on providing information primarily to the invited public and VIP's. High level objectives for the Guest Operations team was set to entertain and inform the general public, offer media reaction shots, and to deconflict activities for the guests from media activities wherever possible. Over 2000 people arrived at APL in the days surrounding closest approach for guest, science or media operations tracks. Reaction and coverage of the Guest Operations events was universally positive and global in impact: iconic pictures of the auditorium waving flags during the moment of closest approach were published in media outlets on every continent. Media relations activities ensured coverage in all key media publications targeted for release, such as the New York Times, Science, Le Monde, and Nature. Social and traditional media coverage of the events spanned the globe. Guest operations activities are designed to ensure that a guest has a memorable experience and leaves with a lifelong memory of the mission and their partnership in the activity. Results, lessons learned, and other data from the New Horizons guest operations activity will be presented and analyzed.
Mechanism of host-guest complexation by cucurbituril.
Márquez, César; Hudgins, Robert R; Nau, Werner M
2004-05-12
The factors affecting host-guest complexation between the molecular container compound cucurbit[6]uril (CB6) and various guests in aqueous solution are studied, and a detailed complexation mechanism in the presence of cations is derived. The formation of the supramolecular complex is studied in detail for cyclohexylmethylammonium ion as guest. The kinetics and thermodynamics of complexation is monitored by NMR as a function of temperature, salt concentration, and cation size. The binding constants and the ingression rate constants decrease with increasing salt concentration and cation-binding constant, in agreement with a competitive binding of the ammonium site of the guest and the metal cation with the ureido carbonyl portals of CB6. Studies as a function of guest size indicate that the effective container volume of the CB6 cavity is approximately 105 A(3). It is suggested that larger guests are excluded for two reasons: a high activation barrier for ingression imposed by the tight CB6 portals and a destabilization of the complex due to steric repulsion inside. For example, in the case of the nearly spherical azoalkane homologues 2,3-diazabicyclo[2.2.1]hept-2-ene (DBH, volume ca. 96 A(3)) and 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO, volume ca. 110 A(3)), the former forms the CB6 complex promptly with a sizable binding constant (1300 M(-1)), while the latter does not form a complex even after several months at optimized complexation conditions. Molecular mechanics calculations are performed for several CB6/guest complexes. A qualitative agreement is found between experimental and calculated activation energies for ingression as a function of both guest size and state of protonation. The potential role of constrictive binding by CB6 is discussed.
Relationship between the cohesion of guest particles on the flow behaviour of interactive mixtures.
Mangal, Sharad; Gengenbach, Thomas; Millington-Smith, Doug; Armstrong, Brian; Morton, David A V; Larson, Ian
2016-05-01
In this study, we aimed to investigate the effects cohesion of small surface-engineered guest binder particles on the flow behaviour of interactive mixtures. Polyvinylpyrrolidone (PVP) - a model pharmaceutical binder - was spray-dried with varying l-leucine feed concentrations to create small surface-engineered binder particles with varying cohesion. These spray-dried formulations were characterised by their particle size distribution, morphology and cohesion. Interactive mixtures were produced by blending these spray-dried formulations with paracetamol. The resultant blends were visualised under scanning electron microscope to confirm formation of interactive mixtures. Surface coverage of paracetamol by guest particles as well as the flow behaviour of these mixtures were examined. The flow performance of interactive mixtures was evaluated using measurements of conditioned bulk density, basic flowability energy, aeration energy and compressibility. With higher feed l-leucine concentrations, the surface roughness of small binder particles increased, while their cohesion decreased. Visual inspection of the SEM images of the blends indicated that the guest particles adhered to the surface of paracetamol resulting in effective formation of interactive mixtures. These images also showed that the low-cohesion guest particles were better de-agglomerated that consequently formed a more homogeneous interactive mixture with paracetamol compared with high-cohesion formulations. The flow performance of interactive mixtures changed as a function of the cohesion of the guest particles. Interactive mixtures with low-cohesion guest binder particles showed notably improved bulk flow performance compared with those containing high-cohesion guest binder particles. Thus, our study suggests that the cohesion of guest particles dictates the flow performance of interactive mixtures. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Guest molecules as a design element for metal–organic frameworks
Allendorf, Mark D.; Medishetty, Raghavender; Fischer, Roland A.
2016-11-07
The well-known synthetic versatility of MOFs is rooted in the ability to predict the metal ion coordination geometry and the vast possibilities to use organic chemistry to modify the linker groups. However, the use of “non-innocent” guest molecules as a component of framework design has been largely ignored. Nevertheless, recent reports show that the presence of guest molecules can have dramatic effects, even when these are seemingly innocuous species such as water or polar solvents. Advantages of using guests to impart new properties to MOFs include the relative ease of introducing new functionalities, the ability to modify the properties materialmore » at will by removing the guest or inserting different ones, and avoidance of the difficulties associated with synthesizing new frameworks, which can be challenging even when the basic topology remains constant. In this article we describe the “Guest@MOF” concept and provide examples illustrating its potential as a new MOF design element.« less
Host–guest complexes between cryptophane-C and chloromethanes revisited
Takacs, Z; Soltesova, M; Kowalewski, J; Lang, J; Brotin, T; Dutasta, J-P
2013-01-01
Cryptophane-C is composed of two nonequivalent cyclotribenzylene caps, one of which contains methoxy group substituents on the phenyl rings. The two caps are connected by three OCH2CH2O linkers in an anti arrangement. Host–guest complexes of cryptophane-C with dichloromethane and chloroform in solution were investigated in detail by nuclear magnetic resonance techniques and density functional theory (DFT) calculations. Variable temperature proton and carbon-13 spectra show a variety of dynamic processes, such as guest exchange and host conformational transitions. The guest exchange was studied quantitatively by exchange spectroscopy measurements or by line-shape analysis. The conformational preferences of the guest-containing host were interpreted through cross-relaxation measurements, providing evidence of the gauche+2 and gauche−2 conformations of the linkers. In addition, the mobility of the chloroform guest inside the cavity was studied by carbon-13 relaxation experiments. Combining different types of evidence led to a detailed picture of molecular recognition, interpreted in terms of conformational selection. Copyright © 2012 John Wiley & Sons, Ltd. PMID:23132654
Greenaway, Rebecca L.; Holden, Daniel; Eden, Edward G. B.; Stephenson, Andrew; Yong, Chin W.; Bennison, Michael J.; Hasell, Tom; Briggs, Michael E.; James, Stuart L.
2017-01-01
Porous liquids are a new class of material that could have applications in areas such as gas separation and homogeneous catalysis. Here we use a combination of measurement techniques, molecular simulations, and control experiments to advance the quantitative understanding of these liquids. In particular, we show that the cage cavities remain unoccupied in the absence of a suitable guest, and that the liquids can adsorb large quantities of gas, with gas occupancy in the cages as high as 72% and 74% for Xe and SF6, respectively. Gases can be reversibly loaded and released by using non-chemical triggers such as sonication, suggesting potential for gas separation schemes. Diffusion NMR experiments show that gases are in dynamic equilibrium between a bound and unbound state in the cage cavities, in agreement with recent simulations for related porous liquids. Comparison with gas adsorption in porous organic cage solids suggests that porous liquids have similar gas binding affinities, and that the physical properties of the cage molecule are translated into the liquid state. By contrast, some physical properties are different: for example, solid homochiral porous cages show enantioselectivity for chiral aromatic alcohols, whereas the equivalent homochiral porous liquids do not. This can be attributed to a loss of supramolecular organisation in the isotropic porous liquid. PMID:28553499
Tightening the entropic uncertainty bound in the presence of quantum memory
NASA Astrophysics Data System (ADS)
Adabi, F.; Salimi, S.; Haseli, S.
2016-06-01
The uncertainty principle is a fundamental principle in quantum physics. It implies that the measurement outcomes of two incompatible observables cannot be predicted simultaneously. In quantum information theory, this principle can be expressed in terms of entropic measures. M. Berta et al. [Nat. Phys. 6, 659 (2010), 10.1038/nphys1734] have indicated that uncertainty bound can be altered by considering a particle as a quantum memory correlating with the primary particle. In this article, we obtain a lower bound for entropic uncertainty in the presence of a quantum memory by adding an additional term depending on the Holevo quantity and mutual information. We conclude that our lower bound will be tightened with respect to that of Berta et al. when the accessible information about measurements outcomes is less than the mutual information about the joint state. Some examples have been investigated for which our lower bound is tighter than Berta et al.'s lower bound. Using our lower bound, a lower bound for the entanglement of formation of bipartite quantum states has been obtained, as well as an upper bound for the regularized distillable common randomness.
Guest Speakers in School-Based Sexuality Education
ERIC Educational Resources Information Center
McRee, Annie-Laurie; Madsen, Nikki; Eisenberg, Marla E.
2014-01-01
This study, using data from a statewide survey (n = 332), examined teachers' practices regarding the inclusion of guest speakers to cover sexuality content. More than half of teachers (58%) included guest speakers. In multivariate analyses, teachers who taught high school, had professional preparation in health education, or who received…
Energy transfer in a mechanically trapped exciplex.
Klosterman, Jeremy K; Iwamura, Munetaka; Tahara, Tahei; Fujita, Makoto
2009-07-15
Host-guest complexes involving M(6)L(4) coordination cages can display unusual photoreactivity, and enclathration of the very large fluorophore bisanthracene resulted in an emissive, mechanically trapped intramolecular exciplex. Mechanically linked intramolecular exciplexes are important for understanding the dependence of energy transfer on donor-acceptor distance, orientation, and electronic coupling but are relatively unexplored. Steady-state and picosecond time-resolved fluorescence measurements have revealed that selective excitation of the encapsulated guest fluorophore results in efficient energy transfer from the excited guest to an emissive host-guest exciplex state.
The guest-worker in Western Europe--an obituary.
Castles, S
1986-01-01
The significance of guest workers is examined for six Western European countries. It is found that "the dynamics of the migratory process led to family reunification and settlement, against the original intentions of the workers, employers and states concerned. The recruitment of guest-workers stopped after 1974, but many migrants stayed on, becoming permanent ethnic minorities, in a situation of economic and social crisis. It is argued that guest-worker systems inevitably lead to permanent migration in the long run, and that it is better to plan for orderly settlement through appropriate policies." excerpt
NASA Astrophysics Data System (ADS)
Danylyuk, Oksana; Butkiewicz, Helena; Coleman, Anthony W.; Suwinska, Kinga
2017-12-01
Here we describe the host-guest inclusion complexes of local anesthetic drugs with two macrocyclic hosts cucurbit[6]uril and para-sulphonatocalix[8]arene in the solid state. The anesthetic agents used in the co-crystallization with the supramolecular hosts are lidocaine, procaine, procainamide, prilocaine and proparacaine. Both macrocycles encapsulate the alkylammonium moieties of anestetics guests into their cavities although the mechanism of complexation, host-guest stoichiometry and geometry differ depending on the nature of the supramolecular host.
Binding of carboxylate and trimethylammonium salts to octa-acid and TEMOA deep-cavity cavitands
NASA Astrophysics Data System (ADS)
Sullivan, Matthew R.; Sokkalingam, Punidha; Nguyen, Thong; Donahue, James P.; Gibb, Bruce C.
2017-01-01
In participation of the fifth statistical assessment of modeling of proteins and ligands (SAMPL5), the strength of association of six guests ( 3- 8) to two hosts ( 1 and 2) were measured by 1H NMR and ITC. Each host possessed a unique and well-defined binding pocket, whilst the wide array of amphiphilic guests possessed binding moieties that included: a terminal alkyne, nitro-arene, alkyl halide and cyano-arene groups. Solubilizing head groups for the guests included both positively charged trimethylammonium and negatively charged carboxylate functionality. Measured association constants ( K a ) covered five orders of magnitude, ranging from 56 M-1 for guest 6 binding with host 2 up to 7.43 × 106 M-1 for guest 6 binding to host 1.
Han, Ying; Cao, Jing; Li, Peng-Fei; Zong, Qian-Shou; Zhao, Jian-Min; Guo, Jia-Bin; Xiang, Jun-Feng; Chen, Chuan-Feng
2013-04-05
Complexation between a triptycene-derived macrotricyclic polyether containing two dibenzo-[30]-crown-10 cavities and different functionalized paraquat derivatives, diquat, and a 2,7-diazapyrenium salt in both solution and solid state was investigated in detail. It was found that depending on the guests with different terminal functional groups and structures, the macrotricyclic polyether could form 1:1 or 1:2 complexes with the guests in different complexation modes in solution and also in the solid state. Especially, the conformation of the macrotricyclic polyether was efficiently adjusted by the encapsulated guests, which was to some extent similar to substrate-induced fit of enzymes. Moreover, the binding and releasing of the guests in the complexes could be controlled by potassium ions.
Electromagnetic Wave Absorption Coating Material with Self-Healing Properties.
Wang, Ya-Min; Pan, Min; Liang, Xiang-Yong; Li, Bang-Jing; Zhang, Sheng
2017-12-01
Electromagnetic wave absorption coatings can effectively minimize electromagnetic radiation and are widely used in the military and civil field. However, even small scratches on the coating can lead to a large decline of absorption ability and bring serious consequences. To enhance the lifetime of electromagnetic wave absorbing coating, a kind of self-healing electromagnetic wave absorbing coating is developed by introducing host-guest interactions between the absorbing fillers and polymer matrix. After being damaged, the cracks on this coating can be healed completely with the aid of small amounts of water. Simultaneously, the electromagnetic absorbing ability of the coating is restored along with the self-healing process. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Prediction of clathrate structure type and guest position by molecular mechanics.
Fleischer, Everly B; Janda, Kenneth C
2013-05-16
The clathrate hydrates occur in various types in which the number, size, and shape of the various cages differ. Usually the clathrate type of a specific guest is predicted by the size and shape of the molecular guest. We have developed a methodology to determine the clathrate type employing molecular mechanics with the MMFF force field employing a strategy to calculate the energy of formation of the clathrate from the sum of the guest/cage energies. The clathrate type with the most negative (most stable) energy of formation would be the type predicted (we mainly focused on type I, type II, or bromine type). This strategy allows for a calculation to predict the clathrate type for any cage guest in a few minutes on a laptop computer. It proved successful in predicting the clathrate structure for 46 out of 47 guest molecules. The molecular mechanics calculations also provide a prediction of the guest position within the cage and clathrate structure. These predictions are generally consistent with the X-ray and neutron diffraction studies. By supplementing the diffraction study with molecular mechanics, we gain a more detailed insight regarding the details of the structure. We have also compared MM calculations to studies of the multiple occupancy of the cages. Finally, we present a density functional calculation that demonstrates that the inside of the clathrates cages have a relatively uniform and low electrostatic potential in comparison with the outside oxygen and hydrogen atoms. This implies that van der Waals forces will usually be dominant in the guest-cage interactions.
Guest Chain ``Melting'' in Incommensurate Host-Guest Potassium
NASA Astrophysics Data System (ADS)
McBride, Emma; Munro, Keith; McMahon, Malcolm
2013-06-01
Upon increasing pressure the group-I elements transform from close-packed structures (bcc and fcc) to a series of low-symmetry complex structures. Residing in the middle of the group, potassium (K) has numerous structures in common with its neighbours, and, in fact, is remarkably structurally similar to sodium (Na) and rubidium (Rb). For example, the post-fcc transition in K is to a composite incommensurate host-guest structure (tI19), and the host structure of this phase is isostructural with that found in Na and Rb. Previously we have reported that below 16.7GPa, the Bragg peaks from the guest component of tI19-Rb broaden considerably, signalling a loss of the inter-chain correlation, or a ``melting'' of the chains. Furthermore, in tI19-Na above 125 GPa, the Bragg peaks from the guest component are also broadened, suggesting that the guest chains are also nearly ``melted.'' During studies of the melting curve of K, we observed that the guest peaks from tI19-K broaden dramatically on heating. Here we report single-crystal, quasi-single-crystal, and powder synchrotron x-ray diffraction measurements of tI19-K to 50 GPa and 800 K, which allowed a detailed study of this chain ``melting'' transition. The order-disorder transition is clearly visible over a 30 GPa pressure range, and there are significant changes in the gradient of the phase boundary, which may be influenced by the nature of the guest structure. Furthermore, data extending the melting curve will also be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
University of California, Berkeley; Lawrence Berkeley National Laboratory; Raymond, Kenneth
2007-10-22
Understanding the solution behavior of supramolecular assemblies is essential for a full understanding of the formation and chemistry of synthetic host-guest systems. While the interaction between host and guest molecules is generally the focus of mechanistic studies of host-guest complexes, the interaction of the host-guest complex with other species in solution remains largely unknown, although in principle accessible by diffusion studies. Several NMR techniques are available to monitor diffusion and have recently been reviewed. Pulsed gradient spin-echo (PGSE) NMR methods have attracted increasing interest, since they allow diffusion coefficients to be measured with high accuracy; they have been successfully usedmore » with observation of {sup 7}Li and {sup 31}P nuclei as well as with {sup 1}H NMR. We report here the direct measurement of diffusion coefficients to observe ion-association interactions by counter cations with a highly-charged supramolecular assembly. Raymond and coworkers have described the design and chemistry of a class of metal-ligand supramolecular assemblies over the past decade. The [Ga{sub 4}L{sub 6}]{sup 12-} (L = 1,5-bis(2,3-dihydroxybenzamido)naphthalene) (1) (Figure 1) assembly has garnered the most attention, with the exploration of the dynamics and mechanism of guest exchange as well as the ability of 1 to achieve either stoichiometric or catalytic reactions inside its interior cavity. Recent studies have revealed the importance of counter cations in solution on the chemistry of 1. During the mechanistic study of the C-H bond activation of aldehydes by [Cp*Ir(PMe{sub 3})(olefin){sup +} {contained_in} 1]{sup 11-} a stepwise guest dissociation mechanism with an ion-paired intermediate was proposed. Similarly, in the mechanism for the hydrolysis of iminium cations generated from the 3-aza Cope rearrangement of enammonium cations in 1, the presence of an exterior ion association was part of the kinetic model. To further substantiate the indirect kinetic evidence for such ion-paired species, we sought to explore the solution behavior of 1 by studying the diffusion of 1 with varying alkali and tetraalkyl ammonium cations. For large molecules in solution, such as synthetic supramolecular assemblies, the diffusion behavior of host and guest molecules can provide valuable information on host-guest interaction. One characteristic feature of a stable host-guest complex is that the host and guest molecules diffuse at the same rate in solution; this has been observed in a number of supramolecular systems. In order to confirm that this system was suitable for study by diffusion NMR spectroscopy, a PGSE-DOSY spectrum was acquired of [NEt{sub 4} {contained_in} 1]{sup 11-} (Figure 2), which shows that the host and guest molecules diffuse at the same rate. Quantitative analysis of the data, from monitoring the integral of host and guest resonances as a function of applied gradient strength, gave identical diffusion coefficients, confirming that the host and guest molecules diffuse together.« less
Shetty, Dinesh; Khedkar, Jayshree K; Park, Kyeng Min; Kim, Kimoon
2015-12-07
The design of synthetic, monovalent host-guest molecular recognition pairs is still challenging and of particular interest to inquire into the limits of the affinity that can be achieved with designed systems. In this regard, cucurbit[7]uril (CB[7]), an important member of the host family cucurbit[n]uril (CB[n], n = 5-8, 10, 14), has attracted much attention because of its ability to form ultra-stable complexes with multiple guests. The strong hydrophobic effect between the host cavity and guests, ion-dipole and dipole-dipole interactions of guests with CB portals helps in cooperative and multiple noncovalent interactions that are essential for realizing such strong complexations. These highly selective, strong yet dynamic interactions can be exploited in many applications including affinity chromatography, biomolecule immobilization, protein isolation, biological catalysis, and sensor technologies. In this review, we summarize the progress in the development of high affinity guests for CB[7], factors affecting the stability of complexes, theoretical insights, and the utility of these high affinity pairs in different challenging applications.
NASA Astrophysics Data System (ADS)
Radhakrishnan, Dhanya; Narayana, Chandrabhas
2015-12-01
Brillouin spectroscopy is used to study the effect of pore occupancy on the elastic constants by incorporating various guest molecules into zeolitic imidazolate framework (ZIF)-8. A systematic study on the effect of mass and polarizability of the guest has been carried out by incorporating alcohols of varying chain lengths at room temperature. The interaction between the guest and host affects the elastic properties, lifetimes and guest dynamics inside the pores. The elastic anisotropy was seen to reduce upon incorporation of the guests. We have also studied the temperature dependence of the acoustic modes on gas adsorption to understand the framework flexibility. The Brillouin shift of the acoustic modes increases upon temperature dependent gas adsorption with transverse acoustic modes exhibiting a larger shift. This suggests a hardening of otherwise low shear modulus of ZIF-8. Our findings give insight into the role of guest molecules and temperature in tuning the elastic properties of ZIF-8 which is important for practical applications.
Sugino, Misa; Hatanaka, Keisuke; Araki, Yusuke; Hisaki, Ichiro; Miyata, Mikiji; Tohnai, Norimitsu
2014-03-10
A host framework for inclusion of various guest molecules was investigated by preparation of inclusion crystals of 1,8-bis(4-aminophenyl)anthracene (1,8-BAPA) with organic solvents. X-ray crystallographic analysis revealed construction of the same inclusion space incorporating 1,8-BAPA and eight guest molecules including both non-polar (benzene) and polar guests (N,N-dimethylformamide, DMF). Fluorescence efficiencies varied depending on guest molecule polarity; DMF inclusion crystals exhibited the highest fluorescence intensity (ΦF=0.40), four times as high as that of a benzene inclusion crystal (ΦF=0.10). According to systematic investigations of inclusion phenomena, strong host–guest interactions and filling of the inclusion space led to a high fluorescence intensity. Temperature-dependent fluorescence spectral measurements revealed these factors effectively immobilised the host framework. Although hydrogen bonding commonly decreases fluorescence intensity, the present study demonstrated that such strong interactions provide excellent conditions for fluorescence enhancement. Thus, this remarkable behaviour has potential application toward sensing of highly polar molecules, such as biogenic compounds.
Glove powder's carrying capacity for latex protein: analysis using the ASTM ELISA test.
Beezhold, D; Horton, K; Hickey, V; Daddona, J; Kostyal, D
2003-01-01
Glove donning powders carry latex proteins and disperse them into the workplace environment. We have used the ASTM D6499 ELISA to quantify the amount of latex antigen bound to and carried by glove powders. We could differentiate between a small amount of protein actually bound to the powders and a larger amount carried by the powder. Enhanced binding of a major allergen, Hev b 5, to the starch powders was demonstrated by Western blot. The D6499 ELISA is able to measure total latex antigen, soluble and powder bound, simultaneously without the need to centrifuge the samples.
NASA Astrophysics Data System (ADS)
Meenakshi, C.; Jayabal, P.; Ramakrishnan, V.
2014-06-01
The thermodynamic property of the host-guest complexes formed between the curcumin, component of Indian Ayurvedic medicine turmeric, a drug molecule, with the supra molecule, p-t-butyl calix(8)arene was studied. p-t-Butyl calix(8)arene has been used as a host molecule and curcumin as a guest molecule. Optical absorption spectral studies were carried out to investigate the molecular recognition properties of p-t-butyl calix(8)arene with curcumin. The stochiometry of the host-guest complexes formed and the binding constant were determined. An interesting 1:1 and 4:1 stochiometric host-guest complexes were formed. Job's continuous method of variation and Benesi-Hildebrand expression were used for the determination of binding constant and the stochiometry of the host-guest complex formed.
Wu, Boran; Dai, Xiaohu; Chai, Xiaoli
2017-07-01
The production of sewage sludge with the presence of various contaminants has been a serious issue for the operation of wastewater treatment plants on both the economical and environmental sides. To minimize the sludge volume to be handled and limit the potential environmental risk, this study developed a novel oxidative leaching process for enhanced sewage sludge dewatering and simultaneous removal of heavy metals based on nano-CaO 2 . Response surface methodology determined the following optimal conditioning parameters in terms of capillary suction time reduction: 0.0906 g/g dry solid (DS) nano-CaO 2 , 0.9969 mmol/g DS Fe 2+ , and pH of 5.59. The speciation partitioning analysis of the heavy metals pre and post nano-CaO 2 peroxidation indicated that the content of organically bound metals decreased and the percentage of soluble fraction increased substantially, which was beneficial for the removal of heavy metals through the dewatering unit. Nano-CaO 2 peroxidation could also induce the transformation of extracellular polymeric substances (EPS) from the tightly bound layers to the loosely bound layers of sewage sludge flocs. Through the decline of the Ryan-Weber constant of fluorescence titration and the pseudo-first-order kinetic constant of complexation, it was verified that the binding capacity of EPS with metal ions could be damaged by nano-CaO 2 peroxidation, which was the primary mechanism behind the substantial reduction of organically bound metals. This study is believed to provide novel insights into the application of nanotechnology in terms of the simultaneous volume and toxicity reduction of sewage sludge. Graphical abstract.
Electrical conductivity behavior of Gum Arabic biopolymer-Fe3O4 nanocomposites
NASA Astrophysics Data System (ADS)
Bhakat, D.; Barik, P.; Bhattacharjee, A.
2018-01-01
Present work reports a study on the electrical conduction properties of some composites of Gum Arabic biopolymer and magnetite nanoparticles as host and guest, respectively, synthesized in different weight percentages. The nanocomposites are found to be non-extrinsic type of semiconductors with guest content dependent trap distribution of charge carriers. Conductivity of these materials increases with increasing guest content along with a concomitant decrease in the activation energy. Percolation theory has been employed for the analysis of the electrical conductivity results to explore the effect of the guest on the electrical conductivity of the host.
A Student-Centered Guest Lecturing: A Constructivism Approach to Promote Student Engagement
ERIC Educational Resources Information Center
Li, Lei; Guo, Rong
2015-01-01
Student engagement has become a big challenge in higher education, especially when distance learning is getting more and more popular. Guest lecturing is a popular method to bring relevance to the classroom and engage in students. Ground on the theory of constructivism, this paper introduces a student-centered guest lecturing that allows students…
Be My Guest: A Survey of Mass Communication Students' Perception of Guest Speakers
ERIC Educational Resources Information Center
Merle, Patrick F.; Craig, Clay
2017-01-01
The use of guest speakers as a pedagogical technique across disciplines at the college level is hardly novel. However, empirical assessment of journalism and mass communication students' perceptions of this practice has not previously been conducted. To fill this gap, this article presents results from an online survey specifically administered to…
Dynamic free energy surfaces for sodium diffusion in type II silicon clathrates.
Slingsby, J G; Rorrer, N A; Krishna, L; Toberer, E S; Koh, C A; Maupin, C M
2016-02-21
Earth abundant semiconducting type II Si clathrates have attracted attention as photovoltaic materials due to their wide band gaps. To realize the semiconducting properties of these materials, guest species that arise during the synthesis process must be completely evacuated from the host cage structure post synthesis. A common guest species utilized in the synthesis of Si clathrates is Na (metal), which templates the clathrate cage formation. Previous experimental investigations have identified that it is possible to evacuate Na from type II clathrates to an occupancy of less than 1 Na per unit cell. This work investigates the energetics, kinetics, and resulting mechanism of Na diffusion through type II Si clathrates by means of biased molecular dynamics and kinetic Monte Carlo simulations. Well-tempered metadynamics has been used to determine the potential of mean force for Na moving between clathrate cages, from which the thermodynamic preferences and transition barrier heights have been obtained. Kinetic Monte Carlo simulations based on the metadynamics results have identified the mechanism of Na diffusion in type II Si clathrates. The overall mechanism consists of a coupled diffusive process linked via electrostatic guest-guest interactions. The large occupied hexakaidechedral cages initially empty their Na guests to adjacent empty large cages, thereby changing the local electrostatic environment around the occupied small pentagonal dodecahedral cages and increasing the probability of Na guests to leave the small cages. This coupled process continues through the cross-over point that is identified as the point where large and small cages are equally occupied by Na guests. Further Na removal results in the majority of guests residing in the large cages as opposed to the small cages, in agreement with experiments, and ultimately a Na free structure.
Russ, Christiana M; Ganapathi, Lakshmi; Marangu, Diana; Silverman, Melanie; Kija, Edward; Bakeera-Kitaka, Sabrina; Laving, Ahmed
2016-01-01
Background Investments in faculty exchanges to build physician workforce capacity are increasing. Little attention has been paid to the expectations of host institution faculty and trainees. This prospective qualitative research study explored faculty and resident perspectives about guest faculty in paediatric departments in East Africa, asking (1) What are the benefits and challenges of hosting guest faculty, (2) What factors influence the effectiveness of faculty visits and (3) How do host institutions prepare for faculty visits? Methods We recruited 36 faculty members and residents from among four paediatric departments in East Africa to participate in semistructured interviews which were audio recorded and transcribed. Data were qualitatively analysed using principles of open coding and thematic analysis. We achieved saturation of themes. Results Benefits of faculty visits varied based on the size and needs of host institutions. Emergent themes included the importance of guest faculty time commitment, and mutual preparation to ensure that visit goals and scheduling met host needs. We documented conflicts that developed around guest emotional responses and ethical approaches to clinical resource limitations, which some hosts tried to prepare for and mitigate. Imbalance in resources led to power differentials; some hosts sought partnerships to re-establish control over the process of having guests. Conclusions We identified that guest faculty can assist paediatric institutions in building capacity; however, effective visits require: (1) mutually agreed on goals with appropriate scheduling, visit length and commitment to ensure that the visits meet the host's needs, (2) careful selection and preparation of guest faculty to meet the host's goals, (3) emotional preparation by prospective guests along with host orientation to clinical work in the host's setting and (4) attention to funding sources for the visit and mitigation of resulting power differentials. PMID:28588960
Romero, Miguel A; Basílio, Nuno; Moro, Artur J; Domingues, Mara; González-Delgado, José A; Arteaga, Jesús F; Pischel, Uwe
2017-09-21
A general approach toward the light-induced guest release from cucurbit[7]uril by means of a photoactivatable competitor was devised. An o-nitrobenzyl-caged competitor is photolyzed to generate a competitive guest that can displace cargo from the host macrocycle solely based on considerations of chemical equilibrium. With this method the release of terpene guests from inclusion complexes with cucurbit[7]uril was demonstrated. The binding of the herein investigated terpenes, all being lead fragrant components in essential oils, has been characterized for the first time. They feature binding constants of up to 10 8 L mol -1 and a high differential binding selectivity (spanning four orders of magnitude for the binding constants for the particular set of terpenes). By fine-tuning the photoactivatable competitor guest, selective and also sequential release of the terpenes was achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Hanim; Ryu, Seong Ho; Tuchband, Michael; Shin, Tae Joo; Korblova, Eva; Walba, David M; Clark, Noel A; Yoon, Dong Ki
2017-02-01
A lamellar liquid crystal (LC) phase of certain bent-core mesogenic molecules can be grown in a manner that generates a single chiral helical nanofilament in each of the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. By introducing guest molecules into the resulting composite chiral nanochannels, we explore the structures and functionality of the ordered guest/host LC complex, verifying the smectic-like positional order of the fluidic nematic LC phase, which is obtained by the combination of the LC organization and the nanoporous AAO superstructure. The guest nematic LC 4'- n -pentyl-4-cyanobiphenyl is found to form a distinctive fluid layered ordered LC complex at the nanofilament/guest interface with the host 1,3-phenylene bis[4-(4-nonyloxyphenyliminomethyl)benzoate], where this interface contacts the AAO cylinder wall. Filament growth form is strongly influenced by mixture parameters and pore dimensions.
Klinger, Daniel; Robb, Maxwell J.; Spruell, Jason M.; Lynd, Nathaniel A.; Hawker, Craig J.
2014-01-01
Supramolecular interactions between different hydrogen-bonding guests and poly(2-vinyl pyridine)-block-poly (styrene) can be exploited to prepare remarkably diverse self-assembled nanostructures in dispersion from a single block copolymer (BCP). The characteristics of the BCP can be efficiently controlled by tailoring the properties of a guest which preferentially binds to the P2VP block. For example, the incorporation of a hydrophobic guest creates a hydrophobic BCP complex that forms phase separated nanoparticles upon self-assembly. Conversely, the incorporation of a hydrophilic guest results in an amphiphilic BCP complex that forms spherical micelles in water. The ability to tune the self-assembly behavior and access dramatically different nanostructures from a single BCP substrate demonstrates the exceptional versatility of the self-assembly of BCPs driven by supramolecular interactions. This approach represents a new methodology that will enable the further design of complex, responsive self-assembled nanostructures. PMID:25525473
Kim, Hanim; Ryu, Seong Ho; Tuchband, Michael; Shin, Tae Joo; Korblova, Eva; Walba, David M.; Clark, Noel A.; Yoon, Dong Ki
2017-01-01
A lamellar liquid crystal (LC) phase of certain bent-core mesogenic molecules can be grown in a manner that generates a single chiral helical nanofilament in each of the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. By introducing guest molecules into the resulting composite chiral nanochannels, we explore the structures and functionality of the ordered guest/host LC complex, verifying the smectic-like positional order of the fluidic nematic LC phase, which is obtained by the combination of the LC organization and the nanoporous AAO superstructure. The guest nematic LC 4′-n-pentyl-4-cyanobiphenyl is found to form a distinctive fluid layered ordered LC complex at the nanofilament/guest interface with the host 1,3-phenylene bis[4-(4-nonyloxyphenyliminomethyl)benzoate], where this interface contacts the AAO cylinder wall. Filament growth form is strongly influenced by mixture parameters and pore dimensions. PMID:28246642
Khatua, Sajal; Kumar Bar, Arun; Konar, Sanjit
2016-11-02
By exploiting the breathing behavior of nanopores, we have studied for the first time the dependency of the guest-induced proton conductivity of an interpenetrated Cu I metal-organic framework (Cu I -MOF, [1]) on various guest molecules. Proton conductivities of over 10 -3 S cm -1 under humid conditions were induced by a series of guest molecules, namely N,N-dimethylformamide, dimethyl sulfoxide, diethylamine, 1,4-dinitrobenzene, nitrobenzene, pyridine, and 1H-1,2,4-triazole. A detailed investigation of the guest-incorporated complexes revealed that low-energy proton conduction occurs under humid conditions through the Grotthuss mechanism in [1⊃NB] and through the vehicle mechanism in the rest of the complexes. Single-point energy computations revealed considerable stabilization upon guest encapsulation. To the best of our knowledge, [1] represents the first example in which considerably high protonic conductivity is triggered upon the facile incorporation of small molecules of such a variety. The investigation portrayed herein may be a stepping stone towards the rational design of proton-conducting materials for practical applications. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bottom-up Formation of Carbon-Based Structures with Multilevel Hierarchy from MOF-Guest Polyhedra.
Wang, Tiesheng; Kim, Hyun-Kyung; Liu, Yingjun; Li, Weiwei; Griffiths, James T; Wu, Yue; Laha, Sourav; Fong, Kara D; Podjaski, Filip; Yun, Chao; Kumar, R Vasant; Lotsch, Bettina V; Cheetham, Anthony K; Smoukov, Stoyan K
2018-05-16
Three-dimensional carbon-based structures have proven useful for tailoring material properties in structural mechanical and energy storage applications. One approach to obtain them has been by carbonization of selected metal-organic frameworks (MOFs) with catalytic metals, but this is not applicable to most common MOF structures. Here, we present a strategy to transform common MOFs, by guest inclusions and high-temperature MOF-guest interactions, into complex carbon-based, diatom-like, hierarchical structures (named for the morphological similarities with the naturally existing diatomaceous species). As an example, we introduce metal salt guests into HKUST-1-type MOFs to generate a family of carbon-based nano-diatoms with two to four levels of structural hierarchy. We report control of the morphology by simple changes in the chemistry of the MOF and guest, with implications for the formation mechanisms. We demonstrate that one of these structures has unique advantages as a fast-charging lithium-ion battery anode. The tunability of composition should enable further studies of reaction mechanisms and result in the growth of a myriad of unprecedented carbon-based structures from the enormous variety of currently available MOF-guest candidates.
Calculating binding free energies of host-guest systems using the AMOEBA polarizable force field.
Bell, David R; Qi, Rui; Jing, Zhifeng; Xiang, Jin Yu; Mejias, Christopher; Schnieders, Michael J; Ponder, Jay W; Ren, Pengyu
2016-11-09
Molecular recognition is of paramount interest in many applications. Here we investigate a series of host-guest systems previously used in the SAMPL4 blind challenge by using molecular simulations and the AMOEBA polarizable force field. The free energy results computed by Bennett's acceptance ratio (BAR) method using the AMOEBA polarizable force field ranked favorably among the entries submitted to the SAMPL4 host-guest competition [Muddana, et al., J. Comput.-Aided Mol. Des., 2014, 28, 305-317]. In this work we conduct an in-depth analysis of the AMOEBA force field host-guest binding thermodynamics by using both BAR and the orthogonal space random walk (OSRW) methods. The binding entropy-enthalpy contributions are analyzed for each host-guest system. For systems of inordinate binding entropy-enthalpy values, we further examine the hydrogen bonding patterns and configurational entropy contribution. The binding mechanism of this series of host-guest systems varies from ligand to ligand, driven by enthalpy and/or entropy changes. Convergence of BAR and OSRW binding free energy methods is discussed. Ultimately, this work illustrates the value of molecular modelling and advanced force fields for the exploration and interpretation of binding thermodynamics.
Yi, Yinhui; Zhu, Gangbing; Wu, Xiangyang; Wang, Kun
2016-03-15
Owing to the similar characteristics and physiochemical property of 2-aminophenol (2-AP) and 4-aminophenol (4-AP), the highly sensitive simultaneous electrochemical determination of 2- and 4-AP is a great challenge. In this paper, by electropolymerizing β-cyclodextrin (β-CD) and l-arginine (l-Arg) on the surface of carbon nanotubes@graphene nanoribbons (CNTs@GNRs) core-shell heterostructure, a P-β-CD-l-Arg/CNTs@GNRs nanohybrid modified electrode was prepared successfully, and it could exhibit the synergetic effects of β-CD (high host-guest recognition and enrichment ability), l-Arg (excellent electrocatalytic activity) and CNTs@GNRs (prominent electrochemical properties and large surface area), the P-β-CD-l-Arg/CNTs@GNRs modified electrode was used in the electrochemical determination of 2- and 4-AP, the results demonstrated that the highly sensitive and simultaneous determination of 2- and 4-AP is successfully achieved and the modified electrode has a linear response range of 25.0-1300.0 nM for both 2- and 4-AP, and the detection limits of 2- and 4-AP obtained in this work are 6.2 and 3.5 nM, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Light-induced protoporphyrin release from erythrocytes in erythropoietic protoporphyria.
Sandberg, S; Brun, A
1982-01-01
The photohemolysis of normal erythrocytes incubated with protoporphyrin is reduced in the presence of albumin. When globin is added to normal erythrocytes loaded with protoporphyrin, protoporphyrin is bound to globin. During irradiation protoporphyrin moves from globin to the erythrocyte membrane and photohemolysis is initiated. Erythrocytes in patients with erythropoietic protoporphyria contain large amounts of protoporphyrin bound to hemoglobin. Upon irradiation of these cells in the absence of albumin, 40% of protoporphyrin and 80% of hemoglobin is released after 240 kJ/m2. The released protoporphyrin is hemoglobin bound. In contrast, when albumin is present only 8% of hemoglobin is released whereas protoporphyrin is released to 76%. The released protoporphyrin is albumin bound. A hypothesis for the release of erythrocyte protoporphyrin in erythropoietic protoporphyria without simultaneous hemolysis is proposed. Upon irradiation protoporphyrin photodamages its binding sites on hemoglobin, moves through the plasma membrane, and is bound to albumin in plasma. PMID:7107898
Hotel smoking policies and their implementation: a survey of California hotel managers.
Zakarian, Joy M; Quintana, Penelope J E; Winston, Carl H; Matt, Georg E
2017-01-01
Most states in the U.S. permit hotels to allow smoking in some guest rooms, and only five (Indiana, Michigan, North Dakota, Vermont, and Wisconsin) require that all hotel and motel rooms be 100% smoke-free (State and local 100% smokefree hotel and motel guest room laws enacted as of July 3, 2017). Little is known, however, about how hotels' smoking policies have been implemented. This study examined hotels' smoking policies and their implementation. A telephone survey of a random sample of 383 California hotel managers was conducted. Overall, 60.6% of hotels reported that smoking was prohibited in all guest rooms, and 4.7% reported that smoking was prohibited everywhere on their property. While California law permitted smoking in up to 65% of guest rooms, only 6.9% of rooms were reported as smoking-permitted. Over 90% of hotels had smoking rooms scattered among nonsmoking rooms, and about half of the smoking hotels reported that guests requesting either smoking or nonsmoking rooms were sometimes assigned to the other room type. When guests smoked in nonsmoking rooms fees could be substantial, but were often uncollected. Hotel smoking policies and their implementation fall short of protecting nonsmoking guests and workers from exposure to secondhand and thirdhand smoke. Complete indoor smoking bans for all hotels are needed to close existing loopholes. Nonsmokers who wish to protect themselves from exposure to tobacco smoke should avoid hotels that permit smoking and instead stay in completely smoke-free hotels.
Force and Stress along Simulated Dissociation Pathways of Cucurbituril-Guest Systems.
Velez-Vega, Camilo; Gilson, Michael K
2012-03-13
The field of host-guest chemistry provides computationally tractable yet informative model systems for biomolecular recognition. We applied molecular dynamics simulations to study the forces and mechanical stresses associated with forced dissociation of aqueous cucurbituril-guest complexes with high binding affinities. First, the unbinding transitions were modeled with constant velocity pulling (steered dynamics) and a soft spring constant, to model atomic force microscopy (AFM) experiments. The computed length-force profiles yield rupture forces in good agreement with available measurements. We also used steered dynamics with high spring constants to generate paths characterized by a tight control over the specified pulling distance; these paths were then equilibrated via umbrella sampling simulations and used to compute time-averaged mechanical stresses along the dissociation pathways. The stress calculations proved to be informative regarding the key interactions determining the length-force profiles and rupture forces. In particular, the unbinding transition of one complex is found to be a stepwise process, which is initially dominated by electrostatic interactions between the guest's ammoniums and the host's carbonyl groups, and subsequently limited by the extraction of the guest's bulky bicyclooctane moiety; the latter step requires some bond stretching at the cucurbituril's extraction portal. Conversely, the dissociation of a second complex with a more slender guest is mainly driven by successive electrostatic interactions between the different guest's ammoniums and the host's carbonyl groups. The calculations also provide information on the origins of thermodynamic irreversibilities in these forced dissociation processes.
Energetics of small molecule and water complexation in hydrophobic calixarene cavities.
Notestein, Justin M; Katz, Alexander; Iglesia, Enrique
2006-04-25
Calixarenes grafted on silica are energetically uniform hosts that bind aromatic guests with 1:1 stoichiometry, as shown by binding energies that depend upon the calixarene upper rim composition but not on their grafted surface density (0.02-0.23 nm(-2)). These materials are unique in maintaining a hydrophilic silica surface, as probed by H2O physisorption measurements, while possessing a high density of hydrophobic binding sites that are orthogonal to the silica surface below them. The covalently enforced cone-shaped cavities and complete accessibility of these rigidly grafted calixarenes allow the first unambiguous measurements of the thermodynamics of guest interaction with the same calixarene cavities in aqueous solution and vapor phase. Similar to adsorption into nonpolar protein cavities, adsorption into these hydrophobic cavities from aqueous solution is enthalpy-driven, which is in contrast to entropy-driven adsorption into water-soluble hydrophobic hosts such as beta cyclodextrin. The adsorption thermodynamics of several substituted aromatics from vapor and liquid are compared by (i) describing guest chemical potentials relative to pure guest, which removes differences among guests because of aqueous solvation and van der Waals contacts in the pure condensed phase, and (ii) passivating residual guest binding sites on exposed silica, titrated by water during adsorption from aqueous solution, using inorganic salts before vapor adsorption. Adsorption isotherms depend only upon the saturation vapor pressure of each guest, indicating that guest binding from aqueous or vapor media is controlled by van der Waals contacts with hydrophobic calixarene cavities acting as covalently assembled condensation nuclei, without apparent contributions from CH-pi or other directional interactions. These data also provide the first direct quantification of free energies for interactions of water with the calixarene cavity interior. The calixarene-water interface is stabilized by approximately 20 kJ/mol relative to the water-vapor interface, indicating that water significantly competes with the aromatic guests for adsorption at these ostensibly hydrophobic cavities. This result is useful for understanding models of water interactions with other concave hydrophobic surfaces, including those commonly observed within proteins.
Song, Hee-eun; Kirmaier, Christine; Schwartz, Jennifer K; Hindin, Eve; Yu, Lianhe; Bocian, David F; Lindsey, Jonathan S; Holten, Dewey
2006-10-05
Static and time-resolved optical measurements are reported for three cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0, 1, or 2 free base (Fb) porphyrins (denoted Zn(6), Zn(5)Fb, or Zn(4)Fb(2), respectively). The guest is a core-modified (O replacing one of the four N atoms) dipyridyl-substituted Fb porphyrin (DPFbO) that coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have a gradient of excited-state energies for excitation funneling among the weakly coupled constituents of the host to the guest. Energy transfer to the lowest-energy chromophore(s) (coordinated zinc porphyrins or Fb porphyrins) within a hexameric host occurs primarily via a through-bond (TB) mechanism, is rapid ( approximately 40 ps), and is essentially quantitative (>or=98%). Energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the guest in the Zn(6)*DPFbO complex has a yield of approximately 75%, a rate constant of approximately (0.7 ns)(-1), and significant Förster through-space (TS) character. In the case of Zn(5)Fb*DPFbO, which has an additional TS route via the Fb porphyrin with a rate constant of approximately (20 ns)(-1), the yield of energy transfer to the guest is somewhat lower ( approximately 50%) than that for Zn(6)*DPFbO. Complex Zn(4)Fb(2)*DPFbO has an identical TS pathway via the Fb porphyrin plus an additional TS pathway involving the second Fb porphyrin (closer to the guest) with a rate constant of approximately (0.5 ns)(-1). This complex exhibits an energy-transfer yield to the guest that is significantly enhanced over that for Zn(5)Fb*DPFbO and comparable to that for Zn(6)*DPFbO. Collectively, the results for the various arrays suggest designs for similar host-guest complexes that are expected to exhibit much more efficient light harvesting and excitation trapping at the central guest chromophore.
Using Gas-Phase Guest-Host Chemistry to Probe the Structures of b Ions of Peptides
NASA Astrophysics Data System (ADS)
Somogyi, Árpád; Harrison, Alex G.; Paizs, Béla
2012-12-01
Middle-sized b n ( n ≥ 5) fragments of protonated peptides undergo selective complex formation with ammonia under experimental conditions typically used to probe hydrogen-deuterium exchange in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Other usual peptide fragments like y, a, a*, etc., and small b n ( n ≤ 4) fragments do not form stable ammonia adducts. We propose that complex formation of b n ions with ammonia is characteristic to macrocyclic isomers of these fragments. Experiments on a protonated cyclic peptide and N-terminal acetylated peptides fully support this hypothesis; the protonated cyclic peptide does form ammonia adducts while linear b n ions of acetylated peptides do not undergo complexation. Density functional theory (DFT) calculations on the proton-bound dimers of all-Ala b 4 , b 5 , and b 7 ions and ammonia indicate that the ionizing proton initially located on the peptide fragment transfers to ammonia upon adduct formation. The ammonium ion is then solvated by N+-H…O H-bonds; this stabilization is much stronger for macrocyclic b n isomers due to the stable cage-like structure formed and entropy effects. The present study demonstrates that gas-phase guest-host chemistry can be used to selectively probe structural features (i.e., macrocyclic or linear) of fragments of protonated peptides. Stable ammonia adducts of b 9 , b 9 -A, and b 9 -2A of A8YA, and b 13 of A20YVFL are observed indicating that even these large b-type ions form macrocyclic structures.
Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare.
Wu, Zilong; Song, Nan; Menz, Ryan; Pingali, Bharadwaj; Yang, Ying-Wei; Zheng, Yuebing
2015-05-01
Synthetic macrocyclic host compounds can interact with suitable guest molecules via noncovalent interactions to form functional supramolecular systems. With the synergistic integration of the response of molecules and the unique properties at the nanoscale, nanoparticles functionalized with the host-guest supramolecular systems have shown great potentials for a broad range of applications in the fields of nanoscience and nanotechnology. In this review article, we focus on the applications of the nanoparticles functionalized with supramolecular host-guest systems in nanomedicine and healthcare, including therapeutic delivery, imaging, sensing and removal of harmful substances. A large number of examples are included to elucidate the working mechanisms, advantages, limitations and future developments of the nanoparticle-supramolecule systems in these applications.
Ancient Guest Stars as harbingers of neutron star formation
NASA Astrophysics Data System (ADS)
Wang, Zhen-Ru
The well-known AD 1006, 1054, 1572, and 1604 were described as "Guest Stars" by Chinese, Japanese and Korean. In most cases, it might thus be possible to expect a Guest Star to be a term for supernova or nova. There are a lot of records concerning ancient Guest Stars in Chinese historical books. Two catalogues were compiled by Xi (1955) and Xi and Bo (1965, 1966) that listed 90 probable novae or supernovae observed between 1400 BC and AD 1700. Clark and Stephenson (1977), Ho (1962) and Kanda (1935) collected more or less similar records. Among all the historical records more than 80% are from China. The discussion presented in this paper is based on them.
Zhu, Yue-Shan; Yang, Wan-Dong; Li, Xiu-Wen; Ni, Hong-Gang; Zeng, Hui
2018-02-01
The quality of indoor environments has a significant impact on public health. Usually, an indoor environment is treated as a static box, in which physicochemical reactions of indoor air contaminants are negligible. This results in conservative estimates for primary indoor air pollutant concentrations, while also ignoring secondary pollutants. Thus, understanding the relationship between indoor and outdoor particles and particle-bound pollutants is of great significance. For this reason, we collected simultaneous indoor and outdoor measurements of the size distribution of airborne brominated flame retardant (BFR) congeners. The time-dependent concentrations of indoor particles and particle-bound BFRs were then estimated with the mass balance model, accounting for the outdoor concentration, indoor source strength, infiltration, penetration, deposition and indoor resuspension. Based on qualitative observation, the size distributions of ΣPBDE and ΣHBCD were characterized by bimodal peaks. According to our results, particle-bound BDE209 and γ-HBCD underwent degradation. Regardless of the surface adsorption capability of particles and the physicochemical properties of the target compounds, the concentration of BFRs in particles of different size fractions seemed to be governed by the particle distribution. Based on our estimations, for airborne particles and particle-bound BFRs, a window-open ventilated room only takes a quarter of the time to reach an equilibrium between the concentration of pollutants inside and outside compared to a closed room. Unfortunately, indoor pollutants and outdoor pollutants always exist simultaneously, which poses a window-open-or-closed dilemma to achieve proper ventilation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dandapat, Manika; Mandal, Debabrata
2017-01-01
Organogels prepared from AOT/4-chlorophenol/m-xylene are immobile in the macroscopic sense, with a well-characterized internal structure. However, the molecular level dynamics inside the gels is not too clear, although a very slow structural relaxation has been reported previously. Using a set of rod-like fluorophores, we find that the rotational mobility of a small guest molecule inside the gel can be extremely fast, indicating presence of sufficiently low-microviscosity domains. These domains consist of m-xylene solvent molecules trapped in the interstices of fiber bundles comprising columnar stacks of 4-chlorophenol surrounded by AOT molecules. However, interstitial trapping of m-xylene does retard its own dynamics, which explains the slow solvent relaxation inside the gels. Hence, the state of m-xylene in the organogel may be characterized as "bound", in contrast to the "free" state in neat m-xylene.
Self-assembly of dimeric tetraurea calix[4]pyrrole capsules
Ballester, Pablo; Gil-Ramírez, Guzmán
2009-01-01
Calix[4]pyrroles having extended aromatic cavities have been functionalized with 4 ureas in the para position of their meso phenyl substituents. This elaboration of the upper rim was completed in 2 synthetic steps starting from the α,α,α,α-tetranitro isomer of the calix[4]pyrrole obtained in the acid catalyzed condensation of p-nitrophenyl methyl ketone and pyrrole. In dichloromethane solution and in the presence of 4,4′-bipyridine N-N′-dioxide the tetraurea calix[4]pyrrole dimerizes reversibly forming a cyclic array of 16 hydrogen bonds and encapsulating 1 molecule of bis-N-oxide. The encapsulated guest is bound in the cavity by hydrogen bonding to the 2 endohedral calix[4]pyrrole centers. Further evidence for dimerization of the tetraurea calix[4]pyrroles is provided by 1H-NMR experiments and by the formation of mixed capsules. PMID:19261848
Direct patterning of a cyclotriveratrylene derivative for directed self-assembly of C60
NASA Astrophysics Data System (ADS)
Osner, Zachary R.; Nyamjav, Dorjderem; Holz, Richard C.; Becker, Daniel P.
2011-07-01
A novel apex-modified cyclotriveratrylene (CTV) derivative with an attached thiolane-containing lipoic acid linker was directly patterned onto gold substrates via dip-pen nanolithography (DPN). The addition of a dithiolane-containing linker to the apex of CTV provides a molecule that can adhere to a gold surface with its bowl-shaped cavity directed away from the surface, thereby providing a surface-bound CTV host that can be used for the directed assembly of guest molecules. Subsequent exposure of these CTV microarrays to C60 in toluene resulted in the directed assembly of predesigned, spatially controlled, high-density microarrays of C60. The molecular recognition capabilities of this CTV template toward C60 provides proof-of-concept that supramolecular CTV scaffolds can be directly patterned onto surfaces providing a foundation for the development of organic electronic and optoelectronic materials.
NASA Astrophysics Data System (ADS)
Zhang, Jun; Zhang, Yang; Yu, Chang-Shui
2015-06-01
The Heisenberg uncertainty principle shows that no one can specify the values of the non-commuting canonically conjugated variables simultaneously. However, the uncertainty relation is usually applied to two incompatible measurements. We present tighter bounds on both entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. As applications, three incompatible measurements on Werner state and Horodecki’s bound entangled state are investigated in details.
Supramolecular structures on silica surfaces and their adsorptive properties.
Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F
2005-05-01
The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.
Binding abilities of polyaminocyclodextrins: polarimetric investigations and biological assays
Russo, Marco; La Corte, Daniele; Pisciotta, Annalisa; Riela, Serena; Alduina, Rosa
2017-01-01
Three polyaminocyclodextrin materials, obtained by direct reaction between heptakis(6-deoxy-6-iodo)-β-cyclodextrin and the proper linear polyamines, were investigated for their binding properties, in order to assess their potential applications in biological systems, such as vectors for simultaneous drug and gene cellular uptake or alternatively for the protection of macromolecules. In particular, we exploited polarimetry to test their interaction with some model p-nitroaniline derivatives, chosen as probe guests. The data obtained indicate that binding inside the host cavity is mainly affected by interplay between Coulomb interactions and conformational restraints. Moreover, simultaneous interaction of the cationic polyamine pendant bush at the primary rim was positively assessed. Insights on quantitative aspects of the interaction between our materials and polyanions were investigated by studying the binding with sodium alginate. Finally, the complexation abilities of the same materials towards polynucleotides were assessed by studying their interaction with the model plasmid pUC19. Our results positively highlight the ability of our materials to exploit both the cavity and the polycationic branches, thus functioning as bimodal ligands. PMID:29564010
A Room with a Viewpoint Revisited: Descriptive Norms and Hotel Guests' Towel Reuse Behavior
Bohner, Gerd; Schlüter, Lena E.
2014-01-01
Field experiments on descriptive norms as a means to increase hotel guests' towel reuse [1] were replicated and extended. In two hotels in Germany (Study 1: N = 724; Study 2: N = 204), descriptive norm messages suggesting that 75% of guests had reused their towels, or a standard message appealing to environmental concerns, were placed in guests' bathrooms. Descriptive norm messages varied in terms of proximity of the reference group (“hotel guests” vs. “guests in this room”) and temporal proximity (currently vs. two years previous). Reuse of towels was unobtrusively recorded. Results showed that reuse rates were high overall and that both standard and descriptive norm messages increased reuse rates compared to a no-message baseline. However, descriptive norm messages were not more effective than the standard message, and effects of proximity were inconsistent across studies. Discussion addresses cultural and conceptual issues in comparing the present findings with previous ones. PMID:25084348
Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials
NASA Astrophysics Data System (ADS)
Kärger, Jörg; Binder, Tomas; Chmelik, Christian; Hibbe, Florian; Krautscheid, Harald; Krishna, Rajamani; Weitkamp, Jens
2014-04-01
The intense interactions of guest molecules with the pore walls of nanoporous materials is the subject of continued fundamental research. Stimulated by their thermal energy, the guest molecules in these materials are subject to a continuous, irregular motion, referred to as diffusion. Diffusion, which is omnipresent in nature, influences the efficacy of nanoporous materials in reaction and separation processes. The recently introduced techniques of microimaging by interference and infrared microscopy provide us with a wealth of information on diffusion, hitherto inaccessible from commonly used techniques. Examples include the determination of surface barriers and the sticking coefficient's analogue, namely the probability that, on colliding with the particle surface, a molecule may continue its diffusion path into the interior. Microimaging is further seen to open new vistas in multicomponent guest diffusion (including the detection of a reversal in the preferred diffusion pathways), in guest-induced phase transitions in nanoporous materials and in matching the results of diffusion studies under equilibrium and non-equilibrium conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreedhar, Sreeja, E-mail: sreejasreedhar83@gmail.com; Muneera, C. I., E-mail: drcimuneera@hotmail.com; Illyaskutty, Navas
2016-05-21
Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of themore » polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.« less
ERIC Educational Resources Information Center
Mendes, De´bora C.; Ramamurthy, Vaidhyanathan; Da Silva, Jose´ P.
2015-01-01
In this laboratory experiment, students follow a step-by-step procedure to prepare and study guest-host complexes in the gas phase using electrospray ionization-mass spectrometry (ESI-MS). Model systems are the complexes of hosts cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) with the guest 4-styrylpyridine (SP). Aqueous solutions of CB7 or CB8…
COFS 1 Guest Investigator Program
NASA Technical Reports Server (NTRS)
Fontana, Anthony; Wright, Robert L.
1986-01-01
The process for selecting guest investigators for participation in the Control of Flexible Structures (COFS)-1 program is described. Contracts and grants will be awarded in late CY87. A straw-man list of types of experiments and a distribution of the experiments has been defined to initiate definition of an experiments package which supports development and validation of control structures interaction technology. A schedule of guest investigator participation has been developed.
ERIC Educational Resources Information Center
McKain, Danielle R.
2012-01-01
The term real world is often used in mathematics education, yet the definition of real-world problems and how to incorporate them in the classroom remains ambiguous. One way real-world connections can be made is through guest speakers. Guest speakers can offer different perspectives and share knowledge about various subject areas, yet the impact…
Fang, Min; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen; Cheng, Yiyun
2012-03-15
Drug molecules bearing multiple charges usually form precipitates with cationic dendrimers, which presents a challenge during the preparation of dendrimer inclusions for these drugs. In the present study, fully acetylated polyamidoamine (PAMAM) dendrimers were proposed as stable vehicles for drug molecules bearing two negative charges such as Congo red and indocyanine green. NMR techniques including (1)H NMR and (1)H-(1)H NOESY were used to characterize the host-guest chemistry of acetylated dendrimer and these guest molecules. The cationic PAMAM dendrimer was found to form a precipitate with Congo red and indocyanine green, but the acetylated one avoided the formation of cross-linking structures in aqueous solutions. NOESY studies revealed the encapsulation of Congo red and indocyanine green within the interior cavities of PAMAM dendrimers at mild acidic conditions and acetylated dendrimers show much stronger ability to encapsulate the guest molecules than cationic ones. Also, UV-vis-NIR studies suggest that acetylated dendrimers significantly improve the photostability of indocyanine green and prevent the formation of indocyanine green J-aggregates in aqueous solutions. The present study provides a new insight into dendrimer-based host-guest systems, especially for those guest molecules bearing multiple charges. © 2012 American Chemical Society
Multiscale and Multifunctional Emulsions by Host–Guest Interaction-Mediated Self-Assembly
2018-01-01
Emulsions are widely used in numerous fields. Therefore, there has been increasing interest in the development of new emulsification strategies toward emulsions with advanced functions. Herein we report the formation of diverse emulsions by host–guest interaction-mediated interfacial self-assembly under mild conditions. In this strategy, a hydrophilic diblock copolymer with one block containing β-cyclodextrin (β-CD) can assemble at the oil/water interface when its aqueous solution is mixed with an oil phase of benzyl alcohol (BA), by host–guest interactions between β-CD and BA. This results in significantly reduced interfacial tension and the formation of switchable emulsions with easily tunable droplet sizes. Furthermore, nanoemulsions with excellent stability are successfully prepared simply via vortexing. The self-assembled oil-in-water emulsions also show catastrophic phase inversion, which can generate stable bicontinuous phase and water-in-oil emulsions, thereby further extending phase structures that can be realized by this host–guest self-assembly approach. Moreover, the host–guest nanoemulsions are able to engineer different nanoparticles and microstructures as well as solubilize a diverse array of hydrophobic drugs and dramatically enhance their oral bioavailability. The host–guest self-assembly emulsification is facile, energetically friendly, and fully translatable to industry, therefore representing a conceptually creative approach toward advanced emulsions. PMID:29806006
Hall, V; Abrahams, A; Turbitt, D; Cathcart, S; Maguire, H; Balasegaram, S
2014-07-31
Identification of acute hepatitis A virus (HAV) infection in a foodhandler in a London hotel led to a large incident response. We identified three potentially exposed groups: hotel staff who had regularly consumed food prepared by the case and shared toilet facilities with the case, patients who shared the same hospital ward as the case and hotel guests who consumed food prepared by the case. We arranged post-exposure HAV vaccination for all 83 potentially exposed hotel staff and all 17 patients. We emailed 887 guests advising them to seek medical care if symptomatic, but did not advise vaccination as it was too late to be effective for most guests. Through the International Health Regulations national focal points and the European Union Early warning and response system (EWRS), we communicated the details of the incident to public health agencies and potential risk of HAV transmission to international guests. Potentially exposed hotel staff and guests were asked to complete an online or telephone-administered questionnaire 50 days following possible exposure, to identify any secondary cases. Survey response was low, with 155 responses from guests and 33 from hotel staff. We identified no secondary cases of HAV infection through follow-up.
Effects of guest feeding programs on captive giraffe behavior.
Orban, David A; Siegford, Janice M; Snider, Richard J
2016-01-01
Zoological institutions develop human-animal interaction opportunities for visitors to advance missions of conservation, education, and recreation; however, the animal welfare implications largely have yet to be evaluated. This behavioral study was the first to quantify impacts of guest feeding programs on captive giraffe behavior and welfare, by documenting giraffe time budgets that included both normal and stereotypic behaviors. Thirty giraffes from nine zoos (six zoos with varying guest feeding programs and three without) were observed using both instantaneous scan sampling and continuous behavioral sampling techniques. All data were collected during summer 2012 and analyzed using linear mixed models. The degree of individual giraffe participation in guest feeding programs was positively associated with increased time spent idle and marginally associated with reduced time spent ruminating. Time spent participating in guest feeding programs had no effect on performance of stereotypic behaviors. When time spent eating routine diets was combined with time spent participating in guest feeding programs, individuals that spent more time engaged in total feeding behaviors tended to perform less oral stereotypic behavior such as object-licking and tongue-rolling. By extending foraging time and complexity, guest feeding programs have the potential to act as environmental enrichment and alleviate unfulfilled foraging motivations that may underlie oral stereotypic behaviors observed in many captive giraffes. However, management strategies may need to be adjusted to mitigate idleness and other program consequences. Further studies, especially pre-and-post-program implementation comparisons, are needed to better understand the influence of human-animal interactions on zoo animal behavior and welfare. © 2016 Wiley Periodicals, Inc.
Giastas, Petros; Yannakopoulou, Konstantina; Mavridis, Irene M
2003-04-01
The present investigation is part of an ongoing study on the influence of the long end-functonalized guest molecules DBA and BNZ in the crystal packing of beta-cyclodextrin (betaCD) dimeric complexes. The title compounds are 2:2 host:guest complexes showing limited host-guest hydrogen bonding at the primary faces of the betaCD dimers. Within the betaCD cavity the guests exhibit mutual pi...pi interactions and between betaCD dimers perpendicular NH...pi interactions. The DBA guest molecule exhibits one extended and two bent conformations in the complex. The BNZ guest molecule is not planar inside betaCD, in contrast to the structure of BNZ itself, which indicates that the cavity isolates the molecules and forbids the pi...pi stacking of the aromatic rings. NMR spectroscopy studies show that in aqueous solution both DBA and BNZ form strong complexes that have 1:1 stoichiometry and structures similar to the solid state ones. The relative packing of the dimers is the same in both complexes. The axes of two adjacent dimers form an angle close to 20 degrees and have a lateral displacement approximately 2.45 A, both of which characterize the screw-channel mode of packing. Although the betaCD/BNZ complex indeed crystallizes in a space group characterizing the latter mode, the betaCD/DBA complex crystallizes in a space group with novel dimensions not resembling any of the packing modes reported so far. The new lattice is attributed to the three conformations exhibited by the guest in the crystals. However, this lattice can be transformed into another, which is isostructural to that of the betaCD/BNZ inclusion complex, if the conformation of the guest is not taken into account.
Finke, John M; Cheung, Margaret S; Onuchic, José N
2004-09-01
Modeling the structure of natively disordered peptides has proved difficult due to the lack of structural information on these peptides. In this work, we use a novel application of the host-guest method, combining folding theory with experiments, to model the structure of natively disordered polyglutamine peptides. Initially, a minimalist molecular model (C(alpha)C(beta)) of CI2 is developed with a structurally based potential and captures many of the folding properties of CI2 determined from experiments. Next, polyglutamine "guest" inserts of increasing length are introduced into the CI2 "host" model and the polyglutamine is modeled to match the resultant change in CI2 thermodynamic stability between simulations and experiments. The polyglutamine model that best mimics the experimental changes in CI2 thermodynamic stability has 1), a beta-strand dihedral preference and 2), an attractive energy between polyglutamine atoms 0.75-times the attractive energy between the CI2 host Go-contacts. When free-energy differences in the CI2 host-guest system are correctly modeled at varying lengths of polyglutamine guest inserts, the kinetic folding rates and structural perturbation of these CI2 insert mutants are also correctly captured in simulations without any additional parameter adjustment. In agreement with experiments, the residues showing structural perturbation are located in the immediate vicinity of the loop insert. The simulated polyglutamine loop insert predominantly adopts extended random coil conformations, a structural model consistent with low resolution experimental methods. The agreement between simulation and experimental CI2 folding rates, CI2 structural perturbation, and polyglutamine insert structure show that this host-guest method can select a physically realistic model for inserted polyglutamine. If other amyloid peptides can be inserted into stable protein hosts and the stabilities of these host-guest mutants determined, this novel host-guest method may prove useful to determine structural preferences of these intractable but biologically relevant protein fragments.
Yang, Hui; Yuan, Bin; Zhang, Xi; Scherman, Oren A
2014-07-15
CONSPECTUS: Host-guest chemistry can greatly improve the selectivity of biomolecule-ligand binding on account of recognition-directed interactions. In addition, functional structures and the actuation of supramolecular assemblies in molecular systems can be controlled efficiently through various host-guest chemistry. Together, these highly selective, strong yet dynamic interactions can be exploited as an alternative methodology for applications in the field of programmable and controllable engineering of supramolecular soft materials through the reversible binding between complementary components. Many processes in living systems such as biotransformation, transportation of matter, and energy transduction begin with interfacial molecular recognition, which is greatly influenced by various external stimuli at biointerfaces. Detailed investigations about the molecular recognition at interfaces can result in a better understanding of life science, and further guide us in developing new biomaterials and medicines. In order to mimic complicated molecular-recognition systems observed in nature that adapt to changes in their environment, combining host-guest chemistry and surface science is critical for fabricating the next generation of multifunctional biointerfaces with efficient stimuli-responsiveness and good biocompatibility. In this Account, we will summarize some recent progress on multifunctional stimuli-responsive biointerfaces and biosurfaces fabricated by cyclodextrin- or cucurbituril-based host-guest chemistry and highlight their potential applications including drug delivery, bioelectrocatalysis, and reversible adsorption and resistance of peptides, proteins, and cells. In addition, these biointerfaces and biosurfaces demonstrate efficient response toward various external stimuli, such as UV light, pH, redox chemistry, and competitive guests. All of these external stimuli can aid in mimicking the biological stimuli evident in complex biological environments. We begin by reviewing the current state of stimuli-responsive supramolecular assemblies formed by host-guest interactions, discussing how to transfer host-guest chemistry from solution onto surfaces required for fabricating multifunctional biosurfaces and biointerfaces. Then, we present different stimuli-responsive biosurfaces and biointerfaces, which have been prepared through a combination of cyclodextrin- or cucurbituril-based host-guest chemistry and various surface technologies such as self-assembled monolayers or layer-by-layer assembly. Moreover, we discuss the applications of these biointerfaces and biosurfaces in the fields of drug release, reversible adsorption and release of some organic molecules, peptides, proteins, and cells, and photoswitchable bioelectrocatalysis. In addition, we summarize the merits and current limitations of these methods for fabricating multifunctional stimuli-responsive biointerfaces in a dynamic noncovalent manner. Finally, we present possible strategies for future designs of stimuli-responsive multifunctional biointerfaces and biosurfaces by combining host-guest chemistry with surface science, which will lead to further critical development of supramolecular chemistry at interfaces.
Rotaxane and catenane host structures for sensing charged guest species.
Langton, Matthew J; Beer, Paul D
2014-07-15
CONSPECTUS: The promise of mechanically interlocked architectures, such as rotaxanes and catenanes, as prototypical molecular switches and shuttles for nanotechnological applications, has stimulated an ever increasing interest in their synthesis and function. The elaborate host cavities of interlocked structures, however, can also offer a novel approach toward molecular recognition: this Account describes the use of rotaxane and catenane host systems for binding charged guest species, and for providing sensing capability through an integrated optical or electrochemical reporter group. Particular attention is drawn to the exploitation of the unusual dynamic properties of interlocked molecules, such as guest-induced shuttling or conformational switching, as a sophisticated means of achieving a selective and functional sensor response. We initially survey interlocked host systems capable of sensing cationic guests, before focusing on our accomplishments in synthesizing rotaxanes and catenanes designed for the more challenging task of selective anion sensing. In our group, we have developed the use of discrete anionic templation to prepare mechanically interlocked structures for anion recognition applications. Removal of the anion template reveals an interlocked host system, possessing a unique three-dimensional geometrically restrained binding cavity formed between the interlocked components, which exhibits impressive selectivity toward complementary anionic guest species. By incorporating reporter groups within such systems, we have developed both electrochemical and optical anion sensors which can achieve highly selective sensing of anionic guests. Transition metals, lanthanides, and organic fluorophores integrated within the mechanically bonded structural framework of the receptor are perturbed by the binding of the guest, with a concomitant change in the emission profile. We have also exploited the unique dynamics of interlocked hosts by demonstrating that an anion-induced conformational change can be used as a means of signal transduction. Electrochemical sensing has been realized by integration of the redox-active ferrocene functionality within a range of rotaxane and catenanes; binding of an anion perturbs the metallocene, leading to a cathodic shift in the ferrocene/ferrocenium redox couple. In order to obtain practical sensors for target charged guest species, confinement of receptors at a surface is necessary in order to develop robust, reuseable devices. Surface confinement also offers advantages over solution based receptors, including amplification of signal, enhanced guest binding thermodynamics and the negation of solubility problems. We have fabricated anion-templated rotaxanes and catenanes on gold electrode surfaces and demonstrated that the resulting mechanically bonded self-assembled monolayers are electrochemically responsive to the binding of anions, a crucial first step toward the advancement of sophisticated, highly selective, anion sensory devices. Rotaxane and catenane host molecules may be engineered to offer a superior level of molecular recognition, and the incorporation of optical or electrochemical reporter groups within these interlocked frameworks can allow for guest sensing. Advances in synthetic templation strategies has facilitated the synthesis of interlocked architectures and widened their interest as prototype molecular machines. However, their unique host-guest properties are only now beginning to be exploited as a sophisticated approach to chemical sensing. The development of functional host-guest sensory systems such as these is of great interest to the interdisciplinary field of supramolecular chemistry.
NASA Astrophysics Data System (ADS)
Liu, Xing; Liu, Hua-Ji; Cheng, Fa; Chen, Yu
2014-06-01
Oxidized graphene sheets (OGS) were treated with a hyperbranched polyethylenimine (PEI) under hydrothermal conditions to generate nanocomposites of graphene quantum dots (GQDs) functionalized with PEI (GQD-PEIs). The influence of the reaction temperature and the PEI/OGS feed ratio on the photoluminescence properties of the GQD-PEIs was studied. The obtained GQD-PEIs were characterized by TEM, dynamic light scattering, elemental analysis, FTIR, zeta potential measurements and 1H NMR spectroscopy, from which their structural information was inferred. Subsequently, isobutyric amide (IBAm) groups were attached to the GQD-PEIs through the amidation reaction of isobutyric anhydride with the PEI moieties, which resulted in GQD-PEI-IBAm nanocomposites. GQD-PEI-IBAm was not only thermoresponsive, but also responded to other stimuli, including inorganic salts, pH, and loaded organic guests. The cloud point temperature (Tcp) of aqueous solutions of GQD-PEI-IBAm could be modulated through changing the number of IBAm units in GQD-PEI-IBAm, by varying the type and concentration of the inorganic salts and loaded organic guests, or by varying the pH. All the obtained GQD-PEI-IBAm nanocomposites were photoluminescent, and their maximum emission wavelengths were not influenced by outside stimuli. Their emission intensities were influenced a little or negligibly by pH, traditional salting-out anions (Cl- and SO42-), and the relatively polar aspirin guest. However, the traditional salting-in I- anion and the more hydrophobic 1-pyrenebutyric acid (PBA) guest could effectively quench their fluorescence. 2D NOESY 1H NMR spectra verified that GQD-PEI-IBAm accommodated the relatively polar aspirin guest using the PEI-IBAm shell, but adsorbed the relatively hydrophobic PBA guest through the nanographene core. The release rate of the guest encapsulated by the thermoresponsive GQD is different below and above Tcp.Oxidized graphene sheets (OGS) were treated with a hyperbranched polyethylenimine (PEI) under hydrothermal conditions to generate nanocomposites of graphene quantum dots (GQDs) functionalized with PEI (GQD-PEIs). The influence of the reaction temperature and the PEI/OGS feed ratio on the photoluminescence properties of the GQD-PEIs was studied. The obtained GQD-PEIs were characterized by TEM, dynamic light scattering, elemental analysis, FTIR, zeta potential measurements and 1H NMR spectroscopy, from which their structural information was inferred. Subsequently, isobutyric amide (IBAm) groups were attached to the GQD-PEIs through the amidation reaction of isobutyric anhydride with the PEI moieties, which resulted in GQD-PEI-IBAm nanocomposites. GQD-PEI-IBAm was not only thermoresponsive, but also responded to other stimuli, including inorganic salts, pH, and loaded organic guests. The cloud point temperature (Tcp) of aqueous solutions of GQD-PEI-IBAm could be modulated through changing the number of IBAm units in GQD-PEI-IBAm, by varying the type and concentration of the inorganic salts and loaded organic guests, or by varying the pH. All the obtained GQD-PEI-IBAm nanocomposites were photoluminescent, and their maximum emission wavelengths were not influenced by outside stimuli. Their emission intensities were influenced a little or negligibly by pH, traditional salting-out anions (Cl- and SO42-), and the relatively polar aspirin guest. However, the traditional salting-in I- anion and the more hydrophobic 1-pyrenebutyric acid (PBA) guest could effectively quench their fluorescence. 2D NOESY 1H NMR spectra verified that GQD-PEI-IBAm accommodated the relatively polar aspirin guest using the PEI-IBAm shell, but adsorbed the relatively hydrophobic PBA guest through the nanographene core. The release rate of the guest encapsulated by the thermoresponsive GQD is different below and above Tcp. Electronic supplementary information (ESI) available: Elemental analysis data; typical FTIR spectra; typical photographs of the GQD solution before and after phase transition; typical luminescence photographs, and typical photoluminescence spectra. See DOI: 10.1039/c4nr00739e
Diffusion of vaporous guests into a seemingly non-porous organic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbert, Simon A.; Janiak, Agnieszka; Thallapally, Praveen K.
2014-10-07
In this research, the tetragonal apohost phase of p-tert-butyltetramethoxythiacalix[4]arene absorbs hydrochloric acid and iodine. These guest molecules occupy different sites in the solid-state structure -- either within the small intrinsic voids of the macrocycle or within the interstitial spaces between the host molecules. This study illustrates the dynamic deformation of the host, providing strong mechanistic insight into the diffusion of guests into this seemingly non-porous material.
Host-guest capability of a three-dimensional heterometallic macrocycle.
Fan, Qi-Jia; Lin, Yue-Jian; Hahn, F Ekkehardt; Jin, Guo-Xin
2018-02-13
A three-dimensional heterometallic coordination macrocycle is found to be capable of encapsulating planar pyrene (G1), coronene (G4) and non-planar corannulene (G2) guest molecules in high yields, giving rise to 1 : 1 host-guest complexes. The bowl-shaped guest corannulene is found to be significantly flattened upon inclusion within the cavity. However, macrocyclic compounds with larger cavity sizes, which form 1 : 1 stoichiometry assemblies with a naphthalene bisimide planar molecule (G3), are more inclined to form infinite sandwich structures. Furthermore, these heterometallic coordination macrocycles can be destroyed in the presence of a soft base to form hexanuclear triangular prism complexes. These structures are unambiguously revealed by single-crystal X-ray analysis.
Zhang, Jun; Zhang, Yang; Yu, Chang-shui
2015-01-01
The Heisenberg uncertainty principle shows that no one can specify the values of the non-commuting canonically conjugated variables simultaneously. However, the uncertainty relation is usually applied to two incompatible measurements. We present tighter bounds on both entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. As applications, three incompatible measurements on Werner state and Horodecki’s bound entangled state are investigated in details. PMID:26118488
NASA Astrophysics Data System (ADS)
March, Samuel A.; Clegg, Charlotte; Riley, Drew B.; Webber, Daniel; Hill, Ian G.; Hall, Kimberley C.
2016-12-01
Solar cells incorporating organic-inorganic perovskite, which may be fabricated using low-cost solution-based processing, have witnessed a dramatic rise in efficiencies yet their fundamental photophysical properties are not well understood. The exciton binding energy, central to the charge collection process, has been the subject of considerable controversy due to subtleties in extracting it from conventional linear spectroscopy techniques due to strong broadening tied to disorder. Here we report the simultaneous observation of free and defect-bound excitons in CH3NH3PbI3 films using four-wave mixing (FWM) spectroscopy. Due to the high sensitivity of FWM to excitons, tied to their longer coherence decay times than unbound electron- hole pairs, we show that the exciton resonance energies can be directly observed from the nonlinear optical spectra. Our results indicate low-temperature binding energies of 13 meV (29 meV) for the free (defect-bound) exciton, with the 16 meV localization energy for excitons attributed to binding to point defects. Our findings shed light on the wide range of binding energies (2-55 meV) reported in recent years.
3D nitrogen-doped graphene/β-cyclodextrin: host-guest interactions for electrochemical sensing
NASA Astrophysics Data System (ADS)
Liu, Jilun; Leng, Xuanye; Xiao, Yao; Hu, Chengguo; Fu, Lei
2015-07-01
Host-guest interactions, especially those between cyclodextrins (CDs, including α-, β- and γ-CD) and various guest molecules, exhibit a very high supramolecular recognition ability. Thus, they have received considerable attention in different fields. These specific interactions between host and guest molecules are promising for biosensing and clinical detection. However, there is a lack of an ideal electrode substrate for CDs to increase their performance in electrochemical sensing. Herein, we propose a new 3D nitrogen-doped graphene (3D-NG) based electrochemical sensor, taking advantage of the superior sensitivity of host-guest interactions. Our 3D-NG was fabricated by a template-directed chemical vapour deposition (CVD) method, and it showed a large specific surface area, a high capacity for biomolecules and a high electron transfer efficiency. Thus, for the first time, we took 3D-NG as an electrode substrate for β-CD to establish a new type of biosensor. Using dopamine (DA) and acetaminophen (APAP) as representative guest molecules, our 3D-NG/β-CD biosensor shows extremely high sensitivities (5468.6 μA mM-1 cm-2 and 2419.2 μA mM-1 cm-2, respectively), which are significantly higher than those reported in most previous studies. The stable adsorption of β-CD on 3D-NG indicates potential applications in clinical detection and medical testing.Host-guest interactions, especially those between cyclodextrins (CDs, including α-, β- and γ-CD) and various guest molecules, exhibit a very high supramolecular recognition ability. Thus, they have received considerable attention in different fields. These specific interactions between host and guest molecules are promising for biosensing and clinical detection. However, there is a lack of an ideal electrode substrate for CDs to increase their performance in electrochemical sensing. Herein, we propose a new 3D nitrogen-doped graphene (3D-NG) based electrochemical sensor, taking advantage of the superior sensitivity of host-guest interactions. Our 3D-NG was fabricated by a template-directed chemical vapour deposition (CVD) method, and it showed a large specific surface area, a high capacity for biomolecules and a high electron transfer efficiency. Thus, for the first time, we took 3D-NG as an electrode substrate for β-CD to establish a new type of biosensor. Using dopamine (DA) and acetaminophen (APAP) as representative guest molecules, our 3D-NG/β-CD biosensor shows extremely high sensitivities (5468.6 μA mM-1 cm-2 and 2419.2 μA mM-1 cm-2, respectively), which are significantly higher than those reported in most previous studies. The stable adsorption of β-CD on 3D-NG indicates potential applications in clinical detection and medical testing. Electronic supplementary information (ESI) available: The procedure for preparing the sensor, wide survey XPS, XRD patterns, the effect of scan rate, more CV data on the stability and selectivity, and a comparison with previous studies. See DOI: 10.1039/c5nr03109e
Hayashi, Yukako; Ohara, Kazuaki; Taki, Rika; Saeki, Tomomi; Yamaguchi, Kentaro
2018-03-12
The crystalline sponge (CS) method, which employs single-crystal X-ray diffraction to determine the structure of an analyte present as a liquid or an oil and having a low melting point, was used in combination with laser desorption ionization mass spectrometry (LDI-MS). 1,3-Benzodioxole derivatives were encapsulated in CS and their structures were determined by combining X-ray crystallography and MS. After the X-ray analysis, the CS was subjected to imaging mass spectrometry (IMS) with an LDI spiral-time-of-flight mass spectrometer (TOF-MS). The ion detection area matched the microscopic image of the encapsulated CS. In addition, the accumulated 1D mass spectra showed that fragmentation of the guest molecule (hereafter, guest) can be easily visualized without any interference from the fragment ions of CS except for two strong ion peaks derived from the tridentate ligand TPT (2,4,6-tris(4-pyridyl)-1,3,5-triazine) of the CS and its fragment. X-ray analysis clearly showed the presence of the guest as well as the π-π, CH-halogen, and CH-O interactions between the guest and the CS framework. However, some guests remained randomly diffused in the nanopores of CS. In addition, the detection limit was less than sub-pmol order based on the weight and density of CS determined by X-ray analysis. Spectroscopic data, such as UV-vis and NMR, also supported the encapsulation of the guest through the interaction between the guest and CS components. The results denote that the CS-LDI-MS method, which combines CS, X-ray analysis and LDI-MS, is effective for structure determination.
Camus, Marie-Stéphanie; Dos Santos, Sonia; Chandravarkar, Arunan; Mandal, Bhubaneswar; Schmid, Adrian W; Tuchscherer, Gabriele; Mutter, Manfred; Lashuel, Hilal A
2008-09-01
Several amyloid-forming proteins are characterized by the presence of hydrophobic and highly amyloidogenic core sequences that play critical roles in the initiation and progression of amyloid fibril formation. Therefore targeting these sequences represents a viable strategy for identifying candidate molecules that could interfere with amyloid formation and toxicity of the parent proteins. However, the highly amyloidogenic and insoluble nature of these sequences has hampered efforts to develop high-throughput fibrillization assays. Here we describe the design and characterization of host-guest switch peptides that can be used for in vitro mechanistic and screening studies that are aimed at discovering aggregation inhibitors that target highly amyloidogenic sequences. These model systems are based on a host-guest system where the amyloidogenic sequence (guest peptide) is flanked by two beta-sheet-promoting (Leu-Ser)(n) oligomers as host sequences. Two host-guest peptides were prepared by using the hydrophobic core of Abeta comprising residues 14-24 (HQKLVFFAEDV) as the guest peptide with switch elements inserted within (peptide 1) or at the N and C termini of the guest peptide (peptide 2). Both model peptides can be triggered to undergo rapid self-assembly and amyloid formation in a highly controllable manner and their fibrillization kinetics is tuneable by manipulating solution conditions (for example, peptide concentration and pH). The fibrillization of both peptides reproduces many features of the full-length Abeta peptides and can be inhibited by known inhibitors of Abeta fibril formation. Our results suggest that this approach can be extended to other amyloid proteins and should facilitate the discovery of small-molecule aggregation inhibitors and the development of more efficacious anti-amyloid agents to treat and/or reverse the pathogenesis of neurodegenerative and systemic amyloid diseases.
Increasing Sun Protection in Winter Outdoor Recreation
Walkosz, Barbara J.; Buller, David B.; Andersen, Peter A.; Scott, Michael D.; Dignan, Mark B.; Cutter, Gary R.; Maloy, Julie A.
2009-01-01
Background Unprotected and excessive exposure to ultraviolet radiation (UVR) is the primary risk factor for skin cancer. Design A pair-matched, group-randomized, pre-test/post-test, quasi-experimental design, with ski resorts as the unit of randomization, tested the effectiveness of Go Sun Smart, a multi-channel skin cancer prevention program. Independent samples of guests were taken at baseline (2001) and follow-up (2002); data were analyzed in 2006. Setting and Participants A total of 6516 adult guests at 26 ski resorts in the western U.S. and Canada were recruited, consented, and interviewed on chairlifts. This study was nested within an occupational intervention for ski resort workers. Intervention Ski resorts were pair-matched and randomized to receive Go Sun Smart, which consisted of print, electronic, visual, and interpersonal skin cancer prevention messages. Main Outcome Measures Sun-protection behaviors, sunburning, recall of sun-protection messages, and the association of message exposure to sun protection. Results The difference in recall of all sun-protection messages, messages on signs and posters, and the Go Sun Smart logo was significant between the intervention and control resorts. Reported use of sun-protection practices was higher by guests at intervention ski areas using more (a higher dose of) Go Sun Smart materials. Intervention-group guests who recalled a sun-safety message were more likely to practice sun safety than intervention-group guests who did not recall a message and control-group guests. Conclusions While the mere implementation of Go Sun Smart did not produce sun-safety improvements, Go Sun Smart appeared to be effective for guests who encountered and remembered it. Many factors can work against message exposure. Signage seemed to produce the greatest increase in exposure to sun-safety messages. PMID:18471586
Learning from a dive show in an aquarium setting
NASA Astrophysics Data System (ADS)
Walsh, Lori M.
A study was conducted at an aquarium next to a theme park to understand information recalled from two versions of shows viewed at the largest display. The goal of this research was to determine if learning was enhanced by having a diver in water as the treatment group. This project focused on the knowledge recalled about shark and ray feeding adaptations, the information recalled about the mentioned conservation message about sustainable seafood and the potential of the two shows to make memorable experiences. During the project, 30 adult participants from each group were given a survey with five open-ended questions. Results suggest that the diver might distract from biological content information, or that the diver is such a novel element that it interferes with recall. While guests seemed to recall information about rays and sharks, the amount of information was not substantial. It appears that the diver does not affect content messaging but does impact whether guests attend to Seafood Watch messaging. The diver may have been so novel that the treatment group could not attend to the conservation message that was delivered, regardless of topic, or the control group recalled the message because the guests were not distracted by the diver or feeding. The absence of a diver seems to allow the guests to better attend to what is happening outside of the tank. While adding a diver increases photo opportunities and may bring guests to a show, the results seem to indicate that it does not significantly increase recall. The results of this study show that guests in a theme park setting can recall information from an educational program. Guests may not enter this hybrid aquarium with the intention of learning, but recall, one of the components in learning, does occur.
The SAMPL4 host-guest blind prediction challenge: an overview.
Muddana, Hari S; Fenley, Andrew T; Mobley, David L; Gilson, Michael K
2014-04-01
Prospective validation of methods for computing binding affinities can help assess their predictive power and thus set reasonable expectations for their performance in drug design applications. Supramolecular host-guest systems are excellent model systems for testing such affinity prediction methods, because their small size and limited conformational flexibility, relative to proteins, allows higher throughput and better numerical convergence. The SAMPL4 prediction challenge therefore included a series of host-guest systems, based on two hosts, cucurbit[7]uril and octa-acid. Binding affinities in aqueous solution were measured experimentally for a total of 23 guest molecules. Participants submitted 35 sets of computational predictions for these host-guest systems, based on methods ranging from simple docking, to extensive free energy simulations, to quantum mechanical calculations. Over half of the predictions provided better correlations with experiment than two simple null models, but most methods underperformed the null models in terms of root mean squared error and linear regression slope. Interestingly, the overall performance across all SAMPL4 submissions was similar to that for the prior SAMPL3 host-guest challenge, although the experimentalists took steps to simplify the current challenge. While some methods performed fairly consistently across both hosts, no single approach emerged as consistent top performer, and the nonsystematic nature of the various submissions made it impossible to draw definitive conclusions regarding the best choices of energy models or sampling algorithms. Salt effects emerged as an issue in the calculation of absolute binding affinities of cucurbit[7]uril-guest systems, but were not expected to affect the relative affinities significantly. Useful directions for future rounds of the challenge might involve encouraging participants to carry out some calculations that replicate each others' studies, and to systematically explore parameter options.
ERIC Educational Resources Information Center
Lanier, Brian
2007-01-01
As choral directors across the country work to prepare their choirs for concerts, festivals, and contests, it is a common practice for them to invite a guest clinician to attend rehearsals for guidance and assistance. The rationale for this idea is logical and simple--two heads are better than one. However, the actual visit can be anything from a…
β-Cyclodextrin's orientation onto TiO2 and its paradoxical role in guest's photodegradation.
Zhang, Xu; Yang, Zixin; Li, Xuankun; Deng, Nansheng; Qian, Shahua
2013-01-28
This work revealed that β-cyclodextrin was attached onto the surface of TiO(2) predominately by its secondary ring side, which caused paradoxical functions of β-cyclodextrin in the photodegradation of the four bisphenols. The equilibrium between the guest adsorbed through β-cyclodextrin onto TiO(2) and the one locked in β-CD in water could also change the role of β-cyclodextrin in the degradation of a certain guest.
2015-08-17
from the same execution history, and cost-effective active response by proactively setting up standby VM replicas: migration from a compromised VM...the guest OSes system call code to be reused inside a “shadowed” portion of the context of the out-of- guest inspection program. Besides...by the rootkits in cloud environments. RootkitDet detects rootkits by identifying suspicious code region in the kernel space of guest OSes through
Whiteford, Jeffery A.; Stang, Peter J.; Huang, Songping D.
1998-10-19
Interaction of {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(L)M)]Ag(2)}(+6)((-)OSO(2)CF(3))(6), where M = Pt(II) or Pd(II) and L = dppp or 2PEt(3), with pyridine, pyrazine, phenazine, or 4,4'-dipyridyl ketone results in coordination Lewis acid/base host-guest assemblies via the "pi-tweezer effect" and mono or bis neutral guest coordination. All host-guest complexes are air stable microcrystalline solids with decomposition points greater than 170 degrees C. The homometallic Pt(II) receptors are more stable than the heteroaromatic Pt(II)-Pd(II) receptors toward heteratom-containing aromatic guests. The X-ray crystal structure of the host-guest complex {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)((-)OSO(2)CF(3))(6) is reported. The crystals with the empirical formula C(62)H(68)AgF(9)N(3)O(9)P(4)Pt(2)S(3) are triclinic P&onemacr; with a = 12.3919(8) Å, b = 17.160(1) Å, c = 18.932(1) Å, alpha = 90.892(1) degrees, beta = 97.127(1) degrees, gamma = 89.969(1) degrees, and Z = 2.
Guest Programmable Multistep Spin Crossover in a Porous 2-D Hofmann-Type Material.
Murphy, Michael J; Zenere, Katrina A; Ragon, Florence; Southon, Peter D; Kepert, Cameron J; Neville, Suzanne M
2017-01-25
The spin crossover (SCO) phenomenon defines an elegant class of switchable materials that can show cooperative transitions when long-range elastic interactions are present. Such materials can show multistepped transitions, targeted both fundamentally and for expanded data storage applications, when antagonistic interactions (i.e., competing ferro- and antiferro-elastic interactions) drive concerted lattice distortions. To this end, a new SCO framework scaffold, [Fe II (bztrz) 2 (Pd II (CN) 4 )]·n(guest) (bztrz = (E)-1-phenyl-N-(1,2,4-triazol-4-yl)methanimine, 1·n(guest)), has been prepared that supports a variety of antagonistic solid state interactions alongside a distinct dual guest pore system. In this 2-D Hofmann-type material we find that inbuilt competition between ferro- and antiferro-elastic interactions provides a SCO behavior that is intrinsically frustrated. This frustration is harnessed by guest exchange to yield a very broad array of spin transition characters in the one framework lattice (one- (1·(H 2 O,EtOH)), two- (1·3H 2 O) and three-stepped (1·∼2H 2 O) transitions and SCO-deactivation (1)). This variety of behaviors illustrates that the degree of elastic frustration can be manipulated by molecular guests, which suggests that the structural features that contribute to multistep switching may be more subtle than previously anticipated.
NASA Astrophysics Data System (ADS)
Yan, Dongpeng; Tang, Yanqun; Lin, Heyang; Wang, Dan
2014-03-01
Co-assembly of chromophore guests with host matrices can afford materials which have photofunctionalities different from those of individual components. Compared with clay and zeolite materials, the use of metal-organic frameworks (MOFs) as a host structure for fabricating luminescent host-guest materials is still at an early stage. Herein, we report the incorporation of a laser dye, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), into stilbene-based and naphthalene-based MOF systems. The resulting materials exhibit blue/red two-color emission, and the intensity ratio of blue to red fluorescence varies in different planes within the MOF crystal as detected by 3D confocal fluorescence microscopy. The observed changes in ratiometric fluorescence suggest the occurrence of energy transfer from MOF host to DCM molecules, which can be further confirmed by periodic density functional theoretical (DFT) calculations. Moreover, selective changes in luminescence behavior are observed on treating the guest@MOF samples with volatile organic compounds (methanol, acetone and toluene), indicating that these host-guest systems have potential applications as fluorescence sensors. It can be expected that by rational selection of MOF hosts and guest chromophores with suitable emissive colors and energy levels, a wide variety of multi-color luminescent and energy-transfer systems can readily be prepared in a similar manner.
Cucurbituril mediated single molecule detection and identification via recognition tunneling.
Xiao, Bohuai; Liang, Feng; Liu, Simin; Im, JongOne; Li, Yunchuan; Liu, Jing; Zhang, Bintian; Zhou, Jianghao; He, Jin; Chang, Shuai
2018-06-08
Recognition tunneling (RT) is an emerging technique for investigating single molecules in a tunnel junction. We have previously demonstrated its capability of single molecule detection and identification, as well as probing the dynamics of intermolecular bonding at the single molecule level. Here by introducing cucurbituril as a new class of recognition molecule, we demonstrate a powerful platform for electronically investigating the host-guest chemistry at single molecule level. In this report, we first investigated the single molecule electrical properties of cucurbituril in a tunnel junction. Then we studied two model guest molecules, aminoferrocene and amantadine, which were encapsulated by cucurbituril. Small differences in conductance and lifetime can be recognized between the host-guest complexes with the inclusion of different guest molecules. By using a machine learning algorithm to classify the RT signals in a hyper dimensional space, the accuracy of guest molecule recognition can be significantly improved, suggesting the possibility of using cucurbituril molecule for single molecule identification. This work enables a new class of recognition molecule for RT technique and opens the door for detecting a vast variety of small molecules by electrical measurements.
Hu, Jingjing; Cheng, Yiyun; Wu, Qinglin; Zhao, Libo; Xu, Tongwen
2009-08-06
The host-guest chemistry of dendrimer-drug complexes is investigated by NMR techniques, including (1)H NMR and 2D-NOESY studies. The effects of molecular properties of drug molecules (protonation ability and spatial steric hindrance of charged groups) and surface functionalities of dendrimers (positively charged amine groups and negatively charged carboxylate groups) on the host-guest interactions are discussed. Different interaction mechanisms between dendrimers and drug molecules are proposed on the basis of NMR results. Primary amine- and secondary amine-containing drugs preferentially bind to negatively charged dendrimers by strong electrostatic interactions, whereas tertiary amine and quaternary ammonium-containing drugs have weak binding ability with dendrimers due to relatively low protonation ability of the tertiary amine group and serious steric hindrance of the quaternary ammonium group. Positively charged drugs locate only on the surface of negatively charged dendrimers, whereas negatively charged drugs locate both on the surface and in the interior cavities of positively charged dendrimers. The host-guest chemistry of dendrimer-drug complexes is promising for the development of new drug delivery systems.
Negrón, Luis M; Díaz, Tanya L; Ortiz-Quiles, Edwin O; Dieppa-Matos, Diómedes; Madera-Soto, Bismark; Rivera, José M
2016-03-15
Nanoflowers (NFs) are flowered-shaped particles with overall sizes or features in the nanoscale. Beyond their pleasing aesthetics, NFs have found a number of applications ranging from catalysis, to sensing, to drug delivery. Compared to inorganic based NFs, their organic and hybrid counterparts are relatively underdeveloped mostly because of the lack of a reliable and versatile method for their construction. We report here a method for constructing NFs from a wide variety of biologically relevant molecules (guests), ranging from small molecules, like doxorubicin, to biomacromolecules, like various proteins and plasmid DNA. The method relies on the encapsulation of the guests within a hierarchically structured particle made from supramolecular G-quadruplexes. The size and overall flexibility of the guests dictate the broad morphological features of the resulting NFs, specifically, small and rigid guests favor the formation of NFs with spiky petals, while large and/or flexible guests promote NFs with wide petals. The results from experiments using confocal fluorescence microscopy, and scanning electron microscopy provides the basis for the proposed mechanism for the NF formation.
ANDERSEN, PETER A.; BULLER, DAVID B.; WALKOSZ, BARBARA J.; MALOY, JULIE; SCOTT, MICHAEL D.; CUTTER, GARY R.; DIGNAN, MARK B.
2010-01-01
The epidemic of preventable skin cancer in the United States creates an urgent need for health communication campaigns to improve sun protection. Go Sun Smart (GSS), a theory-driven multichannel health communication campaign showed positive effects on sun safety behaviors of employees and guests in a randomized trial at high-altitude ski areas. In this article we report findings from the North American GSS campaign for guests at ski areas that comprosed the original control-group resorts, replicating the results of the original guest intervention. Results showed that after GSS was deployed, guests at the original control group ski areas increased sun protection and reported greater recall of sun safety messages. Conversely, GSS had no effect on sunburning attitudes or self-efficacy beliefs. Like the original GSS guest intervention, the present study found that greater exposure to GSS messages was associated with greater use of sunscreen, sunscreen lip balm, and face covering, but not gloves or overall sun protection. There was no evidence that GSS decreased sunburning or attitudes and self-efficacy beliefs regarding sun safety. PMID:19466647
Miao, Tianxin; Fenn, Spencer L.; Charron, Patrick N.; Oldinski, Rachael A.
2015-01-01
β-cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of non-polar guest molecules to form non-covalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically-crosslinked hydrogel networks upon mixing with a guest molecule. Herein describes the development and characterization of self-healing, thermo-responsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic® F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)). The mechanics, flow characteristics, and thermal response were contingent on the polymer concentrations, and the host-guest molar ratio. Transient and reversible physical crosslinking between host and guest polymers governed self-assembly, allowing flow under shear stress, and facilitating complete recovery of the material properties within a few seconds of unloading. The mechanical properties of the dual-crosslinked, multi-stimuli responsive hydrogels were tuned as high as 30 kPa at body temperature, and are advantageous for biomedical applications such as drug delivery and cell transplantation. PMID:26509214
Energy-cascade organic photovoltaic devices incorporating a host-guest architecture.
Menke, S Matthew; Holmes, Russell J
2015-02-04
In planar heterojunction organic photovoltaic devices (OPVs), broad spectral coverage can be realized by incorporating multiple molecular absorbers in an energy-cascade architecture. Here, this approach is combined with a host-guest donor layer architecture previously shown to optimize exciton transport for the fluorescent organic semiconductor boron subphthalocyanine chloride (SubPc) when diluted in an optically transparent host. In order to maximize the absorption efficiency, energy-cascade OPVs that utilize both photoactive host and guest donor materials are examined using the pairing of SubPc and boron subnaphthalocyanine chloride (SubNc), respectively. In a planar heterojunction architecture, excitons generated on the SubPc host rapidly energy transfer to the SubNc guest, where they may migrate toward the dissociating, donor-acceptor interface. Overall, the incorporation of a photoactive host leads to a 13% enhancement in the short-circuit current density and a 20% enhancement in the power conversion efficiency relative to an optimized host-guest OPV combining SubNc with a nonabsorbing host. This work underscores the potential for further design refinements in planar heterojunction OPVs and demonstrates progress toward the effective separation of functionality between constituent OPV materials.
Giant Negative Area Compressibility Tunable in a Soft Porous Framework Material.
Cai, Weizhao; Gładysiak, Andrzej; Anioła, Michalina; Smith, Vincent J; Barbour, Leonard J; Katrusiak, Andrzej
2015-07-29
A soft porous material [Zn(L)2(OH)2]n·Guest (where L is 4-(1H-naphtho[2,3-d]imidazol-1-yl)benzoate, and Guest is water or methanol) exhibits the strongest ever observed negative area compressibility (NAC), an extremely rare property, as at hydrostatic pressure most materials shrink in all directions and few expand in one direction. This is the first NAC reported in metal-organic frameworks (MOFs), and its magnitude, clearly visible and by far the highest of all known materials, can be reversibly tuned by exchanging guests adsorbed from hydrostatic fluids. This counterintuitive strong NAC of [Zn(L)2(OH)2]n·Guest arises from the interplay of flexible [-Zn-O(H)-]n helices with layers of [-Zn-L-]4 quadrangular puckered rings comprising large channel voids. The compression of helices and flattening of puckered rings combine to give a giant piezo-mechanical response, applicable in ultrasensitive sensors and actuators. The extrinsic NAC response to different hydrostatic fluids is due to varied host-guest interactions affecting the mechanical strain within the range permitted by exceptionally high flexibility of the framework.
Ploskonka, Ann M; DeCoste, Jared B
2017-06-28
Metal-organic frameworks (MOFs) are versatile materials highly regarded for their porous nature. Depending on the synthetic method, various guest molecules may remain in the pores or can be systematically loaded for various reasons. Herein, we present a study that explores the effect of guest molecules on the adsorption and reactivity of the MOF in both the gas phase and solution. The differences between guest molecule interactions and the subsequent effects on their activity are described for each system. Interestingly, different effects are observed and described in detail for each class of guest molecules studied. We determine that there is a strong effect of alcohols with the secondary building unit of UiO MOFs, while Lewis bases have an effect on the reactivity of the -NH 2 group in UiO-66-NH 2 and adsorption by the coordinatively unsaturated copper sites in HKUST-1. These effects must be considered when determining synthesis and activation methods of MOFs toward various applications.
Redox-responsive self-healing materials formed from host–guest polymers
Nakahata, Masaki; Takashima, Yoshinori; Yamaguchi, Hiroyasu; Harada, Akira
2011-01-01
Expanding the useful lifespan of materials is becoming highly desirable, and self-healing and self-repairing materials may become valuable commodities. The formation of supramolecular materials through host–guest interactions is a powerful method to create non-conventional materials. Here we report the formation of supramolecular hydrogels and their redox-responsive and self-healing properties due to host–guest interactions. We employ cyclodextrin (CD) as a host molecule because it is environmentally benign and has diverse applications. A transparent supramolecular hydrogel quickly forms upon mixing poly(acrylic acid) (pAA) possessing β-CD as a host polymer with pAA possessing ferrocene as a guest polymer. Redox stimuli induce a sol−gel phase transition in the supramolecular hydrogel and can control self-healing properties such as re-adhesion between cut surfaces. PMID:22027591
Ayhan, Mehmet Menaf; Casano, Gilles; Karoui, Hakim; Rockenbauer, Antal; Monnier, Valérie; Hardy, Micaël; Tordo, Paul; Bardelang, David; Ouari, Olivier
2015-11-09
Nitroxide free radicals have been used to study the inner space of one of Rebek's water-soluble capsules. EPR and (1) H NMR spectroscopy, ESI-MS, and DFT calculations showed a preference for the formation of 1:2 complexes. EPR titrations allowed us to determine binding constants (Ka ) in the order of 10(7) M(-2) . EPR spectral-shape analysis provided information on the guest rotational dynamics within the capsule. The interplay between optimum hydrogen bonding upon capsule formation and steric strain for guest accommodation highlights some degree of flexibility for guest inclusion, particularly at the center of the capsule where the hydrogen bond seam can be barely distorted or slightly disturbed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spectral study and protein labeling of inclusion complex between dye and calixarene sulfonate.
Fei, Xuening; Zhang, Yong; Zhu, Sen; Liu, Lijuan; Yu, Lu
2013-05-01
The host-guest inclusion complex of calix[6]arene sulfonate (SCA6) with thiazole orange (TO) formed in aqueous solution was studied. Absorption and fluorescence techniques were used for the analysis of this inclusion complex. The addition of calixarene sulfonate leads to a decrease in both absorption and fluorescence intensity of the dye, indicating that the inclusion complex was formed. Simultaneously, the inclusion phenomenon of another cyanine dye, Cy3, with calixarene sulfonate was investigated. The stability constant of the two complexes was determined, and the results were compared. The water solubility of TO dye was increased in the presence of calixarene sulfonate, and further protein labeling experiments suggested that this TO-SCA6 complex can act as a fluorescent probe for labeling of biomolecules.
Stimuli Responsive Systems Constructed Using Cucurbit[n]uril-Type Molecular Containers
2015-01-01
Conspectus This Account focuses on stimuli responsive systems that function in aqueous solution using examples drawn from the work of the Isaacs group using cucurbit[n]uril (CB[n]) molecular containers as key recognition elements. Our entry into the area of stimuli responsive systems began with the preparation of glycoluril derived molecular clips that efficiently distinguish between self and nonself by H-bonds and π–π interactions even within complex mixtures and therefore undergo self-sorting. We concluded that the selectivity of a wide variety of H-bonded supramolecular assemblies was higher than previously appreciated and that self-sorting is not exceptional behavior. This lead us to examine self-sorting within the context of CB[n] host–guest chemistry in water. We discovered that CB[n] homologues (CB[7] and CB[8]) display remarkably high binding affinity (Ka up to 1017 M–1) and selectivity (ΔΔG) toward their guests, which renders CB[n]s prime components for the construction of stimuli responsive host–guest systems. The CB[7]·adamantaneammonium ion complex, which is particularly privileged (Ka = 4.2 × 1012 M–1), was introduced by us as a stimulus to trigger constitutional changes in multicomponent self-sorting systems. For example, we describe how the free energy associated with the formation of host–guest complexes of CB[n]-type receptors can drive conformational changes of included guests like triazene–arylene foldamers and cationic calix[4]arenes, as well as induced conformational changes (e.g., ammonium guest size dependent homotropic allostery, metal ion triggered folding, and heterochiral dimerization) of the hosts themselves. Many guests display large pKa shifts within their CB[n]–guest complexes, which we used to promote pH controlled guest swapping and thermal trans-to-cis isomerization of azobenzene derivatives. We also used the high affinity and selectivity of CB[7] toward its guests to outcompete an enzyme (bovine carbonic anhydrase) for a two-faced inhibitor, which allowed stimuli responsive regulation of enzymatic activity. These results prompted us to examine the use of CB[n]-type receptors in both in vitro and in vivo biological systems. We demonstrated that adamantaneammonium ion can be used to intracellularly sequester CB[7] from gold nanoparticles passivated with hexanediammonium ion·CB[7] complexes and thereby trigger cytotoxicity. CB[7] derivatives bearing a biotin targeting group enhance the cytotoxicity of encapsulated oxaliplatin toward L1210FR cells. Finally, acyclic CB[n]-type receptors function as solubilizing excipients for insoluble drugs for drug delivery purposes and as a broad spectrum reversal agent for the neuromuscular blocking agents rocuronium, vecuronium, and cis-atracurium in rats. The work highlights the great potential for integration of CB[n]-type receptors with biological systems. PMID:24785941
Hu, Jinming; Liu, Shiyong
2014-07-15
CONSPECTUS: All living organisms and soft matter are intrinsically responsive and adaptive to external stimuli. Inspired by this fact, tremendous effort aiming to emulate subtle responsive features exhibited by nature has spurred the invention of a diverse range of responsive polymeric materials. Conventional stimuli-responsive polymers are constructed via covalent bonds and can undergo reversible or irreversible changes in chemical structures, physicochemical properties, or both in response to a variety of external stimuli. They have been imparted with a variety of emerging applications including drug and gene delivery, optical sensing and imaging, diagnostics and therapies, smart coatings and textiles, and tissue engineering. On the other hand, in comparison with molecular chemistry held by covalent bonds, supramolecular chemistry built on weak and reversible noncovalent interactions has emerged as a powerful and versatile strategy for materials fabrication due to its facile accessibility, extraordinary reversibility and adaptivity, and potent applications in diverse fields. Typically involving more than one type of noncovalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic association, electrostatic interactions, van der Waals forces, and π-π stacking), host-guest recognition refers to the formation of supramolecular inclusion complexes between two or more entities connected together in a highly controlled and cooperative manner. The inherently reversible and adaptive nature of host-guest molecular recognition chemistry, stemming from multiple noncovalent interactions, has opened up a new platform to construct novel types of stimuli-responsive materials. The introduction of host-guest chemistry not only enriches the realm of responsive materials but also confers them with promising new applications. Most intriguingly, the integration of responsive polymer building blocks with host-guest recognition motifs will endow the former with further broadened responsiveness to external stimuli and accordingly more sophisticated functions. In this Account, we summarize recent progress in the field of responsive polymeric materials containing host-guest recognition motifs with selected examples and highlight their versatile functional applications, whereas small molecule-oriented host-guest supramolecular systems are excluded. We demonstrate how the introduction of host-guest chemistry into conventional polymer systems can modulate their responsive modes to external stimuli. Moreover, the responsive specificity and selectivity of polymeric systems can also be inherited from the host-guest recognition motifs, and these features provide extra advantages in terms of function integration. The following discussions are categorized in terms of design and functions, namely, host-guest chemistry toward the fabrication of responsive polymers and assemblies, optical sensing and imaging, drug and gene delivery, and self-healing materials. A concluding remark on future developments is also presented. We wish this prosperous field would incur more original and evolutionary ideas and benefit fundamental research and our daily life in a more convenient way.
Towards the fluorogenic detection of peroxide explosives through host-guest chemistry.
Almenar, Estefanía; Costero, Ana M; Gaviña, Pablo; Gil, Salvador; Parra, Margarita
2018-04-01
Two dansyl-modified β-cyclodextrin derivatives ( 1 and 2 ) have been synthesized as host-guest sensory systems for the direct fluorescent detection of the peroxide explosives diacetone diperoxide (DADP) and triacetone triperoxide (TATP) in aqueous media. The sensing is based on the displacement of the dansyl moiety from the cavity of the cyclodextrin by the peroxide guest resulting in a decrease of the intensity of the fluorescence of the dye. Both systems showed similar fluorescent responses and were more sensitive towards TATP than DADP.
2014-07-01
powder x-ray diffraction (PXRD), thermogravimentric analysis (TGA), and Fourier transform infrared (FTIR). 15. SUBJECT TERMS Metal organic frame work...the inclusion by using a variety of analytical techniques, such as powder x-ray diffraction (PXRD), thermo-gravimetric analysis (TGA), Fourier...Characterizations Analysis of the MOF and the complexes with the MOF and the guest molecules was performed using an Agilent GC-MS (Model 6890N GC and Model 5973N
Yu, Kenneth K.; Aguilar, Kiefer; Tsai, Jonathan; Galimidi, Rachel; Gnanapragasam, Priyanthi; Yang, Lili; Baltimore, David
2012-01-01
In nature, B cells produce surface immunoglobulin and secreted antibody from the same immunoglobulin gene via alternative splicing of the pre-messenger RNA. Here we present a novel system for genetically programming B cells to direct the simultaneous formation of membrane-bound and secreted immunoglobulins that we term a “Molecular Rheostat”, based on the use of mutated “self-cleaving” 2A peptides. The Molecular Rheostat is designed so that the ratio of secreted to membrane-bound immunoglobulins can be controlled by selecting appropriate mutations in the 2A peptide. Lentiviral transgenesis of Molecular Rheostat constructs into B cell lines enables the simultaneous expression of functional b12-based IgM-like BCRs that signal to the cells and mediate the secretion of b12 IgG broadly neutralizing antibodies that can bind and neutralize HIV-1 pseudovirus. We show that these b12-based Molecular Rheostat constructs promote the maturation of EU12 B cells in an in vitro model of B lymphopoiesis. The Molecular Rheostat offers a novel tool for genetically manipulating B cell specificity for B-cell based gene therapy. PMID:23209743
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Liang; Nachtergaele, Sigrid; Seddon, Annela M.
This paper utilizes cyclodextrin-based host-guest chemistry in a microfluidic device to modulate the crystallization of membrane proteins and the process of concentration of membrane protein samples. Methyl-{beta}-cyclodextrin (MBCD) can efficiently capture a wide variety of detergents commonly used for the stabilization of membrane proteins by sequestering detergent monomers. Reaction Center (RC) from Blastochloris viridis was used here as a model system. In the process of concentrating membrane protein samples, MBCD was shown to break up free detergent micelles and prevent them from being concentrated. The addition of an optimal amount of MBCD to the RC sample captured loosely bound detergentmore » from the protein-detergent complex and improved sample homogeneity, as characterized by dynamic light scattering. Using plug-based microfluidics, RC crystals were grown in the presence of MBCD, giving a different morphology and space group than crystals grown without MBCD. The crystal structure of RC crystallized in the presence of MBCD was consistent with the changes in packing and crystal contacts hypothesized for removal of loosely bound detergent. The incorporation of MBCD into a plug-based microfluidic crystallization method allows efficient use of limited membrane protein sample by reducing the amount of protein required and combining sparse matrix screening and optimization in one experiment. The use of MBCD for detergent capture can be expanded to develop cyclodextrin-derived molecules for fine-tuned detergent capture and thus modulate membrane protein crystallization in an even more controllable way.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpentier, J.L.; Di Bono, P.J.; Tournebise, P.J.
The efficient bounding method for DC contingency analysis is improved using reciprocity properties. Knowing the consequences of the outage of a branch, these properties provide the consequences on that branch of various kinds of outages. This is used in order to reduce computation times and to get rid of some difficulties, such as those occurring when a branch flow is close to its limit before outage. Compensation, sparse vector, sparse inverse and bounding techniques are also used. A program has been implemented for single branch outages and tested on actual French EHV 650 bus network. Computation times are 60% ofmore » the Efficient Bounding method. The relevant algorithm is described in detail in the first part of this paper. In the second part, reciprocity properties and bounding formulas are extended for multiple branch outages and for multiple generator or load outages. An algorithm is proposed in order to handle all these cases simultaneously.« less
The Design of Molecular Hosts, Guests, and Their Complexes.
ERIC Educational Resources Information Center
Cram, Donald J.
1988-01-01
Describes the origins, definitions, tools, and principles of host-guest chemistry. Gives examples of chiral recognition in complexation, of partial transacylase mimics, of caviplexes, and of a synthetic molecular cell. (Author/RT)
Hasan, Samer; Ali, Hussein Al; Al-Qubaisi, Mothanna; Hussein, Mohd Zobir; Ismail, Maznah; Zainal, Zulkarnain; Hakim, Muhammad Nazrul
2012-01-01
A controlled-release formulation of an antihistamine, cetirizine, was synthesized using zinc-layered hydroxide as the host and cetirizine as the guest. The resulting well-ordered nanolayered structure, a cetirizine nanocomposite “CETN,” had a basal spacing of 33.9 Å, averaged from six harmonics observed from X-ray diffraction. The guest, cetirizine, was arranged in a horizontal bilayer between the zinc-layered hydroxide (ZLH) inorganic interlayers. Fourier transform infrared spectroscopy studies indicated that the intercalation takes place without major change in the structure of the guest and that the thermal stability of the guest in the nanocomposites is markedly enhanced. The loading of the guest in the nanocomposites was estimated to be about 49.4% (w/w). The release study showed that about 96% of the guest could be released in 80 hours by phosphate buffer solution at pH 7.4 compared with about 97% in 73 hours at pH 4.8. It was found that release was governed by pseudo-second order kinetics. Release of histamine from rat basophilic leukemia cells was found to be more sensitive to the intercalated cetirizine in the CETN compared with its free counterpart, with inhibition of 56% and 29%, respectively, at 62.5 ng/mL. The cytotoxicity assay toward Chang liver cells line show the IC50 for CETN and ZLH are 617 and 670 μg/mL, respectively. PMID:22848164
Transforming MOFs for energy applications using the guest@MOF concept
Ullman, Andrew M.; Brown, Jonathan W.; Foster, Michael E.; ...
2016-07-11
As the world transitions from fossil fuels to clean energy sources in the coming decades, many technological challenges will require chemists and material scientists to develop new materials for applications related to energy conversion, storage, and efficiency. Because of their unprecedented adaptability, metal–organic frameworks (MOFs) will factor strongly in this portfolio. By utilizing the broad synthetic toolkit provided by the fields of organic and inorganic chemistry, MOF pores can be customized to suit a particular application. Of particular importance is the ability to tune the strength of the interaction between the MOF pores and guest molecules. By cleverly controlling thesemore » MOF–guest interactions, the chemist may impart new function into the Guest@MOF materials otherwise lacking in vacant MOF. Herein, we highlight the concept of the Guest@MOF as it relates to our efforts to develop these materials for energy-related applicatons. Additionally, our work in the areas of H 2 and noble gas storage, hydrogenolysis of biomass, light-harvesting, and conductive materials will be discussed. Of relevance to light-harvesting applications, we report for the first time a postsynthetic modification strategy for increasing the loading of a light-sensitive electron-donor molecule in the pores of a functionalized MIL-101 structure. Through the demonstrated versatility of these approaches, we show that, by treating guest molecules as integral design elements for new MOF constructs, MOF science can have a significant impact on the advancement of clean energy technologies.« less
Transforming MOFs for Energy Applications Using the Guest@MOF Concept.
Ullman, Andrew M; Brown, Jonathan W; Foster, Michael E; Léonard, François; Leong, Kirsty; Stavila, Vitalie; Allendorf, Mark D
2016-08-01
As the world transitions from fossil fuels to clean energy sources in the coming decades, many technological challenges will require chemists and material scientists to develop new materials for applications related to energy conversion, storage, and efficiency. Because of their unprecedented adaptability, metal-organic frameworks (MOFs) will factor strongly in this portfolio. By utilizing the broad synthetic toolkit provided by the fields of organic and inorganic chemistry, MOF pores can be customized to suit a particular application. Of particular importance is the ability to tune the strength of the interaction between the MOF pores and guest molecules. By cleverly controlling these MOF-guest interactions, the chemist may impart new function into the Guest@MOF materials otherwise lacking in vacant MOF. Herein, we highlight the concept of the Guest@MOF as it relates to our efforts to develop these materials for energy-related applicatons. Our work in the areas of H2 and noble gas storage, hydrogenolysis of biomass, light-harvesting, and conductive materials will be discussed. Of relevance to light-harvesting applications, we report for the first time a postsynthetic modification strategy for increasing the loading of a light-sensitive electron-donor molecule in the pores of a functionalized MIL-101 structure. Through the demonstrated versatility of these approaches, we show that, by treating guest molecules as integral design elements for new MOF constructs, MOF science can have a significant impact on the advancement of clean energy technologies.
Sugimoto, Masumi; Liu, Xin-Ling; Tsunega, Seiji; Nakajima, Erika; Abe, Shunsuke; Nakashima, Takuya; Kawai, Tsuyoshi; Jin, Ren-Hua
2018-05-02
Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu 2 O 3 or Tb 2 O 3 ) nanoparticles (guests) were encapsulated into chiral non-helical SiO 2 nanofibres (host) through calcination of chiral SiO 2 hybrid nanofibres, trapping Eu 3+ (or Tb 3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu 3+ and 545 nm for Tb 3+ . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonlinear optical moiety-doped polymers with improved optical properties for photonic devices
NASA Astrophysics Data System (ADS)
Lee, Myung-Hyun; Kim, Hwan K.; Kim, Hye-Young; Lee, Hyuek J.; Kang, K. H.; Won, Yong Hyub; Jeon, Eunsuk S.; Wu, Jeong W.
1994-05-01
An electro-optic polymer guest-host system has been constructed and demonstrated. The polymer host is a polyimide (PIQ2200) and the guest chromophores are dimethyl (or diethyl) amino alkyl sulfone stilbenes. The alkylated-NLO moieties as guest chromophores have been modified, yielding new alkylated-NLO moieties. The higher content of alkylated-NLO moieties, compared to unmodified NLO moieties, was doped into a polyimide host system due to the improved solubility of new alkylated-NLO moieties. To the 40 wt%, the new alkylated- NLO moiety has been completely dissolved in the preliminary experiment, leading to the increase of refractive index by 0.0016. These polyimide-based guest-host systems exhibited a significant improvement in the thermal stability at high temperatures exceeding 250 degree(s)C. The electro-optic coefficient reported in the present study is 13 pm/V for the 40 wt% DASS-6- doped polymer system poled at the 135 V/micrometers . However, further increase up to 25 pm/V may easily be achieved by increasing the amount of guest moieties and/or the intensity of the poling field. This work presents new materials for photonic switching devices with low operating voltage.
Adaptive strategy for joint measurements
NASA Astrophysics Data System (ADS)
Uola, Roope; Luoma, Kimmo; Moroder, Tobias; Heinosaari, Teiko
2016-08-01
We develop a technique to find simultaneous measurements for noisy quantum observables in finite-dimensional Hilbert spaces. We use the method to derive lower bounds for the noise needed to make incompatible measurements jointly measurable. Using our strategy together with recent developments in the field of one-sided quantum information processing we show that the attained lower bounds are tight for various symmetric sets of quantum measurements. We use this characterisation to prove the existence of so called 4-Specker sets, i.e. sets of four incompatible observables with compatible subsets in the qubit case.
Zhao, Yingfeng; Liu, Sanyang
2016-01-01
We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.
Increasing spin crossover cooperativity in 2D Hofmann-type materials with guest molecule removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zenere, Katrina A.; Duyker, Samuel G.; Trzop, Elzbieta
Ambient temperature spin crossover with wide hysteresis has been achieved in 2D Hofmann-type materials, where removal of guest molecules optimises ligand–ligand interactions, resulting in increased cooperativity.
Increasing spin crossover cooperativity in 2D Hofmann-type materials with guest molecule removal
Zenere, Katrina A.; Duyker, Samuel G.; Trzop, Elzbieta; ...
2018-01-01
Ambient temperature spin crossover with wide hysteresis has been achieved in 2D Hofmann-type materials, where removal of guest molecules optimises ligand–ligand interactions, resulting in increased cooperativity.
Towards the fluorogenic detection of peroxide explosives through host–guest chemistry
Almenar, Estefanía; Costero, Ana M.; Gil, Salvador; Parra, Margarita
2018-01-01
Two dansyl-modified β-cyclodextrin derivatives (1 and 2) have been synthesized as host–guest sensory systems for the direct fluorescent detection of the peroxide explosives diacetone diperoxide (DADP) and triacetone triperoxide (TATP) in aqueous media. The sensing is based on the displacement of the dansyl moiety from the cavity of the cyclodextrin by the peroxide guest resulting in a decrease of the intensity of the fluorescence of the dye. Both systems showed similar fluorescent responses and were more sensitive towards TATP than DADP. PMID:29765646
2016-02-01
from the tools being used. For example, while Coq proves properties it does not dump an explanation of the proofs in any currently supported form. The...Distribution Unlimited 5 Hotel room locks and card keys use a simple protocol to manage the transition of rooms from one guest to the next. The lock...retains that guest key’s code. A new guest checks in and gets a card with a new current code, and the previous code set to the previous guest’s current
Tunable electrical conductivity in metal-organic framework thin film devices
Talin, Albert Alec; Allendorf, Mark D.; Stavila, Vitalie; Leonard, Francois
2016-08-30
A composition including a porous metal organic framework (MOF) including an open metal site and a guest species capable of charge transfer that can coordinate with the open metal site, wherein the composition is electrically conductive. A method including infiltrating a porous metal organic framework (MOF) including an open metal site with a guest species that is capable of charge transfer; and coordinating the guest species to the open metal site to form a composition including an electrical conductivity greater than an electrical conductivity of the MOF.
Tunable electrical conductivity in metal-organic framework thin film devices
Talin, Albert Alec; Allendorf, Mark D.; Stavila, Vitalie; Leonard, Francois
2016-05-24
A composition including a porous metal organic framework (MOF) including an open metal site and a guest species capable of charge transfer that can coordinate with the open metal site, wherein the composition is electrically conductive. A method including infiltrating a porous metal organic framework (MOF) including an open metal site with a guest species that is capable of charge transfer; and coordinating the guest species to the open metal site to form a composition including an electrical conductivity greater than an electrical conductivity of the MOF.
A Two-Stream Plasma Electron Microwave Source for High-Power Millimeter Wave Generation. Phase 1
1989-03-29
MIT Press, Cambridge, MA, 1963). these findings that strong amplification is possible for repre- ’See, for example, G. E. Guest and D. J. Sigmar , Nucl...stringency of the stability criteria for electrostatic and whistler modes, as fl(z=O, 6, t=O) = -i/2u,(e/m) discussed by Guest and Sigmar [22], and...therein. Function. Academic Press, New York (1961). 1221 GUEST, G.E., SIGMAR , D.J., Nuci. Fusion It1(1971) [271 ABRAMOWITZ, M., STEGUN. I.A. (Eds
Neural basis for dynamic updating of object representation in visual working memory.
Takahama, Sachiko; Miyauchi, Satoru; Saiki, Jun
2010-02-15
In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely cooperates with a so-called "frontoparietal network", and subregions of the frontoparietal network can be decomposed into those sensitive to spatial updating and feature binding. The anterior prefrontal cortex identifies changes in object representation by comparing memory and perceptual representations rather than maintaining object representations per se, as previously suggested. Copyright 2009 Elsevier Inc. All rights reserved.
Seiwert, Bettina; Karst, Uwe
2007-09-15
A method for the simultaneous determination of a series of thiols and disulfides in urine samples has been developed based on the sequential labeling of free and bound thiol functionalities with two ferrocene-based maleimide reagents. The sample is first exposed to N-(2-ferroceneethyl)maleimide, thus leading to the derivatization of free thiol groups in the sample. After quantitative reaction and subsequent reduction of the disulfide-bound thiols by tris(2-carboxyethyl)phosphine, the newly formed thiol functionalities are reacted with ferrocenecarboxylic acid-(2-maleimidoyl)ethylamide. The reaction products are determined by LC/MS/MS in the multiple reaction mode, and precursor ion scan as well as neutral loss scan is applied to detect unknown further thiols. The method was successfully applied to the analysis of free and disulfide-bound thiols in urine samples. Limits of detection are 30 to 110 nM, and the linear range comprises two decades of concentration, thus covering the relevant concentration range of thiols in urine samples. The thiol and disulfide concentrations were referred to the creatinine content to compensate for different sample volumes. As some calibration standards for the disulfides are not commercially available, they were synthesized in an electrochemical flow-through cell. This allowed the synthesis of hetero- and homodimeric disulfides.
Mondal, Pritam; Sarkar, Sabyasachi; Rath, Sankar Prasad
2017-05-23
Three cyclic zinc(II) bis-porphyrins (CB) with highly flexible linkers are employed as artificial molecular containers that efficiently encapsulate/coordinate various aromatic aldehydes within their cavities. Interestingly, the arrangements of guests and their reactivity inside the molecular clefts are significantly influenced by the cavity size of the cyclic containers. In the presence of polycyclic aromatic aldehydes, such as 3-formylperylene, as a guest, the cyclic bis-porphyrin host with a smaller cavity (CB1) forms a 1:1 sandwich complex. Upon slightly increasing the spacer length and thereby the cavity size, the cyclic host (CB2) encapsulates two molecules of 3-formylperylene that are also stacked together due to strong π-π interactions between them and CH-π interactions with the porphyrin rings. However, in the cyclic host (CB3) with an even larger cavity, two metal centers of the bis-porphyrin axially coordinate two molecules of 3-formylperylene within its cavity. Different arrangements of guest inside the cyclic bis-porphyrin hosts are investigated by using UV/Vis, ESI-MS, and 1 H NMR spectroscopy, along with X-ray structure determination of the host-guest complexes. Moreover, strong binding of guests within the cyclic bis-porphyrin hosts support the robust nature of the host-guest assemblies in solution. Such preferential binding of the bis-porphyrinic cavity towards aromatic aldehydes through encapsulation/coordination has been employed successfully to catalyze the Knoevenagel condensation of a series of polycyclic aldehydes with active methylene compounds (such as Meldrum's acid and 1, 3-dimethylbarbituric acid) under ambient conditions. Interestingly, the yields of the condensed products significantly increase upon increasing spacer lengths of the cyclic bis-porphyrins because more substrates can then be encapsulated within the cavity. Such controllable cavity size of the cyclic containers has profound implications for constructing highly functional and modular enzyme mimics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
39. Photocopy of photograph (original in possession of WACC), photographer ...
39. Photocopy of photograph (original in possession of WACC), photographer unknown, c.1930's GUEST DINING ROOM WITH TABLE LAID FOR GUESTS - Faraway Ranch, Erickson-Riggs Ranch House, State Highway 181, Willcox, Cochise County, AZ
Prospects for Prevention and Amelioration of Mental Retardation: A Guest Editorial
ERIC Educational Resources Information Center
Clarke, A. D. B.; Clarke, Ann M.
1977-01-01
In a guest editorial, the view of the President's Committee on Mental Retardation (1972), that the incidence of mental retardation can be decreased by 50 percent by the year 2000, is critically examined. (BB)
2011-10-15
NASA Administrator Charles Bolden (at podium) speaks to guests gathered for Stennis Space Center's 50th Anniversary Gala event Oct. 15. The event was attended by more than 300 NASA employees and guests and featured various program presentations and speakers.
Bertram Brockhouse, the Triple-axis Spectrometer, and Neutron Spectroscopy
foreign guest scientist in the Reactor Department at Brookhaven National Laboratory [BNL]. During this and light and heavy water ... .'1 Brockhouse was again a foreign guest scientist at BNL in 1970. He
Tomaselli, Simona; Giovanella, Umberto; Pagano, Katiuscia; Leone, Giuseppe; Zanzoni, Serena; Assfalg, Michael; Meinardi, Francesco; Molinari, Henriette; Botta, Chiara; Ragona, Laura
2013-10-14
New strategies are requested for the preparation of bioinspired host-guest complexes to be employed in technologically relevant applications, as sensors and optoelectronic devices. We report here a new approach employing a single monomeric protein as host for the strongly fluorescent rhodamine dye. The selected protein, belonging to the intracellular lipid binding protein family, fully encapsulates one rhodamine molecule inside its cavity forming a host-guest complex stabilized by H and π-hydrogen bonds, a salt bridge, and favorable hydrophobic contacts, as revealed by the NMR derived structural model. The protein-dye solutions are easily processable and form homogeneous thin films exhibiting excellent photophysical and morphological properties, as derived from photoluminescence and AFM data. The obtained results represent the proof of concept of the viability of this bio host-guest system for the development of bioinspired optoelectronic devices.
Ni, Xin-Long; Rahman, Shofiur; Wang, Shi; Jin, Cheng-Cheng; Zeng, Xi; Hughes, David L; Redshaw, Carl; Yamato, Takehiko
2012-06-21
The lower rim functionalized hexahomotrioxacalix[3]arene derivatives cone-3 and cone-5 bearing three benzyl and three N,N-diethyl-2-aminoethoxy groups, respectively, were synthesized from triol 1. Their complexation with 2-(3,4-dihydroxyphenyl)ethylamine (dopamine), 5-hydroxytryptamine (serotonin), and 2-phenylethylamine (phenethylamine), which have biologically important activities, has been studied by (1)H-NMR spectroscopy. The chemical shifts of the aromatic protons of the host and guest molecules and the up-field shifts of the ethyl protons of the guest molecules strongly suggest the formation of inclusion complexes in solution. The formation of the host-guest complexes is assisted by a hydrogen bond and/or an electrostatic interaction between the host and ammonium ion (RNH(3)(+)) of the guest. The structures of receptors cone-3 and cone-5 have been determined by X-ray crystallography.
Bringing guest scientists to the university biology classroom via the web.
Basiliko, Nathan; Gupta, Varun
2015-08-01
This commentary describes an initiative to bring national and international guest scientists to undergraduate and introductory graduate classrooms via web videoconferencing to facilitate interesting and effective research-informed teaching. Interactions center around both journal articles authored by the guests that are in line with weekly course lecture topics and on learning about the nature of academia in other parts of the world. Some particularly interesting perspectives from guests have come about by connecting with a journal editor-in-chief, a textbook author and with a scientist who shared a recently rejected manuscript and peer reviews. Beyond allowing students a unique behind-the-scenes look into how research questions are asked and answered, this initiative helps overcome the limited nature of a single instructor's research area to better complement the comprehensive scope of university courses. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Pérez-Rodríguez, M; Vidal-Vidal, A; Míguez, J M; Blas, F J; Torré, J-P; Piñeiro, M M
2017-01-25
Carbon dioxide (CO 2 ) molecules show a rich orientation landscape when they are enclathrated in type I hydrates. Previous studies have described experimentally their preferential orientations, and some theoretical works have explained, but only partially, these experimental results. In the present paper, we use classical molecular dynamics and electronic density functional theory to advance in the theoretical description of CO 2 orientations within type I hydrates. Our results are fully compatible with those previously reported, both theoretical and experimental, the geometric shape of the cavities in hydrate being, and therefore, the steric constraints, responsible for some (but not all) preferential angles. In addition, our calculations also show that guest-guest interactions in neighbouring cages are a key factor to explain the remaining experimental angles. Besides the implication concerning equation of state hydrate modeling approximations, the conclusion is that these guest-guest interactions should not be neglected, contrary to the usual practice.
Trapping guests within a nanoporous metal-organic framework through pressure-induced amorphization.
Chapman, Karena W; Sava, Dorina F; Halder, Gregory J; Chupas, Peter J; Nenoff, Tina M
2011-11-23
The release of guest species from within a nanoporous metal-organic framework (MOF) has been inhibited by amorphization of the guest-loaded framework structure under applied pressure. Thermogravimetric analyses have shown that by amorphizing ZIF-8 following sorption of molecular I(2), a hazardous radiological byproduct of nuclear energy production, the pore apertures in the framework are sufficiently distorted to kinetically trap I(2) and improve I(2) retention. Pair distribution function (PDF) analysis indicates that the local structure of the captive I(2) remains essentially unchanged upon amorphization of the framework, with the amorphization occurring under the same conditions for the vacant and guest-loaded framework. The low, accessible pressure range needed to effect this change in desorption is much lower than in tradition sorbents such as zeolites, opening the possibility for new molecular capture, interim storage, or controlled release applications.
Motion of the guest ion as precursor to the first-order phase transition in the cage system GdB6
NASA Astrophysics Data System (ADS)
Iwasa, Kazuaki; Igarashi, Ryosuke; Saito, Kotaro; Laulhé, Claire; Orihara, Toshihiko; Kunii, Satoru; Kuwahara, Keitaro; Nakao, Hironori; Murakami, Youichi; Iga, Fumitoshi; Sera, Masafumi; Tsutsui, Satoshi; Uchiyama, Hiroshi; Baron, Alfred Q. R.
2011-12-01
The motion of guest Gd ions in oversized boron cages in GdB6 was investigated from phonon spectra measurements obtained by inelastic x-ray scattering. The measured phonon modes soften by about 10% from 300 K down to TN=16 K, in particular, the longitudinal phonon for the propagation vector q1=(1/2,0,0) that characterizes the distorted structure below TN. Besides, the dispersion relation curves show kinklike anomalies at qk=(0.38,0.38,0). The observed results imply that the motion of the guest Gd ion interplays with the f electrons magnetoelastically and with carriers via Fermi surface nesting. The anomalous properties previously reported for this material far above TN originate from the strong electron-phonon coupling, which causes the motion of guest ions as precursors to the first-order phase transition.
Iritani, Kohei; Ikeda, Motoki; Yang, Anna; Tahara, Kazukuni; Anzai, Masaru; Hirose, Keiji; De Feyter, Steven; Moore, Jeffrey S; Tobe, Yoshito
2018-05-29
We present here the construction of a self-assembled two-dimensional (2D) porous monolayer bearing a highly polar 2D space to study guest co-adsorption through electrostatic interactions at the liquid/solid interface. For this purpose, a dehydrobenzo[12]annulene (DBA) derivative, DBA-TeEG, having tetraethylene glycol (TeEG) groups at the end of the three alternating alkoxy chains connected by p-phenylene linkers was synthesized. As a reference host molecule, DBA-C10, having nonpolar C 10 alkyl chains at three alternating terminals, was employed. As guest molecules, hexagonal phenylene-ethynylene macrocycles (PEMs) attached by triethylene glycol (TEG) ester and hexyl ester groups, PEM-TEG and PEM-C6, respectively, at each vertex of the macrocyclic periphery were used. Scanning tunneling microscopy observations at the 1,2,4-trichlorobenzene/highly oriented pyrolytic graphite interface revealed that PEM-TEG was immobilized in the pores formed by DBA-TeEG at higher probability because of electrostatic interactions such as dipole-dipole and hydrogen bonding interactions between oligoether units of the host and guest, in comparison to PEM-C6 with nonpolar groups. These observations are discussed based on molecular mechanics simulations to investigate the role of the polar functional groups. When a nonpolar host matrix formed by DBA-C10 was used, however, only phase separation and preferential adsorption were observed; virtually no host-guest complexation was discernible. This is ascribed to the strong affinity between the guest molecules which form by themselves densely packed van der Waals networks on the surface.
A Statistical Analysis of the PPII Propensity of Amino Acid Guests in Proline-Rich Peptides
Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher
2011-01-01
There has been considerable debate about the intrinsic PPII propensity of amino-acid residues in denatured polypeptides. Experimentally, the propensity scale is based on the behavior of guest amino-acid residues placed in the middle of polyproline hosts. We have used classical molecular dynamics simulations, with state-of-the-art force fields to carry out a comprehensive analysis of the conformational equilibria of the proline-based host oligopeptides with single guests. The tracked structural characteristics include the PPII content, the cis/trans isomerization of the prolyl bonds, the puckering of the pyrrolidine rings of the proline residues, and the secondary structural motifs. We find no evidence for an intrinsic PPII propensity in any of the guest amino acids other than proline. Instead, the PPII content as derived from experiments may be explained in terms of: 1), a local correlation between the dihedral angles of the guest amino acid and the proline residue immediately preceding it; and 2), a nonlocal correlation between the cis/trans states of the peptide bonds. In terms of the latter, we find that the presence of a guest (other than proline, tyrosine, or tryptophan) increases the trans content of most of the prolyl bonds, which results in an effective increase of the peptide PPII content. With respect to the local dihedral correlations, we find that these are well described in terms of the so-called odds-ratio statistic. Expressed in terms of free energy language, the PPII content based on the odds-ratio of the relevant residues correlate well with the experimentally measured PPII content. PMID:21320454
Guest Molecule Exchange Kinetics for the 2012 Ignik Sikumi Gas Hydrate Field Trial
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark D.; Lee, Won Suk
A commercially viable technology for producing methane from natural gas hydrate reservoirs remains elusive. Short-term depressurization field tests have demonstrated the potential for producing natural gas via dissociation of the clathrate structure, but the long-term performance of the depressurization technology ultimately requires a heat source to sustain the dissociation. A decade of laboratory experiments and theoretical studies have demonstrated the exchange of pure CO2 and N2-CO2 mixtures with CH4 in sI gas hydrates, yielding critical information about molecular mechanisms, recoveries, and exchange kinetics. Findings indicated the potential for producing natural gas with little to no production of water and rapidmore » exchange kinetics, generating sufficient interest in the guest-molecule exchange technology for a field test. In 2012 the U.S. DOE/NETL, ConocoPhillips Company, and Japan Oil, Gas and Metals National Corporation jointly sponsored the first field trial of injecting a mixture of N2-CO2 into a CH4-hydrate bearing formation beneath the permafrost on the Alaska North Slope. Known as the Ignik Sikumi #1 Gas Hydrate Field Trial, this experiment involved three stages: 1) the injection of a N2-CO2 mixture into a targeted hydrate-bearing layer, 2) a 4-day pressurized soaking period, and 3) a sustained depressurization and fluid production period. Data collected during the three stages of the field trial were made available after an extensive quality check. These data included continuous temperature and pressure logs, injected and recovered fluid compositions and volumes. The Ignik Sikumi #1 data set is extensive, but contains no direct evidence of the guest-molecule exchange process. This investigation is directed at using numerical simulation to provide an interpretation of the collected data. A numerical simulator, STOMP-HYDT-KE, was recently completed that solves conservation equations for energy, water, mobile fluid guest molecules, and hydrate guest molecules, for up to three gas hydrate guest molecules: CH4, CO2, and N2. The independent tracking of mobile fluid and hydrate guest molecules allows for the kinetic exchange of guest molecules between the mobile fluids and hydrate. The particular interest of this numerical investigation is to determine whether kinetic exchange parameters, determined from laboratory-scale experiments, are directly applicable to interpreting the Ignik Sikumi #1 data.« less
Torchio, Fabrizio; Giacosa, Simone; Vilanova, Mar; Río Segade, Susana; Gerbi, Vincenzo; Giordano, Manuela; Rolle, Luca
2016-12-01
The changes in the volatile composition of Moscato bianco grapes were evaluated during ripening. Grape berries were sampled for five weeks (16-20 °Brix) and sorted for each date in ten density classes (1.05-1.12g/cm(3)). The highest total concentration of free terpenes was found at 19.3 °Brix; however, total concentration of the bound fraction increased significantly throughout ripening. Response surface methodology was used to assess the simultaneous effect of sampling time and berry density on the volatile composition, which was satisfactorily fitted to regression models for some key terpene compounds. Total free and bound terpenes were more affected by grape density than by sampling date. The same behaviour was observed for free and bound linalool and bound nerol, whereas the stronger effect of sampling date was exhibited for bound t-rose oxide, c-rose oxide and geraniol. The results showed that the sampling strategy impacted strongly on the aroma quality of berries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dai, Quxiu; Ma, Liping; Ren, Nanqi; Ning, Ping; Guo, Zhiying; Xie, Longgui; Gao, Haijun
2018-06-06
Modified phosphogypsum (MPG) was developed to improve dewaterability of sewage sludge, and dewatering performance, properties of treated sludge, composition and morphology distribution of EPS, dynamic analysis and multiple regression model on bound water release were investigated. The results showed that addition of MPG caused extracellular polymeric substances (EPS) disintegration through charge neutralization. Destruction of EPS promoted the formation of larger sludge flocs and the release of bound water into supernatant. Simultaneously, content of organics with molecular weight between 1000 and 7000 Da in soluble EPS (SB-EPS) increased with increasing of EPS dissolved into the liquid phase. Besides, about 8.8 kg•kg -1 DS of bound water was released after pretreatment with 40%DS MPG dosage. Additionally, a multiple linear regression model for bound water release was established, showing that lower loosely bond EPS (LB-EPS) content and specific resistance of filtration (SRF) may improve dehydration performance, and larger sludge flocs may be beneficial for sludge dewatering. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Charles H; Wiedman, Gregory; Khan, Ayesha; Ulmschneider, Martin B
2014-09-01
Unbiased molecular simulation is a powerful tool to study the atomic details driving functional structural changes or folding pathways of highly fluid systems, which present great challenges experimentally. Here we apply unbiased long-timescale molecular dynamics simulation to study the ab initio folding and partitioning of melittin, a template amphiphilic membrane active peptide. The simulations reveal that the peptide binds strongly to the lipid bilayer in an unstructured configuration. Interfacial folding results in a localized bilayer deformation. Akin to purely hydrophobic transmembrane segments the surface bound native helical conformer is highly resistant against thermal denaturation. Circular dichroism spectroscopy experiments confirm the strong binding and thermostability of the peptide. The study highlights the utility of molecular dynamics simulations for studying transient mechanisms in fluid lipid bilayer systems. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbieri, J.T.; Collins, C.M.; Collier, R.J.
1986-10-21
Diphtheria toxin (DT) that was bound to receptors on BS-C-1 cells was able to bind approximately 1 molar equiv of adenylyl-(3',5')-uridine 3'-monophosphate (ApUp). In contrast, receptor-bound CRM197, a mutant form of toxin with greatly diminished affinity for dinucleotides, did not bind ApUp. Affinity of the dinucleotide for receptor-bound toxin differed from that for free toxin by less than an order of magnitude. These results indicate that the receptor site and the ApUp site on the toxin do not significantly overlap. BS-C-1 cells were incubated with or without /sup 125/I-DT or CRM 197. They were then incubated with (/sup 32/P)ApUp, andmore » assayed.« less
2018-01-25
Inside the Center for Space Education at the Kennedy Space Center Visitor Complex, spaceport employees and guests join others throughout NASA for the Day of Remembrance ceremony, honoring the contributions of astronauts who have perished in the conquest of space. Following the ceremony, guests walk to the Space Mirror Memorial. The names of fallen astronauts from Apollo 1, Challenger and Columbia, as well as the astronauts who perished in training and commercial airplane accidents are emblazoned on the monument. Each year spaceport employees and guests join others throughout NASA honoring the contributions of astronauts who have perished in the conquest of space.
Foale examines fresh fruit brought to Mir by the STS-86 crew
1997-09-27
S86-E-5299 (27 Sept. 1997) --- Astronaut C. Michael Foale, cosmonaut guest researcher, shows his pleasure over a package of fresh fruit brought aboard Russia?s Mir Space Station by the STS-86 crew aboard the space shuttle Atlantis. This photograph captures Foale in his last hours as a cosmonaut guest researcher aboard Mir. Astronaut David A. Wolf, mission specialist, will replace Foale onboard the Mir, as cosmonaut guest researcher. This photograph was taken with the Electronic Still Camera (ESC) at 23:11:26 GMT on Sept. 27, 1997. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Jang, Yong-Man; Yu, Chol-Jun; Kim, Jin-Song; Kim, Song-Un
2018-04-01
Monomolecular drug carriers based on calix[n]-arenes and -resorcinarenes containing the interior cavity can enhance the affinity and specificity of the osteoporosis inhibitor drug zoledronate (ZOD). In this work we investigate the suitability of nine different calix[4]-arenes and -resorcinarenes based macrocycles as hosts for the ZOD guest molecule by conducting {\\it ab initio} density functional theory calculations for structures and energetics of eighteen different host-guest complexes. For the optimized molecular structures of the free, phosphonated, sulfonated calix[4]-arenes and -resorcinarenes, the geometric sizes of their interior cavities are measured and compared with those of the host-guest complexes in order to check the appropriateness for host-guest complex formation. Our calculations of binding energies indicate that in gaseous states some of the complexes might be unstable but in aqueous states almost all of the complexes can be formed spontaneously. Of the two different docking ways, the insertion of ZOD with the \\ce{P-C-P} branch into the cavity of host is easier than that with the nitrogen containing heterocycle of ZOD. The work will open a way for developing effective drug delivering systems for the ZOD drug and promote experimentalists to synthesize them.
Steele, K. S.
1994-01-01
Langston University, a Historically Black University located at Langston, Oklahoma, has a computing and information science program within the Langston University Division of Business. Since 1984, Langston University has participated in the Historically Black College and University program of the U.S. Department of Interior, which provided education, training, and funding through a combined earth-science and computer-technology cooperative program with the U.S. Geological Survey (USGS). USGS personnel have presented guest lectures at Langston University since 1984. Students have been enthusiastic about the lectures, and as a result of this program, 13 Langston University students have been hired by the USGS on a part-time basis while they continued their education at the University. The USGS expanded the offering of guest lectures in 1992 by increasing the number of visits to Langston University, and by inviting participation of speakers from throughout the country. The objectives of the guest-lecture series are to assist Langston University in offering state-of-the-art education in the computer sciences, to provide students with an opportunity to learn from and interact with skilled computer-science professionals, and to develop a pool of potential future employees for part-time and full-time employment. This report includes abstracts for guest-lecture presentations during 1992-93 school year.
NASA Astrophysics Data System (ADS)
Davoodi, M.; Meskin, N.; Khorasani, K.
2018-03-01
The problem of simultaneous fault detection, isolation and tracking (SFDIT) control design for linear systems subject to both bounded energy and bounded peak disturbances is considered in this work. A dynamic observer is proposed and implemented by using the H∞/H-/L1 formulation of the SFDIT problem. A single dynamic observer module is designed that generates the residuals as well as the control signals. The objective of the SFDIT module is to ensure that simultaneously the effects of disturbances and control signals on the residual signals are minimised (in order to accomplish the fault detection goal) subject to the constraint that the transfer matrix from the faults to the residuals is equal to a pre-assigned diagonal transfer matrix (in order to accomplish the fault isolation goal), while the effects of disturbances, reference inputs and faults on the specified control outputs are minimised (in order to accomplish the fault-tolerant and tracking control goals). A set of linear matrix inequality (LMI) feasibility conditions are derived to ensure solvability of the problem. In order to illustrate and demonstrate the effectiveness of our proposed design methodology, the developed and proposed schemes are applied to an autonomous unmanned underwater vehicle (AUV).
Louisa May Alcott's Orchard House
and Her Father! Buy the book from Orchard House Read more about John Matteson's award here Louisa May comments about this site, click to use our Online Guest Book All archival photographs © Louisa May Online Guest Book
Crystal structure, stability and spectroscopic properties of methane and CO2 hydrates.
Martos-Villa, Ruben; Francisco-Márquez, Misaela; Mata, M Pilar; Sainz-Díaz, C Ignacio
2013-07-01
Methane hydrates are highly present in sea-floors and in other planets and their moons. Hence, these compounds are of great interest for environment, global climate change, energy resources, and Cosmochemistry. The knowledge of stability and physical-chemical properties of methane hydrate crystal structure is important for evaluating some new green becoming technologies such as, strategies to produce natural gas from marine methane hydrates and simultaneously store CO2 as hydrates. However, some aspects related with their stability, spectroscopic and other chemical-physical properties of both hydrates are not well understood yet. The structure and stability of crystal structure of methane and CO2 hydrates have been investigated by means of calculations with empirical interatomic potentials and quantum-mechanical methods based on Hartree-Fock and Density Functional Theory (DFT) approximations. Molecular Dynamic simulations have been also performed exploring different configurations reproducing the experimental crystallographic properties. Spectroscopic properties have also been studied. Frequency shifts of the main vibration modes were observed upon the formation of these hydrates, confirming that vibration stretching peaks of C-H at 2915cm(-1) and 2905cm(-1) are due to methane in small and large cages, respectively. Similar effect is observed in the CO2 clathrates. The guest-host binding energy in these clathrates calculated with different methods are compared and discussed in terms of adequacy of empirical potentials and DFT methods for describing the interactions between gas guest and the host water cage, proving an exothermic nature of methane and CO2 hydrates formation process. Copyright © 2013 Elsevier Inc. All rights reserved.
Liang, Yi; Wang, MingDong; Wang, Cheng; Feng, Jing; Li, JianSheng; Wang, LianJun; Fu, JiaJun
2016-12-01
SiO2-imidazoline nanocomposites (SiO2-IMI) owning high loading capacity of corrosion inhibitor, 1-hexadecyl-3-methylimidazolium bromide (HMID), and a special acid/alkali dual-stimuli-accelerated release property have been synthesized via a one-step modified Stöber method. SiO2-IMI were uniformly distributed into the hydrophobic SiO2 sol to construct "host"-"guest" feedback active coating with a superhydrophobic surface (SiO2-IMI@SHSC) on aluminium alloy, AA2024, by dip-coating technique. SiO2-IMI as "guest" components have good compatibility with "host" sol-gel coating, and more importantly, once localized corrosion occurs on the surface of AA2024, SiO2-IMI can simultaneously respond to the increase in environmental pH around corrosive micro-cathodic regions and decrease in pH near micro-anodic regions, promptly releasing HMID to form a compact molecular film on the damaged surface, inhibiting corrosion spread and executing a self-healing function. The scanning vibrating electrode technique (SVET) was applied to illustrate the suppression process of cathodic/anodic corrosion activities. Furthermore, benefiting from the superhydrophobic surface, SiO2-IMI@SHSC remained its protective ability after immersion in 0.5 M NaCl solution for 35 days, which is far superior to the conventional sol-gel coating with the same coating thickness. The facile fabrication method of SiO2-IMI simplifies the construction procedure of SiO2-IMI@SHSC, which have great potential to replace non-environmental chromate conversion coatings for practical use.
Shaikh, Mhejabeen; Choudhury, Sharmistha Dutta; Mohanty, Jyotirmayee; Bhasikuttan, Achikanath C; Pal, Haridas
2010-07-14
Interactions among macrocyclic hosts and dyes/drugs have been explored extensively for their direct usage in controlled uptake and release of large number of potential drug molecules. In this paper we report the non-covalent interaction of cucurbit[8]uril macrocycle (CB8) with a biologically important dye, neutral red, by absorption and fluorescence spectroscopy. A comparative analysis with the complexation behaviour of the dye with CB7, the lower homologue of CB8, indicates contrasting guest binding behaviour with significant changes in the photophysical characteristics of the dye. While CB7 interaction leads to a 1 ratio 1 stoichiometry resulting in approximately 6 fold enhancement in the fluorescence emission of the dye, CB8 displays signatures for a 1 ratio 2 host-guest stoichiometry with drastic reduction in the fluorescence emission. Apart from the evaluation of approximately 2 unit shift in the protolytic equilibrium on complexation (pK(a) shift), the measurements with tryptophan established a selective guest exchange to favour a co-localized dimer inside the CB8 cavity. In a protein medium (BSA), the 1 ratio 2 complex was converted to a 1 ratio 1 ratio 1 CB8-NRH(+)-BSA complex. The finding that NRH(+) can be transferred from CB8 to BSA, even though the binding constant for NRH(+)-CB8 is much higher than NRH(+)-BSA, is projected for a controlled slow release of NRH(+) towards BSA. Since the release and activity of drugs can be controlled by regulating the protolytic equilibrium, the macromolecular encapsulation and release of NRH(+) demonstrated here provide information relevant to host-guest based drug delivery systems and its applications.
Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates
NASA Astrophysics Data System (ADS)
Alavi, Saman; Ohmura, Ryo
2016-10-01
When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.
A statistical analysis of the PPII propensity of amino acid guests in proline-rich peptides.
Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher
2011-02-16
There has been considerable debate about the intrinsic PPII propensity of amino-acid residues in denatured polypeptides. Experimentally, the propensity scale is based on the behavior of guest amino-acid residues placed in the middle of polyproline hosts. We have used classical molecular dynamics simulations, with state-of-the-art force fields to carry out a comprehensive analysis of the conformational equilibria of the proline-based host oligopeptides with single guests. The tracked structural characteristics include the PPII content, the cis/trans isomerization of the prolyl bonds, the puckering of the pyrrolidine rings of the proline residues, and the secondary structural motifs. We find no evidence for an intrinsic PPII propensity in any of the guest amino acids other than proline. Instead, the PPII content as derived from experiments may be explained in terms of: 1), a local correlation between the dihedral angles of the guest amino acid and the proline residue immediately preceding it; and 2), a nonlocal correlation between the cis/trans states of the peptide bonds. In terms of the latter, we find that the presence of a guest (other than proline, tyrosine, or tryptophan) increases the trans content of most of the prolyl bonds, which results in an effective increase of the peptide PPII content. With respect to the local dihedral correlations, we find that these are well described in terms of the so-called odds-ratio statistic. Expressed in terms of free energy language, the PPII content based on the odds-ratio of the relevant residues correlate well with the experimentally measured PPII content. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates.
Alavi, Saman; Ohmura, Ryo
2016-10-21
When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.
New Hardness Results for Diophantine Approximation
NASA Astrophysics Data System (ADS)
Eisenbrand, Friedrich; Rothvoß, Thomas
We revisit simultaneous Diophantine approximation, a classical problem from the geometry of numbers which has many applications in algorithms and complexity. The input to the decision version of this problem consists of a rational vector α ∈ ℚ n , an error bound ɛ and a denominator bound N ∈ ℕ + . One has to decide whether there exists an integer, called the denominator Q with 1 ≤ Q ≤ N such that the distance of each number Q ·α i to its nearest integer is bounded by ɛ. Lagarias has shown that this problem is NP-complete and optimization versions have been shown to be hard to approximate within a factor n c/ loglogn for some constant c > 0. We strengthen the existing hardness results and show that the optimization problem of finding the smallest denominator Q ∈ ℕ + such that the distances of Q·α i to the nearest integer are bounded by ɛ is hard to approximate within a factor 2 n unless {textrm{P}} = NP.
The C2'- and C3'-endo equilibrium for AMP molecules bound in the cystathionine-beta-synthase domain.
Feng, Na; Qi, Chao; Hou, Yan-Jie; Zhang, Ying; Wang, Da-Cheng; Li, De-Feng
2018-03-04
The equilibrium between C2'- and C3'-endo conformations of nucleotides in solution, as well as their polymers DNA and RNA, has been well studied in previous work. However, this equilibrium of nucleotides in their binding state remains unclear. We observed two AMP molecules, in C3'- and C2'-endo conformations respectively, simultaneously bound to a cystathionine-beta-synthase (CBS) domain dimer of the magnesium and cobalt efflux protein CorC in the crystallographic study. The C2'-endo AMP molecule assumes the higher sugar pucker energy and one more hydrogen bond with the protein than the C3'-endo molecule does. The balance between the high sugar pucker energy and the low binding energy suggests an equilibrium or switch between C2'- and C3'-endo conformations of the bound nucleotides. Our work challenge the previous hypothesis that the ribose of the bound nucleotides would be locked in a fixed conformation. Copyright © 2018 Elsevier Inc. All rights reserved.
Observation of interstitial molecular hydrogen in clathrate hydrates.
Grim, R Gary; Barnes, Brian C; Lafond, Patrick G; Kockelmann, Winfred A; Keen, David A; Soper, Alan K; Hiratsuka, Masaki; Yasuoka, Kenji; Koh, Carolyn A; Sum, Amadeu K
2014-09-26
The current knowledge and description of guest molecules within clathrate hydrates only accounts for occupancy within regular polyhedral water cages. Experimental measurements and simulations, examining the tert-butylamine + H2 + H2O hydrate system, now suggest that H2 can also be incorporated within hydrate crystal structures by occupying interstitial sites, that is, locations other than the interior of regular polyhedral water cages. Specifically, H2 is found within the shared heptagonal faces of the large (4(3)5(9)6(2)7(3)) cage and in cavities formed from the disruption of smaller (4(4)5(4)) water cages. The ability of H2 to occupy these interstitial sites and fluctuate position in the crystal lattice demonstrates the dynamic behavior of H2 in solids and reveals new insight into guest-guest and guest-host interactions in clathrate hydrates, with potential implications in increasing overall energy storage properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jeong, Daham; Joo, Sang-Woo; Shinde, Vijay Vilas; Cho, Eunae; Jung, Seunho
2017-08-08
Host-guest complexation with various hydrophobic drugs has been used to enhance the solubility, permeability, and stability of guest drugs. Physical changes in hydrophobic drugs by complexation have been related to corresponding increases in the bioavailability of these drugs. Carbohydrates, including various derivatives of cyclodextrins, cyclosophoraoses, and some linear oligosaccharides, are generally used as host complexation agents in drug delivery systems. Many antibiotics with low bioavailability have some limitations to their clinical use due to their intrinsically poor aqueous solubility. Bioavailability enhancement is therefore an important step to achieve the desired concentration of antibiotics in the treatment of bacterial infections. Antibiotics encapsulated in a complexation-based drug delivery system will display improved antibacterial activity making it possible to reduce dosages and overcome the serious global problem of antibiotic resistance. Here, we review the present research trends in carbohydrate-based host-guest complexation of various hydrophobic antibiotics as an efficient delivery system to improve solubility, permeability, stability, and controlled release.
Deformation of porous molecular networks induced by the exchange of guests in single crystals.
Saied, Okba; Maris, Thierry; Wuest, James D
2003-12-10
A strategy for making molecular networks that are porous and deformable is revealed by the behavior of compound 1, in which groups that form hydrogen bonds are attached to a nominally tetrahedral Si core. Compound 1 crystallizes from various carboxylic acids to produce a porous hydrogen-bonded diamondoid network, with up to 65% of the volume available for including guests. Changing the guests expands or contracts the network up to 30% in one direction, and single crystals can accommodate these exchange-induced deformations without loss of crystallinity. This resilience appears to result in part from the incorporation of flexible Si nodes in an otherwise robust network maintained by multiple hydrogen bonds. In certain cases, exchange is faster than deformation of the network, allowing the isolation of metastable structures with a new guest included in an otherwise unchanged network. Such processes can provide new materials that would be difficult or impossible to obtain in other ways.
Force-field and quantum-mechanical binding study of selected SAMPL3 host-guest complexes
NASA Astrophysics Data System (ADS)
Hamaguchi, Nobuko; Fusti-Molnar, Laszlo; Wlodek, Stanislaw
2012-05-01
A Merck molecular force field classical potential combined with Poisson-Boltzmann electrostatics (MMFF/PB) has been used to estimate the binding free energy of seven guest molecules (six tertiary amines and one primary amine) into a synthetic receptor (acyclic cucurbit[4]uril congener) and two benzimidazoles into cyclic cucurbit[7]uril (CB[7]) and cucurbit[8]uril (CB[8]) hosts. In addition, binding enthalpies for the benzimidazoles were calculated with density functional theory (DFT) using the B3LYP functional and a polarizable continuum model (PCM). Although in most cases the MMFF/PB approach returned reasonable agreements with the experiment (±2 kcal/mol), significant, much larger deviations were reported in the case of three host-guest pairs. All four binding enthalpy predictions with the DFT/PCM method suffered 70% or larger deviations from the calorimetry data. Results are discussed in terms of the molecular models used for guest-host complexation and the quality of the intermolecular potentials.
Hotel guest's $14.5 million jury verdict set aside on appeal.
1999-08-20
A Missouri Court of Appeals judge reversed a $14.5 million judgement against [name removed] Inc., which had been held liable for the beating and sexual assault of a guest in its hotel. The guest, identified as [name removed], had requested an upgrade to a concierge room, to increase her safety, but the hotel did not fill her request. When [name removed] opened her hotel room door the next morning, an assailant attacked, beat and raped her. The assailant escaped hotel security, but was later apprehended. The initial case against [name removed] and the assailant resulted in a $22.5 million judgement for [name removed] Both parties appealed. [Name removed] prevailed in its argument that the initial trial judge misinstructed the jury, and that [name removed] was unable to show clear and convincing evidence that the hotel's willful or conscious disregard for guest safety caused the situation. However, the court ruled against [name removed] on the basis of [name removed]'s fear-of-AIDS claim, because of her exposure to the virus.
Paramagnetic NMR Investigation of Dendrimer-Based Host-Guest Interactions
Wang, Fei; Shao, Naimin; Cheng, Yiyun
2013-01-01
In this study, the host-guest behavior of poly(amidoamine) (PAMAM) dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO) derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the 1H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE) was observed between TEMPO-NH2, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and 1H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems. PMID:23762249
Development of Account Receivable and Payable System for Travel Bureau Company
NASA Astrophysics Data System (ADS)
Karma, I. G. M.; Susanti, J.
2018-01-01
Sales and purchases of products on credit made by travel bureau companies require serious handling because it involves a lot of money and many parties. This research aims to build information systems to handle account payables and receivables related to the purchase and sale of tour packages on credit. The methodology is object-oriented approach, by using MS. Visual Basic. Net as a programming language and MySQL as its database package. As the results are the Account Receivable information system that is used to handle accounts receivable on agents who have purchased a tour package on credit for the guests it sends, and the Account Payable information system that is used to handle company’s account payable to suppliers who provided products or services to guests who purchase tour packages. Both of these systems handle the interrelated matter of a particular guest. Therefore, if both systems are integrated with the reservation system will be able to provide income statement on the reservation of certain guests.
Sprengel, Andreas; Lill, Pascal; Stegemann, Pierre; Bravo-Rodriguez, Kenny; Schöneweiß, Elisa-C.; Merdanovic, Melisa; Gudnason, Daniel; Aznauryan, Mikayel; Gamrad, Lisa; Barcikowski, Stephan; Sanchez-Garcia, Elsa; Birkedal, Victoria; Gatsogiannis, Christos; Ehrmann, Michael; Saccà, Barbara
2017-01-01
The self-organizational properties of DNA have been used to realize synthetic hosts for protein encapsulation. However, current strategies of DNA–protein conjugation still limit true emulation of natural host–guest systems, whose formation relies on non-covalent bonds between geometrically matching interfaces. Here we report one of the largest DNA–protein complexes of semisynthetic origin held in place exclusively by spatially defined supramolecular interactions. Our approach is based on the decoration of the inner surface of a DNA origami hollow structure with multiple ligands converging to their corresponding binding sites on the protein surface with programmable symmetry and range-of-action. Our results demonstrate specific host–guest recognition in a 1:1 stoichiometry and selectivity for the guest whose size guarantees sufficient molecular diffusion preserving short intermolecular distances. DNA nanocontainers can be thus rationally designed to trap single guest molecules in their native form, mimicking natural strategies of molecular recognition and anticipating a new method of protein caging. PMID:28205515
Metal-organic frameworks for thermoelectric energy-conversion applications
Talin, Albert Alec; Jones, Reese E.; Hopkins, Patrick E.
2016-11-07
Motivated by low cost, low toxicity, mechanical flexibility, and conformability over complex shapes, organic semiconductors are currently being actively investigated as thermoelectric (TE) materials to replace the costly, brittle, and non-eco-friendly inorganic TEs for near-ambient-temperature applications. Metal–organic frameworks (MOFs) share many of the attractive features of organic polymers, including solution processability and low thermal conductivity. A potential advantage of MOFs and MOFs with guest molecules (Guest@MOFs) is their synthetic and structural versatility, which allows both the electronic and geometric structure to be tuned through the choice of metal, ligand, and guest molecules. This could solve the long-standing challenge of findingmore » stable, high-TE-performance n-type organic semiconductors, as well as promote high charge mobility via the long-range crystalline order inherent in these materials. In this paper, we review recent advances in the synthesis of MOF and Guest@MOF TEs and discuss how the Seebeck coefficient, electrical conductivity, and thermal conductivity could be tuned to further optimize TE performance.« less
NASA Astrophysics Data System (ADS)
Sprengel, Andreas; Lill, Pascal; Stegemann, Pierre; Bravo-Rodriguez, Kenny; Schöneweiß, Elisa-C.; Merdanovic, Melisa; Gudnason, Daniel; Aznauryan, Mikayel; Gamrad, Lisa; Barcikowski, Stephan; Sanchez-Garcia, Elsa; Birkedal, Victoria; Gatsogiannis, Christos; Ehrmann, Michael; Saccà, Barbara
2017-02-01
The self-organizational properties of DNA have been used to realize synthetic hosts for protein encapsulation. However, current strategies of DNA-protein conjugation still limit true emulation of natural host-guest systems, whose formation relies on non-covalent bonds between geometrically matching interfaces. Here we report one of the largest DNA-protein complexes of semisynthetic origin held in place exclusively by spatially defined supramolecular interactions. Our approach is based on the decoration of the inner surface of a DNA origami hollow structure with multiple ligands converging to their corresponding binding sites on the protein surface with programmable symmetry and range-of-action. Our results demonstrate specific host-guest recognition in a 1:1 stoichiometry and selectivity for the guest whose size guarantees sufficient molecular diffusion preserving short intermolecular distances. DNA nanocontainers can be thus rationally designed to trap single guest molecules in their native form, mimicking natural strategies of molecular recognition and anticipating a new method of protein caging.
Temperature-regulated guest admission and release in microporous materials
Li, Gang; Shang, Jin; Gu, Qinfen; ...
2017-06-09
While it has long been known that some highly adsorbing microporous materials suddenly become inaccessible to guest molecules below certain temperatures, previous attempts to explain this phenomenon have failed. Here we show that this anomalous sorption behaviour is a temperature-regulated guest admission process, where the pore-keeping group’s thermal fluctuations are influenced by interactions with guest molecules. A physical model is presented to explain the atomic-level chemistry and structure of these thermally regulated micropores, which is crucial to systematic engineering of new functional materials such as tunable molecular sieves, gated membranes and controlled-release nanocontainers. The model was validated experimentally with Hmore » 2, N 2, Ar and CH 4 on three classes of microporous materials: trapdoor zeolites, supramolecular host calixarenes and metal-organic frameworks. We also demonstrate how temperature can be exploited to achieve appreciable hydrogen and methane storage in such materials without sustained pressure. Our findings also open new avenues for gas sensing and isotope separation.« less
Lee, Eui Su; Han, Kyu Won; Yoon, Ji-Ho; Jeon, Tae-In
2011-01-13
The structural transition from hydroquinone clathrates to crystalline α-form hydroquinone was observed up to the range of 3 THz frequency as a function of temperatures. We found that all three hydroquinone clathrates, CO(2)-, CH(4)-, and CO(2)/CH(4)-loaded hydroquinone clathrates, transform into the α-form hydroquinone at around 102 ± 7 °C. The resonance peak of the CO(2)-loaded hydroquinone clathrate at 2.15 THz decreases with increasing temperature, indicating that CO(2) guest molecules are readily released from the host framework prior to the structural transformation. This reveals that the hydroquinone clathrates may transform into the stable α-form hydroquinone via the metastable form of guest-free clathrate, which depends on guest molecules enclathrated in the cages of the host frameworks. A strong resonance of the α-form hydroquinone at 1.18 THz gradually shifts to the low frequency with increasing temperature and shifts back to the high frequency with decreasing temperature.
Ghost and guest authors: you can't always trust who you read.
Schofferman, Jerome; Wetzel, F Todd; Bono, Christopher
2015-03-01
Clinicians and educators rely on the published medical information. They trust that original research and narrative or systematic reviews are reliable and the authorship is transparent, but this is not always the case. Disclosure of conflicts of interest by authors is required by most journals, disclosure will not detect ghost or guest authorship. Ghosting or guesting is of more than academic interests because it can directly or indirectly affect patient care. Therefore it is important for readers to be aware of this issue, and to be alert to suggestions that particular works may be at increased risk for ghost or guest authors. It is important to take a proactive stance against these practices. Industry, universities, research centers, and professional medical associations should be clear and unequivocal in condeming these practices. Processes need to be in place to investigate and, if need be, deal with violations. Clearly, we must all participate in this endeavor for professional, ethical, and most importantly, best patient care reasons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talin, Albert Alec; Jones, Reese E.; Hopkins, Patrick E.
Motivated by low cost, low toxicity, mechanical flexibility, and conformability over complex shapes, organic semiconductors are currently being actively investigated as thermoelectric (TE) materials to replace the costly, brittle, and non-eco-friendly inorganic TEs for near-ambient-temperature applications. Metal–organic frameworks (MOFs) share many of the attractive features of organic polymers, including solution processability and low thermal conductivity. A potential advantage of MOFs and MOFs with guest molecules (Guest@MOFs) is their synthetic and structural versatility, which allows both the electronic and geometric structure to be tuned through the choice of metal, ligand, and guest molecules. This could solve the long-standing challenge of findingmore » stable, high-TE-performance n-type organic semiconductors, as well as promote high charge mobility via the long-range crystalline order inherent in these materials. In this paper, we review recent advances in the synthesis of MOF and Guest@MOF TEs and discuss how the Seebeck coefficient, electrical conductivity, and thermal conductivity could be tuned to further optimize TE performance.« less
Kuwabara, Tetsuo; Satake, Ryota; Guo, Haocheng
2015-01-01
Two benzocrown ether-bipyridinium conjugates, 1 and 2, each having a different length of alkyl chains with butyl and dodecyl groups, respectively, have been synthesized for the purpose of developing a new guest-responsive color-change chemosensor. Both 1 and 2 showed yellow colors with broad absorption bands around 400 nm in acetonitrile. These are associated with the intramolecular charge transfer (CT) absorption, in which the benzocrown ether and bipyridinium units act as the donor and acceptor, respectively. Upon addition of the guest; such as Na(+), they faded in color due to the blue shift in their intramolecular charge transfer absorption bands. These are associated with the formation of 1:1 host-guest inclusion complex. Analogues, 3 and 4, both being similar in structure to 1 and 2 with non-crown ether unit, also showed intramolecular CT absorptions around 400 nm, but did not change their absorption spectra upon addition of the guest because of the lack of guest-binding abilities. The guest-induced color change of 1 and 2 can be used for alkali and alkaline metal ion sensing. Both 1 and 2 could detect divalent cations such as Mg(2+) and Ca(2+) rather than univalent ones, Li(+), Na(+), K(+), Rb(+), and Cs(+). Although a marked difference between 1 and 2 was not observed in their guest sensing abilities, the remarkable recognition of 1 and 2 for Mg(2+) and Ca(2+) was found compared with that of 5, which has benzyl unit instead of alkyl chains of 1 and 2. The sensitivity values of 1 and 2 were roughly proportional to their binding constants, as shown by the binding constants with Li(+), Na(+), Mg(2+), and Ca(2+) with the values of 910, 260, 820, and 2300 M(-1) for 1 and 930, 290, 1270, and 2790 M(-1) for 2, while the binding constants of 5 were estimated to be 930, 440, 210, and 1200 M(-1) for Li(+), Na(+), Mg(2+), and Ca(2+), respectively. The limit concentration of detection of 2 for Ca(2+) was estimated to be 0.016 mM, which was the smallest value in this system.
Formation of β-Cyclodextrin inclusion compound with doxycycline: A theoretical approach
NASA Astrophysics Data System (ADS)
Peraro, Cristian R.; Anconi, Amanda C. S. A.; Anconi, Cleber P. A.
2018-01-01
Recently, the inclusion compound formed by doxycycline and modified CD was investigated. In the inclusion compound, the unstable site of doxycycline was protected by the hydrophobic CD cavity. However, the guest arrangement inside CD cavity has not identified. In some situations, the correlation between protons of the guest and host in a 2D-ROESY experiment can be compatible with head and tail spatial arrangements. In the present work, the most stable guest spatial arrangement for the inclusion of doxycycline into β-CD was evaluated at B97-D/6-311++(2d,p) level of theory. For sake of comparison, tetracycline inclusion compound was also studied.
NASA Astrophysics Data System (ADS)
Hori, Tomoe; Totani, Kenro; Hirata, Shuzo; Watanabe, Toshiyuki
2018-07-01
Herein, we present a method for the modification of the refractive index (n), based on employing an organic molecule with a long triplet excited-state lifetime. A host-guest material composed of a cyclic aromatic as the guest and an amorphous steroidal compound as the host was used to modulate n. The guest material exhibited a triplet lifetime longer than 1 s, and a high-density triplet excited-state population was obtained upon excitation with blue-violet light. The refractive index could be changed by 0.002, even when using a relatively low excitation power level of 100 mW cm-2.
DNA-based nonlinear photonic materials
NASA Astrophysics Data System (ADS)
Heckman, Emily M.; Grote, James G.; Yaney, Perry P.; Hopkins, F. K.
2004-10-01
Deoxyribonucleic acid (DNA), extracted from salmon sperm through an enzyme isolation process, is a by-product of Japan"s fishing industry. To make DNA a suitable material for nonlinear optic (NLO) applications, it is precipitated with a surfactant complex, hexadecyltrimethlammonium chloride (CTMA). Preliminary characterization studies suggest DNA-CTMA may be a suitable host material for guest-host NLO polymer based electro-optic (EO) waveguide devices. The optical and electromagnetic properties of DNA-CTMA, as well as the development and EO measurement of a disperse red 1 (DR1) guest / DNA/CTMA host NLO material, are reported. Comparisons to a DR1 guest / poly(methyl methacrylate) (PMMA) host NLO material are made.
Porel, Mintu; Klimczak, Agnieszka; Freitag, Marina; Galoppini, Elena; Ramamurthy, V
2012-02-21
Coumarins C-153, C-480, and C-1 formed 1:2 (guest:host) complexes with a water-soluble cavitand having eight carboxylic acid groups (OA) in aqueous borate buffer solution. The complexes were photoexcited in the presence of electron acceptors (methyl viologen, MV(2+), or TiO(2)) to probe the possibility of electron transfer between a donor and an acceptor physically separated by a molecular wall. In solution at basic pH, the dication MV(2+) was associated to the exterior of the complex C-153@OA(2), as suggested by diffusion constants (~1.2 × 10(-6) cm(2)/s) determined by DOSY NMR. The fluorescence of C-153@OA(2) was quenched in the presence of increasing amounts of MV(2+) and Stern-Volmer plots of I(o)/I and τ(o)/τ vs [MV(2+)] indicated that the quenching was static. As per FT-IR-ATR spectra, the capsule C-153@OA(2) was bound to TiO(2) nanoparticle films. Selective excitation (λ(exc) = 420) of the above bound complex resulted in fluorescence quenching. When adsorbed on insulating ZrO(2) nanoparticle films, excitation of the complex resulted in a broad fluorescence spectrum centered at 500 nm and consistent with C-153 being within the lipophilic capsule interior. Consistent with the above results, colloidal TiO(2) quenched the emission while colloidal ZrO(2) did not.
Consistent searches for SMEFT effects in non-resonant dijet events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alte, Stefan; Konig, Matthias; Shepherd, William
Here, we investigate the bounds which can be placed on generic new-physics contributions to dijet production at the LHC using the framework of the Standard Model Effective Field Theory, deriving the first consistently-treated EFT bounds from non-resonant high-energy data. We recast an analysis searching for quark compositeness, equivalent to treating the SM with one higher-dimensional operator as a complete UV model. In order to reach consistent, model-independent EFT conclusions, it is necessary to truncate the EFT effects consistently at ordermore » $$1/\\Lambda^2$$ and to include the possibility of multiple operators simultaneously contributing to the observables, neither of which has been done in previous searches of this nature. Furthermore, it is important to give consistent error estimates for the theoretical predictions of the signal model, particularly in the region of phase space where the probed energy is approaching the cutoff scale of the EFT. There are two linear combinations of operators which contribute to dijet production in the SMEFT with distinct angular behavior; we identify those linear combinations and determine the ability of LHC searches to constrain them simultaneously. Consistently treating the EFT generically leads to weakened bounds on new-physics parameters. These constraints will be a useful input to future global analyses in the SMEFT framework, and the techniques used here to consistently search for EFT effects are directly applicable to other off-resonance signals.« less
Consistent searches for SMEFT effects in non-resonant dijet events
Alte, Stefan; Konig, Matthias; Shepherd, William
2018-01-19
Here, we investigate the bounds which can be placed on generic new-physics contributions to dijet production at the LHC using the framework of the Standard Model Effective Field Theory, deriving the first consistently-treated EFT bounds from non-resonant high-energy data. We recast an analysis searching for quark compositeness, equivalent to treating the SM with one higher-dimensional operator as a complete UV model. In order to reach consistent, model-independent EFT conclusions, it is necessary to truncate the EFT effects consistently at ordermore » $$1/\\Lambda^2$$ and to include the possibility of multiple operators simultaneously contributing to the observables, neither of which has been done in previous searches of this nature. Furthermore, it is important to give consistent error estimates for the theoretical predictions of the signal model, particularly in the region of phase space where the probed energy is approaching the cutoff scale of the EFT. There are two linear combinations of operators which contribute to dijet production in the SMEFT with distinct angular behavior; we identify those linear combinations and determine the ability of LHC searches to constrain them simultaneously. Consistently treating the EFT generically leads to weakened bounds on new-physics parameters. These constraints will be a useful input to future global analyses in the SMEFT framework, and the techniques used here to consistently search for EFT effects are directly applicable to other off-resonance signals.« less
The Physics of Coupled Atomic-Molecular Condensate System
2010-10-09
electric dipoles represents a novel state of matter with long-range and anisotropic dipole-dipole interactions, that are highly amenable to the...free-bound FC factor. Simultaneously, a series of laser �elds of (molecular) Rabi frequency i (i 2) are applied to move the molecules from the
An efficient and reliable analytical method was developed for the sensitive and selective quantification of pyrethroid pesticides (PYRs) in house dust samples. The method is based on selective pressurized liquid extraction (SPLE) of the dust-bound PYRs into dichloromethane (DCM) wi...
Dashti, Noor H; Abidin, Rufika S; Sainsbury, Frank
2018-05-22
Bioinspired self-sorting and self-assembling systems using engineered versions of natural protein cages are being developed for biocatalysis and therapeutic delivery. The packaging and intracellular delivery of guest proteins is of particular interest for both in vitro and in vivo cell engineering. However, there is a lack of bionanotechnology platforms that combine programmable guest protein encapsidation with efficient intracellular uptake. We report a minimal peptide anchor for in vivo self-sorting of cargo-linked capsomeres of murine polyomavirus (MPyV) that enables controlled encapsidation of guest proteins by in vitro self-assembly. Using Förster resonance energy transfer, we demonstrate the flexibility in this system to support coencapsidation of multiple proteins. Complementing these ensemble measurements with single-particle analysis by super-resolution microscopy shows that the stochastic nature of coencapsidation is an overriding principle. This has implications for the design and deployment of both native and engineered self-sorting encapsulation systems and for the assembly of infectious virions. Taking advantage of the encoded affinity for sialic acids ubiquitously displayed on the surface of mammalian cells, we demonstrate the ability of self-assembled MPyV virus-like particles to mediate efficient delivery of guest proteins to the cytosol of primary human cells. This platform for programmable coencapsidation and efficient cytosolic delivery of complementary biomolecules therefore has enormous potential in cell engineering.
NASA Astrophysics Data System (ADS)
Alavi, Saman; Ohmura, Ryo; Ripmeester, John A.
2011-02-01
Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO2 molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullman, Andrew M.; Brown, Jonathan W.; Foster, Michael E.
As the world transitions from fossil fuels to clean energy sources in the coming decades, many technological challenges will require chemists and material scientists to develop new materials for applications related to energy conversion, storage, and efficiency. Because of their unprecedented adaptability, metal–organic frameworks (MOFs) will factor strongly in this portfolio. By utilizing the broad synthetic toolkit provided by the fields of organic and inorganic chemistry, MOF pores can be customized to suit a particular application. Of particular importance is the ability to tune the strength of the interaction between the MOF pores and guest molecules. By cleverly controlling thesemore » MOF–guest interactions, the chemist may impart new function into the Guest@MOF materials otherwise lacking in vacant MOF. Herein, we highlight the concept of the Guest@MOF as it relates to our efforts to develop these materials for energy-related applicatons. Additionally, our work in the areas of H 2 and noble gas storage, hydrogenolysis of biomass, light-harvesting, and conductive materials will be discussed. Of relevance to light-harvesting applications, we report for the first time a postsynthetic modification strategy for increasing the loading of a light-sensitive electron-donor molecule in the pores of a functionalized MIL-101 structure. Through the demonstrated versatility of these approaches, we show that, by treating guest molecules as integral design elements for new MOF constructs, MOF science can have a significant impact on the advancement of clean energy technologies.« less
Emergent low-energy bound states in the two-orbital Hubbard model
Nunez-Fernandez, Y.; Kotliar, G.; Hallberg, K.
2018-03-30
A repulsive Coulomb interaction between electrons in different orbitals in correlated materials can give rise to bound quasiparticle states. We study the nonhybridized two-orbital Hubbard model with intra- (inter)orbital interaction U (U 12) and different bandwidths using an improved dynamical mean-field theory numerical technique which leads to reliable spectra on the real energy axis directly at zero temperature. We find that a finite density of states at the Fermi energy in one band is correlated with the emergence of well-defined quasiparticle states at excited energies Δ = U - U 12 in the other band. These excitations are interband holon-doublonmore » bound states. At the symmetric point U = U 12, the quasiparticle peaks are located at the Fermi energy, leading to a simultaneous and continuous Mott transition settling a long-standing controversy.« less
Upper bound on the Abelian gauge coupling from asymptotic safety
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Versteegen, Fleur
2018-01-01
We explore the impact of asymptotically safe quantum gravity on the Abelian gauge coupling in a model including a charged scalar, confirming indications that asymptotically safe quantum fluctuations of gravity could trigger a power-law running towards a free fixed point for the gauge coupling above the Planck scale. Simultaneously, quantum gravity fluctuations balance against matter fluctuations to generate an interacting fixed point, which acts as a boundary of the basin of attraction of the free fixed point. This enforces an upper bound on the infrared value of the Abelian gauge coupling. In the regime of gravity couplings which in our approximation also allows for a prediction of the top quark and Higgs mass close to the experimental value [1], we obtain an upper bound approximately 35% above the infrared value of the hypercharge coupling in the Standard Model.
Understanding the nucleon as a Borromean bound-state
Segovia, Jorge; Roberts, Craig D.; Schmidt, Sebastian M.
2015-08-20
Analyses of the three valence-quark bound-state problem in relativistic quantum field theory predict that the nucleon may be understood primarily as a Borromean bound-state, in which binding arises mainly from two separate effects. One originates in non-Abelian facets of QCD that are expressed in the strong running coupling and generate confined but strongly-correlated colourantitriplet diquark clusters in both the scalar-isoscalar and pseudovector-isotriplet channels. That attraction is magnified by quark exchange associated with diquark breakup and reformation. Diquark clustering is driven by the same mechanism which dynamically breaks chiral symmetry in the Standard Model. It has numerous observable consequences, the completemore » elucidation of which requires a framework that also simultaneously expresses the running of the coupling and masses in the strong interaction. Moreover, planned experiments are capable of validating this picture.« less
Emergent low-energy bound states in the two-orbital Hubbard model
NASA Astrophysics Data System (ADS)
Núñez-Fernández, Y.; Kotliar, G.; Hallberg, K.
2018-03-01
A repulsive Coulomb interaction between electrons in different orbitals in correlated materials can give rise to bound quasiparticle states. We study the nonhybridized two-orbital Hubbard model with intra- (inter)orbital interaction U (U12) and different bandwidths using an improved dynamical mean-field theory numerical technique which leads to reliable spectra on the real energy axis directly at zero temperature. We find that a finite density of states at the Fermi energy in one band is correlated with the emergence of well-defined quasiparticle states at excited energies Δ =U -U12 in the other band. These excitations are interband holon-doublon bound states. At the symmetric point U =U12 , the quasiparticle peaks are located at the Fermi energy, leading to a simultaneous and continuous Mott transition settling a long-standing controversy.
Luo, Si-Wei; Liang, Zhi; Wu, Jia-Rui
2017-01-01
Quantitatively detecting correlations of multiple protein-protein interactions (PPIs) in vivo is a big challenge. Here we introduce a novel method, termed Protein-interactome Footprinting (PiF), to simultaneously measure multiple PPIs in one cell. The principle of PiF is that each target physical PPI in the interactome is simultaneously transcoded into a specific DNA sequence based on dimerization of the target proteins fused with DNA-binding domains. The interaction intensity of each target protein is quantified as the copy number of the specific DNA sequences bound by each fusion protein dimers. Using PiF, we quantitatively reveal dynamic patterns of PPIs and their correlation network in E. coli two-component systems. PMID:28338015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Young
In this paper, the author describes how engineers can increase the number of future engineers by volunteering as guest speakers in the elementary school classroom. The paper is divided into three main subjects. First, the importance of engineers speaking directly with young students is discussed. Next, several best practice techniques for speaking with young students are described. Finally, information on getting started as a guest speaker is presented, and a list of resources available to guest speakers is provided. The guest engineer speaking to an elementary school audience (ages 6-11) performs a critical role in encouraging young students to pursuemore » a career in engineering. Often, he or she is the first engineer these students meet in person, providing a crucial first impression of the engineering career field and a positive visual image of what an engineer really looks like. A dynamic speaker presenting a well-delivered talk creates a lasting, positive impression on students, influencing their future decisions to pursue careers in engineering. By reaching these students early in life, the guest speaker will help dispel the many prevailing stereotypes about engineers which discourage so many students, especially young women, from considering this career. The guest speaker can ensure young students gain a positive first impression of engineers and the engineering career field by following some best practice techniques in preparing for and delivering their presentation. The author, an electrical engineer, developed these best practice techniques over the past 10 years while presenting over 350 talks on engineering subjects to elementary school students as a volunteer speaker with the U.S. Department of Energy, Idaho National Laboratory’s Speakers Bureau. Every engineer can make a meaningful contribution toward reversing the predicted shortfall of future engineers by volunteering to speak with young students at the elementary school level. Elementary school teachers typically have a limited education in engineering and are eager to have career engineers speak with their students. As an engineer, there are many opportunities to get involved with guest speaking at the elementary school level. If you have a young child, start by meeting with her or his teacher and volunteering to give a presentation on engineering to the class. Many organizations have formal speakers bureaus. If your organization does not have one, consider starting one. There are several excellent resources on the Internet, such as the IEEE Center for Pre-University Engineering Education’s TryEngineering.org Web site. This site is designed for young students, teachers and parents, giving information on engineering careers and engineering activities the guest speaker can use to prepare a dynamic and informative presentation. Young students who have experienced a positive interaction with an engineer are more likely to pursue a career in engineering. Effective guest speaking by engineers in elementary school classrooms today will increase the likelihood these young students will become the desperately needed engineers of our future.« less
2017-01-01
Conspectus Microencapsulation is a fundamental concept behind a wide range of daily applications ranging from paints, adhesives, and pesticides to targeted drug delivery, transport of vaccines, and self-healing concretes. The beauty of microfluidics to generate microcapsules arises from the capability of fabricating monodisperse and micrometer-scale droplets, which can lead to microcapsules/particles with fine-tuned control over size, shape, and hierarchical structure, as well as high reproducibility, efficient material usage, and high-throughput manipulation. The introduction of supramolecular chemistry, such as host–guest interactions, endows the resultant microcapsules with stimuli-responsiveness and self-adjusting capabilities, and facilitates hierarchical microstructures with tunable stability and porosity, leading to the maturity of current microencapsulation industry. Supramolecular architectures and materials have attracted immense attention over the past decade, as they open the possibility to obtain a large variety of aesthetically pleasing structures, with myriad applications in biomedicine, energy, sensing, catalysis, and biomimicry, on account of the inherent reversible and adaptive nature of supramolecular interactions. As a subset of supramolecular interactions, host–guest molecular recognition involves the formation of inclusion complexes between two or more moieties, with specific three-dimensional structures and spatial arrangements, in a highly controllable and cooperative manner. Such highly selective, strong yet dynamic interactions could be exploited as an alternative methodology for programmable and controllable engineering of supramolecular architectures and materials, exploiting reversible interactions between complementary components. Through the engineering of molecular structures, assemblies can be readily functionalized based on host–guest interactions, with desirable physicochemical characteristics. In this Account, we summarize the current state of development in the field of monodisperse supramolecular microcapsules, fabricated through the integration of traditional microfluidic techniques and interfacial host–guest chemistry, specifically cucurbit[n]uril (CB[n])-mediated host–guest interactions. Three different strategies, colloidal particle-driven assembly, interfacial condensation-driven assembly and electrostatic interaction-driven assembly, are classified and discussed in detail, presenting the methodology involved in each microcapsule formation process. We highlight the state-of-the-art in design and control over structural complexity with desirable functionality, as well as promising applications, such as cargo delivery stemming from the assembled microcapsules. On account of its dynamic nature, the CB[n]-mediated host–guest complexation has demonstrated efficient response toward various external stimuli such as UV light, pH change, redox chemistry, and competitive guests. Herein, we also demonstrate different microcapsule modalities, which are engineered with CB[n] host–guest chemistry and also can be disrupted with the aid of external stimuli, for triggered release of payloads. In addition to the overview of recent achievements and current limitations of these microcapsules, we finally summarize several perspectives on tunable cargo loading and triggered release, directions, and challenges for this technology, as well as possible strategies for further improvement, which will lead to substainitial progress of host–guest chemistry in supramolecular architectures and materials. PMID:28075551
NASA Astrophysics Data System (ADS)
Gober, Isaiah Nathaniel
This dissertation involves the design and synthesis of new synthetic receptors and their application in the molecular recognition of methylated lysine and their use as tools for chemical biology. The dissertation is divided into four parts. The first section focuses on the development of a novel labeling method that is based on ligand-directed affinity labeling principles. In this labeling method, a synthetic receptor that binds to trimethyl lysine (Kme3) is attached through a linker to an electrophilic tag group that can react with a nucleophilic amine in a histone peptide. This affinity labeling probe, which we called CX4-ONBD, is equipped with an electrophilic tag that allows for turn-on fluorescence labeling of Kme3 histone peitdes. We show that the probe gives a pronounced turn-on fluorescence response when it is incubated with a histone peptide that contains Kme3 and a nearby reactive lysine. This probe also displays >5-fold selectivity in covalent labeling over an unmethylated lysine peptide. This represents the first time a synthetic receptor has been used for affinity labeling purposes, and it also expands on the chemical toolkit that is available for sensing PTMs like lysine methylation. In the second section, the supramolecular affinity labeling method that was optimized using CX4-ONBD was applied to the development of a real-time assay for measuring enzymatic activity. More specifically, the probe was used to create a turn-on fluorescence assay for histone deacetylase (HDAC) activity and for inhibitor screening and IC50 determination. Most commercial kits for HDAC activity have limited substrate scope, and other common methods used for characterizing enzymatic activity often require chromatographic separation and are therefore not high-throughput. This small molecule receptor-mediated affinity labeling strategy allowed for facile readout of HDAC activity and inhibition. Overall, this application of supramolecular affinity labeling expands on the possible ways for detecting PTMs and may find use in the development of new assays for enzymes that lack robust methods for measuring their activity. The third section explores the development of new small molecule receptors capable of selectively binding hydrophilic guests in water, such as the lower methylation states of lysine. We identified a receptor, A2I, that has improved binding affinity and selectivity for dimethyllysine (Kme2). The receptor was discovered and synthesized by using dynamic combinatorial chemistry (DCC) to redesign a small molecule receptor (A2B ) that preferentially binds trimethyllysine (Kme3). Incorporating a biphenyl monomer with ortho-di-substituted carboxylates into the receptor lead to the formation of a salt bridge interaction with Kme2. These favorable electrostatic and hydrogen bonding interactions produced a receptor with 32-fold tighter binding to Kme2, which is the highest affinity synthetic receptor for Kme2 in the context of a peptide that has been reported. This work provides insight into effective strategies for binding hydrophilic, cationic guests in water and is an encouraging result toward a synthetic receptor that selectively binds Kme2 over other methylation states of lysine. In the final section, a small molecule receptor for Kme3 (A 2B) was redesigned using DCC to incorporate either aromatic or acidic amino acids into the receptor. We proposed that the incorporation of amino acids could introduce additional non-covalent interactions (such as cation-pi, electrostatic, and hydrogen bonding) with a guest bound inside the pocket of the receptor. However, selective non-covalent interactions between the amino acid side chain on the modified receptor and the bound methylated lysine guest could not be achieved. This is most likely due to the conformational flexibility of the amino acid-functionalized receptors. Furthermore, attaching amino acids to the receptor seemed to increase non-specific electrostatic interactions, resulting in tighter binding to the unmethylated lysine peptide (compared to A2B). Ultimately, this highlights the importance of incorporating monomers with less conformational flexibility that can rigidly place functional groups into the binding pocket.
NASA Technical Reports Server (NTRS)
Barlow, Jonathan; Benavides, Jose; Provencher, Chris; Bualat, Maria; Smith, Marion F.; Mora Vargas, Andres
2017-01-01
At the end of 2017, Astrobee will launch three free-flying robots that will navigate the entire US segment of the ISS (International Space Station) and serve as a payload facility. These robots will provide guest science payloads with processor resources, space within the robot for physical attachment, power, communication, propulsion, and human interfaces.
The Joe Show on Third Rock Radio
2017-12-01
Tune into Third Rock Radio for The Joe Show starring Joe Acaba as Guest DJ on Thursday, December 7th at 5pm ET. Third Rock Radio's Guest DJ series spotlights NASA astronauts aboard the International Space Station, playing music and sharing their experiences. For more information visit: thirdrockradio.rfcmedia.com
One Year Term Review as a Participating Guest in the Detonator and Detonation Physics Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefrancois, A; Roeske, F; Tran, T
2006-02-06
The one year stay was possible after a long administrative process, because of the fact that this was the first participating guest of B division as a foreign national in HEAF (High Explosives Application Facility) with the Detonator/Detonation Physics Group.
32 CFR 705.23 - Guest cruises.
Code of Federal Regulations, 2013 CFR
2013-07-01
... professional associations. (ii) Embarkation of media representatives on assignment is discussed in § 705.14..., if so designated) have the authority to use Navy ships to embark individuals other than news media... embarked flag officer. (4) A caution that guests should not accept the invitation unless they are in good...
32 CFR 705.23 - Guest cruises.
Code of Federal Regulations, 2010 CFR
2010-07-01
... professional associations. (ii) Embarkation of media representatives on assignment is discussed in § 705.14..., if so designated) have the authority to use Navy ships to embark individuals other than news media... embarked flag officer. (4) A caution that guests should not accept the invitation unless they are in good...
32 CFR 705.23 - Guest cruises.
Code of Federal Regulations, 2012 CFR
2012-07-01
... professional associations. (ii) Embarkation of media representatives on assignment is discussed in § 705.14..., if so designated) have the authority to use Navy ships to embark individuals other than news media... embarked flag officer. (4) A caution that guests should not accept the invitation unless they are in good...
32 CFR 705.23 - Guest cruises.
Code of Federal Regulations, 2011 CFR
2011-07-01
... professional associations. (ii) Embarkation of media representatives on assignment is discussed in § 705.14..., if so designated) have the authority to use Navy ships to embark individuals other than news media... embarked flag officer. (4) A caution that guests should not accept the invitation unless they are in good...
32 CFR 705.23 - Guest cruises.
Code of Federal Regulations, 2014 CFR
2014-07-01
... professional associations. (ii) Embarkation of media representatives on assignment is discussed in § 705.14..., if so designated) have the authority to use Navy ships to embark individuals other than news media... embarked flag officer. (4) A caution that guests should not accept the invitation unless they are in good...
Guest-Service Agent. Teacher Edition.
ERIC Educational Resources Information Center
Al-Harake, Mounzer
This teacher's guide for the hospitality and tourism industry is designed to include the entry-level competencies students will need to enter any of the occupational areas identified in the front-desk section of the lodging occupations cluster. These occupations include front-desk clerk, cashier, telephone operator, guest-service agent,…
Insulander, M; de Jong, B; Svenungsson, B
2008-12-18
In September 2008, 21 cases of cryptosporidiosis occurred among guests and staff at a wedding reception in a hotel restaurant in Stockholm county, Sweden. The most probable source of the outbreak was bearnaise sauce containing chopped fresh parsley.
Yu, Ziyi; Zheng, Yu; Parker, Richard M; Lan, Yang; Wu, Yuchao; Coulston, Roger J; Zhang, Jing; Scherman, Oren A; Abell, Chris
2016-04-06
Bottom-up hierarchical assembly has emerged as an elaborate and energy-efficient strategy for the fabrication of smart materials. Herein, we present a hierarchical assembly process, whereby linear amphiphilic block copolymers are self-assembled into micelles, which in turn are accommodated at the interface of microfluidic droplets via cucurbit[8]uril-mediated host-guest chemistry to form supramolecular microcapsules. The monodisperse microcapsules can be used for simultaneous carriage of both organic (Nile Red) and aqueous-soluble (fluorescein isothiocyanate-dextran) cargo. Furthermore, the well-defined compartmentalized structure benefits from the dynamic nature of the supramolecular interaction and offers synergistic delivery of cargos with triggered release or through photocontrolled porosity. This demonstration of premeditated hierarchical assembly, where interactions from the molecular to microscale are designed, illustrates the power of this route toward accessing the next generation of functional materials and encapsulation strategies.
Programming A Molecular Relay for Ultrasensitive Biodetection through 129 Xe NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanfei; Roose, Benjamin W.; Philbin, John P.
2015-12-21
We reported a supramolecular strategy for detecting specific proteins in complex media by using hyperpolarized 129Xe NMR. A cucurbit[6]uril (CB[6])-based molecular relay was programmed for three sequential equilibrium conditions by designing a two-faced guest (TFG) that initially binds CB[6] and blocks the CB[6]–Xe interaction. Moreover, the protein analyte recruits the TFG and frees CB[6] for Xe binding. TFGs containing CB[6]- and carbonic anhydrase II (CAII)-binding domains were synthesized in one or two steps. X-ray crystallography confirmed TFG binding to Zn 2+ in the deep CAII active-site cleft, which precludes simultaneous CB[6] binding. The molecular relay was reprogrammed to detect avidinmore » by using a different TFG. Finally, Xe binding by CB[6] was detected in buffer and in E. coli cultures expressing CAII through ultrasensitive 129Xe NMR spectroscopy.« less
Coordinated Multiwavelength Observations of PKS 0528+134 in Quiescence
NASA Astrophysics Data System (ADS)
Boettcher, Markus; Palma, N.
2011-01-01
We report results of an intensive multiwavelength campaign on the prominent high-redshift (z = 2.06) gamma-ray bright blazar PKS 0528+134 in September - October 2009. The campaign was centered on four 30 ksec pointings with XMM-Newton, supplemented with ground-based optical (MDM, Perkins) and radio (UMRAO, Medicina, Metsaehovi, Noto, SMA) observations as well as long-term X-ray monitoring with RXTE and gamma-ray monitoring by Fermi. We find significant variability on 1 day time scales in the optical regime, accompanied by a weak redder-when-brighter trend. X-ray variability is found on longer ( 1 week) time scales, while the Fermi light curve shows no evidence for variability, neither in flux nor spectral index. We constructed four simultaneous spectral energy distributions, which can all be fit satisfactorily with a one-zone leptonic jet model. This work was supported by NASA through XMM-Newton Guest Observer Grant NNX09AV45G.
NASA Astrophysics Data System (ADS)
Torvinen, Mika; Kalenius, Elina; Sansone, Francesco; Casnati, Alessandro; Jänis, Janne
2012-02-01
The noncovalent complexation of monoamine neurotransmitters and related ammonium and quaternary ammonium ions by a conformationally flexible tetramethoxy glucosylcalix[4]arene was studied by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. The glucosylcalixarene exhibited highest binding affinity towards serotonin, norepinephrine, epinephrine, and dopamine. Structural properties of the guests, such as the number, location, and type of hydrogen bonding groups, length of the alkyl spacer between the ammonium head-group and the aromatic ring structure, and the degree of nitrogen substitution affected the complexation. Competition experiments and guest-exchange reactions indicated that the hydroxyl groups of guests participate in intermolecular hydrogen bonding with the glucocalixarene.
Interrogating ultrafast dynamics of a salicylideneaniline derivative within faujasite zeolites
NASA Astrophysics Data System (ADS)
Alarcos, Noemí; Sánchez, Félix; Douhal, Abderrazzak
2017-09-01
We report on femtosecond (fs) studies of (E)-2-(2-hydroxybenzyliden) amino-4-nitrophenol (HBA-4NP) in dichloromethane (DCM) and triacetin (TAC) solutions, and within NaX and NaY zeolites. In solution, an ultrafast (≤80 fs) excited-state intramolecular proton-transfer (ESIPT) reaction produces a keto (K) tautomer, which undergoes a rotational process in ∼4 (DCM) and ∼7 ps (TAC) toward the formation of non-emitting structures. Within NaX and NaY, where monomers and aggregates are formed, host-guest and guest-guest interactions play an important role in the ultrafast behaviour of these complexes. These results clearly reflect how nanoconfinement and zeolite composition affect the encapsulated dye photodynamics.
Design of linear quadratic regulators with eigenvalue placement in a specified region
NASA Technical Reports Server (NTRS)
Shieh, Leang-San; Zhen, Liu; Coleman, Norman P.
1990-01-01
Two linear quadratic regulators are developed for placing the closed-loop poles of linear multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at +/- pi/2k (for a specified integer k not less than 1) from the negative real axis, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane, and simultaneously minimizing a quadratic performance index. The design procedure mainly involves the solution of either Liapunov equations or Riccati equations. The general expression for finding the lower bound of a constant gain gamma is also developed.
Techno-Velcro to Techno-Memoria: Technology, Rhetoric, and Family in the Composition Classroom
ERIC Educational Resources Information Center
Ericsson, Patricia Freitag; Muhlhauser, Paul
2011-01-01
"Techno-velcro to Techno-memoria" is an intergenerational collection of techno-memories illustrating the impact of techno-literacies on family communication practices. Guests participating in "Techno-velcro to Techno-memoria" add their voices to create a rich resource of techno-rhetorical connections. Our guest-collaborators remember and describe…
Pedagogical Guest Room as an Educational Form of Students' Pedagogical Competence Development
ERIC Educational Resources Information Center
Sabirova, Elvira G.
2016-01-01
Actuality of the studied problem is conditioned by the fact that certain work forms with students represent possibilities for organizing educative activity of more complex level. The article is aimed on revealing educative potentiality of "pedagogical guest room" as one of the forms intended on development of students' pedagogical…
ERIC Educational Resources Information Center
Riebe, L.; Sibson, R.; Roepen, D.; Meakins, K.
2013-01-01
This study provides insights into the perceptions and expectations of Australian undergraduate business students (n=150) regarding the incorporation of guest speakers into the curriculum of a leadership unit focused on employability skills development. The authors adopted a mixed methods approach. A survey was conducted, with quantitative results…
26 CFR 49.4252-2 - Toll telephone service.
Code of Federal Regulations, 2011 CFR
2011-04-01
... telephone message or conversation. (2) The tax attaches to the total charge made to a hotel or similar subscriber for toll telephone service furnished to the hotel or its guests, but no tax attaches to any charge made by the hotel for service rendered in placing the calls for its guests. (c) Cross reference. For...
Open Simulation Laboratories [Guest editors' introduction
Alexander, Francis J.; Meneveau, Charles
2015-09-01
The introduction for the special issue on open simulation laboratories, the guest editors describe how OSLs will become more common as their potential is better understood and they begin providing access to valuable datasets to much larger segments of the scientific community. Moreover, new analysis tools and ways to do science will inevitably develop as a result.
26 CFR 49.4252-2 - Toll telephone service.
Code of Federal Regulations, 2010 CFR
2010-04-01
... telephone message or conversation. (2) The tax attaches to the total charge made to a hotel or similar subscriber for toll telephone service furnished to the hotel or its guests, but no tax attaches to any charge made by the hotel for service rendered in placing the calls for its guests. (c) Cross reference. For...
ERIC Educational Resources Information Center
Rood, Jeffrey A.; Henderson, Kenneth W.
2013-01-01
concepts of host-guest chemistry and size exclusion in porous metal-organic frameworks (MOFs). The experiment has been successfully carried out in both introductory and advanced-level inorganic chemistry laboratories. Students synthesized the porous MOF, alpha-Mg[subscript…
Photoluminescent Metal–Organic Frameworks for Gas Sensing
Lin, Rui‐Biao; Liu, Si‐Yang; Ye, Jia‐Wen; Li, Xu‐Yu
2016-01-01
Luminescence of porous coordination polymers (PCPs) or metal–organic frameworks (MOFs) is sensitive to the type and concentration of chemical species in the surrounding environment, because these materials combine the advantages of the highly regular porous structures and various luminescence mechanisms, as well as diversified host‐guest interactions. In the past few years, luminescent MOFs have attracted more and more attention for chemical sensing of gas‐phase analytes, including common gases and vapors of solids/liquids. While liquid‐phase and gas‐phase luminescence sensing by MOFs share similar mechanisms such as host‐guest electron and/or energy transfer, exiplex formation, and guest‐perturbing of excited‐state energy level and radiation pathways, via various types of host‐guest interactions, gas‐phase sensing has its unique advantages and challenges, such as easy utilization of encapsulated guest luminophores and difficulty for accurate measurement of the intensity change. This review summarizes recent progresses by using luminescent MOFs as reusable sensing materials for detection of gases and vapors of solids/liquids especially for O2, highlighting various strategies for improving the sensitivity, selectivity, stability, and accuracy, reducing the materials cost, and developing related devices. PMID:27818903
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schibilla, Frauke; Voskuhl, Jens; Fokina, Natalie A.
We report the inclusion of carboxy- and amine-substituted molecular nanodiamonds (NDs) adamantane, diamantane, and triamantane by β-cyclodextrin and γ-cyclodextrin (β-CD and γ-CD), which have particularly well-suited hydrophobicity and symmetry for an optimal fit of the host and guest molecules. We studied the host–guest interactions in detail and generally observed 1:1 association of the NDs with the larger γ-CD cavity, but observed 1:2 association for the largest ND in the series (triamantane) with β-CD. Here, we found higher binding affinities for carboxy-substituted NDs than for amine-substituted NDs. Additionally, cyclodextrin vesicles (CDVs) were decorated with d-mannose by using adamantane, diamantane, and triamantanemore » as non-covalent anchors, and the resulting vesicles were compared with the lectin concanavalin A in agglutination experiments. Agglutination was directly correlated to the host–guest association: adamantane showed lower agglutination than di- or triamantane with β-CDV and almost no agglutination with γ-CDV, whereas high agglutination was observed for di- and triamantane with γ-CDV.« less
Diffusion-Limited Cargo Loading of an Engineered Protein Container.
Zschoche, Reinhard; Hilvert, Donald
2015-12-30
The engineered bacterial nanocompartment AaLS-13 is a promising artificial encapsulation system that exploits electrostatic interactions for cargo loading. In order to study its ability to take up and retain guests, a pair of fluorescent proteins was developed which allows spectroscopic determination of the extent of encapsulation by Förster resonance energy transfer (FRET). The encapsulation process is generally complete within a second, suggesting low energetic barriers for proteins to cross the capsid shell. Formation of intermediate aggregates upon mixing host and guest in vitro complicates capsid loading at low ionic strength, but can be sidestepped by increasing salt concentrations or diluting the components. Encapsulation of guests is completely reversible, and the position of the equilibrium is easily tuned by varying the ionic strength. These results, which challenge the notion that AaLS-13 is a continuous rigid shell, provide valuable information about cargo loading that will guide ongoing efforts to engineer functional host-guest complexes. Moreover, it should be possible to adapt the protein FRET pair described in this report to characterize functional capsid-cargo complexes generated by other encapsulation systems.
Vibrational Dynamics and Guest-Host Coupling in Clathrate Hydrates
NASA Astrophysics Data System (ADS)
Koza, Michael M.; Schober, Helmut
Clathrate hydrates may turn out either a blessing or a curse for mankind. On one hand, they constitute a huge reservoir of fossil fuel. On the other hand, their decomposition may liberate large amounts of green house gas and have disastrous consequences on sea floor stability. It is thus of paramount importance to understand the formation and stability of these guest-host compounds. Neutron diffraction has successfully occupied a prominent place on the stage of these scientific investigations. Complete understanding, however, is not achieved without an explanation for the thermal properties of clathrates. In particular, the thermal conductivity has a large influence on clathrate formation and conservation. Neutron spectroscopy allows probing the microscopic dynamics of clathrate hydrates. We will show how comparative studies of vibrations in clathrate hydrates give insight into the coupling of the guest to the host lattice. This coupling together with the anharmonicity of the vibrational modes is shown to lay the foundations for the peculiar thermodynamic properties of clathrate hydrates. The results obtained reach far beyond the specific clathrate system. Similar mechanisms are expected to be at work in any guest-host complex.
Martínez-Rodríguez, Luis; Bandeira, Nuno A G; Bo, Carles; Kleij, Arjan W
2015-05-04
A calix[4]arene host equipped with two bis-[Zn(salphen)] complexes self-assembles into a capsular complex in the presence of a chiral diamine guest with an unexpected 2:1 ratio between the host and the guest. Effective chirality transfer from the diamine to the calix-salen hybrid host is observed by circular dichroism (CD) spectroscopy, and a high stability constant K2,1 of 1.59×10(11) M(-2) for the assembled host-guest ensemble has been determined with a substantial cooperativity factor α of 6.4. Density functional calculations are used to investigate the origin of the stability of the host-guest system and the experimental CD spectrum compared with those calculated for both possible diastereoisomers showing that the M,M isomer is the one that is preferentially formed. The current system holds promise for the chirality determination of diamines, as evidenced by the investigated substrate scope and the linear relationship between the ee of the diamine and the amplitude of the observed Cotton effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging
Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong
2016-01-01
The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane–modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. PMID:26874280
Studying Cosmic Dawn with WFIRST
NASA Astrophysics Data System (ADS)
Rhoads, James; Malhotra, Sangeeta; Jansen, Rolf A.; Windhorst, Rogier; Tilvi, Vithal; Finkelstein, Steven; Wold, Isak; Papovich, Casey; Fan, Xiaohui; Mellema, Garrelt; Zackrisson, Erik; Jensen, Hannes; T
2018-01-01
Our understanding of Cosmic Dawn can be revolutionized using WFIRST's combination of wide-field, sensitive, high resolution near-infrared imaging and spectroscopy. Guest investigator studies of WFIRST's high latitude imaging survey and supernova search fields will yield orders of magnitude increases in our samples of Lyman break galaxies from z=7 to z>12. The high latitude spectrsocopic survey will enable an unprecedented search for z>7 quasars. Guest observer deep fields can extend these studies to flux levels of Hubble's deepest fields, over regions measured in square degrees. The resulting census of luminous objects in the Cosmic Dawn will provide key insights into the sources of the ultraviolet photons that powered reionization. Moreover, because WFIRST has a wide field (slitless) spectroscopic capability, it can be used to search for Lyman alpha emitting galaxies over the full history of reionization. By comparing the Lyman alpha galaxy statistics to those of continuum sources, we can directly probe the transparency of the intergalactic gas and chart reionization history.Our team is planning for both Guest Investigator and Guest Observer applications of WFIRST to studying Cosmic Dawn, and welcomes dialog with other interested members of the community.
The creation of modulated monoclinic aperiodic composites in n-alkane/urea compounds
Mariette, Céline; Guérin, Laurent; Rabiller, Philippe; ...
2014-09-12
n-Dodecane/urea is a member of the prototype series of n-alkane/urea inclusion compounds. At room temperature, it presents a quasi-one dimensional liquid-like state for the confined guest molecules within the rigid, hexagonal framework of the urea host. At lower temperatures, we report the existence of two other phases. Below T c=248 K there appears a phase with rank four superspace group P6 122(00γ), the one typically observed at room temperature in n-alkane/urea compounds with longer guest molecules. A misfit parameter, defined by the ratio γ=c h/c g (c host/c guest), is found to be 0.632±0.005. Below T c1=123 K, a monoclinicmore » modulated phase is created with a constant shift along c of the guest molecules in adjacent channels. The maximal monoclinic space group for this structure is P12 11(α0γ). We discuss analogies and differences with n-heptane/urea, which also presents a monoclinic, modulated low-temperature phase.« less
Schibilla, Frauke; Voskuhl, Jens; Fokina, Natalie A.; ...
2017-11-06
We report the inclusion of carboxy- and amine-substituted molecular nanodiamonds (NDs) adamantane, diamantane, and triamantane by β-cyclodextrin and γ-cyclodextrin (β-CD and γ-CD), which have particularly well-suited hydrophobicity and symmetry for an optimal fit of the host and guest molecules. We studied the host–guest interactions in detail and generally observed 1:1 association of the NDs with the larger γ-CD cavity, but observed 1:2 association for the largest ND in the series (triamantane) with β-CD. Here, we found higher binding affinities for carboxy-substituted NDs than for amine-substituted NDs. Additionally, cyclodextrin vesicles (CDVs) were decorated with d-mannose by using adamantane, diamantane, and triamantanemore » as non-covalent anchors, and the resulting vesicles were compared with the lectin concanavalin A in agglutination experiments. Agglutination was directly correlated to the host–guest association: adamantane showed lower agglutination than di- or triamantane with β-CDV and almost no agglutination with γ-CDV, whereas high agglutination was observed for di- and triamantane with γ-CDV.« less
The Interaction of Guest Molecules with Co-MOF-74: A Vis/NIR and Raman Approach.
Strauss, Ina; Mundstock, Alexander; Hinrichs, Dominik; Himstedt, Rasmus; Knebel, Alexander; Reinhardt, Carsten; Dorfs, Dirk; Caro, Jürgen
2018-03-13
Co-MOF-74 rod like crystals with a length of several hundred micrometers are synthesized by a solvothermal procedure and their interaction with different gases is evaluated for selective gas sensing. We show strongly anisotropic absorption behavior of the Co-MOF-74 crystals when illuminated with polarized light. The interactions of guests (CO 2 , propane, propene, Ar, MeOH, H 2 O) with Co-MOF-74, is studied by various spectroscopic techniques. Vis/NIR shows peak shifts of Co-MOF-74 depending on the interaction with the guest. In the visible and the NIR the maximum absorbance is shifted selectively corresponding to the intensity of the Co II -guest interaction. Even propene and propane could be distinguished at room temperature by their different interactions with Co-MOF-74. Raman spectroscopy was used to detect a modified vibrational behavior of Co-MOF-74 upon gas adsorption. We show that the adsorption of H 2 O leads to a characteristic shift of the peak maxima in the Raman spectra. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhu, Mengshi; Murayama, Hideaki
2017-04-01
New approach in simultaneous measurement of dynamic strain and temperature has been done by using a high birefringence PANDA fiber Bragg grating sensor. By this technique, we have succeeded in discriminating dynamic strain and temperature distribution at the sampling rate of 800 Hz and the spatial resolution of 1 mm. The dynamic distribution of strain and temperature were measured with the deviation of 5mm spatially. In addition, we have designed an experimental setup by which we can apply quantitative dynamic strain and temperature distribution to the fiber under testing without bounding it to a specimen.
Equivalences between nonuniform exponential dichotomy and admissibility
NASA Astrophysics Data System (ADS)
Zhou, Linfeng; Lu, Kening; Zhang, Weinian
2017-01-01
Relationship between exponential dichotomies and admissibility of function classes is a significant problem for hyperbolic dynamical systems. It was proved that a nonuniform exponential dichotomy implies several admissible pairs of function classes and conversely some admissible pairs were found to imply a nonuniform exponential dichotomy. In this paper we find an appropriate admissible pair of classes of Lyapunov bounded functions which is equivalent to the existence of nonuniform exponential dichotomy on half-lines R± separately, on both half-lines R± simultaneously, and on the whole line R. Additionally, the maximal admissibility is proved in the case on both half-lines R± simultaneously.
Tijssen, Marloes R.; Cvejic, Ana; Joshi, Anagha; Hannah, Rebecca L.; Ferreira, Rita; Forrai, Ariel; Bellissimo, Dana C.; Oram, S. Helen; Smethurst, Peter A.; Wilson, Nicola K.; Wang, Xiaonan; Ottersbach, Katrin; Stemple, Derek L.; Green, Anthony R.; Ouwehand, Willem H.; Göttgens, Berthold
2011-01-01
Summary Hematopoietic differentiation critically depends on combinations of transcriptional regulators controlling the development of individual lineages. Here, we report the genome-wide binding sites for the five key hematopoietic transcription factors—GATA1, GATA2, RUNX1, FLI1, and TAL1/SCL—in primary human megakaryocytes. Statistical analysis of the 17,263 regions bound by at least one factor demonstrated that simultaneous binding by all five factors was the most enriched pattern and often occurred near known hematopoietic regulators. Eight genes not previously appreciated to function in hematopoiesis that were bound by all five factors were shown to be essential for thrombocyte and/or erythroid development in zebrafish. Moreover, one of these genes encoding the PDZK1IP1 protein shared transcriptional enhancer elements with the blood stem cell regulator TAL1/SCL. Multifactor ChIP-Seq analysis in primary human cells coupled with a high-throughput in vivo perturbation screen therefore offers a powerful strategy to identify essential regulators of complex mammalian differentiation processes. PMID:21571218
Golden, J.P.; Verbarg, J.; Howell, P.B.; Shriver-Lake, L.C.; Ligler, F.S.
2012-01-01
A spinning magnetic trap (MagTrap) for automated sample processing was integrated with a microflow cytometer capable of simultaneously detecting multiple targets to provide an automated sample-to-answer diagnosis in 40 min. After target capture on fluorescently coded magnetic microspheres, the magnetic trap automatically concentrated the fluorescently coded microspheres, separated the captured target from the sample matrix, and exposed the bound target sequentially to biotinylated tracer molecules and streptavidin-labeled phycoerythrin. The concentrated microspheres were then hydrodynamically focused in a microflow cytometer capable of 4-color analysis (two wavelengths for microsphere identification, one for light scatter to discriminate single microspheres and one for phycoerythrin bound to the target). A three-fold decrease in sample preparation time and an improved detection limit, independent of target preconcentration, was demonstrated for detection of Escherichia coli 0157:H7 using the MagTrap as compared to manual processing. Simultaneous analysis of positive and negative controls, along with the assay reagents specific for the target, was used to obtain dose–response curves, demonstrating the potential for quantification of pathogen load in buffer and serum. PMID:22960010
Golden, J P; Verbarg, J; Howell, P B; Shriver-Lake, L C; Ligler, F S
2013-02-15
A spinning magnetic trap (MagTrap) for automated sample processing was integrated with a microflow cytometer capable of simultaneously detecting multiple targets to provide an automated sample-to-answer diagnosis in 40 min. After target capture on fluorescently coded magnetic microspheres, the magnetic trap automatically concentrated the fluorescently coded microspheres, separated the captured target from the sample matrix, and exposed the bound target sequentially to biotinylated tracer molecules and streptavidin-labeled phycoerythrin. The concentrated microspheres were then hydrodynamically focused in a microflow cytometer capable of 4-color analysis (two wavelengths for microsphere identification, one for light scatter to discriminate single microspheres and one for phycoerythrin bound to the target). A three-fold decrease in sample preparation time and an improved detection limit, independent of target preconcentration, was demonstrated for detection of Escherichia coli 0157:H7 using the MagTrap as compared to manual processing. Simultaneous analysis of positive and negative controls, along with the assay reagents specific for the target, was used to obtain dose-response curves, demonstrating the potential for quantification of pathogen load in buffer and serum. Published by Elsevier B.V.
Jiang, Lingxiang; Yu, Caifang; Deng, Manli; Jin, Changwen; Wang, Yilin; Yan, Yun; Huang, Jianbin
2010-02-18
Cationic surfactant/anionic surfactant/beta-CD ternary aqueous systems provide a platform for the coexistence of the host-guest (beta-CD/surfactant) equilibrium and the biased aggregation (monomeric/aggregated surfactants) equilibrium. We report here that the interplay between the two equilibria dominates the systems as follows. (1) The biased aggregation equilibrium imposes an apparent selectivity on the host-guest equilibrium, namely, beta-CD has to always selectively bind the major surfactant (molar fraction > 0.5) even if binding constants of beta-CD to the pair of surfactants are quite similar. (2) In return, the host-guest equilibrium amplifies the bias of the aggregation equilibrium, that is, the selective binding partly removes the major surfactant from the aggregates and leaves the aggregate composition approaching the electroneutral mixing stoichiometry. (3) This composition variation enhances electrostatic attractions between oppositely charged surfactant head groups, thus resulting in less-curved aggregates. In particular, the present apparent host-guest selectivity is of remarkably high values, and the selectivity stems from the bias of the aggregation equilibrium rather than the difference in binding constants. Moreover, beta-CD is defined as a "stoichiometry booster" for the whole class of cationic/anionic surfactant systems, which provides an additional degree of freedom to directly adjust aggregate compositions of the systems. The stoichiometry boosting of the compositions can in turn affect or even determine microstructures and macroproperties of the systems.
Iritani, Kohei; Tahara, Kazukuni; De Feyter, Steven; Tobe, Yoshito
2017-05-16
Host-guest chemistry in two-dimensional (2D) space, that is, physisorbed monolayers of a single atom or a single molecular thickness on surfaces, has become a subject of intense current interest because of perspectives for various applications in molecular-scale electronics, selective sensors, and tailored catalysis. Scanning tunneling microscopy has been used as a powerful tool for the visualization of molecules in real space on a conducting substrate surface. For more than a decade, we have been investigating the self-assembly of a series of triangle-shaped phenylene-ethynylene macrocycles called dehydrobenzo[12]annulenes (DBAs). These molecules are substituted with six alkyl chains and are capable of forming hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains at the interface of organic solvents and graphite. The dimension of the nanoporous space or nanowell formed by the self-assembly of DBAs can be controlled from 1.6 to 4.7 nm by simply changing the alkyl chain length from C 6 to C 20 . Single molecules as well as homoclusters and heteroclusters are capable of coadsorbing within the host matrix using shape- and size-complementarity principles. Moreover, on the basis of the versatility of the DBA molecules that allows chemical modification of the alkyl chain terminals, we were able to decorate the interior space of the nanoporous networks with functional groups such as azobenzenedicarboxylic acid for photoresponsive guest adsorption/desorption or fluoroalkanes and tetraethylene glycol groups for selective guest binding by electrostatic interactions and zinc-porphyrin units for complexation with a guest by charge-transfer interactions. In this Feature Article, we describe the general aspects of molecular self-assembly at liquid/solid interfaces, followed by the formation of programmed porous molecular networks using rationally designed molecular building blocks. We focus on our own work involving host-guest chemistry in integrated nanoporous space that is modified for specific purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dureckova, Hana, E-mail: houci059@uottawa.ca; Woo, Tom K., E-mail: tom.woo@uottawa.ca; Alavi, Saman, E-mail: saman.alavi@nrc-cnrc.gc.ca
Bromine forms a tetragonal clathrate hydrate structure (TS-I) very rarely observed in clathrate hydrates of other guest substances. The detailed structure, energetics, and dynamics of Br{sub 2} and Cl{sub 2} in TS-I and cubic structure I (CS-I) clathrate hydrates are studied in this work using molecular dynamics and quantum chemical calculations. X-ray diffraction studies show that the halogen-water–oxygen distances in the cages of these structures are shorter than the sum of the van der Waals radii of halogen and oxygen atoms. This suggests that the stabilizing effects of halogen bonding or other non-covalent interactions (NCIs) may contribute to the formationmore » of the unique tetragonal bromine hydrate structure. We performed molecular dynamics simulations of Br{sub 2} and Cl{sub 2} clathrate hydrates using our previously developed five-site charge models for the dihalogen molecules [Dureckova et al. Can. J. Chem. 93, 864 (2015)] which reproduce the computed electrostatic potentials of the dihalogens and account for the electropositive σ-hole of the halogen bond donor (the dihalogen). Analysis of the radial distribution functions, enthalpies of encapsulation, velocity and orientation autocorrelation functions, and polar angle distributions are carried out for Br{sub 2} and Cl{sub 2} guests in various cages to contrast the properties of these guests in the TS-I and CS-I phases. Quantum chemical partial geometry optimizations of Br{sub 2} and Cl{sub 2} guests in the hydrate cages using the M06-2X functional give short halogen-water distances compatible with values observed in X-ray diffraction experiments. NCI plots of guest-cage structures are generated to qualitatively show the relative strength of the non-bonding interactions between dihalogens and water molecules. The differences between behaviors of Br{sub 2} and Cl{sub 2} guests in the hydrate cages may explain why bromine forms the unique TS-I phase.« less
Performances of multiprocessor multidisk architectures for continuous media storage
NASA Astrophysics Data System (ADS)
Gennart, Benoit A.; Messerli, Vincent; Hersch, Roger D.
1996-03-01
Multimedia interfaces increase the need for large image databases, capable of storing and reading streams of data with strict synchronicity and isochronicity requirements. In order to fulfill these requirements, we consider a parallel image server architecture which relies on arrays of intelligent disk nodes, each disk node being composed of one processor and one or more disks. This contribution analyzes through bottleneck performance evaluation and simulation the behavior of two multi-processor multi-disk architectures: a point-to-point architecture and a shared-bus architecture similar to current multiprocessor workstation architectures. We compare the two architectures on the basis of two multimedia algorithms: the compute-bound frame resizing by resampling and the data-bound disk-to-client stream transfer. The results suggest that the shared bus is a potential bottleneck despite its very high hardware throughput (400Mbytes/s) and that an architecture with addressable local memories located closely to their respective processors could partially remove this bottleneck. The point- to-point architecture is scalable and able to sustain high throughputs for simultaneous compute- bound and data-bound operations.
Local approximation of a metapopulation's equilibrium.
Barbour, A D; McVinish, R; Pollett, P K
2018-04-18
We consider the approximation of the equilibrium of a metapopulation model, in which a finite number of patches are randomly distributed over a bounded subset [Formula: see text] of Euclidean space. The approximation is good when a large number of patches contribute to the colonization pressure on any given unoccupied patch, and when the quality of the patches varies little over the length scale determined by the colonization radius. If this is the case, the equilibrium probability of a patch at z being occupied is shown to be close to [Formula: see text], the equilibrium occupation probability in Levins's model, at any point [Formula: see text] not too close to the boundary, if the local colonization pressure and extinction rates appropriate to z are assumed. The approximation is justified by giving explicit upper and lower bounds for the occupation probabilities, expressed in terms of the model parameters. Since the patches are distributed randomly, the occupation probabilities are also random, and we complement our bounds with explicit bounds on the probability that they are satisfied at all patches simultaneously.
Laboratory of Viral Diseases Guest Researcher Seminar Series | Center for Cancer Research
Laboratory of Viral Diseases Guest Researcher Seminar Series New Epigenetic Regulators of HIV Latency Speaker: Melanie Ott, M.D., Ph.D, Senior Investigator & Professor of Medicine Gladstone Institutes & University of California Building 33, Main Conference Room 1N09 Main NIH CAMPUS *BLDG 33 is a secure facility, please allow time to pass through security.
Self-Assembly, Guest Capture, and NMR Spectroscopy of a Metal-Organic Cage in Water
ERIC Educational Resources Information Center
Go, Eun Bin; Srisuknimit, Veerasak; Cheng, Stephanie L.; Vosburg, David A.
2016-01-01
A green organic-inorganic laboratory experiment has been developed in which students prepare a self-assembling iron cage in D[subscript 2]O at room temperature. The tetrahedral cage captures a small, neutral molecule such as cyclohexane or tetrahydrofuran. [Superscript 1]H NMR analysis distinguishes captured and free guests through diagnostic…
Shao, Li; Sun, Jifu; Hua, Bin; Huang, Feihe
2018-05-08
Here a novel fluorescent supramolecular cross-linked polymer network with aggregation induced enhanced emission (AIEE) properties was constructed via pillar[5]arene-based host-guest recognition. Furthermore, the supramolecular polymer network can be used for explosive detection in both solution and thin films.
Teaching, Learning and Ethical Dilemmas: Lessons from Albert Camus
ERIC Educational Resources Information Center
Roberts, Peter
2008-01-01
Over the past half century, Albert Camus's story "The Guest" has attracted a great deal of scholarly attention. "The Guest" focuses on the ethical dilemmas faced by Daru, a school teacher in Algeria, and the two visitors he receives one day: Balducci, a gendarme, and an unnamed Arab prisoner. This paper addresses Camus's text from an educational…
ERIC Educational Resources Information Center
Kim, Eun-Joo; Vail, Cynthia
2011-01-01
This study examines preservice teachers' perspectives on family involvement in special education and effective teaching methods for delivering family-involvement content. Eighty-three preservice teachers provided data on pre- and postadministrations of a questionnaire. The effectiveness of two methods, a video and a guest speaker, in delivering…
Code of Federal Regulations, 2014 CFR
2014-10-01
... nontoxic shot are the legal means that may be used or possessed during these hunts (see § 32.2(k)). 5. We... nontoxic shot for hunting while in the field (see § 32.2(k)). 5. Refuge permits (name only) are required... allowed. 14. A hunter may bring one guest. Guest may not use a hunting firearm or other hunting weapon...
ERIC Educational Resources Information Center
Fanguy, Mik; Costley, Jamie; Baldwin, Matthew
2017-01-01
Lecture videos have become an increasingly prevalent and important source of learning content. Lecturergenerated summaries may be used during a video lecture to improve student recall. Furthermore, the integration of a guest lecturer into the classroom may be a beneficial educational practice drawing the learner's attention to specific content or…
Welcome All Students to Room 202: Creating Culturally Responsive Classrooms
ERIC Educational Resources Information Center
Ford, Donna Y.
2005-01-01
In this article, the author contends that, in many ways, our classrooms are like our homes. How much time, energy, and thought do educators devote to making the classroom (or school) environment welcoming for the students (their guests)? Expanding upon this analogy, the author equates preparing a meal for guests at her home with preparing the…
ERIC Educational Resources Information Center
Sawchuk, Peter H.; Kempf, Arlo
2008-01-01
Purpose: The purpose of this paper is to contextualise historically transnational labour experiences within guest worker programs in Canada and to provide a conceptual foundation for analysing work, learning and living relations with special attention to agricultural workers. Design/methodology/approach: The research is based on a critical review…
Usability of Security Management:Defining the Permissions of Guests
NASA Astrophysics Data System (ADS)
Johnson, Matthew; Stajano, Frank
Within the scenario of a Smart Home, we discuss the issues involved in allowing limited interaction with the environment for unidentified principals, or guests. The challenges include identifying and authenticating guests on one hand and delegating authorization to them on the other. While the technical mechanisms for doing so in generic distributed systems have been around for decades, existing solutions are in general not applicable to the smart home because they are too complex to manage. We focus on providing both security and usability; we therefore seek simple and easy to understand approaches that can be used by a normal computer-illiterate home owner, not just by a trained system administrator. This position paper describes ongoing research and does not claim to have all the answers.
NASA Astrophysics Data System (ADS)
Ceborska, Magdalena; Szwed, Kamila; Asztemborska, Monika; Wszelaka-Rylik, Małgorzata; Kicińska, Ewa; Suwińska, Kinga
2015-11-01
Geraniol and α-terpineol are insoluble in water volatile compounds. α-Terpineol is a potentially important agent for medical applications. Formation of molecular complexes with β-cyclodextrin would lead to the increase of water solubility and bioavailability. β-Cyclodextrin forms 2:2 inclusion complexes with both enantiomers of α-terpineol and their precursor geraniol. Solid state complexes are thoroughly characterized by single X-ray crystallography and their stability over vast range of temperatures is proven by TG analysis. Intermolecular host-guest, host-host and guest-guest interactions give good insight into the nature of formed inclusion complexes. Stability constants of the complexes in solution are determined by HPLC.
Yabushita, Mizuho; Li, Peng; Durkin, Kathleen A; Kobayashi, Hirokazu; Fukuoka, Atsushi; Farha, Omar K; Katz, Alexander
2017-05-02
The molecular origins of adsorption of lignin-derived phenolics to metal-organic framework NU-1000 are investigated from aqueous solution as well as in competitive mode with glucose present in the same aqueous mixture. A comparison of adsorption equilibrium constants (K ads ) for phenolics functionalized with either carboxylic acid or aldehyde substituents demonstrated only a slight increase (less than a factor of 6) for the former according to both experiments and calculations. This small difference in K ads between aldehyde and carboxylic-acid substituted adsorbates is consistent with the pyrene unit of NU-1000 as the adsorption site, rather than the zirconia nodes, while at saturation coverage, the adsorption capacity suggests multiple guests per pyrene. Experimental standard free energies of adsorption directly correlated with the molecular size and electronic structure calculations confirmed this direct relationship, with the pyrene units as adsorption site. The underlying origins of this relationship are grounded in noncovalent π-π interactions as being responsible for adsorption, the same interactions present in the condensed phase of the phenolics, which to a large extent govern their heat of vaporization. Thus, NU-1000 acts as a preformed aromatic cavity for driving aromatic guest adsorption from aqueous solution and does so specifically without causing detectable glucose adsorption from aqueous solution, thereby achieving complete glucose-phenolics separations. The reusability of NU-1000 during an adsorption/desorption cycle was good, even with some of the phenolic compounds with greatest affinity not easiliy removed with water and ethanol washes at room temperature. A competitive adsorption experiment gave an upper bound for K ads for glucose of at most 0.18 M -1 , which can be compared with K ads for the phenolics investigated here, which fell in the range of 443-42 639 M -1 . The actual value of K ads for glucose may be much closer to zero given the lack of observed glucose uptake with NU-1000 as adsorbent.
Blass, Johanna; Albrecht, Marcel; Bozna, Bianca L; Wenz, Gerhard; Bennewitz, Roland
2015-05-07
We introduce a molecular toolkit for studying the dynamics in friction and adhesion from the single molecule level to effects of multivalency. As experimental model system we use supramolecular bonds established by the inclusion of ditopic adamantane connector molecules into two surface-bound cyclodextrin molecules, attached to a tip of an atomic force microscope (AFM) and to a flat silicon surface. The rupture force of a single bond does not depend on the pulling rate, indicating that the fast complexation kinetics of adamantane and cyclodextrin are probed in thermal equilibrium. In contrast, the pull-off force for a group of supramolecular bonds depends on the unloading rate revealing a non-equilibrium situation, an effect discussed as the combined action of multivalency and cantilever inertia effects. Friction forces exhibit a stick-slip characteristic which is explained by the cooperative rupture of groups of host-guest bonds and their rebinding. No dependence of friction on the sliding velocity has been observed in the accessible range of velocities due to fast rebinding and the negligible delay of cantilever response in AFM lateral force measurements.
NASA Astrophysics Data System (ADS)
Wang, Qi-Qiang; Gonell, Sergio; Leenders, Stefan H. A. M.; Dürr, Maximilian; Ivanović-Burmazović, Ivana; Reek, Joost N. H.
2016-03-01
Tuning reagent and catalyst concentrations is crucial in the development of efficient catalytic transformations. In enzyme-catalysed reactions the substrate is bound—often by multiple non-covalent interactions—in a well-defined pocket close to the active site of the enzyme; this pre-organization facilitates highly efficient transformations. Here we report an artificial system that co-encapsulates multiple catalysts and substrates within the confined space defined by an M12L24 nanosphere that contains 24 endohedral guanidinium-binding sites. Cooperative binding means that sulfonate guests are bound much more strongly than carboxylates. This difference has been used to fix gold-based catalysts firmly, with the remaining binding sites left to pre-organize substrates. This strategy was applied to a Au(I)-catalysed cyclization of acetylenic acid to enol lactone in which the pre-organization resulted in much higher reaction rates. We also found that the encapsulated sulfonate-containing Au(I) catalysts did not convert neutral (acid) substrates, and so could have potential in the development of substrate-selective catalysis and base-triggered on/off switching of catalysis.
Parkes, Marie V.; Demir, Hakan; Teich-McGoldrick, Stephanie L.; ...
2014-03-28
Molecular dynamics simulations were used to investigate trends in noble gas (Ar, Kr, Xe) diffusion in the metal-organic frameworks HKUST-1 and ZIF-8. Diffusion occurs primarily through inter-cage jump events, with much greater diffusion of guest atoms in HKUST-1 compared to ZIF-8 due to the larger cage and window sizes in the former. We compare diffusion coefficients calculated for both rigid and flexible frameworks. For rigid framework simulations, in which the framework atoms were held at their crystallographic or geometry optimized coordinates, sometimes dramatic differences in guest diffusion were seen depending on the initial framework structure or the choice of frameworkmore » force field parameters. When framework flexibility effects were included, argon and krypton diffusion increased significantly compared to rigid-framework simulations using general force field parameters. Additionally, for argon and krypton in ZIF-8, guest diffusion increased with loading, demonstrating that guest-guest interactions between cages enhance inter-cage diffusion. No inter-cage jump events were seen for xenon atoms in ZIF-8 regardless of force field or initial structure, and the loading dependence of xenon diffusion in HKUST-1 is different for rigid and flexible frameworks. Diffusion of krypton and xenon in HKUST-1 depends on two competing effects: the steric effect that decreases diffusion as loading increases, and the “small cage effect” that increases diffusion as loading increases. Finally, a detailed analysis of the window size in ZIF-8 reveals that the window increases beyond its normal size to permit passage of a (nominally) larger krypton atom.« less
Efficient Tracking, Logging, and Blocking of Accesses to Digital Objects
2015-09-01
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services , Directorate for Information Operations and Reports...4.3.1 Initial User Feedback ................................................................................... 33 4.4 Objective Benchmarks of the System...used and, that we can trap guest OS page faults. Shadow paging is a technique that creates a copy of guest page tables, sanitizes and propagates the
Guest editorial: Aquatic science in the Northwest
Sepulveda, Adam; Ray, Andrew M.
2017-01-01
In recent years, Northwest Science has seen a significant increase in the number of submissions representing aquatic science. Our region is punctuated by aquatic systems. The current issue in particular, presents a number of new aquatic science contributions. Accordingly, Northwest Science invited the authors of this guest editorial to address the question, why is aquatic science so important in the Northwest?
Efficient Energy Storage and Conversion Using Adiabatic Compression of Relativistic-Electron Plasmas
1989-02-17
discussed by Guest and Sigmar 1221, and because the cyclotron maser mode was omitted from consideration (Y lou a f + ku, f,, in Ref. 122]. In what follows...Academic Press. New York (1961 ) 122] GUEST. G.E., SIGMAR , D.., NucI. Fusion 11 (1971) 1271 ABRAMOWIT7. M., STEGIJN. I A. (17ds). Hlandbook of 151
ERIC Educational Resources Information Center
Badia, Giovanna
2015-01-01
How does an instructor capture students' attention in a guest lecture or one-shot class? In this article, the author presents some strategies to attract and maintain students' interest in a 60-90 minute session, which explore methods for understanding students' needs, obtaining buy-in, showing enthusiasm, and incorporating in-class activities. A…
Code of Federal Regulations, 2010 CFR
2010-01-01
... featured guest at a fundraising event for a State, district, or local committee of a political party... funds are raised. In light of the foregoing: (a) State, district, or local committees of a political... communications; and (b) Candidates and individuals holding Federal office may speak at such events without...
Use of hygiene protocols to control the spread of viruses in a hotel.
Sifuentes, Laura Y; Koenig, David W; Phillips, Ronnie L; Reynolds, Kelly A; Gerba, Charles P
2014-09-01
The goals of this study were to observe the spread of viruses in a hotel setting and to assess the effectiveness of a hygiene intervention in reducing their spread. Selected fomites in one hotel room were inoculated with bacteriophage ϕx-174, and fomites in a conference center within the same hotel were inoculated using bacteriophage MS2. Cleaning of the contaminated room resulted in the spread of viruses to other rooms by the housekeeping staff. Furthermore, viruses were transferred by hotel guests to the conference center and a communal kitchen area. Additionally, conference attendees transferred viruses from the conference center to their hotel rooms and a communal kitchen area. This study demonstrated how viruses can be spread throughout a hotel setting by both housekeepers and guests. A hygiene intervention, which included providing hand hygiene products and facial tissues to the guests and disinfecting solutions with disposable wipes to the housekeeping staff, was successful in reducing the spread of viruses between the hotel guest rooms and conference center. The hygiene intervention resulted in significantly reduced transfer of the ϕx-174 between the contaminated hotel room and other hotel rooms, communal areas, and the conference center (p = 0.02).
Hu, Jingjing; Fang, Min; Cheng, Yiyun; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen
2010-06-03
In the present study, we investigated the host-guest chemistry of dendrimer/guanosine monophosphate (GMP) and present an in-depth look into the binding/encapsulation of GMP by dendrimers using NMR studies. (1)H NMR spectra showed a significant downfield shift of methylene protons in the outmost layer of the G5 dendrimer, indicating the formation of ion pairs between cationic amine groups of dendrimer and anionic phosphate groups of GMP. Chemical shift titration results showed that the binding constant between G5 dendrimer and GMP is 17,400 M(-1) and each G5 dendrimer has 107 binding sites. The binding of GMP to dendrimers prevents its aggregation in aqueous solutions and thereby enhances its stability. Nuclear Overhauser effect measurements indicated that a GMP binding and encapsulation balance occurs on the surface and in the interior of dendrimer. The binding/encapsulation transitions can be easily tailored by altering the surface and interior charge densities of the dendrimer. All these findings provide a new insight into the host-guest chemistry of dendrimer/guest complexes and may play important roles in the study of dendrimer/DNA aggregates by a "bottom-up" strategy.
NASA Astrophysics Data System (ADS)
Yu, Peng; Zhang, Xiaohua; Zhou, Jiawan; Xiong, Erhu; Li, Xiaoyu; Chen, Jinhua
2015-11-01
A novel competitive host-guest strategy regulated by protein biogate was developed for sensitive and selective analysis of prion protein. The methylene blue (MB)-tagged prion aptamer (MB-Apt) was introduced to the multiwalled carbon nanotubes-β-cyclodextrins (MWCNTs-β-CD) composites-modified glassy carbon (GC) electrode through the host-guest interaction between β-CD and MB. In the absence of prion, MB-Apt could be displaced by ferrocenecarboxylic acid (FCA) due to its stronger binding affinity to β-CD, resulting in a large oxidation peak of FCA. However, in the presence of prion, the specific prion-aptamer interaction drove the formation of protein biogate to seal the cavity of β-CD, which hindered the guest displacement of MB by FCA and resulted in the oxidation peak current of MB (IMB) increased and that of FCA (IFCA) decreased. The developed aptasensor showed good response towards the target (prion protein) with a low detection limit of 160 fM. By changing the specific aptamers, this strategy could be easily extended to detect other proteins, showing promising potential for extensive applications in bioanalysis.
Bulky melamine-based Zn-porphyrin tweezer as a CD probe of molecular chirality.
Petrovic, Ana G; Vantomme, Ghislaine; Negrón-Abril, Yashira L; Lubian, Elisa; Saielli, Giacomo; Menegazzo, Ileana; Cordero, Roselynn; Proni, Gloria; Nakanishi, Koji; Carofiglio, Tommaso; Berova, Nina
2011-10-01
The transfer of chirality from a guest molecule to an achiral host is the subject of significant interest especially when, upon chiral induction, the chiroptical response of the host/guest complex can effectively report the absolute configuration (AC) of the guest. For more than a decade, dimeric metalloporphyrin hosts (tweezers) have been successfully applied as chirality probes for determination of the AC for a wide variety of chiral synthetic compounds and natural products. The objective of this study is to investigate the utility of a new class of melamine-bridged Zn-porphyrin tweezers as sensitive AC reporters. A combined approach based on an experimental CD analysis and a theoretical prediction of the prevailing interporphyrin helicity demonstrates that these tweezers display favorable properties for chiral recognition. Herein, we discuss the application of the melamine-bridged tweezer to the chiral recognition of a diverse set of chiral guests, such as 1,2-diamines, α-amino-esters and amides, secondary alcohols, and 1,2-amino-alcohols. The bulky periphery and the presence of a rigid porphyrin linkage lead, in some cases, to a more enhanced CD sensitivity than that reported earlier with other tweezers. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong
2013-04-01
Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.
Robust multi-responsive supramolecular hydrogel based on a mono-component host-guest gelator.
Cheng, Weinan; Zhao, Dongxu; Qiu, Yuan; Hu, Haisi; Wang, Hong; Wang, Qin; Liao, Yonggui; Peng, Haiyan; Xie, Xiaolin
2018-05-29
Supramolecular hydrogels have been widely investigated, but the construction of stimuli-responsive mono-component host-guest hydrogels remains a challenge in that it is still hard to balance the solubility and gelation ability of the gelator. In this work, three azobenzene-modified β-cyclodextrin derivatives with different alkyl lengths (β-CD-Azo-Cn) have been synthesized. The length of the alkyl chain dramatically influences the solubility and gelation ability of β-CD derivatives in water. Among these derivatives, β-CD-Azo-C8 possesses the lowest minimum gelation concentration (MGC). Based on the host-guest interaction between β-CD and azobenzene units in aqueous solution, which is confirmed by UV-visible and ROESY NMR spectra, the gelators self-assemble and further interwine into networks through the hydrogen bonds on the surface of β-CD cavities. Hydrogels formed by mono-component gelators can collapse under external stimuli such as heating, competition guests and hosts, and UV irradiation. When the concentration of the gelator is more than 8 wt%, the hydrogel exhibits good self-supporting ability with a storage modulus higher than 104 Pa. The gel-sol transition temperature of the hydrogel is near body temperature, indicating its potential applications in biological materials.
Structural and electronic properties of the alkali metal incommensurate phases
NASA Astrophysics Data System (ADS)
Woolman, Gavin; Naden Robinson, Victor; Marqués, Miriam; Loa, Ingo; Ackland, Graeme J.; Hermann, Andreas
2018-05-01
Under pressure, the alkali elements sodium, potassium, and rubidium adopt nonperiodic structures based on two incommensurate interpenetrating lattices. While all elements form the same "host" lattice, their "guest" lattices are all distinct. The physical mechanism that stabilizes these phases is not known, and detailed calculations are challenging due to the incommensurability of the lattices. Using a series of commensurate approximant structures, we tackle this issue using density functional theory calculations. In Na and K, the calculations prove accurate enough to reproduce not only the stability of the host-guest phases, but also the complicated pressure dependence of the host-guest ratio and the two guest-lattice transitions. We find Rb-IV to be metastable at all pressures, and suggest it is a high-temperature phase. The electronic structure of these materials is unique: they exhibit two distinct, coexisting types of electride behavior, with both fully localized pseudoanions and electrons localized in 1D wells in the host lattice, leading to low conductivity. While all phases feature pseudogaps in the electronic density of states, the perturbative free-electron picture applies to Na, but not to K and Rb, due to significant d -orbital population in the latter.
NASA Astrophysics Data System (ADS)
Ciobotaru, Constantin Claudiu; Polosan, Silviu; Ciobotaru, Iulia Corina
2018-02-01
This paper reports the influence of the charge carrier mobility on the electroluminescent properties of a dual-emitter organometallic compound dispersed in two conjugated organic small-molecule host materials and embedded in organic light-emitting devices (OLEDs). The electroluminescent processes in OLEDs are strongly influenced by the host-guest interaction. The charge carrier mobility in the host material plays an important role in the electroluminescent processes but also depends on the triplet-triplet interaction with the organometallic compound. The low charge carrier mobility in 4,4'-bis( N-carbazolyl)-1,1'-biphenyl (CBP) host material reduces the electroluminescent processes, but they are slightly enhanced by the triplet-triplet exothermic charge transfer. The higher charge carrier mobility in the case of N, N'-bis(3-methylphenyl)- N, N'-diphenylbenzidine (TPD) host material influences the electroluminescent processes by the endothermic energy transfer at room temperature, which facilitates the triplet-triplet harvesting in the host-guest system. The excitation is transferred to the guest molecules by triplet-triplet interaction as a Dexter transfer, which occurs by endothermic transfer from the triplet exciton in the host to the triplet exciton in the guest.
Clathrate formation and phase equilibria in the thiourea-bromoform system
NASA Astrophysics Data System (ADS)
Chekhova, G. N.; Shubin, Yu. V.; Pinakov, D. V.; Alferova, N. I.
2008-07-01
Phase equilibria in the thiourea (host)-bromoform (guest) binary system were studied by physicochemical analysis methods over the temperature range 270 455 K. The stoichiometry and stability region were determined for the channel-type compound CHBr3 · 2.40(2)(NH2)2CS; the compound was observed for the first time. When heated, the clathrate incongruently decomposed at 424.0 ± 0.8 K to rhombic thiourea and the guest component. The solubility isotherm of the thiourea-bromoform-acetic acid system was studied to find that the compound was thermodynamically stable at 293 K over the range of guest component concentrations 100 35 wt %. A decrease in its content in an equilibrium mother liquor resulted in the appearance of X-ray diffraction reflections of the initial host α polymorph. Rhombohedral cell parameters were determined (space group R-3 c, a = 15.89(1) Å, c = 12.40(1) Å, V = 2711(6) Å3, d calcd = 2.000 g/cm3, and d expt = 1.98(2) g/cm3). The mode of packing of bromoform molecules was compared with the organization of the guest subsystem in inclusion compounds formed by the substances studied.
Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong
2016-04-01
The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane-modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bayarsayhan, C.; Bayasgalan, A.; Enhtuvshin, B.; Hudnut, K.W.; Kurushin, R.A.; Molnar, P.; Olziybat, M.
1996-01-01
The 1957 Gobi-Altay earthquake was associated with both strike-slip and thrust faulting, processes similar to those along the San Andreas fault and the faults bounding the San Gabriel Mountains just north of Los Angeles, California. Clearly, a major rupture either on the San Andreas fault north of Los Angeles or on the thrust faults bounding the Los Angeles basin poses a serious hazard to inhabitants of that area. By analogy with the Gobi-Altay earthquake, we suggest that simultaneous rupturing of both the San Andreas fault and the thrust faults nearer Los Angeles is a real possibility that amplifies the hazard posed by ruptures on either fault system separately.
Exospheric perturbations by radiation pressure. 2: Solution for orbits in the ecliptic plane
NASA Technical Reports Server (NTRS)
Chamberlain, J. W.
1980-01-01
The instantaneous rates of change for the orbital elements eccentricity, longitude of perigee from the Sun, and longitude from the Sun of the ascending node are integrated simultaneously for the case of the inclination i = 0. The results confirm the validity of using mean rates when the orbits are tightly bound to the planet and serve as examples to be reproduced by the complicated numerical solutions required for arbitrary inclination. Strongly bound hydrogen atoms escaping from Earth due to radiation pressure do not seem a likely cause of the geotail extending in the anti-sun direction. Instead, radiation pressure will cause those particles' orbits to deteriorate into the Earth's atmosphere.
Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases
NASA Astrophysics Data System (ADS)
Pezzè, Luca; Ciampini, Mario A.; Spagnolo, Nicolò; Humphreys, Peter C.; Datta, Animesh; Walmsley, Ian A.; Barbieri, Marco; Sciarrino, Fabio; Smerzi, Augusto
2017-09-01
A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.
Knowledge of Deaths in Hotel Rooms Diminishes Perceived Value and Elicits Guest Aversion.
Bering, Jesse M; Curtin, Emma R; Jong, Jonathan
2017-01-01
Guest deaths are an inevitable aspect of the hospitality industry. In Study 1, participants read a vignette in which the previous guest died of natural causes, suicide, or homicide. Those who learned of a death (a) saw the room as less valuable, (b) opted to stay in a more basic room in which no death occurred, despite both rooms being offered for free, and (c) anticipated feeling uneasy when imagining an overnight stay. In Study 2, we investigated the persistence of this bias. Perceived room value and anticipatory well-being can be expected to return to baseline levels only many years after the death event. Similar to "stigmatized properties" in real estate, these data confirm an irrational and recalcitrant cognitive bias surrounding consumers' views of death-affected hotel rooms.
Subcomponent self-assembly and guest-binding properties of face-capped Fe4L4(8+) capsules.
Bilbeisi, Rana A; Clegg, Jack K; Elgrishi, Noémie; de Hatten, Xavier; Devillard, Marc; Breiner, Boris; Mal, Prasenjit; Nitschke, Jonathan R
2012-03-21
A general method for preparing Fe(4)L(4) face-capped tetrahedral cages through subcomponent self-assembly was developed and has been demonstrated using four different C(3)-symmetric triamines, 2-formylpyridine, and iron(II). Three of the triamines were shown also to form Fe(2)L(3) helicates when the appropriate stoichiometry of subcomponents was used. Two of the cages were observed to have nearly identical Fe-Fe distances in the solid state, which enabled their ligands to be coincorporated into a collection of mixed cages. Only one of the cages combined a sufficiently large cavity with the sufficiently small pores required for guest binding, taking up a wide variety of guest species in size- and shape-selective fashion.
Trapping virtual pores by crystal retro-engineering
NASA Astrophysics Data System (ADS)
Little, Marc A.; Briggs, Michael E.; Jones, James T. A.; Schmidtmann, Marc; Hasell, Tom; Chong, Samantha Y.; Jelfs, Kim E.; Chen, Linjiang; Cooper, Andrew I.
2015-02-01
Stable guest-free porous molecular crystals are uncommon. By contrast, organic molecular crystals with guest-occupied cavities are frequently observed, but these cavities tend to be unstable and collapse on removal of the guests—this feature has been referred to as ‘virtual porosity’. Here, we show how we have trapped the virtual porosity in an unstable low-density organic molecular crystal by introducing a second molecule that matches the size and shape of the unstable voids. We call this strategy ‘retro-engineering’ because it parallels organic retrosynthetic analysis, and it allows the metastable two-dimensional hexagonal pore structure in an organic solvate to be trapped in a binary cocrystal. Unlike the crystal with virtual porosity, the cocrystal material remains single crystalline and porous after removal of guests by heating.
Maslow's needs hierarchy as a framework for evaluating hospitality houses' resources and services.
Duncan, Mary Katherine Waibel; Blugis, Ann
2011-08-01
As hospitality houses welcome greater numbers of families and families requiring longer stays, they do so in the absence of a widely accepted theory to guide their understanding of guests' needs and evaluations of how well they meet those needs. We propose A. Maslow's (1970) Hierarchy of Needs as a conceptual framework for understanding what makes a hospitality house a home for families of pediatric patients and for guiding the activities of hospitality houses' boards of directors, staff, volunteers, and donors. This article presents findings from a theory-driven evaluation of one hospitality house's ability to meet guests' needs, describes the house's best practice standards for addressing guests' needs, and suggests areas for future research. Copyright © 2011 Elsevier Inc. All rights reserved.
Li, Hua; Li, Fei; Zhang, Biaobiao; Zhou, Xu; Yu, Fengshou; Sun, Licheng
2015-04-08
A highly active supramolecular system for visible light-driven water oxidation was developed with cyclodextrin-modified ruthenium complex as the photosensitizer, phenyl-modified ruthenium complexes as the catalysts, and sodium persulfate as the sacrificial electron acceptor. The catalysts were found to form 1:1 host-guest adducts with the photosensitizer. Stopped-flow measurement revealed the host-guest interaction is essential to facilitate the electron transfer from catalyst to sensitizer. As a result, a remarkable quantum efficiency of 84% was determined under visible light irradiation in neutral aqueous phosphate buffer. This value is nearly 1 order of magnitude higher than that of noninteraction system, indicating that the noncovalent incorporation of sensitizer and catalyst is an appealing approach for efficient conversion of solar energy into fuels.
Jin, Long; Liao, Bolin; Liu, Mei; Xiao, Lin; Guo, Dongsheng; Yan, Xiaogang
2017-01-01
By incorporating the physical constraints in joint space, a different-level simultaneous minimization scheme, which takes both the robot kinematics and robot dynamics into account, is presented and investigated for fault-tolerant motion planning of redundant manipulator in this paper. The scheme is reformulated as a quadratic program (QP) with equality and bound constraints, which is then solved by a discrete-time recurrent neural network. Simulative verifications based on a six-link planar redundant robot manipulator substantiate the efficacy and accuracy of the presented acceleration fault-tolerant scheme, the resultant QP and the corresponding discrete-time recurrent neural network. PMID:28955217
Ficko, Bradley W; NDong, Christian; Giacometti, Paolo; Griswold, Karl E; Diamond, Solomon G
2017-05-01
Magnetic nanoparticles (MNPs) are an emerging platform for targeted diagnostics in cancer. An important component needed for translation of MNPs is the detection and quantification of targeted MNPs bound to tumor cells. This study explores the feasibility of a multifrequency nonlinear magnetic spectroscopic method that uses excitation and pickup coils and is capable of discriminating between quantities of bound and unbound MNPs in 0.5 ml samples of KB and Igrov human cancer cell lines. The method is tested over a range of five concentrations of MNPs from 0 to 80 μg/ml and five concentrations of cells from 50 to 400 000 count per ml. A linear model applied to the magnetic spectroscopy data was able to simultaneously measure bound and unbound MNPs with agreement between the model-fit and lab assay measurements (p < 0.001). The detectable iron of the presented method to bound and unbound MNPs was < 2 μg in a 0.5 ml sample. The linear model parameters used to determine the quantities of bound and unbound nanoparticles in KB cells were also used to measure the bound and unbound MNP in the Igrov cell line and vice versa. Nonlinear spectroscopic measurement of MNPs may be a useful method for studying targeted MNPs in oncology. Determining the quantity of bound and unbound MNP in an unknown sample using a linear model represents an exciting opportunity to translate multifrequency nonlinear spectroscopy methods to in vivo applications where MNPs could be targeted to cancer cells.
2007-01-01
extraordinary expense or similar funds may also use these funds to pay for receptions for distinguished visitors. See discussion infra Part X of this... reception and representation funds). 2-29 H. Decorations. Under a “necessary expense” analysis, GAO has sanctioned the use of appropriated funds to...dinners, and receptions at DOD events held in honor of authorized guests; (3) Luncheons, dinners, and receptions for local authorized guests to
ERIC Educational Resources Information Center
Pásztor, Adél
2014-01-01
By comparing the educational situation of second-generation Turks in the Netherlands and Austria, the paper investigates the reasons behind the differential higher educational gains of the descendants of guest workers in the two countries. By relying on in-depth interviews with second-generation Turks, the paper illustrates how ethnic…
2014-08-05
Guest attending the National Geographic “Mars Up Close” panel discussion, look at full scale models of the Spirit/Opportunity, left, and Curiosity, Mars rovers, Tuesday, August 5, 2014, at the National Geographic Society headquarters in Washington. Guest listened to a panel of distinguished space scientists and Mars experts involved in current Mars exploration that shared what we’ve learned from Curiosity and the other Mars rovers. Photo Credit: (NASA/Bill Ingalls)
1. GUEST HOUSE KNOWN AS 'THE LODGE' REPORTEDLY BUILT TO ...
1. GUEST HOUSE KNOWN AS 'THE LODGE' REPORTEDLY BUILT TO BE USED BY J.D. ROSS ON HIS VISITS TO THE SKAGIT PROJECT. DURING THE 1930S THE U.S. FOREST SERVICE EXERTED A STONG INFLUENCE ON BUILDING STYLES FOR RESIDENCES AT THE SKAGIT PROJECT, 1989. - Skagit Power Development, Skagit River & Newhalem Creek Hydroelectric Project, On Skagit River, Newhalem, Whatcom County, WA
Arimboor, Ranjith; Kumar, K Sarin; Arumughan, C
2008-05-12
A RP-HPLC-DAD method was developed and validated for the simultaneous analysis of nine phenolic acids including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, salicylic acid, p-coumaric acid, cinnamic acid, caffiec acid and ferulic acid in sea buckthorn (SB) (Hippophaë rhamnoides) berries and leaves. The method was validated in terms of linearity, LOD, precision, accuracy and recovery and found to be satisfactory. Phenolic acid derivatives in anatomical parts of SB berries and leaves were separated into free phenolic acids, phenolic acids bound as esters and phenolic acids bound as glycosides and profiled in HPLC. Berry pulp contained a total of 1068 mg/kg phenolic acids, of which 58.8% was derived from phenolic glycosides. Free phenolic acids and phenolic acid esters constituted 20.0% and 21.2%, respectively, of total phenolic acids in SB berry pulp. The total phenolic acid content in seed kernel (5741 mg/kg) was higher than that in berry pulp and seed coat (Table 2). Phenolic acids liberated from soluble esters constituted the major fraction of phenolic acids (57.3% of total phenolic acids) in seed kernel. 8.4% and 34.3% of total phenolic acids in seed kernel were, respectively contributed by free and phenolic acids liberated from glycosidic bonds. The total soluble phenolic acids content in seed coat (448 mg/kg) was lower than that in seed kernel and pulp (Table 2). Proportion of free phenolic acids in total phenolic acids in seed coat was higher than that in seed kernel and pulp. Phenolic acids bound as esters and glycosides, respectively contributed 49.1% and 20.3% of total phenolic acids in seed coat. The major fraction (approximately 70%) of phenolic acids in SB berries was found to be concentrated in the seeds. Gallic acid was the predominant phenolic acid both in free and bound forms in SB berry parts and leaves.
The synthesis and host-guest applications of synthetic receptor molecules
NASA Astrophysics Data System (ADS)
Osner, Zachary R.
2011-12-01
Host-guest chemistry involves the complimentary binding between two molecules. Host molecules have been synthesized to bind negative, positive, and neutral molecules such as proteins and enzymes, and have been used as optical sensors, electrochemical sensors, supramolecular catalysts, and in the pharmaceutical industry as anti-cancer agents.1 The field of nanoscience has exploited guest-host interactions to create optical sensors with colloidal gold and Dip-Pen nanolithography technologies. Gold nanoparticles, have been functionalized with DNA, and have been developed as a selective colorimetric detection system, that upon binding turns the solution from a red to blue in color.2 Cyclotriveratrylene (CTV) 1 is a common supramolecular scaffold that has been previously employed in guest-host chemistry, and the construction of CTV involves the cyclic trimerization of veratryl alcohol via the veratryl cation.3 Due to the rigid bowl shaped structure of CTV, CTV has been shown to act as a host molecule for fullerene-C60.4 Lectin binding receptor proteins are a specific class of proteins found in bacteria, viruses, plants, and animals that can bind to complimentary carbohydrates. It is these lectins that are believed to be responsible for cell-cell interactions and the formation of biofilms in pathenogenic bacteria.5 P. aeruginosa is a pathenogenic bacterium, shown to have a high resistance to many antibiotics, which can form biofilms in human lung tissue, causing respiratory tract infections in patients with compromised immune systems. 5 I will exploit guest-host interactions to create synthetic supramolecular and carbohydrate receptor molecules to that will be of use as biological sensing devices via self-assembled monolayers on solid surfaces and nanoparticle technologies. *Please refer to dissertation for references/footnotes.
ESR study of molecular orientation and dynamics of TEMPO derivatives in CLPOT 1D nanochannels.
Kobayashi, Hirokazu; Furuhashi, Yuta; Nakagawa, Haruka; Asaji, Tetsuo
2016-08-01
The molecular orientations and dynamics of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical derivatives with large substituent groups at the 4-position (4-X-TEMPO) in the organic one-dimensional nanochannels within the nanosized molecular template 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine (CLPOT) were examined using ESR. The concentrations of guest radicals, including 4-methoxy-TEMPO (MeO-TEMPO) or 4-oxo-TEMPO (TEMPONE), in the CLPOT nanochannels in each inclusion compound (IC) were reduced by co-including 4-substituted-2,2,6,6-tetramethylpiperidine (4-R-TEMP) compounds at a ratio of 1 : 30-1 : 600. At higher temperatures, the guest radicals in each IC underwent anisotropic rotational diffusion in the CLPOT nanochannels. The rotational diffusion activation energy, Ea , associated with MeO-TEMPO or TEMPONE in the CLPOT nanochannels (6-7 kJ mol(-1) ), was independent of the size and type of substituent group and was similar to the Ea values obtained for TEMPO and 4- hydroxy-TEMPO (TEMPOL) in our previous study. However, in the case in which TEMP was used as a guest compound for dilution (spacer), the tilt of the rotational axis to the principal axis system of the g-tensor, and the rotational diffusion correlation time, τR , of each guest radical in the CLPOT nanochannels were different from the case with other 4-R-TEMP. These results indicate the possibility of controlling molecular orientation and dynamics of guest radicals in CLPOT ICs through the appropriate choice of spacer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
de Araújo, Márcia Valéria Gaspar; Vieira, João Victor Francisco; da Silva, Caroline W. P.; Barison, Andersson; Andrade, George Ricardo Santana; da Costa, Nivan Bezerra; Barboza, Fernanda Malaquias; Nadal, Jessica Mendes; Novatski, Andressa; Farago, Paulo Vitor; Zawadzki, Sônia Faria
2017-12-01
Nifedipine (NIF) is a hydrophobic drug widely used for treating cardiovascular diseases. This calcium channel blocker can present a higher apparent solubility by its inclusion into different cyclodextrins (CDs) as host-guest complexes. This paper focused on the structural investigation and dissolution behavior of inclusion complexes prepared with 2-hydroxypropyl-β-cyclodextrin (HPβCD) or β-cyclodextrin (βCD) and NIF. Drug amorphization was observed for HPβCD/NIF and βCD/NIF inclusion complexes by X-ray diffractometry (XRD). The sharp endothermic peak of NIF was not observed for these both host-guest complexes by differential scanning calorimetry (DSC). These results of XRD and DSC provide evidences of complexation between drug and the investigated CDs. 1H and saturation transfer difference nuclear magnetic resonance studies revealed the enhancement in the signal at 2.27 ppm for HPβCD/NIF and βCD/NIF inclusion complexes that corresponded to the methyl groups of NIF from the non-aromatic ring. This result suggested that non-aromatic ring of NIF was inserted into HPβCD and βCD cavities. Considering the mathematical simulations, it was observed that the inclusion process can occur in the both NH-in or NH-out forms. However, since it was used aqueous medium, it is possible to indicate that the obtained host-guest complexes HPβCD/NIF and βCD/NIF are in NH-in form which corresponded to the previous results obtained by 1H NMR experiments. Dissolution assays demonstrated that NIF inclusion complexes improved the drug release nevertheless without changing its biexponential release behavior. These host-guest complexes can be further used as feasible NIF carriers in solid dosage forms.
Dual-cavity basket promotes encapsulation in water in an allosteric fashion.
Chen, Shigui; Yamasaki, Makoto; Polen, Shane; Gallucci, Judith; Hadad, Christopher M; Badjić, Jovica D
2015-09-30
We prepared dual-cavity basket 1 to carry six (S)-alanine residues at the entrance of its two juxtaposed cavities (289 Å(3)). With the assistance of (1)H NMR spectroscopy and calorimetry, we found that 1 could trap a single molecule of 4 (K1 = 1.45 ± 0.40 × 10(4) M(-1), ITC), akin in size (241 Å(3)) and polar characteristics to nerve agent VX (289 Å(3)). The results of density functional theory calculations (DFT, M06-2X/6-31G*) and experiments ((1)H NMR spectroscopy) suggest that the negative homotropic allosterism arises from the guest forming C-H···π contacts with all three of the aromatic walls of the occupied basket's cavity. In response, the other cavity increases its size and turns rigid to prevent the formation of the ternary complex. A smaller guest 6 (180 Å(3)), akin in size and polar characteristics to soman (186 Å(3)), was also found to bind to dual-cavity 1, although giving both binary [1⊂6] and ternary [1⊂62] complexes (K1 = 7910 M(-1) and K2 = 2374 M(-1), (1)H NMR spectroscopy). In this case, the computational and experimental ((1)H NMR spectroscopy) results suggest that only two aromatic walls of the occupied basket's cavity form C-H···π contacts with the guest to render the singly occupied host flexible enough to undergo additional structural changes necessary for receiving another guest molecule. The structural adaptivity of dual-cavity baskets of type 1 is unique and important for designing multivalent hosts capable of effectively sequestering targeted guests in an allosteric manner to give stable supramolecular polymers.
Song, Hee-eun; Kirmaier, Christine; Schwartz, Jennifer K; Hindin, Eve; Yu, Lianhe; Bocian, David F; Lindsey, Jonathan S; Holten, Dewey
2006-10-05
Static and time-resolved optical measurements are reported for two cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0 or 3 free base (Fb) porphyrins (denoted Zn(6) or Zn(3)Fb(3), respectively). The guests are a tripyridyl arene (TP) and a dipyridyl-substituted free base porphyrin (DPFb), each of which coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have an overall gradient of excited-state energies that affords excitation funneling within the host and ultimately to the guest. Collectively, the studies delineate the various pathways, mechanisms, and rate constants of energy flow among the weakly coupled constituents of the host-guest complexes. The pathways include downhill unidirectional energy transfer between adjacent chromophores, bidirectional energy migration between identical chromophores, and energy transfer between nonadjacent chromophores. The energy transfer to the lowest-energy chromophore(s) within the backbone of a hexameric host (Fb porphyrins in Zn(3)Fb(3) or pyridyl-coordinated zinc porphyrins in Zn(6)*TP and Zn(6)*DPFb) proceeds primarily via a through-bond mechanism; the transfer is rapid (approximately 40 ps depending on the array) and essentially quantitative (>or=98%). The energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the Fb porphyrin guest in the Zn(6)*DPFb complex is almost exclusively Förster through-space in nature; this process is much slower ( approximately 1 ns) and has a lower yield (65%). These studies highlight the utility of cyclic architectures for efficient light harvesting and energy transfer to a designated trapping site.
Ultrahigh and Selective SO2 Uptake in Inorganic Anion-Pillared Hybrid Porous Materials.
Cui, Xili; Yang, Qiwei; Yang, Lifeng; Krishna, Rajamani; Zhang, Zhiguo; Bao, Zongbi; Wu, Hui; Ren, Qilong; Zhou, Wei; Chen, Banglin; Xing, Huabin
2017-07-01
The efficient capture of SO 2 is of great significance in gas-purification processes including flue-gas desulfurization and natural-gas purification, but the design of porous materials with high adsorption capacity and selectivity of SO 2 remains very challenging. Herein, the selective recognition and dense packing of SO 2 clusters through multiple synergistic host-guest and guest-guest interactions by controlling the pore chemistry and size in inorganic anion (SiF 6 2- , SIFSIX) pillared metal-organic frameworks is reported. The binding sites of anions and aromatic rings in SIFSIX materials grasp every atom of SO 2 firmly via S δ+ ···F δ- electrostatic interactions and O δ- ···H δ+ dipole-dipole interactions, while the guest-guest interactions between SO 2 molecules further promote gas trapping within the pore space, which is elucidated by first-principles density functional theory calculations and powder X-ray diffraction experiments. These interactions afford new benchmarks for the highly efficient removal of SO 2 from other gases, even if at a very low SO 2 concentration. Exceptionally high SO 2 capacity of 11.01 mmol g -1 is achieved at atmosphere pressure by SIFSIX-1-Cu, and unprecedented low-pressure SO 2 capacity is obtained in SIFSIX-2-Cu-i (4.16 mmol g -1 SO 2 at 0.01 bar and 2.31 mmol g -1 at 0.002 bar). More importantly, record SO 2 /CO 2 selectivity (86-89) and excellent SO 2 /N 2 selectivity (1285-3145) are also achieved. Experimental breakthrough curves further demonstrate the excellent performance of these hybrid porous materials in removing low-concentration SO 2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jelinek, R.; Oezkar, S.; Malek, A.
1993-01-27
[sup 23]Na double-rotation NMR (DOR) provides site-specific structural and dynamical information on guest-host interactions within sodium zeolite Y pores. Quantitative adsorption of H[sub 2]O, PMe[sub 3], and Mo(CO)[sub 6] guests affects both the positions and line shapes of the [sup 23]Na resonances from specific extraframework Na[sup +] sites. The evolution of the [sup 23]Na DOR spectra with the progressive introduction of guest molecules allows one to probe direct solvation' effects involving the Na[sup +] cations in the larger supercages, as well as indirect effects on the Na[sup +] cations in adjacent smaller sodalite cavities. [sup 23]Na DOR experiments conducted atmore » two magnetic field strengths confirm that PMe[sub 3] coadsorption in 8[l brace]Mo(CO)[sub 6][r brace],16[l brace]PMe[sub 3][r brace]-Na[sub 56]Y, and PMe[sub 3] ligand-substitution in 8[l brace]cis-Mo(CO)[sub 4](PMe[sub 3])[sub 2][r brace]-Na[sub 56]Y give rise to progressive deshielding and enhanced quadrupolar interactions of the anchoring Na[sup +] cations in the [alpha]-cages, relative to those of the starting material, 8[l brace]Mo(CO)[sub 6][r brace]-Na[sub 56]Y. Spin-lattice relaxation measurements indicate that adsorption of PMe[sub 3] facilitates an increased motion of the Na[sup +] cations and/or guest species inside the [alpha]-cages. 22 refs., 6 figs., 1 tab.« less
Generalization of the Hartree-Fock approach to collision processes
NASA Astrophysics Data System (ADS)
Hahn, Yukap
1997-06-01
The conventional Hartree and Hartree-Fock approaches for bound states are generalized to treat atomic collision processes. All the single-particle orbitals, for both bound and scattering states, are determined simultaneously by requiring full self-consistency. This generalization is achieved by introducing two Ansäauttze: (a) the weak asymptotic boundary condition, which maintains the correct scattering energy and target orbitals with correct number of nodes, and (b) square integrable amputated scattering functions to generate self-consistent field (SCF) potentials for the target orbitals. The exact initial target and final-state asymptotic wave functions are not required and thus need not be specified a priori, as they are determined simultaneously by the SCF iterations. To check the asymptotic behavior of the solution, the theory is applied to elastic electron-hydrogen scattering at low energies. The solution is found to be stable and the weak asymptotic condition is sufficient to produce the correct scattering amplitudes. The SCF potential for the target orbital shows the strong penetration by the projectile electron during the collision, but the exchange term tends to restore the original form. Potential applicabilities of this extension are discussed, including the treatment of ionization and shake-off processes.
Benson, Oguarabau; da Silva, Ivan; Argent, Stephen P; Cabot, Rafel; Savage, Mathew; Godfrey, Harry G W; Yan, Yong; Parker, Stewart F; Manuel, Pascal; Lennox, Matthew J; Mitra, Tamoghna; Easun, Timothy L; Lewis, William; Blake, Alexander J; Besley, Elena; Yang, Sihai; Schröder, Martin
2016-11-16
An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO 2 uptake of 12.6 mmol g -1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO 2 /CH 4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.
Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.
2015-01-01
Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208
Bhuvaneswari, Nagarajan; Dai, Feng-Rong; Chen, Zhong-Ning
2018-05-02
An elaborately designed pyridinium-functionalized octanuclear zinc(II) coordination container 1-Zn was prepared through the self-assembly of Zn 2+ , p-tert-butylsulfonylcalix[4]arene, and pyridinium-functionalized angular flexible dicarboxylate linker (H 2 BrL1). The structure was determined by a single-crystal X-ray diffractometer. 1-Zn displays highly sensitive and specific recognition to 2-picolylamine as revealed by drastic blueshifts of the absorption and emission spectra, ascribed to the decrease of intramolecular charge transfer (ICT) character of the container and the occurrence of intermolecular charge transfer between the host and guest molecules. The intramolecular charge transfer plays a key role in the modulation of the electronic properties and is tunable through endo-encapsulation of specific guest molecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Dolgonos, Grygoriy A.; Peslherbe, Gilles H.
2016-10-01
The 2H2@C60 minimum structure of C2 symmetry has been fully characterized at the density-fitting local second-order Møller-Plesset (DF-LMP2) level of theory. Its uncorrected and zero-point energy (ZPE) corrected complexation energies equal 1.9 and 6.2 kcal/mol, respectively, confirming the instability of the complex. This structure exhibits the largest intermolecular host-guest and guest-guest separations among all the complexes studied in this work. The calculated infrared spectrum of 2H2@C60 does not show any frequency shifts for the modes associated with radial or tangential displacements in C60 (except for one mode), but shows a weak red Hsbnd H vibrational frequency shift.
Joint in-flight portrait of the STS-81 and Mir 22 crew on Mir
1997-02-26
STS081-369-003 (12-22 Jan. 1997) --- Traditional inflight crew portrait of the combined Mir-22 and STS-81 crews in the Base Block Module aboard Russia's Mir Space Station. Front row: left to right, Michael A. Baker, commander; John M. Grunsfeld, mission specialist; and cosmonaut Aleksandr Y. Kaleri, Mir-22 flight engineer. Middle row: cosmonaut Valeri G. Korzun, Mir-22 commander; Marsha S. Ivins, mission specialist; and John E. Blaha, former cosmonaut guest researcher. Back row: Jerry M. Linenger, cosmonaut guest researcher; Peter J. K. (Jeff) Wisoff, mission specialist; and Brent W. Jett, Jr., pilot. Linenger is seen in a Russian jump suit, and Blaha now wears a Space Shuttle inflight garment as the two exchanged cosmonaut guest researcher roles on January 14, 1997, following the docking of the Atlantis and the Mir complex.
Naziroglu, Hayriye Nevin; Durmaz, Mustafa; Bozkurt, Selahattin; Sirit, Abdulkadir
2011-07-01
Four proline-derived chiral receptors 5-8 were readily synthesized starting from L-proline. The enantiomeric recognition ability of chiral receptors was examined with a series of carboxylic acids by (1) H NMR spectroscopy. The molar ratio and the association constants of the chiral compounds with each of the enantiomers of guest molecules were determined by using Job plots and a nonlinear least-squares fitting method, respectively. The Job plots indicate that the hosts form 1:1 instantaneous complexes with all guests. The receptors exhibited different chiral recognition abilities toward the enantiomers of racemic guests. Among the chiral receptors used in this study, prolinamide 6 was found to be the best chiral shift reagent and is effective for the determination of the enantiomeric excess of chiral carboxylic acids. Copyright © 2011 Wiley-Liss, Inc.
DOE R&D Accomplishments Database
Cram, D. J.
1982-09-15
The overall objective of this research is to design, synthesize, and evaluate cyclic and polycyclic host organic compounds for the abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions, or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; numbers of binding sites; characters of binding sites; and valences. The hope is to synthesize new classes of compounds useful in the separation of metal ions, their complexes, and their clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talin, Albert Alec; Jones, Reese E.; Spataru, Dan Catalin
Metal organic frameworks (MOFs) are extended, nanoporous crystalline compounds consisting of metal ions interconnected by organic ligands. Their synthetic versatility suggest a disruptive class of opto - electronic materials with a high degree of electrical tunability and without the property - degrading disorder of organic conductors. In this project we determined the factors controlling charge and energy transport in MOFs and evaluated their potential for thermoelectric energy conversion. Two strategies for a chieving electronic conductivity in MOFs were explored: 1) using redox active 'guest' molecules introduced into the pores to dope the framework via charge - transfer coupling (Guest@MOF), 2)more » metal organic graphene analogs (MOGs) with dispersive band structur es arising from strong electronic overlap between the MOG metal ions and its coordinating linker groups. Inkjet deposition methods were developed to facilitate integration of the guest@MOF and MOG materials into practical devices.« less
Performance analysis of a cascaded coding scheme with interleaved outer code
NASA Technical Reports Server (NTRS)
Lin, S.
1986-01-01
A cascaded coding scheme for a random error channel with a bit-error rate is analyzed. In this scheme, the inner code C sub 1 is an (n sub 1, m sub 1l) binary linear block code which is designed for simultaneous error correction and detection. The outer code C sub 2 is a linear block code with symbols from the Galois field GF (2 sup l) which is designed for correcting both symbol errors and erasures, and is interleaved with a degree m sub 1. A procedure for computing the probability of a correct decoding is presented and an upper bound on the probability of a decoding error is derived. The bound provides much better results than the previous bound for a cascaded coding scheme with an interleaved outer code. Example schemes with inner codes ranging from high rates to very low rates are evaluated. Several schemes provide extremely high reliability even for very high bit-error rates say 10 to the -1 to 10 to the -2 power.
Zhang, Gong; Huang, Guangwei; Xiao, Lu; Mitchell, Alyson E
2011-11-23
A sensitive and reliable LC-(ESI)MS/MS method was developed and validated for the simultaneous analysis of five common advanced glycation endproducts (AGEs) after enzymatic digestion in raw and roasted almonds. AGEs included carboxymethyl-lysine (CML), carboxyethyl-lysine (CEL), pyralline (Pyr), argpyrimidine (Arg-p), and pentosidine (Pento-s). This method allows accurate quantitation of free and AGE-protein adducts of target AGEs. Results indicate that CML and CEL are found in both raw and roasted almonds. Pyr was identified for the first time in roasted almonds and accounted for 64.4% of free plus bound measured AGEs. Arg-p and Pento-s were below the limit of detection in all almond samples tested. Free AGEs accounted for 1.3-26.8% of free plus bound measured AGEs, indicating that protein-bound forms predominate. The roasting process significantly increased CML, CEL, and Pyr formation, but no significant correlation was observed between these AGEs and roasting temperature.
Lee, Ji-Eun; Han, Ye Ri; Ham, Sujin; Jun, Chul-Ho; Kim, Dongho
2017-11-08
We have investigated the fundamental photophysical properties of surface-bound perylene bisimide (PBI) molecules in a solution-phase at the single-molecule level. By efficient immobilization of single PBIs on glass, we were able to simultaneously monitor fluorescence intensity trajectories, fluorescence lifetimes, and emission spectra of individual PBIs in organic and aqueous media using confocal microscopy. We showed that the fluorescence dynamics of single PBIs in the solution phase is highly dependent on their local and chemical environments. Furthermore, we visualized different spatial-fluctuations of surface-bound PBIs using defocused wide-field imaging. While PBIs show more steric flexibility in organic media, the flexible motion of PBI molecules in aqueous solution is relatively prohibited due to a cage effect by a hydrogen bonding network, which is previously unobserved. Our method opens up a new possibility to investigate the photophysical properties of multi-chromophoric systems in various solvents at the single-molecule level for developing optimal molecular devices such as water-proof devices.
Asymptotic Cramer-Rao bounds for Morlet wavelet filter bank transforms of FM signals
NASA Astrophysics Data System (ADS)
Scheper, Richard
2002-03-01
Wavelet filter banks are potentially useful tools for analyzing and extracting information from frequency modulated (FM) signals in noise. Chief among the advantages of such filter banks is the tendency of wavelet transforms to concentrate signal energy while simultaneously dispersing noise energy over the time-frequency plane, thus raising the effective signal to noise ratio of filtered signals. Over the past decade, much effort has gone into devising new algorithms to extract the relevant information from transformed signals while identifying and discarding the transformed noise. Therefore, estimates of the ultimate performance bounds on such algorithms would serve as valuable benchmarks in the process of choosing optimal algorithms for given signal classes. Discussed here is the specific case of FM signals analyzed by Morlet wavelet filter banks. By making use of the stationary phase approximation of the Morlet transform, and assuming that the measured signals are well resolved digitally, the asymptotic form of the Fisher Information Matrix is derived. From this, Cramer-Rao bounds are analytically derived for simple cases.
Seeking Ways to Break Energy Storage Limits
2016-05-02
system sizes that we simulated. 15. SUBJECT TERMS density functional theory, guest-host structures, carbon nanotubes , free atom limit, geometry...unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Xenon-Buckminsterfullerene (Xe-C60) 3 3. Xe-C980 4 4. Xe-Carbon Nanotube (CNT) 4 5...calculations. 4. Xe-Carbon Nanotube (CNT) Because of our inability to attain guest-host complexes that would achieve energies in excess of the
2018-01-25
Guests place flowers near the Space Mirror Memorial at the Kennedy Space Center Visitor Complex. The names of fallen astronauts from Apollo 1, Challenger and Columbia, as well as the astronauts who perished in training and commercial airplane accidents are emblazoned on the monument. During the annual Day of Remembrance, spaceport employees and guests join others throughout NASA honoring the contributions of astronauts who have perished in the conquest of space.
Bruno, Rosaria; Marino, Nadia; Bartella, Lucia; Di Donna, Leonardo; De Munno, Giovanni; Pardo, Emilio; Armentano, Donatella
2018-06-05
We report a new chiral coordination polymer, prepared from the cytidine 5'-monophosphate (CMP) nucleotide, capable of separating efficiently (enantiomeric excess of ca. 100%) racemic mixtures of l- and d-Asp in a temperature-dependent manner. The crystal structure of the host-guest adsorbate, with the d-Asp guest molecules loaded within its channels, could be solved allowing a direct visualization of the chiral recognition process.
ERIC Educational Resources Information Center
Ruizalba Robledo, José Luis; Almenta López, Estefanía; Vallespín Arán, María
2014-01-01
The overarching goal of working through the CMGS Method (Case Method with Guest Speakers) in Sales Management courses is to provide Business and marketing learners with practical knowledge about how a sales manager can deal with a wide variety of possible professional scenarios. Even when the case method itself is an excellent way to equip…
Cohen-Dar, Michal; DiCastro, Noa; Grotto, Itamar
2012-07-01
In summer 2010-2011 two outbreaks of Pseudomonas foliculitis occurred among bathers who used the swimming pools or whirlpools in two guest-room sites. The source of the infection was traced to the swimming pools or whirlpools, which had not been chlorinated and monitored routinely. Of 40 bathers, 25 (62.5%) developed Pseudomonas folliculitis 2-4 days after exposure. Typically the rash began as a pruritic erythematous papule on the buttocks, axilla, and extremities, with fever, adenopathy and otitis externa. In the culture of the pustules and bacterial examination grew Pseudomonas aeroginosa. Pseudomonas folliculitis was first described by McCausland and Cox in 1975. To the best of our knowledge, this is the first description of outbreaks in swimming pools or whirlpools in guest-room sites in Israel. This article describes the epidemiological and environmental health investigation of the two outbreaks. With the rising popularity of swimming pools and whirlpools in guest-room sites, physicians in the community and the emergency rooms may encounter this disease. We urge their real time report to the public health offices, in charge of the epidemiological inquires, aiming to prevent the occurrence of new cases or improper treatment of similar cases.
NASA Astrophysics Data System (ADS)
Barman, Siti; Barman, Biraj Kumar; Roy, Mahendra Nath
2018-03-01
The supramolecular interaction of metoclopramide hydrochloride (MP) with α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD) has been inspected by ultraviolet-visible (UV-vis) light, infra-red (IR) light, fluorescence and 1H NMR spectroscopy. The formation of an inclusion complex greatly affects the physical-chemical properties of the guest molecules, such as solubility, chemical reactivity and the spectroscopic and electrochemical properties. Thus the changes in the spectral properties and physico-chemical properties confirm the inclusion complex formation. Surface tension, conductivity studies and Job's plot indicate a 1: 1 stoichiometry of the MP:CD host-guest inclusion complexes. The binding/association constants have been evaluated by both UV-Vis and fluorescence spectroscopic study indicating a higher degree of encapsulation for β-cyclodextrin (β-CD). Furthermore, the negative value of thermodynamic parameter (ΔG°) of the host-guest system suggests that the inclusion process proceeded spontaneously at 298.15 K. Based on the NMR data, the plausible mode of interaction of MP:α-CD and MP:β-CD complexes were proposed, which suggested that lipophilic aromatic ring of the MP entered into the cavity of CDs from the wider side, with the amide (sbnd CONH) and methoxy (-OMe) residues inside the CD cavity.
Phonon dynamics in type-VIII silicon clathrates: Beyond the rattler concept
NASA Astrophysics Data System (ADS)
Norouzzadeh, Payam; Myles, Charles W.; Vashaee, Daryoosh
2017-05-01
Clathrates can form a type of guest-host solid structures that, unlike most crystalline solids, have very low thermal conductivity. It is generally thought that the guest atoms caged inside the host framework act as "rattlers" and induce lattice dynamics disorders responsible for the small thermal conductivity. We performed a systematic study of the lattice dynamical properties of type-VIII clathrates with alkali and alkaline-earth guests, i.e., X8S i46 (X =Na , K, Rb, Cs, Ca, Sr, and Ba). The energy dependent participation ratio (PR) and the atomic participation ratio of phonon modes extracted from density functional theory calculations revealed that the rattler concept is not adequate to describe the effect of fillers as they manifest strong hybridization with the framework. For the case of heavy fillers, such as Rb, Sr, Cs, and Ba, a phonon band gap was formed between the acoustic and optical branches. The calculated PR indicated that the fillers suppress the acoustic phonon modes and change the energy transport mechanism from propagative to diffusive or localized resulting in "phonon-glass" characteristics. This effect is stronger for the heavy fillers. Furthermore, in all cases, the guest insertion depressed the phonon bandwidth, reduced the Debye temperature, and reduced the phonon group velocity, all of which should lead to reduction of the thermal conductivity.
McDaniel, Patricia A; Malone, Ruth E
2018-01-01
To explore why some hotels have implemented 100% smoke-free policies voluntarily, the perceived consequences of doing so, and media responses. Qualitative study of hotel management and quantitative content analysis of media coverage of smoke-free hotels. Hotels and media based in the United States. Eleven representatives of 5 independent and 4 chain hotels. Other data included 265 news items about smoke-free hotels. We conducted 30-minute semi-structured interviews with hotel representatives and analyzed the data using qualitative content analysis. We also searched 3 online news databases for news items about hotels in our study, and collaboratively coded retrieved items; we analyzed the content and slant of news items. Business considerations, including guest requests, competitor action, and cost savings, were the primary motivations for implementing 100% smoke-free guest-room policies. Health concerns played a minimal role. Hotels received positive feedback from customers and employees. Media coverage was favorable, emphasizing positive aspects of going smoke-free; the overall slant of news items was positive or neutral. However, few hotels marketed the change. Since hotel customers and employees are likely to experience long periods of smoke exposure and smoke-free hotels appear to be so well received, it may be timely to pursue policies making all hotels smoke-free.
Defined Host–Guest Chemistry on Nanocarbon for Sustained Inhibition of Cancer
Ostadhossein, Fatemeh; Misra, Santosh K.; Mukherjee, Prabuddha; Ostadhossein, Alireza; Daza, Enrique; Tiwari, Saumya; Mittal, Shachi; Gryka, Mark C.; Bhargava, Rohit
2017-01-01
Signal transducer and activator of transcription factor 3 (STAT-3) is known to be overexpressed in cancer stem cells. Poor solubility and variable drug absorption are linked to low bioavailability and decreased efficacy. Many of the drugs regulating STAT-3 expression lack aqueous solubility; hence hindering efficient bioavailability. A theranostics nanoplatform based on luminescent carbon particles decorated with cucurbit[6]uril is introduced for enhancing the solubility of niclosamide, a STAT-3 inhibitor. The host–guest chemistry between cucurbit[6]uril and niclosamide makes the delivery of the hydrophobic drug feasible while carbon nanoparticles enhance cellular internalization. Extensive physicochemical characterizations confirm successful synthesis. Subsequently, the host–guest chemistry of niclosamide and cucurbit[6]uril is studied experimentally and computationally. In vitro assessments in human breast cancer cells indicate approximately twofold enhancement in IC50 of drug. Fourier transform infrared and fluorescence imaging demonstrate efficient cellular internalization. Furthermore, the catalytic biodegradation of the nanoplatforms occur upon exposure to human myeloperoxidase in short time. In vivo studies on athymic mice with MCF-7 xenograft indicate the size of tumor in the treatment group is half of the controls after 40 d. Immunohistochemistry corroborates the downregulation of STAT-3 phosphorylation. Overall, the host–guest chemistry on nanocarbon acts as a novel arsenal for STAT-3 inhibition. PMID:27545321
Vasantha, Basavalingappa; George, Gijo; Raghothama, Srinivasarao; Balaram, Padmanabhan
2017-01-01
Novel helical, structures unprecedented in the chemistry of α-polypeptides, may be found in polypeptides containing β and γ amino acids. The structural characterization of C 12 and C 14 -helices in oligo β-peptides was originally achieved using conformationally constrained cyclic β-residues. This study explores the conformational characteristics of proteinogenic β 3 residues in homooligomeric sequences and addresses the issue of inducing a transition between C 14 and C 12 helices by the introduction of a guest α-residue. Folded C 14 -helical structures are demonstrated for the nonapeptide Boc-[β 3 (R)Val] 9 -OMe by NMR methods in CDCl 3 -DMSO mixtures, while the peptide was found to be aggregated in CDCl 3 . The insertion of a guest Aib residue into an oligo-β-valine sequence in the octapeptide model Boc-[(β 3 (R)Val) 3 -Aib-(β 3 (R)Val] 4 -OMe results in well dispersed NH region in the NMR spectrum indicating folded structures in CDCl 3 . Structure calculations for both the peptides using NOE distance constraints support a C 14 helical structure in the homooligomer which transform into a C 12 helix on introduction of the guest Aib residue. © 2016 Wiley Periodicals, Inc.
Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M
2017-09-01
Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.
Kadokawa, Jun-ichi
2013-01-01
This paper reviews the architecture of amylose supramolecules in form of inclusion complexes with synthetic polymers by phosphorylase-catalyzed enzymatic polymerization. Amylose is known to be synthesized by enzymatic polymerization using α-d-glucose 1-phosphate as a monomer, by phosphorylase catalysis. When the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of various hydrophobic polymers, such as polyethers, polyesters, poly(ester-ether), and polycarbonates as a guest polymer, such inclusion supramolecules were formed by the hydrophobic interaction in the progress of polymerization. Because the representation of propagation in the polymerization is similar to the way that a vine of a plant grows, twining around a rod, this polymerization method for the formation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. To yield an inclusion complex from a strongly hydrophobic polyester, the parallel enzymatic polymerization system was extensively developed. The author found that amylose selectively included one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest polymers poly(tetrahydrofuran) (PTHF) in the vine-twining polymerization. Selective inclusion behavior of amylose toward stereoisomers of chiral polyesters, poly(lactide)s, also appeared in the vine-twining polymerization. PMID:24970172
Oxidation-Induced Degradable Nanogels for Iron Chelation
NASA Astrophysics Data System (ADS)
Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.
2016-02-01
Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells.
Aza-Bambusurils En Route to Anion Transporters.
Singh, Mandeep; Solel, Ephrath; Keinan, Ehud; Reany, Ofer
2016-06-20
Previous calculations of anion binding with various bambusuril analogs predicted that the replacement of oxygen by nitrogen atoms to produce semiaza-bambus[6]urils would award these new cavitands with multiple anion binding properties. This study validates the hypothesis by efficient synthesis, crystallography, thermogravimetric analysis and calorimetry. These unique host molecules are easily accessible from the corresponding semithio-bambusurils in a one-pot reaction, which converts a single anion receptor into a potential anion channel. Solid-state structures exhibit simultaneous accommodation of three anions, linearly positioned within the cavity along the main symmetry axis. The ability to hold anions at a short distance of about 4 Å is reminiscent of natural chloride channels in E. coli, which exhibit similar distances between their adjacent anion binding sites. The calculated transition-state energy for double-anion movement through the channel suggests that although these host-guest complexes are thermodynamically stable they enjoy high kinetic flexibility to render them efficient anion channels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
TiO2/BiVO4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment
2016-01-01
Metal oxides that absorb visible light are attractive for use as photoanodes in photoelectrosynthetic cells. However, their performance is often limited by poor charge carrier transport. We show that this problem can be addressed by using separate materials for light absorption and carrier transport. Here, we report a Ta:TiO2|BiVO4 nanowire photoanode, in which BiVO4 acts as a visible light-absorber and Ta:TiO2 acts as a high surface area electron conductor. Electrochemical and spectroscopic measurements provide experimental evidence for the type II band alignment necessary for favorable electron transfer from BiVO4 to TiO2. The host–guest nanowire architecture presented here allows for simultaneously high light absorption and carrier collection efficiency, with an onset of anodic photocurrent near 0.2 V vs RHE, and a photocurrent density of 2.1 mA/cm2 at 1.23 V vs RHE. PMID:27163032
Space and Time Partitioning with Hardware Support for Space Applications
NASA Astrophysics Data System (ADS)
Pinto, S.; Tavares, A.; Montenegro, S.
2016-08-01
Complex and critical systems like airplanes and spacecraft implement a very fast growing amount of functions. Typically, those systems were implemented with fully federated architectures, but the number and complexity of desired functions of todays systems led aerospace industry to follow another strategy. Integrated Modular Avionics (IMA) arose as an attractive approach for consolidation, by combining several applications into one single generic computing resource. Current approach goes towards higher integration provided by space and time partitioning (STP) of system virtualization. The problem is existent virtualization solutions are not ready to fully provide what the future of aerospace are demanding: performance, flexibility, safety, security while simultaneously containing Size, Weight, Power and Cost (SWaP-C).This work describes a real time hypervisor for space applications assisted by commercial off-the-shell (COTS) hardware. ARM TrustZone technology is exploited to implement a secure virtualization solution with low overhead and low memory footprint. This is demonstrated by running multiple guest partitions of RODOS operating system on a Xilinx Zynq platform.
Bracale, Antonio; Barros, Julio; Cacciapuoti, Angela Sara; ...
2015-06-10
Electrical power systems are undergoing a radical change in structure, components, and operational paradigms, and are progressively approaching the new concept of smart grids (SGs). Future power distribution systems will be characterized by the simultaneous presence of various distributed resources, such as renewable energy systems (i.e., photovoltaic power plant and wind farms), storage systems, and controllable/non-controllable loads. Control and optimization architectures will enable network-wide coordination of these grid components in order to improve system efficiency and reliability and to limit greenhouse gas emissions. In this context, the energy flows will be bidirectional from large power plants to end users andmore » vice versa; producers and consumers will continuously interact at different voltage levels to determine in advance the requests of loads and to adapt the production and demand for electricity flexibly and efficiently also taking into account the presence of storage systems.« less
Oxidation-Induced Degradable Nanogels for Iron Chelation
Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.
2016-01-01
Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells. PMID:26868174
Energy density engineering via zero-admittance domains in all-dielectric stratified materials
NASA Astrophysics Data System (ADS)
Amra, Claude; Zerrad, Myriam; Lemarchand, Fabien; Lereu, Aude; Passian, Ali; Zapien, Juan Antonio; Lequime, Michel
2018-02-01
Emerging photonic, sensing, and quantum applications require high fields and tight localization but low power consumption. Spatial, spectral, and magnitude control of electromagnetic fields is of key importance for enabling experiments in atomic, molecular, and optical physics. We introduce the concept of zero-admittance domains as a mechanism for tailoring giant optical fields bound within or on the surface of dielectric media. The described mechanism permits the creation of highly localized fields of extreme amplitudes simultaneously for incident photons of multiple wavelengths and incidence angles but arbitrary polarization states. No material constraints are placed upon the bounding media. Both intrinsic and extrinsic potential practical limitations of the predicted field enhancement are analyzed and applications relevant to optical sensors and microsources are briefly discussed.
NASA Astrophysics Data System (ADS)
Shen, Yuxuan; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.
2018-07-01
In this paper, the recursive filtering problem is studied for a class of time-varying nonlinear systems with stochastic parameter matrices. The measurement transmission between the sensor and the filter is conducted through a fading channel characterized by the Rice fading model. An event-based transmission mechanism is adopted to decide whether the sensor measurement should be transmitted to the filter. A recursive filter is designed such that, in the simultaneous presence of the stochastic parameter matrices and fading channels, the filtering error covariance is guaranteed to have an upper bound and such an upper bound is then minimized by appropriately choosing filter gain matrix. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed filtering scheme.
Achieving Agreement in Three Rounds with Bounded-Byzantine Faults
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar, R.
2017-01-01
A three-round algorithm is presented that guarantees agreement in a system of K greater than or equal to 3F+1 nodes provided each faulty node induces no more than F faults and each good node experiences no more than F faults, where, F is the maximum number of simultaneous faults in the network. The algorithm is based on the Oral Message algorithm of Lamport, Shostak, and Pease and is scalable with respect to the number of nodes in the system and applies equally to traditional node-fault model as well as the link-fault model. We also present a mechanical verification of the algorithm focusing on verifying the correctness of a bounded model of the algorithm as well as confirming claims of determinism.
El-Robh, Mohamed Samir; Busby, Stephen J W
2002-01-01
We report the first detailed quantitative study of divergent promoters dependent on the Escherichia coli cAMP receptor protein (CRP), a factor known to activate transcription initiation at target promoters by making direct interactions with the RNA polymerase holoenzyme. In this work, we show that CRP bound at a single target site is able to activate transcription at two divergently organized promoters. Experiments using promoter probe plasmids, designed to study divergent promoters in vivo and in vitro, show that the divergent promoters function independently. Further in vitro experiments show that two holo RNA polymerase molecules cannot be accommodated simultaneously at the divergent promoters. PMID:12350222
He, Jun; Wang, Xiaochun; Morrill, Mike; Shamsi, Shahab A.
2012-01-01
By combining a novel chiral amino-acid surfactant containing acryloyl amide tail, carbamate linker and leucine head group of different chain lengths with a conventional cross linker and a polymerization technique, a new “one-pot”, synthesis for the generation of amino-acid based polymeric monolith is realized. The method promises to open up the discovery of amino-acid based polymeric monolith for chiral separations in capillary electrochromatography (CEC). Possibility of enhanced chemoselectivity for simultaneous separation of ephedrine and pseudoephedrine containing multiple chiral centers, and the potential use of this amino-acid surfactant bound column for CEC and CEC coupled to mass spectrometric detection is demonstrated. PMID:22607448
Robust Control of Uncertain Systems via Dissipative LQG-Type Controllers
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.
2000-01-01
Optimal controller design is addressed for a class of linear, time-invariant systems which are dissipative with respect to a quadratic power function. The system matrices are assumed to be affine functions of uncertain parameters confined to a convex polytopic region in the parameter space. For such systems, a method is developed for designing a controller which is dissipative with respect to a given power function, and is simultaneously optimal in the linear-quadratic-Gaussian (LQG) sense. The resulting controller provides robust stability as well as optimal performance. Three important special cases, namely, passive, norm-bounded, and sector-bounded controllers, which are also LQG-optimal, are presented. The results give new methods for robust controller design in the presence of parametric uncertainties.
Flow cytometric measurement of total DNA and incorporated halodeoxyuridine
Dolbeare, F.A.; Gray, J.W.
1983-10-18
A method for the simultaneous flow cylometric measurement of total cellular DNA content and of the uptake of DNA precursors as a measure of DNA synthesis during various phases of the cell cycle in normal and malignant cells in vitro and in vivo is described. The method comprises reacting cells with labelled halodeoxyuridine (HdU), partially denaturing cellular DNA, adding to the reaction medium monoclonal antibodies (mabs) reactive with HdU, reacting the bound mabs with a second labelled antibody, incubating the mixture with a DNA stain, and measuring simultaneously the intensity of the DNA stain as a measure of the total cellular DNA and the HdU incorporated as a measure of DNA synthesis. (ACR)
Voluntary and Involuntary Movements Widen the Window of Subjective Simultaneity.
Arikan, B Ezgi; van Kemenade, Bianca M; Straube, Benjamin; Harris, Laurence R; Kircher, Tilo
2017-01-01
Forming a coherent percept of an event requires different sensory inputs originating from the event to be bound. Perceiving synchrony aids in binding of these inputs. In two experiments, we investigated how voluntary movements influence the perception of simultaneity, by measuring simultaneity judgments (SJs) for an audiovisual (AV) stimulus pair triggered by a voluntary button press. In Experiment 1, we manipulated contiguity between the action and its consequences by introducing delays between the button press and the AV stimulus pair. We found a widened window of subjective simultaneity (WSS) when the action-feedback relationship was time contiguous. Introducing a delay narrowed the WSS, suggesting that the wider WSS around the time of an action might facilitate perception of simultaneity. In Experiment 2, we introduced an involuntary condition using an externally controlled button to assess the influence of action-related predictive processes on SJs. We found a widened WSS around the action time, regardless of movement type, supporting the influence of causal relations in the perception of synchrony. Interestingly, the slopes of the psychometric functions in the voluntary condition were significantly steeper than the slopes in the involuntary condition, suggesting a role of action-related predictive mechanisms in making SJs more precise.
Voluntary and Involuntary Movements Widen the Window of Subjective Simultaneity
Arikan, B. Ezgi; van Kemenade, Bianca M.; Straube, Benjamin; Harris, Laurence R.; Kircher, Tilo
2017-01-01
Forming a coherent percept of an event requires different sensory inputs originating from the event to be bound. Perceiving synchrony aids in binding of these inputs. In two experiments, we investigated how voluntary movements influence the perception of simultaneity, by measuring simultaneity judgments (SJs) for an audiovisual (AV) stimulus pair triggered by a voluntary button press. In Experiment 1, we manipulated contiguity between the action and its consequences by introducing delays between the button press and the AV stimulus pair. We found a widened window of subjective simultaneity (WSS) when the action-feedback relationship was time contiguous. Introducing a delay narrowed the WSS, suggesting that the wider WSS around the time of an action might facilitate perception of simultaneity. In Experiment 2, we introduced an involuntary condition using an externally controlled button to assess the influence of action-related predictive processes on SJs. We found a widened WSS around the action time, regardless of movement type, supporting the influence of causal relations in the perception of synchrony. Interestingly, the slopes of the psychometric functions in the voluntary condition were significantly steeper than the slopes in the involuntary condition, suggesting a role of action-related predictive mechanisms in making SJs more precise. PMID:28835813
2018-01-25
Following this year's Day of Remembrance ceremony at the Kennedy Space Center Visitor Complex, guests pick up flowers to place at the Space Mirror Memorial. The names of fallen astronauts from Apollo 1, Challenger and Columbia, as well as the astronauts who perished in training and commercial airplane accidents are emblazoned on the monument. Each year spaceport employees and guests join others throughout NASA honoring the contributions of astronauts who have perished in the conquest of space.
Twice as smart behavior of tert-butylthiacalix[4]arene derivative in glassy and crystalline form.
Gataullina, K V; Ziganshin, M A; Stoikov, I I; Gubaidullin, A T; Gorbatchuk, V V
2015-06-28
A studied tert-butylthiacalix[4]arene derivative with four N-(2-acetoxyethyl)carbamoylmethoxy substituents on its lower rim in partial-cone configuration (calixarene 1) can remember its previous treatment in three essentially different ways by the formation either of a molecular glass or two metastable polymorphs after heating or the removal of an included guest molecule. Guest-induced memory is very selective with a polymorph created only after the release of a few included guests among a large series of those studied and is detected via an exothermic transition. Along with ordinary properties, like glass transition, curing and cold crystallization, the molecular glass from 1 is selective due to its ability to crystallize in solvent vapors and vapor mixtures over a well-defined concentration range. Being cooperative, this property may be used for the visual detection of ethanol content in water solution when it reaches a threshold value.
High-brightness blue organic light emitting diodes with different types of guest-host systems
NASA Astrophysics Data System (ADS)
Wang, Xiao; Zhang, Jing-shuang; Peng, Cui-yun; Guo, Kun-ping; Wei, Bin; Zhang, Hao
2016-03-01
We demonstrate high-brightness blue organic light emitting diodes (OLEDs) using two types of guest-host systems. A series of blue OLEDs were fabricated using three organic emitters of dibenz anthracene (perylene), di(4-fluorophenyl) amino-di (styryl) biphenyl (DSB) and 4,4'-bis[2-(9-ethyl-3-carbazolyl)vinyl]biphenyl (BCzVBi) doped into two hosting materials of 4,4'-bis(9-carbazolyl) biphenyl (CBP) and 2-(4-biphenylyl)-5(4-tert-butyl-phenyl)-1,3,4-oxadiazole (PBD) as blue emitting layers, respectively. We achieve three kinds of devices with colors of deep-blue, pure-blue and sky-blue with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.16, 0.10), (0.15, 0.15) and (0.17, 0.24), respectively, by employing PBD as host material. In addition, we present a microcavity device using the PBD guest-host system and achieve high-purity blue devices with narrowed spectrum.
Pessêgo, Márcia; Basílio, Nuno; Muñiz, M Carmen; García-Río, Luis
2016-07-06
Counterion competitive complexation is a background process currently ignored by using ionic hosts. Consequently, guest binding constants are strongly affected by the design of the titration experiments in such a way that the results are dependent on the guest concentration and on the presence of added salts, usually buffers. In the present manuscript we show that these experimental difficulties can be overcome by just considering the counterion competitive complexation. Moreover a single titration allows us to obtain not only the true binding constants but also the stoichiometry of the complex showing the formation of 1 : 1 : 1 (host : guest : counterion) complexes. The detection of high stoichiometry complexes is not restricted to a single titration experiment but also to a displacement assay where both competitive and competitive-cooperative complexation models are taken into consideration.
Binding of cyclic carboxylates to octa-acid deep-cavity cavitand
NASA Astrophysics Data System (ADS)
Gibb, Corinne L. D.; Gibb, Bruce C.
2014-04-01
As part of the fourth statistical assessment of modeling of proteins and ligands (sampl.eyesopen.com) prediction challenge, the strength of association of nine guests ( 1- 9) binding to octa-acid host was determined by a combination of 1H NMR and isothermal titration calorimetry. Association constants in sodium tetraborate buffered (pH 9.2) aqueous solution ranged from 5.39 × 102 M-1 in the case of benzoate 1, up to 3.82 × 105 M-1 for trans-4-methylcyclohexanoate 7. Overall, the free energy difference between the free energies of complexation of these weakest and strongest binding guests was ΔΔG° = 3.88 kcal mol-1. Based on a multitude of previous studies, the anticipated order of strength of binding was close to that which was actually obtained. However, the binding of guest 3 (4-ethylbenzoate) was considerably stronger than initially estimated.
Bai, Yang; Fan, Xiao-dong; Yao, Hao; Yang, Zhen; Liu, Ting-ting; Zhang, Hai-tao; Zhang, Wan-bin; Tian, Wei
2015-09-03
Tuning of the morphology and size of supramolecular self-assemblies is of theoretical and practical significance. To date, supramolecular driving forces in different solvents remain unclear. In this study, we first synthesized an amphiphilic β-cyclodextrin (β-CD) dimer that consists of one hydrophobic ibuprofen (Ibu) and two hydrophilic β-CD moieties (i.e., Ibu-CD2). Ibu-CD2 possesses double supramolecular driving forces, namely, the host-guest recognition and hydrophilic-hydrophobic interaction. The host-guest interaction of Ibu-CD2 induced the formation of branched supramolecular polymers (SPs) in pure water, whereas the hydrophilic-hydrophobic interaction generated spherical or irregular micelles in water/organic mixtures. The SP size increased with the increase in Ibu-CD2 concentration in pure water. By contrast, the size of micelles decreased with the increase in volume ratio of water in mixtures.
Host-Guest Complexes with Protein-Ligand-Like Affinities: Computational Analysis and Design
Moghaddam, Sarvin; Inoue, Yoshihisa
2009-01-01
It has recently been discovered that guests combining a nonpolar core with cationic substituents bind cucurbit[7]uril (CB[7]) in water with ultra-high affinities. The present study uses the Mining Minima algorithm to study the physics of these extraordinary associations and to computationally test a new series of CB[7] ligands designed to bind with similarly high affinity. The calculations reproduce key experimental observations regarding the affinities of ferrocene-based guests with CB[7] and β-cyclodextrin and provide a coherent view of the roles of electrostatics and configurational entropy as determinants of affinity in these systems. The newly designed series of compounds is based on a bicyclo[2.2.2]octane core, which is similar in size and polarity to the ferrocene core of the existing series. Mining Minima predicts that these new compounds will, like the ferrocenes, bind CB[7] with extremely high affinities. PMID:19133781
Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980
DOE R&D Accomplishments Database
Cram, D. J.
1980-01-15
Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)
NASA Astrophysics Data System (ADS)
Kataoka, Keisuke; Yasumoto, Tetsuaki; Manabe, Yousuke; Sato, Hiroyasu; Yamano, Akihito; Katagiri, Toshimasa
2013-01-01
An anisotropic tunnel microporous crystal was prepared. Active transportation of anthracene as a guest molecule in the anisotropic tunnels was observed. The direction of anthracene movement implies that the anisotropic tunnel did not work as a flap-check valve. The direction of the movement was consistent with that caused by a Brownian ratchet.An anisotropic tunnel microporous crystal was prepared. Active transportation of anthracene as a guest molecule in the anisotropic tunnels was observed. The direction of anthracene movement implies that the anisotropic tunnel did not work as a flap-check valve. The direction of the movement was consistent with that caused by a Brownian ratchet. Electronic supplementary information (ESI) available. CCDC reference numbers 837539 and 837540. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30880k
Enhancing the violation of the einstein-podolsky-rosen local realism by quantum hyperentanglement.
Barbieri, Marco; De Martini, Francesco; Mataloni, Paolo; Vallone, Giuseppe; Cabello, Adán
2006-10-06
Mermin's observation [Phys. Rev. Lett. 65, 1838 (1990)] that the magnitude of the violation of local realism, defined as the ratio between the quantum prediction and the classical bound, can grow exponentially with the size of the system is demonstrated using two-photon hyperentangled states entangled in polarization and path degrees of freedom, and local measurements of polarization and path simultaneously.
Raveh, Barak; London, Nir; Zimmerman, Lior; Schueler-Furman, Ora
2011-04-29
Flexible peptides that fold upon binding to another protein molecule mediate a large number of regulatory interactions in the living cell and may provide highly specific recognition modules. We present Rosetta FlexPepDock ab-initio, a protocol for simultaneous docking and de-novo folding of peptides, starting from an approximate specification of the peptide binding site. Using the Rosetta fragments library and a coarse-grained structural representation of the peptide and the receptor, FlexPepDock ab-initio samples efficiently and simultaneously the space of possible peptide backbone conformations and rigid-body orientations over the receptor surface of a given binding site. The subsequent all-atom refinement of the coarse-grained models includes full side-chain modeling of both the receptor and the peptide, resulting in high-resolution models in which key side-chain interactions are recapitulated. The protocol was applied to a benchmark in which peptides were modeled over receptors in either their bound backbone conformations or in their free, unbound form. Near-native peptide conformations were identified in 18/26 of the bound cases and 7/14 of the unbound cases. The protocol performs well on peptides from various classes of secondary structures, including coiled peptides with unusual turns and kinks. The results presented here significantly extend the scope of state-of-the-art methods for high-resolution peptide modeling, which can now be applied to a wide variety of peptide-protein interactions where no prior information about the peptide backbone conformation is available, enabling detailed structure-based studies and manipulation of those interactions. © 2011 Raveh et al.
Raveh, Barak; London, Nir; Zimmerman, Lior; Schueler-Furman, Ora
2011-01-01
Flexible peptides that fold upon binding to another protein molecule mediate a large number of regulatory interactions in the living cell and may provide highly specific recognition modules. We present Rosetta FlexPepDock ab-initio, a protocol for simultaneous docking and de-novo folding of peptides, starting from an approximate specification of the peptide binding site. Using the Rosetta fragments library and a coarse-grained structural representation of the peptide and the receptor, FlexPepDock ab-initio samples efficiently and simultaneously the space of possible peptide backbone conformations and rigid-body orientations over the receptor surface of a given binding site. The subsequent all-atom refinement of the coarse-grained models includes full side-chain modeling of both the receptor and the peptide, resulting in high-resolution models in which key side-chain interactions are recapitulated. The protocol was applied to a benchmark in which peptides were modeled over receptors in either their bound backbone conformations or in their free, unbound form. Near-native peptide conformations were identified in 18/26 of the bound cases and 7/14 of the unbound cases. The protocol performs well on peptides from various classes of secondary structures, including coiled peptides with unusual turns and kinks. The results presented here significantly extend the scope of state-of-the-art methods for high-resolution peptide modeling, which can now be applied to a wide variety of peptide-protein interactions where no prior information about the peptide backbone conformation is available, enabling detailed structure-based studies and manipulation of those interactions. PMID:21572516
In Conversation with Jim Schuck: Nano-optics
Jim Schuck and Alice Egan
2017-12-09
Sponsored by Berkeley Lab's Materials Sciences Division (MSD), "In Conversation with" is a next generation science seminar series. Host Alice Egan is the assistant to MSD Director Miquel Salmeron. Alice conducts a fun and informative interview, touching on the lives and work of the guest. The first In Conversation With took place July 9 with Jim Schuck, a staff scientist in the Molecular Foundry's Imaging and Manipulation Facility as our first guest. He discussed the world of Nano-optics.
Detecting Hardware-assisted Hypervisor Rootkits within Nested Virtualized Environments
2012-06-14
least the minimum required for the guest OS and click “Next”. For 64-bit Windows 7 the minimum required is 2048 MB (Figure 66). Figure 66. Memory...prompted for Memory, allocate at least the minimum required for the guest OS, for 64-bit Windows 7 the minimum required is 2048 MB (Figure 79...130 21. Within the virtual disk creation wizard, select VDI for the file type (Figure 81). Figure 81. Select File Type 22. Select Dynamically
In Conversation with Jim Schuck: Nano-optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jim Schuck and Alice Egan
Sponsored by Berkeley Lab's Materials Sciences Division (MSD), "In Conversation with" is a next generation science seminar series. Host Alice Egan is the assistant to MSD Director Miquel Salmeron. Alice conducts a fun and informative interview, touching on the lives and work of the guest. The first In Conversation With took place July 9 with Jim Schuck, a staff scientist in the Molecular Foundry's Imaging and Manipulation Facility as our first guest. He discussed the world of Nano-optics.
Zimmerman, S C; Saionz, K W; Zeng, Z
1993-01-01
The synthesis of hosts with improved binding affinities for nitroaromatic guests is described. Association constants for several host-guest complexes were measured in chloroform solution and ranged over three orders of magnitude. Two hosts were covalently linked to silica gel to produce chemically bonded stationary phases for HPLC. The use of these phases for HPLC analysis of nitro-substituted polycyclic aromatic hydrocarbons is discussed. PMID:8433981
Hacker, Charlotte E; Miller, Lance J
2016-07-01
Elephants in the wild face several conservation issues. With the rebranding of zoos as conservation and education pioneers, they have the ability to both educate and inspire guests to action. The purpose of this research was to analyze visitor perceptions and attitudes toward elephant conservation and outcomes post-exhibit visit. A one-page survey was randomly administered to assess perceptions of elephant behavior, attitudes about elephant conservation, and intended conservation-related outcomes from September 2013 to January 2014. Principle component analysis identified three major components: concern for elephants in zoos, importance of elephants in the wild, and modification of nature. Visitors who scored highly on conservation intent were those with positive attitudes towards elephants in the wild and negative attitudes regarding the modification of nature. The greatest changes in conservation intent were a result of a self-reported up-close encounter and the ability to witness active behaviors. Providing guests with the opportunity to witness or experience such occurrences may aid in a more successful delivery of the zoo's conservation message. Further research into guest emotions and affective states in relation to viewing elephants in a zoological institution would provide greater insight into improving the guest experience and helping zoos meet their conservation mission. Zoo Biol. 35:355-361, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Rood, Mark T. M.; Spa, Silvia J.; Welling, Mick M.; Ten Hove, Jan Bart; van Willigen, Danny M.; Buckle, Tessa; Velders, Aldrik H.; van Leeuwen, Fijs W. B.
2017-01-01
The use of mammalian cells for therapeutic applications is finding its way into modern medicine. However, modification or “training” of cells to make them suitable for a specific application remains complex. By envisioning a chemical toolbox that enables specific, but straight-forward and generic cellular functionalization, we investigated how membrane-receptor (pre)targeting could be combined with supramolecular host-guest interactions based on β-cyclodextrin (CD) and adamantane (Ad). The feasibility of this approach was studied in cells with membranous overexpression of the chemokine receptor 4 (CXCR4). By combining specific targeting of CXCR4, using an adamantane (Ad)-functionalized Ac-TZ14011 peptide (guest; KD = 56 nM), with multivalent host molecules that entailed fluorescent β-CD-Poly(isobutylene-alt-maleic-anhydride)-polymers with different fluorescent colors and number of functionalities, host-guest cell-surface modifications could be studied in detail. A second set of Ad-functionalized entities enabled introduction of additional surface functionalities. In addition, the attraction between CD and Ad could be used to drive cell-cell interactions. Combined we have shown that supramolecular interactions, that are based on specific targeting of an overexpressed membrane-receptor, allow specific and stable, yet reversible, surface functionalization of viable cells and how this approach can be used to influence the interaction between cells and their surroundings.
Zhu, Meiling; Wei, Kongchang; Lin, Sien; Chen, Xiaoyu; Wu, Chia-Ching; Li, Gang; Bian, Liming
2018-02-01
Targeted and sustained delivery of drugs to diseased tissues/organs, where body fluid exchange and catabolic activity are substantial, is challenging due to the fast cleansing and degradation of the drugs by these harsh environmental factors. Herein, a multifunctional and bioadhesive polycaprolactone-β-cyclodextrin (PCL-CD) polymersome is developed for localized and sustained co-delivery of hydrophilic and hydrophobic drug molecules. This PCL-CD polymersome affords multivalent crosslinking action via surface CD-mediated host-guest interactions to generate a supramolecular hydrogel that exhibits evident shear thinning and efficient self-healing behavior. The co-delivery of small molecule and proteinaceous agents by the encapsulated PCL-CD polymersomes enhances the differentiation of stem cells seeded in the hydrogel. Furthermore, the PCL-CD polymersomes are capable of in situ grafting to biological tissues via host-guest complexation between surface CD and native guest groups in the tissue matrix both in vitro and in vivo, thereby effectively extending the retention of loaded cargo in the grafted tissue. It is further demonstrated that the co-delivery of small molecule and proteinaceous drugs via PCL-CD polymersomes averts cartilage degeneration in animal osteoarthritic (OA) knee joints, which are known for their biochemically harsh and fluidically dynamic environment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Hong; Chen, Qiong; Zhao, Yingying; Zhang, Fan; Yang, Fan; Tang, Jie; He, Pingang
2014-04-01
A sensitive and label-free electrochemiluminescence (ECL) aptasensor for the detection of adenosine triphosphate (ATP) was successfully designed using host-guest recognition between a metallocyclodextrin complex, i.e., tris(bipyridine)ruthenium(II)-β-cyclodextrin [tris(bpyRu)-β-CD], and an ATP-binding aptamer. In the protocol, the NH2-terminated aptamer was immobilized on a glassy carbon electrode (GCE) by a coupling interaction. After host-guest recognition between tris(bpyRu)-β-CD and aptamer, the tris(bpyRu)-β-CD/aptamer/GCE produced a strong ECL signal as a result of the photoactive properties of tris(bpyRu)-β-CD. However, in the presence of ATP, the ATP/aptamer complex was formed preferentially, which restricted host-guest recognition, and therefore less tris(bpyRu)-β-CD was attached to the GCE surface, resulting in an obvious decrease in the ECL intensity. Under optimal determination conditions, an excellent logarithmic linear relationship between the ECL decrease and ATP concentration was obtained in the range 10.0-0.05 nM, with a detection limit of 0.01 nM at the S/N ratio of 3. The proposed ECL-based ATP aptasensor exhibited high sensitivity and selectivity, without time-consuming signal-labeling procedures, and is considered to be a promising model for detection of aptamer-specific targets. Copyright © 2014. Published by Elsevier B.V.
Defined Host-Guest Chemistry on Nanocarbon for Sustained Inhibition of Cancer.
Ostadhossein, Fatemeh; Misra, Santosh K; Mukherjee, Prabuddha; Ostadhossein, Alireza; Daza, Enrique; Tiwari, Saumya; Mittal, Shachi; Gryka, Mark C; Bhargava, Rohit; Pan, Dipanjan
2016-08-22
Signal transducer and activator of transcription factor 3 (STAT-3) is known to be overexpressed in cancer stem cells. Poor solubility and variable drug absorption are linked to low bioavailability and decreased efficacy. Many of the drugs regulating STAT-3 expression lack aqueous solubility; hence hindering efficient bioavailability. A theranostics nanoplatform based on luminescent carbon particles decorated with cucurbit[6]uril is introduced for enhancing the solubility of niclosamide, a STAT-3 inhibitor. The host-guest chemistry between cucurbit[6]uril and niclosamide makes the delivery of the hydrophobic drug feasible while carbon nanoparticles enhance cellular internalization. Extensive physicochemical characterizations confirm successful synthesis. Subsequently, the host-guest chemistry of niclosamide and cucurbit[6]uril is studied experimentally and computationally. In vitro assessments in human breast cancer cells indicate approximately twofold enhancement in IC 50 of drug. Fourier transform infrared and fluorescence imaging demonstrate efficient cellular internalization. Furthermore, the catalytic biodegradation of the nanoplatforms occur upon exposure to human myeloperoxidase in short time. In vivo studies on athymic mice with MCF-7 xenograft indicate the size of tumor in the treatment group is half of the controls after 40 d. Immunohistochemistry corroborates the downregulation of STAT-3 phosphorylation. Overall, the host-guest chemistry on nanocarbon acts as a novel arsenal for STAT-3 inhibition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ship-in-a-bottle synthesis of amine-functionalized ionic liquids in NaY zeolite for CO2 capture
Yu, Yinghao; Mai, Jingzhang; Wang, Lefu; Li, Xuehui; Jiang, Zheng; Wang, Furong
2014-01-01
CO2 capture on solid materials possesses significant advantages on the operation cost, process for large-scale CO2 capture and storage (CCS) that stimulates great interest in exploring high-performance solid CO2 adsorbents. A ship-in-a-bottle strategy was successfully developed to prepare the [APMIM]Br@NaY host–guest system in which an amine-functionalized ionic liquid (IL), 1-aminopropyl-3-methylimidazolium bromide ([APMIM]Br), was in-situ encapsulated in the NaY supercages. The genuine host-guest systems were thoroughly characterized and tested in CO2 capture from simulated flue gas. It was evidenced the encapsulated ILs are more stable than the bulk ILs. These host–guest systems exhibited superb overall CO2 capture capacity up to 4.94 mmol g−1 and the chemically adsorbed CO2 achieved 1.85 mmol g−1 depending on the [APMIM]Br loading amount. The chemisorbed CO2 can be desorbed rapidly by flushing with N2 gas at 50°C. The optimized [APMIM]Br@NaY system remains its original CO2 capture capacity in multiple cycling tests under prolonged harsh adsorption-desorption conditions. The excellent physicochemical properties and the CO2 capture performance of the host-guest systems offer them great promise for the future practice in the industrial CO2 capture. PMID:25104324
Cao, Xiaoxiao; Su, Yan; Liu, Yuan; Zhao, Jijun; Liu, Changling
2014-01-09
Using first-principle calculations at B97-D/6-311++G(2d,2p) level, we systematically explore the gas capacity of five standard water cavities (5(12), 4(3)5(6)6(3), 5(12)6(2), 5(12)6(4), and 5(12)6(8)) in clathrate hydrate and study the inclusion complexes to infer general trends in vibrational frequencies of guest molecules as a function of cage size and number of guest molecules. In addition, the Raman spectra of hydrates from CO2/CH4 gases are simulated. From our calculations, the maximum cage occupancy of the five considered cages (5(12), 4(3)5(6)6(3), 5(12)6(2), 5(12)6(4), and 5(12)6(8)) is one, one, two, three, and seven for both CH4 and CO2 guest molecules, respectively. Meanwhile, the optimum cage occupancy are one, one, one, two, and four for CO2 molecules and one, one, two, three, and five for CH4 molecules, respectively. Both the C-H stretching frequency of CH4 and the C-O stretching frequency of CO2 gradually decrease as size of the water cages increases. Meanwhile, the C-H stretching frequency gradually increases as the amount of CH4 molecules in the water cavity (e.g., 5(12)6(8)) increases.
Ermacora, Alessia; Hrnčiřík, Karel
2014-01-01
Substantial progress has been recently made in the development and optimisation of analytical methods for the quantification of 2-MCPD, 3-MCPD and glycidyl esters in oils and fats, and there are a few methods currently available that allow a reliable quantification of these contaminants in bulk oils and fats. On the other hand, no standard method for the analysis of foodstuffs has yet been established. The aim of this study was the development and validation of a new method for the simultaneous quantification of 2-MCPD, 3-MCPD and glycidyl esters in oil-based food products. The developed protocol includes a first step of liquid-liquid extraction and purification of the lipophilic substances of the sample, followed by the application of a previously developed procedure based on acid transesterification, for the indirect quantification of these contaminants in oils and fats. The method validation was carried out on food products (fat-based spreads, creams, margarine, mayonnaise) manufactured in-house, in order to control the manufacturing process and account for any food matrix-analyte interactions (the sample spiking was carried out on the single components used for the formulations rather than the final products). The method showed good accuracy (the recoveries ranged from 97% to 106% for bound 3-MCPD and 2-MCPD and from 88% to 115% for bound glycidol) and sensitivity (the LOD was 0.04 and 0.05 mg kg(-1) for bound MCPD and glycidol, respectively). Repeatability and reproducibility were satisfactory (RSD below 2% and 5%, respectively) for all analytes. The levels of salts and surface-active compounds in the formulation were found to have no impact on the accuracy and the other parameters of the method.
Achieving Agreement in Three Rounds With Bounded-Byzantine Faults
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
2015-01-01
A three-round algorithm is presented that guarantees agreement in a system of K (nodes) greater than or equal to 3F (faults) +1 nodes provided each faulty node induces no more than F faults and each good node experiences no more than F faults, where, F is the maximum number of simultaneous faults in the network. The algorithm is based on the Oral Message algorithm of Lamport et al. and is scalable with respect to the number of nodes in the system and applies equally to the traditional node-fault model as well as the link-fault model. We also present a mechanical verification of the algorithm focusing on verifying the correctness of a bounded model of the algorithm as well as confirming claims of determinism.
Baryon spectrum of SU(4) composite Higgs theory with two distinct fermion representations
NASA Astrophysics Data System (ADS)
Ayyar, Venkitesh; DeGrand, Thomas; Hackett, Daniel C.; Jay, William I.; Neil, Ethan T.; Shamir, Yigal; Svetitsky, Benjamin
2018-06-01
We use lattice simulations to compute the baryon spectrum of SU(4) lattice gauge theory coupled to dynamical fermions in the fundamental and two-index antisymmetric (sextet) representations simultaneously. This model is closely related to a composite Higgs model in which the chimera baryon made up of fermions from both representations plays the role of a composite top-quark partner. The dependence of the baryon masses on each underlying fermion mass is found to be generally consistent with a quark-model description and large-Nc scaling. We combine our numerical results with experimental bounds on the scale of the new strong sector to estimate a lower bound on the mass of the top-quark partner. We discuss some theoretical uncertainties associated with this estimate.
Dielectric relaxation of guest molecules in a clathrate structure of syndiotactic polystyrene.
Urakawa, Osamu; Kaneko, Fumitoshi; Kobayashi, Hideo
2012-12-13
Structure and dynamics of semicrystalline polymer films composed of syndiotactic polystyrene (sPS) and 2-butanone were examined through X-ray diffraction, polarized FTIR, and dielectric relaxation measurements. The X-ray and FTIR measurements revealed its crystal structure to be δ-clathrate containing 2-butanone molecules inside. The carbonyl group of 2-butanone in the crystal was found to orient preferentially parallel to the ac plane of the crystal through the polarized ATR FTIR measurements. Dielectric measurements were also conducted on these film samples to see only the relaxation dynamics of 2-butanone thanks to the high dielectric intensity of 2-butanone compared to sPS. Two relaxation modes denoted by slow and fast modes appeared. The former was assigned to the motion of 2-butanone molecules entrapped in the cavities of the crystalline (δ-form) and the latter to those in the amorphous region. We focused on the slow mode in order to elucidate the specific dynamics of the guest molecule confined in the crystalline region. The relaxation time of the slow mode was about 4 orders of magnitude longer than that of liquid 2-butanone. This suggests that the dynamics of guest molecules is highly restricted due to the high barrier to conformational and/or orientational change of the guest molecule in the cavity of δ-crystal. Furthermore, the dielectric intensity Δε of the slow mode was much smaller than the one calculated from that of bulk liquid 2-butanone and the guest concentration in the crystalline region (the intensity was only 10% of the estimated value from the bulk liquid data). This result also indicates that the free rotational motion of 2-butanone molecules is restricted inside the crystal. This will be consistently related to the weak uniplanar orientation of the carbonyl group of 2-butanone parallel to the ac plane revealed by the X-ray and polarized ATR FTIR measurements.
Ex(2)Box: interdependent modes of binding in a two-nanometer-long synthetic receptor.
Juríček, Michal; Barnes, Jonathan C; Dale, Edward J; Liu, Wei-Guang; Strutt, Nathan L; Bruns, Carson J; Vermeulen, Nicolaas A; Ghooray, Kala C; Sarjeant, Amy A; Stern, Charlotte L; Botros, Youssry Y; Goddard, William A; Stoddart, J Fraser
2013-08-28
Incorporation of two biphenylene-bridged 4,4'-bipyridinium extended viologen units into a para-phenylene-based cyclophane results in a synthetic receptor that is ~2 nm long and adopts a box-like geometry. This cyclophane, Ex(2)Box(4+), possesses the ability to form binary and ternary complexes with a myriad of guest molecules ranging from long π-electron-rich polycyclic aromatic hydrocarbons, such as tetracene, tetraphene, and chrysene, to π-electron-poor 2,6-dinitrotoluene, 1,2,4-trichlorobenzene, and both the 9,10- and 1,4-anthraquinone molecules. Moreover, Ex(2)Box(4+) is capable of forming one-to-one complexes with polyether macrocycles that consist of two π-electron-rich dioxynaphthalene units, namely, 1,5-dinaphtho[38]crown-10. This type of broad molecular recognition is possible because the electronic constitution of Ex(2)Box(4+) is such that the pyridinium rings located at the "ends" of the cyclophane are electron-poor and prefer to enter into donor-acceptor interactions with π-electron-rich guests, while the "middle" of the cyclophane, consisting of the biphenylene spacer, is more electron-rich and can interact with π-electron-poor guests. In some cases, these different modes of binding can act in concert to generate one-to-one complexes which possess high stability constants in organic media. The binding affinity of Ex(2)Box(4+) was investigated in the solid state by way of single-crystal X-ray diffraction and in solution by using UV-vis and NMR spectroscopy for 12 inclusion complexes consisting of the tetracationic cyclophane and the corresponding guests of different sizes, shapes, and electronic compositions. Additionally, density functional theory was carried out to elucidate the relative energetic differences between the different modes of binding of Ex(2)Box(4+) with anthracene, 9,10-anthraquinone, and 1,4-anthraquinone in order to understand the degree with which each mode of binding contributes to the overall encapsulation of each guest.
Overview of the SAMPL5 host–guest challenge: Are we doing better?
Yin, Jian; Henriksen, Niel M.; Slochower, David R.; Shirts, Michael R.; Chiu, Michael W.; Mobley, David L.; Gilson, Michael K.
2016-01-01
The ability to computationally predict protein-small molecule binding affinities with high accuracy would accelerate drug discovery and reduce its cost by eliminating rounds of trial-and-error synthesis and experimental evaluation of candidate ligands. As academic and industrial groups work toward this capability, there is an ongoing need for datasets that can be used to rigorously test new computational methods. Although protein–ligand data are clearly important for this purpose, their size and complexity make it difficult to obtain well-converged results and to troubleshoot computational methods. Host–guest systems offer a valuable alternative class of test cases, as they exemplify noncovalent molecular recognition but are far smaller and simpler. As a consequence, host–guest systems have been part of the prior two rounds of SAMPL prediction exercises, and they also figure in the present SAMPL5 round. In addition to being blinded, and thus avoiding biases that may arise in retrospective studies, the SAMPL challenges have the merit of focusing multiple researchers on a common set of molecular systems, so that methods may be compared and ideas exchanged. The present paper provides an overview of the host–guest component of SAMPL5, which centers on three different hosts, two octa-acids and a glycoluril-based molecular clip, and two different sets of guest molecules, in aqueous solution. A range of methods were applied, including electronic structure calculations with implicit solvent models; methods that combine empirical force fields with implicit solvent models; and explicit solvent free energy simulations. The most reliable methods tend to fall in the latter class, consistent with results in prior SAMPL rounds, but the level of accuracy is still below that sought for reliable computer-aided drug design. Advances in force field accuracy, modeling of protonation equilibria, electronic structure methods, and solvent models, hold promise for future improvements. PMID:27658802
Overview of the SAMPL5 host-guest challenge: Are we doing better?
Yin, Jian; Henriksen, Niel M; Slochower, David R; Shirts, Michael R; Chiu, Michael W; Mobley, David L; Gilson, Michael K
2017-01-01
The ability to computationally predict protein-small molecule binding affinities with high accuracy would accelerate drug discovery and reduce its cost by eliminating rounds of trial-and-error synthesis and experimental evaluation of candidate ligands. As academic and industrial groups work toward this capability, there is an ongoing need for datasets that can be used to rigorously test new computational methods. Although protein-ligand data are clearly important for this purpose, their size and complexity make it difficult to obtain well-converged results and to troubleshoot computational methods. Host-guest systems offer a valuable alternative class of test cases, as they exemplify noncovalent molecular recognition but are far smaller and simpler. As a consequence, host-guest systems have been part of the prior two rounds of SAMPL prediction exercises, and they also figure in the present SAMPL5 round. In addition to being blinded, and thus avoiding biases that may arise in retrospective studies, the SAMPL challenges have the merit of focusing multiple researchers on a common set of molecular systems, so that methods may be compared and ideas exchanged. The present paper provides an overview of the host-guest component of SAMPL5, which centers on three different hosts, two octa-acids and a glycoluril-based molecular clip, and two different sets of guest molecules, in aqueous solution. A range of methods were applied, including electronic structure calculations with implicit solvent models; methods that combine empirical force fields with implicit solvent models; and explicit solvent free energy simulations. The most reliable methods tend to fall in the latter class, consistent with results in prior SAMPL rounds, but the level of accuracy is still below that sought for reliable computer-aided drug design. Advances in force field accuracy, modeling of protonation equilibria, electronic structure methods, and solvent models, hold promise for future improvements.
NASA Astrophysics Data System (ADS)
Fourtaka, Katerina; Christoforides, Elias; Mentzafos, Dimitris; Bethanis, Kostas
2018-06-01
The crystal structures of the inclusion complexes of the β-citronellol (cl) inβ-Cyclodextrin (β-CD), heptakis(2,6-di-O-methyl)-β-Cyclodextrin (DM-β-CD) and heptakis(2,3,6-tri-O-methyl)-β-Cyclodextrin (TM-β-CD) have being investigated by X-ray crystallography. The cl/β-CD inclusion complex crystallizes in the P1space group forming dimers which are arranged along the c-axis according to the Intermediate Channel packing mode. Inside the dimeric host cavity two enantiomeric guest molecules are accommodated. The inclusion complexes of cl/DM-β-CD and cl/TM-β-CD crystallize in the P212121 space group having both 1:1 guest:host stoichiometry, the guest found always with the (-)-cl enantiomeric configuration. The guest is fully encapsulated inside the DM-β-CD host cavity whereas is partially encapsulated in the TM-β-CD which is severely puckered as in all TM-β-CD complexes and its primary side is efficiently blocked by the methoxy groups. The complex units in the case of cl/DM-β-CD pack along the crystallographic a-axis in a head-to-tail manner forming columns of herringbone mode whereas in the case of cl/TM-β-CD are arranged also head-to-tail, parallel to the b-axis, in a screw-channel mode. MD simulations based on the determined crystal structures showed that in a simulated aqueous environment the guest maintains the inclusion mode observed crystallographically in every case. MM/GBSA-calculations used for comparison of the inclusion complexes binding affinity with each other, indicated that the inclusion of β-citronellol in TM-β-CD is less favorable than in β-CD and DM-β-CD.
Greene, LaVana; Elzey, Brianda; Franklin, Mariah; Fakayode, Sayo O
2017-03-05
The negative health impact of polycyclic aromatic hydrocarbons (PAHs) and differences in pharmacological activity of enantiomers of chiral molecules in humans highlights the need for analysis of PAHs and their chiral analogue molecules in humans. Herein, the first use of cyclodextrin guest-host inclusion complexation, fluorescence spectrophotometry, and chemometric approach to PAH (anthracene) and chiral-PAH analogue derivatives (1-(9-anthryl)-2,2,2-triflouroethanol (TFE)) analyses are reported. The binding constants (K b ), stoichiometry (n), and thermodynamic properties (Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS)) of anthracene and enantiomers of TFE-methyl-β-cyclodextrin (Me-β-CD) guest-host complexes were also determined. Chemometric partial-least-square (PLS) regression analysis of emission spectra data of Me-β-CD-guest-host inclusion complexes was used for the determination of anthracene and TFE enantiomer concentrations in Me-β-CD-guest-host inclusion complex samples. The values of calculated K b and negative ΔG suggest the thermodynamic favorability of anthracene-Me-β-CD and enantiomeric of TFE-Me-β-CD inclusion complexation reactions. However, anthracene-Me-β-CD and enantiomer TFE-Me-β-CD inclusion complexations showed notable differences in the binding affinity behaviors and thermodynamic properties. The PLS regression analysis resulted in square-correlation-coefficients of 0.997530 or better and a low LOD of 3.81×10 -7 M for anthracene and 3.48×10 -8 M for TFE enantiomers at physiological conditions. Most importantly, PLS regression accurately determined the anthracene and TFE enantiomer concentrations with an average low error of 2.31% for anthracene, 4.44% for R-TFE and 3.60% for S-TFE. The results of the study are highly significant because of its high sensitivity and accuracy for analysis of PAH and chiral PAH analogue derivatives without the need of an expensive chiral column, enantiomeric resolution, or use of a polarized light. Published by Elsevier B.V.
Effect of bacoside A on membrane-bound ATPases in the brain of rats exposed to cigarette smoke.
Anbarasi, K; Vani, G; Balakrishna, K; Devi, C S Shyamala
2005-01-01
Membrane-bound enzymes play a vital role in neuronal function through maintenance of membrane potential and impulse propagation. We have evaluated the harmful effects of chronic cigarette smoking on membrane-bound ATPases and the protective effect of Bacoside A in rat brain. Adult male albino rats were exposed to cigarette smoke for a period of 12 weeks and simultaneously administered with Bacoside A (the active principle isolated from Bacopa monniera) at a dosage of 10 mg/kg b.w/day, p.o. The levels of lipid peroxides as marker for evaluating the extent of membrane damage, the activities of Na+/K+-ATPase, Ca2+-ATPase and Mg2+-ATPase, and associated cations sodium (Na+), potassium (K+), calcium (Ca2+), and magnesium (Mg2+) were investigated in the brain. Neuronal membrane damage was evident from the elevated levels of lipid peroxides and decreased activities of membrane-bound enzymes. Disturbances in the electrolyte balance with accumulation of Na+ and Ca2+ and depletion of K+ and Mg2+ were also observed. Administration of Bacoside A inhibited lipid peroxidation, improved the activities of ATPases, and maintained the ionic equilibrium. The results of our study indicate that Bacoside A protects the brain from cigarette smoking induced membrane damage. Copyright 2005 Wiley Periodicals, Inc.
Johnson, Alex D; Cheng, Fei; Tsai, Yutsung; Shih, Chih-Kang
2017-07-12
We have investigated how the photoluminescence (PL) of WSe 2 is modified when coupled to Ag plasmonic structures at low temperature. Chemical vapor deposition (CVD) grown monolayer WSe 2 flakes were transferred onto a Ag film and a Ag nanotriangle array that had a 1.5 nm Al 2 O 3 capping layer. Using low-temperature (7.5 K) micro-PL mapping, we simultaneously observed enhancement of the defect-bound exciton emission and quenching of the band edge exciton emission when the WSe 2 was on a plasmonic structure. The enhancement of the defect-bound exciton emission was significant with enhancement factors of up to ∼200 for WSe 2 on the nanotriangle array when compared to WSe 2 on a 1.5 nm Al 2 O 3 capped Si substrate with a 300 nm SiO 2 layer. The giant enhancement of the luminescence from the defect-bound excitons is understood in terms of the Purcell effect and increased light absorption. In contrast, the surprising result of luminescence quenching of the bright exciton state on the same plasmonic nanostructure is due to a rather unique electronic structure of WSe 2 : the existence of a dark state below the bright exciton state.
Rodnight, R.
1970-01-01
1. The effect of chemical agents on the turnover of the Na+-dependent bound phosphate and the simultaneous Na+-dependent hydrolysis of ATP by a membrane preparation from ox brain was studied at an ATP/protein ratio of 12.5pmol/μg. 2. The agents were added immediately after phosphorylation of the preparation in a medium containing 50mm-sodium chloride and 2.5μm-[γ-32P]ATP. 3. Concentrations of sodium chloride above 150mm, calcium chloride to 20mm and suramin to 1.4mm inhibited both phosphorylation and dephosphorylation and concomitantly slowed ATP hydrolysis. At 125mm-sodium chloride dephosphorylation and hydrolysis were slightly slowed without affecting phosphorylation. 4. Ethanol to 1.6m concentration inhibited dephosphorylation without affecting phosphorylation; the bound phosphate was increased and ATP hydrolysis slowed. 5. Ouabain to 4mm concentration partially inhibited ATP hydrolysis and caused a transient (1–2s) rise in bound phosphate followed by a rapid fall to a lower plateau value, which eventually declined to zero by the time ATP hydrolysis was complete. 6. Of the detergents examined Lubrol W, Triton X-100 and sodium deoxycholate had no significant effect on turnover. Sodium dodecyl sulphate and sodium decyl sulphate to 3.5mm and 20mm respectively completely inhibited turnover and ATP hydrolysis and stabilized the bound phosphate. PMID:4250238
Maglione, Maria Serena; Casado-Montenegro, Javier; Fritz, Eva-Corinna; Crivillers, Núria; Ravoo, Bart Jan; Rovira, Concepció; Mas-Torrent, Marta
2018-03-25
Here, on ITO//Au patterned substrates SAMs of ferrocene (Fc) on the Au regions and of anthraquinone (AQ) on the ITO areas are prepared, exhibiting three stable redox states. Furthermore, by selectively oxidizing or reducing the Fc or AQ units, respectively, the surface properties are locally modified. As a proof-of-concept, such a confinement of the properties is exploited to locally form host-guest complexes with β-cyclodextrin on specific surface regions depending on the applied voltage.
NASA Astrophysics Data System (ADS)
Ceborska, Magdalena
2017-10-01
The crystal structures of the complexes of β-cyclodextrin with (+)- and (-)-camphors are presented. The comparison of the obtained crystal structures with available data for other complexes of β-cyclodextrin with chiral bicyclic monoterpenes (hydrocarbon (+)-fenchene and alcohols: (-)-isopinocampheol, and (+)-, and (-)-borneols) obtained from Cambridge Structural Database (CSD) shows the trend of alcohols to form dimeric complexes of 2:3 stoichiometry, while hydrocarbons and ketones prefer to form 2:2 host-guest inclusion complexes.
Cornia; Affronte; Jansen; Abbati; Gatteschi
1999-08-01
Full chemical control of magnetic anisotropy in hexairon(III) rings can be achieved by varying the size of the guest alkali metal ion. Dramatically different anisotropies characterize the Li(I) and Na(I) complexes of [Fe(6)(OMe)(12)(L)(6)] (L=1,3-propanedione derivatives; a schematic representation of the Li(I) complex is shown), as revealed by high-field torque magnetometry-Iron: (g), oxygen: o, carbon: o, Li(+): plus sign in circle.
2006-02-27
KENNEDY SPACE CENTER, FLA. - At the dais (right), Kwatsi Alibaruho speaks to guests at NASA Kennedy Space Center's annual BEST (Black Employee Strategy Team) African-American History Month luncheon. Among attendees was Center Director Jim Kennedy. The guest speaker for the luncheon, Alibaruho is a flight director from Johnson Space Center Mission Control. The theme for this year's luncheon was "Creating New Paths From Journeys Past." The luncheon was held in the Kurt H. Debus Center at Kennedy Space Center's Visitor Complex. Photo credit: NASA/George Shelton
NASA Astrophysics Data System (ADS)
Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael
2013-12-01
A model for off-resonant microscopic cascading of (hyper)polarizabilities is developed using a self-consistent field approach to study mesoscopic systems of nonlinear polarizable atoms and molecules. We find enhancements in the higher-order susceptibilities resulting from geometrical and boundary orientation effects. We include an example of the dependence on excitation beam cross sectional structure and a simplified derivation of the microscopic cascading of the nonlinear-optical response in guest-host systems.
MCC Guest Viewing Program of Pope Benedict XVI's call to the ISS/STS-134 crew.
2011-05-21
JSC2011-E-046602 (21 May 2011) --- A group of guests in the viewing room of the Mission Control Center at NASA?s Johnson Space Center are pictured during a special call from Pope Benedict XVI (visible on the monitors) to the STS-134 and Expedition 27 crews on the International Space Station. The event was conducted from The Vatican at 6:11 a.m. (CDT) on May 21, 2011, and aired live on NASA television. Photo credit: NASA
State of the Union Address Student Guests
2011-01-25
White House Office of Science and Technology Policy Associate Director for Science Carl Wieman, left, talks with West Philadelphia High School student Brandon Ford, left, and Montana Central Catholic High School student Mikayla Nelson at the New Executive Office Building, Tuesday, Jan. 25, 2011 in Washington. The students are all young achievers in science and technology and will be amongst other guests seated in the First Lady’s Box in the U.S. Capitol during the President’s State of the Union Address. Photo Credit: (NASA/Bill Ingalls)
The metaphor of nurse as guest with ethical implications for nursing and healthcare.
Milton, Constance L
2005-10-01
Current healthcare advertising and customer relations terminology acknowledge that healthcare providers, including nurses, are to act as hosts for persons who enter into healthcare agencies and institutions. Indeed, much has been written aligning nursing and other healthcare services with consumer-oriented roles of the hospitality service industry commonly associated with hotels and restaurants. From a human becoming perspective, this article discusses possible ethical, administrative, and practice implications of nurses acting as guests entering into the lives of those we serve.
1994-01-01
kET/T1T 2 ) (solid lines). clusters of guest molecules with local concentrations exceeding the average value of about 1 pentacene /(50 ,A) in the highest...that the transport topology of singlet excitation energy is determined by the local distribu- tions of pentacene guests in the crystal. A singlet...Pullman, USA S. Miyata (co-chair), Tokyo University of Technology and Agriculture, Tokyo, Japan Local Organizing Committee F. Charra (secretary) P.-A
NASA Technical Reports Server (NTRS)
Nylen, W. E.
1974-01-01
Guest pilot evaluation results of an approach profile modification for reducing ground level noise under the approach of jet aircraft runways are reported. Evaluation results were used to develop a two segmented landing approach procedure and equipment necessary to obtain pilot, airline, and FAA acceptance of the two segmented flight as a routine way of operating aircraft on approach and landing. Data are given on pilot workload and acceptance of the procedure.
NASA Astrophysics Data System (ADS)
Merino, E.
2013-12-01
Geochemists of weathering, metamorphism, dolomitization, etc., have long adjusted mineral reactions conserving one or another component among the minerals, but paying no attention to whether the volumetric consequences of such adjustments are consistent with independent petrographic evidence. In fact the widespread occurrence of replacement in all types of water-rock interaction implies that the mineral reactions involved did conserve solid volume, not a component. The conflict has been hidden in a blind spot that geochemists appear to be unaware of having. Characteristically, replacement preserves both volume and morphological details of the host. It originates not by dissolution-precipitation, but by guest-growth-driven pressure solution of host by guest (Merino/Dewers 1998; Merino/Canals 2011) The replacement of periclase by brucite common in magnesian marbles is attributed (Turner 1965; Ferry 2000) to: MgO(per) + H2O = Mg(OH)2(bruc), (EQ 1), which conserves Mg between the two minerals. But with formula volumes of pericl & bruc ~11 & 25 cm3, this reaction cannot preserve mineral volume; it conflicts with excellent petrographic evidence that mineral volume was preserved. However, by adjusting the local mass balance on volume, as observed, 2.2MgO(per) + 2.4H+ = Mg(OH)2(bruc) + 1.2Mg++ + 0.2H2O (EQ 2), we gain striking dynamic/geochemical insights: (I) Seeing that Mg++ is locally released to the pore fluid, we suddenly grasp why the brucite is typically surrounded by a rim of dolomite replacing matrix calcite. As it is released, the Mg++ reacts with calcite and produces dolomite that replaces calcite, also isovolumetrically, as observed. (II) The second replacement (dolo-for-calc) was simultaneous and thus adjacent to the first, and must have happened at the same T,P, and at the same rate, as the first. (In the conventional view, the dolomite rim is attributed, ad hoc, to the reaction bruc + calc + CO2 = dolo + water, which necessarily happens later and at different T,P; which doesn't preserve volume; and which tells us nothing about rates.) (III) The Mg++ released by each increment of bruc-for-pericl replacement must increase the local ion-activity product for brucite growth from its ions, and thus the growth rate of the next increment of replacement, and so on: The bruc-for-pericl replacement is self-accelerating. This is why it always reaches completion - the brucite keeps replacing periclase faster and faster until all the periclase is gone. (Also self-accelerating are the dolo-for-calc replacement in dolomitization [Merino/Canals, 2011], and the serp-for-oliv replacement in serpentinization.) (IV) A dramatic feedback arises: As a self-accelerating replacement takes place in a non-newtonian rock of the strain-rate-softening kind (as crystalline carbonates and dunites are), it must reduce the local rock viscosity more and more, and, unless a needed reactant is used up first, the viscosity may become low enough for the growth of the guest mineral to gradually pass by itself from replacive to displacive (both régimes being driven by the guest-growth induced stress). This is how thin, displacive zebra veins form routinely in burial dolomitization (Merino/Canals 2006, 2011) and in serpentinization of dunite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Toomey, Bridget
Evolving power systems with increasing levels of stochasticity call for a need to solve optimal power flow problems with large quantities of random variables. Weather forecasts, electricity prices, and shifting load patterns introduce higher levels of uncertainty and can yield optimization problems that are difficult to solve in an efficient manner. Solution methods for single chance constraints in optimal power flow problems have been considered in the literature, ensuring single constraints are satisfied with a prescribed probability; however, joint chance constraints, ensuring multiple constraints are simultaneously satisfied, have predominantly been solved via scenario-based approaches or by utilizing Boole's inequality asmore » an upper bound. In this paper, joint chance constraints are used to solve an AC optimal power flow problem while preventing overvoltages in distribution grids under high penetrations of photovoltaic systems. A tighter version of Boole's inequality is derived and used to provide a new upper bound on the joint chance constraint, and simulation results are shown demonstrating the benefit of the proposed upper bound. The new framework allows for a less conservative and more computationally efficient solution to considering joint chance constraints, specifically regarding preventing overvoltages.« less
Precision bounds for gradient magnetometry with atomic ensembles
NASA Astrophysics Data System (ADS)
Apellaniz, Iagoba; Urizar-Lanz, Iñigo; Zimborás, Zoltán; Hyllus, Philipp; Tóth, Géza
2018-05-01
We study gradient magnetometry with an ensemble of atoms with arbitrary spin. We calculate precision bounds for estimating the gradient of the magnetic field based on the quantum Fisher information. For quantum states that are invariant under homogeneous magnetic fields, we need to measure a single observable to estimate the gradient. On the other hand, for states that are sensitive to homogeneous fields, a simultaneous measurement is needed, as the homogeneous field must also be estimated. We prove that for the cases studied in this paper, such a measurement is feasible. We present a method to calculate precision bounds for gradient estimation with a chain of atoms or with two spatially separated atomic ensembles. We also consider a single atomic ensemble with an arbitrary density profile, where the atoms cannot be addressed individually, and which is a very relevant case for experiments. Our model can take into account even correlations between particle positions. While in most of the discussion we consider an ensemble of localized particles that are classical with respect to their spatial degree of freedom, we also discuss the case of gradient metrology with a single Bose-Einstein condensate.
Su-Schrieffer-Heeger chain with one pair of [Formula: see text]-symmetric defects.
Jin, L; Wang, P; Song, Z
2017-07-19
The topologically nontrivial edge states induce [Formula: see text] transition in Su-Schrieffer-Heeger (SSH) chain with one pair of gain and loss at boundaries. In this study, we investigated a pair of [Formula: see text]-symmetric defects located inside the SSH chain, in particular, the defects locations are at the chain centre. The [Formula: see text] symmetry breaking of the bound states leads to the [Formula: see text] transition, the [Formula: see text]-symmetric phases and the localized states were studied. In the broken [Formula: see text]-symmetric phase, all energy levels break simultaneously in topologically trivial phase; however, two edge states in topologically nontrivial phase are free from the influence of the [Formula: see text]-symmetric defects. We discovered [Formula: see text]-symmetric bound states induced by the [Formula: see text]-symmetric local defects at the SSH chain centre. The [Formula: see text]-symmetric bound states significantly increase the [Formula: see text] transition threshold and coalesce to the topologically protected zero mode with vanishing probabilities on every other site of the left-half chain and the right-half chain, respectively.
Recent Advances in Cyclodextrin-Based Light-Responsive Supramolecular Systems.
Zhang, Xiaojin; Ma, Xin; Wang, Kang; Lin, Shijun; Zhu, Shitai; Dai, Yu; Xia, Fan
2018-06-01
Cyclodextrins (CDs), one of the host molecules in supramolecular chemistry, can host guest molecules to form inclusion complexes via non-covalent and reversible host-guest interactions. CD-based light-responsive supramolecular systems are typically constructed using CDs and guest molecules with light-responsive moieties, including azobenzene, arylazopyrazole, o-nitrobenzyl ester, pyrenylmethyl ester, coumarin, and anthracene. To date, numerous efforts have been reported on the topic of CD-based light-responsive supramolecular systems, but these have not yet been highlighted in a separated review. This review summarizes the efforts reported over the past ten years. The main text of this review is divided into five sections (vesicles, micelles, gels, capturers, and nanovalves) according to the formation of self-assemblies. This feature article aims to afford a comprehensive understanding of the light-responsive moieties used in the construction of CD-based light-responsive supramolecular systems and to provide a helpful guide for the further design of CD-based light-responsive supramolecular systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ma, Xiaoe; Zhou, Naizhen; Zhang, Tianzhu; Hu, Wanjun; Gu, Ning
2017-04-01
Self-healing materials are of interest for drug delivery, cell and gene therapy, tissue engineering, and other biomedical applications. In this work, on the base of biocompatible polymer poly(methyl vinyl ether-alt-maleic acid) (P(MVE-alt-MA)), host polymer β-cyclodextrin-grafted P(MVE-alt-MA) (P(MVE-alt-MA)-g-β-CD) and guest polymer adamantane-grafted P(MVE-alt-MA) (P(MVE-alt-MA)-g-Ad) were first prepared. Then through taking advantage of the traditional host-guest interaction of β-cyclodextrin and adamantane, a novel self-healing pH-sensitive physical P(MVE-alt-MA)-g-β-CD/P(MVE-alt-MA)-g-Ad supramolecular hydrogels were obtained after simply mixing the aqueous solution of host polymer and guest polymer. This kind of supramolecular hydrogels not only possess pH-sensitivity, but also possess the ability to repair themselves after being damaged. Copyright © 2016 Elsevier B.V. All rights reserved.
Belal, Khaled; Stoffelbach, François; Lyskawa, Joël; Fumagalli, Matthieu; Hourdet, Dominique; Marcellan, Alba; Smet, Lieselot De; de la Rosa, Victor R; Cooke, Graeme; Hoogenboom, Richard; Woisel, Patrice
2016-11-02
Most polymeric thermoresponsive hydrogels contract upon heating beyond the lower critical solution temperature (LCST) of the polymers used. Herein, we report a supramolecular hydrogel system that shows the opposite temperature dependence. When the non-thermosesponsive hydrogel NaphtGel, containing dialkoxynaphthalene guest molecules, becomes complexed with the tetra cationic macrocyclic host CBPQT 4+ , swelling occurred as a result of host-guest complex formation leading to charge repulsion between the host units, as well as an osmotic contribution of chloride counter-ions embedded in the network. The immersion of NaphtGel in a solution of poly(N-isopropylacrylamide) with tetrathiafulvalene (TTF) end groups complexed with CBPQT 4+ induced positive thermoresponsive behaviour. The LCST-induced dethreading of the polymer-based pseudorotaxane upon heating led to transfer of the CBPQT 4+ host and a concomitant swelling of NaphtGel. Subsequent cooling led to reformation of the TTF-based host-guest complexes in solution and contraction of the hydrogel. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
MacDonald, E; Møller, K E; Wester, A L; Dahle, U R; Hermansen, N O; Jenum, P A; Thoresen, L; Vold, L
2015-02-01
We investigated an outbreak of gastroenteritis following a Christmas buffet served on 4-9 December 2012 to ~1300 hotel guests. More than 300 people were reported ill in initial interviews with hotel guests. To identify possible sources of infection we conducted a cohort investigation through which we identified 214 probable cases. Illness was associated with consumption of scrambled eggs (odds ratio 9·07, 95% confidence interval 5·20-15·84). Imported chives added fresh to the scrambled eggs were the suspected source of the outbreak but were unavailable for testing. Enterotoxigenic Escherichia coli (ETEC) infection was eventually confirmed in 40 hotel guests. This outbreak reinforces that ETEC should be considered in non-endemic countries when the clinical picture is consistent and common gastrointestinal pathogens are not found. Following this outbreak, the Norwegian Food Safety Authority recommended that imported fresh herbs should be heat-treated before use in commercial kitchens.
Outside opportunities and costs incurred by others.
Roes, Frans L
2007-07-21
Descriptions of interactions between ants and their 'guests' serve to illustrate the thesis that Ewald's theory of the 'evolution of virulence' not only applies to interactions between micro-organisms causing infectious diseases and their hosts, but also to interactions between individuals belonging to differing species. For instance, the prediction is put forward and discussed that guests of army ants are, relative to guests of other species of ants, more often parasitic. A key variable in Ewald's theory is 'transmissibility'. It shows some resemblance to similar variables used in micro-economic theory and in Emerson's sociological Power-Dependence Relations theory. In this article, this variable is called 'outside opportunities'. In an A-B relation, an outside opportunity for A is anything which constitutes an alternative to what B can provide. It is concluded that in A-B interactions, the more outside opportunities are available to A, the more costs are incurred by B. Differences and similarities between this idea and Game Theory are discussed.
NASA Astrophysics Data System (ADS)
Zhu, Jing-Ling; Liu, Kerh Li; Wen, Yuting; Song, Xia; Li, Jun
2016-01-01
A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin.A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin. Electronic supplementary information (ESI) available: Polymer synthesis, characterization, preparation of drug-loaded nanovesicles, intracellular drug release and cytotoxicity assays, TEM and DLS measurements. See DOI: 10.1039/c5nr06744h
Tagaya, Motohiro; Ogawa, Makoto
2008-12-07
The states of tris(8-quinolinato)aluminum(III) (Alq3) adsorbed in mesoporous silicas with different pore sizes (2.5, 3.1 and 5.0 nm) were investigated. Alq3 was successfully occluded into the mesoporous silicas from solution and the adsorbed amount of Alq3 per BET surface area was effectively controlled by changing the added amount Alq3 to the solution. The state of Alq3 in the mesopore varied depending on the pore size as well as the adsorbed amount of Alq3 as revealed by variation of the photoluminescence spectra. The luminescence of the adsorbed Alq3 was found to be temperature-dependent, indicating the mobility of the adsorbed Alq3 to temperature variations. The temperature-dependence also depended on the pore size. The guest-guest interactions between Alq3 molecules as well as the host-guest interactions between Alq3 and the mesopore were controlled by the pore size.
Chirality Differentiation by Diffusion in Chiral Nematic Liquid Crystals
NASA Astrophysics Data System (ADS)
Jiang, Jinghua; Yang, Deng-Ke
2017-01-01
Chirality is of great importance in the living world. It helps differentiate biochemical reactions such as those that take place during digestion. It may also help differentiate physical processes such as diffusion. Aiming to study the latter effect, we investigate the diffusion of guest chiral molecules in chiral nematic (cholesteric) liquid-crystal hosts. We discover that the diffusion dramatically depends on the handedness of the guest and host molecules and the chiral differentiation is greatly enhanced by the proper alignment of the liquid-crystal host. The diffusion of a guest chiral molecule in a chiral host with the same handedness is much faster than in a chiral host with opposite handedness. We also observe that the differentiation of chirality depends on the diffusion direction with respect to the twisting direction (helical axis). These results might be important in understanding effects of chirality on physical processes that take place in biological organisms. In addition, this effect could be utilized for enantiomer separation.
Kong, Fred Ka-Wai; Chan, Alan Kwun-Wa; Ng, Maggie; Low, Kam-Hung; Yam, Vivian Wing-Wah
2017-11-20
Discrete pentanuclear Pt II stacks were prepared by the host-guest adduct formation between multinuclear tweezer-type Pt II complexes. The formation of the Pt II stacks in solution was accompanied by color changes and the turning on of near-infrared emission resulting from Pt⋅⋅⋅Pt and π-π interactions. The X-ray crystal structure revealed the formation of a discrete 1:1 adduct, in which a linear stack of five Pt II centers with extended Pt⋅⋅⋅Pt interactions was observed. Additional binding affinity and stability have been achieved through a multinuclear host-guest system. The binding behaviors can be fine-tuned by varying the spacer between the two Pt II moieties in the guests. This work provides important insights for the construction of discrete higher-order supramolecular metal-ligand aggregates using a tweezer-directed approach. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Very Strong Binding for a Neutral Calix[4]pyrrole Receptor Displaying Positive Allosteric Binding.
Duedal, Troels; Nielsen, Kent A; Olsen, Gunnar; Rasmussen, Charlotte B G; Kongsted, Jacob; Levillain, Eric; Breton, Tony; Miyazaki, Eigo; Takimiya, Kazuo; Bähring, Steffen; Jeppesen, Jan O
2017-02-17
The dual-analyte responsive behavior of tetraTTF-calix[4]pyrrole receptor 1 has been shown to complex electron-deficient planar guests in a 2:1 fashion by adopting a so-called 1,3-alternate conformation. However, stronger 1:1 complexes have been demonstrated with tetraalkylammonium halide salts that defer receptor 1 to its cone conformation. Herein, we report the complexation of an electron-deficient planar guest, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA, 2) that champions the complexation with 1, resulting in a high association constant K a = 3 × 10 10 M -2 . The tetrathiafulvalene (TTF) subunits in the tetraTTF-calix[4]pyrrole receptor 1 present a near perfect shape and electronic complementarity to the NTCDA guest, which was confirmed by X-ray crystal structure analysis, DFT calculations, and electron density surface mapping. Moreover, the complexation of these species results in the formation of a charge transfer complex (2 2 ⊂1) as visualized by a readily apparent color change from yellow to brown.
Synthesis of modified cyclic and acyclic dextrins and comparison of their complexation ability
Jicsinszky, László; Sohajda, Tamás; Puskás, István; Fenyvesi, Éva
2014-01-01
Summary We compared the complex forming ability of α-, β- and γ-cyclodextrins (α-CD, β-CD and γ-CD) with their open ring analogs. In addition to the native cyclodextrins also modified cyclodextrins and the corresponding maltooligomers, functionalized with neutral 2-hydroxypropyl moieties, were synthesized. A new synthetic route was worked out via bromination, benzylation, deacetylation and debenzylation to obtain the 2-hydroxypropyl maltooligomer counterparts. The complexation properties of non-modified and modified cyclic and acyclic dextrins were studied and compared by photon correlation spectroscopy (PCS) and capillary electrophoresis (CE) using model guest compounds. In some cases cyclodextrins and their open-ring analogs (acyclodextrins) show similar complexation abilities, while with other guests considerably different behavior was observed depending on the molecular dimensions and chemical characteristics of the guests. This was explained by the enhanced flexibility of the non-closed rings. Even the signs of enantiorecognition were observed for the chloropheniramine/hydroxypropyl maltohexaose system. Further studies are planned to help the deeper understanding of the interactions. PMID:25550750
Enhanced Hydrate Nucleation Near the Limit of Stability.
Jimenez-Angeles, Felipe; Firoozabadi, Abbas
2015-03-30
Clathrate hydrates are crystalline structures composed of small guest molecules trapped into cages formed by hydrogen-bonded water molecules. In hydrate nucleation, water and the guest molecules may stay in a metastable fluid mixture for a long period. Metastability is broken if the concentration of the guest is above certain limit. We perform molecular dynamics (MD) simulations of supersaturated water-propane solutions close to the limit of stability. We show that hydrate nucleation can be very fast in a very narrow range of composition at moderate temperatures. Propane density fluctuations near the fluid-fluid demixing are coupled with crystallization producing en- hanced nucleation rates. This is the first report of propane-hydrate nucleation by MD simulations. We observe motifs of the crystalline structure II in line with experiments and new hydrate cages not reported in the literature. Our study relates nucleation to the fluid-fluid spinodal decomposition and demonstration that the enhanced nucleation phenomenon is more general than short range attractive interactions as suggested in nucleation of proteins.
Hao, Jie; Gao, Yuxia; Li, Ying; Yan, Qiang; Hu, Jun; Ju, Yong
2017-09-05
Thermoresponsive water-soluble polymers are of great importance since they typically show a lower critical solution temperature (LCST) in aqueous media. In this research, the LCST change in broad temperature ranges of copolymers composed of natural glycyrrhetinic acid (GA)-based methacrylate and N,N'-dimethylacrylamides (DMAs) was investigated as a function of the concentration and the content of GA pendants. By complexation of GA pendants with β-cyclodextrin (β-CD), a side-chain polypseudorotaxane was obtained, which exhibited a significant increase in the LCST of copolymers. Moreover, the precisely reversible control of the LCST behavior was realized through adding a competing guest molecule, sodium 1-admantylcarboxylate. This work illustrates a simple and effective approach to endow water-soluble polymers with broad temperature tunability and helps us further understand the effect of a biocompatible host-guest complementary β-CD/GA pair on the thermoresponsive process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular recognition on a cavitand-functionalized silicon surface.
Biavardi, Elisa; Favazza, Maria; Motta, Alessandro; Fragalà, Ignazio L; Massera, Chiara; Prodi, Luca; Montalti, Marco; Melegari, Monica; Condorelli, Guglielmo G; Dalcanale, Enrico
2009-06-03
A Si(100) surface featuring molecular recognition properties was obtained by covalent functionalization with a tetraphosphonate cavitand (Tiiii), able to complex positively charged species. Tiiii cavitand was grafted onto the Si by photochemical hydrosilylation together with 1-octene as a spatial spectator. The recognition properties of the Si-Tiiii surface were demonstrated through two independent analytical techniques, namely XPS and fluorescence spectroscopy, during the course of reversible complexation-guest exchange-decomplexation cycles with specifically designed ammonium and pyridinium salts. Control experiments employing a Si(100) surface functionalized with a structurally similar, but complexation inactive, tetrathiophosphonate cavitand (TSiiii) demonstrated no recognition events. This provides evidence for the complexation properties of the Si-Tiiii surface, ruling out the possibility of nonspecific interactions between the substrate and the guests. The residual Si-O(-) terminations on the surface replace the guests' original counterions, thus stabilizing the complex ion pairs. These results represent a further step toward the control of self-assembly of complex supramolecular architectures on surfaces.
A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption
Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; ...
2015-04-13
A flexible metal–organic framework (MOF) of [Zn 3(btca) 2(OH) 2]·(guest) n (H 2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N 2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highlymore » selective adsorption of CO 2/N 2, CO 2/Ar, and CO 2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.« less
NASA Astrophysics Data System (ADS)
Venuti, Valentina; Stancanelli, Rosanna; Acri, Giuseppe; Crupi, Vincenza; Paladini, Giuseppe; Testagrossa, Barbara; Tommasini, Silvana; Ventura, Cinzia Anna; Majolino, Domenico
2017-10-01
The ability of Captisol® (sulphobutylether-β-cyclodextrin, SBE-β-CD), to form inclusion complexes, both in solution and in the solid state, has been tested in order to improve some unfavorable chemical-physical characteristics, such as poor solubility in water, of a bioflavonoid, Coumestrol (Coum), well known for its anti-oxidant, anti-inflammatory, anti-fungal and anti-viral activity. In pure water, a phase-solubility study was carried out to evaluate the enhancement of the solubility of Coum and, therefore, the occurred complexation with the macrocycle. The stoichiometry and the stability constant of the SBE-β-CD/Coum complex were calculated with the phase solubility method and through the Job's plot. After that, the solid SBE-β-CD/Coum complex was prepared utilizing a kneading method. The spectral changes induced by complexation on characteristic vibrational band of Coum were complementary investigated by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR) and Raman spectroscopy, putting into evidence the guest chemical groups involved in the "host-guest" interactions responsible of the formation and stabilization of the complex. Particular attention was paid to the Cdbnd O and Osbnd H stretching vibrations, whose temperature-evolution respectively furnished the enthalpy changes associated to the binding of host and guest in solid phase and to the reorganization of the hydrogen bond scheme upon complexation. From the whole set of results, an inclusion geometry is also proposed.
Wickstrom, Lauren; He, Peng; Gallicchio, Emilio; Levy, Ronald M.
2013-01-01
Host-guest inclusion complexes are useful models for understanding the structural and energetic aspects of molecular recognition. Due to their small size relative to much larger protein-ligand complexes, converged results can be obtained rapidly for these systems thus offering the opportunity to more reliably study fundamental aspects of the thermodynamics of binding. In this work, we have performed a large scale binding affinity survey of 57 β-cyclodextrin (CD) host guest systems using the binding energy distribution analysis method (BEDAM) with implicit solvation (OPLS-AA/AGBNP2). Converged estimates of the standard binding free energies are obtained for these systems by employing techniques such as parallel Hamitionian replica exchange molecular dynamics, conformational reservoirs and multistate free energy estimators. Good agreement with experimental measurements is obtained in terms of both numerical accuracy and affinity rankings. Overall, average effective binding energies reproduce affinity rank ordering better than the calculated binding affinities, even though calculated binding free energies, which account for effects such as conformational strain and entropy loss upon binding, provide lower root mean square errors when compared to measurements. Interestingly, we find that binding free energies are superior rank order predictors for a large subset containing the most flexible guests. The results indicate that, while challenging, accurate modeling of reorganization effects can lead to ligand design models of superior predictive power for rank ordering relative to models based only on ligand-receptor interaction energies. PMID:25147485
Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state
NASA Astrophysics Data System (ADS)
Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D.
2016-08-01
This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.
Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca
2016-08-15
This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better thanmore » the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.« less
Tang, Cong; Qian, Zhaosheng; Huang, Yuanyuan; Xu, Jiamin; Ao, Hang; Zhao, Meizhi; Zhou, Jin; Chen, Jianrong; Feng, Hui
2016-09-15
A convenient, reliable and highly sensitive assay for alkaline phosphatase (ALP) activity in the real-time manner is developed based on β-cyclodextrin-modified carbon quantum dots (β-CD-CQDs) nanoprobe through specific host-guest recognition. Carbon quantum dots were first functionalized with 3-aminophenyl boronic acid to produce boronic acid-functionalized CQDs, and then further modified with hydropropyl β-cyclodextrins (β-CD) through B-O bonds to form β-CD-CQDs nanoprobe. p-Nitrophenol phosphate disodium salt is used as the substrate of ALP, and can hydrolyze to p-nitrophenol under the catalysis of ALP. The resulting p-nitrophenol can enter the cavity of β-CD moiety in the nanoprobe due to their specific host-guest recognition, where photoinduced electron transfer process between p-nitrophenol and CQDs takes place to efficiently quench the fluorescence of the probe. The correlation between quenched fluorescence and ALP level can be used to establish quantitative evaluation of ALP activity in a broad range from 3.4 to 100.0U/L with the detection limit of 0.9U/L. This assay shows a high sensitivity to ALP even in the presence of a very high concentration of glucose. This study demonstrates a good electron donor/acceptor pair, which can be used to design general detection strategy through PET process, and also broadens the application of host-guest recognition for enzymes detection in clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.
Carbon monoxide poisoning at motels, hotels, and resorts.
Weaver, Lindell K; Deru, Kayla
2007-07-01
Each year, more than 200 people in the United States die from carbon monoxide (CO) poisoning. Poisoning has occurred at motels, hotels, and resorts. Congressional mandate requires smoke alarms in all guest rooms; however, smoke alarms do not detect CO. Data on patients poisoned at hotels, motels, and resorts were evaluated at a hyperbaric medicine service. In 2005, legal databases and online news databanks were searched to discover additional incidents. Only victims evaluated in hospitals or declared dead at the scene were included. Cases of intentional poisoning and poisoning from fires were excluded. Between 1989 and 2004, 68 incidents of CO poisoning occurring at hotels, motels, and resorts were identified, resulting in 772 accidentally poisoned: 711 guests, 41 employees or owners, and 20 rescue personnel. Of those poisoned, 27 died, 66 had confirmed sequelae, and 6 had sequelae resulting in a jury verdict. Lodging-operated, faulty room heating caused 45 incidents, pool/spa boilers 16, CO entrained from outdoors 5, and unreported sources caused 2 incidents. Public verdicts have averaged $4.8 million per incident (range, $1 million to $17.5 million). Poisoning occurred at hotels of all classes. Despite these incidents, most properties did not install CO alarms, and requirements for CO alarms at hotels, motels, and resorts are rare. Guests of motels, hotels, and resorts remain at risk for injury or death from CO poisoning. Measures to prevent CO poisoning of guests and employees of the lodging industry should be evaluated.
Size-controlled and redox-responsive supramolecular nanoparticles
2015-01-01
Summary Control over the assembly and disassembly of nanoparticles is pivotal for their use as drug delivery vehicles. Here, we aim to form supramolecular nanoparticles (SNPs) by combining advantages of the reversible assembly properties of SNPs using host–guest interactions and of a stimulus-responsive moiety. The SNPs are composed of a core of positively charged poly(ethylene imine) grafted with β-cyclodextrin (CD) and a positively charged ferrocene (Fc)-terminated poly(amidoamine) dendrimer, with a monovalent stabilizer at the surface. Fc was chosen for its loss of CD-binding properties when oxidizing it to the ferrocenium cation. The ionic strength was shown to play an important role in controlling the aggregate growth. The attractive supramolecular and repulsive electrostatic interactions constitute a balance of forces in this system at low ionic strengths. At higher ionic strengths, the increased charge screening led to a loss of electrostatic repulsion and therefore to faster aggregate growth. A Job plot showed that a 1:1 stoichiometry of host and guest moieties gave the most efficient aggregate growth. Different stabilizers were used to find the optimal stopper to limit the growth. A weaker guest moiety was shown to be less efficient in stabilizing the SNPs. Also steric repulsion is important for achieving SNP stability. SNPs of controlled particle size and good stability (up to seven days) were prepared by fine-tuning the ratio of multivalent and monovalent interactions. Finally, reversibility of the SNPs was confirmed by oxidizing the Fc guest moieties in the core of the SNPs. PMID:26733345
Weißenstein, Annike; Saha-Möller, Chantu R; Würthner, Frank
2018-06-04
The host-guest binding properties of a fluorescent perylene bisimide (PBI) receptor equipped with crown ether were studied in detail with a series of aromatic amino acids and dipeptides by UV/Vis, fluorescence and NMR spectroscopy. Fluorescence titration experiments showed that electron-rich aromatic amino acids and dipeptides strongly quench the fluorescence of the electron-poor PBI host molecule. Benesi-Hildebrand plots of fluorescence titration data confirmed the formation of host-guest complexes with 1:2 stoichiometry. Binding constants determined by global analysis of UV/Vis and fluorescence titration experiments revealed values between 10 3 m -1 and 10 5 m -1 in acetonitrile/methanol (9:1) at 23 °C. These data showed that amino acid l-Trp having an indole group and dipeptides containing this amino acid bind to the PBI receptor more strongly than other amino acids and dipeptides investigated here. For dipeptides containing l-Trp or l-Tyr, the binding strength is dependent on the distance between the ammonium group and the aromatic unit of the amino acids and dipeptides leading to a strong sensitivity for Ala-Trp dipeptide. 1D and 2D NMR experiments also corroborated 1:2 host-guest complexation and indicated formation of two diastereomeric species of host-guest complexes. The studies have shown that a properly functionalized PBI fluorophore functions as a molecular probe for the optical sensing of aromatic amino acids and dipeptides. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2010-08-25
coulombically bound electron-hole (e-h) pairs, commonly having a short range of the separation distance. [27, 31-34] Those excitons may undergo a...reactions causes a simultaneous reduction in the Isc and accounts for a negative MC response. The exciton-charge reaction is essentially Coulombic ...effect indicate that the excitons can interact with trapped charge carriers to de -trap the charge carriers. [46, 57, 58] Alternatively, the triplet
OPTIMAL EXPERIMENT DESIGN FOR MAGNETIC RESONANCE FINGERPRINTING
Zhao, Bo; Haldar, Justin P.; Setsompop, Kawin; Wald, Lawrence L.
2017-01-01
Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance. PMID:28268369
Optimal experiment design for magnetic resonance fingerprinting.
Bo Zhao; Haldar, Justin P; Setsompop, Kawin; Wald, Lawrence L
2016-08-01
Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance.
STS-81 and Mir 22 crews exchange gifts in the Mir Base Block
1997-02-21
STS081-350-013 (12-22 Jan 1997) --- Members of Mir-22 crew show appreciation for small flash lights brought up by the STS-81 crew. Left to right, new cosmonaut guest researcher Jerry M. Linenger, cosmonauts Valeri G. Korzun, mission commander, and Aleksandr Y. Kaleri, flight engineer, along with former cosmonaut guest researcher John E. Blaha. The four are on the Base Block Module of Russia?s Mir Space Station on the eve of the Space Shuttle Atlantis and Mir undocking day.
2017-08-21
From the Kennedy Space Center Visitor Complex, guests joined Americans from coast to coast following the solar eclipse. Guest speakers were, astronaut John-David Bartoe, left, and communicator Jeff Lucas. Although a partial eclipse on Florida's Space Coast, young and old alike found many ways to watch the rare astronomical event. As the Moon passed between Earth and the midafternoon Sun, a shadow moved across the landscape. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.
2003-07-18
KENNEDY SPACE CENTER, FLA. - (From left) Brian Duffy, Lockheed Martin vice president/associate program manager, Mildred Carter and Col. (Ret.) Herbert E. Carter, one of the Tuskegee Airmen, attend a dinner sponsored by the KSC Spaceflight and Life Sciences Office. Col. Carter was a guest speaker at the dinner.
2013-09-23
during that time frame. Finding B 10 │ DODIG-2013-138 Finding B USAFA Heritage Program Lacked Adequate Controls USAFA officials did not have effective ...E M B E R 2 3 , 2 0 1 3 Report No. DODIG-2013-138 The U.S. Air Force Academy Lacked Effective Controls Over Heritage Assets and Guest House...for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
MCC Guest Viewing Program of Pope Benedict XVI's call to the ISS/STS-134 crew.
2011-05-21
JSC2011-E-046605 (21 May 2011) --- His Eminence Daniel Cardinal DiNardo, Archbishop of Galveston-Houston, speaks to a group of guests in the viewing room of the Mission Control Center at NASA?s Johnson Space Center following a special call from Pope Benedict XVI to the STS-134 and Expedition 27 crews on the International Space Station. The event was conducted from The Vatican at 6:11 a.m. (CDT) on May 21, 2011, and aired live on NASA television. Photo credit: NASA
Yang, Kui; Wen, Jia; Chao, Shuang; Liu, Jing; Yang, Ke; Pei, Yuxin; Pei, Zhichao
2018-06-05
A supramolecular photosensitizer system WP6-MB was synthesized based on water-soluble pillar[6]arene and the photosensitizer methylene blue (MB) via host-guest interaction. MB can complex with WP6 directly with a high complex constant without further modification. In particular, WP6-MB can reduce the dark toxicity of MB remarkably. Furthermore, it can efficiently overcome photobleaching and extend the time for singlet oxygen production of MB upon light irradiation, which is significant for durable photodynamic therapy.
Temperature Dependence of Positron Annihilation in beta-Cyclodextrin and beta-Cyclodextrin Complexes
NASA Astrophysics Data System (ADS)
Hu, Y.; Hsu Hadley, F. H., Jr.; Trinh, T.
1996-11-01
The effects of temperature on positron annihilation in beta-cyclodextrin and beta-cyclodextrin complexed with benzyl salicylate, benzyl acetate, ethyl salicylate, geraniol, linalool and nerol were studied. Samples were prepared by slurry, air-dried and freeze-dried methods. Lifetime spectra were measured as a function of temperature for each sample. Comparison of the annihilation rate and intensity of the longer-lived component showed that positronium formation was affected by guest molecules, preparation methods and temperature variations. Results can be used to explain beta-cyclodextrin complex formation with different guest molecules.
Guest Room Lighting at the Hilton Columbus Downtown
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-06-30
At the Hilton Columbus Downtown hotel in Ohio, DOE's Better Buildings Alliance conducted a demonstration of Next Generation Luminaires-winning downlights installed in all guest rooms and suites prior to the hotel's 2012 opening. After a post-occupancy assessment, the LED downlights not only provided the aesthetic appearance and dimming functionality desired, but also provided 50% energy savings relative to a comparable CFL downlight and enabled the lighting power to be more than 20% below that allowed by code. This document is a summary case study of the report.
KEPLER OBSERVATIONS OF THE SEYFERT 1 GALAXY II ZW 229.015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carini, M. T.; Ryle, Wesley T., E-mail: mike.carini@wku.edu
2012-04-10
The Seyfert 1 galaxy II ZW 229.015 has been observed with the Kepler spacecraft since quarter 4 of Kepler science operations. The results of the quarters 4-7 (1 year) Kepler observations are presented in this paper. We find the source to be highly variable on multiple timescales, with discrete variations occurring on timescales as short as tens of hours with amplitudes as small as 0.5%. Such small amplitude, rapid variability has never before been detected in active galactic nuclei. The presence of a strong galaxy component dilutes the variability determined from the photometric aperture used in the standard Kepler PDCmore » analysis. Using the tools provided by the Kepler Guest Observer Office and simultaneous V-band photometry found in the literature, we determine an optimal customized aperture for photometry of this source with Kepler. The results of a PSRESP analysis reveal tentative evidence of a characteristic variability timescale in the power spectrum. Using this timescale, we estimate the mass of the central supermassive black hole and this estimate is consistent with the virial mass estimate from reverberation mapping studies.« less
Jackson, Alexander W; Chandrasekharan, Prashant; Shi, Jian; Rannard, Steven P; Liu, Quan; Yang, Chang-Tong; He, Tao
2015-01-01
Branched copolymer nanoparticles (D(h) =20-35 nm) possessing 1,4,7, 10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid macrocycles within their cores have been synthesized and applied as magnetic resonance imaging (MRI) nanosized contrast agents in vivo. These nanoparticles have been generated from novel functional monomers via reversible addition-fragmentation chain transfer polymerization. The process is very robust and synthetically straightforward. Chelation with gadolinium and preliminary in vivo experiments have demonstrated promising characteristics as MRI contrast agents with prolonged blood retention time, good biocompatibility, and an intravascular distribution. The ability of these nanoparticles to perfuse and passively target tumor cells through the enhanced permeability and retention effect is also demonstrated. These novel highly functional nanoparticle platforms have succinimidyl ester-activated benzoate functionalities within their corona, which make them suitable for future peptide conjugation and subsequent active cell-targeted MRI or the conjugation of fluorophores for bimodal imaging. We have also demonstrated that these branched copolymer nanoparticles are able to noncovalently encapsulate hydrophobic guest molecules, which could allow simultaneous bioimaging and drug delivery.
Marinova, D; Karadjova, V; Stoilova, D
2015-01-05
Infrared spectra of Tutton compounds, M'₂M''(SeO₄)₂⋅6H₂O (M'=K, NH₄⁺; M''=Mg, Co, Ni, Cu, Zn; X=S, Se), as well as those of SO₄²⁻ guest ions included in selenate host lattices and of NH4(+) guest ions included in potassium host lattices are presented and discussed in the regions of ν₃ and ν₁ of SO₄²⁻ guest ions, ν₄ of NH₄⁺ guest ions and water librations. The SO₄²⁻ guest ions matrix-isolated in selenate matrices (approximately 2 mol%) exhibit three bands corresponding to ν₃ and one band corresponding to ν₁ in good agreement with the low site symmetry C₁ of the host selenate ions. When the larger SO₄²⁻ ions are replaced by the smaller SO₄²⁻ ions the mean values of the asymmetric stretching modes ν₃ of the included SO₄²⁻ ions are slightly shifted to lower frequencies as compared to those of the same ions in the neat sulfate compounds due to the smaller repulsion potential of the selenate matrices (larger unit-cell volumes of the selenates). It has been established that the extent of energetic distortion of the sulfate ions matrix-isolated in the ammonium selenates as deduced from the values of Δν₃ and Δν₃/νc is stronger than that of the same ions matrix-isolated in the potassium selenates due to the formation of hydrogen bonds between the SO₄²⁻ guest ions with both the water molecules in the host compounds and the NH₄⁺ host ions (for example, Δν₃ of the sulfate guest ions have values of 30 and 51 cm(-1) in the nickel potassium and ammonium compounds, and 33 and 49 cm(-1) in the zinc potassium and ammonium compounds, respectively). The infrared spectra of ammonium doped potassium sulfate matrices show three bands corresponding to Δν₄ of the included ammonium ions in agreement with the low site symmetry C₁ of the host potassium ions. However, the inclusion of ammonium ions in selenate matrices (with exception of the magnesium compound) leads to the appearance of four bands in the region of ν₄. At that stage of our knowledge we assume that some kind of disorder of the ammonium ions included in selenate lattices occurs due to the different proton acceptor capability of the SO₄²⁻ and SO₄²⁻ ions. The latter ions are known to exhibit stronger proton acceptor abilities. This fact will facilitate the formation of polyfurcate hydrogen bonds of the ammonium ions in the selenate matrices, thus leading to increasing in the coordination number of these ions, i.e. to a disorder of the ammonium guest ions. The strength of the hydrogen bonds formed in the title Tutton compounds as well as that of the hydrogen bonds in potassium compounds containing isomorphously included ammonium ions as deduced from the wavenumbers of the water librations are also discussed. The bands corresponding to water librations in the spectra of the mixed crystals K₁.₈(NH₄)₀.₂M(XO₄)₂⋅6H₂O (M=Mg, Co, Ni, Cu, Zn; X=S, Se) broaden and shift to lower frequencies as compared to those of the potassium host compounds, thus indicating that weaker hydrogen bonds are formed in the mixed crystals. These spectroscopic findings are owing to the decrease in the proton acceptor capacity of the SO₄²⁻ and SO₄²⁻ ions due to the formation of hydrogen bonds between the host anions and the guest ammonium cations additionally to water molecules (anti-cooperative or proton acceptor competitive effect). Furthermore, the band shifts in the spectra of the selenate matrices are generally larger than those observed in the spectra of the respective sulfates due to the stronger proton acceptor ability of the selenate ions. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Marinova, D.; Karadjova, V.; Stoilova, D.
2015-01-01
Infrared spectra of Tutton compounds, M‧2M‧‧(XO4)2ṡ6H2O (M‧ = K, NH4+; M‧‧ = Mg, Co, Ni, Cu, Zn; X = S, Se), as well as those of SO42- guest ions included in selenate host lattices and of NH4+ guest ions included in potassium host lattices are presented and discussed in the regions of ν3 and ν1 of SO42- guest ions, ν4 of NH4+ guest ions and water librations. The SO42- guest ions matrix-isolated in selenate matrices (approximately 2 mol%) exhibit three bands corresponding to ν3 and one band corresponding to ν1 in good agreement with the low site symmetry C1 of the host selenate ions. When the larger SeO42- ions are replaced by the smaller SO42- ions the mean values of the asymmetric stretching modes νbar3 of the included SO42- ions are slightly shifted to lower frequencies as compared to those of the same ions in the neat sulfate compounds due to the smaller repulsion potential of the selenate matrices (larger unit-cell volumes of the selenates). It has been established that the extent of energetic distortion of the sulfate ions matrix-isolated in the ammonium selenates as deduced from the values of Δν3 and Δν3/νc is stronger than that of the same ions matrix-isolated in the potassium selenates due to the formation of hydrogen bonds between the SO42- guest ions with both the water molecules in the host compounds and the NH4+ host ions (for example, Δν3 of the sulfate guest ions have values of 30 and 51 cm-1 in the nickel potassium and ammonium compounds, and 33 and 49 cm-1 in the zinc potassium and ammonium compounds, respectively). The infrared spectra of ammonium doped potassium sulfate matrices show three bands corresponding to Δν4 of the included ammonium ions in agreement with the low site symmetry C1 of the host potassium ions. However, the inclusion of ammonium ions in selenate matrices (with exception of the magnesium compound) leads to the appearance of four bands in the region of ν4. At that stage of our knowledge we assume that some kind of disorder of the ammonium ions included in selenate lattices occurs due to the different proton acceptor capability of the SO42- and SeO42- ions. The latter ions are known to exhibit stronger proton acceptor abilities. This fact will facilitate the formation of polyfurcate hydrogen bonds of the ammonium ions in the selenate matrices, thus leading to increasing in the coordination number of these ions, i.e. to a disorder of the ammonium guest ions. The strength of the hydrogen bonds formed in the title Tutton compounds as well as that of the hydrogen bonds in potassium compounds containing isomorphously included ammonium ions as deduced from the wavenumbers of the water librations are also discussed. The bands corresponding to water librations in the spectra of the mixed crystals K1.8(NH4)0.2M(XO4)2ṡ6H2O (M = Mg, Co, Ni, Cu, Zn; X = S, Se) broaden and shift to lower frequencies as compared to those of the potassium host compounds, thus indicating that weaker hydrogen bonds are formed in the mixed crystals. These spectroscopic findings are owing to the decrease in the proton acceptor capacity of the SO42- and SeO42- ions due to the formation of hydrogen bonds between the host anions and the guest ammonium cations additionally to water molecules (anti-cooperative or proton acceptor competitive effect). Furthermore, the band shifts in the spectra of the selenate matrices are generally larger than those observed in the spectra of the respective sulfates due to the stronger proton acceptor ability of the selenate ions.
Lerch, R.N.; Thurman, E.M.; Kruger, E.L.
1997-01-01
This study tested the hypothesis that sorption of hydroxylated atrazine degradation products (HADPs: hydroxyatrazine, HA; deethylhydroxyatrazine, DEHA; and deisopropylhydroxyatrazine, DIHA) to soils occurs by mixed-mode binding resulting from two simultaneous mechanisms: (1) cation exchange and (2) hydrophobic interaction. The objective was to use liquid chromatography and soil extraction experiments to show that mixed-mode binding is the mechanism controlling HADP sorption to soils and is also a mechanism for bound residue. Overall, HADP binding to solid-phase extraction (SPE) sorbents occurred in the order: cation exchange >> octadecyl (C18) >> cyanopropyl. Binding to cation exchange SPE and to a high-performance liquid chromatograph octyl (C8) column showed evidence for mixed-mode binding. Comparison of soil extracted by 0.5 M KH2P04, pH 7.5, or 25% aqueous CH3CN showed that, for HA and DIHA, cation exchange was a more important binding mechanism to soils than hydrophobic interaction. Based on differences between several extractants, the extent of HADP mixed-mode binding to soil occurred in the following order: HA > DIHA > DEHA. Mixed-mode extraction recovered 42.8% of bound atrazine residues from aged soil, and 88% of this fraction was identified as HADPs. Thus, a significant portion of bound atrazine residues in soils is sorbed by the mixed-mode binding mechanisms.
Cramer, Alisha J.; Cole, Jacqueline M.
2016-06-27
The entrapment of environmentally important materials to enable containment of polluting wastes from industry or energy production, storage of alternative fuels, or water sanitation, is of vital and immediate importance. Many of these materials are small molecules or ions that can be encapsulated via their adsorption into framework structures to create a host-guest complex. This is an ever-growing field of study and, as such, the search for more suitable porous materials for environmental applications is fundamental to progress. However, many industrial areas that require the use of adsorbents are fraught with practical challenges such as high temperatures, rapid gas expansion,more » radioactivity, or repetitive gas cycling, that the host material must withstand. Inorganic phosphates have a proven history of rigid structures, thermal stability, and are suspected to possess good resistance to radiation over geologic time scales. Furthermore, various experimental studies have established their ability to adsorb small molecules, such as water. In light of this, all known crystal structures of phosphate frameworks with meta- (P 3O 9) or ultra- (P 5O 14) stoichiometries are combined in a data-mining survey together with all theoretically possible structures of Ln aP bO c (where a, b, c are any integer, and Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, or Tm) that are statistically likely to form. Topological patterns within these framework structures are used to assess their suitability for hosting a variety of small guest molecules or ions that are important for environmental applications: CO 2, H 2O, UO 2, PuO 2, U, Pu, Sr 2+, Cs +, CH 4 and H 2. A range of viable phosphate-based host-guest complexes are identified from this data-mining and pattern-based structural analysis. Moreover, distinct topological preferences for hosting such guests are found, and metaphosphate stoichiometries are generally preferred over ultraphosphate configurations.« less
1993-10-01
Structures: Simultaneous Trajectory Tracking and Vibration Reduction ... 10 3 . Buckling Control of a Flexible Beam Using Piezoelectric Actuators...bounded solution for the inverse dynamic torque has to be non-causal. Bayo, et. al. [ 3 ], extended the inverse dynamics to planar, multiple-link systems...presented by &ayo and Moulin [4] for the single link system, with provisions for 3 extension to multiple link systems. An equivalent time domain approach for
NASA Astrophysics Data System (ADS)
Liu, Bingchen; Dong, Mengzhen; Li, Fengjie
2018-04-01
This paper deals with a reaction-diffusion problem with coupled nonlinear inner sources and nonlocal boundary flux. Firstly, we propose the critical exponents on nonsimultaneous blow-up under some conditions on the initial data. Secondly, we combine the scaling technique and the Green's identity method to determine four kinds of simultaneous blow-up rates. Thirdly, the lower and the upper bounds of blow-up time are derived by using Sobolev-type differential inequalities.
Inhibition of ligand exchange kinetics via active-site trapping with an antibody fragment.
Oyen, David; Steyaert, Jan; Barlow, John N
2014-04-01
We describe the first example of an inhibitory antibody fragment (nanobody ca1697) that binds simultaneously to an enzyme (the enzyme dihydrofolate reductase from Escherichia coli) and its bound substrate (folate). Binding of the antibody to the substrate causes a 20-fold reduction in the rate of folate exchange kinetics. This work opens up the prospect of designing new types of antibody-based inhibitors of enzymes and receptors through suitable design of immunogens.
Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae
2017-01-15
Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H 2 O 2 ) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H 2 O 2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost. Copyright © 2016 Elsevier Ltd. All rights reserved.
Truss, M; Bartsch, J; Schelbert, A; Haché, R J; Beato, M
1995-01-01
Hormonal induction of the mouse mammary tumour virus (MMTV) promoter is mediated by interactions between hormone receptors and other transcription factors bound to a complex array of sites. Previous results suggested that access to these sites is modulated by their precise organization into a positioned regulatory nucleosome. Using genomic footprinting, we show that MMTV promoter DNA is rotationally phased in intact cells containing either episomal or chromosomally integrated proviral fragments. Prior to induction there is no evidence for factors bound to the promoter. Following progesterone induction of cells with high levels of receptor, genomic footprinting detects simultaneous protection over the binding sites for hormone receptors, NF-I and the octamer binding proteins. Glucocorticoid or progestin induction leads to a characteristic chromatin remodelling that is independent of ongoing transcription. The centre of the regulatory nucleosome becomes more accessible to DNase I and restriction enzymes, but the limits of the nucleosome are unchanged and the 145 bp core region remains protected against micrococcal nuclease digestion. Thus, the nucleosome covering the MMTV promoter is neither removed nor shifted upon hormone induction, and all relevant transcription factors bind to the surface of the rearranged nucleosome. Since these factors cannot bind simultaneously to free DNA, maintainance of the nucleosome may be required for binding of factors to contiguous sites. Images PMID:7737125
Reissig, Kathrin; Silver, Andrew; Hartig, Roland; Schinlauer, Antje; Walluscheck, Diana; Guenther, Thomas; Siedentopf, Sandra; Ross, Jochen; Vo, Diep-Khanh; Roessner, Albert; Poehlmann-Nitsche, Angela
2017-01-01
Dysregulation of c-Jun N -terminal kinase (JNK) activation promoted DNA damage response bypass and tumorigenesis in our model of hydrogen peroxide-associated ulcerative colitis (UC) and in patients with quiescent UC (QUC), UC-related dysplasia, and UC-related carcinoma (UC-CRC), thereby adapting to oxidative stress. In the UC model, we have observed features of oncogenic transformation: increased proliferation, undetected DNA damage, and apoptosis resistance. Here, we show that Chk1 was downregulated but activated in the acute and quiescent chronic phases. In both phases, Chk1 was linked to DNA damage response bypass by suppressing JNK activation following oxidative stress, promoting cell cycle progression despite DNA damage. Simultaneously, activated Chk1 was bound to chromatin. This triggered histone acetylation and the binding of histone acetyltransferases and transcription factors to chromatin. Thus, chromatin-immobilized activated Chk1 executed a dual function by suppressing DNA damage response and simultaneously inducing chromatin modulation. This caused undetected DNA damage and increased cellular proliferation through failure to transmit the appropriate DNA damage signal. Findings in vitro were corroborated by chromatin accumulation of activated Chk1, Ac-H3, Ac-H4, and c-Jun in active UC (AUC) in vivo. Targeting chromatin-bound Chk1, GCN5, PCAF, and p300/CBP could be a novel therapeutic strategy to prevent UC-related tumor progression.