Science.gov

Sample records for sinensis essential oil

  1. Antimycotic Activity and Genotoxic Evaluation of Citrus sinensis and Citrus latifolia Essential Oils.

    PubMed

    Ruiz-Pérez, Nancy J; González-Ávila, Marisela; Sánchez-Navarrete, Jaime; Toscano-Garibay, Julia D; Moreno-Eutimio, Mario A; Sandoval-Hernández, Teresa; Arriaga-Alba, Myriam

    2016-05-03

    The aim of this study was to evaluate the antifungal activity of essential oils (EOs) of Citrus sinensis (C. sinensis) and Citrus latifolia (C. latifolia) against five Candida species: Candida albicans, Candida tropicalis, Candida glabrata, Candida lusitaniae and Candida guilliermondii; and perform its genotoxic evaluation. The EOs of C. sinensis and C. latifolia were obtained from the peel by hydro-distillation. The major components determined by GC-MS were in C. sinensis, d-limonene (96%) and α-myrcene (2.79%); and in C. latifolia, d-limonene (51.64%), β-thujene (14.85%), β-pinene (12.79%) and γ-terpinene (12.8%). Antifungal properties were studied by agar diffusion method, where C. sinensis presented low activity and C. latifolia essential oil was effective to inhibit growing of C. lusitaniae and C. guilliermondii with IC50 of 6.90 and 2.92 μg respectively. The minimum inhibitory concentrations (MIC) for C. sinensis were in a range of 0.42-3.71 μg and for C. latifolia of 0.22-1.30 μg. Genotoxic evaluation was done by Ames test where none of the oils induced point mutations. Flow cytometry was used to measure toxicity in human oral epithelial cells, C. sinensis was not cytotoxic and C. latifolia was toxic at 21.8 μg. These properties might bestow different odontological applications to each essential oil.

  2. Antimycotic Activity and Genotoxic Evaluation of Citrus sinensis and Citrus latifolia Essential Oils

    PubMed Central

    Ruiz-Pérez, Nancy J.; González-Ávila, Marisela; Sánchez-Navarrete, Jaime; Toscano-Garibay, Julia D.; Moreno-Eutimio, Mario A.; Sandoval-Hernández, Teresa; Arriaga-Alba, Myriam

    2016-01-01

    The aim of this study was to evaluate the antifungal activity of essential oils (EOs) of Citrus sinensis (C. sinensis) and Citrus latifolia (C. latifolia) against five Candida species: Candida albicans, Candida tropicalis, Candida glabrata, Candida lusitaniae and Candida guilliermondii; and perform its genotoxic evaluation. The EOs of C. sinensis and C. latifolia were obtained from the peel by hydro-distillation. The major components determined by GC-MS were in C. sinensis, d-limonene (96%) and α-myrcene (2.79%); and in C. latifolia, d-limonene (51.64%), β-thujene (14.85%), β-pinene (12.79%) and γ-terpinene (12.8%). Antifungal properties were studied by agar diffusion method, where C. sinensis presented low activity and C. latifolia essential oil was effective to inhibit growing of C. lusitaniae and C. guilliermondii with IC50 of 6.90 and 2.92 μg respectively. The minimum inhibitory concentrations (MIC) for C. sinensis were in a range of 0.42–3.71 μg and for C. latifolia of 0.22–1.30 μg. Genotoxic evaluation was done by Ames test where none of the oils induced point mutations. Flow cytometry was used to measure toxicity in human oral epithelial cells, C. sinensis was not cytotoxic and C. latifolia was toxic at 21.8 μg. These properties might bestow different odontological applications to each essential oil. PMID:27137128

  3. Citrus essential oil of Nigeria. Part V: Volatile constituents of sweet orange leaf oil (Citrus sinensis).

    PubMed

    Kasali, Adeleke A; Lawal, Oladipupo A; Eshilokun, Adeolu O; Olaniyan, Abayomi A; Opoku, Andy R; Setzer, William N

    2011-06-01

    The volatile oils extracted from leaves of eight cultivars of Citrus sinensis (L) Osbeck were comprehensively analysed by a combination of GC and GC-MS. Fifty four constituents accounting for 82.3-98.2% were identified. Sabinene (20.9-49.1%), delta-3-carene (0.3-14.3%), (E)-beta-ocimene (4.4-12.6%), linalool (3.7-11.1%) and terpinen-4-ol (1.7-12.5%) were the major constituents that are common to all the volatile oils. In addition, a cluster analysis was carried out and indicated at least four different chemotypes for the C. sinensis cultivars.

  4. Effect of second cooling on the chemical components of essential oils from orange peel (Citrus sinensis).

    PubMed

    Chen, Yulong; Wu, Jijun; Xu, Yujuan; Fu, Manqing; Xiao, Gengsheng

    2014-09-03

    A second cooling was added to the oil collectors of an improved Clevenger-type apparatus (ICT) to investigate the thermal reaction of essential oils from orange peel compared to a traditional Clevenger-type apparatus (CT). The results demonstrated the yield rate of essential oil from ICT was significantly higher (p < 0.05) than that from CT. The major components of the essential oils consisted of monoterpenes, such as d-limonene, β-myrcene, β-pinene, γ-terpinene, α-pinene. Interestingly, ICT prevented the thermal reaction-the transformation of β-myrcene to β-thujene-and reduced the oxidation on α-pinene and β-pinene of the essential oil in comparison to CT. In addition, the yield rate of γ-terpinene can also be improved via ICT compared to CT. Thus, ICT is an effective improvement to traditional CT.

  5. Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti

    PubMed Central

    Araujo, Adriana Faraco de Oliveira; Ribeiro-Paes, João Tadeu; de Deus, Juliana Telles; Cavalcanti, Sócrates Cabral de Holanda; Nunes, Rogéria de Souza; Alves, Péricles Barreto; Macoris, Maria de Lourdes da Graça

    2016-01-01

    Environmentally friendly botanical larvicides are commonly considered as an alternative to synthetic larvicides against Aedes aegypti Linn. In addition, mosquito resistance to currently used larvicides has motivated research to find new compounds acting via different mechanisms of action, with the goal of controlling the spread of mosquitos. Essential oils have been widely studied for this purpose. This work aims to evaluate the larvicidal potential of Syzygium aromaticum and Citrus sinensis essential oils, either alone or in combination with temephos, on Ae. aegypti populations having different levels of organophosphate resistance. The 50% lethal concentration (LC50) of the essential oils alone and in combination with temephos and the influence of essential oils on vector oviposition were evaluated. The results revealed that essential oils exhibited similar larvicidal activity in resistant populations and susceptible populations. However, S. aromaticum and C. sinensis essential oils in combination with temephos did not decrease resistance profiles. The presence of the evaluated essential oils in oviposition sites significantly decreased the number of eggs compared to sites with tap water. Therefore, the evaluated essential oils are suitable for use in mosquito resistance management, whereas their combinations with temephos are not recommended. Additionally, repellency should be considered during formulation development to avoid mosquito deterrence. PMID:27384083

  6. Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti.

    PubMed

    Araujo, Adriana Faraco de Oliveira; Ribeiro-Paes, João Tadeu; Deus, Juliana Telles de; Cavalcanti, Sócrates Cabral de Holanda; Nunes, Rogéria de Souza; Alves, Péricles Barreto; Macoris, Maria de Lourdes da Graça

    2016-07-04

    Environmentally friendly botanical larvicides are commonly considered as an alternative to synthetic larvicides against Aedes aegypti Linn. In addition, mosquito resistance to currently used larvicides has motivated research to find new compounds acting via different mechanisms of action, with the goal of controlling the spread of mosquitos. Essential oils have been widely studied for this purpose. This work aims to evaluate the larvicidal potential of Syzygium aromaticum and Citrus sinensis essential oils, either alone or in combination with temephos, on Ae. aegypti populations having different levels of organophosphate resistance. The 50% lethal concentration (LC50) of the essential oils alone and in combination with temephos and the influence of essential oils on vector oviposition were evaluated. The results revealed that essential oils exhibited similar larvicidal activity in resistant populations and susceptible populations. However, S. aromaticum and C. sinensis essential oils in combination with temephos did not decrease resistance profiles. The presence of the evaluated essential oils in oviposition sites significantly decreased the number of eggs compared to sites with tap water. Therefore, the evaluated essential oils are suitable for use in mosquito resistance management, whereas their combinations with temephos are not recommended. Additionally, repellency should be considered during formulation development to avoid mosquito deterrence.

  7. Comparison of compositions and antimicrobial activities of essential oils from chemically stimulated agarwood, wild agarwood and healthy Aquilaria sinensis (Lour.) gilg trees.

    PubMed

    Chen, Huaiqiong; Yang, Yun; Xue, Jian; Wei, Jianhe; Zhang, Zheng; Chen, Hongjiang

    2011-06-14

    The composition and antimicrobial activity of the essential oils which were obtained from agarwood originated from Aquilaria sinensis (Lour.) Gilg stimulated by the chemical method (S1) were characterized, taking wild agarwood (S2) and healthy trees (S3) respectively as the positive and negative controls. The chemical composition of S1 was investigated by gas chromatography-mass spectrometry (GC-MS). The essential oil of S1 showed a similar composition to that of S2, being rich in sesquiterpenes and aromatic constituents. However, the essential oil of S3 was abundant in fatty acids and alkanes. Essential oils of S1 and S2 had better inhibition activities towards Bacillus subtilis and Staphyloccus aureus, compared with essential oil of S3. Escherichia coli was not sensitive to any of them.

  8. Enhanced toxicity of binary mixtures of Bacillus thuringiensis subsp. israelensis and three essential oil major constituents to wild Anopheles sinensis (Diptera: Culicidae) and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Chang, Kyu-Sik; Shin, E-Hyun; Yoo, Dae-Hyun; Ahn, Young-Joon

    2014-07-01

    An assessment was made of the toxicity of 12 insecticides and three essential oils as well as Bacillus thuringiensis subsp. israelensis (Bti) alone or in combination with the oil major constituents (E)-anethole (AN), (E) -cinnamaldehyde (CA), and eugenol (EU; 1:1 ratio) to third instars of bamboo forest-collected Aedes albopictus (Skuse) and rice paddy field-collected Anopheles sinensis Wiedemann. An. sinensis larvae were resistant to various groups of the tested insecticides. Based on 24-h LC50 values, binary mixtures of Bti and CA, AN, or EU were significantly more toxic against Ae. albopictus larvae (0.0084, 0.0134, and 0.0237 mg/liter) and An. sinensis larvae (0.0159, 0.0388, and 0.0541 mg/liter) than either Bti (1.7884 and 2.1681 mg/liter) or CA (11.46 and 18.56 mg/liter), AN (16.66 and 25.11 mg/liter), or EU (24.60 and 31.09 mg/liter) alone. As judged by cotoxicity coefficient (CC) and synergistic factor (SF), the three binary mixtures operated in a synergy pattern (CC, 140.7-368.3 and SF, 0.0007-0.0010 for Ae. albopictus; CC, 75.1-245.3 and SF, 0.0008-0.0017 for An. sinensis). Global efforts to reduce the level of highly toxic synthetic insecticides in the aquatic environment justify further studies on the binary mixtures of Bti and essential oil constituents described, in particular CA, as potential larvicides for the control of malaria vector mosquito populations.

  9. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene.

    PubMed

    Singh, Priyanka; Shukla, Ravindra; Prakash, Bhanu; Kumar, Ashok; Singh, Shubhra; Mishra, Prashant Kumar; Dubey, Nawal Kishore

    2010-06-01

    The study deals with antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima and Citrus sinensis essential oils (EOs) and their phytochemical composition. The EOs were obtained by hydrodistillation and their chemical profile was determined through GC and GC-MS analysis. Both the EOs and their 1:1 combination showed broad fungitoxic spectrum against different food contaminating moulds. The EOs and their combination completely inhibited aflatoxin B(1) (AFB(1)) production at 500 ppm, whereas, DL-limonene, the major component of EOs showed better antiaflatoxigenic efficacy even at 250 ppm. Both the oils exhibited antioxidant activity as DPPH free radical scavenger in dose dependent manner. The IC(50) for radical scavenging efficacy of C. maxima and C. sinensis oils were to be 8.84 and 9.45 microl ml(-1), respectively. The EOs were found non-mammalian toxic showing high LD(50) for mice (oral, acute). The oils may be recommended as safe plant based antimicrobials as well as antioxidants for enhancement of shelf life of food commodities by checking their fungal infestation, aflatoxin production as well as lipid peroxidation.

  10. Insecticidal activity against Bemisia tabaci biotype B of peel essential oil of Citrus sinensis var. pear and Citrus aurantium cultivated in northeast Brazil.

    PubMed

    Ribeiro, Nicolle de Carvalho; da Camara, Claudio Augusto Gomes; Born, Flávia de Souza; de Siqueira, Herbert Alvaro Abreu

    2010-11-01

    The fumigant action of peel essential oils of Citrus sinensis var. pear (pear orange = PO) and C. aurantium (bitter orange = BO) from the northeast of Brazil were evaluated against Bemisia tabaci biotype B and compared with eugenol as a positive control. The oil concentration in the PO at 8.5 microL/L of air caused 97% mortality, while the oil concentration of BO at 9.5 microL/L of air caused 99% mortality. However, the LC50 estimates for both oils (LC50 = 3.80 microL/L of air for PO and LC50 = 5.80 microL/L of air for BO) did not differ from each other, but they did when compared with eugenol (LC50 = 0.20 microL/L of air). Regarding their effects on oviposition, the Citrus oils showed concentration-response dependence, reducing the number of eggs as the concentration increased, which was not observed for eugenol. The minimum concentrations of the oils that caused a significant reduction in the egg lay were 3.5 and 7.0 microL/L of air for BO and PO, respectively. These results suggest that oils from PO and BO peels may be promising as models to develop new insecticides that might be applied into the integrated management of whiteflies.

  11. Light, scanning electron microscopy and SDS-PAGE studies on the effect of the essential oil, Citrus sinensis var. balady on the embryonic development of camel tick Hyalomma dromedarii (Koch, 1818) (Acari: Ixodidae).

    PubMed

    Salwa, M Habeeb; Abdel-Shafy, Sobhy; Youssef, Abd El-Ghany A

    2007-04-15

    GC-MSE analysis of the essential oil of fresh fruit peel of Citrus sinensis var. balady recognized two main natural toxic compounds, limonene (83.28%) as hydrocarbon compound and linalool (3.97%) as oxygenated compound. Therefore, the objective of this study was to evaluate its effect on different egg-ages of Hyalomma dromedarii at four concentrations of 1:40, 1:30, 1:20 and 1:15 (oil : ethanol 95%) (v/v). The LC50 values were 1:56, 1:34, 1:41, 1:32, 1: 23, 1:23, 1:18, 1:14 and 1:11 for egg-ages of 2, 4, 6, 9, 11, 13, 16, 18 and 20 day, respectively. Histological Examination (HE), Scanning Electron Microscopy (SEM) and Sodium dodecyle sulphate polyacrylamide gel electrophoresis (SDS-PAGE) were done on the 9th day old-eggs treated with the essential oil 1:32 (the LC50 value of 9 day old-egg). HE was done on the 11, 12, 13, 14 and 15th day old eggs; SEM was done on the 11, 15 and 17th day old eggs and SDS-PAGE was done on the 10, 11, 12, 13, 14, 15 and 17th day old eggs and compared each with those of control. In control, HE showed that nuclei migrated to the periphery and became part of the cytoplasmic membrane, blastula appears as a complete ring cells. Germ layer form and the later differentiate to different organelles such as opithosoma, ambulatory segment and chelicera...etc. while incase of treated eggs, HE showed that irregular manner of ectoplasmic membrane formed, blastula gathered on one or two sides, the cells of germ layer gather on one side as small or large mass or ring shape. Cells gathered as small masses or finger shape without forming any organelles. SEM revealed that heavy small bulging wrinkles were observed on egg shells of control. These wrinkles changed into large size in treated eggs on the 11th day and disappeared at the following days to become smooth surfaced. SDS-PAGE exhibited 15, 14, 14, 12, 17, 14 and 15 bands for treated eggs on the 10, 11, 12, 13, 14, 15 and 17th day old-eggs, respectively and 14, 15, 16, 19, 17, 19 and 18 bands for

  12. Comparison of the Composition and Antimicrobial Activities of the Essential Oils of Green Branches and Leaves of Egyptian Navel Orange (Citrus sinensis (L.) Osbeck var. malesy).

    PubMed

    Eldahshan, Omayma A; Halim, Ahmed F

    2016-06-01

    The essential oils isolated from the leaves and green branches of the Egyptian navel orange trees were analyzed by GC and GC/MS. A total of 33 and 24 compounds were identified from the oils of the leaves and branches accounting for 96.0% and 97.9%, respectively, of the total detected constituents. The major ones were sabinene (36.5; 33.0%), terpinen-4-ol (8.2; 6.2%), δ-3-carene (7.0; 9.4%), limonene (6.8; 18.7%), trans-ocimene (6.7; 6.1%), and β-myrcene (4.5; 4.4%). The antimicrobial activities of both oils were evaluated using the agar-well diffusion method toward three representatives for each of Gram-positive bacteria, Gram-negative bacteria, and fungi. The oil of leaves was more effective as antimicrobial agent than that of the branches. Streptococcus pyogenes, Staphylococcus aureus, Salmonella typhimurium, and Aspergillus fumigatus were the most sensitive bacteria and fungi by the leaves oil.

  13. Aromatherapy and Essential Oils (PDQ)

    MedlinePlus

    ... has found very few side effects . Lavender and tea tree essential oils have been found to have ... aromatherapy, including those from Roman chamomile , geranium , lavender , tea tree , lemon , cedarwood , and bergamot . Each plant's essential ...

  14. Antioxidant activity of oils extracted from orange (Citrus sinensis) seeds.

    PubMed

    Jorge, Neuza; Silva, Ana Carolina da; Aranha, Caroline P M

    2016-05-31

    Due to the increasing production of food in the world with consequent increase of the production of waste, the importance of developing researches for its use is noticed. Thus, the interest in vegetable oils with bioactive compounds, such as the ones extracted from fruit seeds, is growing. Therefore, the present study aims to characterize the oils extracted from seeds of Hamlin, Natal, Pera-rio and Valencia orange varieties (Citrus sinensis), as to the levels of total carotenoids, total phenolic compounds, tocopherols and phytosterols, as well as to determine their antioxidant activity. The orange seed oils presented important content of total carotenoids (19.01 mg/kg), total phenolic compounds (4.43 g/kg), α-tocopherol (135.65 mg/kg) and phytosterols (1304.2 mg/kg). The antioxidant activity ranged from 56.0% (Natal) to 70.2% (Pera-rio). According to the results it is possible to conclude that the orange seed oils can be used as specialty oils in diet, since they contain considerable amounts of bioactive compounds and antioxidants.

  15. [Antioxidant properties of essential oils].

    PubMed

    Misharina, T A; Terenina, M B; Krikunova, N I

    2009-01-01

    By the method of capillary gas-liquid chromatography we studied antioxidant properties and stability during the storage of hexane solutions of 14 individual essential oils from black and white pepper (Piper nigrum L.), cardamom (Elettaria cardamomum L.), nutmeg (Myristica fragrans Houtt.), mace (Myristica fragrans Houtt), juniperberry (Juniperus communis L.), seed of fennel (Foeniculum vulgare Mill., var. dulce Thelling), caraway (Carvum carvi L.), dry leaves of cinnamon (Cinnamomum zeylanicum Bl.), marjoram (Origanum majorana L.), laurel (Laurus nobilis L.), ginger (Zingiber officinale L.), garlic (Allium sativum L.), and clove bud (Caryophyllus aromaticus L.). We assessed the antioxidant properties by the oxidation of aliphatic aldehyde (trans-2-hexenal) into the according carbon acid. We established that essential oils of garlic, clove bud, ginger and leaves of cinnamon have the maximal efficiency of inhibition of hexenal oxidation (80-93%), while black pepper oil has the minimal (49%). Antioxidant properties of essential oils with a high content of substituted phenols depended poorly on its concentration in model systems. We studied the changes in essential oils content during the storage of its hexane solutions for 40 days in the light and out of the light and compared it with the stability of essential oils stored for a year out of the light.

  16. A Systematic Review of the Anxiolytic-Like Effects of Essential Oils in Animal Models.

    PubMed

    de Sousa, Damião Pergentino; de Almeida Soares Hocayen, Palloma; Andrade, Luciana Nalone; Andreatini, Roberto

    2015-10-14

    The clinical efficacy of standardized essential oils (such as Lavender officinalis), in treating anxiety disorders strongly suggests that these natural products are an important candidate source for new anxiolytic drugs. A systematic review of essential oils, their bioactive constituents, and anxiolytic-like activity is conducted. The essential oil with the best profile is Lavendula angustifolia, which has already been tested in controlled clinical trials with positive results. Citrus aurantium using different routes of administration also showed significant effects in several animal models, and was corroborated by different research groups. Other promising essential oils are Citrus sinensis and bergamot oil, which showed certain clinical anxiolytic actions; along with Achillea wilhemsii, Alpinia zerumbet, Citrus aurantium, and Spiranthera odoratissima, which, like Lavendula angustifolia, appear to exert anxiolytic-like effects without GABA/benzodiazepine activity, thus differing in their mechanisms of action from the benzodiazepines. The anxiolytic activity of 25 compounds commonly found in essential oils is also discussed.

  17. The In Vitro Antimicrobial Activity of Lavandula angustifolia Essential Oil in Combination with Other Aroma-Therapeutic Oils.

    PubMed

    de Rapper, Stephanie; Kamatou, Guy; Viljoen, Alvaro; van Vuuren, Sandy

    2013-01-01

    The antimicrobial activity of Lavandula angustifolia essential oil was assessed in combination with 45 other oils to establish possible interactive properties. The composition of the selected essential oils was confirmed using GC-MS with a flame ionization detector. The microdilution minimum inhibitory concentration (MIC) assay was undertaken, whereby the fractional inhibitory concentration (ΣFIC) was calculated for the oil combinations. When lavender oil was assayed in 1 : 1 ratios with other oils, synergistic (26.7%), additive (48.9%), non-interactive (23.7%), and antagonistic (0.7%) interactions were observed. When investigating different ratios of the two oils in combination, the most favourable interactions were when L. angustifolia was combined with Cinnamomum zeylanicum or with Citrus sinensis, against C. albicans and S. aureus, respectively. In 1 : 1 ratios, 75.6% of the essential oils investigated showed either synergistic or additive results, lending in vitro credibility to the use of essential oil blends in aroma-therapeutic practices. Within the field of aromatherapy, essential oils are commonly employed in mixtures for the treatment of infectious diseases; however, very little evidence exists to support the use in combination. This study lends some credence to the concomitant use of essential oils blended with lavender.

  18. The In Vitro Antimicrobial Activity of Lavandula angustifolia Essential Oil in Combination with Other Aroma-Therapeutic Oils

    PubMed Central

    de Rapper, Stephanie; Kamatou, Guy; Viljoen, Alvaro

    2013-01-01

    The antimicrobial activity of Lavandula angustifolia essential oil was assessed in combination with 45 other oils to establish possible interactive properties. The composition of the selected essential oils was confirmed using GC-MS with a flame ionization detector. The microdilution minimum inhibitory concentration (MIC) assay was undertaken, whereby the fractional inhibitory concentration (ΣFIC) was calculated for the oil combinations. When lavender oil was assayed in 1 : 1 ratios with other oils, synergistic (26.7%), additive (48.9%), non-interactive (23.7%), and antagonistic (0.7%) interactions were observed. When investigating different ratios of the two oils in combination, the most favourable interactions were when L. angustifolia was combined with Cinnamomum zeylanicum or with Citrus sinensis, against C. albicans and S. aureus, respectively. In 1 : 1 ratios, 75.6% of the essential oils investigated showed either synergistic or additive results, lending in vitro credibility to the use of essential oil blends in aroma-therapeutic practices. Within the field of aromatherapy, essential oils are commonly employed in mixtures for the treatment of infectious diseases; however, very little evidence exists to support the use in combination. This study lends some credence to the concomitant use of essential oils blended with lavender. PMID:23737850

  19. Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and penicillium italicum.

    PubMed

    Caccioni, D R; Guizzardi, M; Biondi, D M; Renda, A; Ruberto, G

    1998-08-18

    This study examined the effect of volatile components of citrus fruit essential oils on P. digitatum and P. italicum growth. The hydrodistilled essential oils of orange (Citrus sinensis cvv. "Washington navel", "Sanguinello", "Tarocco", "Moro", "Valencia late", and "Ovale"), bitter (sour) orange (C. aurantium), mandarin (C. deliciosa cv. "Avana"), grapefruit (C. paradisi cvv. "Marsh seedless" and "Red Blush"), citrange (C. sinensis x Poncirus trifoliata cvv. "Carrizo" and "Troyer"), and lemon (C. limon cv. "Femminello", collected in three periods), were characterized by a combination of GC and GC/MS analyses. The antifungal efficacy of the oils was then examined at progressively reduced rates. Findings showed a positive correlation between monoterpenes other than limonene and sesquiterpene content of the oils and the pathogen fungi inhibition. The best results were shown by the citrange oils, whose chemical composition is reported for the first time, and lemon. Furthermore P. digitatum was found to be more sensitive to the inhibitory action of the oils.

  20. Bioanalytical evaluation of Cinnamomum zeylanicum essential oil.

    PubMed

    Saleem, Muhammad; Bhatti, Haq Nawaz; Jilani, Muhammad Idrees; Hanif, Muhammad Asif

    2015-01-01

    This manuscript describes the antioxidant activity of essential oil of Cinnamon (Cinnamomum zeylanicum) bark extracted by supercritical fluid extraction (SCFE), hydro distillation and steam distillation. The cinnamon bark essential oil exhibited a wide range of total phenolic contents, total flavonoid contents, reducing power, inhibition of linoleic acid peroxidation and DPPH radical-scavenging activity (IC50). Bioactivity of cinnamon essential oil was assayed against various bacterial strains including Bacillus subtilis, Escherichia coli, Pastrurella multocida and Straphylococcus aureus and fungal strains including Aspergillus niger and Aspergillus flavus. More essential oil yield was obtained using SCFE in comparison to other methods. The oil extracted by SCFE was dominated by cinnamaldehyde, limonene, copaene, naphthalene, heptane, bicyclo[4.2.0]octa-1,3,5-triene and 2-propenal. Due to the presence of cinnamaldehyde in the essential oil of cinnamon bark it acts as a good antioxidant and antimicrobial agent.

  1. Essential Oils, Part III: Chemical Composition.

    PubMed

    de Groot, Anton C; Schmidt, Erich

    2016-01-01

    Data on the chemistry of essential oils which have caused contact allergy are provided. The largest group of chemicals found in essential oils consists of terpenes. The number of identified components usually ranges from 100 to 250, but in some oils (lavender, geranium, rosemary) 450 to 500 chemicals have been found. Many chemicals are present in a large number of oils, up to 98% for β-caryophyllene and 97% for limonene. Chemicals that are important constituents of >20 oils are limonene, linalool, and α-pinene. In many essential oils, there are 2 to 5 components which together constitute over 50% to 60% of the oil. In some oils, however, there is one dominant ingredient, making up more than 50% of the oil, including (E)-anethole in aniseed and star anise oil, carvone in spearmint oil, 1,8-cineole (eucalyptol) in Eucalyptus globulus oil, and (E)-cinnamaldehyde in cassia oil. The most important chemicals in 93 individual oils are specified.

  2. Antibacterial activity of Rosa damascena essential oil.

    PubMed

    Basim, E; Basim, H

    2003-06-01

    The essential oil of Rosa damascena petals was evaluated for its antibacterial effects against three strains of Xanthomonas axonopodis spp. vesicatoria. The essential oil may be a potential control agent in the management of the disease caused by X.a. vesicatoria in tomato and pepper plants.

  3. Antibacterial activity of Salvia tomentosa essential oil.

    PubMed

    Haznedaroglu, M Z; Karabay, N U; Zeybek, U

    2001-11-01

    The essential oil of Salvia tomentosa aerial parts, consisting of 1,8-cineol (17%), beta-caryophyllene (11%), cyclofenchene (10%) and delta-cadinene (6%), was screened for its antimicrobial activity. The essential oil remarkably inhibited the growth of tested Gram-positive and Gram-negative bacteria except for Pseudomonas aeruginosa.

  4. Phytotoxic activities of Mediterranean essential oils.

    PubMed

    de Almeida, Luiz Fernando Rolim; Frei, Fernando; Mancini, Emilia; De Martino, Laura; De Feo, Vincenzo

    2010-06-14

    Twelve essential oils from Mediterranean aromatic plants were tested for their phytotoxic activity, at different doses, against the germination and the initial radicle growth of seeds of Raphanus sativus, Lactuca sativa and Lepidium sativum. The essential oils were obtained from Hyssopus officinalis, Lavandula angustifolia, Majorana hortensis, Melissa officinalis, Ocimum basilicum, Origanum vulgare, Salvia officinalis and Thymus vulgaris (Lamiaceae), Verbena officinalis (Verbenaceae), Pimpinella anisum, Foeniculum vulgare and Carum carvi (Apiaceae). The germination and radicle growth of tested seeds were affected in different ways by the oils. Thyme, balm, vervain and caraway essential oils were more active against both germination and radicle elongation.

  5. Effect of Essential Oils on Pathogenic Bacteria

    PubMed Central

    Nazzaro, Filomena; Fratianni, Florinda; De Martino, Laura; Coppola, Raffaele; De Feo, Vincenzo

    2013-01-01

    The increasing resistance of microorganisms to conventional chemicals and drugs is a serious and evident worldwide problem that has prompted research into the identification of new biocides with broad activity. Plants and their derivatives, such as essential oils, are often used in folk medicine. In nature, essential oils play an important role in the protection of plants. Essential oils contain a wide variety of secondary metabolites that are capable of inhibiting or slowing the growth of bacteria, yeasts and moulds. Essential oils and their components have activity against a variety of targets, particularly the membrane and cytoplasm, and in some cases, they completely change the morphology of the cells. This brief review describes the activity of essential oils against pathogenic bacteria. PMID:24287491

  6. Essential oil composition of Teucrium scordium L.

    PubMed

    Morteza-Semnani, Katayoun; Saeedi, Majid; Akbarzadeh, Mohammad

    2007-12-01

    Composition of the essential oil obtained from dried flowering aerial parts of Teucrium scordium L. (Labiatae) was analyzed by GC and GC/MS. Fifty-six components were identified in the essential oil of T. scordium. The major constituents of the oil were beta-caryophyllene (22.8%), (E)-beta-farnesene (10.4%), caryophyllene oxide (8.6%), 1,8-cineole (6.1%) and beta-eudesmol (5.1%).

  7. Antimicrobial activity of two essential oils.

    PubMed

    Mickienė, Rūta; Bakutis, Bronius; Baliukonienė, Violeta

    2011-01-01

    The aim of the study was to evaluate the antimicrobial activity of essential oils in vitro for possible application to reduce the content of microorganisms in the air of animal houses. The essential oils of Cymbopogon citrarus L. and Malaleuca alternifolia L. were screened against bacteria Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis and yeast Candida albicans. The minimal inhibitory concentration of the active essential oils was tested using broth dilution assay. The essential oils concentrations ranged from 0.1-50.0%. The combined effects of essential oils were tested for Malaleuca alternifolia L. and Cymbopogon citrarus L. concentrations ranged from 0.005-50.0%. The oils showed a wide spectrum of antibacterial activity. Concentrations of 0.1-0.5% of Cymbopogon citrarus L. and Malaleuca alternifolia L. reduced total microorganisms count of Proteus mirabilis and Candida albicans. High antibacterial activity was also revealed for Cymbopogon citrarus L. with bactericidal concentrations of 0.8% for Escherichia coli, 5.0% for Enterococcus faecium, 5.0% for Pseudomonas aeruginosa and 8.0% for Staphylococcus aureus. Bactericidal concentrations of Malaleuca alternifolia L. were 5.0% for Pseudomonas aeruginosa and Enterococcus faecium, and 8.0% for Staphylococcus aureus. The essential oils of Cymbopogon citrarus and Malaleuca alternifolia may be a promising alternative of air disinfection in animal houses.

  8. Activity of Six Essential Oils Extracted from Tunisian Plants against Legionella pneumophila.

    PubMed

    Chaftar, Naouel; Girardot, Marion; Quellard, Nathalie; Labanowski, Jérôme; Ghrairi, Tawfik; Hani, Khaled; Frère, Jacques; Imbert, Christine

    2015-10-01

    The aim of this study was to investigate the composition of six essential oils extracted from Tunisian plants, i.e., Artemisia herba-alba Asso, Citrus sinensis (L.) Osbeck, Juniperus phoenicea L., Rosmarinus officinalis L., Ruta graveolens L., and Thymus vulgaris L., and to evaluate their activity against Legionella pneumophila (microdilution assays). Eight Legionella pneumophila strains were studied, including the two well-known serogroup 1 Lens and Paris strains as controls and six environmental strains isolated from Tunisian spas belonging to serogroups 1, 4, 5, 6, and 8. The essential oils were generally active against L. pneumophila. The activities of the A. herba-alba, C. sinensis, and R. officinalis essential oils were strain-dependent, whereas those of the J. phoenicea and T. vulgaris oils, showing the highest anti-Legionella activities, with minimum inhibitory concentrations (MICs) lower than 0.03 and lower than or equal to 0.07 mg/ml, respectively, were independent of the strains' serogroup. Moreover, the microorganisms treated with T. vulgaris essential oil were shorter, swollen, and less electron-dense compared to the untreated controls. Isoborneol (20.91%), (1S)-α-pinene (18.30%) β-phellandrene (8.08%), α-campholenal (7.91%), and α-phellandrene (7.58%) were the major components isolated from the J. phoenicea oil, while carvacrol (88.50%) was the main compound of the T. vulgaris oil, followed by p-cymene (7.86%). This study highlighted the potential interest of some essential oils extracted from Tunisian plants as biocides to prevent the Legionella risk.

  9. Antiaflatoxigenic activity of Carum copticum essential oil.

    PubMed

    Kahkha, Mohammad Reza Rezaei; Amanloo, Saeed; Kaykhaii, Massoud

    2014-01-01

    Plants are unique sources of useful metabolites. Plant essential oils display a wide range of antimicrobial effects against various pathogens. Here, we studied the essential oil from the seeds of Carum copticum. We monitored aflatoxin by high-performance liquid chromatography. Results show that Carum copticum essential oil inhibits Asergillus parasiticus growth and prevents aflatoxin production. The half-maximal inhibitory concentration (IC50) is 127.5 μg mL(-1) for aflatoxin B1 and 23.22 μg mL(-1) for aflatoxin G1. Our findings show that Carum copticum essential oil is a potential candidate for the protection of foodstuff and feeds from toxigenic fungus growth and their subsequent aflatoxin contamination.

  10. [Antibacterial activity of natural compounds - essential oils].

    PubMed

    Hassan, Sherif T S; Majerová, Michaela; Šudomová, Miroslava; Berchová, Kateřina

    2015-12-01

    Since the problem of bacterial resistance has become a serious problem worldwide, it was necessary to search for new active substances that can overcome the problem and enhance the treatment efficacy of bacterial infections. Numerous plant-derived essential oils exhibited significant antibacterial activities. This review aimed to summarize the most promising essential oils that exhibited remarkable antibacterial activities against various bacterial infections, including staphylococcal infections, Helicobacter pylori infections, skin infections, tuberculosis infection and dental bacterial infection. The synergy effect of essential oils in combination with antibiotics, as well as their role in the treatment of bacterial infections have been discussed. Essential oils can be used as models for further studies in vivo and clinical trials.

  11. Insecticidal Activity of Plant Essential Oils Against the Vine Mealybug, Planococcus ficus

    PubMed Central

    Karamaouna, Filitsa; Kimbaris, Athanasios; Michaelakis, Αntonios; Papachristos, Dimitrios; Polissiou, Moschos

    2013-01-01

    The vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), is a pest in grape vine growing areas worldwide. The essential oils from the following aromatic plants were tested for their insecticidal activity against P. ficus: peppermint, Mentha piperita L. (Lamiales: Lamiaceae), thyme-leaved savory, Satureja thymbra L., lavender, Lavandula angustifolia Mill, and basil, Ocimum basilicum L. Essential oils from peels of the following fruits were also tested: lemon, Citrus limon L. (Sapindales: Rutaceae), and orange, C. sinensis L. The reference product was paraffin oil. Bioassays were conducted in the laboratory by using spray applications on grape leaves bearing clusters of P. ficus of one size class, which mainly represented either 3rd instar nymphs or pre-ovipositing adult females. The LC50 values for each essential oil varied depending on the P. ficus life stage but did not significantly differ between 3rd instar nymphs and adult females. The LC50 values of the citrus, peppermint, and thyme-leaved savory essential oils ranged from 2.7 to 8.1 mg/mL, and the LC50 values of lavender and basil oil ranged from 19.8 to 22.5 and 44.1 to 46.8 mg/mL, respectively. The essential oils from citrus, peppermint and thymeleaved savory were more or equally toxic compared to the reference product, whereas the lavender and basil essential oils were less toxic than the paraffin oil. No phytotoxic symptoms were observed on grape leaves treated with the citrus essential oils, and low phytotoxicity was caused by the essential oils of lavender, thyme-leaved savory, and mint, whereas the highest phytotoxicity was observed when basil oil was used. PMID:24766523

  12. Insecticidal activity of plant essential oils against the vine mealybug, Planococcus ficus.

    PubMed

    Karamaouna, Filitsa; Kimbaris, Athanasios; Michaelakis, Alphantonios; Papachristos, Dimitrios; Polissiou, Moschos; Papatsakona, Panagiota; Tsora, Eleanna

    2013-01-01

    The vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), is a pest in grape vine growing areas worldwide. The essential oils from the following aromatic plants were tested for their insecticidal activity against P. ficus: peppermint, Mentha piperita L. (Lamiales: Lamiaceae), thyme-leaved savory, Satureja thymbra L., lavender, Lavandula angustifolia Mill, and basil, Ocimum basilicum L. Essential oils from peels of the following fruits were also tested: lemon, Citrus limon L. (Sapindales: Rutaceae), and orange, C. sinensis L. The reference product was paraffin oil. Bioassays were conducted in the laboratory by using spray applications on grape leaves bearing clusters of P. ficus of one size class, which mainly represented either 3rd instar nymphs or pre-ovipositing adult females. The LC50 values for each essential oil varied depending on the P. ficus life stage but did not significantly differ between 3(rd) instar nymphs and adult females. The LC50 values of the citrus, peppermint, and thyme-leaved savory essential oils ranged from 2.7 to 8.1 mg/mL, and the LC50 values of lavender and basil oil ranged from 19.8 to 22.5 and 44.1 to 46.8 mg/mL, respectively. The essential oils from citrus, peppermint and thymeleaved savory were more or equally toxic compared to the reference product, whereas the lavender and basil essential oils were less toxic than the paraffin oil. No phytotoxic symptoms were observed on grape leaves treated with the citrus essential oils, and low phytotoxicity was caused by the essential oils of lavender, thyme-leaved savory, and mint, whereas the highest phytotoxicity was observed when basil oil was used.

  13. Antigiardial activity of Ocimum basilicum essential oil.

    PubMed

    de Almeida, Igor; Alviano, Daniela Sales; Vieira, Danielle Pereira; Alves, Péricles Barreto; Blank, Arie Fitzgerald; Lopes, Angela Hampshire C S; Alviano, Celuta Sales; Rosa, Maria do Socorro S

    2007-07-01

    In this study, we investigated the effects of Ocimum basilicum essential oil on Giardia lamblia and on the modulation of the interaction of these parasites by peritoneal mouse macrophage. The essential oil (2 mg/ml) and its purified substances demonstrated antigiardial activity. Linalool (300 microg/ml), however, was able to kill 100% parasites after 1 h of incubation, which demonstrates its high antigiardial potential. Pretreatment of peritoneal mouse macrophages with 2 mg/ml essential oil dilution reduced in 79% the association index between these macrophages and G. lamblia, with a concomitant increase by 153% on nitric oxide production by the G. lamblia-ingested macrophages. The protein profiles and proteolitic activity of these parasite trophozoites, previously treated or not with 2 mg/ml essential oil or with the purified fractions, were also determined. After 1 and 2 h of incubation, proteins of lysates and culture supernatants revealed significant differences in bands patterns when compared to controls. Besides, the proteolitic activity, mainly of cysteine proteases, was clearly inhibited by the essential oil (2 mg/ml) and the purified linalool (300 microg/ml). These results suggest that, with G. lamblia, the essential oil from O. basilicum and its purified compounds, specially linalool, have a potent antimicrobial activity.

  14. Epileptic seizure induced by fennel essential oil.

    PubMed

    Skalli, Souad; Soulaymani Bencheikh, Rachida

    2011-09-01

    An epileptic seizure is reported in a 38-year-old woman, known to be an epileptic patient. Although she was under antiepileptic treatment and had well-controlled epilepsy, she developed a typical generalised tonic-clonic seizure and remained unconscious for 45 minutes following ingestion of a number of cakes containing an unknown quantity of fennel essential oil. Involuntary diarrhoea accompanied her epileptic seizure. This reported case recalls the fact that fennel essential oil can induce seizures and that this oil should probably be avoided by patients with epilepsy. Labelling of products with fennel essential oil should refer to the risk of seizures, particularly for patients with epilepsy. An awareness programme should involve all stakeholders affected by this issue.

  15. Antibacterial effect of five Zingiberaceae essential oils.

    PubMed

    Norajit, Krittika; Laohakunjit, Natta; Kerdchoechuen, Orapin

    2007-08-23

    Essential oil obtained by hydrodistillation and two different solvent extractions (petroleum ether and ethanol) from five Zingiberaceae species: ginger (Zingiber officinale Roscoe.), galanga (Alpinia galanga Sw.), turmeric (Curcuma longa L.), kaempferia (Boesenbergia pandurata Holtt.) and bastard cardamom (Amomum xanthioides Wall.) was characterized. Volatile components of all extracts were analyzed by gas chromatography-mass spectrometry (GC-MS). The major components of ginger, turmeric, galangal, bastard cardamom and kaempferia were zingiberene, turmerone, methyl chavicol, and gamma-terpinene, respectively. Their antibacterial effects towards Escherichia coli, Staphylococcus aureus, Bacillus cereus and Listeria monocytogenes were tested by a disc diffusion assay. Essential oil of kaempferia and bastard cardamom obtained by hydrodistillation extraction could inhibit growth of all tested bacteria. Essential oil of ginger extracted by hydrodistillation had the highest efficiency against three positive strains of bacteria (S. aureus, B. cereus and L. monocytogenes), with a minimum concentration to inhibit B. cereus and L. monocytogenes of 6.25 mg/mL.

  16. Antitumor Phenylpropanoids Found in Essential Oils

    PubMed Central

    Carvalho, Adriana Andrade; Andrade, Luciana Nalone; de Sousa, Élida Batista Vieira; de Sousa, Damião Pergentino

    2015-01-01

    The search for new bioactive substances with anticancer activity and the understanding of their mechanisms of action are high-priorities in the research effort toward more effective treatments for cancer. The phenylpropanoids are natural products found in many aromatic and medicinal plants, food, and essential oils. They exhibit various pharmacological activities and have applications in the pharmaceutical industry. In this review, the anticancer potential of 17 phenylpropanoids and derivatives from essential oils is discussed. Chemical structures, experimental report, and mechanisms of action of bioactive substances are presented. PMID:25949996

  17. Efficacy of herbal essential oils as insecticide against Aedes aegypti (Linn.), Culex quinquefasciatus (Say) and Anopheles dirus (Peyton and Harrison).

    PubMed

    Phasomkusolsil, Siriporn; Soonwera, Mayura

    2011-09-01

    The essential oils of Cananga odorata (ylang ylang), Citrus sinensis (orange), Cymbopogon citratus (lemongrass), Cymbopogon nardus (citronella grass), Eucalyptus citriodora (eucalyptus), Ocimum basilicum (sweet basil) and Syzygium aromaticum (clove), were tested for their insecticide activity against Aedes aegypti, Culex quinquefasciatus and Anopheles dirus using the WHO standard susceptibility test. These were applied in soybean oil at dose of 1%, 5% and 10% (w/v). C. citratus had the KT, values against the three mosquito species tested but the knockdown rates (at 10, 30 and 60 minutes) were lower than some essential oils. C. citratus oil had high insecticidal activity against Ae. aegypti, Cx. quinquefasciatus and An. dirus, with LC50 values of < 0.1, 2.22 and < 0.1%, respectively. Ten percent C. citratus gave the highest mortality rates (100%) 24 hours after application. This study demonstrates the potential for the essential oil of C. citratus to be used as an insecticide against 3 species of mosquitoes.

  18. Oviposition deterrent and ovicidal activities of seven herbal essential oils against female adults of housefly, Musca domestica L.

    PubMed

    Sinthusiri, Jirisuda; Soonwera, Mayura

    2014-08-01

    The oviposition deterrent and ovicidal of seven herbal essential oils derived from Citrus sinensis, Cymbopogon citratus, Eucalyptus glubulus, Illicium verum, Lavandula angustifolia, Mentha piperita, and Zingiber cussumunar were assessed against the gravid female of housefly, Musca domestica L., under laboratory conditions and compared with commercial insecticide (10% w/v cypermethrin). They were assayed at three concentrations (1.0, 5.0, and 10.0%) where plastic cups containing 1 ml of desired oil concentration and cotton pad soaked with 10 ml of milk solution (10% w/v) were used as oviposition substrate. The 0.1 ml of deferent concentrations was dropped on ten housefly eggs, which were used for ovicidal activity. The number of eggs laid and the hatched larvae in each cup was recorded to evaluate the oviposition deterrent and ovicidal activities of the herbal essential oils. High concentration (10%) of herbal essential oils showed high percent effective repellency (ER). The 10% I. verum oil caused complete oviposition deterrence (100% ER, oviposition activity index (OAI) = -1.0), followed by Z. cussumunar, M. piperita, L. angustifolia, C. citratus, C. sinensis, and E. glubulus oils with 97.20, 88.55, 88.14, 87.93, 76.68, and 57.00% ER, respectively. As the concentration of herbal essential oils increased from 1.0, 5.0, and up to 10.0% concentration, the hatching rate decreased. Ten percent I. verum oil gave the maximum inhibiting rate at 97.3% (LC50 value of 6.85%); in addition, the other herbal essential oils showed the minimum inhibiting rate of 3.3-22.7%. On the other hand, cypermethrin 10% w/v showed complete oviposition deterrence (100% ER, OAI = -1.0) and ovicidal activity (100% inhibiting rate). Our data showed that I. verum oil have high potential of oviposition deterrence and ovicide housefly control.

  19. Changes of peel essential oil composition of four Tunisian citrus during fruit maturation.

    PubMed

    Bourgou, Soumaya; Rahali, Fatma Zohra; Ourghemmi, Iness; Saïdani Tounsi, Moufida

    2012-01-01

    The present work investigates the effect of ripening stage on the chemical composition of essential oil extracted from peel of four citrus: bitter orange (Citrus aurantium), lemon (Citrus limon), orange maltaise (Citrus sinensis), and mandarin (Citrus reticulate) and on their antibacterial activity. Essential oils yields varied during ripening from 0.46 to 2.70%, where mandarin was found to be the richest. Forty volatile compounds were identified. Limonene (67.90-90.95%) and 1,8-cineole (tr-14.72%) were the most represented compounds in bitter orange oil while limonene (37.63-69.71%), β-pinene (0.63-31.49%), γ-terpinene (0.04-9.96%), and p-cymene (0.23-9.84%) were the highest ones in lemon. In the case of mandarin, the predominant compounds were limonene (51.81-69.00%), 1,8-cineole (0.01-26.43%), and γ-terpinene (2.53-14.06%). However, results showed that orange peel oil was dominated mainly by limonene (81.52-86.43%) during ripening. The results showed that ripening stage influenced significantly the antibacterial activity of the oils against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This knowledge could help establish the optimum harvest date ensuring the maximum essential oil, limonene, as well as antibacterial compounds yields of citrus.

  20. Changes of Peel Essential Oil Composition of Four Tunisian Citrus during Fruit Maturation

    PubMed Central

    Bourgou, Soumaya; Rahali, Fatma Zohra; Ourghemmi, Iness; Saïdani Tounsi, Moufida

    2012-01-01

    The present work investigates the effect of ripening stage on the chemical composition of essential oil extracted from peel of four citrus: bitter orange (Citrus aurantium), lemon (Citrus limon), orange maltaise (Citrus sinensis), and mandarin (Citrus reticulate) and on their antibacterial activity. Essential oils yields varied during ripening from 0.46 to 2.70%, where mandarin was found to be the richest. Forty volatile compounds were identified. Limonene (67.90–90.95%) and 1,8-cineole (tr-14.72%) were the most represented compounds in bitter orange oil while limonene (37.63–69.71%), β-pinene (0.63–31.49%), γ-terpinene (0.04–9.96%), and p-cymene (0.23–9.84%) were the highest ones in lemon. In the case of mandarin, the predominant compounds were limonene (51.81–69.00%), 1,8-cineole (0.01–26.43%), and γ-terpinene (2.53–14.06%). However, results showed that orange peel oil was dominated mainly by limonene (81.52–86.43%) during ripening. The results showed that ripening stage influenced significantly the antibacterial activity of the oils against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This knowledge could help establish the optimum harvest date ensuring the maximum essential oil, limonene, as well as antibacterial compounds yields of citrus. PMID:22645427

  1. [Nursing care and essential oils in geriatrics].

    PubMed

    Lobstein, Annelise; Marinier, Françoise

    2014-01-01

    Aromatherapy is a valuable complementary therapeutic tool which is increasingly being used in hospitals. Essential oils help to improve patients' quality of life. They can be used for well-being purposes as well in specific nursing procedures. Some services offer aromatherapy through diffusion, inhalation, massages or aromatic baths. The benefits for healthcare teams as well as for patients are undeniable. There is also a significant reduction in the consumption of certain drugs.

  2. Fish oil, essential fatty acids, and hypertension.

    PubMed

    Lee, R M

    1994-08-01

    A proper balance between the n-3 and n-6 series of essential fatty acids (EFAs) is essential for homeostasis and normal growth in humans. Dietary supplement with fish oil and related n-3 EFAs has been used to study their antihypertensive property in animals and humans with borderline and essential hypertension. In the animal models, chronic treatment of young animals generally only attenuated the development of hypertension. In animals with hypercholesterolemia, n-3 EFA supplement increased the incidence of atherosclerosis. In humans, chronic treatment with fish oil only produced a small reduction in blood pressure. The concerns are that the high dose of fish oil may interfere with the control of blood glucose in diabetic patients, and may cause prolonged bleeding in surgical patients. Studies on the animal models of hypertension showed that n-6 EFAs are more effective than n-3 EFAs in lowering and normalizing the blood pressure of these animals, probably through the production of tissue prostaglandins, which favour vasodilation. The antihypertensive effect of the n-6 EFAs in humans is not well known, because there are only a few studies, usually involving a very small number of patients. A possible side effects of n-6 EFAs for concern is that they might stimulate tumour development. A careful examination of these risk factors is needed before any recommendation can be made concerning the use of EFAs for the control of hypertension for humans.

  3. Ultra-High Performance Liquid Chromatography (UHPLC) Method for the Determination of Limonene in Sweet Orange (Citrus sinensis) Oil: Implications for Limonene Stability.

    PubMed

    Bernart, Matthew W

    2015-01-01

    The citrus-derived bioactive monoterpene limonene is an important industrial commodity and fragrance constituent. An RP isocratic elution C18 ultra-HPLC (UHPLC) method using a superficially porous stationary phase and photodiode array (PDA) detector has been developed for determining the limonene content of sweet orange (Citrus sinensis) oil. The method is fast with a cycle time of 1.2 min, linear, precise, accurate, specific, and stability indicating, and it satisfies U.S. Pharmacopeia suitability parameters. The method may be useful in its present form for limonene processing, or modified for research on more polar compounds of the terpenome. A forced-degradation experiment showed that limonene is degraded by heat in hydro-ethanolic solution. PDA detection facilitates classification of minor components of the essential oil, including β-myrcene.

  4. Essential Oils, Part VI: Sandalwood Oil, Ylang-Ylang Oil, and Jasmine Absolute.

    PubMed

    de Groot, Anton C; Schmidt, Erich

    In this article, some aspects of sandalwood oil, ylang-ylang oil, and jasmine absolute are discussed including their botanical origin, uses of the plants and the oils and absolute, chemical composition, contact allergy to and allergic contact dermatitis from these essential oils and absolute, and their causative allergenic ingredients.

  5. Encapsulation of essential oils in zein nanosperical particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Essential oils, oregano, red thyme, and cassia (100% pure oil), were encapsulated by phase separation into zein particles. Typical yields were between 65% and 75% of product. Encapsulation efficiency of all oils was 87% except for cassia oil which was 49%. Loading efficiency of all oils was 22% exce...

  6. Essential oils: extraction, bioactivities, and their uses for food preservation.

    PubMed

    Tongnuanchan, Phakawat; Benjakul, Soottawat

    2014-07-01

    Essential oils are concentrated liquids of complex mixtures of volatile compounds and can be extracted from several plant organs. Essential oils are a good source of several bioactive compounds, which possess antioxidative and antimicrobial properties. In addition, some essential oils have been used as medicine. Furthermore, the uses of essential oils have received increasing attention as the natural additives for the shelf-life extension of food products, due to the risk in using synthetic preservatives. Essential oils can be incorporated into packaging, in which they can provide multifunctions termed "active or smart packaging." Those essential oils are able to modify the matrix of packaging materials, thereby rendering the improved properties. This review covers up-to-date literatures on essential oils including sources, chemical composition, extraction methods, bioactivities, and their applications, particularly with the emphasis on preservation and the shelf-life extension of food products.

  7. Direct enantiomeric analysis of Mentha essential oils.

    PubMed

    Barba, Carmen; Santa-María, Guillermo; Herraiz, Marta; Martínez, Rosa M

    2013-11-01

    A rapid and fully automated screening of chiral compounds in essential oils, aimed to the selection of natural sources of pure enantiomers of limonene and carvone, is performed by using on-line coupled reversed phase liquid chromatography with gas chromatography and mass spectrometry (RPLC-GC-MS). Essential oils obtained from Mentha spicata and Mentha piperita were analysed by direct injection into RPLC. The reported procedure includes fractionation and clean-up in RPLC, selection of the fraction to be transferred from RPLC to GC, trapping and concentration of the target compounds in the interface, thermal desorption and, finally, enantiomeric resolution and identification of chiral compounds by GC-MS. The presence of (S)-limonene and (R)-carvone as the unique enantiomeric forms existing for both compounds could be unambiguously established by transferring different volume fractions from RPLC to GC. Data obtained demonstrate high separation efficiency and well tunable selectivity in the on-line coupled RPLC-GC-MS analysis of chiral compounds.

  8. Chemical composition and anti-inflammatory effects of essential oil from Hallabong flower

    PubMed Central

    Kim, Min-Jin; Yang, Kyong-Wol; Kim, Sang Suk; Park, Suk Man; Park, Kyung Jin; Kim, Kwang Sik; Choi, Young Hun; Cho, Kwang Keun; Lee, Nam Ho; Hyun, Chang-Gu

    2013-01-01

    A number of essential oils derived from plants are claimed to have several medicinal functions, including anti-cancer and anti-inflammation effects. However, the chemical composition and biological activities of flower-derived components have not been sufficiently characterized. Therefore, we investigated the composition of essential oils from Hallabong flower [(Citrus unshiu Marcov × Citrus sinensis Osbeck) × Citrus reticulata Blanco] and their anti-inflammatory effects. Hydro-distilled essential oils (HEOs) were analyzed using gas chromatography-mass spectrometry (GC-MS). In total, 21 components were identified, representing more than 98 % of the oils, with sabinene (34.75 %), linalool (14.77 %), β-ocimene (11.07 %), 4-terpineol (9.63 %), l-limonene (5.88 %), and γ-terpinene (4.67 %) as the main components. In the present study, we also investigated the anti-inflammatory effects of HEOs on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. HEOs were found to inhibit nitric oxide (NO) and prostaglandin E2 (PGE2) production and to suppress the LPS-induced expression of cyclooxygenase-2 (COX-2) protein. In addition, HEOs downregulated the production of the inflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β (IC50 values are 0.05 %, 0.02 %, and 0.01 %, respectively). On the basis of these results, we suggest that HEOs can be considered potential anti-inflammatory candidates for therapeutic use in humans. PMID:27366141

  9. Antimicrobial activity of essential oils against Staphylococcus aureus biofilms.

    PubMed

    Vázquez-Sánchez, Daniel; Cabo, Marta L; Rodríguez-Herrera, Juan J

    2015-12-01

    The present study was aimed to evaluate the potential of essential oils to remove the foodborne pathogen Staphylococcus aureus from food-processing facilities. The effectiveness of 19 essential oils against planktonic cells of S. aureus was firstly assessed by minimal inhibitory concentration. Planktonic cells showed a wide variability in resistance to essential oils, with thyme oil as the most effective, followed by lemongrass oil and then vetiver oil. The eight essential oils most effective against planktonic cells were subsequently tested against 48-h-old biofilms formed on stainless steel. All essential oils reduced significantly (p < 0.01) the number of viable biofilm cells, but none of them could remove biofilms completely. Thyme and patchouli oils were the most effective, but high concentrations were needed to achieve logarithmic reductions over 4 log CFU/cm(2) after 30 min exposure. Alternatively, the use of sub-lethal doses of thyme oil allowed to slow down biofilm formation and to enhance the efficiency of thyme oil and benzalkonium chloride against biofilms. However, some cellular adaptation to thyme oil was detected. Therefore, essential oil-based treatments should be based on the rotation and combination of different essential oils or with other biocides to prevent the emergence of antimicrobial-resistant strains.

  10. Antifungal activity of Piper diospyrifolium Kunth (Piperaceae) essential oil

    PubMed Central

    Vieira, Silvia Cristina Heredia; de Paulo, Luis Fernando; Svidzinski, Terezinha Inez Estivaleti; Dias Filho, Benedito Prado; Nakamura, Celso Vataru; de Souza, Amanda; Young, Maria Cláudia Marx; Cortez, Diógenes Aparício Garcia

    2011-01-01

    In vitro activity of the essential oil from Piper diospyrifolium leaves was tested using disk diffusion techniques. The antifungal assay showed significant potencial antifungal activity: the oil was effective against several clinical fungal strains. The majority compounds in the essential oil were identified as sesquiterpenoids by GC-MS and GC-FID techniques. PMID:24031717

  11. Artemisia sieberi Besser essential oil and treatment of fungal infections.

    PubMed

    Mahboubi, Mohaddese

    2017-03-22

    A. sieberi essential oil has been used for treatment of hardly curable infectious ulcers in Middle East Medicine and has been famous due to its wormicide effects. In this review, we evaluated the potency of A. sieberi essential oil in treatment of fungal infections. We searched in PubMed Central, Science direct, Wiley, Springer, SID, and accessible books, reports, thesis. There is a lot of mixed information on chemical compositions of A. sieberi essential oil, but most articles reported α, β-thujones as the main components of essential oils. In vitro studies confirmed the antifungal activity of A. sieberi essential oil against saprophytes fungi, dermatophytes, Malassezia sp. and Candida sp. and these results were confirmed in six clinical studies. The clinical studies confirmed the superiority of A. sieberi essential oil (5%) lotion in improvement of clinical signs of fungal superficial diseases, and mycological laboratory examinations of dermatophytosis and pityriasis versicolor diseases than clotrimazole (1%) topical treatment. The recurrence rate of superficial fungal infections with dermatophytosis and pityriasis versicolor was statistically lower in A. sieberi essential oil (5%) lotion than clotrimazole. There are no adverse effects due to the application of A. sieberi essential oil in clinical studies. Despite, the efficacy of A. sieberi essential oil against Candida sp., there is no clinical study about their related infections. Investigation about the effects of A. sieberi essential oil on fungal virulence factors in order to identifying the exact mechanism of antifungal activity and clinical trials on Candida related diseases are recommended.

  12. Antimicrobial properties of essential oils against Salmonella in organic soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil is one of the important sources of preharvest contamination of produce with pathogens. Demand for natural pesticides such as essential oils for organic farming practices has increased. Antimicrobial activity of essential oils in vitro has been documented. The antimicrobial activity of essential...

  13. Monoterpenes in essential oils. Biosynthesis and properties.

    PubMed

    Loza-Tavera, H

    1999-01-01

    Monoterpenes are compounds found in the essential oils extracted from many plants, including fruits, vegetables, spices and herbs. These compounds contribute to the flavor and aroma of plant from which they are extracted. Monoterpenes are acyclic, monocyclic, or bicyclic C30 compounds synthesized by monoterpene synthases using geranyl pyrophosphate (GPP) as substrate. GPP is also the precursor in the synthesis of farnesyl pyrophosphate (FPP) and geranyl-geranyl pyrophosphate (GGPP), two important compounds in cell metabolism of animals, plants and yeast. Monoterpene cyclases produce cyclic monoterpenes through a multistep mechanism involving a universal intermediate, a terpinyl cation which can be transformed to several compounds. Experimental studies, using animal cancer models, have demonstrated that some monoterpenes possess anticarcinogenic properties, acting at different cellular and molecular levels. From these discoveries it seems clear that monoterpenes could be considered as effective, nontoxic dietary antitumorigenic agents that hold promise as a novel class of anticancer drugs.

  14. Antimicrobial Impacts of Essential Oils on Food Borne-Pathogens.

    PubMed

    Ozogul, Yesim; Kuley, Esmeray; Ucar, Yilmaz; Ozogul, Fatih

    2015-01-01

    The antimicrobial activity of twelve essential oil (pine oil, eucalyptus, thyme, sage tea, lavender, orange, laurel, lemon, myrtle, lemon, rosemary and juniper) was tested by a disc diffusion method against food borne pathogens (Escherichia coli, Salmonella paratyphi A, Klebsiella pneumoniae, Yersinia enterocolitica, Pseudomonas aeruginosa, Aeromonas hydrophila, Campylobacter jejuni, Enterococcus faecalis, Staphylococcus aureus). The major components in essential oils were monoterpenes hydrocarbons, α-pinene, limonene; monoterpene phenol, carvacrol and oxygenated monoterpenes, camphor, 1,8-cineole, eucalyptol, linalool and linalyl acetate. Although the antimicrobial effect of essential oils varied depending on the chemical composition of the essential oils and specific microorganism tested, majority of the oils exhibited antibacterial activity against one or more strains. The essential oil with the lowest inhibition zones was juniper with the values varied from 1.5 to 6 mm. However, the components of essential oil of thyme and pine oil are highly active against food borne pathogen, generating the largest inhibition zones for both gram negative and positive bacteria (5.25-28.25 mm vs. 12.5-30 mm inhibition zones). These results indicate the possible use of the essential oils on food system as antimicrobial agents against food-borne pathogen. The article also offers some promising patents on applications of essential oils on food industry as antimicrobial agent.

  15. In Vitro Antibacterial Activity of Essential Oils against Streptococcus pyogenes

    PubMed Central

    Sfeir, Julien; Lefrançois, Corinne; Baudoux, Dominique; Derbré, Séverine; Licznar, Patricia

    2013-01-01

    Streptococcus pyogenes plays an important role in the pathogenesis of tonsillitis. The present study was conducted to evaluate the in vitro antibacterial activities of 18 essential oils chemotypes from aromatic medicinal plants against S. pyogenes. Antibacterial activity of essential oils was investigated using disc diffusion method. Minimum Inhibitory Concentration of essential oils showing an important antibacterial activity was measured using broth dilution method. Out of 18 essential oils tested, 14 showed antibacterial activity against S. pyogenes. Among them Cinnamomum verum, Cymbopogon citratus, Thymus vulgaris CT thymol, Origanum compactum, and Satureja montana essential oils exhibited significant antibacterial activity. The in vitro results reported here suggest that, for patients suffering from bacterial throat infections, if aromatherapy is used, these essential oils, considered as potential antimicrobial agents, should be preferred. PMID:23662123

  16. Intraplantar injection of bergamot essential oil into the mouse hindpaw: effects on capsaicin-induced nociceptive behaviors.

    PubMed

    Sakurada, Tsukasa; Kuwahata, Hikari; Katsuyama, Soh; Komatsu, Takaaki; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Sakurada, Shinobu

    2009-01-01

    Despite the increasing use of aromatherapy oils, there have not been many studies exploring the biological activities of bergamot (Citrus bergamia, Risso) essential oil (BEO). Recently, we have investigated the effects of BEO injected into the plantar surface of the hindpaw in the capsaicin test in mice. The intraplantar injection of capsaicin produced an intense and short-lived licking/biting response toward the injected hindpaw. The capsaicin-induced nociceptive response was reduced significantly by intraplantar injection of BEO. The essential oils of Clary Sage (Salvia sclarea), Thyme ct. linalool (linalool chemotype of Thymus vulgaris), Lavender Reydovan (Lavandula hybrida reydovan), and True Lavender (Lavandula angustifolia), had similar antinociceptive effects on the capsaicin-induced nociceptive response, while Orange Sweet (Citrus sinensis) essential oil was without effect. In contrast to a small number of pharmacological studies of BEO, there is ample evidence regarding isolated components of BEO which are also found in other essential oils. The most abundant compounds found in the volatile fraction are the monoterpene hydrocarbons, such as limonene, gamma-terpinene, beta-pinene, and oxygenated derivatives, linalool and linalyl acetate. Of these monoterpenes, the pharmacological activities of linalool have been examined. Following intraperitoneal (i.p.) administration in mice, linalool produces antinociceptive and antihyperalgesic effects in different animal models in addition to anti-inflammatory properties. Linalool also possesses anticonvulsant activity in experimental models of epilepsy. We address the importance of linalool or linalyl acetate in BEO-or the other essential oil-induced antinociception.

  17. Study on essential oils from four species of Zhishi with gas chromatography–mass spectrometry

    PubMed Central

    2014-01-01

    Background Citrus fruits are widely used as food and or for medicinal purposes, and they contain a host of active substances that contribute to health. The immature fruits of Citrus sinensis Osbeck and its cultivars (CS), C. junos Sieb. ex Tanaka (CJ), C. aurantium L. and its cultivars (CA) and Poncirus trifoliate Raf. (PT) are the most commonly used medicinal herbs in Traditional Chinese Medicine, called Zhishi. And their mature fruits can be used as food. Results In this study, the essential oils of four different Zhishi species were extracted by steam distillation and detected using gas chromatography- mass spectrometry (GC-MS). A total of 39 volatiles from the four species were tentatively identified. The limonene was the most abundant amongst the four species. Principal component analysis (PCA) of essential oils showed a clear separation of volatiles among CS, CJ and PT. However, CA could not be separated from these three species. Additionally, the volatiles accounting for the variations among the widely separated species were characterized through their corresponding loading weight. Conclusion Sesquiterpenes were identified as characteristic markers for PT. The content of some monoterpenes could be as taxonomic markers between CS and CJ. This work is of great importance for the evaluation and authentication of Zhishi samples through essential oils. PMID:24708882

  18. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    DTIC Science & Technology

    2013-04-11

    composition of the essential oils for the majority of the genotypes as well as their antifungal and insecticidal activities against the fungi C...essential oils were ineffective against the fungi Colletotrichum gloeosporioides, C. fragariae, and C. acutatum in this study, but essential oils...extracts against mycotoxigenic fungi . J. Crop Improv. 2012, 26, 389–396. Sample Availability: Contact the authors. © 2013 by the authors; licensee

  19. Essential Oil Variation from Twenty Two Genotypes of Citrus in Brazil-Chemometric Approach and Repellency Against Diaphorina citri Kuwayama.

    PubMed

    Andrade, Moacir Dos Santos; Ribeiro, Leandro do Prado; Borgoni, Paulo Cesar; Silva, Maria Fátima das Graças Fernandes da; Forim, Moacir Rossi; Fernandes, João Batista; Vieira, Paulo Cezar; Vendramin, José Djair; Machado, Marcos Antônio

    2016-06-22

    The chemical composition of volatile oils from 22 genotypes of Citrus and related genera was poorly differentiated, but chemometric techniques have clarified the relationships between the 22 genotypes, and allowed us to understand their resistance to D. citri. The most convincing similarities include the synthesis of (Z)-β-ocimene and (E)-caryophyllene for all 11 genotypes of group A. Genotypes of group B are not uniformly characterized by essential oil compounds. When stimulated with odor sources of 22 genotypes in a Y-tube olfactometer D. citri preferentially entered the arm containing the volatile oils of Murraya paniculata, confirming orange jasmine as its best host. C. reticulata × C. sinensis was the least preferred genotype, and is characterized by the presence of phytol, (Z)-β-ocimene, and β-elemene, which were not found in the most preferred genotype. We speculate that these three compounds may act as a repellent, making these oils less attractive to D. citri.

  20. Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their components enantiomeric distribution.

    PubMed

    Giatropoulos, Athanassios; Papachristos, Dimitrios P; Kimbaris, Athanasios; Koliopoulos, George; Polissiou, Moschos G; Emmanouel, Nickolaos; Michaelakis, Antonios

    2012-12-01

    Laboratory experiments were conducted to study the bioefficacy against Ae. albopictus of three Citrus essential oils, derived from peels of Citrus sinensis, Citrus limon, and Citrus paradise and of their components. Chiral gas chromatography analysis revealed the dominant occurrence of R-(+)-limonene and (-)-β-pinene in all three essential oils while in the case of lemon oil γ-terpinene, neral, and geranial detected also among other components. The tested Citrus essential oils were toxic against mosquito larvae with LC(50) values ranging from 25.03 to 37.03 mg l(-1). Among citrus essential oils components tested, γ-terpinene was the most toxic (LC(50) = 20.21 mg l(-1)) followed by both enantiomeric forms of limonene (LC(50) = 35.99 and 34.89 mg l(-1), for R-(+)-limonene and S-(-)-limonene, respectively). The delayed toxic effects after exposure of larvae to sublethal (LC(50)) doses were also investigated for citrus essential oils and their major component R-(+)-limonene, indicating a significant reduction of pupal survival. In repellent bioassays, lemon essential oil, S-(-)-limonene, citral (mixture of neral\\geranial) and (+)-β-pinene were the most effective compared with other citrus essential oils and components against adult mosquitoes. Repellent bioassays also revealed that limonenes and β-pinenes showed an isomer dependence repellent activity. Finally, according to enantiomeric distribution of limonene and α- and β-pinene, the repellency of lemon essential oil is possibly attributed to the presence of citral.

  1. The effect of essential oil formulations for potato sprout suppression.

    PubMed

    Owolabi, Moses S; Lajide, Labunmi; Oladimeji, Matthew O; Setzer, William N

    2010-04-01

    The concerns over safety and environmental impact of synthetic pesticides such as chlorpropham (CIPC) has stimulated interest in finding environmentally benign, natural sprout suppressants, including essential oils. The effects of Chenopodium ambrosioides and Lippia multiflora essential oils on sprout growth and decay of stored potatoes has been investigated. Formulations of essential oils with alumina, bentonite, or kaolin, both with and without Triton X-100 additive, were tested. These formulations have been compared to the pulverized plant materials themselves as well as wick-volatilized essential oils. The results showed that the tested oils possess compositions that make them suitable for application as sprout suppressants. Additionally, the formulation seems to be able to reduce the volatility of the essential oil and artificially extend dormancy of stored potatoes.

  2. Activity of essential oils against Bacillus subtilis spores.

    PubMed

    Lawrence, Hayley A; Palombo, Enzo A

    2009-12-01

    Alternative methods for controlling bacterial endospore contamination are desired in a range of industries and applications. Attention has recently turned to natural products, such as essential oils, which have sporicidal activity. In this study, a selection of essential oils was investigated to identify those with activity against Bacillus subtilis spores. Spores were exposed to thirteen essential oils, and surviving spores were enumerated. Cardamom, tea tree, and juniper leaf oils were the most effective, reducing the number of viable spores by 3 logs at concentrations above 1%. Sporicidal activity was enhanced at high temperatures (60 degrees C) or longer exposure times (up to one week). Gas chromatography-mass spectrometry analysis identified the components of the active essential oils. However, none of the major oil components exhibited equivalent activity to the whole oils. The fact that oil components, either alone or in combination, did not show the same level of sporicidal activity as the complete oils suggested that minor components may be involved, or that these act synergistically with major components. Scanning electron microscopy was used to examine spores after exposure to essential oils and suggested that leakage of spore contents was the likely mode of sporicidal action. Our data have shown that essential oils exert sporicidal activity and may be useful in applications where bacterial spore reduction is desired.

  3. Degradation of Zearalenone by Essential Oils under In vitro Conditions

    PubMed Central

    Perczak, Adam; Juś, Krzysztof; Marchwińska, Katarzyna; Gwiazdowska, Daniela; Waśkiewicz, Agnieszka; Goliński, Piotr

    2016-01-01

    Essential oils are volatile compounds, extracted from plants, which have a strong odor. These compounds are known for their antibacterial and antifungal properties. However, data concerning degradation of mycotoxins by these metabolites are very limited. The aim of the present study was to investigate the effect of essential oils (cedarwood, cinnamon leaf, cinnamon bark, white grapefruit, pink grapefruit, lemon, eucalyptus, palmarosa, mint, thymic, and rosemary) on zearalenone (ZEA) reduction under various in vitro conditions, including the influence of temperature, pH, incubation time and mycotoxin and essential oil concentrations. The degree of ZEA reduction was determined by HPLC method. It was found that the kind of essential oil influences the effectiveness of toxin level reduction, the highest being observed for lemon, grapefruit, eucalyptus and palmarosa oils, while lavender, thymic and rosemary oils did not degrade the toxin. In addition, the decrease in ZEA content was temperature, pH as well as toxin and essential oil concentration dependent. Generally, higher reduction was observed at higher temperature in a wide range of pH, with clear evidence that the degradation rate increased gradually with time. In some combinations (e.g., palmarosa oil at pH 6 and 4 or 20°C) a toxin degradation rate higher than 99% was observed. It was concluded that some of the tested essential oils may be effective in detoxification of ZEA. We suggested that essential oils should be recognized as an interesting and effective means of ZEA decontamination and/or detoxification. PMID:27563298

  4. Essential and toxic metals in tea (Camellia sinensis) imported and produced in Ethiopia.

    PubMed

    Ashenef, Ayenew

    2014-01-01

    Sixteen samples of packed tea leaves (Camellia sinensis) were purchased from supermarkets in Addis Ababa, Ethiopia for metal analysis. Elements were measured by FAAS and graphite furnace atomic absorption spectrometer (GFAAS) employing external calibration curves. The levels in mg/kg dried weight basis varied from Cu: 4.7-12.9; Cd: 0.02-2.83; Pb: <0.01-2.29; Zn: 8.6-198.3; Mn: 81.7-962.2; Al: 3376.4-10,369.3; K: 7667.7-10,775; Li: 0.2-0.62; Ba: 9.4-1407.1; Mg: 1145.6-1834.1; Fe: 286.4-880.9; Ca: 1414.2-2646.0; Na: 147.1-557.7. Levels of exposure to the investigated metals by drinking tea were checked with the recommended daily allowance (RDA) of the WHO/FAO. Considering the average daily consumption rate of tea alone, the possible daily intakes of Al, Ba and Mn surpass the amenability to the side effects associated with these elements like Alzheimer's disease, kidney damage and Parkinson's disease, respectively, for which drinking tea should cause awareness. The other investigated elements are in the acceptable range.

  5. Insecticidal and Repellent Activity of Several Plant-Derived Essential Oils Against Aedes aegypti.

    PubMed

    Castillo, Ruth M; Stashenko, Elena; Duque, Jonny E

    2017-03-01

    We examined the pupicidal, adulticidal, repellent, and oviposition-deterrent activities of essential oils (EOs) from Lippia alba, L. origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis , Cananga odorata , Swinglea glutinosa, and Tagetes lucida plants against Aedes aegypti under laboratory conditions. Pupicidal and adulticidal activities were assessed at exploratory concentrations of 250, 310, and 390 parts per million (ppm); and 30, 300, and 1,000 ppm, respectively. The greatest pupicidal activity was exhibited at 390 ppm with a 24-h exposure by L. origanoides, and 390 ppm with a 48-h exposure by Citrus sinensis . Lippia origanoides killed all adult mosquitoes at 300 ppm after 120 min of exposure. Only L. origanoides and E. citriodora EOs, applied at 1,000 ppm to human skin, produced the greatest repellency (100%) to host-seeking Ae. aegypti after 2 min of exposure; the repellency decreased between 12% and 10% after 15 min. Complete oviposition deterrence by gravid Ae. aegypti was observed for E. citriodora EOs at 200 ppm with an oviposition activity index of -1.00. These results confirm that the EOs assessed in this study have insecticidal, repellent, and oviposition-deterrent activities against the dengue vector, Ae. aegypti.

  6. Neuropharmacology of the essential oil of bergamot.

    PubMed

    Bagetta, Giacinto; Morrone, Luigi Antonio; Rombolà, Laura; Amantea, Diana; Russo, Rossella; Berliocchi, Laura; Sakurada, Shinobu; Sakurada, Tsukasa; Rotiroti, Domenicantonio; Corasaniti, Maria Tiziana

    2010-09-01

    Bergamot (Citrus bergamia, Risso) is a fruit most knowledgeable for its essential oil (BEO) used in aromatherapy to minimize symptoms of stress-induced anxiety and mild mood disorders and cancer pain though the rational basis for such applications awaits to be discovered. The behavioural and EEG spectrum power effects of BEO correlate well with its exocytotic and carrier-mediated release of discrete amino acids endowed with neurotransmitter function in the mammalian hippocampus supporting the deduction that BEO is able to interfere with normal and pathological synaptic plasticity. The observed neuroprotection in the course of experimental brain ischemia and pain does support this view. In conclusion, the data yielded so far contribute to our understanding of the mode of action of this phytocomplex on nerve tissue under normal and pathological experimental conditions and provide a rational basis for the practical use of BEO in complementary medicine. The opening of a wide venue for future research and translation into clinical settings is also envisaged.

  7. Compositional Analysis of Lavandula pinnata Essential Oils.

    PubMed

    Argentieri, Maria Pia; De Lucia, Barbara; Cristiano, Giuseppe; Avatoa Pinarosa

    2016-03-01

    The genus Lavandula includes about thirty species plus a number of intraspecific taxa and hybrids, which are distributed in the Mediterranean area. The traditional use of lavender both as perfume or medicinal plant is known since antiquity. Nowadays several species are extensively cultivated for the extraction of their essential oils (EOs) which are used in manufactured products like cosmetics and perfumes or in phytotherapy. Lavandula pinnata L. f. (syn L. pinnata Lundmark) is a rare species native to the Canary Islands used in folk medicine as relaxant and also a valuable remedy against bites. To the best of our knowledge, EOs from L. pinnata have been very little studied. The present paper reports on the quali- and quantitative compositional profile of the EOs distilled (by a Spring type apparatus) from the aerial parts (flowers and leaves) of this species cultivated in soilless conditions. Chemical analyses by means of GC and GC-MS techniques have indicated that oxygenated monoterpenes are the main constituents of both the flowers (68.30%) and the leaves (83.65%). Carvacrol is the main compound which characterizes the EOs of this species. In addition, discrete amounts of spathulenol (12.22%) and caryophyllene oxide (14.62%) have been detected in flowers EOs, while leaves EOs contained small amounts of carvacrol methyl ether (2.52%).

  8. Foeniculum vulgare essential oils: chemical composition, antioxidant and antimicrobial activities.

    PubMed

    Miguel, Maria Graça; Cruz, Cláudia; Faleiro, Leonor; Simões, Mariana T F; Figueiredo, Ana Cristina; Barroso, José G; Pedro, Luis G

    2010-02-01

    The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, 1 h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), alpha-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity > 50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.

  9. Transfer of terpenes from essential oils into cow milk.

    PubMed

    Lejonklev, J; Løkke, M M; Larsen, M K; Mortensen, G; Petersen, M A; Weisbjerg, M R

    2013-07-01

    The objective of this study was to investigate the transfer of volatile terpenes from caraway seed and oregano plant essential oils into cow's milk through respiratory and gastrointestinal exposure. Essential oils have potential applications as feed additives because of their antimicrobial properties, but very little work exists on the transfer of their volatile compounds into milk. Lactating Danish Holstein cows with duodenum cannula were used. Gastrointestinal exposure was facilitated by infusing the essential oils, mixed with deodorized sesame oil, into the duodenum cannula. Two levels were tested for each essential oil. Respiratory exposure was facilitated by placing the animal in a chamber together with a sponge soaked in the essential oils. All exposures were spread over 9h. Milk samples were collected immediately before and after exposure, as well as the next morning. Twelve monoterpenes and 2 sesquiterpenes were analyzed in essential oils and in milk samples using dynamic headspace sampling and gas chromatography-mass spectrometry. In the essential oils, almost all of the terpenes were detected in both essential oils at various levels. For caraway, the monoterpenes limonene, carvone, and carvacrol were most abundant; in oregano, the monoterpenes carvacrol and ρ-cymene were most abundant. For almost all treatments, an immediate effect was detected in milk, whereas little or no effect was detected in milk the following day. This suggests that the transfer into milk of these volatile terpenes is fast, and that the milk will not be influenced when treatment is discontinued. Principal component analysis was used to elucidate the effect of the treatments on the terpene profile of the milk. Terpene content for treatment milk samples was characterized by the same terpenes found in the treatment essential oil used for that animal, regardless of pathway of exposure. The terpenes appear to be transferred unaltered into the milk, regardless of the pathway of exposure

  10. Acaricidal activity against Tetranychus urticae and chemical composition of peel essential oils of three Citrus species cultivated in NE Brazil.

    PubMed

    Araújo, Claudio Pereira; da Camara, Claudio Augusto Gomes; Neves, Ilzenayde Araújo; Ribeiro, Nicolle de Carvalho; Gomes, Cristianne Araújo; de Moraes, Marcílio Martins; Botelho, Priscilla de Sousa

    2010-03-01

    The repellency and fumigant toxicities of the peel essential oils of Citrus sinensis var. pêra (LP), C. sinensis var. mimo (LM), and C. aurantium (LL) cultivated in northeast Brazil were evaluated against Tetranychus urticae. Analysis of the oils by GC and GC/MS led to the identification of twenty-eight components, which represented 99.9%, 99.7% and 99.3% of the total constituents of the LP, LM and LL oils, respectively. Limonene was the main component found in all three oils. Other main components were alpha-pinene (1.5% in LP; 1.4% in LM), myrcene (5.7% in LP; 5.9% in LM and 5.6% in LL) and linalool (2.4% in LP; 2.3% in LM and 3.9% in LL). The best repellency action was observed for LM at 2.0%, followed by LL oil and eugenol, both of them at 2.5%. The Citrus oils were less active than eugenol (LC50 = 0.004 microL/L air) and phosphine, which revealed 100% mortality at 2 x 10(-3) g/L (66.7% of the recommended dose). However, the most potent fumigant toxicity was found with LL oil, with an LC50 value of 1.63 microL/L air, followed by the oils from LM and LP with LC50 values of 2.22 microL/L air and 4.63 microL/L air, respectively. The associated fumigant and repellent properties of these Citrus peel oils, particularly those of C. aurantium and C. senensis var. mimo, could be used to advantage for the control of T. urticae.

  11. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Vera, Sharon Smith; Zambrano, Diego Fernando; Méndez-Sanchez, Stelia Carolina; Rodríguez-Sanabria, Fernando; Stashenko, Elena E; Duque Luna, Jonny E

    2014-07-01

    Insecticidal activity of the essential oils (EOs) isolated from Tagetes lucida, Lippia alba, Lippia origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis, Swinglea glutinosa, and Cananga odorata aromatic plants, grown in Colombia (Bucaramanga, Santander), and of a mixture of L. alba and L. origanoides EOs were evaluated on Aedes (Stegomyia) aegypti Rockefeller larvae. The EOs were extracted by microwave-assisted hydrodistillation and characterized by gas chromatography-mass spectrometry (GC-MS). The main components of the EOs were identified using their linear retention indices and mass spectra. The lethal concentrations (LCs) of the EOs were determined between the third and fourth instar of A. aegypti. LC50 was determined by probit analysis using mortality rates of bioassays. All essential oils tested showed insecticidal activity. The following values were obtained for C. flexuosus (LC50 = 17.1 ppm); C. sinensis (LC50 = 20.6 ppm); the mixture of L. alba and L. origanoides (LC50 = 40.1 ppm); L. alba (LC50 = 42.2 ppm); C. odorata (LC50 = 52.9 ppm); L. origanoides (LC50 = 53.3 ppm); S. glutinosa (LC50 = 65.7 ppm); T. lucida (LC50 = 66.2 ppm); E. citriodora (LC50 = 71.2 ppm); and C. citratus (LC50 = 123.3 ppm). The EO from C. flexuosus, with citral (geranial + neral) as main component, showed the highest larvicidal activity.

  12. Biocontrol of Salmonella in organic soil using essential oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil is one of the most important sources of preharvest contamination of produce with pathogens. Demand for natural pesticides such as essential oils for organic farming practices has increased. Antimicrobial activity of essential oils in vitro has been documented. The antimicrobial activity of esse...

  13. Essential oils as fumigants for bed bugs (Hemiptera: Cimicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Petri dish assays, fumigation of a pyrethroid-susceptible strain of bed bugs Cimex lectularius L. (Hemiptera: Cimicidae) with various essential oils resulted in mortality that approached or equaled 100%, after 5 days. However, when bed bugs were exposed to the same essential oils in sealed, comme...

  14. Microbicide activity of clove essential oil (Eugenia caryophyllata).

    PubMed

    Nuñez, L; Aquino, M D'

    2012-10-01

    Clove essential oil, used as an antiseptic in oral infections, inhibits Gram-negative and Gram-positive bacteria as well as yeast. The influence of clove essential oil concentration, temperature and organic matter, in the antimicrobial activity of clove essential oil, was studied in this paper, through the determination of bacterial death kinetics. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were the microorganisms selected for a biological test. To determine the temperature effect, they were assayed at 21° and 37° C. The concentration coefficient was determined with 0.4%, and 0.2% of essential oil. The influence of the presence of organic matter was determined with 0.4% of essential oil. The results obtained demonstrated that Escherichia coli were more sensitive even though the essential oil exerted a satisfactory action in three cases. In the three microbial species, 0.4% of essential oil at 21° C have reduced the bacterial population in 5 logarithmic orders. Organic matter reduces the antibacterial activity even though the bactericide efficacy was not lost. Clove essential oil can be considered as a potential antimicrobial agent for external use.

  15. Distillation time effect on lavender essential oil yield and composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lavender (Lavandula angustifolia Mill.) is one of the most widely grown essential oil crops in the world. Commercial extraction of lavender oil is done using steam distillation. The objective of this study was to evaluate the effect of the length of the distillation time (DT) on lavender essential o...

  16. Antitumour Activity of the Microencapsulation of Annona vepretorum Essential Oil.

    PubMed

    Bomfim, Larissa M; Menezes, Leociley R A; Rodrigues, Ana Carolina B C; Dias, Rosane B; Rocha, Clarissa A Gurgel; Soares, Milena B P; Neto, Albertino F S; Nascimento, Magaly P; Campos, Adriana F; Silva, Lidércia C R C E; Costa, Emmanoel V; Bezerra, Daniel P

    2016-03-01

    Annona vepretorum Mart. (Annonaceae), popularly known as 'bruteira', has nutritional and medicinal uses. This study investigated the chemical composition and antitumour potential of the essential oil of A. vepretorum leaf alone and complexed with β-cyclodextrin in a microencapsulation. The essential oil was obtained by hydrodistillation using a Clevenger-type apparatus and analysed using GC-MS and GC-FID. In vitro cytotoxicity of the essential oil and some of its major constituents in tumour cell lines from different histotypes was evaluated using the alamar blue assay. Furthermore, the in vivo efficacy of essential oil was demonstrated in mice inoculated with B16-F10 mouse melanoma. The essential oil included bicyclogermacrene (35.71%), spathulenol (18.89%), (E)-β-ocimene (12.46%), α-phellandrene (8.08%), o-cymene (6.24%), germacrene D (3.27%) and α-pinene (2.18%) as major constituents. The essential oil and spathulenol exhibited promising cytotoxicity. In vivo tumour growth was inhibited by the treatment with the essential oil (inhibition of 34.46%). Importantly, microencapsulation of the essential oil increased in vivo tumour growth inhibition (inhibition of 62.66%).

  17. Colour Reactions of Some Aromatic Ethers Found in Essential Oils,

    DTIC Science & Technology

    The higher boiling constituents of many essential oils contain a group of compounds loosely termed ’aromatic ethers’. These compounds are usually...usually occur in essential oils together with large amounts of various terpene constituents. The communication reports the results of a survey of the

  18. Essential oil biosynthesis and regulation in the genus Cymbopogon.

    PubMed

    Ganjewala, Deepak; Luthra, Rajesh

    2010-01-01

    Essential oils distilled from Cymbopogon species are of immense commercial value as flavors and fragrances in the perfumery, cosmetics, soaps, and detergents and in pharmaceutical industries. Two major constituents of the essential oil, geraniol and citral, due to their specific rose and lemon like aromas are widely used as flavors, fragrances and cosmetics. Citral is also used for the synthesis of vitamin A and ionones (for example, beta-ionone, methyl ionone). Moreover, Cymbopogon essential oils and constituents possess many useful biological activities including cytotoxic, anti-inflammatory and antioxidant. Despite the immense commercial and biological significance of the Cymbopogon essential oils, little is known about their biosynthesis and regulatory mechanisms. So far it is known that essential oils are biosynthesized via the classical acetate-MVA route and existence of a newly discovered MEP pathway in Cymbopogon remains as a topic for investigation. The aim of the present review is to discuss the biosynthesis and regulation of essential oils in the genus Cymbopogon with given emphasis to two elite members, lemongrass (C. flexuosus Nees ex Steud) and palmarosa (C. martinii Roxb.). This article highlights the work done so far towards understanding of essential oil biosynthesis and regulation in the genus Cymbopogon. Also, based on our experiences with Cymbopogon species, we would like to propose C. flexuosus as a model system for the study of essential oil metabolism beyond the much studied plant family Lamiaceae.

  19. Composition of the essential oil of White sage, Salvia apiana.

    SciTech Connect

    Hochrein, James Michael; Irwin, Adriane Nadine; Borek, Theodore Thaddeus, III

    2003-08-01

    The essential oil of white sage, Salvia apiana, was obtained by steam distillation and analysed by GC-MS. A total of 13 components were identified, accounting for >99.9% of the oil. The primary component was 1,8-cineole, accounting for 71.6% of the oil.

  20. Antigenotoxic and antioxidant activities of Pituranthos chloranthus essential oils.

    PubMed

    Neffati, A; Bouhlel, I; Ben Sghaier, M; Boubaker, J; Limem, I; Kilani, S; Skandrani, I; Bhouri, W; Le Dauphin, J; Barillier, D; Mosrati, R; Chekir-Ghedira, L; Ghedira, K

    2009-03-01

    The SOS-chromotest in Escherichia coli is a widely used bacterial genotoxicity assay to test potential carcinogens. The aim of this work is to evaluate the genotoxic and antigenotoxic activities of essential oils obtained from aerial parts of Pituranthos chloranthus. The tested essential oils were not genotoxic towards both E. coli PQ37 and PQ35 strains. These essential oils reduced significantly Nifuroxazide and H(2)O(2)-induced genotoxicity. Essential oils showed a protective effect against damages induced by radicals, obtained from the photolysis of H(2)O(2), on DNA plasmid through free radical scavenging mechanisms. The scavenging capacity of these essential oils was also estimated by evaluating the inhibition of ABTS(+.) radical.

  1. In vitro interactions of Peucedanum officinale essential oil with antibiotics.

    PubMed

    Miladinović, Dragoljub L; Ilić, Budimir S; Kocić, Branislava D; Miladinović, Ljiljana C; Marković, Marija S

    2015-01-01

    The chemical composition and antibacterial activity of Peucedanum officinale L. (Apiaceae) essential oil were examined, as well as the association between it and antibiotics: tetracycline, streptomycin and chloramphenicol. The interactions of the essential oil with antibiotics were evaluated using the microdilution checkerboard assay. Monoterpene hydrocarbons, with α-phellandrene as the dominant constituent, were the most abundant compound class of the essential oil of P. officinale. The researched essential oil exhibited slight antibacterial activity against the tested bacterial strains in vitro. On the contrary, essential oil of P. officinale possesses a great synergistic potential with chloramphenicol and tetracycline. Their combinations reduced the minimum effective dose of the antibiotic and, consequently, minimised its adverse side effects. In addition, investigated interactions are especially successful against Gram-negative bacteria, the pharmacological treatment of which is very difficult nowadays.

  2. Washing of cut persimmon with thyme or lemon essential oils.

    PubMed

    Almela, Celia; Castelló, María L; Tarrazó, José; Ortolá, María D

    2014-12-01

    The aim of this study was to develop a minimally processed persimmon product by applying different concentrations of thyme essential oil or lemon essential oil on the product in order to increase its shelf life. Essential oils were applied on cut persimmon in a preliminary stage of immersion, and the samples were then stored at 4 ℃ for seven days. Moisture content, soluble solids content, antioxidant capacity, total phenols, pH, optical and mechanical properties and microbiology counts were periodically analysed. Noteworthy was that the application of thyme essential oil in the washing stage improved the preservation of the fruits' colour. All samples would be considered safe according to microbiology requirements and based on the period of study, regardless of the type of essential oil applied.

  3. Biosynthesis and therapeutic properties of Lavandula essential oil constituents.

    PubMed

    Woronuk, Grant; Demissie, Zerihun; Rheault, Mark; Mahmoud, Soheil

    2011-01-01

    Lavenders and their essential oils have been used in alternative medicine for several centuries. The volatile compounds that comprise lavender essential oils, including linalool and linalyl acetate, have demonstrative therapeutic properties, and the relative abundance of these metabolites is greatly influenced by the genetics and environment of the developing plants. With the rapid progress of molecular biology and the genomic sciences, our understanding of essential oil biosynthesis has greatly improved over the past few decades. At the same time, there is a recent surge of interest in the use of natural remedies, including lavender essential oils, in alternative medicine and aromatherapy. This article provides a review of recent developments related to the biosynthesis and medicinal properties of lavender essential oils.

  4. Linalool Affects the Antimicrobial Efficacy of Essential Oils.

    PubMed

    Herman, Anna; Tambor, Krzysztof; Herman, Andrzej

    2016-02-01

    The high concentrations of essential oils are generally required to receive microbial purity of the products (cosmetics, medicine). On the other hand, their application due to the high concentration of essential oils may be limited by changes in organoleptic and textural quality of the products, as well as they cause irritation and allergies in users. Addition of linalool to essential oil may significantly enhance its antimicrobial effectiveness and reduce their concentrations in products, taking advantage of their synergistic and additive effects. The aim of the study was to compare antimicrobial activity of essential oil alone and in combination with linalool. The antimicrobial activity of the essential oil of Thymus vulgaris, Juniperus communis, Pelargonium graveolens, Citrus bergamia, Citrus grandis, Lavandula angustifolia, Cinnamomum zeylanicum, Melaleuca alternifolia, Syzygium aromaticum, linalool and their combination was investigated against bacteria and fungi using the disc diffusion method. The addition of linalool to S. aromaticum oil in a synergistic manner enhanced its antimicrobial efficacy against P. aeruginosa and A. brasiliensis. Moreover, the additive interaction between this oil and linalool was observed against S. aureus, E. coli and C. albicans. It was also found that linalool in an additive manner increased the antimicrobial effectiveness of T. vulgaris oil against P. aeruginosa. The antimicrobial properties of mixture of essential oils with their active constituents may be used for creating new strategies to maintain microbiological purity of products.

  5. Essential Oils: Sources of Antimicrobials and Food Preservatives.

    PubMed

    Pandey, Abhay K; Kumar, Pradeep; Singh, Pooja; Tripathi, Nijendra N; Bajpai, Vivek K

    2016-01-01

    Aromatic and medicinal plants produce essential oils in the form of secondary metabolites. These essential oils can be used in diverse applications in food, perfume, and cosmetic industries. The use of essential oils as antimicrobials and food preservative agents is of concern because of several reported side effects of synthetic oils. Essential oils have the potential to be used as a food preservative for cereals, grains, pulses, fruits, and vegetables. In this review, we briefly describe the results in relevant literature and summarize the uses of essential oils with special emphasis on their antibacterial, bactericidal, antifungal, fungicidal, and food preservative properties. Essential oils have pronounced antimicrobial and food preservative properties because they consist of a variety of active constituents (e.g., terpenes, terpenoids, carotenoids, coumarins, curcumins) that have great significance in the food industry. Thus, the various properties of essential oils offer the possibility of using natural, safe, eco-friendly, cost-effective, renewable, and easily biodegradable antimicrobials for food commodity preservation in the near future.

  6. Essential Oils: Sources of Antimicrobials and Food Preservatives

    PubMed Central

    Pandey, Abhay K.; Kumar, Pradeep; Singh, Pooja; Tripathi, Nijendra N.; Bajpai, Vivek K.

    2017-01-01

    Aromatic and medicinal plants produce essential oils in the form of secondary metabolites. These essential oils can be used in diverse applications in food, perfume, and cosmetic industries. The use of essential oils as antimicrobials and food preservative agents is of concern because of several reported side effects of synthetic oils. Essential oils have the potential to be used as a food preservative for cereals, grains, pulses, fruits, and vegetables. In this review, we briefly describe the results in relevant literature and summarize the uses of essential oils with special emphasis on their antibacterial, bactericidal, antifungal, fungicidal, and food preservative properties. Essential oils have pronounced antimicrobial and food preservative properties because they consist of a variety of active constituents (e.g., terpenes, terpenoids, carotenoids, coumarins, curcumins) that have great significance in the food industry. Thus, the various properties of essential oils offer the possibility of using natural, safe, eco-friendly, cost-effective, renewable, and easily biodegradable antimicrobials for food commodity preservation in the near future. PMID:28138324

  7. In vitro antibacterial activity of some plant essential oils

    PubMed Central

    Prabuseenivasan, Seenivasan; Jayakumar, Manickkam; Ignacimuthu, Savarimuthu

    2006-01-01

    Background: To evaluate the antibacterial activity of 21 plant essential oils against six bacterial species. Methods: The selected essential oils were screened against four gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris) and two gram-positive bacteria Bacillus subtilis and Staphylococcus aureus at four different concentrations (1:1, 1:5, 1:10 and 1:20) using disc diffusion method. The MIC of the active essential oils were tested using two fold agar dilution method at concentrations ranging from 0.2 to 25.6 mg/ml. Results: Out of 21 essential oils tested, 19 oils showed antibacterial activity against one or more strains. Cinnamon, clove, geranium, lemon, lime, orange and rosemary oils exhibited significant inhibitory effect. Cinnamon oil showed promising inhibitory activity even at low concentration, whereas aniseed, eucalyptus and camphor oils were least active against the tested bacteria. In general, B. subtilis was the most susceptible. On the other hand, K. pneumoniae exhibited low degree of sensitivity. Conclusion: Majority of the oils showed antibacterial activity against the tested strains. However Cinnamon, clove and lime oils were found to be inhibiting both gram-positive and gram-negative bacteria. Cinnamon oil can be a good source of antibacterial agents. PMID:17134518

  8. Synergistic antimicrobial activities of natural essential oils with chitosan films.

    PubMed

    Wang, Lina; Liu, Fei; Jiang, Yanfeng; Chai, Zhi; Li, Pinglan; Cheng, Yongqiang; Jing, Hao; Leng, Xiaojing

    2011-12-14

    The synergistic antimicrobial activities of three natural essential oils (i.e., clove bud oil, cinnamon oil, and star anise oil) with chitosan films were investigated. Cinnamon oil had the best antimicrobial activity among three oils against Escherichia coli , Staphylococcus aureus , Aspergillus oryzae , and Penicillium digitatum . The chitosan solution exhibited good inhibitory effects on the above bacteria except the fungi, whereas chitosan film had no remarkable antimicrobial activity. The cinnamon oil-chitosan film exhibited a synergetic effect by enhancing the antimicrobial activities of the oil, which might be related to the constant release of the oil. The cinnamon oil-chitosan film had also better antimicrobial activity than the clove bud oil-chitosan film. The results also showed that the compatibility of cinnamon oil with chitosan in film formation was better than that of the clove bud oil with chitosan. However, the incorporated oils modified the mechanical strengths, water vapor transmission rate, moisture content, and solubility of the chitosan film. Furthermore, chemical reaction took place between cinnamon oil and chitosan, whereas phase separation occurred between clove bud oil and chitosan.

  9. Chemical composition and antioxidant properties of clove leaf essential oil.

    PubMed

    Jirovetz, Leopold; Buchbauer, Gerhard; Stoilova, Ivanka; Stoyanova, Albena; Krastanov, Albert; Schmidt, Erich

    2006-08-23

    The antioxidant activity of a commercial rectified clove leaf essential oil (Eugenia caryophyllus) and its main constituent eugenol was tested. This essential oil comprises in total 23 identified constituents, among them eugenol (76.8%), followed by beta-caryophyllene (17.4%), alpha-humulene (2.1%), and eugenyl acetate (1.2%) as the main components. The essential oil from clove demonstrated scavenging activity against the 2,2-diphenyl-1-picryl hydracyl (DPPH) radical at concentrations lower than the concentrations of eugenol, butylated hydroxytoluene (BHT), and butylated hydroxyanisole (BHA). This essential oil also showed a significant inhibitory effect against hydroxyl radicals and acted as an iron chelator. With respect to the lipid peroxidation, the inhibitory activity of clove oil determined using a linoleic acid emulsion system indicated a higher antioxidant activity than the standard BHT.

  10. Antibacterial activity of essential oils from Australian native plants.

    PubMed

    Wilkinson, Jenny M; Cavanagh, Heather M A

    2005-07-01

    To date, of the Australian essential oils, only tea tree (Melaleuca alternifolia) and Eucalyptus spp. have undergone extensive investigation. In this study a range of Australian essential oils, including those from Anethole anisata, Callistris glaucophyllia, Melaleuca spp. and Thyptomine calycina, were assayed for in vitro antibacterial activity. M. alternifolia was also included for comparison purposes. Activity was determined using standard disc diffusion assays with each oil assayed at 100%, 10% and 1% against five bacteria (Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa and Alcaligenes faecalis) and the yeast, Candida albicans. All bacteria, with the exception of Ps. aeruginosa, were susceptible to one or more of the essential oils at 100%, with only Eremophilia mitchelli inhibiting the growth of any bacteria at 1% (inhibition of Sal. typhimurium). Where multiple samples of a single oil variety were tested variability in activity profiles were noted. This suggests that different methods of preparation of essential oils, together with variability in plant chemical profiles has an impact on whether or not the essential oil is of use as an antimicrobial agent. These results show that essential oils from Australian plants may be valuable antimicrobial agents for use alone or incorporated into cosmetics, cleaning agents and pharmaceutical products.

  11. Antifungal and antibacterial activities of Petroselinum crispum essential oil.

    PubMed

    Linde, G A; Gazim, Z C; Cardoso, B K; Jorge, L F; Tešević, V; Glamoćlija, J; Soković, M; Colauto, N B

    2016-07-29

    Parsley [Petroselinum crispum (Mill.) Fuss] is regarded as an aromatic, culinary, and medicinal plant and is used in the cosmetic, food, and pharmaceutical industries. However, few studies with conflicting results have been conducted on the antimicrobial activity of parsley essential oil. In addition, there have been no reports of essential oil obtained from parsley aerial parts, except seeds, as an alternative natural antimicrobial agent. Also, microorganism resistance is still a challenge for health and food production. Based on the demand for natural products to control microorganisms, and the re-evaluation of potential medicinal plants for controlling diseases, the objective of this study was to determine the chemical composition and antibacterial and antifungal activities of parsley essential oil against foodborne diseases and opportunistic pathogens. Seven bacteria and eight fungi were tested. The essential oil major compounds were apiol, myristicin, and b-phellandrene. Parsley essential oil had bacteriostatic activity against all tested bacteria, mainly Staphylococcus aureus, Listeria monocytogenes, and Salmonella enterica, at similar or lower concentrations than at least one of the controls, and bactericidal activity against all tested bacteria, mainly S. aureus, at similar or lower concentrations than at least one of the controls. This essential oil also had fungistatic activity against all tested fungi, mainly, Penicillium ochrochloron and Trichoderma viride, at lower concentrations than the ketoconazole control and fungicidal activity against all tested fungi at higher concentrations than the controls. Parsley is used in cooking and medicine, and its essential oil is an effective antimicrobial agent.

  12. Chemical Components of Four Essential Oils in Aromatherapy Recipe.

    PubMed

    Tadtong, Sarin; Kamkaen, Narisa; Watthanachaiyingcharoen, Rith; Ruangrungsi, Nijsiri

    2015-06-01

    This study focused on characterization of the chemical components of an aromatherapy recipe. The formulation consisted of four blended essential oils; rosemary oil, eucalyptus oil, pine oil and lime oil (volume ratio 6 : 2 : 1 : 1). The single and combination essential oils were identified by gas chromatography-mass spectrometry (GC-MS). The analysis of GC-MS data revealed that several components exist in the mixture. The five most important components of the blended essential oils were 1,8-cineole (35.6 %), α-pinene (11.1%), limonene (9.6%), camphor (8.4%), and camphene (6.6%). The main components of rosemary oil were 1,8-cineole (37.3%), α-pinene (19.3%), camphor (14.7%), camphene (8.8%), and β-pinene (5.5%); of eucalyptus oil 1,8-cineole (82.6%) followed by limonene (7.4%), o-cymene (4.3%), γ-terpinene (2.7%), and α-pinene (1.5%); of pine oil terpinolene (26.7%), α-terpineol (20.50%), 1-terpineol (10.8%), α-pinene (6.0%), and γ-terpineol (5.3%); and of lime oil limonene (62.9%), γ-terpinene (11.5%), α-terpineol (7.6%), terpinolene (6.0%), and α-terpinene (2.8%). The present study provided a theoretical basis for the potential application of blended essential oils to be used as an aromatherapy essential oil recipe. GC-MS serves as a suitable and reliable method for the quality control of the chemical markers.

  13. In vitro activity of an essential oil against Leishmania donovani.

    PubMed

    Monzote, L; García, M; Montalvo, A M; Scull, R; Miranda, M; Abreu, J

    2007-11-01

    The in vitro antileishmanial effect of the essential oil from Chenopodium ambrosioides against Leishmania donovani was investigated. The product showed significant activity against promastigotes and amastigotes, with a 50% effective concentration of 4.45 and 5.1 microg/mL, respectively. The essential oil caused an irreversible inhibition of the growth of promastigotes after a treatment with 100 or 10 microg/mL for 1 or 24 h, respectively. The phagocytic activity of the macrophages was preserved at a concentration toxic to the parasite. The essential oil from C. ambrosioides may be a potential candidate drug to development a new agent to combat this parasitic disease.

  14. Essential oil composition and antimicrobial activity of Diplotaenia damavandica.

    PubMed

    Eftekhar, Fereshteh; Yousefzadi, Morteza; Azizian, Dina; Sonboli, Ali; Salehi, Peyman

    2005-01-01

    Antimicrobial activity of the essential oils obtained from leaves, root and the seeds of Diplotaenia damavandica Mozaffarian, Hedge & Lamond, an endemic plant to Iran, was determined against 10 microorganisms using the disk susceptibility test as well as measuring minimum inhibitory concentrations. The results showed that all three oils had antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. The essential oil from the leaves had the highest antimicrobial activity against all test microorganisms including the fungal strains. The essential oils compositions were analyzed and determined by GC and GC-MS. The oils analyses resulted in the identification of 16, 17 and 20 compounds representing 94.2%, 96.4% and 95.1% of the total oils, respectively. The main components of the leaf essential oils were (Z)-beta-ocimene (21.6%), alpha-phellandrene (21.3%) and terpinolene (20%). Dill apiol (30.1%) and gamma-terpinene (16.2%) were the main components of the root and seed essential oils, respectively.

  15. Fatty Acid Composition and Antioxidant Activity of Tea (Camellia sinensis L.) Seed Oil Extracted by Optimized Supercritical Carbon Dioxide

    PubMed Central

    Wang, Yuefei; Sun, Da; Chen, Hao; Qian, Lisheng; Xu, Ping

    2011-01-01

    Seeds are another product in addition to leaves (raw materials for teas) of tea (Camellia sinensis L.) plant. The great increase of tea consumption in recent years raises the challenge of finding commercial applications for tea seeds. In the present study, supercritical carbon dioxide (SC-CO2) extraction edible oil from tea seed was carried out, response surface methodology (RSM) was used to optimize processing parameters including time (20–90 min), temperature (35–45 °C) and pressure (50–90 MPa). The fatty acid composition and antioxidant activity of the extracted oil was also investigated. The highest yield of oil (29.2 ± 0.6%) was obtained under optimal SC-CO2 extraction conditions (45 °C, 89.7 min and 32 MPa, respectively), which was significantly higher (p < 0.05) than that (25.3 ± 1.0%) given by Soxhlet extraction. Meanwhile, tea seed oil extracted by SC-CO2 contained approximately 80% unsaturated fatty acids and showed a much stronger scavenging ability on the DPPH radical than that extracted by Soxhlet. SC-CO2 is a promising alternative for efficient extraction of edible oil from tea seed. Moreover, tea seed oil extracted by SC-CO2 is highly edible and has good antioxidant activity, and therefore may play a potential role as a health-promoting food resource in human diets. PMID:22174626

  16. Extraction, separation and quantitative structure-retention relationship modeling of essential oils in three herbs.

    PubMed

    Wei, Yuhui; Xi, Lili; Chen, Dongxia; Wu, Xin'an; Liu, Huanxiang; Yao, Xiaojun

    2010-07-01

    The essential oils extracted from three kinds of herbs were separated by a 5% phenylmethyl silicone (DB-5MS) bonded phase fused-silica capillary column and identified by MS. Seventy-four of the compounds identified were selected as origin data, and their chemical structure and gas chromatographic retention times (RT) were performed to build a quantitative structure-retention relationship model by genetic algorithm and multiple linear regressions analysis. The predictive ability of the model was verified by internal validation (leave-one-out, fivefold, cross-validation and Y-scrambling). As for external validation, the model was also applied to predict the gas chromatographic RT of the 14 volatile compounds not used for model development from essential oil of Radix angelicae sinensis. The applicability domain was checked by the leverage approach to verify prediction reliability. The results obtained using several validations indicated that the best quantitative structure-retention relationship model was robust and satisfactory, could provide a feasible and effective tool for predicting the gas chromatographic RT of volatile compounds and could be also applied to help in identifying the compound with the same gas chromatographic RT.

  17. Antifungal Effect of Essential Oils against Fusarium Keratitis Isolates.

    PubMed

    Homa, Mónika; Fekete, Ildikó Pálma; Böszörményi, Andrea; Singh, Yendrembam Randhir Babu; Selvam, Kanesan Panneer; Shobana, Coimbatore Subramanian; Manikandan, Palanisamy; Kredics, László; Vágvölgyi, Csaba; Galgóczy, László

    2015-09-01

    The present study was carried out to investigate the antifungal effects of Cinnamomum zeylanicum, Citrus limon, Juniperus communis, Eucalyptus citriodora, Gaultheria procumbens, Melaleuca alternifolia, Origanum majorana, Salvia sclarea, and Thymus vulgaris essential oils against Fusarium species, the most common etiologic agents of filamentous fungal keratitis in South India. C. zeylanicum essential oil showed strong anti-Fusarium activity, whereas all the other tested essential oils proved to be less effective. The main component of C. zeylanicum essential oil, trans-cinnamaldehyde, was also tested and showed a similar effect as the oil. The in vitro interaction between trans-cinnamaldehyde and natamycin, the first-line therapeutic agent of Fusarium keratitis, was also investigated; an enhanced fungal growth inhibition was observed when these agents were applied in combination. Light and fluorescent microscopic observations revealed that C. zeylanicum essential oil/trans-cinnamaldehyde reduces the cellular metabolism and inhibits the conidia germination. Furthermore, necrotic events were significantly more frequent in the presence of these two compounds. According to our results, C. zeylanicum essential oil/trans-cinnamaldehyde provides a promising basis to develop a novel strategy for the treatment of Fusarium keratitis.

  18. Biological Activities and Composition of Ferulago carduchorum Essential Oil

    PubMed Central

    Golfakhrabadi, Fereshteh; Khanavi, Mahnaz; Ostad, Seyed Nasser; Saeidnia, Soodabeh; Vatandoost, Hassan; Abai, Mohammad Reza; Hafizi, Mitra; Yousefbeyk, Fatemeh; Rad, Yaghoob Razzaghi; Baghenegadian, Ameneh; Ardekani, Mohammad Reza Shams

    2015-01-01

    Background: Ferulago carduchorum Boiss and Hausskn belongs to the Apiaceae family. This plant grows in west part of Iran that local people added it to dairy and oil ghee to delay expiration date and give them a pleasant taste. The aim of this study was to investigate the antioxidant, antimicrobial, acetyl cholinesterase inhibition, cytotoxic, larvicidal activities and composition of essential oil of F. carduchorum. Methods: Acetyl cholinesterase (AChE) inhibitory, larvicidal activities and chemical composition of essential oil of F. carduchorum were investigated. Besides, antioxidant, antimicrobial and cytotoxic activities of essential oil were tested using DPPH, microdilution method and MTT assay, respectively. Results: The major components of essential oil were (z)-β-ocimene (43.3%), α-pinene (18.23%) and bornyl acetate (3.98%). Among 43 identified components, monoterpenes were the most compounds (84.63%). The essential oil had noticeable efficiency against Candida albicans (MIC= 2340 μg ml−1) and it was effective against Anopheles stephensi with LC50 and LC90 values of 12.78 and 47.43 ppm, respectively. The essential oil could inhibit AChE (IC50= 23.6 μl ml−1). The essential oil showed high cytotoxicity on T47D, HEP-G2 and HT-29 cell lines (IC50< 2 μg ml−1). Conclusion: The essential oil of F. carduchorum collected from west of Iran had anti-Candida, larvicidal and cytotoxicity effects and should be further investigated in others in vitro and in vivo experimental models. PMID:26114148

  19. Hydrodistillation extraction time effect on essential oil yield, composition, and bioactivity of coriander oil.

    PubMed

    Zheljazkov, Valtcho D; Astatkie, Tess; Schlegel, Vicki

    2014-01-01

    Coriander (Coriandrum sativum L.) is a major essential oil crop grown throughout the world. Coriander essential oil is extracted from coriander fruits via hydrodistillation, with the industry using 180-240 min of distillation time (DT), but the optimum DT for maximizing essential oil yield, composition of constituents, and antioxidant activities are not known. This research was conducted to determine the effect of DT on coriander oil yield, composition, and bioactivity. The results show that essential oil yield at the shorter DT was low and generally increased with increasing DT with the maximum yields achieved at DT between 40 and 160 min. The concentrations of the low-boiling point essential oil constituents: α-pinene, camphene, β-pinene, myrcene, para-cymene, limonene, and γ-terpinene were higher at shorter DT (< 2.5 min) and decreased with increasing DT; but the trend reversed for the high-boiling point constituents: geraniol and geranyl-acetate. The concentration of the major essential oil constituent, linalool, was 51% at DT 1.15 min, and increased steadily to 68% with increasing DT. In conclusion, 40 min DT is sufficient to maximize yield of essential oil; and different DT can be used to obtain essential oil with differential composition. Its antioxidant capacity was affected by the DT, with 20 and 240 min DT showing higher antioxidant activity. Comparisons of coriander essential oil composition must consider the length of the DT.

  20. Antimicrobial activity of some Salvia species essential oils from Iran.

    PubMed

    Yousefzadi, Morteza; Sonboli, Ali; Karimic, Farah; Ebrahimi, Samad Nejad; Asghari, Behvar; Zeinalia, Amineh

    2007-01-01

    The aerial parts of Salvia multicaulis, S. sclarea and S. verticillata were collected at full flowering stage. The essential oils were isolated by hydrodistillation and analyzed by combination of capillary GC and GC-MS. The in vitro antimicrobial activity of the essential oils were studied against eight Gram-positive and Gram-negative bacteria (Bacillus subtilis, Bacillus pumulis, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae) and three fungi (Candida albicans, Saccharomyces cerevisiae and Aspergillus niger). The results of antibacterial activity tests of the essential oils according to the disc diffusion method and MIC values indicated that all the samples have moderate to high inhibitory activity against the tested bacteria except for P. aeruginosa which was totally resistant. In contrast to antibacterial activity, the oils exhibited no or slight antifungal property, in which only the oil of S. multicaulis showed weak activity against two tested yeasts, C. albicans and S. cerevisiae.

  1. Essential oils from fruits of three types of Thapsia villosa.

    PubMed

    Avato, P; Trabace, G; Smitt, U W

    1996-10-01

    Thapsia villosa has been divided into five types and previous analyses of the essential oils from the fruits of two of these types showed that limonene and methyl eugenol were the major constituents. The composition of the essential oils from the fruits of the other three types of T. villosa, with the chromosome numbers 2n = 22 (2x), 2n = 22 (2x) and 2n = 44 (4x), is reported here. The oil from all three types shows a similar chemical profile, with geranyl acetate as the main constituent accounting for 78-92% of the total oil. The composition of the essential oils from these plants is clearly different from the first two types of T. villosa mentioned, and also from the other species within the genus Thapsia.

  2. Antimutagenic and antioxidant potentials of Teucrium ramosissimum essential oil.

    PubMed

    Sghaier, Mohamed Ben; Boubaker, Jihed; Neffati, Aicha; Limem, Ilef; Skandrani, Ines; Bhouri, Wissem; Bouhlel, Ines; Kilani, Soumaya; Chekir-Ghedira, Leila; Ghedira, Kamel

    2010-07-01

    The mutagenic and antimutagenic effects of the essential oil extracted from the aerial parts of Teucrium ramosissimum were evaluated by the bacterial reverse mutation assay in Salmonella typhimurium TA98, TA100, and TA1535, with and without exogenous metabolic activation (S9 fraction). The T. ramosissimum essential oil showed no mutagenic effect. In contrast, our results established that it possessed antimutagenic effects against sodium azide (SA), aflatoxin B1 (AFB1), benzo[a]pyrene (B[a]P), and 4-nitro-o-phenylenediamine (NOPD). The antioxidant capacity of the tested essential oil was evaluated using enzymatic, i.e., the xanthine/xanthine oxidase (X/XOD) assay, and nonenzymatic systems, i.e., the nitro-blue tetrazolium (NBT)/riboflavin and the DPPH assays. A moderate free radical-scavenging activity was observed towards DPPH(.) and O2(.-). In contrast, T. ramosissimum essential oil showed no effect for all the tested concentrations in the X/XOD assay.

  3. Antibacterial activity of the essential oil from Ferula gummosa seed.

    PubMed

    Eftekhar, Fereshteh; Yousefzadi, Morteza; Borhani, K

    2004-12-01

    Antibacterial activity of Ferula gummosa essential oil was studied against bacterial laboratory ATCC standards using the disk diffusion method. The results showed activity against Gram(+) bacteria and Escherichia coli. Little antibacterial activity was found against Pseudomonas aeruginosa.

  4. In vitro Activity of Celery Essential Oil against Malassezia furfur.

    PubMed

    Chee, Hee Youn; Lee, Min Hee

    2009-03-01

    Antifungal activity of celery essential oil against Malassezia furfur was investigated using broth microdilution and vapor contact methods. Potent antifungal activity was evident using both methods. Fungicidal activity was revealed in the vapor contact method.

  5. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    PubMed Central

    Amini, Jahanshir; Farhang, Vahid; Javadi, Taimoor; Nazemi, Javad

    2016-01-01

    In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC50) values (ppm) of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm). Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC50 values for inhibition of the mycelial growth of P. capsici (31.473), P. melonis (33.097) and P. drechsleri (69.112), respectively. The mean EC50 values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral) (39.16%) and z-citral (30.95%) were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05). Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases. PMID:26889111

  6. Anti-ulcer activity of essential oil constituents.

    PubMed

    Oliveira, Francisco de Assis; Andrade, Luciana Nalone; de Sousa, Elida Batista Vieira; de Sousa, Damião Pergentino

    2014-05-05

    Essential oils have attracted considerable worldwide attention over the last few decades. These natural products have wide-ranging pharmacological activities and biotechnological applications. Faced with the need to find new anti-ulcer agents and the great effort on the development of drugs for the treatment of ulcers, in this review, the anti-ulcer activities of 21 bioactive compounds found in essential oils are discussed.

  7. Essential Oil and Volatile Components of the Genus Hypericum (Hypericaceae)

    PubMed Central

    Crockett, Sara L.

    2010-01-01

    The flowering plant genus Hypericum (Hypericaceae) contains the well-known medicinally valuable species Hypericum perforatum (common St. John’s wort). Species of Hypericum contain many bioactive constituents, including proanthocyanins, flavonoids, biflavonoids, xanthones, phenylpropanes and naphthodianthrones that are characterized by their relative hydrophilicity, as well as acylphloroglucinols and essential oil components that are more hydrophobic in nature. A concise review of the scientific literature pertaining to constituents of Hypericum essential oils and volatile fractions is presented. PMID:20923012

  8. Screening for antiviral activities of isolated compounds from essential oils.

    PubMed

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60-80% and sesquiterpenes suppressed herpes virus infection by 40-98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV.

  9. Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations

    PubMed Central

    Satyal, Prabodh; Murray, Brittney L.; McFeeters, Robert L.; Setzer, William N.

    2016-01-01

    Thyme (Thymus vulgaris L.) is a commonly used flavoring agent and medicinal herb. Several chemotypes of thyme, based on essential oil compositions, have been established, including (1) linalool; (2) borneol; (3) geraniol; (4) sabinene hydrate; (5) thymol; (6) carvacrol, as well as a number of multiple-component chemotypes. In this work, two different T. vulgaris essential oils were obtained from France and two were obtained from Serbia. The chemical compositions were determined using gas chromatography–mass spectrometry. In addition, chiral gas chromatography was used to determine the enantiomeric compositions of several monoterpenoid components. The T. vulgaris oil from Nyons, France was of the linalool chemotype (linalool, 76.2%; linalyl acetate, 14.3%); the oil sample from Jablanicki, Serbia was of the geraniol chemotype (geraniol, 59.8%; geranyl acetate, 16.7%); the sample from Pomoravje District, Serbia was of the sabinene hydrate chemotype (cis-sabinene hydrate, 30.8%; trans-sabinene hydrate, 5.0%); and the essential oil from Richerenches, France was of the thymol chemotype (thymol, 47.1%; p-cymene, 20.1%). A cluster analysis based on the compositions of these essential oils as well as 81 additional T. vulgaris essential oils reported in the literature revealed 20 different chemotypes. This work represents the first chiral analysis of T. vulgaris monoterpenoids and a comprehensive description of the different chemotypes of T. vulgaris. PMID:28231164

  10. Analysis of the essential oil of Grindelia discoidea.

    PubMed

    Newton, M N; Espinar, L A; Grosso, N R; Zunino, M P; Maestri, D M; Zygadlo, J A

    1998-06-01

    The essential oil from aerial parts of Grindelia discoidea was analyzed by GC and GC/MS. Forty-six components were identified, representing more than 95% of the oil. The main constituents were ( E,E)-farnesol (> 9.0%) and ( Z,E)-farnesol (> 15.7%).

  11. Constituent composition and biological activity of Nepeta manchuriensis essential oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential oil present in the aerial parts of the plant Nepeta manchuriensis was prepared by steam distillation using clevenger apparatus. The chemical composition of the oil was studied by GCMS. Sabinene, elemol, selinene, 4-terpineol, menthatriene and neoisothujol are the major components and r...

  12. Enantiomeric composition of (3R)-(-)- and (3S)-(+)-linalool in various essential oils of Indian origin by enantioselective capillary gas chromatography-flame ionization and mass spectrometry detection methods.

    PubMed

    Chanotiya, Chandan S; Yadav, Anju

    2009-04-01

    Enantiomeric ratios of linalool have been determined in various authentic essential oils of Indian origin using 10% heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin as a chiral stationary phase. A complete enantiomeric excess (ee) for (3S)-(+)-linalool was characteristic of Lippia alba and Cinnamomum tamala leaf oils while less than 90% excess was noticed in Zanthoxylum armatum leaf, Zingiber roseum root/rhizome and Citrus sinensis leaf oils. On the contrary, an enantiomeric excess of (3R)-(-)-linalool characterizes essential oils of basil (100% for Ocimum basilicum) and bergamot mint (72 to 75% for Mentha citrata). Notably, some essential oils containing both enantiomers in equal ratios or in racemic forms are rose, geranium, lemongrass and Origanum. The enantiomeric composition studies are discussed as indicators of origin authenticity and quality of essential oil of Indian origin.

  13. Effect of essential oils in control of plant diseases.

    PubMed

    Peighami-Ashnaei, S; Farzaneh, M; Sharifi-Tehrani, A; Behboudi, K

    2009-01-01

    In this study, antifungal activity of some essential oils, extracted from Syzygium aromoticum, Foeniculum vulgare, Cuminum cyminum and Mentha piperita were investigated against grey mould of apple. The essential oils of S. aromaticum and F. vulgare showed considerable antifungal activities on PDA medium against Botrytis cinerea. Results indicated that the increasing of dosage of the essential oils caused to the more antifungal activity against B. cinerea in vitro condition. After 10 days, results showed that the essential oil of F. vulgare in both of the concentrations (750 and 1000 microL/L) was more effective than the essential oil of S. aromaticum against grey mould of apple and decrease the disease up to 15.5% in comparison with the check treatment (100%). After 20 days, biocontrol potential of the essential oils of S. aromaticum and F. vulgare at 1000 microL/L were more effective than the other treatments and the percentage of disease was evaluated 41.6% and 50.8%, respectively, in comparison with the check treatment (100%).

  14. Glandular Trichomes and Essential Oil of Thymus quinquecostatus

    PubMed Central

    Jia, Ping; Liu, Hanzhu; Gao, Ting; Xin, Hua

    2013-01-01

    The distribution and types of glandular trichomes and essential oil chemistry of Thymus quinquecostatus were studied. The glandular trichomes are distributed on the surface of stem, leaf, rachis, calyx and corolla, except petiole, pistil and stamen. Three morphologically distinct types of glandular trichomes are described. Peltate trichomes, consisting of a basal cell, a stalk cell and a 12-celled head, are distributed on the stem, leaf, corolla and outer side of calyx. Capitate trichomes, consisting of a unicellular base, a 1–2-celled stalk and a unicellular head, are distributed more diffusely than peltate ones, existing on stem, leaf, rachis and calyx. Digitiform trichomes are just distributed on the outer side of corolla, consisting of 1 basal cell, 3 stalk cells and 1 head cell. All three types of glandular trichomes can secrete essential oil, and in small capitate trichomes of rachis, all peltate trichomes and digitiform trichomes, essential oil is stored in a large subcuticular space, released by cuticle rupture, whereas, in other capitate trichomes, essential oil crosses the thin cuticle. The essential oil of T. quinquecostatus is yellow, and its content is highest in the growth period. 68 constituents were identified in the essential oils. The main constituent is linalool. PMID:24250266

  15. Composition of the essential oil of Lepidium meyenii (Walp).

    PubMed

    Tellez, Mario R; Khan, Ikhlas A; Kobaisy, Mozaina; Schrader, Kevin K; Dayan, Franck E; Osbrink, Weste

    2002-09-01

    The essential oil profile of maca (Lepidium meyenii) obtained from Lima, Peru, was examined. Steam distillates of the aerial parts of L. meyenii were continuously extracted with pentane and the pentane extracts analyzed by GC/MS. Retention indices and mass spectral data were used to identify 53 oil components. Phenyl acetonitrile (85.9%), benzaldehyde (3.1%), and 3-methoxyphenylacetonitrile (2.1%) were the major components of the steam distilled oil. The oil of L. meyenii was tested for phytotoxic, cyanobactericidal, and antitermite activity. The oil was selectively toxic towards the cyanobacterium Oscillatoria perornata compared to the green alga Selenastrum capricornutum, with complete growth inhibition at 100 microg/ml. Mortality of the Formosan subterranean termite, Coptotermes formosanus, was numerically, but not significantly, higher when held on filter paper treated with maca oil. At 1% (w/w), maca oil also appeared to act as a feeding deterrent to termites. Several minor components of the essential oil of maca including 3-methoxyphenylacetonitrile and benzylthiocyanate were significantly active against the Formosan termite. This is the first report on the essential oil composition of L. meyenii.

  16. The effects of herbal essential oils on the oviposition-deterrent and ovicidal activities of Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say).

    PubMed

    Siriporn, P; Mayura, S

    2012-03-01

    The effect of oviposition-deterrent and ovicidal of seven essential oils were evaluated towards three mosquito vectors, Aedes aegypti, Anopheles dirus and Culex quinquefasciatus. The oviposition activity index (OAI) values of six essential oils namely Cananga odorata, Cymbopogon citratus, Cymbopogon nardus, Eucalyptus citriodora, Ocimum basilicum and Syzygium aromaticum indicated that there were more deterrent than the control whereas Citrus sinensis oil acted as oviposition attractant. At higher concentration (10%) of Ca. odorata (ylang ylang flowers) showed high percent effective repellency (ER) against oviposition at 99.4% to Ae. aegypti, 97.1% to An. dirus and 100% to Cx. quinquefasciatus, respectively. The results showed that mean numbers of eggs were lower in treated than in untreated water. In addition, there was an inverse relationship between essential oil concentrations and ovicidal activity. As the concentration of essential oil increased from 1%, 5% and up to 10% conc., the hatching rate decreased. The essential oil of Ca. odorata at 10% conc. gave minimum egg hatch of 10.4% (for Ae. aegypti), 0.8% (for An. dirus) and 1.1% (for Cx. quinquefasciatus) respectively. These results clearly revealed that the essential oil of Ca. odorata served as a potential oviposition-deterrent and ovicidal activity against Ae. aegypti, An. dirus and Cx. quinquefasciatus.

  17. Distillation time effect on lavender essential oil yield and composition.

    PubMed

    Zheljazkov, Valtcho D; Cantrell, Charles L; Astatkie, Tess; Jeliazkova, Ekaterina

    2013-01-01

    Lavender (Lavandula angustifolia Mill.) is one of the most widely grown essential oil crops in the world. Commercial extraction of lavender oil is done using steam distillation. The objective of this study was to evaluate the effect of the length of the distillation time (DT) on lavender essential oil yield and composition when extracted from dried flowers. Therefore, the following distillation times (DT) were tested in this experiment: 1.5 min, 3 min, 3.75 min, 7.5 min, 15 min, 30 min, 60 min, 90 min, 120 min, 150 min, 180 min, and 240 min. The essential oil yield (range 0.5-6.8%) reached a maximum at 60 min DT. The concentrations of cineole (range 6.4-35%) and fenchol (range 1.7-2.9%) were highest at the 1.5 min DT and decreased with increasing length of the DT. The concentration of camphor (range 6.6-9.2%) reached a maximum at 7.5-15 min DT, while the concentration of linalool acetate (range 15-38%) reached a maximum at 30 min DT. Results suggest that lavender essential oil yield may not increase after 60 min DT. The change in essential oil yield, and the concentrations of cineole, fenchol and linalool acetate as DT changes were modeled very well by the asymptotic nonlinear regression model. DT may be used to modify the chemical profile of lavender oil and to obtain oils with differential chemical profiles from the same lavender flowers. DT must be taken into consideration when citing or comparing reports on lavender essential oil yield and composition.

  18. Improving peppermint essential oil yield and composition by metabolic engineering.

    PubMed

    Lange, Bernd Markus; Mahmoud, Soheil Seyed; Wildung, Mark R; Turner, Glenn W; Davis, Edward M; Lange, Iris; Baker, Raymond C; Boydston, Rick A; Croteau, Rodney B

    2011-10-11

    Peppermint (Mentha × piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Two-gene combinations to enhance both oil yield and composition in a single transgenic line were assessed as well. The most promising results were obtained by transforming plants expressing an antisense version of (+)-menthofuran synthase, which is critical for adjusting the levels of specific undesirable oil constituents, with a construct for the overexpression of the MEP pathway gene 1-deoxy-D-xylulose 5-phosphate reductoisomerase (up to 61% oil yield increase over wild-type controls with low levels of the undesirable side-product (+)-menthofuran and its intermediate (+)-pulegone). Elite transgenic lines were advanced to multiyear field trials, which demonstrated consistent oil yield increases of up to 78% over wild-type controls and desirable effects on oil composition under commercial growth conditions. The transgenic expression of a gene encoding (+)-limonene synthase was used to accumulate elevated levels of (+)-limonene, which allows oil derived from transgenic plants to be recognized during the processing of commercial formulations containing peppermint oil. Our study illustrates the utility of metabolic engineering for the sustainable agricultural production of high quality essential oils at a competitive cost.

  19. Chemical composition of the essential oil and fixed oil Bauhinia pentandra (Bong.) D. Dietr

    PubMed Central

    de Almeida, Macia C. S.; Souza, Luciana G. S.; Ferreira, Daniele A.; Monte, Francisco J. Q.; Braz-Filho, Raimundo; de Lemos, Telma L. G.

    2015-01-01

    Background: Bauhinia pentandrais popularly known as “mororó” and inhabits the Caatinga and Savannah biomes. Objective: This paper reports the chemical composition of the essential and fatty oils of the leaves from B. pentandra. Materials and Methods: The essential oil was obtained by hydrodistillation and the fixed oil by extraction with hexane, followed by saponification with KOH/MeOH, and methylation using MeOH/HCl. The constituents were analyzed by gas chromatography-mass spectrometry. Results: The major constituent of the essential oil was the phytol (58.78% ±8.51%), and of the fatty oil were palmitic (29.03%), stearic (28.58%) and linolenic (10.53%) acids. Conclusion: Of the compounds identified in the essential oil, three are first reported in this species, and this is the first record of the chemical composition of the fixed oil. PMID:26664026

  20. The biological activities of cinnamon, geranium and lavender essential oils.

    PubMed

    Sienkiewicz, Monika; Głowacka, Anna; Kowalczyk, Edward; Wiktorowska-Owczarek, Anna; Jóźwiak-Bębenista, Marta; Łysakowska, Monika

    2014-12-12

    Acinetobacter sp. represent an important cause of nosocomial infections. Their resistance to some antibiotics, their ability to survive on inanimate surfaces in the hospital environment and their ability to produce biofilms contributes to their virulence. The aim of the study was to determine the antibacterial properties of cinnamon, lavender and geranium essential oils against bacteria of the genus Acinetobacter isolated from several clinical materials and from the hospital environment. A comprehensive evaluation of the susceptibility of Acinetobacter sp. clinical strains to recommended antibiotics was performed. The constituents of cinnamon, lavender and geranium essential oils were identified by GC-FID-MS analysis, and their Minimal Inhibitory Concentrations (MICs) against tested clinical strains were determined by the micro-dilution broth method. In addition, the effects of essential oils on the viability of human microvascular endothelial cells (HMEC-1) and glioblastoma cell line (T98G) were evaluated. Cinnamon bark oil was the most active against clinical and environmental strains of Acinetobacter baumannii with MIC values ranging from 0.5 to 2.5 µL/mL. The MIC values for geranium oil were between 7.5 and 9.5 µL/mL, and between 10.5 and 13.0 µL/mL for lavender oil. These essential oils can be best employed in the fight against infections caused by bacteria from Acinetobacter genus as components of formulations for hygiene and disinfection of hospital environment.

  1. Ageratum conyzoides essential oil as aflatoxin suppressor of Aspergillus flavus.

    PubMed

    Nogueira, Juliana H C; Gonçalez, Edlayne; Galleti, Silvia R; Facanali, Roseane; Marques, Márcia O M; Felício, Joana D

    2010-01-31

    Aflatoxin B(1) (AFB(1)) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Inhibitory effects of essential oil of Ageratum conyzoides, on the mycelial growth and aflatoxin B(1) production by Aspergillus flavus were studied. Cultures were incubated in yeast extract-sucrose (YES) broth for days at 25 degrees C at the following different concentrations of the essential oil (from 0.0 to 30mug/mL). The essential oil inhibited fungal growth to different extents depending on the concentration, and completely inhibited aflatoxin production at concentrations above 0.10microg/mL. The analysis of the oil by GC/MS showed that its main components are precocene II (46.35%), precocene I (42.78%), cumarine (5.01%) and Trans-caryophyllene (3.02%). Comparison by transmission electron microscopy of the fungal cells, control and those incubated with different concentrations of essential oil, showed ultra-structural changes which were concentration dependent of the essential oil of A. conyzoides. Such ultra-structural changes were more evident in the endomembrane system, affecting mainly the mitochondria. Degradation was also observed in both surrounding fibrils. The ability to inhibit aflatoxin production as a new biological activity of A.conyzoides L. indicates that it may be considered as a useful tool for a better understanding of the complex pathway of aflatoxin biosynthesis.

  2. Biological Activities of the Essential Oil from Erigeron floribundus.

    PubMed

    Petrelli, Riccardo; Orsomando, Giuseppe; Sorci, Leonardo; Maggi, Filippo; Ranjbarian, Farahnaz; Biapa Nya, Prosper C; Petrelli, Dezemona; Vitali, Luca A; Lupidi, Giulio; Quassinti, Luana; Bramucci, Massimo; Hofer, Anders; Cappellacci, Loredana

    2016-08-13

    Erigeron floribundus (Asteraceae) is an herbaceous plant widely used in Cameroonian traditional medicine to treat various diseases of microbial and non-microbial origin. In the present study, we evaluated the in vitro biological activities displayed by the essential oil obtained from the aerial parts of E. floribundus, namely the antioxidant, antimicrobial and antiproliferative activities. Moreover, we investigated the inhibitory effects of E. floribundus essential oil on nicotinate mononucleotide adenylyltransferase (NadD), a promising new target for developing novel antibiotics, and Trypanosoma brucei, the protozoan parasite responsible for Human African trypanosomiasis. The essential oil composition was dominated by spathulenol (12.2%), caryophyllene oxide (12.4%) and limonene (8.8%). The E. floribundus oil showed a good activity against Staphylococcus aureus (inhibition zone diameter, IZD of 14 mm, minimum inhibitory concentration, MIC of 512 µg/mL). Interestingly, it inhibited the NadD enzyme from S. aureus (IC50 of 98 µg/mL), with no effects on mammalian orthologue enzymes. In addition, T. brucei proliferation was inhibited with IC50 values of 33.5 µg/mL with the essential oil and 5.6 µg/mL with the active component limonene. The essential oil exhibited strong cytotoxicity on HCT 116 colon carcinoma cells with an IC50 value of 14.89 µg/mL, and remarkable ferric reducing antioxidant power (tocopherol-equivalent antioxidant capacity, TEAC = 411.9 μmol·TE/g).

  3. Supercritical CO2 extraction of essential oils from Chamaecyparis obtusa.

    PubMed

    Jin, Yinzhe; Han, Dandan; Tian, Minglei; Row, Kyung-Ho

    2010-03-01

    Supercritical carbon dioxide (SC-CO2) extraction and hydrodistillation (HD) were used to determine the essential oil composition of the trunks and leaves of Chamaecyparis obtusa. The optimal extraction conditions for the oil yield within the experimental range of variables examined were temperature 50 degrees C, pressure 12 MPa, carbon dioxide flow rate 40 mL/min and extraction time 90 min. The maximum measured extraction yield was 2.9%. Entrainer solvents, such as methanol in water, had no additional effect on the extraction of essential oils. The chemical composition of the essential oils was analyzed by GC-MS. The major components were alpha-terpinyl acetate (>10.9%), 1-muurolol (>13.2%) and elemol (>8.1%). Sesquiterpenoids formed the major class of compounds present.

  4. Pesticide residues in essential oils: evaluation of a database.

    PubMed

    Klier, B; Knödler, M; Peschke, J; Riegert, U; Steinhoff, B

    2015-01-01

    In the context of a revision of the European Pharmacopoeia (Ph. Eur.) general monograph Essential oils (2098), the need to include a test for pesticides is being discussed. According to published literature, some oils, mainly those produced by cold pressing (e.g. citrus oils), can contain relevant amounts of pesticide residues, whereas distilled oils showed positive findings in only a few cases. Recent evaluation of a database containing 127 517 sets of data compiled over 8 years, showed positive results in 1 150 cases (0.90 per cent), and the limits of Ph. Eur. general chapter 2.8.13 Pesticide residues or Regulation (EC) 396/2005, both applicable to herbal drugs, were exceeded in 392 cases (0.31 per cent, equivalent to 34.1 per cent of the positive results), particularly in cases of oils produced by cold pressing. From these results, it can be concluded that a general test on pesticides in the Ph. Eur. general monograph on essential oils is not required for most oils used in medicinal products. Therefore, it is proposed to limit the testing of essential oils for pesticide residues to those cases where potential residues are more of a concern, either due to the type of production process or to those processes where pesticides are actively used during cultivation of the plant (e.g. as documented according to Good Agricultural and Collection Practice (GACP)). Furthermore, in order to assess any potential risk, an approach using the Acceptable Daily Intake (ADI) can be made.

  5. [Peculicidal activity of plant essential oils and their based preparations].

    PubMed

    Lopatina, Iu V; Eremina, O Iu

    2014-01-01

    The peculicidal activity of eight plant essential oils in 75% isopropyl alcohol was in vitro investigated. Of them, the substances that were most active against lice were tea tree (Melaleuca), eucalyptus, neem, citronella (Cymbopogon nardus), and clove (Syzygium aromaticum) oils; KT50 was not more than 3 minutes on average; KT95 was 4 minutes. After evaporating the solvent, only five (tea tree, cassia, clove, anise (Anisum vulgare), and Japanese star anise (Illicium anisatum) oils) of the eight test botanical substances were active against lice. At the same time, KT50 and KT95 showed 1.5-5-fold increases. Citronella and anise oils had incomplete ovicidal activity. Since the lice were permethrin-resistant, the efficacy of preparations based on essential oils was much higher than permethrin.

  6. Essential oil of Curcuma longa inhibits Streptococcus mutans biofilm formation.

    PubMed

    Lee, Kwang-Hee; Kim, Beom-Su; Keum, Ki-Suk; Yu, Hyeon-Hee; Kim, Young-Hoi; Chang, Byoung-Soo; Ra, Ji-Young; Moon, Hae-Dalma; Seo, Bo-Ra; Choi, Na-Young; You, Yong-Ouk

    2011-01-01

    Curcuma longa (C. longa) has been used as a spice in foods and as an antimicrobial in Oriental medicine. In this study, we evaluated the inhibitory effects of an essential oil isolated from C. longa on the cariogenic properties of Streptococcus mutans (S. mutans), which is an important bacterium in dental plaque and dental caries formation. First, the inhibitory effects of C. longa essential oil on the growth and acid production of S. mutans were tested. Next, the effect of C. longa essential oil on adhesion to saliva-coated hydroxyapatite beads (S-HAs) was investigated. C. longa essential oil inhibited the growth and acid production of S. mutans at concentrations from 0.5 to 4 mg/mL. The essential oil also exhibited significant inhibition of S. mutans adherence to S-HAs at concentrations higher than 0.5 mg/mL. S. mutans biofilm formation was determined by scanning electron microscopy (SEM) and safranin staining. The essential oil of C. longa inhibited the formation of S. mutans biofilms at concentrations higher than 0.5 mg/mL. The components of C. longa essential oil were then analyzed by GC and GC-MS, and the major components were α-turmerone (35.59%), germacrone (19.02%), α-zingiberene (8.74%), αr-turmerone (6.31%), trans-β-elemenone (5.65%), curlone (5.45%), and β-sesquiphellandrene (4.73%). These results suggest that C. longa may inhibit the cariogenic properties of S. mutans.

  7. Comparative repellency of 38 essential oils against mosquito bites.

    PubMed

    Trongtokit, Yuwadee; Rongsriyam, Yupha; Komalamisra, Narumon; Apiwathnasorn, Chamnarn

    2005-04-01

    The mosquito repellent activity of 38 essential oils from plants at three concentrations was screened against the mosquito Aedes aegypti under laboratory conditions using human subjects. On a volunteer's forearm, 0.1 mL of oil was applied per 30 cm2 of exposed skin. When the tested oils were applied at a 10% or 50% concentration, none of them prevented mosquito bites for as long as 2 h, but the undiluted oils of Cymbopogon nardus (citronella), Pogostemon cablin (patchuli), Syzygium aromaticum (clove) and Zanthoxylum limonella (Thai name: makaen) were the most effective and provided 2 h of complete repellency. From these initial results, three concentrations (10%, 50% and undiluted) of citronella, patchouli, clove and makaen were selected for repellency tests against Culex quinquefasciatus and Anopheles dirus. As expected, the undiluted oil showed the highest protection in each case. Clove oil gave the longest duration of 100% repellency (2-4 h) against all three species of mosquito.

  8. Authentication of Concentrated Orange Essential Oils Using Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    López Muñoz, G. A.; Balderas López, J. A.; López González, R. F.

    2012-11-01

    Photoacoustic spectroscopy (PS) was used to study the thermal diffusivity and its relation with the composition in folded (concentrated) cold-pressed Mexican orange essential oils. A linear relation between the amplitude (on a semi-log scale) and phase, as functions of the sample thickness, for PS was obtained through a theoretical model to fit the experimental data for thermal-diffusivity measurements in concentrated orange essential oils. Experimental results showed a linear increase in thermal-diffusivity values with the folding degree: 5-fold, 10-fold, 20-fold, and 35-fold due to a decrease in terpenes (mainly D-limonene) related with the folding process that can be correlated with the thermal diffusivity of the orange essential oils. The obtained values in this study and those previously reported (see Int. J. Thermophys. 32, 1066, 2011) showed the possibility of using this thermal property to make distinctions between citrus oils obtained by different extraction processes and also between concentrated citrus oils. This provides the viability of a new complementary method for this purpose, contrasting with the use of density and refraction index, physical properties commonly used in the authentication of citrus essential oils.

  9. Essential oil from Ocimum basilicum (Omani Basil): a desert crop.

    PubMed

    Al-Maskri, Ahmed Yahya; Hanif, Muhammad Asif; Al-Maskari, Masoud Yahya; Abraham, Alfie Susan; Al-sabahi, Jamal Nasser; Al-Mantheri, Omar

    2011-10-01

    The focus of the present study was on the influence of season on yield, chemical composition, antioxidant and antifungal activities of Omani basil (Ocimum basilicum) oil. The present study involved only one of the eight Omani basil varieties. The hydro-distilled essential oil yields were computed to be 0.1%, 0.3% and 0.1% in the winter, spring and summer seasons, respectively. The major components identified were L- linalool (26.5-56.3%), geraniol (12.1-16.5%), 1,8-cineole (2.5-15.1%), p-allylanisole (0.2-13.8%) and DL-limonene (0.2-10.4%). A noteworthy extra component was beta- farnesene, which was exclusively detected in the oil extracted during winter and spring at 6.3% and 5.8%, respectively. The essential oil composition over the different seasons was quite idiosyncratic, in which the principal components of one season were either trivial or totally absent in another. The essential oil extracted in spring exhibited the highest antioxidant activity (except DPPH scavenging ability) in comparison with the oils from other seasons. The basil oil was tested against pathogenic fungi viz. Aspergillus niger, A. fumigatus, Penicillium italicum and Rhizopus stolonifer using a disc diffusion method, and by determination of minimum inhibitory concentration. Surprisingly high antifungal values were found highlighting the potential of Omani basil as a preservative in the food and medical industries.

  10. Gas chromatographic technologies for the analysis of essential oils.

    PubMed

    Marriot, P J; Shellie, R; Cornwell, C

    2001-11-30

    Essential oil analysis has basically had one technical goal: to achieve the best possible separation performance by using the most effective, available technology of the day. The result achieved from this may then be used to answer the research or industrial analysis questions which necessitated the analysis. This may be for comparative purposes, where one oil is contrasted with other(s) for quality control or investigation of adulteration, to discover new components, or to characterise the chemical classes of compounds present. Clearly, today the analyst turns to chromatography as the provider of separation and then may supplement that with mass spectrometry to aid identification. The power of GC-MS means that advances in both the separation technique, and improvements in mass spectrometry detection - along with improved data handling tools - will immediately be relevant to the essential oil area. This present review outlines the developmental nature of instrumental approaches to essential oil analysis using gas chromatography. Mass spectrometry will be included to the extent that it represents the hyphenation of choice for most analysts when analysing essential oils. Thus single-column and multi-dimensional analysis will be covered, as will sample handling or introduction techniques prior to the analysis step, where these techniques provide some measure of separation. The recent demonstration of comprehensive gas chromatography will be discussed as the potentially most powerful separation method for essential oils. This brief review is not intended to be a comprehensive dissertation on the field of essential oil analysis since that would require sufficient space to occupy a book in its own right. Rather, it will outline selected considerations and developments, to help explain where new technology has been applied to advantage in this field.

  11. Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities

    PubMed Central

    Hussain, Abdullah Ijaz; Anwar, Farooq; Chatha, Shahzad Ali Shahid; Jabbar, Abdul; Mahboob, Shahid; Nigam, Poonam Singh

    2010-01-01

    The aim of this work was to investigate and compare the antiproliferative, antioxidant and antibacterial activities of Rosmarinus officinalis essential oil, native to Pakistan. The essential oil content from the leaves of R. officinalis was 0.93 g 100g-1. The GC and GC-MS analysis revealed that the major components determined in R. officinalis essential oil were 1,8-cineol (38.5%), camphor (17.1%), α-pinene (12.3%), limonene (6.23%), camphene (6.00%) and linalool (5.70%). The antiproliferative activity was tested against two cancer (MCF-7 and LNCaP) and one fibroblast cell line (NIH-3T3) using the MTT assay, while, the antioxidant activity was evaluated by the reduction of 2, 2-diphenyl-1-picryl hydrazyl (DPPH) and measuring percent inhibition of peroxidation in linoleic acid system. The disc diffusion and modified resazurin microtitre-plate assays were used to evaluate the inhibition zones (IZ) and minimum inhibitory concentration (MIC) of R. officinalis essential oil, respectively. It is concluded from the results that Rosmarinus officinalis essential oil exhibited antiproliferative, antioxidant and antibacterial activities. PMID:24031588

  12. Essential oils as natural food antimicrobial agents: a review.

    PubMed

    Vergis, Jess; Gokulakrishnan, P; Agarwal, R K; Kumar, Ashok

    2015-01-01

    Food-borne illnesses pose a real scourge in the present scenario as the consumerism of packaged food has increased to a great extend. Pathogens entering the packaged foods may survive longer, which needs a check. Antimicrobial agents either alone or in combination are added to the food or packaging materials for this purpose. Exploiting the antimicrobial property, essential oils are considered as a "natural" remedy to this problem other than its flavoring property instead of using synthetic agents. The essential oils are well known for its antibacterial, antiviral, antimycotic, antiparasitic, and antioxidant properties due to the presence of phenolic functional group. Gram-positive organisms are found more susceptible to the action of the essential oils. Essential oils improve the shelf-life of packaged products, control the microbial growth, and unriddle the consumer concerns regarding the use of chemical preservatives. This review is intended to provide an overview of the essential oils and their role as natural antimicrobial agents in the food industry.

  13. Essential Oils for Treatment for Onychomycosis: A Mini-Review.

    PubMed

    Flores, Fernanda C; Beck, Ruy C R; da Silva, Cristiane de B

    2016-02-01

    Onychomycosis are fungal infections affecting finger and toenails mainly caused by dermatophyte fungi and some Candida species. Low cure rates and frequent recurrence, development of a fungal resistance front to various antimicrobial agents topical and systemic, and an ineffective topical treatment make onychomycosis difficult to treat. Essential oils are excellent candidates for the topical treatment for onychomycosis because the development of resistance by fungi is rare, and the presence of side effects is low. They are composed of a complex variety of compounds, mainly terpenes, with low molecular weight, which may easily penetrate into the nail plate, finding the fungi elements. The complex mixture confers a broad antifungal spectrum of action, through interaction with biological membranes, interference in radical and enzymatic reaction of fungi cells. Essential oils may become the source of new therapeutic molecules, and the use of an essential oil incorporated into a topical formulation is an interesting, safe, and effective alternative for the treatment for onychomycosis. However, studies are needed to evaluate the efficacy of essential oils in the treatment for onychomycosis in vivo. This mini-review aims to present the potential use of essential oils for the treatment for onychomycosis, focusing on the last decade.

  14. Bioactivity against Bursaphelenchus xylophilus: Nematotoxics from essential oils, essential oils fractions and decoction waters.

    PubMed

    Faria, Jorge M S; Barbosa, Pedro; Bennett, Richard N; Mota, Manuel; Figueiredo, A Cristina

    2013-10-01

    The Portuguese pine forest has become dangerously threatened by pine wilt disease (PWD), caused by the pinewood nematode (PWN), Bursaphelenchus xylophilus. Synthetic chemicals are the most common pesticides used against phytoparasitic nematodes but its use has negative ecological impacts. Phytochemicals may prove to be environmentally friendly alternatives. Essential oils (EOs) and decoction waters, isolated from 84 plant samples, were tested against B. xylophilus, in direct contact assays. Some successful EOs were fractionated and the fractions containing hydrocarbons or oxygen-containing molecules tested separately. Twenty EOs showed corrected mortalities ⩾96% at 2 μL/mL. These were further tested at lower concentrations. Ruta graveolens, Satureja montana and Thymbra capitata EOs showed lethal concentrations (LC100)<0.4μL/mL. Oxygen-containing molecules fractions showing corrected mortality ⩾96% did not always show LC100 values similar to the corresponding EOs, suggesting additive and/or synergistic relationships among fractions. Nine decoction waters (remaining hydrodistillation waters) revealed 100% mortality at a minimum concentration of 12.5μL/mL. R. graveolens, S. montana and T. capitata EOs are potential environmentally friendly alternatives for B. xylophilus control given their high nematotoxic properties. Nematotoxic activity of an EO should be taken in its entirety, as its different components may contribute, in distinct ways, to the overall EO activity.

  15. Evaluation of massage with essential oils on childhood atopic eczema.

    PubMed

    Anderson, C; Lis-Balchin, M; Kirk-Smith, M

    2000-09-01

    Childhood atopic eczema is an increasingly common condition in young children. As well as being irritating to the child, it causes sleepless nights for both the child and the family and leads to difficulties in parental relationships and can have severe effects on employment. A group of eight children, born to professional working mothers were studied to test the hypothesis that massage with essential oils (aromatherapy) used as a complementary therapy in conjunction with normal medical treatment, would help to alleviate the symptoms of childhood atopic eczema. The children were randomly allocated to the massage with essential oils group and both counselled and massaged with a mixture of essential oils by the therapist once a week and the mother every day over a period of 8 weeks. The preferred essential oils, chosen by the mothers for their child, from 36 commonly used aromatherapy oils, were: sweet marjoram, frankinsence, German chamomile, myrrh, thyme, benzoin, spike lavender and Litsea cubeba. A control group of children received the counselling and massage without essential oils. The treatments were evaluated by means of daily day-time irritation scores and night time disturbance scores, determined by the mother before and during the treatment, both over an 8 week period; finally general improvement scores were allocated 2 weeks after the treatment by the therapist, the general practitioner and the mother. The study employed a single case experimental design across subjects, such that there were both a within-subject control and between-subjects control, through the interventions being introduced at different times. The results showed a significant improvement in the eczema in the two groups of children following therapy, but there was no significant difference in improvement shown between the aromatherapy massage and massage only group. Thus there is evidence that tactile contact between mother and child benefits the symptoms of atopic eczema but there is no

  16. Stabilization of soybean oil during accelerated storage by essential oil of ferulago angulata boiss.

    PubMed

    Sadeghi, Ehsan; Mahtabani, Aidin; Etminan, Alireza; Karami, Farahnaz

    2016-02-01

    This study has been considered effect of Ferulago angulata essential oil on stabilizing soybean oil during accelerated storage. The essential oil was extracted by Clevenger-type apparatus. For analysis of the essential oil, GC/MS was used. Main components of the essential oil were monoterpene and sesquiterpene hydrocarbons. The essential oil of F. angulata at four concentrations, i.e. 125 (SBO-125), 250 (SBO-250), 500 (SBO-500) and SBO-Mixture (60 ppm TBHQ +60 ppm essential oil) were added to preheated refined soybean oil. TBHQ was used at 120 ppm as standard besides the control. Antioxidant activity index (AAI), free fatty acid (FFA) content, peroxide value (PV) and p-anisidine value (p-AnV) were served for appreciation of efficacy of F. angulata in stabilization of soybean oil. Results from different tests showed that SBO-mixture had highest effect and followed by SBO-TBHQ, SBO-250, SBO-125, SBO-500 and Ctrl. These results reveal F. angulata is a strong antioxidant and can be used instead of synthetic antioxidant.

  17. Chemical composition and biological activity of Salvia verbenaca essential oil.

    PubMed

    Canzoneri, Marisa; Bruno, Maurizio; Rosselli, Sergio; Russo, Alessandra; Cardile, Venera; Formisano, Carmen; Rigano, Daniela; Senatore, Felice

    2011-07-01

    Salvia verbenaca L. (syn. S. minore) is a perennial herb known in the traditional medicine of Sicily as "spaccapetri" and is used to resolve cases of kidney stones, chewing the fresh leaves or in decoction. The chemical composition of the essential oil obtained from aerial parts of S. verbenaca collected in Piano Battaglia (Sicily) on July 2009, was analyzed by GC and GC-MS. The oil was strongly characterized by fatty acids (39.5%) and carbonylic compounds (21.2%), with hexadecanoic acid (23.1%), (Z)-9-octadecenoic acid (11.1%) and benzaldehyde (7.3%) as the main constituents. The in vitro activity of the essential oil against some microorganisms in comparison with chloramphenicol by the broth dilution method was determined. The oil exhibited a good activity as inhibitor of growth of Gram + bacteria.

  18. The in vitro effect of selected essential oils on the growth and mycotoxin production of Aspergillus species.

    PubMed

    Císarová, Miroslava; Tančinová, Dana; Medo, Juraj; Kačániová, Miroslava

    2016-10-02

    The aim of the present study was to assess the antifungal and anti-toxinogenic activity of 15 essential oils (EOs) against three fungi of the genus Aspergillus (A. parasiticus KMi-227-LR, A. parasiticus KMi-220-LR and A. flavus KMi-202-LR). The minimum inhibitory doses (MIDs) of the tested essential oils and their antifungal activity were determined using the micro-atmosphere method. The original commercial essential oil samples of Jasminum officinale L., Thymus vulgaris L., Syzygium aromaticum (L.) Merrill & Perry, Rosmarinus officinalis L., Ocimum basilicum L., Eucalyptus globulus Labill., Salvia officinalis L., Citrus limon (L.) Burm, Origanum vulgare L., Lavandula angustifolia Mill., Carum carvi L., Citrus sinensis (L.) Osbeck., Zingiber officinalis Rosc., Mentha piperita L. and Cinnamomum zeylanicum Nees. (C. verum J.S.Presl.) were produced in Slovakia (Calendula a.s., Nová Ľubovňa, Slovakia). All essential oils exhibited activity against all tested strains of fungi. After 14 days of incubation, A. flavus (KMi-202-LR) showed the highest susceptibility with a growth inhibition percentage (GIP) of 18.70% to C. limon and 5.92% to C. sinensis, while A. parasiticus (KMi-220-LR) exhibited a GIP of 20.56% to J. officinale. The minimum inhibitory doses (MIDs) of EOs with the most significant activity were recorded. The best antifungal activity, using the micro-atmosphere method was found in S. aromaticum with an MID of 62.5 μL L(-1) air, T. vulgaris (MID of 62.5 μL L(-1) air) and O. vulgare (MID of 31.5 μL L(-1) air) against all tested strains. Mycotoxin production of the tested strains was evaluated by the thin layer chromatography (TLC) method. Mycotoxin production of AFB1 and AFG1 was inhibited following all treatments with C. carvi, R. officinale and S. officinale, Eucalyptus globulus L. and O. basilicum L. Essential oils exhibited a potential inhibition activity against toxic fungi, although, these affected only the production of AFB1.

  19. Preparation and characterization of clove essential oil-loaded liposomes.

    PubMed

    Sebaaly, Carine; Jraij, Alia; Fessi, Hatem; Charcosset, Catherine; Greige-Gerges, Hélène

    2015-07-01

    In this study, suitable formulations of natural soybean phospholipid vesicles were developed to improve the stability of clove essential oil and its main component, eugenol. Using an ethanol injection method, saturated (Phospholipon 80H, Phospholipon 90H) and unsaturated soybean (Lipoid S100) phospholipids, in combination with cholesterol, were used to prepare liposomes at various eugenol and clove essential oil concentrations. Liposomal batches were characterized and compared for their size, polydispersity index, Zeta potential, loading rate, encapsulation efficiency and morphology. The liposomes were tested for their stability after storing them for 2 months at 4°C by monitoring changes in their mean size, polydispersity index and encapsulation efficiency (EE) values. It was found that liposomes exhibited nanometric oligolamellar and spherical shaped vesicles and protected eugenol from degradation induced by UV exposure; they also maintained the DPPH-scavenging activity of free eugenol. Liposomes constitute a suitable system for encapsulation of volatile unstable essential oil constituents.

  20. Citrus bergamia essential oil: from basic research to clinical application.

    PubMed

    Navarra, Michele; Mannucci, Carmen; Delbò, Marisa; Calapai, Gioacchino

    2015-01-01

    Citrus bergamia Risso et Poiteau, also known as "Bergamot," is a plant belonging to the Rutaceae family, defined as a hybrid of bitter orange and lemon. It is an endemic plant of the Calabria region (Italy). Bergamot fruit is primarily used for the extraction of its essential oil (bergamot essential oil: BEO), employed in perfume, cosmetics, food, and confections. The aim of this review was to collect recent data from the literature on C. bergamia essential oil and, through a critical analysis, focus on safety and the beneficial effects on human health. Clinical studies on the therapeutic applications of BEO exclusively focus on the field of aromatherapy, suggesting that its use can be useful for reducing anxiety and stress.

  1. Thymus vulgaris essential oil: chemical composition and antimicrobial activity.

    PubMed

    Borugă, O; Jianu, C; Mişcă, C; Goleţ, I; Gruia, A T; Horhat, F G

    2014-01-01

    The study was designed to determine the chemical composition and antimicrobial properties of the essential oil of Thymus vulgaris cultivated in Romania. The essential oil was isolated in a yield of 1.25% by steam distillation from the aerial part of the plant and subsequently analyzed by GC-MS. The major components were p-cymene (8.41%), γ-terpinene (30.90%) and thymol (47.59%). Its antimicrobial activity was evaluated on 7 common food-related bacteria and fungus by using the disk diffusion method. The results demonstrate that the Thymus vulgaris essential oil tested possesses strong antimicrobial properties, and may in the future represent a new source of natural antiseptics with applications in the pharmaceutical and food industry.

  2. Citrus bergamia essential oil: from basic research to clinical application

    PubMed Central

    Navarra, Michele; Mannucci, Carmen; Delbò, Marisa; Calapai, Gioacchino

    2015-01-01

    Citrus bergamia Risso et Poiteau, also known as “Bergamot,” is a plant belonging to the Rutaceae family, defined as a hybrid of bitter orange and lemon. It is an endemic plant of the Calabria region (Italy). Bergamot fruit is primarily used for the extraction of its essential oil (bergamot essential oil: BEO), employed in perfume, cosmetics, food, and confections. The aim of this review was to collect recent data from the literature on C. bergamia essential oil and, through a critical analysis, focus on safety and the beneficial effects on human health. Clinical studies on the therapeutic applications of BEO exclusively focus on the field of aromatherapy, suggesting that its use can be useful for reducing anxiety and stress. PMID:25784877

  3. Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance

    PubMed Central

    Yap, Polly Soo Xi; Yiap, Beow Chin; Ping, Hu Cai; Lim, Swee Hua Erin

    2014-01-01

    For many years, the battle between humans and the multitudes of infection and disease causing pathogens continues. Emerging at the battlefield as some of the most significant challenges to human health are bacterial resistance and its rapid rise. These have become a major concern in global public health invigorating the need for new antimicrobial compounds. A rational approach to deal with antibiotic resistance problems requires detailed knowledge of the different biological and non-biological factors that affect the rate and extent of resistance development. Combination therapy combining conventional antibiotics and essential oils is currently blooming and represents a potential area for future investigations. This new generation of phytopharmaceuticals may shed light on the development of new pharmacological regimes in combating antibiotic resistance. This review consolidated and described the observed synergistic outcome between essential oils and antibiotics, and highlighted the possibilities of essential oils as the potential resistance modifying agent. PMID:24627729

  4. Comparison of pistachio hull essential oils from different Tunisian localities.

    PubMed

    Chahed, Thouraya; Dhifi, Wissal; Hamrouni, Ibtissem; Msaada, Kamel; Bellila, Amor; Kchouk, Mohamed E; Marzouk, Brahim

    2007-03-01

    Pistachio (Pistacia vera L.) fruit is well known for its oleaginous and edible seed. Less information is available about the hull constituted by the epicarp and the mesocarp. This part of the fruit contains an essential oil that can be valorized. Tunisia is one of the countries cultivating pistachio trees. This work presents essential oil composition of pistachio hulls (Mateur variety) from different geographical localities: Grombalia (North-East), Kairouan (Middle) and Sfax (Middle-East). Yields were more important in Sfax samples (0.53% on a dry weight basis). Alpha-terpinolene was the major compound for Grombalia fruits (35.7%), whereas Kairouan and Sfax samples where characterized by alpha-pinene (42.5 and 43.8% respectively). For all samples, monoterpene hydrocarbons predominated (more than 79.8% of the essential oil).

  5. Essential oil of one of the Iranian skullcaps.

    PubMed

    Ghannadi, Alireza; Mehregan, Iraj

    2003-01-01

    The hydro-distilled essential oil from dried aerial parts of one of widespread Iranian skullcaps, Scutellaria pinnatifida A. Hamilt. sap. alpina (Bornm.) Rech. grown in Khorassan province was analyzed by GC and GC/MS. Thirty components were characterized ing 93.8% of the total components detected. The major components of the oil were germacrene-D (39.7%) and beta-caryophyllene (15.0%).

  6. Evaluation of bacterial resistance to essential oils and antibiotics after exposure to oregano and cinnamon essential oils.

    PubMed

    Becerril, Raquel; Nerín, Cristina; Gómez-Lus, Rafael

    2012-08-01

    Essential oils (EOs) are excellent antimicrobial agents sometimes used in active food packaging. This work studies the susceptibility of 48 clinical isolates and 12 reference strains of Gram-negative bacilli to oregano essential oil, cinnamon essential oil, and combinations of both. Furthermore, the tendency of the clinical isolates to develop resistance to these EOs and to different antibiotics after sequential oregano or cinnamon exposure was studied. For this purpose, antibiotic susceptibility (through disk diffusion assays and minimum inhibitory concentration [MIC] determination) and oregano and cinnamon susceptibility (through MIC and minimum bactericidal concentration [MBC] determination) were compared after 50 passages in the presence or absence of subinhibitory concentrations of oregano and cinnamon essential oils. The results showed that all strains were susceptible to both EOs and their combination independently of the antibiotic resistance profile. In addition, neither synergistic nor antagonistic effects were observed between oregano and cinnamon essential oils at the concentrations tested. After the sequential exposure to both EOs, only Serratia marcescens, Morganella morganii, and Proteus mirabilis treated with oregano changed their antibiotic resistance profile and/or increased their resistance to this EO. However, the changes in antibiotic and oregano resistance were not related.

  7. Antifungal Properties of Chenopodium ambrosioides Essential Oil Against Candida Species.

    PubMed

    Chekem, Marie Stéphanie Goka; Lunga, Paul Keilah; Tamokou, Jean De Dieu; Kuiate, Jules Roger; Tane, Pierre; Vilarem, Gerard; Cerny, Muriel

    2010-09-01

    The essential oil of the aerial part (leaves, flowers and stem) of Chenopodium ambrosioides was obtained by hydrodistillation and its chemical composition analyzed by GC and GC/MS, which permitted the identification of 14 components, representing 98.8% of the total oil. Major components were α-terpinene (51.3%), p-cymene (23.4%) and p-mentha-1,8-diène (15.3%). The antifungal properties of this essential oil were investigated in vitro by the well diffusion and broth microdilution methods. The in vitro antifungal activity was concentration dependent and minimum inhibitory concentration values varied from 0.25 to 2 mg/mL. The in vivo antifungal activity was evaluated on an induced vaginal candidiasis rat model. The in vivo activity of the oil on mice vaginal candidiasis was not dose-dependent. Indeed, all the three tested doses; 0.1%, 1% and 10% led to the recovery of mice from the induced infection after 12 days of treatment. The effect of the essential oil on C. albicans ATCC 1663 fatty acid profile was studied. This oil has a relatively important dose-dependent effect on the fatty acids profile.

  8. Chemical Composition of the Essential Oil from Chaerophyllum temulum (Apiaceae).

    PubMed

    Stamenković, Jelena G; Stojanović, Gordana S; Radojković, Ivana R; Petrović, Goran M; Zlatković, Bojan K

    2015-08-01

    The present study reports the chemical composition on the essential oil obtained from fresh roots, stems, inflorescences and fruits of Chaerophyllum temulum. In all samples, except the roots, the most dominant components were sesquiterpene hydrocarbons. (Z)-Falcarinol was the principal constituent of the root essential oils (61.7% at the flowering stage and 62.3% at the fruiting stage). The blossom oil was dominated by (Z,E)-α-famesene (23.4%), (E)-β-farnesene (9.0%) and germacrene D-4-ol (9%), whereas the oil from the fruit had germacrene D-4-ol (27.6%) as its main compound, accompanied by (Z,E)-α-famesene (13.4%). Germacrene D was the most abundant component of the stem essential oil (38.4% at the flowering stage and 32.5% at the fruiting stage). The obtained results show that the qualitative composition of the oil depends on the part of the plant which is analyzed, while the quantitative composition of the main components depends on the growing stage of the plant.

  9. Essential oil from Artemisia phaeolepis: chemical composition and antimicrobial activities.

    PubMed

    Ben Hsouna, Anis; Ben Halima, Nihed; Abdelkafi, Slim; Hamdi, Naceur

    2013-01-01

    Artemisia phaeolepis, a perennial herb with a strong volatile odor, grows on the grasslands of Mediterranean region. Essential oil obtained from Artemisia phaeolepis was analyzed by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. A total of 79 components representing 98.19% of the total oil were identified, and the main compounds in the oil were found to be eucalyptol (11.30%), camphor (8.21%), terpine-4-ol (7.32%), germacrene D (6.39), caryophyllene oxide (6.34%), and caryophyllene (5.37%). The essential oil showed definite inhibitory activity against 10 strains of test microorganisms. Eucalyptol, camphor, terpine-4-ol, caryophyllene, germacrene D and caryophyllene oxide were also examined as the major components of the oil. Camphor showed the strongest antimicrobial activity; terpine-4-ol, eucalyptol, caryophyllene and germacrene D were moderately active and caryophyllene oxide was weakly active. The study revealed that the antimicrobial properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components.

  10. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil

    PubMed Central

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity. PMID:26000025

  11. Carbonyl species characteristics during the evaporation of essential oils

    NASA Astrophysics Data System (ADS)

    Chiang, Hsiu-Mei; Chiu, Hua-Hsien; Lai, Yen-Ming; Chen, Ching-Yen; Chiang, Hung-Lung

    2010-06-01

    Carbonyls emitted from essential oils can affect the air quality when they are used in indoors, especially under poor ventilation conditions. Lavender, lemon, rose, rosemary, and tea tree oils were selected as typical and popular essential oils to investigate in terms of composition, thermal characteristics and fifteen carbonyl constituents. Based on thermogravimetric (TG) analysis, the activation energy was 7.6-8.3 kcal mol -1, the reaction order was in the range of 0.6-0.7 and the frequency factor was 360-2838 min -1. Formaldehyde, acetaldehyde, acetone, and propionaldehyde were the dominant carbonyl compounds, and their concentrations were 0.034-0.170 ppm. The emission factors of carbonyl compounds were 2.10-3.70 mg g -1, and acetone, propionaldehyde, acetaldehyde, and formaldehyde accounted for a high portion of the emission factor of carbonyl compounds in essential oil exhaust. Some unhealthy carbonyl species such as formaldehyde and valeraldehyde, were measured at low-temperature during the vaporization of essential oils, indicating a potential effect on indoor air quality and human health.

  12. Biochemical Activities of Iranian Cymbopogon olivieri (Boiss) Bor. Essential Oil

    PubMed Central

    Mahboubi, M.; Kazempour, N.

    2012-01-01

    Cymbopogon olivieri essential oil from aerial parts was analyzed by gas chromotography and gas chromatography-mass spectrometry and led to the identification of 38 compounds. Piperitone (72.8%), 4-carene (11.8%) and β-himachalene (7.6%) were found as the major components of the oil. The antimicrobial activity was achieved using disc-diffusion and microbroth dilution assays and microbicidal kinetics of oil was screened against different microorganisms. The possible antioxidant activity of oil was evaluated by diphenylpicrylhydrazyl free-radical scavenging system. The oil had excellent antimicrobial activity against Bacillus cereus, Staphylococcus epidermidis and Streptococcus pneumoniae. The oil exhibited inhibitory effect against Bacillus subtilis and fungi. Dvalues of oil were 12.5, 10 and 2.4 min for Escherichia coli, Staphylococcus aureus and Candida albicans, respectively. The IC50 value of Cymbopogon olivieri oil was 35 mg/ml and its antioxidant activity was lower than that of butylated hydroxytoluene. Cymbopogon olivieri oil possesses compounds with antimicrobial properties that can be used as antimicrobial agents. PMID:23626392

  13. Biochemical Activities of Iranian Cymbopogon olivieri (Boiss) Bor. Essential Oil.

    PubMed

    Mahboubi, M; Kazempour, N

    2012-07-01

    Cymbopogon olivieri essential oil from aerial parts was analyzed by gas chromotography and gas chromatography-mass spectrometry and led to the identification of 38 compounds. Piperitone (72.8%), 4-carene (11.8%) and β-himachalene (7.6%) were found as the major components of the oil. The antimicrobial activity was achieved using disc-diffusion and microbroth dilution assays and microbicidal kinetics of oil was screened against different microorganisms. The possible antioxidant activity of oil was evaluated by diphenylpicrylhydrazyl free-radical scavenging system. The oil had excellent antimicrobial activity against Bacillus cereus, Staphylococcus epidermidis and Streptococcus pneumoniae. The oil exhibited inhibitory effect against Bacillus subtilis and fungi. Dvalues of oil were 12.5, 10 and 2.4 min for Escherichia coli, Staphylococcus aureus and Candida albicans, respectively. The IC50 value of Cymbopogon olivieri oil was 35 mg/ml and its antioxidant activity was lower than that of butylated hydroxytoluene. Cymbopogon olivieri oil possesses compounds with antimicrobial properties that can be used as antimicrobial agents.

  14. Antifungal action and antiaflatoxigenic properties of some essential oil constituents.

    PubMed

    Mahmoud, A L

    1994-08-01

    The effect of 20 essential oil constituents on Aspergillus flavus growth and aflatoxin production was tested at the level of 1000 ppm. Some of the tested oils exhibited inhibitory effects on fungal growth and toxin formation. Five oils, namely geraniol, nerol and citronellol (aliphatic oils), cinnamaldehyde (aromatic aldehyde) and thymol (phenolic ketone), completely suppressed growth and aflatoxin synthesis. Trials for determining the minimum inhibitory concentration (MIC) of these oils revealed that geraniol, nerol and citronellol were effective at 500 ppm, while thymol and cinnamaldehyde were highly effective at doses as low as 250 and 200 ppm, respectively. It was observed that citral, citronellol and eugenol prevented fungal growth and toxin formation for up to 8 d. However, after 15 d of incubation, toxin production was greater than the controls.

  15. Antimicrobial activity of essential oil from Schinus molle Linn.

    PubMed

    Gundidza, M

    1993-11-01

    The essential oil from the fresh leaves of Schinus molle isolated by hydrodistillation was tested for antibacterial activity using the hole plate diffusion method and for antifungal activity using the mycelium or single cell growth inhibition method. Results obtained showed that the volatile oil exhibited significant activity against the following bacterial species: Klebsiella pneumoniae, Alcaligenes faecalis, Pseudomonas aeruginosa, Leuconostoc cremoris, Enterobacter aerogenes, Proteus vulgaris, Clostridium sporogenes, Acinetobacter calcoacetica, Escherichia coli, Beneckea natriegens, Citrobacter freundii, Serratia marcescens, Bacillus subtilis and Brochothrix thermosphacata. The fungal species Aspergillus ochraceus, Aspergillus parasiticus, Fusarium culmorum and Alternaria alternata exhibited significant sensitivity to the volatile oil.

  16. Antifungal and insecticidal activity of two Juniperus essential oils.

    PubMed

    Wedge, David E; Tabanca, Nurhayat; Sampson, Blair J; Werle, Christopher; Demirci, Betul; Baser, K Husnu Can; Nan, Peng; Duan, Jia; Liu, Zhijun

    2009-01-01

    Essential oils of two Tibetan Junipers Juniperus saltuaria and J. squamata var. fargesii (Cupressaceae) were obtained by distilling dried leaves and branches using a Clevenger apparatus. Sixty-seven compounds from J. saltuaria and 58 from J. squamata var. fargesii were identified by gas chromatography-mass spectrometry (GC-MS). Both essential oils contained similar ratios of four abundant monoterpenoids: 44 and 35% sabinene, 13 and 9% elemol, 8 and 7% terpinen-4-ol, and 4 and 17% alpha-pinene, respectively. These oils had antifungal activity based on a direct bioautography assay of Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and insecticidal activity based on serial-time mortality bioassay of azalea lace bugs, Stephanitis pyrioides. Antifungal activity of Juniperus oils was weak when compared with commercial fungicides such as benomyl and captan. Whole Juniperus oils at quarter the dosage used against Colletotrichum species were more insecticidal than 10 mg/mL malathion, killing > or =70-90% adult lace bugs after 4 hours of exposure. Rf values of 0.18 for J. saltuaria oil and 0.19 for J. squamata oil indicated lipophilic monoterpenes which were the putative sources of biological activity.

  17. Essential oils of Alpinia rafflesiana and their antimicrobial activities.

    PubMed

    Jusoh, Shariha; Sirat, Hasnah Mohd; Ahmad, Farediah

    2013-09-01

    The essential oils from the leaves, pseudostems, rhizomes and fruits of Alpinia rafflesiana were isolated by hydrodistillation. The oils were analysed by capillary GC and GC-MS. The most abundant components in the leaf oil were trans-caryophyllene (32.61%), caryophyllene oxide (8.67%), (2E,6Z)-farnesol (4.91%) and alpha-terpineol (4.25%), while 1,8-cineole (32.25%), myrcene (13.63%), alpha-terpineol (9.90%) and trans-caryophyllene (9.80%) were the main constituents in the pseudostem oil. The rhizome constituted of tetracosane (42.61%), tau-cadinol (7.46%), alpha-terpineol (6.71%) were the major components, whereas tetracosane (13.39%), (2E,6E)-farnesol (7.31%), alpha-terpineol (8.51%) and caryophyllene oxide (8.05%) were the main components in the fruit oil. Antimicrobial assay revealed that all the essential oils showed moderate to weak inhibition against the tested microorganisms. The leaf oil was the most active and inhibited both S. aureus and E. coli with MIC values of 7.81 microg/mL and 15.6 microg/mL, respectively.

  18. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil.

    PubMed

    Sharma, Abhishek; Rajendran, Sasireka; Srivastava, Ankit; Sharma, Satyawati; Kundu, Bishwajit

    2017-03-01

    The antifungal effects of four essential oils viz., clove (Syzygium aromaticum), lemongrass (Cymbopogon citratus), mint (Mentha × piperita) and eucalyptus (Eucalyptus globulus) were evaluated against wilt causing fungus, Fusarium oxysporum f. sp. lycopersici 1322. The inhibitory effect of oils showed dose-dependent activity on the tested fungus. Most active being the clove oil, exhibiting complete inhibition of mycelial growth and spore germination at 125 ppm with IC50 value of 18.2 and 0.3 ppm, respectively. Essential oils of lemongrass, mint and eucalyptus were inhibitory at relatively higher concentrations. The Minimum inhibitory concentration (MIC) of clove oil was 31.25 ppm by broth microdilution method. Thirty one different compounds of clove oil, constituting approximately ≥99% of the oil, were identified by gas chromatography-mass spectroscopy analysis. The major components were eugenol (75.41%), E-caryophyllene (15.11%), α-humulene (3.78%) and caryophyllene oxide (1.13%). Effect of clove oil on surface morphology of F. oxysporum f. sp. lycopersici 1322 was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM observation revealed shrivelled hyphae while AFM observation showed shrunken and disrupted spores in clove oil treated samples. In pots, 5% aqueous emulsion of clove oil controlled F. oxysporum f. sp. lycopersici 1322 infection on tomato plants. This study demonstrated clove oil as potent antifungal agent that could be used as biofungicide for the control of F. oxysporum f. sp. lycopersici in both preventive and therapeutic manner.

  19. Essential oil yield and composition reflect browsing damage of junipers.

    PubMed

    Markó, Gábor; Gyuricza, Veronika; Bernáth, Jeno; Altbacker, Vilmos

    2008-12-01

    The impact of browsing on vegetation depends on the relative density and species composition of browsers. Herbivore density and plant damage can be either site-specific or change seasonally and spatially. For juniper (Juniperus communis) forests of a sand dune region in Hungary, it has been assumed that plant damage investigated at different temporal and spatial scales would reflect selective herbivory. The level of juniper damage was tested for a possible correlation with the concentration of plant secondary metabolites (PSMs) in plants and seasonal changes in browsing pressure. Heavily browsed and nonbrowsed junipers were also assumed to differ in their chemical composition, and the spatial distribution of browsing damage within each forest was analyzed to reveal the main browser. Long-term differences in local browsing pressure were also expected and would be reflected in site-specific age distributions of distant juniper populations. The concentrations of PSMs (essential oils) varied significantly among junipers and seasons. Heavily browsed shrubs contained the lowest oil yield; essential oils were highest in shrubs bearing no damage, indicating that PSMs might contribute to reduce browsing in undamaged shrubs. There was a seasonal fluctuation in the yield of essential oil that was lower in the summer period than in other seasons. Gas chromatography (GC) revealed differences in some essential oil components, suggesting that certain chemicals could have contributed to reduced consumption. The consequential long-term changes were reflected in differences in age distribution between distant juniper forests. These results confirm that both the concentration of PSMs and specific compounds of the essential oil may play a role in selective browsing damage by local herbivores.

  20. The effects of evaporating essential oils on indoor air quality

    NASA Astrophysics Data System (ADS)

    Su, Huey-Jen; Chao, Chung-Jen; Chang, Ho-Yuan; Wu, Pei-Chih

    Essential oils, predominantly comprised of a group of aromatic chemicals, have attracted increasing attention as they are introduced into indoor environments through various forms of consumer products via different venues. Our study aimed to characterize the profiles and concentrations of emitted volatile organic compounds (VOCs) when evaporating essential oils indoors. Three popular essential oils in the market, lavender, eucalyptus, and tea tree, based on a nation-wide questionnaire survey, were tested. Specific aromatic compounds of interest were sampled during evaporating the essential oils, and analyzed by GC-MS. Indoor carbon monoxide (CO), carbon dioxide (CO 2), total volatile organic compounds (TVOCs), and particulate matters (PM 10) were measured by real-time, continuous monitors, and duplicate samples for airborne fungi and bacteria were collected in different periods of the evaporation. Indoor CO (average concentration 1.48 vs. 0.47 ppm at test vs. background), CO 2 (543.21 vs. 435.47 ppm), and TVOCs (0.74 vs. 0.48 ppm) levels have increased significantly after evaporating essential oils, but not the PM 10 (2.45 vs. 2.42 ppm). The anti-microbial activity on airborne microbes, an effect claimed by the use of many essential oils, could only be found at the first 30-60 min after the evaporation began as the highest levels of volatile components in these essential oils appeared to emit into the air, especially in the case of tea tree oil. High emissions of linalool (0.092-0.787 mg m -3), eucalyptol (0.007-0.856 mg m -3), D-limonene (0.004-0.153 mg m -3), ρ-cymene (0.019-0.141 mg m -3), and terpinene-4-ol-1 (0.029-0.978 mg m -3), all from the family of terpenes, were observed, and warranted for further examination for their health implications, especially for their potential contribution to the increasing indoor levels of secondary pollutants such as formaldehyde and secondary organic aerosols (SOAs) in the presence of ozone.

  1. Essential oils: Toxicity and antimicrobial properties. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning the toxic properties of essential oils, and the use of essential oils in preventing development of microbes. These essential oils are derived from plants and other living organisms. Citations included cover the toxicological testing of essential oils, and the identification and testing of essential oils and their components for their antimicrobial, antifungal, and antibacterial properties. (Contains a minimum of 81 citations and includes a subject term index and title list.)

  2. Essential-oil diversity of Salvia tomentosa Mill. in Greece.

    PubMed

    Hanlidou, Effie; Karousou, Regina; Lazari, Diamanto

    2014-08-01

    Salvia tomentosa essential oils from Greece were studied for the first time here. The oils from five populations growing in Mediterranean pine forests on the island of Thassos (northern Aegean Sea) and from 14 populations situated in deciduous forests in Thrace (northeastern Greek mainland) were investigated. Their essential-oil contents ranged from 1.1 to 3.3% (v/w, based on the dry weight of the plant material). The populations from Thassos had high contents of α-pinene (18.0 ± 2.9%), 1,8-cineole (14.7 ± 3.0%), cis-thujone (14.0 ± 6.9%), and borneol (12.8 ± 2.2%) and smaller amounts of camphene, camphor, and β-pinene, whereas the populations from Thrace showed high α-pinene (16.7 ± 4.0%), β-pinene (22.8 ± 4.5%), camphor (18.3 ± 4.3%), and camphene (10.3 ± 2.4%) contents, much lower 1,8-cineole and borneol amounts, while cis-thujone was completely lacking. The comparison of the present results with published data showed that oils having cis-thujone as one of the main compounds were reported for the first time here. Multivariate statistical analyses indicate that the observed essential-oil variation was related to geographical and environmental factors.

  3. [Constituents of essential oil of imported myrrh and gum opoponax].

    PubMed

    Tian, J; Shi, S

    1996-04-01

    The constitutents of essential oil in two kinds of Myrrha were analyzed by GC-MS. Fifteen compounds in Myrrh and thirty-three compounds in Gum opoponax were identified with their percent contents given. The main constituent of Myrrh is furanoeudesma-1,3-diene, and the main constituent of Gum opoponax is beta-trans-ocimene.

  4. Antifungal and Insecticidal Activity from Two Juniperus Essential Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Essential oils of two Tibetan Junipers Juniperus saltuaria and J. squamata var. fargesii (Cupressaceae) were obtained by distilling dried leaves and branches using a Clevenger apparatus. Sixty-seven compounds from J. saltuaria and 58 compounds from J. squamata var. fargesii were identified by gas c...

  5. Blossom thinning in apple and peach with an essential oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential oil, eugenol, and a eugenol based herbicide (Matran EC) were applied to apple and peach trees during bloom to evaluate the thinning effect of these materials. Several additional bloom thinners including ammonium thiosulfate (ATS), liquid lime sulfur, and sulfcarbamide were included in...

  6. Essential oils increase weight gain in channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the effects of matrix encapsulated essential oils (Biomin® P.E.P. MGE) on weight gain, specific growth rate (SGR), feed conversion ratio (FCR), and survival of channel catfish. Five hundred catfish (32.4 ± 1.7 g/fish) were randomly assigned to two treatments with five replicate tanks/tre...

  7. Chemical composition and bioactivity studies of Alpinia nigra essential oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Free radical scavenging, bactericidal and bitting deterrent properties of Alpinia nigra essential oils (EOs) were investigated in the present study. Chemical composition of the EOs were analyzed using GC-MS/GC-FID which revealed the presence of 63 constituents including ß-caryophyllene as major comp...

  8. Blossom thinning in apple and peach with an essential oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted with apple (Malus xdomestica) and peach [Prunus persica (L.) Batsch] from 2003-2008 to evaluate the flower thinning efficacy of eugenol and a eugenol-based essential oil. Flower thinning effects by hand defoliation and alternative chemical agents were compared...

  9. All natural cellulose acetate-Lemongrass essential oil antimicrobial nanocapsules.

    PubMed

    Liakos, Ioannis L; D'autilia, Francesca; Garzoni, Alice; Bonferoni, Cristina; Scarpellini, Alice; Brunetti, Virgilio; Carzino, Riccardo; Bianchini, Paolo; Pompa, Pier Paolo; Athanassiou, Athanassia

    2016-08-30

    Nanocapsules and nanoparticles play an essential role in the delivery of pharmaceutical agents in modern era, since they can be delivered in specific tissues and cells. Natural polymers, such as cellulose acetate, are becoming very important due to their availability, biocompatibility, absence of toxicity and biodegradability. In parallel, essential oils are having continuous growth in biomedical applications due to the inherent active compounds that they contain. A characteristic example is lemongrass oil that has exceptional antimicrobial properties. In this work, nanocapsules of cellulose acetate with lemongrass oil were developed with the solvent/anti-solvent method with resulting diameter tailored between 95 and 185nm. Various physico-chemical and surface analysis techniques were employed to investigate the formation of the nanocapsules. These all-natural nanocapsules found to well bioadhere to mucous membranes and to have very good antimicrobial properties at little concentrations against Escherichia coli and Staphylococcus aureus.

  10. Essential oil composition of Eucalyptus microtheca and Eucalyptus viminalis

    PubMed Central

    Maghsoodlou, Malek Taher; Kazemipoor, Nasrin; Valizadeh, Jafar; Falak Nezhad Seifi, Mohsen; Rahneshan, Nahid

    2015-01-01

    Objective: Eucalyptus (Fam. Myrtaceae) is a medicinal plant and various Eucalyptus species possess potent pharmacological actions against diabetes, hepatotoxicity, and inflammation. This study aims to investigate essential oil composition from leaves and flowers of E. microtheca and E. viminalis leaves growing in the Southeast of Iran. Materials and Methods: The aerial parts of these plants were collected from Zahedan, Sistan and Baluchestan province, Iran in 2013. After drying the plant materials in the shade, the chemical composition of the essential oils was obtained by hydro-distillation method using a Clevenger-type apparatus and analyzed by GC/MS. Results: In the essential oil of E. microtheca leaves, 101 compounds representing 100%, were identified. Among them, α-phellandrene (16.487%), aromadendrene (12.773%), α-pinene (6.752%), globulol (5.997%), ledene (5.665%), P-cymen (5.251%), and β-pinene (5.006%) were the major constituents. In the oil of E. microtheca flowers, 88 compounds representing 100%, were identified in which α-pinene (16.246%), O-cymen (13.522%), β-pinene (11.082%), aromadendrene (7.444%), α-phellandrene (7.006%), globulol (5.419%), and 9-octadecenamide (5.414%) were the major components. Sixty six compounds representing 100% were identified in the oil of E. viminalis leaves. The major compounds were 1, 8-cineole (57.757%), α-pinene (13.379%), limonene (5.443%), and globulol (3.054%). Conclusion: The results showed the essential oils from the aerial parts of Eucalyptus species are a cheap source for the commercial isolation of α-phellandrene, α-pinene, and 1, 8-cineole compounds to be used in medicinal and food products. Furthermore, these plants could be an alternative source of insecticide agents. PMID:26693411

  11. [Influence of extraction methods on the composition of essential oils].

    PubMed

    Lemberkovics, Eva; Kéry, Agnes; Simándi, Béla; Kakasy, András; Balázs, Andrea; Héthelyi, Eva; Szoke, Eva

    2004-01-01

    The aim of this work is to demonstrate our results on comparison of composition of essential oil fractions obtained by traditional steam distillation and supercritical fluid extraction. The plant materials for the various extraction methods were selected from the Lamiaceae, Apiaceae and Asteraceae families. For the supercritical fluid extraction (SFE) carbon dioxide was used as supercritical solvent. The extracts were collected by stage wise precipitation in two separators. The waxy product and extract rich in essential oil were collected in the 1st and in the 2nd separator respectively. The traditional water steam distillation (SD) was carried out in the special apparatus of the Hungarian Pharmacopoea (7th ed.). GC analysis was carried out on capillary silica fused columns coated with DB-1701 and the specific chiral columns coated with Rt-beta DEX m or Rt-beta DEX sm. Comparing the composition of steam distilled oils with that of volatile SFE fractions the following general characteristics were established. The SFE fractions were richer in monoterpene-esters and poorer in alcohols than the traditional essential oils (clary sage, lavander, moldavian dragonhead). Regarding the distribution of the monoterpene and sesquiterpene compounds, the SFE fractions contained sesquiterpenes in higher percentage than the distilled oils (Salvia fruticosa). Furthermore, the proportion of sesquiterpenes increased in SFE fractions collected successively with time (Salvia officinalis) similar to the ratio of oxygenated monoterpenes to monoterpene hydrocarbons (Rosmarinus officinalis). The phtalides of lovage (Satureja hortensis) did not show regular change during the supercritical extraction. In other cases it was verified that part of the mono- and sesquiterpenes were present originally in bound form (glycosides) in plants. Thus they appeared only in essential oil fractions after previous acidic treatment (Thymus, Origanum, Satureja species). During the super-critical extraction the

  12. The efficacy of essential oils as natural preservatives in vegetable oil.

    PubMed

    Mahboubi, Mohaddese; Kazempour, Nastaran; Mahboubi, Atefeh

    2014-12-01

    The efforts for finding the natural preservatives with nontoxicity and nonirritancy have encouraged the scientists to research among the medicinal plants. The preservative efficacy of Daucus carota, Ferula gummosa, Eugenium caryophyllata, Oliveria decumbens, Pelargonium graveolens, Ziziphora tenuir, Acorus calamus, and Trachyspermum ammi essential oils on challenge test's pathogens and on pathogen's inoculated vegetable oil was evaluated by antimicrobial effectiveness test. Carotol (46%), β-pinene (62.7%), eugenol (78.4%), thymol (50.6%), cis-asarone (27.5%), thymol (50.1%), and α-terpineol (19.5%) were the primary main components of D. carota, F. gummosa, E. caryophyllata, T. ammi, A. calamus, O. decumbens, and Z. tenuir essential oils, respectively. A. niger was more sensitive microorganism to oils. The antimicrobial activity of O. decumbens oil was the highest. Different concentrations of essential oils were added to the vegetable oil. The results of test on the vegetable oil showed that the combination of O. decumbens and P. graveolens oils (0.5:0.5%) had enough efficacies as natural preservative in vegetable oil.

  13. Screening of anticancer activity from agarwood essential oil

    PubMed Central

    Hashim, Yumi Zuhanis Has-Yun; Phirdaous, Abbas; Azura, Amid

    2014-01-01

    Background: Agarwood is a priceless non-timber forest product from Aquilaria species belonging to the Thymelaeaceae family. As a result of a defence mechanism to fend off pathogens, Aquilaria species develop agarwood or resin which can be used for incense, perfumery, and traditional medicines. Evidences from ethnopharmacological practices showed that Aquilaria spp. have been traditionally used in the Ayurvedic practice and Chinese medicine to treat various diseases particularly the inflammatory-associated diseases. There have been no reports on traditional use of agarwood towards cancer treatment. However, this is most probably due to the fact that cancer nomenclature is used in modern medicine to describe the diseases associated with unregulated cell growth in which inflammation and body pain are involved. Objective: The aim of this current study was therefore to investigate the potential anticancer properties of agarwood essential oil obtained from distillation of agarwood (resin) towards MCF-7 breast cancer cells. Materials and Methods: The essential oil was subjected to screening assays namely cell viability, cell attachment and sulforhodamine B (SRB)-based cytotoxicity assay to determine the IC50 value. Results: The agarwood essential oil caused reduction of the cell number in both the cell viability and attachment assay suggesting a cumulative effect of the cell killing, inhibition of the cell attachment and or causing cells to detach. The agarwood essential oil showed IC50 value of 900 μg/ml towards the cancer cells. Conclusion: The agarwood essential oil exhibited anticancer activity which supports the traditional use against the inflammatory-associated diseases. This warrants further investigation towards the development of alternative remedy towards cancer. PMID:25002797

  14. The metabolic responses to aerial diffusion of essential oils.

    PubMed

    Wu, Yani; Zhang, Yinan; Xie, Guoxiang; Zhao, Aihua; Pan, Xiaolan; Chen, Tianlu; Hu, Yixue; Liu, Yumin; Cheng, Yu; Chi, Yi; Yao, Lei; Jia, Wei

    2012-01-01

    Anxiety disorders are the most prevalent psychiatric disorders and affect a great number of people worldwide. Essential oils, take effects through inhalation or topical application, are believed to enhance physical, emotional, and spiritual well-being. Although clinical studies suggest that the use of essential oils may have therapeutic potential, evidence for the efficacy of essential oils in treating medical conditions remains poor, with a particular lack of studies employing rigorous analytical methods that capture its identifiable impact on human biology. Here, we report a comprehensive gas chromatography time-of-flight mass spectrometry (GC-TOFMS) based metabonomics study that reveals the aromas-induced metabolic changes and the anxiolytic effect of aromas in elevated plus maze (EPM) induced anxiety model rats. The significant alteration of metabolites in the EPM group was attenuated by aromas treatment, concurrent with the behavioral improvement with significantly increased open arms time and open arms entries. Brain tissue and urinary metabonomic analysis identified a number of altered metabolites in response to aromas intervention. These metabolic changes included the increased carbohydrates and lowered levels of neurotransmitters (tryptophan, serine, glycine, aspartate, tyrosine, cysteine, phenylalanine, hypotaurine, histidine, and asparagine), amino acids, and fatty acids in the brain. Elevated aspartate, carbohydrates (sucrose, maltose, fructose, and glucose), nucleosides and organic acids such as lactate and pyruvate were also observed in the urine. The EPM induced metabolic differences observed in urine or brain tissue was significantly reduced after 10 days of aroma inhalation, as noted with the loss of statistical significance on many of the metabolites in the aroma-EPM group. This study demonstrates, for the first time, that the metabonomics approach can capture the subtle metabolic changes resulting from exposure to essential oils and provide the

  15. Anticandidal activity of the essential oil of Nepeta transcaucasica Grossh.

    PubMed

    Işcan, Gökalp; Köse, Y Bülent; Demirci, Betül; Başer, K Hüsnü Can

    2011-11-01

    Hydrodistallation of the aerial parts of Nepeta transcaucasica Grossh. (Lamiaceae), collected in Ağrı, Doğubayazıt Province, afforded an essential oil that was characterized by GC and GC/MS analyses. Twenty-seven compounds, representing 97.69% of the total oil composition, were identified, and 4aα,7α,7aβ-nepetalactone (1; 39%), 4aα,7α,7aα-nepetalactone (2; 28%), and germacrene D (3; 15%) constituted the major components. The anticandidal effects of the oil were evaluated against seven Candida strains by using the broth microdilution method. The oil showed good inhibitory effects against C. glabrata and C. tropicalis at minimal inhibitory concentrations (MICs) of 0.09 and 0.375 mg/ml, respectively.

  16. Essential oil composition of Achillea clusiana from Bulgaria.

    PubMed

    Trendafilova, Antoaneta; Todorova, Milka; Vitkova, Antonina

    2010-01-01

    The essential oil compositon of Achillea clusiana Tausch from Bulgaria has been studied by GC and GC/MS. Fifty-four components were registered, representing 92.5% of the oil. The oil was characterized by the presence of oxygenated mono- and sesquiterpenoids. The main components were beta-thujone (17.2%), 1,8-cineole (11.2%), camphor (11.1%) and alpha-thujone (7.8%). Farnesol (3.1%), nerolidol (2.7%) and oxygenated nerolidol derivatives (cabreuva oxides A-D, isohumbertiols A-D, bejarol and 7-hydroxy-6,7-dihydro-5,6E-dehydronerolidol) were the main sesquiterpenoids in the oil.

  17. Characteristic odor components of essential oil from Scutellaria laeteviolacea.

    PubMed

    Miyazawa, Mitsuo; Nomura, Machi; Marumoto, Shinsuke; Mori, Kiyoshige

    2013-01-01

    The essential oils from aerial parts of Scutellaria laeteviolacea was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The characteristic odor components were also detected in the oil using gas chromatography-olfactometry (GC-O) analysis and aroma extraction dilution analysis (AEDA). As a result, 100 components (accounting for 99.11 %) of S. laeteviolacea, were identified. The major components of S. laeteviolacea oil were found to be 1-octen-3-ol (27.72 %), germacrene D (21.67 %),and β-caryophyllene (9.18 %). The GC-O and AEDA results showed that 1-octen-3-ol, germacrene D, germacrene B, and β-caryophyllene were the most characteristic odor components of the oil. These compounds are thought to contribute to the unique flavor of this plant.

  18. Evaluation of In Vitro Activity of Essential Oils against Trypanosoma brucei brucei and Trypanosoma evansi

    PubMed Central

    Habila, Nathan; Agbaji, Abel S.; Ladan, Zakari; Bello, Isaac A.; Haruna, Emmanuel; Dakare, Monday A.; Atolagbe, Taofiq O.

    2010-01-01

    Essential oils (EOs) from Cymbopogon citratus (CC), Eucalyptus citriodora (EC), Eucalyptus camaldulensis (ED), and Citrus sinensis (CS) were obtained by hydrodistillation process. The EOs were evaluated in vitro for activity against Trypanosoma brucei brucei (Tbb) and Trypanosoma evansi (T. evansi). The EOs were found to possess antitrypanosomal activity in vitro in a dose-dependent pattern in a short period of time. The drop in number of parasite over time was achieved doses of 0.4 g/ml, 0.2 g/mL, and 0.1 g/mL for all the EOs. The concentration of 0.4 g/mL CC was more potent at 3 minutes and 2 minutes for Tbb and T. evansi, respectively. The GC-MS analysis of the EOs revealed presence of Cyclobutane (96.09%) in CS, 6-octenal (77.11%) in EC, Eucalyptol (75%) in ED, and Citral (38.32%) in CC among several other organic compounds. The results are discussed in relation to trypanosome chemotherapy. PMID:20700425

  19. Effect of the concentration of essential oil on orange peel waste biomethanization: Preliminary batch results.

    PubMed

    Calabrò, P S; Pontoni, L; Porqueddu, I; Greco, R; Pirozzi, F; Malpei, F

    2016-02-01

    The cultivation of orange (Citrus×sinensis) and its transformation is a major industry in many countries in the world, it leads to the production of about 25-30Mt of orange peel waste (OPW) per year. Until now many options have been proposed for the management of OPW but although they are technically feasible, in many cases their economic/environmental sustainability is questionable. This paper analyse at lab scale the possibility of using OPW as a substrate for anaerobic digestion. Specific objectives are testing the possible codigestion with municipal biowaste, verifying the effect on methane production of increasingly high concentration of orange essential oil (EO, that is well known to have antioxidant properties that can slower or either inhibit biomass activity) and obtaining information on the behaviour of d-limonene, the main EO component, during anaerobic digestion. The results indicate that OPW can produce up to about 370LnCH4/kgVS in mesophilic conditions and up to about 300LnCH4/kgVS in thermophilic conditions. The presence of increasingly high concentrations of EO temporary inhibits methanogenesis, but according to the results of batch tests, methane production restarts while d-limonene is partially degraded through a pathway that requires its conversion into p-cymene as the main intermediate.

  20. Preventive effect of cinnamon essential oil on lipid oxidation of vegetable oil

    PubMed Central

    Keshvari, Mahtab; Asgary, Sedigheh; Jafarian-dehkordi, Abbas; Najafi, Somayeh; Ghoreyshi-Yazdi, Seyed Mojtaba

    2013-01-01

    BACKGROUND Lipid oxidation is the main deterioration process that occurs in vegetable oils. This process was effectively prevented by natural antioxidants. Cinnamomum zeylanicum (Cinnamon) is rich with antioxidants. The present study was conducted to evaluate the effect of cinnamon on malondialdehyde (MDA) rate production in two high consumption oils in Iranian market. METHODS Chemical composition of cinnamon essential oil was analyzed by gas chromatography-mass spectroscopy (GC-MS). 200 µl each oil, 50 µl tween 20, and 2 ml of 40 Mm AAPH solutions were mixed and the prepared solution was divided into four glass vials. Respectively, 50 µl of 500, 1000 and 2000 ppm of cinnamon essential oil were added to three glass vials separately and one of the glass vials was used as the control. All of the glass vials were incubated at 37° C water bath. Rate of MDA production was measured by thiobarbituric acid (TBA) test at the baseline and after the 0.5, 1, 2, 3 and 5 hours. RESULTS Compounds of cinnamon essential oil by GC-MS analysis such as cinnamaldehyde (96.8%), alpha-capaene (0.2%), alpha-murolene (0.11%), para-methoxycinnamaldehyde (0.6%) and delta-cadinen (0.4%) were found to be the major compounds. For both oils, maximum rate of MDA production was achieved in 5th hours of heating. Every three concentrations of cinnamon essential oil significantly decreased MDA production (P < 0.05) in comparison with the control. CONCLUSION Essential oil of cinnamon considerably inhibited MDA production in studied oils and can be used with fresh and heated oils for reduction of lipid peroxidation and adverse free radicals effects on body. PMID:24302936

  1. Antimicrobial activity of essential oils of Physalis angulata. L.

    PubMed

    Osho, A; Adetunji, T; Fayemi, S O; Moronkola, D O

    2010-01-01

    The need for a reduction in drug resistance led to the investigation of Argemone Mexicana L. as an agent against Bacillus subtilis, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Candida stellatoidea and Candida torulopsis, using well diffusion and minimum inhibitory concentrations methods. The sensitivity of Bacillus Subtilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus to the essential oils of both the aerial and root parts were determined. Pseudomonas aeruginosa was resistant to the essential oil from both the aerial and root part of the plant. C. torulopsis, C. stellatoidea and C. albicans were susceptible to the essential oils from the aerial and root part of the plant. The minimum inhibitory concentrations ranging between 3.75 mg/ml and 4.0 mg/ml were recorded for Bacillus subtilis, Klebsiella pneumoniae by the aerial and the root extracts, but P. aeruginosa and S. aureus were not susceptible to the aerial and root extracts. The observed inhibition of selected bacteria and fungi by oils of Physalis angulata makes it a promising antimicrobial agent. This study justifies its uses for treatment of sores, cuts, intestinal and digestive problems and some skin-diseases often reported in folkloric medicine.

  2. Visible light enhances the antimicrobial effect of some essential oils.

    PubMed

    Marqués-Calvo, María Soledad; Codony, Francesc; Agustí, Gemma; Lahera, Carlos

    2017-03-01

    The photodisinfection is a topical, broad spectrum antimicrobial technology, targeting bacteria, virus, fungi, and protozoa effective for single cells as for biofilms. Natural molecules have been studied less than synthetic agents in the process but they are currently receiving great interest. Therefore, the aim of this study is to evaluate for the first time if non-coherent blue and red light enhances the antimicrobial activity of some essential oils when standard strains for antibiotic or fungicide tests are enlightened in vitro. Staphylococcus epidermidis, Pseudomonas aeruginosa and Candida albicans collection strains were irradiated with monochromatic visible light from light emitting diodes in the presence of 5% and 0.5% eucalyptus (Eucalyptus globulus), clove (Eugenia caryophyllata), and thyme (Thymus vulgaris) essential oils. Microbial levels were measured by plate count on culture media. In this preliminary report, the results differ according to the kind and concentration of antimicrobial oils, the wavelength of light, and the prokaryotic or eukaryotic microorganism. The results support the idea that mainly blue light enhances the innate antimicrobial activity of the essential oils, especially phenols, and could offer a very efficient and natural way to combat microorganisms in several industries and medical applications (cutaneous and oral infections, medical textiles, foodstuffs and fruit surface, etc.).

  3. Essential oil composition and antibacterial activity of Monticalia greenmaniana (Asteraceae).

    PubMed

    Cárdenas, José; Rojas, Janne; Rojas-Fermin, Luís; Lucena, María; Buitrago, Alexis

    2012-02-01

    The essential oils from fresh aerial parts of Monticalia greenmaniana (Hieron) C. Jeffrey (Asteraceae) collected in March, were analyzed by GC/MS. Oil yields (w/v) of 0.1% (flowers), 0.07%, (stems) and 0.1% (leaves) were obtained by hydrodistillation. Thirteen, sixteen and eighteen components, respectively, were identified by comparison of their mass spectra with those in the Wiley GC-MS Library data base. The major components of the flower and stem oils were 1-nonane (38.8% flowers; 33.5% stems), alpha-pinene (29.0% flowers; 14.8% stems) and germacrene D (15.6% flowers; 18.6% stems). However, in the leaf oil, germacrene D was observed at 50.7%, followed by beta-cedrene at 8.4%. The leaf essential oil showed a broad spectrum of antibacterial activity against the important human pathogenic Gram-positive and Gram-negative bacteria Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 19433), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853) and Klebsiella pneumoniae (ATCC 25955) with MIC values ranging from 75 to 6000 ppm.

  4. Lavandula luisieri essential oil as a source of antifungal drugs.

    PubMed

    Zuzarte, M; Gonçalves, M J; Cruz, M T; Cavaleiro, C; Canhoto, J; Vaz, S; Pinto, E; Salgueiro, L

    2012-12-01

    This work reports the antifungal activity of Lavandula luisieri essential oils against yeast, dermatophyte and Aspergillus strains responsible for human infections and food contamination. The oil's cytotoxicity and its effect on the yeast-mycelium transition in Candida albicans, an important virulence factor, were also evaluated. Analyses by GC and GC/MS showed a peculiar composition of irregular monoterpenes. Significant differences between the samples occurred in the amounts of 1,8-cineole, fenchone and trans-α-necrodyl acetate. The oil with higher amounts of irregular monoterpenes was the most effective. The influence of the oils on the dimorphic transition in C. albicans was also studied through the germ tube inhibition assay. Filamentation was completely inhibited at concentrations sixteen times lower than the minimal inhibitory concentration. The results support the use of L. luiseiri essential oils in the development of new phytopharmaceuticals and food preservatives and emphasise its antifungal properties at concentrations not cytotoxic or with very low detrimental effects on mammalian cells.

  5. Seasonal influence on the essential oil of Eucalyptus microcorys.

    PubMed

    Oliveira, Flávia N M; Fortes, Gilmara A C; Paula, José R; Ferri, Pedro H; Santos, Suzana C

    2014-04-01

    The chemical composition of the essential oil, phenolic contents, and foliar nutrients of Eucalyptus microcorys leaves, cultivated in Brazil, was analysed on a monthly basis for one year. Canonical redundancy analysis correlated results with climate conditions (rainfall, humidity, and mean temperature), allowing three groups to be distinguished as regards temperature, flavonoids, and the content of some metals. Strong correlations between Mn, Cu, Zn, Ca, P, and K with some monoterpenes and phenolic compounds were observed. Oxygenated monoterpenes were predominant in all sampling months. Oil chemovariation may be influenced by climatic factors as well as by foliar nutrient variation.

  6. Analysis of limette and bergamot distilled essential oils by HPLC.

    PubMed

    Buiarelli, Francesca; Cartoni, Giampaolo; Coccioli, Franco; Jasionowska, Renata; Mazzarino, Monica

    2002-04-01

    This work examines the distilled essential oils of limette and bergamot in order to assess the presence of low volatile substances such as coumarins (bergapten) which, being toxic, must be eliminated before using these oils in the food industry. The quantitative determination of coumarins was carried out by spectrofluorimetric detection. The substances present in the chromatograms, obtained by HPLC with UV detection at 254 nm, were then identified. Moreover, a new coumarin that is present in small quantities was identified using HPLC-MS.

  7. Antibacterial potential assessment of jasmine essential oil against e. Coli.

    PubMed

    Rath, C C; Devi, S; Dash, S K; Mishra, R K

    2008-01-01

    The antibacterial activity of Jasmine (Jasminum sambac L.) flower hydro steam distilled essential oil, synthetic blends and six major individual components was assessed against Escherichia coli (MTCC-443) strain. The activity was bactericidal. Minimum inhibitory concentration was determined by tube dilution technique, and the Minimum inhibitory concentration ranged between 1.9-31.25 mul/ml. Phenolcoefficient of the oil, synthetic blends and components varied between 0.6-1.7. The activity of the chemicals was possibly due to the inhibition of cell membrane synthesis.

  8. Antibacterial Potential Assessment of Jasmine Essential Oil Against E. Coli

    PubMed Central

    Rath, C. C.; Devi, S.; Dash, S. K.; Mishra, R. K.

    2008-01-01

    The antibacterial activity of Jasmine (Jasminum sambac L.) flower hydro steam distilled essential oil, synthetic blends and six major individual components was assessed against Escherichia coli (MTCC-443) strain. The activity was bactericidal. Minimum inhibitory concentration was determined by tube dilution technique, and the Minimum inhibitory concentration ranged between 1.9-31.25 μl/ml. Phenolcoefficient of the oil, synthetic blends and components varied between 0.6-1.7. The activity of the chemicals was possibly due to the inhibition of cell membrane synthesis. PMID:20046722

  9. Essential oil composition of Prasium majus from Croatia.

    PubMed

    Jerković, Igor; Suste, Marko; Males, Zeljan; Pilepić, Kroata Hazler

    2012-07-01

    The essential oils from the aerial parts of Prasium majus L., collected during two years in Croatia, were analysed by GC and GC/MS. Fifty-two compounds were identified, representing 90.3-91.8% of the total oils. The major constituents in both samples were fatty acids (particularly hexadecanoic acid and (Z)-octadec-9-enoic acid), lower aliphatic alcohols, aldehydes and acids (major ones oct-1-en-3-ol and (E,E)-hepta-2,4-dienal) and phenylpropane derivatives (e.g. eugenol). Beta-Caryophyllene was the most abundant terpene and (E)-beta-ionone was the major norisoprenoid.

  10. Dietary oregano essential oil alleviates experimentally induced coccidiosis in broilers.

    PubMed

    Mohiti-Asli, M; Ghanaatparast-Rashti, M

    2015-06-15

    An experiment was conducted to determine the effects of oregano essential oil on growth performance and coccidiosis prevention in mild challenged broilers. A total of 250 1-d-old chicks were used in a completely randomized design with 5 treatments and 5 replicates with 10 birds in each replication. Experimental treatments included: (1) negative control (NC; unchallenged), (2) positive control (PC; challenged with sporulated oocysts of Eimeria), (3) PC fed 200 ppm Diclazuril in diet, (4) PC fed 300 ppm oregano oil in diet, and (5) PC fed 500 ppm oregano oil in diet. At 22 d of age, all the experimental groups except for NC were challenged with 50-fold dose of Livacox T as a trivalent live attenuated coccidiosis vaccine. On d 28, two birds were slaughtered and intestinal coccidiosis lesions were scored 0-4. Moreover, dropping was scored in the scale of 0-3, and oocysts per gram feces (OPG) were measured. Oregano oil at either supplementation rate increased body weight gain (P=0.039) and improved feed conversion ratio (P=0.010) from d 22 to 28, when compared with PC group. Using 500 ppm oregano oil in challenged broilers diet increased European efficiency factor than PC group (P=0.020). Moreover, challenged broilers fed 500 ppm oregano oil or Diclazuril in diets displayed lower coccidiosis lesions scores in upper (P=0.003) and middle (P=0.018) regions of intestine than PC group, with the effect being similar to unchallenged birds. In general, challenged birds fed 500 ppm oregano oil or Diclazuril in diets had lower OPG (P=0.001), dropping scores (P=0.001), litter scores (P=0.001), and pH of litter (P=0.001) than PC group. It could be concluded that supplementation of oregano oil at the dose of 500 ppm in diet may have beneficial effect on prevention of coccidiosis in broilers.

  11. Antinociceptive Activity of Zanthoxylum piperitum DC. Essential Oil

    PubMed Central

    Donald, Graciela Rocha; Fernandes, Patrícia Dias

    2016-01-01

    Zanthoxylum piperitum DC. (ZP) is a traditional medicinal plant used mainly in countries from Asia such as Japan. This study aimed to investigate the antinociceptive effect of ZP essential oil (ZPEO). The major component present in the essential oil was beta-phellandrene (29.39%). Its antinociceptive activity was tested through animal models (formalin-, capsaicin-, and glutamate-induced paw licking and hot plate). The anti-inflammatory effect was evaluated through the carrageenan-induced leukocyte migration into the subcutaneous air pouch (SAP), with measurement of cytokines. The results showed antinociceptive effect for ZPEO for the first phase of the formalin-induced licking, glutamate, and hot plate tests. However, ZPEO had no effect on reducing paw licking induced by capsaicin. Finally, ZPEO had no effect against inflammation induced by carrageenan. PMID:27547225

  12. Essential oil of the Persian sage, Salvia rhytidea Benth.

    PubMed

    Sajjadi, Seyed-Ebrahim; Ghannadi, Alireza

    2005-09-01

    Chemical composition of volatile compounds from Salvia rhytidea Benth. was analyzed, for the first time, by gas chromatography/mass spectrometry. The volatiles were isolated from dried aerial parts of the plant by hydrodistillation. A total yield of 2.0 mg of essential oil per g of plant dry mass was obtained and sixty compounds were identified, representing 98.2% of total volatiles. The essential oil was characterized by a high content of hydrocarbon and oxygenated monoterpenes. The main constituents were p-cymene-8-ol (11.9%), spathulenol (7.3%), pulegone (6.4%), sabinene (5.8%), terpinen-4-ol (5.5%) and alpha-copaene (5.3%).

  13. Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.

    PubMed

    Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo

    2016-04-20

    Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  14. Essential oil from fruit of Peucedanum tauricum Bieb.

    PubMed

    Bartnik, Magdalena; Głowniak, Kazimierz; Mardarowicz, Marek

    2002-01-01

    Essential oil from fruit of Peucedanum tauricum Bieb, was qualitatively and quantitatively investigated. The content of oil determined by distillation with water and m-xylene was 2.2% of dry mass. Gas chromatography (GC) with MS detection and flame ionisation detection (FID) showed that the oil contains 28 compounds (above 99% of sesquiterpenes), of which 9 were identified as beta-elemene (0.6%), beta-caryophyllene (0.3%), alpha-guaiene (0.2%), alpha-humulene (0.8%), gamma-gurjunene (5.6%), beta-selinene (2.3%), alpha-selinene (2.2%), gamma-cadinene (0.3%). Predominating sesquiterpenoids (RI 1529--35.9%, RI 1526--27.2%, RI 1537--7.1%) were not identified, and their mass spectra were similar to mass spectra of selinene derivatives.

  15. Anti-inflammatory effects of essential oils from Mangifera indica.

    PubMed

    Oliveira, R M; Dutra, T S; Simionatto, E; Ré, N; Kassuya, C A L; Cardoso, C A L

    2017-03-16

    Mangifera indica is widely found in Brazil, and its leaves are used as an anti-inflammatory agent in folk medicine. The aim of this study is to perform composition analysis of essential oils from the M. indica varieties, espada (EOMIL1) and coração de boi (EOMIL2), and confirm their anti-inflammatory properties. Twenty-three volatile compounds were identified via gas chromatography-mass spectrometry (GC-MS) in two essential oils from the leaves. Paw edema and myeloperoxidase (MPO) activity were evaluated using the carrageenan-induced paw model, while leukocyte migration was analyzed using the pleurisy model. At oral doses of 100 and 300 mg/kg, the essential oils significantly reduced edema formation and the increase in MPO activity induced by carrageenan in rat paws. For a dose of 300 mg/kg EOMIL1, 62 ± 8% inhibition of edema was observed, while EOMIL2 led to 51 ± 7% inhibition of edema. At a dose of 100 mg/kg, the inhibition was 54 ± 9% for EOMIL1 and 37 ± 7% for EOMIL2. EOMIL1 and EOMIL2 significantly reduced MPO activity at doses of 100 mg/kg (47 ± 5 and 23 ± 8%, respectively) and 300 mg/kg (50 ± 9 and 31 ± 7%, respectively). In the pleurisy model, inhibitions were also observed for EOMIL1 and EOMIL2 in the leukocyte migration test. The results of the present study show that essential oils from M. indica differ in chemical composition and anti-inflammatory activity in rats.

  16. Antitumor Activity of Monoterpenes Found in Essential Oils

    PubMed Central

    Sobral, Marianna Vieira; Xavier, Aline Lira; Lima, Tamires Cardoso; de Sousa, Damião Pergentino

    2014-01-01

    Cancer is a complex genetic disease that is a major public health problem worldwide, accounting for about 7 million deaths each year. Many anticancer drugs currently used clinically have been isolated from plant species or are based on such substances. Accumulating data has revealed anticancer activity in plant-derived monoterpenes. In this review the antitumor activity of 37 monoterpenes found in essential oils is discussed. Chemical structures, experimental models, and mechanisms of action for bioactive substances are presented. PMID:25401162

  17. Antileishmanial activity of the essential oil from Bixa orellana.

    PubMed

    Monzote, Lianet; García, Marley; Scull, Ramón; Cuellar, Armando; Setzer, William N

    2014-05-01

    Leishmaniasis is a neglected tropical disease caused by Leishmania protozoa. There is currently no vaccine against leishmaniasis, and chemotherapy remains the only effective control. However, conventional drugs are toxic, expensive, and require long periods of treatment, and resistance to clinical chemotherapeutic agents is emerging. Recent research on plants has shown a successful approach to obtain new antileishmanial alternatives. Herein, the in vitro and in vivo effects of the essential oil from Bixa orellana seeds against Leishmania amazonensis were evaluated. A total of 73 compounds were detected by gas chromatography-mass spectrometry analysis, of which ishwarane (18.6%) and geranylgeraniol (9.1%) were the major components. The oil showed activity against intracellular amastigote form (IC50  = 8.5 µg/mL), while the cytotoxic concentration was sevenfold higher for the host cells. The ability of Bixa oil to control disease progression of established cutaneous leishmaniasis in BALB/c mice was demonstrated, after a treatment with 30 mg/kg by intraperitoneal administration over 14 days. The present study reports for the first time the antileishmanial potentialities of the essential oil from B. orellana.

  18. Chemicals and lemon essential oil effect on Alicyclobacillus acidoterrestris viability

    PubMed Central

    Maldonado, Maria Cristina; Aban, Marina Paola; Navarro, Antonio Roberto

    2013-01-01

    Alicyclobacillus acidoterrestris is considered to be one of the important target microorganisms in the quality control of acidic canned foods. There is an urgent need to develop a suitable method for inhibiting or controlling the germination and outgrowth of A.acidoterrestris in acidic drinks. The aim of this work was to evaluate the chemicals used in the lemon industry (sodium benzoate, potassium sorbate), and lemon essential oil as a natural compound, against a strain of A.acidoterrestris in MEB medium and in lemon juice concentrate. The results pointed out that sodium benzoate (500–1000–2000 ppm) and lemon essential oil (0.08–0.12–0.16%) completely inhibited the germination of A. acidoterrestris spores in MEB medium and LJC for 11 days. Potassium sorbate (600–1200 ppm) was more effective to inhibit the growth of the microbial target in lemon juice than in MEB medium. The effect of sodium benzoate, potassium sorbate and essential oil was sporostatic in MEB and LJC as they did not affect spore viability. PMID:24688502

  19. Essential oil diversity of European Origanum vulgare L. (Lamiaceae).

    PubMed

    Lukas, Brigitte; Schmiderer, Corinna; Novak, Johannes

    2015-11-01

    This investigation focused on the qualitative and quantitative composition of essential oil compounds of European Origanum vulgare. Extracts of 502 individual O. vulgare plants from 17 countries and 51 populations were analyzed via GC. Extracts of 49 plants of 5 populations of Israeli Origanum syriacum and 30 plants from 3 populations of Turkish Origanum onites were included to exemplify essential oil characteristics of 'high-quality' oregano. The content of essential oil compounds of European O. vulgare ranged between 0.03% and 4.6%. The monoterpenes were primarily made up of sabinene, myrcene, p-cymene, 1,8-cineole, β-ocimene, γ-terpinene, sabinene hydrate, linalool, α-terpineol, carvacrol methyl ether, linalyl acetate, thymol and carvacrol. Among the sesquiterpenes β-caryophyllene, germacrene D, germacrene D-4-ol, spathulenol, caryophyllene oxide and oplopanone were often present in higher amounts. According to the proportions of cymyl-compounds, sabinyl-compounds and the acyclic linalool/linalyl acetate three different main monoterpene chemotypes were defined. The cymyl- and the acyclic pathway were usually active in plants from the Mediterranean climate whereas an active sabinyl-pathway was a characteristic of plants from the Continental climate.

  20. Chemicals and lemon essential oil effect on Alicyclobacillus acidoterrestris viability.

    PubMed

    Maldonado, Maria Cristina; Aban, Marina Paola; Navarro, Antonio Roberto

    2013-12-01

    Alicyclobacillus acidoterrestris is considered to be one of the important target microorganisms in the quality control of acidic canned foods. There is an urgent need to develop a suitable method for inhibiting or controlling the germination and outgrowth of A.acidoterrestris in acidic drinks. The aim of this work was to evaluate the chemicals used in the lemon industry (sodium benzoate, potassium sorbate), and lemon essential oil as a natural compound, against a strain of A.acidoterrestris in MEB medium and in lemon juice concentrate. The results pointed out that sodium benzoate (500-1000-2000 ppm) and lemon essential oil (0.08-0.12-0.16%) completely inhibited the germination of A. acidoterrestris spores in MEB medium and LJC for 11 days. Potassium sorbate (600-1200 ppm) was more effective to inhibit the growth of the microbial target in lemon juice than in MEB medium. The effect of sodium benzoate, potassium sorbate and essential oil was sporostatic in MEB and LJC as they did not affect spore viability.

  1. Repellent activity of herbal essential oils against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.)

    PubMed Central

    Sritabutra, Duangkamon; Soonwera, Mayura

    2013-01-01

    Objective To determine the mosquito repellent activity of herbal essential oils against female Aedes aegypti and Culex quinquefasciatus. Methods On a volunteer's forearm, 0.1 mL of each essential oil was applied to 3 cm×10 cm of exposed skin. The protection time was recorded for 3 min after every 30 min. Results Essential oil from clove oil in olive oil and in coconut oil gave the longest lasting period of 76.50 min and 96.00 min respectively against Aedes aegypti. The citronella grass oil in olive oil, citronella grass oil in coconut oil and lemongrass oil in coconut oil exhibited protection against Culex quinquefasciatus at 165.00, 105.00, and 112.50 min respectively. Conclusions The results clearly indicated that clove, citronella and lemongrass oil were the most promising for repellency against mosquito species. These oils could be used to develop a new formulation to control mosquitoes.

  2. Polylactic Acid-Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties.

    PubMed

    Liakos, Ioannis L; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Florin, Iordache; D'Autilia, Francesca; Carzino, Riccardo; Bianchini, Paolo; Athanassiou, Athanassia

    2016-07-07

    Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid-lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization.

  3. Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties

    PubMed Central

    Liakos, Ioannis L.; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Florin, Iordache; D’Autilia, Francesca; Carzino, Riccardo; Bianchini, Paolo; Athanassiou, Athanassia

    2016-01-01

    Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid—lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization. PMID:27399724

  4. Essential oils composition of croton species from the Amazon.

    PubMed

    Turiel, Nathalie A; Ribeiro, Alcy F; Carvalho, Elisangela Elena N; Domingos, Vanessa D; Lucas, Flávia Cristina A; Carreira, Léa Maria M; Andrade, Eloisa Helena A; Maia, José Guilherme S

    2013-10-01

    The essential oils of leaves and twigs from the Euphorbiaceous Croton draconoides, C. urucurana and Julocroton triqueter were obtained and analyzed by GC and GC-MS. In total, 101 volatile constituents were identified, comprising an average of 90% of the oil, mostly made up of mono- and sesquiterpenes. The monoterpene hydrocarbons varied from 1.2 to 40.2%, the sesquiterpene hydrocarbons from 34.0 to 49.6% and the oxygenated sesquiterpenes from 11.5 to 51.3%. The main compounds found in the oil of C. draconoides were beta-pinene (16.9%), alpha-pinene (16.5%), curzerene (12.8%), germacrene D (9.0%), gamma-elemene (4.7%), and elemol (4.4%). The oil of C. urucurana showed sesquicineole (23.0%), dehydro-sesquicineole (13.8%), beta-caryophyllene (7.9%), beta-bisabolol (5.0%), germacrene D (4.2%) and beta-elemene (4.1%) as the chief compounds. The oil of J. triqueter was dominated by beta-caryophyllene (16.3%), beta-phellandrene (10.2%), spathulenol (5.1%), caryophyllene oxide (5.0%), delta-cadinene (4.3%), (E)-nerolidol (4.3%), and alpha-copaene (4.1%).

  5. Antibacterial activity of Syzygium cumini and Syzygium travancoricum leaf essential oils.

    PubMed

    Shafi, P M; Rosamma, M K; Jamil, Kaiser; Reddy, P S

    2002-08-01

    The leaf essential oils of Syzygium cumini and Syzygium travancoricum were tested for their antibacterial property. The activity of S. cumini essential oil was found to be good, while that of S. travancoricum was moderate.

  6. Antifungal Screening of Lavender Essential oils and Essential Oil Constituents on three Post-harvest Fungal Pathogens.

    PubMed

    Erland, Lauren A E; Bitcon, Christopher R; Lemke, Ashley D; Mahmoud, Soheil S

    2016-04-01

    A growing body of literature indicates that many synthetic pesticides have adverse effects on human, animal, and environmental health. As a result, plant-derived natural products are quickly gaining momentum as safer and less ecologically damaging alternatives due to their low toxicity, high biodegradability, and good specificity. Essential oils of Lavandula angustifolia, Lavandula x intermedia cv Grosso, and Lavandida x intermedia cv Provence as well as various mono- and sesquiterpene essential oil constituents were tested in order to assess their antifungal potential on three important agricultural pathogens: Botrytis cinerea, Mucor piriformis, and Penicillium expansum. Fungal susceptibility testing was performed using disk diffusion assays. The majority of essential oil constituents tested did not have a significant effect; however, 3-carene, carvacrol, geraniol, nerol and perillyl alcohol demonstrated significant inhibition at concentrations as low as 1 µ/mL. In vivo testing using strawberry fruit as a model system supported in vitro results and revealed that perillyl alcohol, carvacrol and 3-carene were effective in limiting infection by postharvest pathogens.

  7. Chemical Composition and Antifungal Activity of Angelica sinensis Essential Oil Against Three Colletotrichum Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical fungicides are an important component in disease management for most crops. As part of a program to discover natural product-based fungicides, several sensitive assay systems have been developed for the evaluation of naturally occurring antifungal agents. In this study, we focused on the di...

  8. 21 CFR 582.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Certain other spices, seasonings, essential oils... GENERALLY RECOGNIZED AS SAFE General Provisions § 582.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and...

  9. 21 CFR 182.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Certain other spices, seasonings, essential oils... GENERALLY RECOGNIZED AS SAFE General Provisions § 182.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and...

  10. 21 CFR 182.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Certain other spices, seasonings, essential oils... GENERALLY RECOGNIZED AS SAFE General Provisions § 182.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and...

  11. 21 CFR 582.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Certain other spices, seasonings, essential oils... GENERALLY RECOGNIZED AS SAFE General Provisions § 582.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and...

  12. 21 CFR 182.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Certain other spices, seasonings, essential oils... Provisions § 182.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and natural extracts that are...

  13. 21 CFR 182.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Certain other spices, seasonings, essential oils... GENERALLY RECOGNIZED AS SAFE General Provisions § 182.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and...

  14. 21 CFR 582.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Certain other spices, seasonings, essential oils... GENERALLY RECOGNIZED AS SAFE General Provisions § 582.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and...

  15. 21 CFR 582.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Certain other spices, seasonings, essential oils... GENERALLY RECOGNIZED AS SAFE General Provisions § 582.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and...

  16. 21 CFR 582.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Certain other spices, seasonings, essential oils... GENERALLY RECOGNIZED AS SAFE General Provisions § 582.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and...

  17. 21 CFR 182.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Certain other spices, seasonings, essential oils... GENERALLY RECOGNIZED AS SAFE General Provisions § 182.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and...

  18. Activity of Thymus vulgaris essential oil against Anisakis larvae.

    PubMed

    Giarratana, F; Muscolino, D; Beninati, C; Giuffrida, A; Panebianco, A

    2014-07-01

    Anisakiasis is an important food-borne disease especially in countries with high fish consumption. The increase of cases of human disease and the virtual absence of effective treatments have prompted the research on new active compounds against Anisakis larvae. As well known, the disease is related to the consumption of raw or almost raw seafood products, but also marinated and/or salted fishery products, if the processing is insufficient to destroy nematode larvae can represent a risks for the consumers. In the light of the biocidal efficacy against different pathogens demonstrated for various essential oils, the aim of this work is to evaluate the effect of Thymus vulgaris essential oil (TEO) against anisakidae larvae. The TEO at 10% and 5% concentration in oil sunflower seeds, caused in vitro the death of all larvae within 14 h, with cuticle and intestinal wall damages. The results obtained showing a significant activity against Anisakis larvae, suggest further investigation on TEO as a larvicidal agent and on its potential use in the industrial marinating process.

  19. Antimicrobial efficacy of five essential oils against oral pathogens: An in vitro study

    PubMed Central

    Thosar, Nilima; Basak, Silpi; Bahadure, Rakesh N.; Rajurkar, Monali

    2013-01-01

    Objectives: This study was aimed to find out the minimum inhibitory concentration (MIC) of five essential oils against oral pathogens and to find out the minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) of five essential oils against oral pathogens. Materials and Methods: The antimicrobial activities by detecting MIC and MBC/MFC of five essential oils such as tea tree oil, lavender oil, thyme oil, peppermint oil and eugenol oil were evaluated against four common oral pathogens by broth dilution method. The strains used for the study were Staphylococcus aureus ATCC 25923, Enterococcus fecalis ATCC 29212, Escherichia coli ATCC 25922 and Candida albicans ATCC 90028. Results: Out of five essential oils, eugenol oil, peppermint oil, tea tree oil exhibited significant inhibitory effect with mean MIC of 0.62 ± 0.45, 9.00 ± 15.34, 17.12 ± 31.25 subsequently. Mean MBC/MFC for tea tree oil was 17.12 ± 31.25, for lavender oil 151.00 ± 241.82, for thyme oil 22.00 ± 12.00, for peppermint oil 9.75 ± 14.88 and for eugenol oil 0.62 ± 0.45. E. fecalis exhibited low degree of sensitivity compared with all essential oils. Conclusion: Peppermint, tea tree and thyme oil can act as an effective intracanal antiseptic solution against oral pathogens. PMID:24966732

  20. Oil Secretory System in Vegetative Organs of Three Arnica Taxa: Essential Oil Synthesis, Distribution and Accumulation.

    PubMed

    Kromer, Krystyna; Kreitschitz, Agnieszka; Kleinteich, Thomas; Gorb, Stanislav N; Szumny, Antoni

    2016-05-01

    Arnica, a genus including the medicinal species A. montana, in its Arbo variety, and A. chamissonis, is among the plants richest in essential oils used as pharmaceutical materials. Despite its extensive use, the role of anatomy and histochemistry in the internal secretory system producing the essential oil is poorly understood. Anatomical sections allowed differentiation between two forms of secretory structures which differ according to their distribution in plants. The first axial type is connected to the vascular system of all vegetative organs and forms canals lined with epithelial cells. The second cortical type is represented by elongated intercellular spaces filled with oil formed only between the cortex cells of roots and rhizomes at maturity, with canals lacking an epithelial layer.Only in A. montana rhizomes do secretory structures form huge characteristic reservoirs. Computed tomography illustrates their spatial distribution and fusiform shape. The axial type of root secretory canals is formed at the interface between the endodermis and cortex parenchyma, while, in the stem, they are located in direct contact with veinal parenchyma. The peripheral phloem parenchyma cells are arranged in strands around sieve tube elements which possess a unique ability to accumulate large amounts of oil bodies. The cells of phloem parenchyma give rise to the aforementioned secretory structures while the lipid components (triacylglycerols) stored there support the biosynthesis of essential oils by later becoming a medium in which these oils are dissolved. The results indicate the integrity of axial secretory structures forming a continuous system in vegetative plant organs.

  1. Supercritical fractional extraction of fennel seed oil and essential oil: Experiments and mathematical modeling

    SciTech Connect

    Reverchon, E.; Marrone, C.; Poletto, M.; Daghero, J.; Mattea, M.

    1999-08-01

    Supercritical CO{sub 2} extraction of fennel seeds has been performed in two steps; the first step was performed at 90 bar and 50 C to obtain the selective extraction of essential oil. The second one was performed at 200 bar and 40 C and allowed the extraction of vegetable oil. The experiments were performed using the fractional separation of the extracts using three different CO{sub 2} flow rates (0.5, 1.0, and 1.5 kg/h). On the basis of the extraction results and of the analysis of scanning electron microscopy (SEM) images of the vegetable matter, mathematical models of the two extraction processes have been proposed. The extraction of fennel vegetable oil has been modeled using a model based on differential mass balances and on the concept of broken and intact cells as evidenced by SEM. Only one adjustable parameter has been used: the internal mass-transfer coefficient k{sub t}. A fairly good fitting of the experimental data was obtained by setting k{sub t} = 8 {times} 10{sup {minus}8} m/s. The fennel essential oil extraction process was modeled as desorption from the vegetable matter plus a small mass-transfer resistance. The same internal mass-transfer coefficient value used for vegetable oil extraction allowed a fairly good fitting of the essential oil extraction data.

  2. Natural (Mineral, Vegetable, Coconut, Essential) Oils and Contact Dermatitis.

    PubMed

    Verallo-Rowell, Vermén M; Katalbas, Stephanie S; Pangasinan, Julia P

    2016-07-01

    Natural oils include mineral oil with emollient, occlusive, and humectant properties and the plant-derived essential, coconut, and other vegetable oils, composed of triglycerides that microbiota lipases hydrolyze into glycerin, a potent humectant, and fatty acids (FAs) with varying physico-chemical properties. Unsaturated FAs have high linoleic acid used for synthesis of ceramide-I linoleate, a barrier lipid, but more pro-inflammatory omega-6:-3 ratios above 10:1, and their double bonds form less occlusive palisades. VCO FAs have a low linoleic acid content but shorter and saturated FAs that form a more compact palisade, more anti-inflammatory omega-6:-3 ratio of 2:1, close to 7:1 of olive oil, which disrupts the skin barrier, otherwise useful as a penetration enhancer. Updates on the stratum corneum illustrate how this review on the contrasting actions of NOs provide information on which to avoid and which to select for barrier repair and to lower inflammation in contact dermatitis genesis.

  3. Constituents of volatile organic compounds of evaporating essential oil

    NASA Astrophysics Data System (ADS)

    Chiu, Hua-Hsien; Chiang, Hsiu-Mei; Lo, Cho-Ching; Chen, Ching-Yen; Chiang, Hung-Lung

    2009-12-01

    Essential oils containing aromatic compounds can affect air quality when used indoors. Five typical and popular essential oils—rose, lemon, rosemary, tea tree and lavender—were investigated in terms of composition, thermal characteristics, volatile organic compound (VOC) constituents, and emission factors. The activation energy was 6.3-8.6 kcal mol -1, the reaction order was in the range of 0.6-0.8, and the frequency factor was 0.01-0.24 min -1. Toluene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, n-undecane, p-diethylbenzene and m-diethylbenzene were the predominant VOCs of evaporating gas of essential oils at 40 °C. In addition, n-undecane, p-diethylbenzene, 1,2,4-trimethylbenzene, m-diethylbenzene, and 1,2,3-trimethylbenzene revealed high emission factors during the thermogravimetric (TG) analysis procedures. The sequence of the emission factors of 52 VOCs (137-173 mg g -1) was rose ≈ rosemary > tea tree ≈ lemon ≈ lavender. The VOC group fraction of the emission factor of aromatics was 62-78%, paraffins were 21-37% and olefins were less than 1.5% during the TG process. Some unhealthy VOCs such as benzene and toluene were measured at low temperature; they reveal the potential effect on indoor air quality and human health.

  4. [Inhibition of Linseed Oil Autooxidation by Essential Oils and Extracts from Spice Plants].

    PubMed

    Misharina, T A; Alinkina, E S; Terenina, M B; Krikunova, N I; Kiseleva, V I; Medvedeva, I B; Semenova, M G

    2015-01-01

    Clove bud essential oil, extracts from ginger, pimento and black pepper, or ascorbyl palmytate were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids in linseed oil. Different methods were used to estimate antioxidant efficiency. These methods are based on the following parameters: peroxide values; peroxide concentration; content of degradation products of unsaturated fatty acid peroxides, which acted with thiobarbituric acid; diene conjugate content; the content of volatile compounds that formed as products of unsaturated fatty acid peroxide degradation; and the composition of methyl esters of fatty acids in samples of oxidized linseed oil.

  5. Habitat-related variation in composition of the essential oil of Seseli rigidum Waldst. & Kit. (Apiaceae).

    PubMed

    Marčetić, Mirjana; Kovačević, Nada; Lakušić, Dmitar; Lakušić, Branislava

    2017-03-01

    Plant specialised metabolites like essential oils are highly variable depending on genetic and various ecological factors. The aim of the present work was to characterise essential oils of the species Seseli rigidum Waldst. & Kit. (Apiaceae) in various organs on the individual and populational levels. Geographical variability and the impact of climate and soil type on essential oil composition were also investigated. Individually sampled essential oils of roots, aerial parts and fruits of plants from seven populations were analysed by GC-FID and GC-MS. The investigated populations showed high interpopulational and especially intrapopulational variability of essential oil composition. In regard to the variability of essential oils, different chemotypes were defined. The essential oils of S. rigidum roots represented a falcarinol chemotype, oils of aerial parts constituted an α-pinene or α-pinene/sabinene chemotype and fruit essential oils can be characterised as belonging to a complex sabinene/α-pinene/β-phellandrene/falcarinol/germacrene B chemotype. At the species level, analysis of variance (ANOVA), principal component analysis (PCA) and canonical discriminant analysis (CDA) showed that the plant part exerted the strongest influence on the composition of essential oils. Climate had a high impact on composition of the essential oils of roots, aerial parts and fruits, while influence of the substrate was less pronounced. The variations in main compounds of essential oils based on climate or substrate were complex and specific to the plant part.

  6. Essential oils from aromatic herbs as antimicrobial agents.

    PubMed

    Solórzano-Santos, Fortino; Miranda-Novales, Maria Guadalupe

    2012-04-01

    Bacterial resistance to multiple antibiotics is a health problem. Essential oils (EOs) possess antibacterial properties and have been screened as potential sources of novel antimicrobial compounds. Terpenes and terpenoids are components derived from EOs. Some of these EOs show inhibitory activity against Staphylococcus aureus. Carvacrol has specific effects on S. aureus and Staphylococcus epidermidis. Perilla oil suppresses expression of α-toxin, Staphylococcus enterotoxin A and B and toxic shock syndrome toxin. Geraniol shows good activity in modulating drug resistance in several gram-negative species. EOs could act as biopreservatives, reducing or eliminating pathogenic bacteria and increasing the overall quality of animal and vegetable food products. Although clinical studies are scarce, the uses of EOs for topical administration and as penetration enhancers for antiseptics are promising. Little information exists for oral administration.

  7. Salvia lavandulaefolia essential oil inhibits cholinesterase in vivo.

    PubMed

    Perry, N S L; Houghton, P J; Jenner, P; Keith, A; Perry, E K

    2002-01-01

    The essential oil of Salvia lavandulaefolia at two dosage levels was administered orally to rats for five days. Choline esterase activity was measured post mortem in three areas of the brain, both in the absence and presence of TEPP, a specific butylcholine esterase inhibitor, and was found to be significantly reduced in the striatum with both doses and also in the hippocampus at the higher dose. The activity of the enzyme in the cortex was not significantly reduced even at the higher dose. Thus it appears that S. lavandulaefolia oil, shown to inhibit choline esterase in vitro, also has an in vivo effect and this may help explain its traditional use for ailing memory.

  8. 2-undecanone rich leaf essential oil from Zanthoxylum armatum.

    PubMed

    Bisht, Deepa; Chanotiya, Chandan S

    2011-01-01

    The leaf essential oils of Zanthoxylum armatum DC (Rutaceae) from Kumaon, India, extracted by hydrodistillation, were analyzed by capillary gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The major classes of compounds found in the leaf oils were acyclic and menthane monoterpenoids as well as simple alcohols, aldehydes and ketones. The high proportion of non-terpenic acyclic ketones, notably 2-undecanone and 2-tridecanone, and the low abundance of undec-10-en-1-al and p-phellandren-8-ol make the composition entirely new. Other constituents present in significant amounts were oxygenated monoterpenes, which include 1,8-cineole, linalool, terpinen-4-ol, and alpha-terpineol, and sesquiterpene hydrocarbons represented mainly by trans-caryophyllene, a-humulene and germacrene D. On the contrary, the oil distilled from the leaves on the second day of distillation was characterized by a high content of 2-tridecanone (27.1%) and trans-caryophyllene (7.4%), as compared with 3.5% and 4.6%, respectively, for the fresh leaves; a slight decrease in pH of the distillate was also significant. Moreover, the presence of a high 2-undecanone content followed by 2-tridecanone is being reported for the first time for Z. armatum from this region. In terms of molecular diversity, the simple acyclic ketones dominate the essential oils as compared with linalool that was reported in several previous studies on Z. armatum. Therefore, the two acyclic ketones may be utilized to establish the origin and authenticity of the material.

  9. Antimicrobial activity of a traditionally used complex essential oil distillate (Olbas(®) Tropfen) in comparison to its individual essential oil ingredients.

    PubMed

    Hamoud, Razan; Sporer, Frank; Reichling, Jürgen; Wink, Michael

    2012-08-15

    Plant extracts and essential oils have been widely studied and used as antimicrobial agents in the last decades. In our study we investigated the antimicrobial activities of Olbas(®) Tropfen (in the following named Olbas), a traditionally used complex essential oil distillate, in comparison to its individual essential oil ingredients. Olbas (10 g) consists of three major components such as peppermint oil (5.3 g), eucalyptus oil (2.1 g), and cajuput oil (2.1 g) and of two minor constituents like juniper berry oil (0.3 g) and wintergreen oil (0.2 g). The composition of Olbas and the five individual essential oils were characterized by GLC-MS. According to GLC-MS analysis 1,8-cineol is the main component of the complex essential oil distillate followed by menthol and menthone. The minimum inhibitory and minimum microbicidal concentrations of Olbas and each of the single essential oils were evaluated in 17 species/strains of bacteria and fungi. Time-kill assay was performed to compare the microbicidal activity of Olbas and peppermint oil during several time intervals. Olbas displayed a high antimicrobial activity against all test strains used in this study, among them antibiotic resistant MRSA (methicillin-resistant Staphylococcus aureus) and VRE (vancomycin-resistant Enterococcus). Its antimicrobial activity was comparable to that of peppermint oil which was the most potent one of all individual essential oils tested. In the time kill assay Olbas as well as peppermint oil demonstrated similar microbicidal activities. Based on its wide antimicrobial properties Olbas can be a useful agent for the treatment of uncomplicated infections of skin and respiratory tract.

  10. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils.

    PubMed

    Sakkas, Hercules; Papadopoulou, Chrissanthy

    2017-03-28

    For centuries, plants have been used for a wide variety of purposes, from treating infectious diseases to food preservation and perfume production. Presently, the increasing resistance of microorganisms to currently used antimicrobials in combination with the appearance of emerging diseases requires the urgent development of new, more effective drugs. Plants, due to the large biological and structural diversity of their components, constitute a unique and renewable source for the discovery of new antibacterial, antifungal, and antiparasitic compounds. In the present paper, the history, composition, and antimicrobial activities of the basil, oregano, and thyme essential oils are reviewed.

  11. Characterization of essential oils from lamiaceae species by fourier transform Raman spectroscopy.

    PubMed

    Daferera, Dimitra J; Tarantilis, Petros A; Polissiou, Moschos G

    2002-09-25

    The Fourier transform Raman (FT-Raman) spectra of pure terpenes and essential oils obtained by hydrodistillation of some Lamiaceae species, are presented. This study shows that principal components of an essential oil can be recognized by FT-Raman. Components predicted by FT-Raman spectrum of an essential oil correlate well with those found as major constituents by GC-MS. In this way the basic chemical character of an essential oil can be recognized. The results demonstrate that certain Raman intensities can be correlated to specific terpenes and therefore FT-Raman can discriminate between the essential oils of which main components belong to different classes of compounds.

  12. Evaluation of vetiver oil and seven insect-active essential oils against the Formosan subterranean termite.

    PubMed

    Zhu, B C; Henderson, G; Chen, F; Fei, H; Laine, R A

    2001-08-01

    Repellency and toxicity of 8 essential oils (vetiver grass, cassia leaf, clove bud, cedarwood, Eucalyptus globules, Eucalyptus citrodora, lemongrass and geranium) were evaluated against the Formosan subterranean termite, Coptotermes formosanus Shiraki. Vetiver oil proved the most effective repellent because of its long-lasting activity. Clove bud was the most toxic, killing 100% of termites in 2 days at 50 micrograms/cm2. The tunneling response of termites to vetiver oil also was examined. Vetiver oil decreased termite tunneling activity at concentrations as low as 5 micrograms/g sand. Tunneling and paper consumption were not observed when vetiver oil concentrations were higher than 25 micrograms/g sand. Bioactivity of the 8 oils against termites and chemical volatility were inversely associated. Listed in decreasing order of volatility, the major constituents of the 8 oils were: eucalyptol, citronellal, citral, citronellol, cinnamaldehyde, eugenol, thujopsene, and both alpha- and beta-vetivone. Vetivor oil is a promising novel termiticide with reduced environmental impact for use against subterranean termites.

  13. Composition and functional properties of the essential oil of amazonian basil, Ocimum micranthum Willd., Labiatae in comparison with commercial essential oils.

    PubMed

    Sacchetti, Gianni; Medici, Alessandro; Maietti, Silvia; Radice, Matteo; Muzzoli, Mariavittoria; Manfredini, Stefano; Braccioli, Elena; Bruni, Renato

    2004-06-02

    Wild Amazonian basil Ocimum micranthum Willd. (O. campechianum Mill.) Labiatae essential oil was analyzed by GC and GC-MS: 31 compounds were identified. The main components were eugenol (46.55 +/- 5.11%), beta-caryophyllene (11.94 +/- 1.31%), and beta-elemene (9.06 +/- 0.99%), while a small amount of linalool (1.49 +/- 0.16%) was detected. The oil was tested for its in vitro food-related biological activities and compared with common basil Ocimum basilicum and Thymus vulgaris commercial essential oils. Radical scavenging activity was evaluated employing 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The oil exerted a good capacity to act as a nonspecific donor of hydrogen atoms or electrons when checked in the diphenylpicrylhydrazyl assay, quenching 76,61 +/- 0.33% of the radical, with values higher than those reported by reference oils. In the beta-carotene bleaching test, the oil provided an antioxidant efficacy comparable with that of O. basilicum and T. vulgaris essential oils. These data were confirmed by photochemiluminescence, where the oil showed a remarkable antioxidant capacity (2.39 +/- 0.1), comparable to that of Trolox and vitamin E, and higher than the other essential oils. Antibacterial activity of O. micranthum essential oil was evaluated against Gram positive and Gram negative bacterial strains. The oil showed a dose-dependent antifungal activity against pathogenic and food spoiling yeasts.

  14. Catalytically and biologically active silver nanoparticles synthesized using essential oil

    NASA Astrophysics Data System (ADS)

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-01

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.

  15. Essential oil from Eupatorium buniifolium leaves as potential varroacide.

    PubMed

    Umpiérrez, María Laura; Santos, Estela; Mendoza, Yamandú; Altesor, Paula; Rossini, Carmen

    2013-10-01

    Beekeeping has experienced a great expansion worldwide. Nowadays, several conventional pesticides, some organic acids, and essential oil components are the main means of chemical control used against Varroa destructor, an ectoparasite that may contribute to the colony collapse disorders. Varroa resistance against conventional pesticides has already been reported; therefore it is imperative to look for alternative control agents to be included in integrated pest management programs. A good alternative seems to be the use of plant essential oils (EOs) which, as natural products, are less toxic and leave fewer residues. Within this context, a bioprospecting program of the local flora searching for botanical pesticides to be used as varroacides was launched. A primary screening (driven by laboratory assays testing for anti-Varroa activity, and safety to bees) led us to select the EOs from Eupatorium buniifolium (Asteraceae) for follow up studies. We have chemical characterized EOs from twigs and leaves collected at different times. The three E. buniifolium EOs tested were active against Varroa in laboratory assays; however, there are differences that might be attributable to chemical differences also found. The foliage EO was selected for a preliminary field trial (on an experimental apiary with 40 hives) that demonstrated acaricidal activity when applied to the hives. Although activity was less than that for oxalic acid (the positive control), this EO was less toxic to bees than the control, encouraging further studies.

  16. Singlet Oxygen Scavenging Activity and Cytotoxicity of Essential Oils from Rutaceae

    PubMed Central

    Ao, Yoko; Satoh, Kazue; Shibano, Katsushige; Kawahito, Yukari; Shioda, Seiji

    2008-01-01

    Since we have been exposed to excessive amounts of stressors, aromatherapy for the relaxation has recently become very popular recently. However, there is a problem which responds to light with the essential oil used by aromatherapy. It is generally believed that singlet oxygen is implicated in the pathogenesis of various diseases such as light-induced skin disorders and inflammatory responses. Here we studied whether essential oils can effectively scavenge singlet oxygen upon irradiation, using the electron spin resonance (ESR) method. Green light was used to irradiate twelve essential oils from rutaceae. Among these twelve essential oils, eight were prepared by the expression (or the compression) method (referred to as E oil), and four samples were prepared by the steam distillation method (referred to as SD oil). Five E oils enhanced singlet oxygen production. As these essential oils may be phototoxic, it should be used for their use whit light. Two E oils and three SD oils showed singlet oxygen scavenging activity. These results may suggest that the antioxidant activity of essential oils are judged from their radical scavenging activity. Essential oils, which enhance the singlet oxygen production and show higher cytotoxicity, may contain much of limonene. These results suggest that limonene is involved not only in the enhancement of singlet oxygen production but also in the expression of cytotoxic activity, and that attention has to be necessary for use of blended essential oils. PMID:18648659

  17. Inhibitory effects of some plant essential oils against Arcobacter butzleri and potential for rosemary oil as a natural food preservative.

    PubMed

    Irkin, Reyhan; Abay, Secil; Aydin, Fuat

    2011-03-01

    We investigated the inhibitory activity of commercially marketed essential oils of mint, rosemary, orange, sage, cinnamon, bay, clove, and cumin against Arcobacter butzleri and Arcobacter skirrowii and the effects of the essential oil of rosemary against A. butzleri in a cooked minced beef system. Using the disc diffusion method to determine the inhibitory activities of these plant essential oils against strains of Arcobacter, we found that those of rosemary, bay, cinnamon, and clove had strong inhibitory activity against these organisms, whereas the essential oils of cumin, mint, and sage failed to show inhibitory activity against most of the Arcobacter strains tested. The 0.5% (vol/wt) essential oil of rosemary was completely inhibitory against A. butzleri in the cooked minced beef system at 4°C. These essential oils may be further investigated as a natural solution to the food industry by creating an additional barrier (hurdle technology) to inhibit the growth of Arcobacter strains.

  18. Bactericidal activities of essential oils of basil and sage against a range of bacteria and the effect of these essential oils on Vibrio parahaemolyticus.

    PubMed

    Koga, T; Hirota, N; Takumi, K

    1999-12-01

    Basil and sage essential oils were examined for bactericidal activity against a range of Gram-positive and Gram-negative bacteria by viable count determinations. Generally, Gram-positive bacteria showed higher resistance to basil and sage essential oils than Gram-negative bacteria. Vibrio species showed a high sensitivity to both essential oils. Stationary growth phase cells of selected bacteria showed higher resistance to these essential oils than exponential growth phase cells. Basil-resistant (b21) and sage-resistant (s20) strains of Vibrio parahaemolyticus were isolated. Both strains showed higher resistance to heat and H2O2 than parent strain. Conversely, heat-adapted V. parahaemolyticus also showed a higher resistance to these essential oils than nonadapted cells.

  19. Enhanced antibacterial effects of clove essential oil by nanoemulsion.

    PubMed

    Anwer, Md Khalid; Jamil, Shahid; Ibnouf, Elmutasim Osman; Shakeel, Faiyaz

    2014-01-01

    The aim of present study was to develop and evaluate nanoemulsion formulations of clove essential oil (CEO) for its antibacterial effects in comparison with pure CEO and standard amikacin antibiotic (positive control). Different nanoemulsions of CEO were developed by aqueous phase titration method via construction of pseudo-ternary phase diagrams and investigated for thermodynamic stability and self-nanoemulsification tests. Selected formulations (F1-F5) were characterized for droplet size distribution, viscosity, zeta potential, transmittance and surface morphology. Based on lowest droplet size (29.1 nm), lowest PI (0.026), lowest viscosity (34.6 cp), optimal zeta potential (-31.4 mV), highest transmittance (99.4 %) and lowest concentration of Triacetin (8 % w/w), CEO nanoemulsion F1 (containing 1 % w/w of CEO, 8 % w/w of Triacetin, 15 % w/w of Tween-80, 15 % w/w of Labrasol and 61 % w/w of water) was subjected to antibacterial studies in comparison with pure oil and standard amikacin. The antibacterial effects of F1 were found to be superior over pure oil against all bacterial strains investigated. However, the antibacterial effects of F1 were highly comparable with standard amikacin against all bacterial strains. The minimum inhibitory concentrations (MICs) of F1 were observed in the range of 0.075-0.300 % w/w as compared to pure oil (MICs 0.130-0.500 % w/w) and standard amikacin (MICs 2-16 μg/ml). These results indicated the potential of nanoemulsions for enhancing the therapeutic efficacy of natural bioactive ingredients such as CEO.

  20. Ocimum sanctum essential oil inhibits virulence attributes in Candida albicans.

    PubMed

    Khan, Amber; Ahmad, Aijaz; Xess, Immaculata; Khan, Luqman A; Manzoor, Nikhat

    2014-03-15

    Candida albicans is an opportunistic human fungal pathogen which causes disease mainly in immunocompromised patients. Activity of hydrolytic enzymes is essential for virulence of C. albicans and so is the capacity of these cells to undergo transition from yeast to mycelial form of growth. Ocimum sanctum is cultivated worldwide for its essential oil which exhibits medicinal properties. This work evaluates the anti-virulence activity of O. sanctum essential oil (OSEO) on 22 strains of C. albicans (including a standard strain ATCC 90028) isolated from both HIV positive and HIV negative patients. Candida isolates were exposed to sub-MICs of OSEO. In vitro secretion of proteinases and phospholipases was evaluated by plate assay containing BSA and egg yolk respectively. Morphological transition from yeast to filamentous form was monitored microscopically in LSM. For genetic analysis, respective genes associated with morphological transition (HWP1), proteinase (SAP1) and phospholipase (PLB2) were also investigated by Real Time PCR (qRT-PCR). Results were analyzed using Student's t-test. OSEO inhibits morphological transition in C. albicans and had a significant inhibitory effect on extracellular secretion of proteinases and phospholipases. Expression profile of respective selected genes associated with C. albicans virulence by qRT-PCR showed a reduced expression of HWP1, SAP1 and PLB2 genes in cells treated with sub-inhibitory concentrations of OSEO. This work suggests that OSEO inhibits morphological transition in C. albicans and decreases the secretion of hydrolytic enzymes involved in the early stage of infection as well as down regulates the associated genes. Further studies will assess the clinical application of OSEO and its constituents in the treatment of fungal infections.

  1. Chemical composition, antimicrobial and insecticidal activities of the essential oils of Conyza linifolia and Chenopodium ambrosioides.

    PubMed

    Harraz, Fathalla M; Hammoda, Hala M; El Ghazouly, Maged G; Farag, Mohamed A; El-Aswad, Ahmed F; Bassam, Samar M

    2015-01-01

    Two essential oil-containing plants growing wildly in Egypt: Conyza linifolia (Willd.) Täckh. (Asteraceae) and Chenopodium ambrosioides L. (Chenopodiaceae) were subjected to essential oil analysis and biological investigation. The essential oils from both plants were prepared by hydrodistillation, and GC/MS was employed for volatiles profiling. This study is the first to perform GC/MS analysis of C. linifolia essential oil growing in Egypt. C. linifolia essential oil contained mainly sesquiterpenes, while that of C. ambrosioides was rich in monoterpenes. Ascaridole, previously identified as the major component of the latter, was found at much lower levels. In addition, the oils were investigated for their antimicrobial activity against two Gram positive and two Gram negative bacteria, and one fungus. The insecticidal activities of both oils, including mosquitocidal and pesticidal potentials, were also evaluated. The results of biological activities encourage further investigation of the two oils as antimicrobial and insecticidal agents of natural origin.

  2. Essential Oils from Thyme (Thymus vulgaris): Chemical Composition and Biological Effects in Mouse Model.

    PubMed

    Vetvicka, Vaclav; Vetvickova, Jana

    2016-12-01

    Thymus species are popular spices and contain volatile oils as main chemical constituents. Recently, plant-derived essential oils are gaining significant attention due to their significant biological activities. Seven different thymus-derived essential oils were compared in our study. First, we focused on their chemical composition, which was followed up by testing their effects on phagocytosis, cytokine production, chemotaxis, edema inhibition, and liver protection. We found limited biological activities among tested oils, with no correlation between composition and biological effects. Similarly, no oils were effective in every reaction. Based on our data, the tested biological use of these essential oils is questionable.

  3. Variation in chemical composition and acaricidal activity against Dermanyssus gallinae of four eucalyptus essential oils.

    PubMed

    George, David R; Masic, Dino; Sparagano, Olivier A E; Guy, Jonathan H

    2009-06-01

    The results of this study suggest that certain eucalyptus essential oils may be of use as an alternative to synthetic acaricides in the management of the poultry red mite, Dermanyssus gallinae. At a level of 0.21 mg/cm(2), the essential oil from Eucalyptus citriodora achieved 85% mortality in D. gallinae over a 24 h exposure period in contact toxicity tests. A further two essential oils from different eucalyptus species, namely E. globulus and E. radiata, provided significantly (P < 0.05) lower mite mortality (11 and 19%, respectively). Notable differences were found between the eucalyptus essential oils regarding their chemical compositions. There appeared to be a trend whereby the essential oils that were composed of the fewer chemical components were the least lethal to D. gallinae. It may therefore be the case that the complexity of an essential oil's chemical make up plays an important role in dictating the toxicity of that oil to pests such as D. gallinae.

  4. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives

    PubMed Central

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-01-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils. PMID:26424908

  5. Chemical composition and larvicidal activity of several essential oils from Hypericum species from Tunisia.

    PubMed

    Rouis, Zyed; Laamari, Ali; Abid, Nabil; Elaissi, Ameur; Cioni, Pier Luigi; Flamini, Guido; Aouni, Mahjoub

    2013-02-01

    The chemical composition of the essential oils extracted from some Tunisian Hypericum species and their larvicidal activity against Culex pipiens larvae were evaluated. The chemical compositions of the essential oils from the aerial plant parts were analyzed using gas chromatography-mass spectrometry. One hundred and thirty-four compounds were identified, ranging between 85.1 and 95.4 % of the oil's composition. The components were monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons, oxygenated sesquiterpenes, non-terpenic hydrocarbons, and others. The larvicidal activity of the essential oils was evaluated using a method recommended by WHO. Larvicidal tests revealed that essential oils from the Hypericum species have a significant larvicidal activity against C. pipiens, with LC(50) ranging between 102.82 and 194.70 ppm. The most powerful essential oils against these larvae were Hypericum tomentosum and Hypericum humifusum samples, followed by the essential oil of Hypericum perforatum.

  6. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives.

    PubMed

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-10-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils.

  7. The chemical composition of some Lauraceae essential oils and their antifungal activities.

    PubMed

    Simić, A; Soković, M D; Ristić, M; Grujić-Jovanović, S; Vukojević, J; Marin, P D

    2004-09-01

    The antifungal activity of Aniba rosaeodora, Laurus nobilis, Sassafras albidum and Cinnamomum zeylanicum essential oils were investigated against 17 micromycetes. Among the tested fungal species were food poisoning, spoilage fungi, plant and animal pathogens. In order to determine fungistatic and fungicidal concentrations (MIC and MFC) macrodilution and microdilution tests were used. Linalool was the main component in the essential oil of A. rosaeodora, while 1.8-cineole was dominant in L. nobilis. In sassafras essential oil safrole was the major component and in the oil of C. zeylanicum the main component was trans-cinnamaldehyde. The essential oil of cinnamon showed the strongest antifungal activity.

  8. Hydrodistillation time affects dill seed essential oil yield, composition, and bioactivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dill (Anethum graveolens L.) essential oil is widely used by the food and pharmaceutical industries. We hypothesized that the chemical constituents of dill seed essential oil are eluted at different times during the hydrodistillation process, resulting in oils with different composition and bioactiv...

  9. Bioefficacy of essential and vegetable oils of Zanthoxylum xanthoxyloides seeds against Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae).

    PubMed

    Fogang, Hervet Paulain Dongmo; Womeni, Hilaire Macaire; Piombo, Georges; Barouh, Nathalie; Tapondjou, Léon Azefack

    2012-03-01

    Experiments were conducted in the laboratory to evaluate the bioefficacy of essential and vegetable oils of Zanthoxylum xanthoxyloides (Rutaceae) against Acanthoscelides obtectus (Coleoptera: Bruchidae). The chemical composition of the essential oil and the fatty acid composition of the vegetable oil extracted from the seeds of Z. xanthoxyloides were determined. The insecticidal activities of these oils and the associated aromatized clay powder were evaluated against A. obtectus. Both oils were strongly repellent (100% repellency at 0.501 μl/cm² essential oil and 3.144 μl/cm² vegetable oil) and highly toxic (LC₅₀ = 0.118 μl/cm² for essential oil) to this beetle after contact on filter paper. The vapors of the essential oil were highly toxic to adult insects (LC₅₀ = 0.044 μl/cm³), and the aromatized powder made from clay and essential oil was more toxic (LD₅₀ = 0.137 μl/g) than the essential oil alone (LD₅₀ = 0.193 μl/g) after 2 days of exposure on a common bean. Both oils greatly reduced the F₁ insect production and bean weight loss and did not adversely affect the bean seed viability. In general, the results obtained indicate that these plant oils can be used for control of A. obtectus in stored beans.

  10. Comparative analysis of essential oil composition from flower and leaf of Magnolia kwangsiensis Figlar & Noot.

    PubMed

    Zheng, Yan-Fei; Ren, Fan; Liu, Xiong-Min; Lai, Fang; Ma, Li

    2016-07-01

    The essential oils from Magnolia kwangsiensis Figlar & Noot. were obtained using hydrodistillation, and analysed by GC and GC-MS. A total of 31, 27 and 26 constituents were identified in the oils from male flower, female flower and leaf of M. kwangsiensis, and they comprised 99.2, 98.5 and 96.2% of the oils, respectively. Monoterpene hydrocarbons predominated in the oils and accounted for 48.3% of male flower oil, 54.0% of female flower oil and 44.6% of leaf oil. The compositions of flower oils were quite similar but with different content, and were different from those of leaf oil.

  11. Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils.

    PubMed

    Tongnuanchan, Phakawat; Benjakul, Soottawat; Prodpran, Thummanoon

    2012-10-01

    Properties of protein-based film from fish skin gelatin incorporated with different citrus essential oils, including bergamot, kaffir lime, lemon and lime (50% based on protein) in the presence of 20% and 30% glycerol were investigated. Films containing 20% glycerol had higher tensile strength (TS) but lower elongation at break (EAB), compared with those prepared with 30% glycerol, regardless of essential oils incorporated (p<0.05). Films incorporated with essential oils, especially from lime, at both glycerol levels showed the lower TS but higher EAB than the control films (without incorporated essential oil) (p<0.05). Water vapour permeability (WVP) of films containing essential oils was lower than that of control films for both glycerol levels (p<0.05). Films with essential oils had varying ΔE(*) (total colour difference), where the highest value was observed in that added with bergamot essential oil (p<0.05). Higher glycerol content increased EAB and WVP but decreased TS of films. Fourier transforms infrared (FTIR) spectra indicated that films added with essential oils exhibited higher hydrophobicity with higher amplitude at wavenumber of 2874-2926 cm(-1) and 1731-1742 cm(-1) than control film. Film incorporated with essential oils exhibited slightly lower thermal degradation resistance, compared to the control film. Varying effect of essential oil on thermal degradation temperature and weight loss was noticeable, but all films prepared using 20% glycerol had higher thermal degradation temperature with lower weight loss, compared with those containing 30% glycerol. Films added with all types of essential oils had rough cross-section, compared with control films, irrespective of glycerol levels. However, smooth surface was observed in all film samples. Film incorporated with lemon essential oil showed the highest ABTS radical scavenging activity and ferric reducing antioxidant power (FRAP) (p<0.05), while the other films had lower activity. Thus, the

  12. Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pine wood nematode (Bursaphelenchus xylophilus).

    PubMed

    Kim, Junheon; Seo, Sun-Mi; Lee, Sang-Gil; Shin, Sang-Chul; Park, Il-Kwon

    2008-08-27

    Commercial essential oils from 28 plant species were tested for their nematicidal activities against the pine wood nematode, Bursaphelenchus xylophilus. Good nematicidal activity against B. xylophilus was achieved with essential oils of coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii). Analysis by gas chromatography-mass spectrometry led to the identification of 26, 11, and 4 major compounds from coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) oils, respectively. Compounds from each plant essential oil were tested individually for their nematicidal activities against the pine wood nematode. Among the compounds, benzaldehyde, trans-cinnamyl alcohol, cis-asarone, octanal, nonanal, decanal, trans-2-decenal, undecanal, dodecanal, decanol, and trans-2-decen-1-ol showed strong nematicidal activity. The essential oils described herein merit further study as potential nematicides against the pine wood nematode.

  13. Nematicidal Activity of Plant Essential Oils and Components From Ajowan (Trachyspermum ammi), Allspice (Pimenta dioica) and Litsea (Litsea cubeba) Essential Oils Against Pine Wood Nematode (Bursaphelenchus Xylophilus).

    PubMed

    Park, Il-Kwon; Kim, Junheon; Lee, Sang-Gil; Shin, Sang-Chul

    2007-09-01

    Commercial plant essential oils from 26 plant species were tested for their nematicidal activities against the pinewood nematode, Bursaphelenchus xylophilus. Good nematicidal activity against B. xylophilus was achieved with essential oils of ajowan (Trachyspermum ammi), allspice (Pimenta dioica) and litsea (Litsea cubeba). Analysis by gas chromatography-mass spectrometry led to identification of 12, 6 and 16 major compounds from ajowan, allspice and litsea oils, respectively. These compounds from three plant essential oils were tested individually for their nematicidal activities against the pinewood nematode. LC(50) values of geranial, isoeugenol, methyl isoeugenol, eugenol, methyl eugenol and neral against pine wood nematodes were 0.120, 0.200, 0.210, 0.480, 0.517 and 0.525 mg/ml, respectively. The essential oils described herein merit further study as potential nematicides against the pinewood nematode.

  14. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints.

    PubMed

    Pavela, Roman; Benelli, Giovanni

    2016-12-01

    Recently, a growing number of plant essential oils (EOs) have been tested against a wide range of arthropod pests with promising results. EOs showed high effectiveness, multiple mechanisms of action, low toxicity on non-target vertebrates and potential for the use of byproducts as reducing and stabilizing agents for the synthesis of nanopesticides. However, the number of commercial biopesticides based on EOs remains low. We analyze the main strengths and weaknesses arising from the use of EO-based biopesticides. Key challenges for future research include: (i) development of efficient stabilization processes (e.g., microencapsulation); (ii) simplification of the complex and costly biopesticide authorization requirements; and (iii) optimization of plant growing conditions and extraction processes leading to EOs of homogeneous chemical composition.

  15. Valorization of essential oils from Moroccan aromatic plants.

    PubMed

    Santana, Omar; Fe Andrés, Maria; Sanz, Jesús; Errahmani, Naima; Abdeslam, Lamiri; González-Coloma, Azucena

    2014-08-01

    The chemical composition and biological activity of cultivated and wild medicinal and aromatic plants from Morocco (Artemisia herba-alba, Lippia citriodora, Mentha pulegium, M. spicata, Myrtus communis, Rosmarinus officinalis, and Thymus satureioides) are described. The essential oils (EOs) of these species have been analyzed by GC-MS. The antifeedant, nematicidal and phytotoxic activities of the EOs were tested on insect pests (Spodoptera littoralis, Myzus persicae and Rhopalosiphum padi), root-knot nematodes (Meloydogine javanica) and plants (Lactuca sativa, Lolium perenne and Lycopersicum esculentum). EOs from A. herba-alba, M. pulegium and R. officinalis were strong antifeedants against S. littoralis, M. persicae and R. padi. EOs from L. citriodora, M. spicata and T. satureioides showed high nematicidal activity. These biological effects are explained by the activity of the major EO components and/or synergistic effects.

  16. Comparison of essential oils from Cistus species growing in Sardinia.

    PubMed

    Mastino, Patrizia Monica; Marchetti, Mauro; Costa, Jean; Usai, Marianna

    2017-02-01

    Cistus genus is present in Sardinia with large populations of C. monspeliensis, C. salvifolius, C. creticus subsp. eriocephalus and few stations of C. albidus, C. creticus subsp. creticus and C. creticus subsp. corsicus. No chemical studies are currently being carried on Cistus species of Sardinia. The essential oils have shown six different profiles. C. creticus subsp. eriocephalus showed a high amount of manoyl oxide and its isomer (70%). C. salvifolius has pointed out the group of labdans, (20%); another consistent percentage is made of perfumed molecules as ionone and its derivate. Several linear hydrocarbons were produced by C. monspeliensis, and the heneicosane was the most represented element. In C. albidus no labdane-type diterpenes were identified. Analysis of C. creticus subsp creticus revealed several oxygenated sesquiterpenes and labdane-type diterpenes, especially manoyl oxide. C. creticus subsp. corsicus was qualitatively very similar to C. creticus subsp. creticus, notably concerning the labdane-type compounds.

  17. Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris.

    PubMed

    Giordani, R; Regli, P; Kaloustian, J; Mikaïl, C; Abou, L; Portugal, H

    2004-12-01

    The antifungal effect of the essential oil from Satureja montana L., Lavandula angustifolia Mill., Lavandula hybrida Reverchon, Syzygium aromaticum (L.) Merril and Perry, Origanum vulgare L., Rosmarinus officinalis L. and six chemotypes of Thymus vulgaris L. on Candida albicans growth were studied. The most efficiency was obtained with the essential oil from Thymus vulgaris thymol chemotype (MIC 80% = 0.016 microL/mL and Kaff = 296 microL/mL). The presence in the culture medium of essential oil from Thymus vulgaris thymol chemotype (0.01, 0.1, 0.2, 0.3 microg/mL) and amphotericin B involved a decrease of the MIC 80% of amphotericin B. In contrast, the combination of amphotericin B and low concentrations (0.00031-0.0025 microg/mL) of essential oil was antagonistic. The strongest decrease (48%) of the MIC 80% was obtained with medium containing 0.2 microL/mL of essential oil. These results signify that the essential oil of Thymus vulgaris thymol chemotype potentiates the antifungal action of amphotericin B suggesting a possible utilization of this essential oil in addition to antifungal drugs for the treatment of mycoses.

  18. [Gas chromatography for analysis of essential oils. Characteristics of essential oil of Dracocephalum species and the influence of extraction method on its composition].

    PubMed

    Lemberkovics, Eva; Kakasy, András Zoltán; Héthelyi, B Eva; Simándi, Béla; Böszörményi, Andrea; Balázs, Andrea; Szoke, Eva

    2007-01-01

    In this work the essential oil composition of some less known Dracocephalum species was studied and compared the effectiveness, selectivity and influence of different extraction methods (hydrodistillation, Soxhlet extraction with organic solvents and supercritical fluid extraction) on essential oils. For investigations in Hungary and Transylvania cultivated plant material was used. The analysis of essential oils was carried out by GC and GC-MS methods. The components were identified by standard addition, retention factors and mass spectra. The percentile evaluation of each volatile constituents was made on basis of GC-FID chromatograms. The accuracy of measurements was characterized by relative standard deviation. In the essential oil of D. renati Emb. (studied firstly by us) 18.3% of limonene was measured and carvone, citrals and linalyl acetate monoterpenes, methyl chavicol and some sesquiterpene (e.g. bicyclovetivenol) determined in lower quantities. We established that more than 50% of essential oil of D. grandiflorum L. was formed by sesquiterpenes (beta-caryophyllene and- oxide, beta-bourbonene, beta-cubebene, aromadendrene) and the essential oil of D. ruyschiana L. contained pinocamphone isomers in more than 60%. The oxygenated acyclic monoterpenes, the characteristic constituents of Moldavian dragonhead were present in some tenth percent only in D. renati oil. We found significant differences in the composition of the SFE extract and traditional essential oil of D. moldavica L. The supercritical fractions collected at the beginning of the extraction process were richer in valuable ester component (geranyl acetate) than the essential oil obtained by hydrodistillation. The fractions collected at the end of supercritical were poor in oxygenated monoterpenes but rich in minor compounds of traditional oil, e.g. palmitic acid.

  19. Antimicrobial activity of selected essential oils against cariogenic bacteria.

    PubMed

    Aguiar, G P; Carvalho, C E; Dias, H J; Reis, E B; Martins, M H G; Wakabayashi, K A L; Groppo, M; Martins, C H G; Cunha, W R; Crotti, A E M

    2013-01-01

    The antibacterial activity of nine selected essential oils (EOs) against a panel of oral pathogens was investigated in terms of their minimum inhibitory concentrations (MICs) by using the broth microdilution method. Most of the EOs displayed weak activity or were inactive against the selected oral pathogens, with MIC values ranging from 500 to 4000 μg/mL. However, the EO obtained from the leaves of Bidens sulphurea (Asteraceae) was found to display moderate activity against Streptococcus mutans (MIC = 250 μg/mL) and significant activity against Streptococcus mitis (MIC = 31.25 μg/mL). Germacrene D (38.3%), trans-caryophyllene (18.0%), β-elemene (13.9%) and bicyclogermacrene (13.1%) were identified as the main chemical components of this oil. 2,6-Di-tert-butyl-4-methylphenol, previously described as the major constituent in the EO from the flowers of B. sulphurea, was not detected in this study.

  20. Essential Oils Composition and Antioxidant Properties of Three Thymus Species

    PubMed Central

    Amiri, Hamzeh

    2012-01-01

    The essential oils of three wild-growing Thymus species, collected from west of Iran during the flowering stage, were obtained by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS). Under the optimum extraction and analysis conditions, 44, 38, and 38 constituents (mainly monoterpenes compounds) were identified in T. kotschyanus Boiss. and Hohen, T. eriocalyx (Ronniger) Jalas, and T. daenensis subsp lancifolius (Celak) Jalas which represented 89.9%, 99.7%, and 95.8% of the oils, respectively. The main constituents were thymol (16.4–42.6%), carvacrol (7.6–52.3%), and γ-terpinene (3–11.4%). Antioxidant activity was employed by two complementary test systems, namely, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging and β-carotene/linoleic acid systems. Antioxidant activity of polar subfraction of T. daenensis subsp lancifolius (Celak) Jalas was found to be higher than those of the others in DPPH assay, while nonpolar subfraction of T. eriocalyx (Ronniger) Jalas has most antioxidant activity in β-carotene/linoleic acid test (19.1 ± 0.1 μg/mL and 96.1 ± 0.8% inhibition rate, resp.). PMID:21876714

  1. Control of Aspergillus flavus in maize with plant essential oils and their components.

    PubMed

    Montes-Belmont, R; Carvajal, M

    1998-05-01

    The effects of 11 plant essential oils for maize kernel protection against Aspergillus flavus were studied. Tests were conducted to determine optimal levels of dosages for maize protection, effects of combinations of essential oils, and residual effects and toxicity of essential oils to maize plants. Principal constituents of eight essential oils were tested for ability to protect maize kernels. Essential oils of Cinnamomum zeylanicum (cinnamon), Mentha piperita (peppermint), Ocimum basilicum (basil), Origanum vulgare (origanum), Teloxys ambrosioides (the flavoring herb epazote), Syzygium aromaticum (clove), and Thymus vulgaris (thyme) caused a total inhibition of fungal development on maize kernels. Thymol and o-methoxycinnamaldehyde significantly reduced maize grain contamination. The optimal dosage for protection of maize varied from 3 to 8%. Combinations of C. zeylanicum with the remaining oils gave efficient control. A residual effect of C. zeylanicum was detected after 4 weeks of kernel treatment. No phytotoxic effect on germination and corn growth was detected with any of these oils.

  2. Antifungal efficacy of plant essential oils against stored grain fungi of Fusarium spp.

    PubMed

    Kumar, Peeyush; Mishra, Sapna; Kumar, Atul; Sharma, Amit Kumar

    2016-10-01

    The control potential of seven plant essential oils was evaluated against Fusarium proliferatum (Matsushima) Nirenberg and Fusarium verticillioides Sheldon. The fungicidal activity was assessed through microtiter plate assay to determine the minimum inhibitory and fungicidal concentration of essential oils. The essential oil of Mentha arvensis was adjudged as best for inhibiting the fungal growth, while oil of Thymus vulgaris and Anethum graveolens showed high efficacy in terms of fungicidal activity. The oil of M. arvensis and T. vulgaris also showed good inhibition activity in agar disc diffusion assay. M. arvensis essential oil was analysed for its composition using gas chromatography/mass spectrometry revealing menthol (63.18 %), menthone (15.08 %), isomenthyl acetate (5.50 %) and limonene (4.31 %) as major components. Significant activity of M. arvensis essential oil against F. proliferatum and F. verticillioides isolates obtained, pave the way for its use as antifungal control agents.

  3. [GC-MS analysis of essential oil from pericarp of Illicium modestum A. C. Smith].

    PubMed

    Huang, J; Wang, J; Yang, C; Wang, H; Quan, L; Zhang, X; Cao, H

    1996-03-01

    The chemical constituents of essential oil from the pericarp of Illicium modestum were analyzed and 60 compounds were identified by GC-MS. Among them anethole (main compound in the oil of Chinese anise star) and safrole were absent.

  4. Evaluation of anxiolytic and sedative effect of essential oil and hydroalcoholic extract of Ocimum basilicum L. and chemical composition of its essential oil.

    PubMed

    Rabbani, Mohammed; Sajjadi, Seyed Ebrahim; Vaezi, Arefeh

    2015-01-01

    Ocimum basilicum belongs to Lamiaceae family and has been used for the treatment of wide range of diseases in traditional medicine in Iranian folk medicine. Due to the progressive need to anti-anxiety medications and because of the similarity between O. basilicum and Salvia officinalis, which has anti-anxiety effects, we decided to investigate the anxiolytic and sedative activity of hydroalcoholic extract and essential oil of O. basilicum in mice by utilizing an elevated plus maze and locomotor activity meter. The chemical composition of the plant essential oil was also determined. The essential oil and hydroalcoholic extract of this plant were administered intraperitoneally to male Syrian mice at various doses (100, 150 and 200 mg/kg of hydroalcoholic extract and 200 mg/kg of essential oil) 30 min before starting the experiment. The amount of hydroalcoholic extract was 18.6% w/w and the essential oil was 0.34% v/w. The major components of the essential oil were methyl chavicol (42.8%), geranial (13.0%), neral (12.2%) and β-caryophyllene (7.2%). HE at 150 and 200 mg/kg and EO at 200 mg/kg significantly increased the time passed in open arms in comparison to control group. This finding was not significant for the dose of 100 mg/kg of the extract. None of the dosages had significant effect on the number of entrance to the open arms. Moreover, both the hydroalcoholic extract and the essential oil decreased the locomotion of mice in comparison to the control group. This study shows the anxiolytic and sedative effect of hydroalcoholic extract and essential oil of O. basilicum. The anti-anxiety and sedative effect of essential oil was higher than the hydroalcoholic extract with the same doses. These effects could be due to the phenol components of O. basilicum.

  5. Evaluation of anxiolytic and sedative effect of essential oil and hydroalcoholic extract of Ocimum basilicum L. and chemical composition of its essential oil

    PubMed Central

    Rabbani, Mohammed; Sajjadi, Seyed Ebrahim; Vaezi, Arefeh

    2015-01-01

    Ocimum basilicum belongs to Lamiaceae family and has been used for the treatment of wide range of diseases in traditional medicine in Iranian folk medicine. Due to the progressive need to anti-anxiety medications and because of the similarity between O. basilicum and Salvia officinalis, which has anti-anxiety effects, we decided to investigate the anxiolytic and sedative activity of hydroalcoholic extract and essential oil of O. basilicum in mice by utilizing an elevated plus maze and locomotor activity meter. The chemical composition of the plant essential oil was also determined. The essential oil and hydroalcoholic extract of this plant were administered intraperitoneally to male Syrian mice at various doses (100, 150 and 200 mg/kg of hydroalcoholic extract and 200 mg/kg of essential oil) 30 min before starting the experiment. The amount of hydroalcoholic extract was 18.6% w/w and the essential oil was 0.34% v/w. The major components of the essential oil were methyl chavicol (42.8%), geranial (13.0%), neral (12.2%) and β-caryophyllene (7.2%). HE at 150 and 200 mg/kg and EO at 200 mg/kg significantly increased the time passed in open arms in comparison to control group. This finding was not significant for the dose of 100 mg/kg of the extract. None of the dosages had significant effect on the number of entrance to the open arms. Moreover, both the hydroalcoholic extract and the essential oil decreased the locomotion of mice in comparison to the control group. This study shows the anxiolytic and sedative effect of hydroalcoholic extract and essential oil of O. basilicum. The anti-anxiety and sedative effect of essential oil was higher than the hydroalcoholic extract with the same doses. These effects could be due to the phenol components of O. basilicum. PMID:26779273

  6. [Antioxidant properties of essential oils from lemon, grapefruit, coriander, clove, and their mixtures].

    PubMed

    Misharina, T A; Samusenko, A L

    2008-01-01

    Antioxidant properties of individual essential oils from lemon (Citrus limon L.), pink grapefruit (Citrus paradise L.), coriander (Coriandrum sativum L.), and clove (Caryophyllus aromaticus L.) buds and their mixtures were studied by capillary gas-liquid chromatography. Antioxidant activity was assessed by oxidation of the aliphatic aldehyde hexanal to the carboxylic acid. The lowest and highest antioxidant activities were exhibited by grapefruit and clove bud essential oils, respectively. Mixtures containing clove bud essential oil also strongly inhibited oxidation of hexanal. Changes in the composition of essential oils and their mixtures in the course of long-term storage in the light were studied. The stability of components of lemon and coriander essential oils in mixtures increased compared to individual essential oils.

  7. Essential Oil Composition of Phagnalon sordidum (L.) from Corsica, Chemical Variability and Antimicrobial Activity.

    PubMed

    Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain

    2016-03-01

    The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography/mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and it exhibited a notable activity on a large panel of clinically significant microorganisms.

  8. C15078. Essential oil composition of Phagnalon sordidum (L.) from Corsica, chemical variability and antimicrobial activity.

    PubMed

    Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain

    2016-02-10

    The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography-mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and exhibited a notable activity on a large panel of clinically significant microorganisms. This article is protected by copyright. All rights reserved.

  9. Plant essential oils potency as natural antibiotic in Indonesian medicinal herb of “jamu”

    NASA Astrophysics Data System (ADS)

    Soetjipto, H.; Martono, Y.

    2017-02-01

    The main purposes of this study are to compile antibacterial activity data of essential oils from Indonesian’s plants in order which can be used as a natural antibiotic in “jamu” to increase potential Indonesian medicinal herb. By using Agar Diffusing method, Bioautography and Gas Chromatography Mass Spectrum, respectively, antibacterial activity and chemical compounds of 12 plants essential oils were studied in the Natural Product Chemistry Laboratory, Department of Chemistry, Faculty of Science and Mathematics, Satya Wacana Christian University, Salatiga since 2007 until 2015. The results of this studies showed that all of the essential oils have a medium to a strong antibacterial activity which are in the range of 30 – 2,500 μg and 80-5,000 μg. Further on, the essential oils analyzed by GCMS showed that each essential oils have different dominant compounds. These data can be used as basic doses in the usage of essential oils as natural antibiotics.

  10. Anti-termitic activities of essential oils from coniferous trees against Coptotermes formosanus.

    PubMed

    Cheng, Sen-Sung; Chang, Hui-Ting; Wu, Chi-Lin; Chang, Shang-Tzen

    2007-01-01

    In this study, the anti-termitic activities of 11 essential oils from three species of coniferous tree against Coptotermes formosanus Shiraki were investigated using direct contact application. Results demonstrated that at the dosage of 10 mg/g, the heartwood and sapwood essential oils of Calocedrus macrolepis var. formosana and Cryptomeria japonica and the leaf essential oil of Chamaecyparis obtusa var. formosana had 100% mortality after 5 d of test. Among the tested essential oils, the heartwood essential oil of C. macrolepis var. formosana killed all termites after 1 d of test, with an LC(50) value of 2.6 mg/g, exhibiting the strongest termiticidal property. The termiticidal effect of heartwood essential oil was due to its toxicity and its repellent action.

  11. [Antiradical properties of essential oils and extracts from clove bud and pimento].

    PubMed

    Misharina, T A; Alinkina, E S; Medvedeva, I B

    2015-01-01

    The antiradical properties of essential oils and extracts from the clove bud (Eugenia caryophyllata Thumb.) and berries of tree (Pimenta dioica (L.) Meriff) were studied and compared with the properties of synthetic antioxidant ionol (2,6-ditret-butyl-4-hydroxytoluene, BHT) in model reactions with the stable free 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. The essential oils of clove bud and pimento had qualitatively close composition of the main components but differed by their quantitative content. In the studied samples, eugenol was the main compound with high antiradical activity. The reaction rates of essential oils and extracts with the DPPH radical were practically the same for essential oils and twice the reaction rate of BHT. The values of antiradical efficiency (AE) were also close for essential oils and were twice that for extracts and ionol. A synergetic action of components in the essential oil and extract of pimento on antiradical efficiency values was found.

  12. Steam distillation extraction kinetics regression models to predict essential oil yield, composition, and bioactivity of chamomile oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chamomile (Matricaria chamomilla L.) is one of the most widely spread and used medicinal and essential oil crop in the world. Chamomile essential oil is extracted via steam distillation of the inflorescences (flowers). In this study, distillation time (DT) was found to be a crucial determinant of yi...

  13. Properties of cassava starch-based edible coating containing essential oils.

    PubMed

    Oriani, Vivian Boesso; Molina, Gustavo; Chiumarelli, Marcela; Pastore, Gláucia Maria; Hubinger, Miriam Dupas

    2014-02-01

    Edible coatings were produced using cassava starch (2% and 3% w/v) containing cinnamon bark (0.05% to 0.30% v/v) or fennel (0.05% to 0.30% v/v) essential oils. Edible cassava starch coating at 2% and 3% (w/v) containing or not containing 0.30% (v/v) of each essential oils conferred increased in water vapor resistance and decreased in the respiration rates of coated apple slices when compared with uncoated fruit. Cassava starch coatings (2% w/v) added 0.10% or 0.30% (v/v) fennel or cinnamon bark essential oils showed antioxidant capacity, and the addition of 0.30% (v/v) of each essential oil demonstrated antimicrobial properties. The coating containing cinnamon bark essential oil showed a significant antioxidant capacity, comparing to fennel essential oil. Antimicrobial tests showed that the addition of 0.30% (v/v) cinnamon bark essential oil to the edible coating inhibited the growth of Staphylococcus aureus and Salmonella choleraesuis, and 0.30% fennel essential oil inhibited just S. aureus. Treatment with 2% (w/v) of cassava starch containing 0.30% (v/v) of the cinnamon bark essential oil showed barrier properties, an antioxidant capacity and microbial inhibition.

  14. Static and dynamic superheated water extraction of essential oil components from Thymus vulgaris L.

    PubMed

    Dawidowicz, Andrzej L; Rado, Ewelina; Wianowska, Dorota

    2009-09-01

    Superheated water extraction (SWE) performed in both static and dynamic condition (S-SWE and D-SWE, respectively) was applied for the extraction of essential oil from Thymus vulgaris L. The influence of extraction pressure, temperature, time, and flow rate on the total yield of essential oil and the influence of extraction temperature on the extraction of some chosen components are discussed in the paper. The SWE extracts are related to PLE extracts with n-hexane and essential oil obtained by steam distillation. The superheated water extraction in dynamic condition seems to be a feasible option for the extraction of essential oil components from T. vulgaris L.

  15. Effect of Satureja khuzestanica essential oil on oxidative stability of sunflower oil during accelerated storage.

    PubMed

    Hashemi, Mohammad Bagher; Niakousari, Mehrdad; Saharkhiz, Mohammad Jamal; Eskandari, Mohammad Hadi

    2012-01-01

    In this study, the application of various concentrations (0.02%, 0.04%, 0.06% and 0.08%) of Satureja khuzestanica essential oil (EO) was examined on the oxidative stability of sunflower oil and compared to butylated hydroxyanisole (BHA) during storage at 60°C. Gas chromatography (GC) and GC-mass spectrometry analyses of the oils revealed that carvacrol (87.7%) was the major component of EO. Peroxide value and anisidine value measurements in sunflower oil showed that all concentrations of EO had antioxidant effects in comparison to BHA. Oil samples supplemented with EO concentration of 0.08% were the most stable during storage (p < 0.05). EO also was able to reduce the stable free radical 2, 2-diphenyl-1-picrylhydrazyl with a 50% inhibition concentration (IC₅₀) of 31.5 ± 0.6 µg mL⁻¹. Therefore, the results indicate that EO could be used as a natural antioxidant in food lipids.

  16. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil).

    PubMed

    Cox, S D; Mann, C M; Markham, J L; Bell, H C; Gustafson, J E; Warmington, J R; Wyllie, S G

    2000-01-01

    The essential oil of Melaleuca alternifolia (tea tree) exhibits broad-spectrum antimicrobial activity. Its mode of action against the Gram-negative bacterium Escherichia coli AG100, the Gram-positive bacterium Staphylococcus aureus NCTC 8325, and the yeast Candida albicans has been investigated using a range of methods. We report that exposing these organisms to minimum inhibitory and minimum bactericidal/fungicidal concentrations of tea tree oil inhibited respiration and increased the permeability of bacterial cytoplasmic and yeast plasma membranes as indicated by uptake of propidium iodide. In the case of E. coli and Staph. aureus, tea tree oil also caused potassium ion leakage. Differences in the susceptibility of the test organisms to tea tree oil were also observed and these are interpreted in terms of variations in the rate of monoterpene penetration through cell wall and cell membrane structures. The ability of tea tree oil to disrupt the permeability barrier of cell membrane structures and the accompanying loss of chemiosmotic control is the most likely source of its lethal action at minimum inhibitory levels.

  17. Essential oils chemical composition, antioxidant activities and total phenols of Astrodaucus persicus

    PubMed Central

    Goodarzi, Saeid; Hadjiakhoondi, Abbas; Yassa, Narguess; Khanavi, Mahnaz; Tofighi, Zahra

    2016-01-01

    Objective(s): Astrodaucus persicus, Apiaceae, is used as vegetable or food additive in some parts of Iran. The essential oils of different parts of Astrodaucus persicus from Kordestan province were analyzed for the first time and compared with other regions. In this study, antioxidant activities and total phenols determination of aerial parts essential oils and root fractions of A. persicus were investigated. Materials and Methods: The essential oils were obtained by hydro-distillation from flowers/fruits, leaves/stems, ripe fruits and roots of plant and analyzed by GC-MS. Crude root extract was fractionated with hexane, chloroform, ethyl acetate and methanol. Antioxidant activities by DPPH and FRAP methods and total phenols by Folin-ciocalteu assay were measured. Results: The abundant compounds of flowers/fruits blue essential oil were α-thujene, β-pinene and α-pinene. The predominant components of blue leaves/stems essential oil were α-thujene, α-pinene and α-fenchene. The major volatiles of ripe fruits blue essential oil were β-pinene, α-thujene and α-pinene. The chief compounds of root yellow essential oil were trans-caryophyllene, bicycogermacrene and germacrene-D. Total root extract and ethyl acetate fraction showed potent antioxidant activities and high amount of total phenols in comparison to other samples. Among volatile oils, the flowers/fruits essential oil showed potent reducing capacity. Conclusion: The major compounds of aerial parts essential oils were hydrocarbon monoterpenes while the chief percentage of roots essential oil constituents were hydrocarbon sesquiterpenes. α-Eudesmol and β-eudesmol were identified as responsible for creation of blue color in aerial parts essential oils. A. persicus was known as a potent antioxidant among Apiaceae. PMID:27081460

  18. Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars.

    PubMed

    Shahat, Abdelaaty A; Ibrahim, Abeer Y; Hendawy, Saber F; Omer, Elsayed A; Hammouda, Faiza M; Abdel-Rahman, Fawzia H; Saleh, Mahmoud A

    2011-02-01

    Essential oils of the fruits of three organically grown cultivars of Egyptian fennel (Foeniculum vulgare var. azoricum, Foeniculum vulgare var. dulce and Foeniculum vulgare var. vulgare) were examined for their chemical constituents, antimicrobial and antioxidant activities. Gas chromatography/mass spectrometry analysis of the essential oils revealed the presence of 18 major monoterpenoids in all three cultivars but their percentage in each oil were greatly different. trans-Anethole, estragole, fenchone and limonene were highly abundant in all of the examined oils. Antioxidant activities of the essential oils were evaluated using the DPPH radical scavenging, lipid peroxidation and metal chelating assays. Essential oils from the azoricum and dulce cultivars were more effective antioxidants than that from the vulgare cultivar. Antimicrobial activities of each oil were measured against two species of fungi, two species of Gram negative and two species of Gram positive bacteria. All three cultivars showed similar antimicrobial activity.

  19. Comparison of essential oil components and in vitro anticancer activity in wild and cultivated Salvia verbenaca.

    PubMed

    Russo, Alessandra; Cardile, Venera; Graziano, Adriana C E; Formisano, Carmen; Rigano, Daniela; Canzoneri, Marisa; Bruno, Maurizio; Senatore, Felice

    2015-01-01

    The objectives of our research were to study the chemical composition and the in vitro anticancer effect of the essential oil of Salvia verbenaca growing in natural sites in comparison with those of cultivated (Sc) plants. The oil from wild (Sw) S. verbenaca presented hexadecanoic acid (23.1%) as the main constituent, while the oil from Sc plants contained high quantities of hexahydrofarnesyl acetone (9.7%), scarce in the natural oil (0.7%). The growth-inhibitory and proapoptotic effects of the essential oils from Sw and Sc S. verbenaca were evaluated in the human melanoma cell line M14, testing cell vitality, cell membrane integrity, genomic DNA fragmentation and caspase-3 activity. Both the essential oils were able to inhibit the growth of the cancer cells examined inducing also apoptotic cell death, but the essential oil from cultivated samples exhibited the major effects.

  20. Does antioxidant properties of the main component of essential oil reflect its antioxidant properties? The comparison of antioxidant properties of essential oils and their main components.

    PubMed

    Dawidowicz, Andrzej L; Olszowy, Małgorzata

    2014-01-01

    This study discusses the similarities and differences between the antioxidant activities of some essential oils: thyme (Thymus vulgaris), basil (Ocimum basilicum), peppermint (Mentha piperita), clove (Caryophyllus aromaticus), summer savory (Satureja hortensis), sage (Salvia hispanica) and lemon (Citrus limon (L.) Burm.) and of their main components (thymol or estragole or menthol or eugenol or carvacrol or camphor or limonene) estimated by using 2,2'-Diphenyl-1-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and β-carotene bleaching assays. The obtained data show that the antioxidant properties of essential oil do not always depend on the antioxidant activity of its main component, and that they can be modulated by their other components. The conclusions concerning the interaction of essential oil components depend on the type of method applied for assessing the antioxidant activity. When comparing the antioxidant properties of essential oils and their main components, the concepts of synergism, antagonism and additivity are very relevant.

  1. The inhibitory effect of Mesembryanthemum edule (L.) bolus essential oil on some pathogenic fungal isolates

    PubMed Central

    2014-01-01

    Background Mesembryanthemum edule is a medicinal plant which has been indicated by Xhosa traditional healers in the treatment HIV associated diseases such as tuberculosis, dysentery, diabetic mellitus, laryngitis, mouth infections, ringworm eczema and vaginal infections. The investigation of the essential oil of this plant could help to verify the rationale behind the use of the plant as a cure for these illnesses. Methods The essential oil from M. edule was analysed by GC/MS. Concentration ranging from 0.005 - 5 mg/ml of the hydro-distilled essential oil was tested against some fungal strains, using micro-dilution method. The plant minimum inhibitory activity on the fungal strains was determined. Result GC/MS analysis of the essential oil resulted in the identification of 28 compounds representing 99.99% of the total essential oil. A total amount of 10.6 and 36.61% constituents were obtained as monoterpenes and oxygenated monoterpenes. The amount of sesquiterpene hydrocarbons (3.58%) was low compared to the oxygenated sesquiterpenes with pick area of 9.28%. Total oil content of diterpenes and oxygenated diterpenes detected from the essential oil were 1.43% and 19.24%. The fatty acids and their methyl esters content present in the essential oil extract were found to be 19.25%. Antifungal activity of the essential oil extract tested against the pathogenic fungal, inhibited C. albican, C. krusei, C. rugosa, C. glabrata and C. neoformans with MICs range of 0.02-0.31 mg/ml. the activity of the essential oil was found competing with nystatin and amphotericin B used as control. Conclusion Having accounted the profile chemical constituent found in M. edule oil and its important antifungal properties, we consider that its essential oil might be useful in pharmaceutical and food industry as natural antibiotic and food preservative. PMID:24885234

  2. Hydrophobic properties of Candida spp. under the influence of selected essential oils.

    PubMed

    Rajkowska, Katarzyna; Kunicka-Styczyńska, Alina; Pęczek, Marlena

    2015-01-01

    Processes of colonization of biotic and abiotic surfaces and biofilm formation depend inter alia on hydrophobic properties of Candida spp. The aim of this research was to determine the effect of tea tree, thyme and clove essential oils on hydrophobic properties of environmental and clinical Candida isolates. The relative cell surface hydrophobicity of strains tested was high, and ranged from 68.7% to 91.2%, with the highest value for a C. rugosa food-borne strain. The effectiveness of essential oils was diversified and depended on the type of essential oil, concentration and yeast strain. Statistically significant decrease of hydrophobicity indexes was observed after application of tea tree oil for C. krusei, clove oil for C. albicans reference strain, and all essential oils tested for C. rugosa. Only in the case of C. famata food-borne strain and C. albicans clinical isolate, solely used essential oils did not affect their hydrophobic properties. To determine the interactions of essential oils, their mixtures (1 MIC:1 MIC, 1 MIC:2 MIC and 2 MIC:1 MIC) were applied. Generally, essential oils used in combinations influenced yeast's hydrophobic properties much more than applied separately. The essential oils' mixtures reduced hydrophobicity of Candida yeasts in the range of 8.2 to 45.1%, depending on combination and strain. The interaction indexes of essential oils used in combinations predominantly indicate their additive effect. The application of tea tree, thyme and clove essential oils, especially in combinations, decreases hydrophobicity of the tested Candida isolates with implications of a probable advantageous limitation of their ability to colonize the food production industry environment.

  3. Antimicrobial Efficacy of Various Essential Oils at Varying Concentrations against Periopathogen Porphyromonas gingivalis

    PubMed Central

    Grover, Harpreet Singh; Deswal, Himanshu; Agarwal, Preeti

    2016-01-01

    Introduction Porphyromonas gingivalis (P.gingivalis) is a notorious perio-pathogen with the ability to evade host defense mechanism and invade into the periodontal tissues. Many antimicrobial agents have been tested that curb its growth, although these agents tend to produce side effects such as antibiotic resistance and opportunistic infections. Therefore search for naturally occurring anti-microbials with lesser side effects is the need of the hour. Aim The aim of this study was to substantiate the antimicrobial activity of various essential oils; eucalyptus oil, chamomile oil, tea tree oil and turmeric oil against P. gingivalis. Materials and Methods Pure cultures of P. gingivalis were grown on selective blood agar. Antimicrobial efficacy of various concentrations of essential oils (0%, 25%, 50% and 100%) was assessed via disc diffusion test. Zone of inhibition were measured around disc after 48 hours in millimeters. Results Zones of inhibition were directly proportional to the concentration of essential oils tested. At 100% concentration all the tested oils possess antimicrobial activity against P.gingivalis with eucalyptus oil being most effective followed by tea tree oil, chamomile oil and turmeric oil. Conclusion All essential oils tested were effective against P.gingivalis. After testing for their clinical safety they could be developed into local agents to prevent and treat periodontitis. PMID:27790572

  4. Antimicrobial properties of microemulsions formulated with essential oils, soybean oil, and Tween 80.

    PubMed

    Ma, Qiumin; Davidson, P Michael; Zhong, Qixin

    2016-06-02

    It was previously found that blending soybean oil with cinnamon bark oil (CBO), eugenol or thyme oil, Tween 80, and equal masses of water and propylene glycol could be used to prepare microemulsions. In the present study, the objective was to determine the antimicrobial activity of the microemulsions in tryptic soy broth (TSB) and 2% reduced fat milk. In TSB, the minimum inhibitory concentration (MIC) of CBO solubilized in microemulsions was up to 625 ppm against cocktails of Listeria monocytogenes, Salmonella enterica or Escherichia coli O157:H7, which was equal to or higher in concentration than free CBO dissolved in ethanol. However, MICs of eugenol or thyme oil in microemulsions were much higher than that of free antimicrobials. Therefore, microemulsions of CBO were chosen to do further study. Inactivation curves of L. monocytogenes or E. coli O157:H7 in TSB or 2% reduced fat milk were tested and fitted using the Weibull model. In TSB, a gradual decrease in cell viability of L. monocytogenes and E. coli O157:H7 was observed with the microemulsion treatments at 625 ppm CBO, which was in contrast to the more rapid and greater inactivation by free CBO. Gradual inactivation of L. monocytogenes in 2% reduced fat milk was also observed in the treatment with 10,000 ppm free or microemulsified CBO. When fitted using the Weibull model, the predicted time to obtain a 3-log decrease of L. monocytogenes and E. coli O157:H7 in TSB or 2% reduced fat milk increased with an increased amount of soybean oil in microemulsions. Additionally, increasing the amount of Tween 80 in mixtures with different mass ratios of Tween 80 and essential oils significantly decreased the log reductions of L. monocytogenes in TSB. Our study showed that microemulsions can be used to dissolve EOs and control the rate of inactivating bacteria, but the composition of microemulsions is to be carefully chosen to minimize the reduction of antimicrobial activities.

  5. Toxicity of twenty-two plant essential oils against pathogenic bacteria of vegetables and mushrooms.

    PubMed

    Todorović, Biljana; Potočnik, Ivana; Rekanović, Emil; Stepanović, Miloš; Kostić, Miroslav; Ristić, Mihajlo; Milijašević-Marčić, Svetlana

    2016-12-01

    ASBTRACT Toxicity of twenty-two essential oils to three bacterial pathogens in different horticultural systems: Xanthomonas campestris pv. phaseoli (causing blight of bean), Clavibacter michiganensis subsp. michiganensis (bacterial wilt and canker of tomato), and Pseudomonas tolaasii (causal agent of bacterial brown blotch on cultivated mushrooms) was tested. Control of bacterial diseases is very difficult due to antibiotic resistance and ineffectiveness of chemical products, to that essential oils offer a promising alternative. Minimal inhibitory and bactericidal concentrations are determined by applying a single drop of oil onto the inner side of each plate cover in macrodilution assays. Among all tested substances, the strongest and broadest activity was shown by the oils of wintergreen (Gaultheria procumbens), oregano (Origanum vulgare), and lemongrass (Cymbopogon flexuosus. Carvacrol (64.0-75.8%) was the dominant component of oregano oils, while geranial (40.7%) and neral (26.7%) were the major constituents of lemongrass oil. Xanthomonas campestris pv. phaseoli was the most sensitive to plant essential oils, being susceptible to 19 oils, while 11 oils were bactericidal to the pathogen. Sixteen oils inhibited the growth of Clavibacter michiganensis subsp. michiganensis and seven oils showed bactericidal effects to the pathogen. The least sensitive species was Pseudomonas tolaasii as five oils inhibited bacterial growth and two oils were bactericidal. Wintergreen, oregano, and lemongrass oils should be formulated as potential biochemical bactericides against different horticultural pathogens.

  6. Evaluation of Eucalyptus citriodora essential oil on goat gastrointestinal nematodes.

    PubMed

    Macedo, Iara Tersia Freitas; Bevilaqua, Claudia Maria Leal; de Oliveira, Lorena Mayana Beserra; Camurça-Vasconcelos, Ana Lourdes Fernandes; Vieira, Luiz da Silva; Amóra, Sthenia Dos Santos Albano

    2011-01-01

    Phytotherapy may be an alternative strategy for controlling gastrointestinal parasites. This study evaluated the anthelmintic efficacy of Eucalyptus citriodora essential oil (EcEO). The in vitro effects of EcEO were determined through testing the inhibition of egg hatching and larval development of Haemonchus contortus. EcEO was subjected to acute toxicity testing on mice, orally and intraperitoneally. The in vivo effects of EcEO were determined by the fecal egg count reduction test (FECRT) in goats infected with gastrointestinal nematodes. The results showed that 5.3 mg.mL(-1) EcEO inhibited egg hatching by 98.8% and 10.6 mg.mL(-1) EcEO inhibited H. contortus larval development by 99.71%. The lethal doses for 50% of the mice were 4153 and 622.8 mg.kg(-1), for acute toxicity orally and intraperitoneally. In the FECRT, the efficacy of EcEO and ivermectin was 66.25 and 79.16% respectively, on goat gastrointestinal nematodes eight days after treatment. EcEO showed in vitro and in vivo anthelmintic activity.

  7. Airborne antituberculosis activity of Eucalyptus citriodora essential oil.

    PubMed

    Ramos Alvarenga, René F; Wan, Baojie; Inui, Taichi; Franzblau, Scott G; Pauli, Guido F; Jaki, Birgit U

    2014-03-28

    The rapid emergence of multi- and extensively drug-resistant tuberculosis (MDR/XDR-TB) has created a pressing public health problem, which mostly affects regions with HIV/AIDS prevalence and represents a new constraint in the already challenging disease management of tuberculosis (TB). The present work responds to the need to reduce the number of contagious MDR/XRD-TB patients, protect their immediate environment, and interrupt the rapid spread by laying the groundwork for an inhalation therapy based on anti-TB-active constituents of the essential oil (EO) of Eucalyptus citriodora. In order to address the metabolomic complexity of EO constituents and active principles in botanicals, this study applied biochemometrics, a 3-D analytical approach that involves high-resolution CCC fractionation, GC-MS analysis, bioactivity measurements, and chemometric analysis. Thus, 32 airborne anti-TB-active compounds were identified in E. citriodora EO: the monoterpenes citronellol (1), linalool (3), isopulegol (5), and α-terpineol (7) and the sesquiterpenoids spathulenol (11), β-eudesmol (23), and τ-cadinol (25). The impact of the interaction of multiple components in EOs was studied using various artificial mixtures (AMxs) of the active monoterpenes 1, 2, and 5 and the inactive eucalyptol (33). Both neat 1 and the AMx containing 1, 2, and 33 showed airborne TB inhibition of >90%, while the major E. citriodora EO component, 2, was only weakly active, at 18% inhibition.

  8. Chemical Variability and Biological Activities of Eucalyptus spp. Essential Oils.

    PubMed

    Barbosa, Luiz Claudio Almeida; Filomeno, Claudinei Andrade; Teixeira, Robson Ricardo

    2016-12-07

    Many plant species produce mixtures of odorous and volatile compounds known as essential oils (EOs). These mixtures play important roles in Nature and have been utilized by mankind for different purposes, such as pharmaceuticals, agrochemicals, aromatherapy, and food flavorants. There are more than 3000 EOs reported in the literature, with approximately 300 in commercial use, including the EOs from Eucalyptus species. Most EOs from Eucalyptus species are rich in monoterpenes and many have found applications in pharmaceuticals, agrochemicals, food flavorants, and perfumes. Such applications are related to their diverse biological and organoleptic properties. In this study, we review the latest information concerning the chemical composition and biological activities of EOs from different species of Eucalyptus. Among the 900 species and subspecies of the Eucalyptus genus, we examined 68 species. The studies associated with these species were conducted in 27 countries. We have focused on the antimicrobial, acaricidal, insecticidal and herbicidal activities, hoping that such information will contribute to the development of research in this field. It is also intended that the information described in this study can be useful in the rationalization of the use of Eucalyptus EOs as components for pharmaceutical and agrochemical applications as well as food preservatives and flavorants.

  9. Effects of Mentha suaveolens essential oil on Chlamydia trachomatis.

    PubMed

    Sessa, Rosa; Di Pietro, Marisa; De Santis, Fiorenzo; Filardo, Simone; Ragno, Rino; Angiolella, Letizia

    2015-01-01

    Chlamydia trachomatis, the most common cause of sexually transmitted bacterial infection worldwide, has a unique biphasic developmental cycle alternating between the infectious elementary body and the replicative reticulate body. C. trachomatis is responsible for severe reproductive complications including pelvic inflammatory disease, ectopic pregnancy, and obstructive infertility. The aim of our study was to evaluate whether Mentha suaveolens essential oil (EOMS) can be considered as a promising candidate for preventing C. trachomatis infection. Specifically, we investigated the in vitro effects of EOMS towards C. trachomatis analysing the different phases of chlamydial developmental cycle. Our results demonstrated that EOMS was effective towards C. trachomatis, whereby it not only inactivated infectious elementary bodies but also inhibited chlamydial replication. Our study also revealed the effectiveness of EOMS, in combination with erythromycin, towards C. trachomatis with a substantial reduction in the minimum effect dose of antibiotic. In conclusion, EOMS treatment may represent a preventative strategy since it may reduce C. trachomatis transmission in the population and, thereby, reduce the number of new chlamydial infections and risk of developing of severe sequelae.

  10. Antioxidative properties of the essential oil from Pinus mugo.

    PubMed

    Grassmann, Johanna; Hippeli, Susanne; Vollmann, Renate; Elstner, Erich F

    2003-12-17

    The essential oil from Pinus mugo (PMEO) was tested on its antioxidative capacity. For this purpose, several biochemical test systems were chosen (e.g., the Fenton System, the xanthine oxidase assay, or the copper-induced oxidation of low-density lipoprotein (LDL)). The results show that there is moderate or weak antioxidative activity when tested in aqueous environments, like in the Fenton system, xanthine oxidase induced superoxide radical formation, or in the HOCl driven fragmentation of 1-aminocyclopropane-1-carboxylic acid (ACC). In contrast, when tested in more lipophilic environments (e.g., the ACC-cleavage by activated neutrophils in whole blood) the PMEO exhibits good antioxidative activity. PMEO does also show good antioxidative capacity in another lipophilic test system (i.e., the copper induced oxidation of LDL). Some components of PMEO (i.e., Delta(3)-carene, camphene, alpha-pinene, (+)-limonene and terpinolene) were also tested. As the PMEO, they showed weak or no antioxidant activity in aqueous environments, but some of them were effective antioxidants regarding ACC-cleavage by activated neutrophils in whole blood or copper-induced LDL-oxidation. Terpinolene, a minor component of PMEO, exhibited remarkable protection against LDL-oxidation.

  11. Chemical composition and antigenotoxic properties of Lippia alba essential oils

    PubMed Central

    López, Molkary Andrea; Stashenko, Elena E.; Fuentes, Jorge Luis

    2011-01-01

    The present work evaluated the chemical composition and the DNA protective effect of the essential oils (EOs) from Lippia alba against bleomycin-induced genotoxicity. EO constituents were determined by Gas Chromatography/Mass Spectrometric (GC-MS) analysis. The major compounds encountered being citral (33% geranial and 25% neral), geraniol (7%) and trans-β-caryophyllene (7%) for L. alba specimen COL512077, and carvone (38%), limonene (33%) and bicyclosesquiphellandrene (8%) for the other, COL512078. The genotoxicity and antigenotoxicity of EO and the compounds citral, carvone and limonene, were assayed using the SOS Chromotest in Escherichia coli. The EOs were not genotoxic in the SOS chromotest, but one of the major compound (limonene) showed genotoxicity at doses between 97 and 1549 mM. Both EOs protected bacterial cells against bleomycin-induced genotoxicity. Antigenotoxicity in the two L. alba chemotypes was related to the major compounds, citral and carvone, respectively. The results were discussed in relation to the chemopreventive potential of L. alba EOs and its major compounds. PMID:21931523

  12. Antibacterial, antifungal, and antiviral effects of three essential oil blends.

    PubMed

    Brochot, Amandine; Guilbot, Angèle; Haddioui, Laïla; Roques, Christine

    2017-03-14

    New agents that are effective against common pathogens are needed particularly for those resistant to conventional antimicrobial agents. Essential oils (EOs) are known for their antimicrobial activity. Using the broth microdilution method, we showed that (1) two unique blends of Cinnamomum zeylanicum, Daucus carota, Eucalyptus globulus and Rosmarinus officinalis EOs (AB1 and AB2; cinnamon EOs from two different suppliers) were active against the fourteen Gram-positive and -negative bacteria strains tested, including some antibiotic-resistant strains. Minimal inhibitory concentrations (MICs) ranged from 0.01% to 3% v/v with minimal bactericidal concentrations from <0.01% to 6.00% v/v; (2) a blend of Cinnamomum zeylanicum, Daucus carota, Syzygium aromaticum, Origanum vulgare EOs was antifungal to the six Candida strains tested, with MICs ranging from 0.01% to 0.05% v/v with minimal fungicidal concentrations from 0.02% to 0.05% v/v. Blend AB1 was also effective against H1N1 and HSV1 viruses. With this dual activity, against H1N1 and against S. aureus and S. pneumoniae notably, AB1 may be interesting to treat influenza and postinfluenza bacterial pneumonia infections. These blends could be very useful in clinical practice to combat common infections including those caused by microorganisms resistant to antimicrobial drugs.

  13. Chemical composition and antigenotoxic properties of Lippia alba essential oils.

    PubMed

    López, Molkary Andrea; Stashenko, Elena E; Fuentes, Jorge Luis

    2011-07-01

    The present work evaluated the chemical composition and the DNA protective effect of the essential oils (EOs) from Lippia alba against bleomycin-induced genotoxicity. EO constituents were determined by Gas Chromatography/Mass Spectrometric (GC-MS) analysis. The major compounds encountered being citral (33% geranial and 25% neral), geraniol (7%) and trans-β-caryophyllene (7%) for L. alba specimen COL512077, and carvone (38%), limonene (33%) and bicyclosesquiphellandrene (8%) for the other, COL512078. The genotoxicity and antigenotoxicity of EO and the compounds citral, carvone and limonene, were assayed using the SOS Chromotest in Escherichia coli. The EOs were not genotoxic in the SOS chromotest, but one of the major compound (limonene) showed genotoxicity at doses between 97 and 1549 mM. Both EOs protected bacterial cells against bleomycin-induced genotoxicity. Antigenotoxicity in the two L. alba chemotypes was related to the major compounds, citral and carvone, respectively. The results were discussed in relation to the chemopreventive potential of L. alba EOs and its major compounds.

  14. Larvicidal activity of Brazilian plant essential oils against Coenagrionidae larvae.

    PubMed

    Silva, D T; Silva, L L; Amaral, L P; Pinheiro, C G; Pires, M M; Schindler, B; Garlet, Q I; Benovit, S C; Baldisserotto, B; Longhi, S J; Kotzian, C B; Heinzmann, B M

    2014-08-01

    Odonate larvae can be serious pests that attack fish larvae, postlarvae, and fingerlings in fish culture tanks, causing significant loss in the supply and production of juveniles. This study reports a screen of the essential oils (EOs) of Nectandra megapotamica (Sprengel) Mez, Nectandra grandiflora Nees, Hesperozygis ringens (Bentham) Epling, Ocimum gratissimum L., Aloysia gratissima (Gillies & Hooker) Troncoso, and Lippia sidoides Chamisso against Coenagrionidae larvae. In addition, the most effective EO and its 50% lethal concentration (LC50) and chemical analysis are described. The larvae of Acanthagrion Selys, Homeoura Kennedy, Ischnura Charpentier, and Oxyagrion Selys were used to assess the EO effects. EO obtained from H. ringens, O. gratissimum, and L. sidoides showed the highest larvicidal effects at 19 h of treatment. The major constituents of the EO of H. ringens include pulegone and limonene, while eugenol and Z-beta-ocimene predominate in the EO of O. gratissimum, and carvacrol and rho-cymene were the major compounds of the EO of L. sidoides. Leaf EOs from H. ringens, O. gratissimum, and L. sidoides showed activity against Coenagrionidae larvae at similar concentrations with LC50s of 62.92, 75.05, and 51.65 microl liter(-1), respectively, and these were considered the most promising treatments.

  15. Activity of Matricaria chamomilla essential oil against anisakiasis.

    PubMed

    Romero, Maria del Carmen; Valero, Adela; Martín-Sánchez, Joaquina; Navarro-Moll, María Concepción

    2012-04-15

    The increase in diagnosed cases of anisakiasis and the virtual absence of effective treatments have prompted the search for new active compounds against Anisakis L(3) larvae. The biocidal efficacy against different pathogens shown by various essential oils (EO) led us to study the Matricaria chamomilla EO and two of its main components (chamazulene and α-bisabolol) against the L(3) larvae of Anisakis type I. The activity of M. chamomilla EO, chamazulene and α-bisabolol was established by in vitro and in vivo experiments. The EO (125μg/ml) caused the death of all nematodes, which showed cuticle changes and intestinal wall rupture. In the in vivo assays, only 2.2%±1.8 of infected rats treated with M. chamomilla EO showed gastric wall lesions in comparison to 93.3%±3.9 of control. Chamazulene was ineffective, while α-bisabolol showed a high activity to that of the EO in vitro tests but proved less active in vivo. These findings suggest that the larvicidal activity may result from the synergistic action of different compounds of M. chamomilla EO. Neither of the tested products induces irritative damage in the intestinal tissues. In conclusion, M. chamomilla EO is a good candidate for further investigation as a biocidal agent against Anisakis type I.

  16. Antiatherogenic activity of Dendropanax morbifera essential oil in rats.

    PubMed

    Chung, Ill-Min; Kim, Min Young; Park, Won-Hwan; Moon, Hyung-In

    2009-08-01

    In Korea, Dendropanax morbifera Leveille (Araliaceae) is commonly used in traditional medicines for various diseases. We evaluated the hypolipidemic activity of D. morbifera essential oil (DMEO) in male Wistar rats (weight, 160 +/- 15 g) maintained on a high-cholesterol diet. DMEO was extracted by hydrodistillation and analyzed using gas chromatography/mass spectroscopy (GC/MS). The DMEO yield was 3.5%, and GC/MS analysis revealed that its major constituents were gamma-elemene (18.59%), tetramethyltricyclo hydrocarbons (10.82%), beta-zingiberene (10.52%), and beta-selinene (10.41%). Rats were orally administered DMEO at doses of 50, 100, and 200 mg kg(-1) d(-1) for 2 weeks. DMEO significantly and dose-dependently reduced the total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels and significantly increased the high-density lipoprotein cholesterol levels. We conclude that D. morbifera has significant lipid-lowering effects and is a promising agent that should be considered in studies seeking new, safe, and effective natural cardioprotective agents.

  17. Neurobehavioral effect of essential oil of Cymbopogon citratus in mice.

    PubMed

    Blanco, M M; Costa, C A R A; Freire, A O; Santos, J G; Costa, M

    2009-03-01

    Tea obtained from leaves of Cymbopogon citratus (DC) Stapf is used for its anxiolytic, hypnotic and anticonvulsant properties in Brazilian folk medicine. Essential oil (EO) from fresh leaves was obtained by hydrodistillation and orally administered to Swiss male mice 30 min before experimental procedures. EO at 0.5 or 1.0 g/kg was evaluated for sedative/hypnotic activity through pentobarbital sleeping time, anxiolytic activity by elevated plus maze and light/dark box procedures and anticonvulsant activity through seizures induced by pentylenetetrazole and maximal electroshock. EO was effective in increasing the sleeping time, the percentage of entries and time spent in the open arms of the elevated plus maze as well as the time spent in the light compartment of light/dark box. In addition, EO delayed clonic seizures induced by pentylenetetrazole and blocked tonic extensions induced by maximal electroshock, indicating the elevation of the seizure threshold and/or blockage of seizures spread. These effects were observed in the absence of motor impairment evaluated on the rotarod and open field test. Our results are in accord with the ethnopharmacological use of Cymbopogon citratus, and after complementary toxicological studies it can support investigations assessing their use as anxiolytic, sedative or anticonvulsive agent.

  18. Essential oil nanoemulsions as antimicrobial agents in food.

    PubMed

    Donsì, Francesco; Ferrari, Giovanna

    2016-09-10

    The crescent interest in the use of essential oils (EOs) as natural antimicrobials and preservatives in the food industry has been driven in the last years by the growing consumers' demand for natural products with improved microbial safety, and fresh-like organoleptic properties. Nanoemulsions efficiently contribute to support the use of EOs in foods by increasing their dispersibility in the food areas where microorganisms grow and proliferate, by reducing the impact on the quality attributes of the product, as well as by enhancing their antimicrobial activity. Understanding how nanoemulsions intervene on the mass transfer of EOs to the cell membrane and on the mechanism of antimicrobial action will support the engineering of more effective delivery systems and foster the application of EOs in real food systems. This review focuses on the enabling contribution of nanoemulsions to the use of EOs as natural preservative agents in food, (a) specifically addressing the formulation and fabrication of stable EO nanoemulsions, (b) critically analyzing the reported antimicrobial activity data, both in vitro and in product, to infer the impact of the delivery system on the mechanisms of action of EOs, as well as (c) discussing the regulatory issues associated with their use in food systems.

  19. Stabilization of sunflower oil with Carum copticum Benth & Hook essential oil.

    PubMed

    Hashemi, Mohammad Bagher; Niakousari, Mehrdad; Saharkhiz, Mohammad Jamal; Eskandari, Mohammad Hadi

    2014-01-01

    In this study, application of various concentrations (0.025%, 0.05% and 0.075%) of Carum copticum essential oil (EO) were examined on oxidative stability of sunflower oil and there were compared to Butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) during storage at 37 and 47 °C. The main compounds of EO were identified as thymol (50.07%), γ- terpinene (23.92%) and p-cymene (22.9%). Peroxide value (PV), anisidine value (AnV) and thiobarbituric acid (TBA) value measurement in sunflower oil showed that all concentrations of EO had antioxidant effect in comparison to BHA and BHT. Samples added with EO at 0.075% were the most stable during storage at both temperatures (P < 0.05). Furthermore, Totox value, antioxidant activity (AA), stabilization factor (F) and antioxidant power (AOP) determination confirmed efficacy of this EO as antioxidant in sunflower oil. EO also was able to reduce the stable free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH) with a 50% inhibition concentration (IC50) of 20.3 ± 0.9 μg/mL. Therefore, the results indicate that EO could be used as a natural antioxidant in food lipids.

  20. Application of Volatile Antifungal Plant Essential Oils for Controlling Pepper Fruit Anthracnose by Colletotrichum gloeosporioides

    PubMed Central

    Hong, Jeum Kyu; Yang, Hye Ji; Jung, Heesoo; Yoon, Dong June; Sang, Mee Kyung; Jeun, Yong-Chull

    2015-01-01

    Anthracnose caused by Colletotrichum gloeosporioides has been destructive during pepper fruit production in outdoor fields in Korea. In vitro antifungal activities of 15 different plant essential oils or its components were evaluated during conidial germination and mycelial growth of C. gloeosporioides. In vitro conidial germination was most drastically inhibited by vapour treatments with carvacrol, cinnamon oil, trans-cinnamaldehyde, citral, p-cymene and linalool. Inhibition of the mycelial growth by indirect vapour treatment with essential oils was also demonstrated compared with untreated control. Carvacrol, cinnamon oil, trans-cinnamaldehyde, citral and eugenol were among the most inhibitory plant essential oils by the indirect antifungal efficacies. Plant protection efficacies of the plant essential oils were demonstrated by reduced lesion diameter on the C. gloeosporioides-inoculated immature green pepper fruits compared to the inoculated control fruits without any plant essential oil treatment. In planta test showed that all plant essential oils tested in this study demonstrated plant protection efficacies against pepper fruit anthracnose with similar levels. Thus, application of different plant essential oils can be used for eco-friendly disease management of anthracnose during pepper fruit production. PMID:26361475

  1. Method for attaining rosemary essential oil with differential composition from dried or fresh material.

    PubMed

    Zheljazkov, Valtcho D; Astatkie, Tess; Zhalnov, Ivan; Georgieva, Tonya D

    2015-01-01

    Rosemary (Rosemarinus officinalis L.) is a well-known medicinal and essential oil plant, utilized by humankind since ancient times. The objective was to determine the effect of steam distillation time (DT) and material (dry or fresh biomass) on essential oil yield, composition, and bioactivity; and to develop regression models that can predict oil yield and composition at specific DT. The oil yield (content) from dry biomass was higher (0.43%) than that from fresh biomass (0.35%) and ranged from 0.18% in the 1.25 min DT to 0.51% in the 40 min DT. There was no yield advantage in extending the DT beyond 40 min, which is much shorter than the DT used by industry. In this study, the antioxidant capacity of the rosemary oil using the ORACoil method was 4,108 μmolVE/L. Rosemary oil did not exhibit significant antileishmanial, antimalarial, or antimicrobial activity. In general, the low-boiling constituents eluted earlier than the higher boiling constituents of the essential oil, resulting in a great variation of essential oil composition obtained at different DT. The most important constituents are α-pinene, eucalyptol, and camphor. The highest α-pinene concentration in the oil (30.4%) was obtained from dry biomass at 2.5 min DT; eucalyptol (23.3% of the total oil) from fresh biomass at 2.5 min DT; and camphor (15.9% of the total oil) from fresh biomass at 160 min DT. The DT could be used as an inexpensive tool to alter essential oil composition of the essential oil from fresh or dried rosemary biomass, and to produce rosemary oils with elevated or lowered concentration of specific targeted oil constituents to meet specific market demands.

  2. Antimicrobial activity of essential oils against E. coli O157:H7 in organic soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil can be a significant source of preharvest contamination of produce by pathogens. Demand for natural pesticides such as essential oils for organic farming continues to increase. Antimicrobial activity of essential oils in vitro has been well documented, but there is no information about their ef...

  3. Biocontrol of E. coli O157:H7 in organic soil using essential oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil can be a significant source of preharvest contamination of produce by pathogens. Demand for natural pesticides such as essential oils for organic farming continues to increase. Antimicrobial activity of essential oils in vitro has been well documented, but there is no information about their ef...

  4. Chemical composition and biological activity of the essential oil of rhizome of Zingiber zerumbet (L.) smith

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: The aim was designed to study the biological activity and chemical composition of essential oil of Zingiber zerumbet (L.) Smith. The essential oil extracted from the rhizome of the plant was analysed by gas chromatography-mass spectroscopy and its major components amounting t...

  5. Antifungal activity of the essential oil from Calendula officinalis L. (asteraceae) growing in Brazil

    PubMed Central

    Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Diógenes Aparicio Garcia

    2008-01-01

    This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested. PMID:24031180

  6. Evaluation of three essential oils as potential sources of botanical fungicides.

    PubMed

    Kouassi, K H S; Bajji, M; Zhiri, A; Lepoivre, P; Jijakli, M H

    2010-01-01

    In previous study, thirty essential oils were evaluated in vitro against two citrus pathogens namely Penicillium italicum Wehmer and Penicillium digitatum Sacc. Essential oils of Cinnamomum zeylanicum, Cinnamomum verum and Eugenia caryophyllus were selected because of their high inhibitory activities against both pathogens. The present study was undertaken to evaluate the in vivo activity of these essential oils. Fresh orange fruits were wounded and treated with different concentrations of essential oil (0.5, 1, and 5%) before being infected at the wound site with conidia suspensions of the tested pathogens. When applied at 5%, essential oils tested controlled totally the infections. Among the three essential oils tested, C. zeylanicum seems particularly interesting because of its high protection activity at 1% compare to the others. It reduced the disease incidence from 40 to 70% and the disease severity from 65 to 82%. Moreover no visible damage burn induced on the orange cuticle or skin was observed up to 5% of essential oil. These results strengthen the potential use of essential oils in postharvest disease management of citrus fruit as alternative to chemical fungicides.

  7. Phoenix dactylifera L. spathe essential oil: Chemical composition and repellent activity against the yellow fever mosquito

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Date palm, Phoenix dactylifera L. (Arecaceae), grows commonly in the Arabian Peninsula and is traditionally used to treat various diseases. The aim of the present study was to identify chemical composition of the essential oil and to investigate the repellent activity. The essential oil of P. dacty...

  8. Eupatorium capillifolium essential oil: chemical composition antifungal activity and insecticidal activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural plant extracts often contain compounds that are useful in pest management applications. The essential oil of Eupatorium capillifolium (dog-fennel) was investigated for antifungal and insecticidal activities. Essential oil obtained by hydrodistillation of aerial parts was analyzed by gas chro...

  9. Enantiomeric distribution of some linalool containing essential oils and their biological activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enantiomeric composition of linalool was determined in 42 essential oils using chiral columns. Essential oils were analyzed by multidimentional gas chromatography-mass spectrometry using a non-chiral and chiral FSC column combination with modified '-cyclodextrine (Lipodex E) as the chiral statio...

  10. Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China.

    PubMed

    Haiyan, Gong; Lijuan, He; Shaoyu, Li; Chen, Zhang; Ashraf, Muhammad Aqeel

    2016-07-01

    In the study, we evaluated chemical composition and antimicrobial, antibiofilm, and antitumor activities of essential oils from dried leaf essential oil of leaf and flower of Agastache rugosa for the first time. Essential oil of leaf and flower was evaluated with GC and GC-MS methods, and the essential oil of flower revealed the presence of 21 components, whose major compounds were pulegone (34.1%), estragole (29.5%), and p-Menthan-3-one (19.2%). 26 components from essential oil of leaf were identified, the major compounds were p-Menthan-3-one (48.8%) and estragole (20.8%). At the same time, essential oil of leaf, there is a very effective antimicrobial activity with MIC ranging from 9.4 to 42 μg ml(-1) and potential antibiofilm, antitumor activities for essential oils of flower and leaf essential oil of leaf. The study highlighted the diversity in two different parts of A. rugosa grown in Xinjiang region and other places, which have different active constituents. Our results showed that this native plant may be a good candidate for further biological and pharmacological investigations.

  11. The Sensitivity of Endodontic Enterococcus spp. Strains to Geranium Essential Oil.

    PubMed

    Łysakowska, Monika E; Sienkiewicz, Monika; Banaszek, Katarzyna; Sokołowski, Jerzy

    2015-12-21

    Enterococci are able to survive endodontic procedures and contribute to the failure of endodontic therapy. Thus, it is essential to identify novel ways of eradicating them from infected root canals. One such approach may be the use of antimicrobials such as plant essential oils. Enterococcal strains were isolated from endodontically treated teeth by standard microbiological methods. Susceptibility to antibiotics was evaluated by the disc-diffusion method. The minimal inhibitory concentration (MIC) of geranium essential oil was investigated by microdilution in 96-well microplates in Mueller Hinton Broth II. Biofilm eradication concentrations were checked in dentin tests. Geranium essential oil inhibited enterococcal strains at concentrations ranging from 1.8-4.5 mg/mL. No correlation was shown between resistance to antibiotics and the MICs of the test antimicrobials. The MICs of the test oil were lower than those found to show cytotoxic effects on the HMEC-1 cell line. Geranium essential oil eradicated enterococcal biofilm at concentrations of 150 mg/mL. Geranium essential oil inhibits the growth of endodontic enterococcal species at lower concentrations than those required to reach IC50 against the HMEC-1 cell line, and is effective against bacteria protected in biofilm at higher concentrations. In addition, bacteria do not develop resistance to essential oils. Hence, geranium essential oil represents a possible alternative to other antimicrobials during endodontic procedures.

  12. Behavioral effects of plant essential oils on Ceratitis capitata males – risk versus reward

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant essential oils have a number of roles in insect pest management. For male Ceratitis capitata, these roles include male-targeted attractants for traps and aromatherapy exposure for increased mating success. Essential oils that affect C. capitata behavior may be from either host or non-host pl...

  13. Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...

  14. Trypanocidal and cytotoxic activities of essential oils from medicinal plants of Northeast of Brazil.

    PubMed

    Borges, Andrezza Raposo; Aires, Juliana Ramos de Albuquerque; Higino, Taciana Mirely Maciel; de Medeiros, Maria das Graças Freire; Citó, Antonia Maria das Graças Lopes; Lopes, José Arimatéia Dantas; de Figueiredo, Regina Celia Bressan Queiroz

    2012-10-01

    Chagas disease, caused by Trypanosoma cruzi, is an important cause of mortality and morbidity in Latin America. There are no vaccines available, the chemotherapy used to treat this illness has serious side effects and its efficacy on the chronic phase of disease is still a matter of debate. In a search for alternative treatment for Chagas disease, essential oils extracted from traditional medicinal plants Lippia sidoides, Lippia origanoides, Chenopodium ambrosioides, Ocimum gratissimum, Justicia pectorales and Vitex agnus-castus were investigated in vitro for trypanocidal and cytotoxic activities. Essential Oils were extracted by hydrodistillation and submitted to chemical analysis by gas chromatography/mass spectrometry. The concentration of essential oils necessary to inhibit 50% of the epimastigotes or amastigotes growth (IC(50)) and to kill 50% of trypomastigote forms (LC(50)) was estimated. The most prevalent chemical constituents of these essential oils were monoterpenes and sesquiterpenes. All essential oils tested demonstrated an inhibitory effect on the parasite growth and survival. L. sidoides and L. origanoides essential oils were the most effective against trypomastigote and amastigote forms respectively. No significant cytotoxic effects were observed in mouse peritoneal macrophages incubated with essential oils which were more selective against the parasites than mammalian cells. Taken together, our results point towards the use of these essential oils as potential chemotherapeutic agent against T. cruzi.

  15. Study of quantitative and qualitative variations in essential oils of Sicilian Rosmarinus officinalis L.

    PubMed

    Tuttolomondo, Teresa; Dugo, Giacomo; Ruberto, Giuseppe; Leto, Claudio; Napoli, Edoardo M; Cicero, Nicola; Gervasi, Teresa; Virga, Giuseppe; Leone, Raffaele; Licata, Mario; La Bella, Salvatore

    2015-01-01

    In this study the chemical characterisation of 10 Sicilian Rosmarinus officinalis L. biotypes essential oils is reported. The main goal of this work was to analyse the relationship between the essential oils yield and the geographical distribution of the species plants. The essential oils were analysed by GC-FID and GC-MS. Hierarchical cluster analysis and principal component analysis statistical methods were used to cluster biotypes according to the essential oils chemical composition. The essential oil yield ranged from 0.8 to 2.3 (v/w). In total 82 compounds have been identified, these represent 96.7-99.9% of the essential oil. The most represented compounds in the essential oils were 1.8-cineole, linalool, α-terpineol, verbenone, α-pinene, limonene, bornyl acetate and terpinolene. The results show that the essential oil yield of the 10 biotypes is affected by the environmental characteristics of the sampling sites while the chemical composition is linked to the genetic characteristics of different biotypes.

  16. Nutrigenomics of essential oils and their potential domestic use for improving health.

    PubMed

    Cayuela Sánchez, José Antonio; Elamrani, Abdelaziz

    2014-11-01

    The use of essential oils as industrial food additives is notorious, like their medicinal properties. However, their use in household food spicing is for now limited. In this work, we have made a review to reveal the nutrigenomic actions exerted by their bioactive components, to promote awareness of their modulating gene expression ability and the potential that this implies. Also considered is how essential oils can be used as flavoring and seasoning after cooking and before consumption, such as diet components which can improve human health. Genetic mechanisms involved in the medicinal properties of essential oils for food use are identified from literature. These genetic mechanisms reveal nutrigenomic actions. Reviews on the medicinal properties of essential oils have been particularly considered. A wide diversity of nutrigenomic effects from essential oils useful potentially for food spicing is reviewed. General ideas are discussed about essential oils and their properties, such as anti-inflammatory, analgesic, immunomodulatory, anticancer, hepatoprotective, hypolipidemic, anti-diabetic, antioxidant, bone-reparation, anti-depressant and mitigatory for Alzheimer's disease. The essential oils for food use are potentially promoting health agents, and, therefore, worth using as flavoring and condiments. Becoming aware of the modulating gene expression actions from essential oils is important for understanding their potential for use in household dishes as spices to improve health.

  17. Antimicrobial Activity of Individual and Combined Essential Oils against Foodborne Pathogenic Bacteria.

    PubMed

    Reyes-Jurado, Fatima; López-Malo, Aurelio; Palou, Enrique

    2016-02-01

    The antimicrobial activities of essential oils from Mexican oregano (Lippia berlandieri Schauer), mustard (Brassica nigra), and thyme (Thymus vulgaris) were evaluated alone and in binary combinations against Listeria monocytogenes, Staphylococcus aureus, or Salmonella Enteritidis. Chemical compositions of the essential oils were analyzed by gas chromatography-mass spectrometry. The MICs of the evaluated essential oils ranged from 0.05 to 0.50% (vol/vol). Mustard essential oil was the most effective, likely due to the presence of allyl isothiocyanate, identified as its major component. Furthermore, mustard essential oil exhibited synergistic effects when combined with either Mexican oregano or thyme essential oils (fractional inhibitory concentration indices of 0.75); an additive effect was obtained by combining thyme and Mexican oregano essential oils (fractional inhibitory concentration index = 1.00). These results suggest the potential of studied essential oil mixtures to inhibit microbial growth and preserve foods; however, their effect on sensory quality in selected foods compatible with their flavor needs to be assessed.

  18. Medfly Responses to Natural Essential Oils: Electroantennography and Long-Range Attraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secondary metabolites emitted from plants and natural essential oils are suspected to attract males of the Mediterranean fruit fly to their calling sites. We investigated the differential attractiveness of six essential oils that have either been shown to have aromatherapy effects and/or that differ...

  19. Attraction and electroantennographic responses of male mediterranean fruit fly (diptera: tephritidae) to six plant essential oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile secondary metabolites emitted from plants (and concentrated in plant essential oils) are suspected to attract males of the Mediterranean fruit fly to their calling sites. We investigated the differential attractiveness of various natural essential oils in comparison with trimedlure to (1) s...

  20. Quality preservation of deliberately contaminated milk using thyme free and nanoemulsified essential oils.

    PubMed

    Ben Jemaa, Mariem; Falleh, Hanen; Neves, Marcos A; Isoda, Hiroko; Nakajima, Mitsutoshi; Ksouri, Riadh

    2017-02-15

    The objective of this study is to evaluate the effect of either a solution of Thymus capitatus essential oil or its nanoemulsion on the quality of milk contaminated by bacteria. After 24h of S. aureus inoculation, bacterial growth reached 202×10(3)CFU/ml in the presence of the essential oil while it was limited to 132×10(3)CFU/ml when treated with nanoemulsion. The reduction of antioxidant capacity of milk treated with essential oil was higher when treated with nanoemulsion. Moreover, free essential oil was more efficient in protecting proteins from degradation than the nanoemulsion. For instance, after 24h of E. hirae contamination, 26% of the total proteins were consumed in the presence of nano-encapsulated essential oil, while only 14% of the initial content was consumed when free essential oil was added. Concerning milk acidity increase and the inhibition of peroxide production, no statistical differences have been recorded between the use of free essential oil or its nano-emulsion. In conclusion, bulk or nano-encapsulated T. capitatus essential oil preserve milk quality and can extend its shelf life.

  1. Effect of cultural system and essential oil treatment on antioxidant capacity in raspberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of cultural system and essential oil treatment on antioxidant enzyme activities, antioxidant capacities and flavonoid contents in raspberries were evaluated. Raspberries were hand-harvested from organic and conventional farms in Maryland, USA, and were treated with essential oils includi...

  2. Physical and mechanical testing of essential oil-embedded cellulose ester films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymer films made from cellulose esters are useful for embedding plant essential oils, either for food packaging or air freshener applications. Studies and testing were done on the physical and mechanical properties of cellulose ester-based films incorporating essential oils (EO) from lemongrass (C...

  3. Composition of The Essential Oil From Danggui-zhiqiao Herb-Pair and Its Analgesic Activity and Effect on Hemorheology in Rats With Blood Stasis Syndrome

    PubMed Central

    Wang, Yuanqing; Yan, Jianye; Li, Shunxiang; Wang, Wei; Cai, Xiong; Huang, Dan; Gong, Limin; Li, Xin

    2016-01-01

    Background: Angelica sinensis and Aurantii fructu used in a pair, named Danggui-Zhiqiao herb-pair (DZHP), which was rich in essential oil and has been adopted to promote blood circulation, dispel blood stasis, and relieve pain in traditional Chinese medicine (TCM) Objective: To analyze the composition and pharmacological effects of essential oil from DZHP Materials and Methods: The composition of the essential oil from DZHP was analyzed by gas chromatography/mass spectrometry (GC/MS). Its analgesic activity was evaluated by acetic acid-induced writhing test and hot plate test. The hemorheology test was carried out to evaluate the effect on hemorheology in rats with blood stasis syndrome Results: Twenty-eight components were identified and the main components were α-pinene (3.07%), β-pinene (2.0%), β-myrcene (3.71%), D-limonene (49.28%), γ-terpinen (9.53%), α-terpinolene (1.80%), α-terpineol (2.02%), β-bisabolene (1.13%), butylidenephthalide (1.43%), and Z-ligustilide (16.08%). The pharmacology test showed that the essential oil significantly inhibited the number of writhes induced by acetic acid with inhibition rate of 44.64% and significantly increased hot-plate latency compared with control group from 30 to 90 min after oral administration of drugs in mice. It could significantly decrease plasma viscosity, whole blood relative index at high and low shear rate, whole blood reduced viscosity at high and low shear rate, and erythrocyte rigidity index in hemorheology test Conclusion: The composition of the essential oil of DZHP was determined successfully and it had analgesic and promoting blood circulation activities. SUMMARY Angelica sinensis and Aurantii fructu used in a pair, named Danggui-Zhiqiao herb-pair (DZHP), which was rich in Essential oil and has been adopted to promote blood circulation, dispel blood stasis and relieve pain in traditional Chinese medicine (TCM).Twenty-eight components were identified and the main components were α-pinene (3

  4. [Effect of conditions and duration of storage on composition of essential oil from coriander seeds].

    PubMed

    Misharina, T A

    2001-01-01

    The composition of volatile components of the essential oil extracted from seeds of coriander (Coriandrum sativum L.) grown in different years in either Russia or Georgia was studied by capillary gas chromatography. Climatic conditions had a weaker effect on the essential oil composition than the region of growth. After one-year storage in the dark, minor changes were observed in the oil composition, and its organoleptic properties were virtually unchanged. However, the essential oil underwent significant chemical transformation of monoterpenes when stored in the light.

  5. Laser photoacoustic detection of the essential oil vapors of thyme, mint, and anise

    NASA Astrophysics Data System (ADS)

    El-Kahlout, A. M.; Al-Jourani, M. M.; Abu-Taha, M. I.; Laine, Derek C.

    1998-07-01

    Photoacoustic studies of the vapors of the essential oils of thyme, mint and anise have been made using a line-tunable waveguide CO2 laser in conjunction with a heat-pipe type of photoacoustic vapor sample cell operated over the temperature range 20 - 180 degree(s)C. Identifying spectral fingerprint features are found in the 9 - 10 micrometers spectral region for each of the three essential oils investigated. The principal features of the photoacoustic spectrum of each essential oil are associated with the dominant chemicals present i.e. thymol in thyme oil, menthol in mint and anethole in anise.

  6. Intraspecific variability of the essential oil of Calamintha nepeta subsp. nepeta from Southern Italy (Apulia).

    PubMed

    Negro, C; Notarnicola, S; De Bellis, L; Miceli, A

    2013-03-01

    The essential oil of 46 spontaneous plants of Calamintha nepeta (L.) Savi subsp. nepeta growing wild in Sud, Italy (Salento, Apulia), were investigated by GC/MS. Fifty-seven components were identified in the oil representing over the 98% of the total oil composition. Four chemotypes were identified: piperitone oxide, piperitenone oxide, piperitone-menthone and pulegone.

  7. Adult repellency and larvicidal activity of five plant essential oils against mosquitoes.

    PubMed

    Zhu, Junwei; Zeng, Xiaopeng; Yanma; Liu, Ting; Qian, Kuen; Han, Yuhua; Xue, Suqin; Tucker, Brad; Schultz, Gretchen; Coats, Joel; Rowley, Wayne; Zhang, Aijun

    2006-09-01

    The larvicidal activity and repellency of 5 plant essential oils--thyme oil, catnip oil, amyris oil, eucalyptus oil, and cinnamon oil--were tested against 3 mosquito species: Aedes albopictus, Ae. aegypti, and Culex pipiens pallens. Larvicidal activity of these essentials oils was evaluated in the laboratory against 4th instars of each of the 3 mosquito species, and amyris oil demonstrated the greatest inhibitory effect with LC50 values in 24 h of 58 microg/ml (LC90 = 72 microg/ml) for Ae. aegypti, 78 microg/ml (LC90 = 130 microg/ml) for Ae. albopictus, and 77 microg/ml (LC90 = 123 microg/ml) for Cx. p. pallens. The topical repellency of these selected essential oils and deet against laboratory-reared female blood-starved Ae. albopictus was examined. Catnip oil seemed to be the most effective and provided 6-h protection at both concentrations tested (23 and 468 microg/ cm2). Thyme oil had the highest effectiveness in repelling this species, but the repellency duration was only 2 h. The applications using these natural product essential oils in mosquito control are discussed.

  8. Chemical composition and biological activity of haplophyllum tuberculatum juss. essential oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential oil of Haplophyllum tuberculatum was prepared by hydrodistillation of the fresh flowering aerial parts of the plant collected from Saudi Arabia. The oil was subsequently analyzed by GC and GC-MS. Thirty seven compounds, accounting for 96.4 % of the oil composition were identified. The ...

  9. Modification of yield and composition of essential oils by distillation time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field and laboratory experiments were conducted to model the length of the steam distillation time (DT) on essential oil yield and oil composition of peppermint, lemongrass, and palmarosa oils. The DTs tested were 1.25, 2.5, 5, 10, 20, 40, 80, and 160 min for peppermint, and 1.25, 2.5, 5, 10, 20, 40...

  10. Inhibitory effects of citrus essential oils and their components on the formation of N-nitrosodimethylamine.

    PubMed

    Sawamura, M; Sun, S H; Ozaki, K; Ishikawa, J; Ukeda, H

    1999-12-01

    Twenty-eight kinds of citrus essential oils and their components were studied for inhibitory effects on the formation of N-nitrosodimethylamine (NDMA). The reaction mixture consisted of dimethylamine and sodium nitrite adjusted at pH 3.6, in addition to essential oils and an emulsifying agent. The quantification was determined by high-performance liquid chromatography monitored at 220 nm. All of the essential oils inhibited the formation of NDMA in the range of 20-85%. The oils of ujukitsu (Citrus ujukitsu Hort. ex Shirai), yuzu (C. junos Tanaka), mochiyu (C. inflata Hort. ex Tanaka), and ponkan (C. reticulata Blanco cv. F-2426) inhibited the formation of NDMA much more effectively than other citrus oils. The inhibitory proportions of components of citrus essential oils such as myrcene, alpha-terpinene, and terpinolene were as high as 80%.

  11. Chemical composition and in vitro cytotoxic, genotoxic effects of essential oil from Urtica dioica L.

    PubMed

    Gül, Süleyman; Demirci, Betül; Başer, Kemal Hüsnü Can; Akpulat, H Aşkin; Aksu, Pinar

    2012-05-01

    The aim of this study was to determine the chemical composition of Urtica dioica essential oil, and to evaluate its cytotoxic and genotoxic effects, using cytogenetic tests such as the cytokinesis-block micronucleus assay and chromosomal aberration analysis in human lymphocyte cultures in vitro. GC-MS analysis of U. dioica essential oil identified 43 compounds, representing 95.8% of the oil. GC and GC-MS analysis of the essential oil of U. dioica revealed that carvacrol (38.2%), carvone (9.0%), naphthalene (8.9%), (E)-anethol (4.7%), hexahydrofarnesyl acetone (3.0%), (E)-geranyl acetone (2.9%), (E)-β-ionone (2.8%) and phytol (2.7%) are the main components, comprising 72.2% of the oil. A significant correlation was found between the concentration of essential oil and the following: chromosomal aberrations, micronuclei frequency, apoptotic cells, necrotic cells, and binucleated cells.

  12. Chemical Composition and Antioxidant Properties of Juniper Berry (Juniperus communis L.) Essential Oil. Action of the Essential Oil on the Antioxidant Protection of Saccharomyces cerevisiae Model Organism

    PubMed Central

    Höferl, Martina; Stoilova, Ivanka; Schmidt, Erich; Wanner, Jürgen; Jirovetz, Leopold; Trifonova, Dora; Krastev, Lutsian; Krastanov, Albert

    2014-01-01

    The essential oil of juniper berries (Juniperus communis L., Cupressaceae) is traditionally used for medicinal and flavoring purposes. As elucidated by gas chromatography/flame ionization detector (GC/FID) and gas chromatography/mass spectrometry (GC/MS methods), the juniper berry oil from Bulgaria is largely comprised of monoterpene hydrocarbons such as α-pinene (51.4%), myrcene (8.3%), sabinene (5.8%), limonene (5.1%) and β-pinene (5.0%). The antioxidant capacity of the essential oil was evaluated in vitro by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging, 2,2-azino-bis-3-ethylbenzothiazoline-6 sulfonic acid (ABTS) radical cation scavenging, hydroxyl radical (ОН•) scavenging and chelating capacity, superoxide radical (•O2−) scavenging and xanthine oxidase inhibitory effects, hydrogen peroxide scavenging. The antioxidant activity of the oil attributable to electron transfer made juniper berry essential oil a strong antioxidant, whereas the antioxidant activity attributable to hydrogen atom transfer was lower. Lipid peroxidation inhibition by the essential oil in both stages, i.e., hydroperoxide formation and malondialdehyde formation, was less efficient than the inhibition by butylated hydroxytoluene (BHT). In vivo studies confirmed these effects of the oil which created the possibility of blocking the oxidation processes in yeast cells by increasing activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). PMID:26784665

  13. Chemical composition and antibacterial activities of the essential oils isolated from Juniperus thurifera L. var. Africana.

    PubMed

    Bahri, F; Harrak, R; Achak, N; Romane, A

    2013-01-01

    This study describes the chemical composition and antibacterial activities of essential oils of Moroccan Juniperus thurifera L. var. Africana (Cupressaceae). The essential oil of dried leaves was isolated by hydrodistillation, vapohydrodistillation and microwaves. Sixty-four compounds in J. thurifera L. var. Africana oils were identified (79.9%, 92.4% and 98.4% of the oil, respectively). The most abundant compound in J. thurifera L. var. Africana oils is sabinene (38%, 36.2% and 39.4%). Antibacterial activities of J. thurifera essential oils was tested against bacteria Gram ( - ) and Gram (+). The oil is very active against all bacteria tested except Pseudomonas, which turned out to be very resistant.

  14. [Studies of aroma components on essential oil of Chinese kushui rose].

    PubMed

    Zhou, Wei; Zhou, Xiao-ping; Zhao, Guo-hong; Liu, Hong-wei; Ding, Lan; Chen, Li-ren

    2002-11-01

    The main chemical components of the rich peculiar aroma in the essential oil of Chinese Kushui rose (R. Setate x R. Rugosa) is reported. The differences in chemical components between Chinese Kushui rose oil and Bulgaria rose oil are compared. By OV1701 capillary column, more than 130 compounds were separated from the essential oil of Chinese Kushui rose. Using GC/MS and GC/IR techniques and some reference standards as the control, 101 compounds were tentatively identified from the separated compounds. This study shows that there are different aromas in rose essential oils. The oil of Chinese Kushui rose would be an important type of rose oil in the world due to its special rose aroma.

  15. Chemical composition and antifungal activity of Salvia macrochlamys and Salvia recognita essential oils.

    PubMed

    Tabanca, Nurhayat; Demirci, Betul; Baser, Kemal Husnu Can; Aytac, Zeki; Ekici, Murat; Khan, Shabana I; Jacob, Melissa R; Wedge, David E

    2006-09-06

    Essential oils of Salvia macrochlamys and Salvia recognita were obtained by hydrodistillation of dried aerial parts and characterized by gas chromatography and gas chromatography-mass spectrometry. One hundred and twenty identified constituents representing 97.7% in S. macrochlamys and 96.4% in S. recognita were characterized, and 1,8-cineole, borneol, and camphor were identified as major components of the essential oils. The oils were evaluated for their antimalarial, antimicrobial, and antifungal activities. Antifungal activity of the essential oils from both Salvia species was nonselective at inhibiting growth and development of reproductive stroma of the plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides. S. macrochlamys oil had good antimycobacterial activity against Mycobacterium intracellulare; however, the oils showed no antimicrobial activity against human pathogenic bacteria or fungi up to a concentration of 200 microg/mL. S. recognita oil exhibited a weak antimalarial activity against Plasmodium falciparum.

  16. The In Vitro Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents

    PubMed Central

    de Rapper, Stephanie; Viljoen, Alvaro

    2016-01-01

    The paper focuses on the in vitro antimicrobial activity of Lavandula angustifolia Mill. (lavender) essential oil in combination with four commercial antimicrobial agents. Stock solutions of chloramphenicol, ciprofloxacin, nystatin, and fusidic acid were tested in combination with L. angustifolia essential oil. The antimicrobial activities of the combinations were investigated against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538) and Gram-negative Pseudomonas aeruginosa (ATCC 27858) and Candida albicans (ATCC 10231) was selected to represent the yeasts. The antimicrobial effect was performed using the minimum inhibitory concentration (MIC) microdilution assay. Isobolograms were constructed for varying ratios. The most prominent interaction was noted when L. angustifolia essential oil was combined with chloramphenicol and tested against the pathogen P. aeruginosa (ΣFIC of 0.29). Lavendula angustifolia essential oil was shown in most cases to interact synergistically with conventional antimicrobials when combined in ratios where higher volumes of L. angustifolia essential oil were incorporated into the combination. PMID:27891157

  17. Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species.

    PubMed

    Cheng, Sen-Sung; Huang, Chin-Gi; Chen, Ying-Ju; Yu, Jane-Jane; Chen, Wei-June; Chang, Shang-Tzen

    2009-01-01

    In the current study, the mosquito larvicidal activity of leaf essential oils and their constituents from two eucalyptus species (Eucalyptus camaldulensis and Eucalyptus urophylla) against two mosquito species, Aedes aegypti and Aedes albopictus, was investigated. In addition, the chemical compositions of the leaf essential oils were analyzed using gas chromatography-mass spectrometry. Results from the larvicidal tests revealed that essential oil from the leaves of E. camaldulensis had an excellent inhibitory effect against both A. aegypti and A. albopictus larvae. The 12 pure constituents extracted from the two eucalyptus leaf essential oils were also tested individually against two mosquito larvae. Among the six effective constituents, alpha-terpinene exhibits the best larvicidal effect against both A. aegypti and A. albopictus larvae. Results of this study show that the leaf essential oil of E. camaldulensis and its effective constituents might be considered as a potent source for the production of fine natural larvicides.

  18. Protective Effect of Ocimum basilicum Essential Oil Against Acetic Acid-Induced Colitis in Rats.

    PubMed

    Rashidian, Amir; Roohi, Parnia; Mehrzadi, Saeed; Ghannadi, Ali Reza; Minaiyan, Mohsen

    2016-10-01

    Ocimum basilicum L has been traditionally used for the treatment of inflammatory bowel disease in Iran. This study investigates the ameliorative effect of Ocimum basilicum essential oil on an acetic acid-induced colitis model in rats. Ocimum basilicum essential oil with 2 doses (200 and 400 μL/kg) significantly ameliorated wet weight/length ratio of colonic tissue compared to the control group. Higher doses of essential oil (200 and 400 μL/kg) significantly reduced ulcer severity, ulcer area, and ulcer index. On the other hand, histological examination revealed the diminution of total colitis index as a marker for inflammatory cell infiltration in the colonic segments of rats treated with Ocimum basilicum essential oil (200 and 400 μL/kg). The increased level of myeloperoxidase was significantly decreased after the treatment with the essential oil (200 and 400 μL/kg). These results suggest that Ocimum basilicum exhibits protective effect against acetic acid-induced colitis.

  19. Potential of the essential oil from Pimenta pseudocaryophyllus as an antimicrobial agent.

    PubMed

    Suzuki, Érika Yoko; Baptista, Edilene Bolutari; Resende Do Carmo, Antônio Márcio; Miranda Chaves, Maria Das Graças Afonso; Chicourel, Elizabeth Lemos; Barbosa Raposo, Nádia Rezende

    2014-09-01

    This study evaluated the effectiveness of the essential oil of Pimenta pseudocaryophyllus in inhibiting the growth of the main bacteria responsible for bad perspiration odor (Staphylococcus epidermidis, Proteus hauseri, Micrococcus yunnanensis and Corynebacterium xerosis). The chemical profile of the essential oil was evaluated by high-resolution gas chromatography (HR-GC) and four constituents were identified, eugenol being the major component (88.6%). The antimicrobial activity was evaluated by means of the turbidimetric method, using the microdilution assay. The minimum inhibitory concentration (MIC) values of the essential oil ranged from 500 to 1,000 μg mL⁻¹. Scanning electron microscope (SEM) observations confirmed the physical damage and morphological alteration of the test bacteria treated with the essential oil, reference drugs and eugenol. The findings of the study demonstrated that this essential oil can be used in the formulation of personal care products.

  20. In vitro cytotoxic activity guided essential oil composition of flowering twigs of Stevia rebaudiana.

    PubMed

    Mann, Tavleen S; Agnihotri, Vijai K; Kumar, Dharmesh; Pal, Probir K; Koundal, Rajkesh; Kumar, Ashish; Padwad, Yogendra S

    2014-05-01

    The essential oil extracted by hydrodistillation from the flowering twigs of Stevia rebaudiana Bertoni (Asteraceae) was fractioned by chromatography. Forty-three constituents were characterized with the help of GC, GC-MS and other spectroscopic techniques. The essential oil was found to be a complex mixture of mono- and sesqui-terpenes. The cytotoxicity of the essential oil and its fractions was evaluated by sulforhodamine B (SRB) based assay against two cancer cell types viz. C-6 (rat glioma cells) and CHOK1 (Chinese hamster ovary cells). The essential oil and its fractions showed promising cytotoxicity against both cell lines. The highest activity (95.6+/-0.6%) was show by the essential oil on the C-6 cell line at a concentration of 400 microg/mL, which was comparable with that of the standard drug vinblastin.

  1. Chemical identification of Tagetes minuta Linnaeus (Asteraceae) essential oil and its acaricidal effect on ticks.

    PubMed

    Garcia, Marcos Valério; Matias, Jaqueline; Barros, Jacqueline Cavalcante; de Lima, Dênis Pires; Lopes, Rosângela da Silva; Andreotti, Renato

    2012-01-01

    The control of tick species that affect animal production is vital for the economic welfare of the cattle industry. This study focused on testing the acaricidal activity of the essential oil from the leaves and stems of Tagetes minuta against several Brazilian tick species, including Rhipicephalus (Boophilus) microplus, Rhipicephalus sanguineus, Amblyomma cajennense and Argas miniatus. The chemical composition of the essential oil was determined by chromatography and spectroscopy analyses, which revealed the presence of monoterpenes. The adult immersion test (AIT) and the larval packet test (LPT) were used to evaluate the efficacy of T. minuta essential oil in tick management at concentrations of 2.5, 5, 10, 20 and 40%. The results demonstrated that the T. minuta essential oil had over 95% efficacy against four species of ticks at a concentration of 20%. These results suggest that the essential oil of T. minuta could be used as an environmentally friendly acaricide.

  2. Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. chia.

    PubMed

    Magiatis, P; Melliou, E; Skaltsounis, A L; Chinou, I B; Mitaku, S

    1999-12-01

    The chemical composition of the three essential oils obtained by steam distillation of the mastic gum, leaves and twigs of Pistacia lentiscus var. chia, was studied by GC/MS. Sixty nine constituents were identified from the oils. alpha-Pinene, myrcene, trans-caryophyllene and germacrene D were found to be the major components. The in vitro antimicrobial activity of the three essential oils and of the resin (total, acid and neutral fraction) against six bacteria and three fungi is reported.

  3. Chemical composition and antibacterial activity of the essential oil of Retrohpyllum rospigliosii fruits from Colombia.

    PubMed

    Quijano-Celis, Clara E; Gaviria, Mauricio; Consuelo, Vanegas-López; Ontiveros, Ina; Echeverri, Leonardo; Morales, Gustavo; Pino, Jorge A

    2010-07-01

    The essential oil from fruits of Retrophyllum rospigliosii (Pilger) C.N. Page grown in Colombia was analyzed by GC and GC/MS. Ninety-one compounds were identified, of which the most prominent were limonene (37.7%) and alpha-pinene (16.3%). The in vitro antibacterial activity of the essential oil was studied against seven bacterial strains using the disc diffusion method. The strongest activity of the oil was against the Gram-positive bacterium Bacillus cereus.

  4. Potential of essential oils for protection of grains contaminated by aflatoxin produced by Aspergillus flavus

    PubMed Central

    Esper, Renata H.; Gonçalez, Edlayne; Marques, Marcia O. M.; Felicio, Roberto C.; Felicio, Joana D.

    2014-01-01

    Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Inhibitory effects of essential oils of Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) on the mycelial growth and aflatoxin B1 production by Aspergillus flavus have been studied previously in culture medium. The aim of this study was to evaluate aflatoxin B1 production by Aspergillus flavus in real food systems (corn and soybean) treated with Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) essential oils. Samples with 60 g of the grains were treated with different volumes of essential oils, 200, 100, 50, and 10 μL for oregano and 50, 30, 15, and 10 μL for mentrasto. Fungal growth was evaluated by disk diffusion method. Aflatoxin B1 production was evaluated inoculating suspensions of A. flavus containing 1.3 × 105 spores/mL in 60 g of grains (corn and soybeans) after adjusting the water activity at 0.94. Aflatoxin was quantified by photodensitometry. Fungal growth and aflatoxin production were inhibited by essential oils, but the mentrasto oil was more effective in soybeans than that of oregano. On the other hand, in corn samples, the oregano essential oil was more effective than that of mentrasto. Chemical compositions of the essential oils were also investigated. The GC/MS oils analysis showed that the main component of mentrasto essential oil is precocene I and of the main component of oregano essential oil is 4-terpineol. The results indicate that both essential oils can become an alternative for the control of aflatoxins in corn and soybeans. PMID:24926289

  5. Potential of essential oils for protection of grains contaminated by aflatoxin produced by Aspergillus flavus.

    PubMed

    Esper, Renata H; Gonçalez, Edlayne; Marques, Marcia O M; Felicio, Roberto C; Felicio, Joana D

    2014-01-01

    Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Inhibitory effects of essential oils of Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) on the mycelial growth and aflatoxin B1 production by Aspergillus flavus have been studied previously in culture medium. The aim of this study was to evaluate aflatoxin B1 production by Aspergillus flavus in real food systems (corn and soybean) treated with Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) essential oils. Samples with 60 g of the grains were treated with different volumes of essential oils, 200, 100, 50, and 10 μL for oregano and 50, 30, 15, and 10 μL for mentrasto. Fungal growth was evaluated by disk diffusion method. Aflatoxin B1 production was evaluated inoculating suspensions of A. flavus containing 1.3 × 10(5) spores/mL in 60 g of grains (corn and soybeans) after adjusting the water activity at 0.94. Aflatoxin was quantified by photodensitometry. Fungal growth and aflatoxin production were inhibited by essential oils, but the mentrasto oil was more effective in soybeans than that of oregano. On the other hand, in corn samples, the oregano essential oil was more effective than that of mentrasto. Chemical compositions of the essential oils were also investigated. The GC/MS oils analysis showed that the main component of mentrasto essential oil is precocene I and of the main component of oregano essential oil is 4-terpineol. The results indicate that both essential oils can become an alternative for the control of aflatoxins in corn and soybeans.

  6. EssOilDB: a database of essential oils reflecting terpene composition and variability in the plant kingdom

    PubMed Central

    Kumari, Sangita; Pundhir, Sachin; Priya, Piyush; Jeena, Ganga; Punetha, Ankita; Chawla, Konika; Firdos Jafaree, Zohra; Mondal, Subhasish; Yadav, Gitanjali

    2014-01-01

    Plant essential oils are complex mixtures of volatile organic compounds, which play indispensable roles in the environment, for the plant itself, as well as for humans. The potential biological information stored in essential oil composition data can provide an insight into the silent language of plants, and the roles of these chemical emissions in defense, communication and pollinator attraction. In order to decipher volatile profile patterns from a global perspective, we have developed the ESSential OIL DataBase (EssOilDB), a continually updated, freely available electronic database designed to provide knowledge resource for plant essential oils, that enables one to address a multitude of queries on volatile profiles of native, invasive, normal or stressed plants, across taxonomic clades, geographical locations and several other biotic and abiotic influences. To our knowledge, EssOilDB is the only database in the public domain providing an opportunity for context based scientific research on volatile patterns in plants. EssOilDB presently contains 123 041 essential oil records spanning a century of published reports on volatile profiles, with data from 92 plant taxonomic families, spread across diverse geographical locations all over the globe. We hope that this huge repository of VOCs will facilitate unraveling of the true significance of volatiles in plants, along with creating potential avenues for industrial applications of essential oils. We also illustrate the use of this database in terpene biology and show how EssOilDB can be used to complement data from computational genomics to gain insights into the diversity and variability of terpenoids in the plant kingdom. EssOilDB would serve as a valuable information resource, for students and researchers in plant biology, in the design and discovery of new odor profiles, as well as for entrepreneurs—the potential for generating consumer specific scents being one of the most attractive and interesting topics

  7. EssOilDB: a database of essential oils reflecting terpene composition and variability in the plant kingdom.

    PubMed

    Kumari, Sangita; Pundhir, Sachin; Priya, Piyush; Jeena, Ganga; Punetha, Ankita; Chawla, Konika; Firdos Jafaree, Zohra; Mondal, Subhasish; Yadav, Gitanjali

    2014-01-01

    Plant essential oils are complex mixtures of volatile organic compounds, which play indispensable roles in the environment, for the plant itself, as well as for humans. The potential biological information stored in essential oil composition data can provide an insight into the silent language of plants, and the roles of these chemical emissions in defense, communication and pollinator attraction. In order to decipher volatile profile patterns from a global perspective, we have developed the ESSential OIL DataBase (EssOilDB), a continually updated, freely available electronic database designed to provide knowledge resource for plant essential oils, that enables one to address a multitude of queries on volatile profiles of native, invasive, normal or stressed plants, across taxonomic clades, geographical locations and several other biotic and abiotic influences. To our knowledge, EssOilDB is the only database in the public domain providing an opportunity for context based scientific research on volatile patterns in plants. EssOilDB presently contains 123 041 essential oil records spanning a century of published reports on volatile profiles, with data from 92 plant taxonomic families, spread across diverse geographical locations all over the globe. We hope that this huge repository of VOCs will facilitate unraveling of the true significance of volatiles in plants, along with creating potential avenues for industrial applications of essential oils. We also illustrate the use of this database in terpene biology and show how EssOilDB can be used to complement data from computational genomics to gain insights into the diversity and variability of terpenoids in the plant kingdom. EssOilDB would serve as a valuable information resource, for students and researchers in plant biology, in the design and discovery of new odor profiles, as well as for entrepreneurs--the potential for generating consumer specific scents being one of the most attractive and interesting topics

  8. Comparison of antispasmodic effects of Dracocephalum kotschyi essential oil, limonene and α-terpineol.

    PubMed

    Sadraei, H; Asghari, G; Kasiri, F

    2015-01-01

    Dracocephalum kotschyi is an essential oil containing plant found in Iran. In Iranian traditional medicine, D. kotschyi has been used as antispasmodic and analgesic but so far there is no pharmacological report about its antispasmodic activity. Therefore, the objective of this research was to study antispasmodic activity of the essential oil of D. kotschyi and two of its constituents namely limonene and α-terpineol. The essential oil was obtained from aerial parts of D. kotschyi using hydrodistillation method. The main components found in the essential oil were α-pinene (10%), neral (11%), geraniol (10%), α-citral (12%), limonene (9%) and α-terpineol (1.1%). For antispasmodic studies, a portion of rat ileum was suspended under 1 g tension in Tyrode's solution at 37 °C and gassed with O2. Effect of the D. kotschyi essential oil, limonene and α-terpineol were studied on ileum contractions induced by KCl (80 mM), acetylcholine (ACh, 500 nM) and electrical field stimulation (EFS). The essential oil, in a concentration dependent manner inhibited the response to KCl (IC50=51 ± 8.7 nl/ml), ACh (IC50=19 ± 2.7 nl/ml) and EFS (IC50=15 ± 0.5 nl/ml). Limonene and α-terpineol showed same pattern of inhibitory effect on ileum contraction. Their inhibitory effects were also concentration dependent. However, limonene was more potent than the essential oil while the α-terpineol was less potent than either limonene or the essential oil. From this experiment it was concluded that D. kotschyi essential oil has inhibitory effect on ileum contractions. Limonene contribute a major role in inhibitory effect of the essential oil while α-terpineol has weak antispasmodic activity.

  9. A new source of elemol rich essential oil and existence of multicellular oil glands in leaves of the Dioscorea species.

    PubMed

    Odimegwu, Joy I; Odukoya, Olukemi; Yadav, Ritesh K; Chanotiya, C S; Ogbonnia, Steve; Sangwan, Neelam S

    2013-01-01

    Dioscorea species is a very important food and drug plant. The tubers of the plant are extensively used in food and drug purposes owing to the presence of steroidal constituent's diosgenin in the tubers. In the present study, we report for the first time that the leaves of Dioscorea composita and Dioscorea floribunda grown under the field conditions exhibited the presence of multicellular oil glands on the epidermal layers of the plants using stereomicroscopy (SM) and scanning electron microscopy (SEM). Essential oil was also isolated from the otherwise not useful herbage of the plant, and gas chromatographic-mass spectroscopy analysis revealed confirmation of the essential oil constituents. Out of the 76 compounds detected in D. floribunda and 37 from D. composita essential oil, major terpenoids which are detected and reported for Dioscorea leaf essential oil are α -terpinene, nerolidol, citronellyl acetate, farnesol, elemol, α -farnesene, valerenyl acetate, and so forth. Elemol was detected as the major constituent of both the Dioscorea species occupying 41% and 22% of D. Floribunda and D. composita essential oils, respectively. In this paper, we report for the first time Dioscorea as a possible novel bioresource for the essential oil besides its well-known importance for yielding diosgenin.

  10. Effect of peppermint and citronella essential oils on properties of fish skin gelatin edible films

    NASA Astrophysics Data System (ADS)

    Yanwong, S.; Threepopnatkul, P.

    2015-07-01

    Fish skin gelatin films incorporated with peppermint and citronella essential oils at difference concentrations (10, 20 and 30% w/w) were prepared by solution casting. Addition of peppermint oil contributed to a significant decrease of tensile strength and Young's modulus, while the percent elongation at break showed an obvious increase except at 30% w/w. On the other hand, addition of citronella oils promoted a great increase of tensile strength and young's modulus, but an intense decrease of the percent elongation at break. At the predetermined content, the film incorporated with citronella oils outperformed the one with peppermint oils in term of water vapor transmission and solubility in water. Thermal properties of gelatin films with citronella oils exhibited an enhancement in heat stability, while the one with peppermint oils showed slight decrease in heat stability. The additions with both of essential oils exhibited excellent antibacterial properties against both Staphylococcus aureus and Escherichia coli.

  11. Health-promoting value and food applications of black cumin essential oil: an overview.

    PubMed

    Hassanien, Mohamed F R; Assiri, Adel M A; Alzohairy, Ahmed M; Oraby, Hesham Farouk

    2015-10-01

    Black cumin (Nigella sativa L.) seeds and its essential oil have been widely used in functional foods, nutraceuticals and pharmaceutical products. Analysis of Nigella sativa essential oil using GC and GC-MS resulted in the identification of many bioactive compounds representing ca. 85 % of the total content. The main compounds included p-cymene, thymoquinone, α-thujene, longifolene, β-pinene, α-pinene and carvacrol. Nigella sativa essential oil exhibited different biological activities including antifungal, antibacterial and antioxidant potentials. Nigella sativa essential oil showed complete inhibition zones against different Gram-negative and Gram-positive bacteria including Penicillium citrinum Bacillus cereus, Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeruginosa. The essential oil showed stronger antioxidant potential in comparison with synthetic antioxidants (i.e., BHA and BHT) in a rapeseed oil model system. The oil exhibited also stronger radical scavenging activity against DPPH·radical in comparison with synthetic antioxidants. The diversity of applications to which Nigella sativa essential oil can be put gives this oil industrial importance.

  12. Behavioral Response of Aedes aegypti Mosquito towards Essential Oils Using Olfactometer

    PubMed Central

    Uniyal, Ashish; Tikar, Sachin N; Mendki, Murlidhar J; Singh, Ram; Shukla, Shakti V; Agrawal, Om P; Veer, Vijay; Sukumaran, Devanathan

    2016-01-01

    Background: Aedes aegypti mosquito is responsible for transmitting human diseases like dengue and chikungunya. Personal or space protection with insect repellents is a practical approach to reducing human mosquito contact, thereby minimizing disease transmission. Essential oils are natural volatile substances from plants used as protective measure against blood-sucking mosquitoes. Methods: Twenty-three essential oils were evaluated for their repellent effect against Ae. aegypti female mosquito in laboratory conditions using Y-tube olfactometer. Results: The essential oils exhibited varying degree of repellency. Litsea oil showed 50.31%, 60.2 %, and 77.26% effective mean repellency at 1 ppm, 10 ppm and 100 ppm respectively, while DEET exhibited 59.63%, 68.63%, 85.48% and DEPA showed 57.97%, 65.43%, and 80.62% repellency at respective above concentrations. Statistical analysis revealed that among the tested essential oils, litsea oil had effective repellency in comparison with DEET and DEPA against Ae. aegypti mosquito at all concentration. Essential oils, DEET and DEPA showed significant repellence against Ae. aegypti (P< 0.05) at all 3 concentration tested. Conclusion: Litsea oil exhibited effective percentage repellency similar to DEET and DEPA. The essential oils are natural plant products that may be useful for developing safer and newer herbal based effective mosquito repellents. PMID:27308295

  13. Sensitivity of clinical isolates of Candida to essential oils from Burseraceae family

    PubMed Central

    Nikolic, Miloš; Smiljkovic, Marija; Markovic, Tatjana; Cirica, Ana; Glamoclija, Jasmina; Markovic, Dejan; Sokovic, Marina

    2016-01-01

    The aim of this study was to investigate the chemical composition and antifungal activity of four commercial essential oils from the Burseraceae family - two Boswellia carterii Flueck oils, Canarium luzonicum (Blume) A. Gray oil, and Commiphora myrrha (Nees) Engl oil, against most common Candida spp. recovered from the human oral cavity. The essential oil samples were analyzed by GC-FID and GC/MS. The analysis showed that major essential oils' components were α-pinene (23.04 % and 31.84 %), limonene (45.62 %) and curzerene (34.65 %), respectively. Minimum inhibitory (MIC) and minimum fungicidal (MFC) concentrations were determined using a microdilution standardized technique. All tested Candida spp. clinical isolates and ATCC strains showed susceptibility to tested essential oils in a dose dependent manner. The strongest antifungal activity was shown by essential oil of B. carterii, sample 2; the average MIC values ranged from 1.25 to 1.34 mg/ml, and MFC values ranged from 2.50 to 3.75 mg/ml, depending on the fungus. This study supports the possible use of essential oils from the Bursecaceae family in reduction and elimination of Candida spp. populations in patients with oral cavity fungal infections. PMID:27330531

  14. Antioxidant activity and chemical characterization of essential oil of Bunium persicum.

    PubMed

    Shahsavari, Neda; Barzegar, Mohsen; Sahari, Mohammad Ali; Naghdibadi, Hasanali

    2008-12-01

    The search for natural antioxidants, especially of plant origin, has notably increased in recent years. Bunium persicum Boiss. is an economically important medicinal plant growing wild in the dry temperature regions in Iran. In this study, chemical constituents of the essential oil of the seed from Bunium persicum Boiss. have been studied by GC/MS technique. The major components were caryophyllene (27.81%), gamma-terpinene (15.19%), cuminyl acetate (14.67%). Individual antioxidant assays such as, DPPH* scavenging activity and beta-carotene bleaching have been carried out. In DPPH* system, the EC(50) value of essential oil was determined as 0.88 mg/mL. In beta-carotene bleaching antioxidant activity of essential oil (0.45%) was almost equal to BHT at 0.01%. In addition, the antioxidant activity of the essential oil was evaluated in crude soybean oil by monitoring peroxide and thiobarbituric acid values of the oil substrate. The results showed that the Bunium persicum essential oil (BPEO) was able to reduce the oxidation rate of the soybean oil in the accelerated condition at 60 degrees C (oven test). The essential oil at 0.06% showed the same effect of BHA at 0.02%. Hence, BPEO could be used as an additive in food after screening.

  15. Essential Oil Composition of Endemic Arabis purpurea Sm. & Arabis cypria Holmboe (Brassicaceae) from Cyprus.

    PubMed

    Polatoğlu, Kaan; Servi, Hüseyin; Özçınar, Özge; Nalbantsoy, Ayşe; Gücel, Salih

    2017-01-01

    There are very few reports on the phytochemistry of the Arabis L. (Brassicaceae) species in the literature. Here we present essential oil composition of aerial parts of two endemic Arabis species from Cyprus. The essential oils of Arabis purpurea Sm. and Arabis cypria Holmboe afforded very low oil yields (< 0.01% (v/w) yield). Sixty six compounds were identified in the essential oil of A. purpurea that represent 82.75 ± 0.21 % (n = 3) of the oil. The major components of the oil were nonacosane 16.18 ± 0.13 %, heptacosane 14.91 ± 0.17 %, hexahydrofarnesyl acetone 12.44 ± 0.10 % and phytol 7.36 ± 0.10 % (n = 3). Forty three compounds were identified in the essential oil of A. cypria which represent 81.28 ± 1.55 % (n = 3) of the oil. The major components of the oil were nonacosane 20.25 ± 0.47 %, heptacosane 9.13 ± 1.88 %, hexahydrofarnesyl acetone 9.03 ± 0.44 % and 1-tetradecanol 4.38 ± 2.60 % (n = 3). To the best of our knowledge this is the first report on the essential oil compositions of these species.

  16. Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro.

    PubMed

    Ocazionez, Raquel Elvira; Meneses, Rocio; Torres, Flor Angela; Stashenko, Elena

    2010-05-01

    The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50) was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37 masculineC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was defined as the concentration of essential oil that caused 50% reduction of the virus plaque number (IC50). L. alba oil resulted in less cytotoxicity than L. citriodora oil (CC50: 139.5 vs. 57.6 microg/mL). Virus plaque reduction for all four dengue serotypes was observed by treatment of the virus before adsorption on cell. The IC50 values for L. alba oil were between 0.4-32.6 microg/mL and between 1.9-33.7 microg/mL for L. citriodora oil. No viral inhibitory effect was observed by addition of the essential oil after virus adsorption. The inhibitory effect of the essential oil seems to cause direct virus inactivation before adsorption on host cell.

  17. Antimicrobial Activity and Chemical Analysis of the Essential Oil of Algerian Juniperus phoenicea.

    PubMed

    Bouyahyaoui, Ahmed; Bahri, Fouad; Romane, Abderrahmane; Höferl, Martina; Wanner, Juergen; Schmidt, Erich; Jirovetz, Leopold

    2016-04-01

    The essential oils of Juniperus phoenicea L. from Algeria were obtained by hydrodistillation and analyzed by GC-FID and GC-MS. Concerning their chemical composition, 74, 61 and 72 volatile compounds were identified from fresh leaves, dried leaves and berries, representing 88.8%, 91.3% and 94.7% of the total composition, respectively. The main monoterpene in the oils of fresh leaves, dried leaves and berries was a-pinene (29.6% / 55.9% / 56.6%), accompanied by lesser amounts of the sesquiterpenes β-caryophyllene (2.6% / 1.6% /1.2%) and germacrene D (2.01% / 1.7% / 1.5%), respectively. Antibacterial activity of J. phoenicea essential oils was tested against one Gram-negative and four Gram-positive bacterial strains and the yeast Candida albicans, responsible for nosocomial infections. As references, 14 antibiotics and 5 antifungal agents were evaluated. The berry essential oil was ineffective against all but two of the strains tested, whereas the essential oil of dried leaves significantly inhibited all strains but Pseudomonas aeruginosa, which turned out to be the most resistant strain overall. However, Escherichia coli was the most susceptible to the essential oils tested. The essential oil of dry leaves was highly active against Candida albicans, outclassing even the standard antifungal substances. These promising results could substantiate the use of essential oils in the treatment of hospital-acquired infections.

  18. Antifungal activity, yield, and composition of Ocimum gratissimum essential oil.

    PubMed

    Mohr, F B M; Lermen, C; Gazim, Z C; Gonçalves, J E; Alberton, O

    2017-03-16

    Ocimum gratissimum L. or clove basil, belongs to the Lamiaceae family, has various desirable uses and applications. Beyond its aromatic, seasoning, and medicinal applications, this plant also has antimicrobial activity. This study was aimed at assessing the antifungal activity, yield, and composition of the essential oil (EO) of O. gratissimum. The species was cultivated in garden beds with dystrophic red latosol soil type containing high organic-matter content. The EO was obtained by hydrodistillation of dried leaves in a modified Clevenger apparatus, followed by determination of its content. Chemical characterization was carried out by gas chromatography-mass spectrometry (GC-MS). Microbial activity was assessed using the broth microdilution method, by determining the minimum inhibitory concentration (MIC), in order to compare the antimicrobial effect of EO in 10 isolates-Fusarium oxysporum f. sp tracheiphilum (CMM-0033), F. oxysporum f. sp. cubense (CMM-0813 and CMM-2819), F. oxysporum f. sp lycopersici (CMM-1104), F. solani (CMM-3828), Rhizoctonia solani (CMM-3274), and Macrophomina phaseolina (CMM-2715, CMM-3875, CMM-3615, and CMM-3650). The EO was a highly effective inhibitor of the studied phytopathogenic fungi, with MICs varying from 31.25 to 125 µg/mL. F. oxysporum f. sp lycopersici and R. solani were the most sensitive; both were inhibited at an MIC of 31.25 µg/mL. The EO content in the plant extract was 0.18%. Thirty chemical compounds were detected via GC-MS, with linalool (32.9%) being the major compound followed by 1,8-cineole (21.9%), both oxygenated monoterpenes. It can be concluded that clove basil EO is a highly effective antifungal agent, and therefore, a potential alternative for the control of plant pathogenic diseases.

  19. Essential oils from herbs against foodborne pathogens in chicken sausage.

    PubMed

    Barbosa, Lidiane Nunes; Probst, Isabella Silva; Murbach Teles Andrade, Bruna Fernanda; Bérgamo Alves, Fernanda Cristina; Albano, Mariana; Mores Rall, Vera Lucia; Júnior, Ary Fernandes

    2015-01-01

    Consumption of chicken meat and its products, especially sausage, have increased in recent years. However, this product is susceptible to microbial contamination during manufacturing, which compromises its shelf life. The flavoring and preservative activities of essential oils (EO) have been recognized and the application of these antimicrobial agents as natural active compounds in food preservation has shown promise. The aim of this study was to evaluate the effect of Ocimum basilicum and Origanum vulgare EO on Listeria monocytogenes and Salmonella Enteritidis strains in artificially inoculated samples of fresh chicken sausage. First, the minimal inhibitory concentration (MIC) of EO in vitro was determined. The sausage was prepared and kept at ± 4°C; then, the inoculation of individual bacteria was carried out. EO were added at 0.3%, 1.0% and 1.5%v/w. After 0, 5, and 24 hours, the most probable number method (MPN) was performed. Transmission electron microscopy (TEM) was used to view the damage caused by these EO on bacterial morphology and/or structure. Only the 1.5% concentration was effective in reducing L. monocytogenes. 0.3% of O. vulgare EO was able to reduce the MPN/g of Salmonella Enteritidis (2 log) after 5 hours trials. O. basilicum EO showed no effect on Salmonella after 5 hours, but decreased by 2 log after 24 hours. O. vulgare EO at 1% gave a greater reduction of S. Enteritidis at 5 hours, increasing or maintaining this effect after 24 hours. The results confirmed the potential benefits of use EO in control of foodborne pathogens.

  20. CHEMICAL COMPOSITION AND ANTIMICROBIAL ACTIVITY OF SOLIDAGO CANADENSIS LINN. ROOT ESSENTIAL OIL

    PubMed Central

    Mishra, Devendra; Joshi, Shivani; Bisht, Ganga; Pilkhwal, Sangeeta

    2010-01-01

    The essential oil from the roots of Solidago canadensis Linn. (fam. Asteraceae) was analyzed by GC, GC/MS and NMR spectroscopy. Thirty nine constituents comprising 75.4% of the total oil were identified from the oil. Thymol constituted 20.25% of the oil followed by α-copaene (6.26%) and carvacrol (5.51%). The antimicrobial activity of the oil was evaluated using disc diffusion method. Results showed that the oil exhibited significant antibacterial activity against S. feacalis and E. coli whereas it showed moderate antifungal activity against C. albicans PMID:24825986

  1. Antimicrobial action of essential oil vapours and negative air ions against Pseudomonas fluorescens.

    PubMed

    Tyagi, A K; Malik, A

    2010-10-15

    The aim of this study was to investigate the antibacterial activity of essential oil (in liquid as well as in vapour phase) and negative air ions (NAI) against Pseudomonas fluorescens. The combined effect of NAI with essential oil vapour was also investigated to determine kill time and morphological changes in bacterial cells. The MIC of Cymbopogon citratus (0.567 mg/ml), Mentha arvensis (0.567 mg/ml), Mentha piperita (1.125 mg/ml) and Eucalyptus globulus (2.25 mg/ml) was studied via the agar dilution method. To estimate the antibacterial activity of essential oils in the vapour phase, agar plates inoculated with P. fluorescens were incubated with various concentrations of each essential oil vapour and zone of inhibition was recorded. Further, in order to assess the kill time, P. fluorescens inoculated agar plates were exposed to selected bactericidal essential oil vapour and NAI, separately, in an air-tight chamber. A continuous decrease in bacterial count was observed over time. A significant enhancement in the bactericidal action was observed by exposure to the combination of essential oil vapour and NAI as compared to their individual action. Scanning electron microscopy was used to study the alteration in morphology of P. fluorescens cells after exposure to C. citratus oil vapour, NAI, and combination of C. citratus oil vapour and NAI. Maximum morphological deformation was found due to the combined effect of C. citratus oil vapour and NAI. This study demonstrates that the use of essential oils in the vapour phase is more advantageous than the liquid phase. Further the antibacterial effect of the essential oil vapours can be significantly enhanced by the addition of NAI. The work described here offers a novel and efficient approach for control of bacterial contamination that could be applied for food stabilization practices.

  2. In-vitro activity of essential oils, in particular Melaleuca alternifolia (tea tree) oil and tea tree oil products, against Candida spp.

    PubMed

    Hammer, K A; Carson, C F; Riley, T V

    1998-11-01

    The in-vitro activity of a range of essential oils, including tea tree oil, against the yeast candida was examined. Of the 24 essential oils tested by the agar dilution method against Candida albicans ATCC 10231, three did not inhibit C. albicans at the highest concentration tested, which was 2.0% (v/v) oil. Sandalwood oil had the lowest MIC, inhibiting C. albicans at 0.06%. Melaleuca alternifolia (tea tree) oil was investigated for activity against 81 C. albicans isolates and 33 non-albicans Candida isolates. By the broth microdilution method, the minimum concentration of oil inhibiting 90% of isolates for both C. albicans and non-albicans Candida species was 0.25% (v/v). The minimum concentration of oil killing 90% of isolates was 0.25% for C. albicans and 0.5% for non-albicans Candida species. Fifty-seven Candida isolates were tested for sensitivity to tea tree oil by the agar dilution method; the minimum concentration of oil inhibiting 90% of isolates was 0.5%. Tests on three intra-vaginal tea tree oil products showed these products to have MICs and minimum fungicidal concentrations comparable to those of non-formulated tea tree oil, indicating that the tea tree oil contained in these products has retained its anticandidal activity. These data indicate that some essential oils are active against Candida spp., suggesting that they may be useful in the topical treatment of superficial candida infections.

  3. Anti-Oxidative Abilities of Essential Oils from Atractylodes ovata Rhizome

    PubMed Central

    Wang, Kun-Teng; Chen, Lih-Geeng; Chou, Duen-Suey; Liang, Wen-Li; Wang, Ching-Chiung

    2011-01-01

    The rhizome of Atractylodes ovata De Candolle is rich in essential oils, which are usually removed by processing. In this study, anti-oxidative abilities of essential oils and aqueous extracts of A. ovata rhizome were explored, and the influence of processing on the anti-oxidative abilities was examined. Essential oils and aqueous extracts of A. ovata were extracted by boiling water and steam distillation, respectively. Quality of these two A. ovata samples was controlled by HPLC and GC-MS system, and anti-oxidative abilities were then evaluated. Results showed that surface color of A. ovata turned to brown and chemical components were changed by processing. Contents of both atractylon and atractylenolide II decreased in the essential oils, but only the contents of atractylon decreased by processing. Atractylenolide III increased in both A. ovata samples. However, A. ovata essential oils displayed stronger anti-oxidative abilities than aqueous extracts in DPPH-scavenging, TBH-induced lipid peroxidation and catalase activity assays. Moreover, the bioactivity of essential oils from raw A. ovata was stronger than oils from processed A. ovata. On the other hand, cytotoxicity of A. ovata essential oils was stronger than that of aqueous extracts, and was more sensitive on H9C2 cell than NIH-3T3 and WI-38 cells. In contrast, stir-frying processing method increased cytotoxicity of essential oils, but the cytotoxicity was ameliorated when processed with assistant substances. The results suggested that phytochemical components and bioactivity of A. ovata were changed after processing and the essential oils from raw A. ovata showed better anti-oxidative and fewer cytotoxicity effects. PMID:21799672

  4. Chemical composition, aroma evaluation, and inhibitory activity towards acetylcholinesterase of essential oils from Gynura bicolor DC.

    PubMed

    Miyazawa, Mitsuo; Nakahashi, Hiroshi; Usami, Atsushi; Matsuda, Naoki

    2016-04-01

    The compositions of the essential oils obtained from leaves and stems of Gynura bicolor DC. were analyzed by GC-MS. One hundred eight components of these oils were identified. (E)-β-caryophyllene (31.42 %), α-pinene (17.11 %), and bicyclogermacrene (8.09 %) were found to be the main components of the leaf oil, while α-pinene (61.42 %), β-pinene (14.39 %), and myrcene (5.10 %) were the major constituents of the stem oil. We found 73 previously unidentified components in these oils from G. bicolor. The oils were also subjected to odor evaluation. Eleven and 12 aroma-active compounds were detected in the leaf and stem oils, respectively. The abilities of these oils to inhibit acetylcholinesterase (AChE) activity were determined. The sesquiterpenoids in the oils were found to inhibit AChE activity more strongly than the monoterpenoids in the oils did. It was suggested that the three main components in each essential oil act synergistically against AChE activity. These results show that the essential oils obtained from G. bicolor are a good dietary source of AChE activity inhibition.

  5. In vitro and in vivo assessment of the effect of Laurus novocanariensis oil and essential oil in human skin.

    PubMed

    Viciolle, E; Castilho, P; Rosado, C

    2012-12-01

    Laurus novocanariensis is an endemic plant from the Madeira Island forest that derives a fatty oil, with a strong spicy odour, from its berries that has been used for centuries in traditional medicine to treat skin ailments. This work aimed to investigate the effect of the application of both the oil and its essential oil on normal skin, to assess their safety and potential benefits. Diffusion studies with Franz cells using human epidermal membranes were conducted. The steady-state fluxes of two model molecules through untreated skin were compared with those obtained after a 2-h pre-treatment with either the oil or the essential oil. Additionally, eleven volunteers participated in the in vivo study that was conducted on the forearm and involved daily application of the oil for 5 days. Measurements were performed every day in the treated site with bioengineering methods that measure erythema, irritation and loss of barrier function. Slightly higher steady-state fluxes were observed for both the lipophilic and the hydrophilic molecule when the epidermal membranes were pre-treated. Nevertheless, such differences had no statistical significance, which seems to confirm that neither the oil nor the essential oil impaired the epidermal barrier. Results collected with the Chromameter, the Laser Doppler Flowmeter and the visual scoring are in agreement with those established in the in vitro study. They indicate that the repeated application of the oil did not cause erythema, because the results observed in the first day of the study were maintained throughout the week. Application of the oil did not affect the skin barrier function, because the transepidermal water loss remained constant throughout the study. The stratum corneum hydration was slightly reduced on days 4 and 5. This work shows that both the oil and the essential oil were well tolerated by the skin and did not cause significant barrier impairment or irritation.

  6. Chemical composition of essential oils of Grindelia squarrosa and G. hirsutula.

    PubMed

    Veres, Katalin; Roza, Orsolya; Laczkó-Zöld, Eszter; Hohmann, Judit

    2014-04-01

    The essential oils of Grindelia squarrosa (Pursh) Dunal and G. hirsutula Hook. & Am. cultivated in Romania were isolated by hydrodistillation. The essential oils were analyzed by a combination of GC-FID and GC-MS. The identification of the constituents was achieved from their retention indices and comparison of their MS data with computer library database and literature data. The fifty-six identified constituents accounted for 72.1-81.3% of the oils. The oils were found to contain a-pinene, beta-pinene, limonene, borneol, bornyl acetate and germacrene D as main constituents. The oils obtained from the two species showed small differences in chemical composition. However, menthol, menthone and pulegone were detected only in the essential oil of G. hirsutula.

  7. Composition of the essential oil of Salvia officinalis L. from various European countries.

    PubMed

    Raal, Ain; Orav, Anne; Arak, Elmar

    2007-05-01

    Variations in the essential oil composition of Salvia officinalis L. growing in Estonia and in other European countries were determined. The oils were obtained in yields of 2.2-24.8 mL kg(-1). In three samples, the content of essential oil did not conform to the EP standard (10 mL kg(-1)). Variations in the essential oil composition of sage were studied using capillary gas chromatographic methods. A total of 40 components were identified. The principal components in the sage oils were 1,8-cineole, camphor, alpha-thujone, beta-thujone, borneol, and viridiflorol. The chemotypes of sage were not determined in investigated samples. The concentration of the main compounds in the drugs cultivated in Estonia varied in about the same range as the concentrations of these compounds in the oils of drugs obtained from other countries. The comparatively high concentration of toxic thujones seem to be characteristic to sage leaves cultivated in Estonia.

  8. In vitro propagation and chemical and biological studies of the essential oil of Salvia przewalskii Maxim.

    PubMed

    Skala, Ewa; Kalemba, Danuta; Wajs, Anna; Rózalski, Marek; Krajewska, Urszula; Rózalska, Barbara; Wieckowska-Szakiel, Marzena; Wysokińska, Halina

    2007-01-01

    The procedure of Salvia przewalskii shoot multiplication and the ability of regenerated plants to produce essential oil is reported. The essential oil was obtained by hydrodistillation from leaves and flowering stems of field-grown plants, and their chemical composition was examined by GC, GC-MS and 1H NMR. The differences in yield as well as qualitative and quantitative composition between the oils isolated from in vitro and in vivo plants were observed. S. przewalskii essential oil was tested for its antimicrobial and cytotoxic properties. It was found that cytotoxicity against human leukemia HL-60 cells and antimicrobial activity (especially, against Staphylococcus aureus and S. epidermidis strains) of oils isolated from in vitro plants were higher than those for oils from in vivo S. przewalskii plants.

  9. Chemical composition of the essential oil from Jasminum pubescens leaves and flowers.

    PubMed

    Temraz, Abeer; Cioni, Pier Luigi; Flamini, Guido; Braca, Alessandra

    2009-12-01

    The essential oil obtained from the leaves and flowers of Jasminum pubescens (Retz.) Willd. (Oleaceae) has been analyzed by GC/MS. Sixty-three and sixty-four components of the essential oils, representing 95.0% of the total oil for the leaves and 91.9% for the flowers, were identified, respectively. Both the oils were mainly constituted by non-terpene derivatives (58.2% and 50.8%, respectively), among which aldehydes (44.7%) characterized the essential oil from the leaves. Besides aldehydes (14.3%) and other carbonylic compounds (acids, esters, and ketones, 38.1%) were the main non-terpene compounds of the oil from the flowers.

  10. Characterization and antioxidant activity of essential oils from fresh and decaying leaves of Eucalyptus tereticornis.

    PubMed

    Singh, Harminder P; Mittal, Sunil; Kaur, Shalinder; Batish, Daizy R; Kohli, Ravinder K

    2009-08-12

    The composition of essential oils hydrodistilled from fresh and decaying leaves of Eucalyptus tereticornis was analyzed by means of gas chromatography and mass spectrometry, and a total of 68 constituents were identified. The essential oils were assayed for antioxidant activity in terms of scavenging of 2,2-diphenyl-1-picrylhydrazil (DPPH) and hydroxyl (OH(*)) radical, and superoxide anion (O2(-*)).The major constituents of the fresh leaf oil were alpha-pinene (28.53%) and 1,8-cineole (19.48%), whereas in the decaying leaf oil, beta-citronellal (14.15%), (-)-isopulegol (13.35%), and (+)-beta-citronellol (10.73%) were the major components. Both essential oils exhibited a strong radical scavenging activity against DPPH radical with IC50 values of 110 and 139.8 microg/mL for fresh and decaying leaf oil, respectively (IC50 of BHT = 164.2 microg/mL). Further, the essential oils (at 400 microg/mL) also exhibited OH(*) (56-62%) and O2(-*) (65-69%) scavenging activity parallel to the commercial antioxidant BHT/ascorbic acid. However, unlike the essential oils, the major monoterpene constituents exhibited significantly less scavenging activity (<35% DPPH or OH(*); at 400 microg/mL). The study concluded that fresh and decaying leaves of E. tereticornis are a source of monoterpenoid rich oil exhibiting antioxidant activity.

  11. Chemical composition and antioxidant activities of essential oils from different parts of the oregano* #

    PubMed Central

    Han, Fei; Ma, Guang-qiang; Yang, Ming; Yan, Li; Xiong, Wei; Shu, Ji-cheng; Zhao, Zhi-dong; Xu, Han-lin

    2017-01-01

    This research was undertaken in order to characterize the chemical compositions and evaluate the antioxidant activities of essential oils obtained from different parts of the Origanum vulgare L. It is a medicinal plant used in traditional Chinese medicine for the treatment of heat stroke, fever, vomiting, acute gastroenteritis, and respiratory disorders. The chemical compositions of the three essential oils from different parts of the oregano (leaves-flowers, stems, and roots) were identified by gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of each essential oil was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and reducing the power test. Among the essential oils from different parts of the oregano, the leaf-flower oils have the best antioxidant activities, whereas the stem oils are the worst. The results of the DPPH free radical scavenging assay showed that the half maximal inhibitory concentration (IC50) values of the essential oils were (0.332±0.040) mg/ml (leaves-flowers), (0.357±0.031) mg/ml (roots), and (0.501±0.029) mg/ml (stems), respectively. Interestingly, the results of reducing the power test also revealed that when the concentration exceeded 1.25 mg/ml, the leaf-flower oils had the highest reducing power; however, the stem oils were the lowest. PMID:28071000

  12. Synergistic repellent and irritant effect of combined essential oils on Aedes aegypti (L.) mosquitoes.

    PubMed

    Noosidum, Atirach; Chareonviriyaphap, Theeraphap; Chandrapatya, Angsumarn

    2014-12-01

    This study was designed to compare the behavioral responses of Aedes aegypti to a single essential oil and to a mixture of two or three essential oils using an excito-repellency test chamber. Mixtures were prepared from essential oils extracted from Litsea cubeba (LC), Litsea salicifolia (LS), and Melaleuca leucadendron (ML). In general, the mixture of essential oils produced a much stronger escape response by Ae. aegypti, regardless of the test conditions. No significant difference in escape responses was seen when the mixture of oils was compared with a standard commercial product containing DEET. Greater contact irritancy was seen from mixed oils of LC and LS than with other mixed oils. Mixtures of LC and LS at 0.075% showed the highest synergistic action (65.5% escaped) compared to that with unmixed oil alone at the same concentration (LC/20% and LS=32.2%). In addition, mixtures of LC and LS at 0.075% demonstrated the highest non-contact repellency (62.7%) and showed a greater effect than the use of LC (20%) or LS (20.3%) alone. We conclude that mixtures of two essential oils show potential as active ingredients for mosquito repellents.

  13. Thermal-Diffusivity Measurements of Mexican Citrus Essential Oils Using Photoacoustic Methodology in the Transmission Configuration

    NASA Astrophysics Data System (ADS)

    Muñoz, G. A. López; González, R. F. López; López, J. A. Balderas; Martínez-Pérez, L.

    2011-05-01

    Photoacoustic methodology in the transmission configuration (PMTC) was used to study the thermophysical properties and their relation with the composition in Mexican citrus essential oils providing the viability of using photothermal techniques for quality control and for authentication of oils and their adulteration. Linear relations for the amplitude (on a semi-log scale) and phase, as functions of the sample's thickness, for the PMTC was obtained through a theoretical model fit to the experimental data for thermal-diffusivity measurements in Mexican orange, pink grapefruit, mandarin, lime type A, centrifuged essential oils, and Mexican distilled lime essential oil. Gas chromatography for distilled lime essential oil and centrifuged lime essential oil type A is reported to complement the study. Experimental results showed close thermal-diffusivity values between Mexican citrus essential oils obtained by centrifugation, but a significant difference of this physical property for distilled lime oil and the corresponding value obtained by centrifugation, which is due to their different chemical compositions involved with the extraction processes.

  14. Antimicrobial efficacy of Achillea ligustica All. (Asteraceae) essential oils against reference and isolated oral microorganisms.

    PubMed

    Cecchini, Cinzia; Silvi, Stefania; Cresci, Alberto; Piciotti, Andrea; Caprioli, Giovanni; Papa, Fabrizio; Sagratini, Gianni; Vittori, Sauro; Maggi, Filippo

    2012-01-01

    The aim of this study was to verify the effectiveness of Achillea ligustica essential oils against several oral microorganisms in comparison with a commercial essential oil-containing mouthrinse (Listerine(®)) and clove oil (containing 89% eugenol). The inhibition efficacy of A. ligustica essential oils alone and in combination with Listerine(®) was evaluated by the micro-dilution method. The most susceptible microorganisms were Bacillus cereus, Streptococcus pyogenes, and Candida albicans. The efficacy was similar to that of the clove oil. The antiseptic mouthwash Listerine(®) did not exert a strong inhibition on microbial strains tested, whereas its effectiveness increased significantly when essential oil was added. The study provides additional evidence for the in vitro inhibitory activity of A. ligustica essential oils on several pathogens, suggesting their usefulness in mouthrinse formulations as an adjunct to mechanical oral hygiene regimens. Essential oil-containing mouthrinses can be beneficial, safe components of daily oral health routines, representing an efficient and without side effect alternative to prevent and control oral infections.

  15. Essential Oil from the Resin of Protium heptaphyllum: Chemical Composition, Cytotoxicity, Antimicrobial Activity, and Antimutagenicity

    PubMed Central

    de Lima, Ewelyne Miranda; Cazelli, Didley Sâmia Paiva; Pinto, Fernanda Endringer; Mazuco, Renata Alves; Kalil, Ieda Carneiro; Lenz, Dominik; Scherer, Rodrigo; de Andrade, Tadeu Uggere; Endringer, Denise Coutinho

    2016-01-01

    Background: Protium heptaphyllum (Aubl.) March is popularly used as an analgesic and anti-inflammatory agent. Objective: This study aimed to evaluate the chemical composition of P. heptaphyllum essential oil, its cytotoxicity in a breast cancer cell line (MCF-7), antimicrobial activity, and its antimutagenicity in vivo. Materials and Methods: The chemical composition of the essential oil collected in three 3 years was determined by gas chromatography-mass spectrometry. The cytotoxicity was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Annexin V conjugated with fluorescein isothiocyanate, caspase-3, and tumor necrosis factor-alpha (TNF-α) assays were performed to evaluate apoptosis and inflammatory events. The antimutagenic activity at doses of 25, 50, and 100 mg/kg was determined using a micronucleus test in murine bone marrow. Results: The essential oil showed a predominance of monoterpene compounds, being the terpinolene, p-cymene-8-ol, and p-cymene, present in the essential oil extracted in the 3 years. The essential oil showed a protection against cyclophosphamide-induced genotoxicity, and the cytotoxicity index polychromatic erythrocytes/normochromatic erythrocytes ratio in animals treated with oil at all doses (1.34 ± 0.33; 1.15 ± 0.1; 1.11 ± 0.13) did not differ from the negative control animal (1.31 ± 0.33), but from the cyclophosphamide group (0.61 ± 0.12). Cytotoxicity, at a concentration of 40.0 μg/mL, and antimicrobial activity were not observed for the essential oil (minimum inhibitory concentration ≥0.5 mg/mL). The essential oil did not change the levels of caspase-3 in the TNF-α level. Conclusion: The essential oil showed antimutagenic activity due to its chemical composition. SUMMARY Terpinolene, p-cymene-8-ol, and p-cymene are the main constituents of the essential oil of P. heptaphyllum collected within 3-yearsThe essential oil of P. heptaphyllum did not show antimicrobial activity (MIC >0.5 mg

  16. Composition and antimicrobial properties of Sardinian Juniperus essential oils against foodborne pathogens and spoilage microorganisms.

    PubMed

    Cosentino, Sofia; Barra, Andrea; Pisano, Barbara; Cabizza, Maddalena; Pirisi, Filippo Maria; Palmas, Francesca

    2003-07-01

    In this work, the chemical compositions and antimicrobial properties of Juniperus essential oils and of their main components were determined. Five berry essential oils obtained from different species of Juniperus growing wild in Sardinia were analyzed. The components of the essential oils were identified by gas chromatography-mass spectrometry (GC-MS) analysis. The antimicrobial activities of the oils and their components against food spoilage and pathogenic microorganisms were determined by a broth microdilution method. The GC-MS analysis showed a certain variability in the concentrations of the main constituents of the oils. Alpha-pinene was largely predominant in the oils of the species J. phoenicea subsp. turbinata and J. oxycedrus. Alpha-pinene and myrcene constituted the bulk (67.56%) of the essential oil of J. communis. Significant quantitative differences were observed for myrcene, delta-3-carene, and D-germacrene. The results of the antimicrobial assay show that the oils of J. communis and J. oxycedrus failed to inhibit any of the microorganisms at the highest concentrations tested (MLC > or = 900 microg/ml), while the oils extracted from J. turbinata specimens were active against fungi, particularly against a strain of Aspergillus flavus (an aflatoxin B1 producer). Of the single compounds tested, delta-3-carene was found to possess the broadest spectrum of activity and appeared to contribute significantly to the antifungal activity observed for J. turbinata oils. This activity may be helpful in the prevention of aflatoxin contamination for many foods.

  17. The microbial community of Vetiver root and its involvement into essential oil biogenesis.

    PubMed

    Del Giudice, Luigi; Massardo, Domenica Rita; Pontieri, Paola; Bertea, Cinzia M; Mombello, Domenico; Carata, Elisabetta; Tredici, Salvatore Maurizio; Talà, Adelfia; Mucciarelli, Marco; Groudeva, Veneta Ivanova; De Stefano, Mario; Vigliotta, Giovanni; Maffei, Massimo E; Alifano, Pietro

    2008-10-01

    Vetiver is the only grass cultivated worldwide for the root essential oil, which is a mixture of sesquiterpene alcohols and hydrocarbons, used extensively in perfumery and cosmetics. Light and transmission electron microscopy demonstrated the presence of bacteria in the cortical parenchymatous essential oil-producing cells and in the lysigen lacunae in close association with the essential oil. This finding and the evidence that axenic Vetiver produces in vitro only trace amounts of oil with a strikingly different composition compared with the oils from in vivo Vetiver plants stimulated the hypothesis of an involvement of these bacteria in the oil metabolism. We used culture-based and culture-independent approaches to analyse the microbial community of the Vetiver root. Results demonstrate a broad phylogenetic spectrum of bacteria, including alpha-, beta- and gamma-Proteobacteria, high-G+C-content Gram-positive bacteria, and microbes belonging to the Fibrobacteres/Acidobacteria group. We isolated root-associated bacteria and showed that most of them are able to grow by using oil sesquiterpenes as a carbon source and to metabolize them releasing into the medium a large number of compounds typically found in commercial Vetiver oils. Several bacteria were also able to induce gene expression of a Vetiver sesquiterpene synthase. These results support the intriguing hypothesis that bacteria may have a role in essential oil biosynthesis opening the possibility to use them to manoeuvre the Vetiver oil molecular structure.

  18. Composition of the Essential Oil of Lomatium torreyi

    USGS Publications Warehouse

    Bedrossian, A.; Beauchamp, P.E.; Dev, Vasu; Kwan, S.; Munevar-Mendoza, Elsa; Okoreeh, E.K.; Moore, P.E.

    1998-01-01

    The stem and leaf as well as the fruit oils of Lomatium torreyi show myrcene, ??-phellandrene, (Z)-??-ocimene, (E)-??-ocimene and (Z)-ligustilide to be the major components. The root oil is primarily composed of R-(-)-falcarinol (88.0%).

  19. Efficacy of essential oils to reduce Salmonella in organic soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella populations in soil were reduced by up to 5 log CFU/ml after 28 days of incubation using vinegar or eugenol. The bactericidal effect of Cinnamanaldehyde was not evident. S. negev was sensitive to oils resulting in significant reduction of this bacterium. Increase in oil concentration resu...

  20. Effect of subinihibitory and inhibitory concentrations of Plectranthus amboinicus (Lour.) Spreng essential oil on Klebsiella pneumoniae.

    PubMed

    Gonçalves, Thially Braga; Braga, Milena Aguiar; de Oliveira, Francisco F M; Santiago, Gilvandete M P; Carvalho, Cibele B M; Brito e Cabral, Paula; de Melo Santiago, Thiago; Sousa, Jeanlex S; Barros, Eduardo Bedê; do Nascimento, Ronaldo Ferreira; Nagao-Dias, Aparecida T

    2012-08-15

    We evaluated the antimicrobial activity and some mechanisms used by subinhibitory and inhibitory concentrations of the essential oil, obtained from leaves of Plectranthus amboinicus, against a standard strain of Klebsiella pneumoniae and 5 multiresistant clinical isolates of the bacteria. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC), the rate of kill and the pH sensitivity of the essential oil were determined by microdilution tests performed in 96-well plates. Subinhibitory and inhibitory concentrations of the essential oil were tested in order to check its action on K. pneumoniae membrane permeability, capsule expression, urease activity and cell morphology. The MIC and MBC of the essential oil were 0.09±0.01%. A complete inhibition of the bacterial growth was observed after 2 h of incubation with twice the MIC of the essential oil. A better MIC was found when neutral or alkaline pH broth was used. Alteration in membrane permeability was found by the increase of crystal violet uptake when the bacteria were incubated with twice the MIC levels of the essential oil. The urease activity could be prevented when all the subinhibitory concentrations were tested in comparison to the untreated group (p<0.001). Alteration of the bacterial morphology besides inhibition of the capsule expression was verified by atomic force microscopy, and Anthony's stain method, respectively. Our data allow us to conclude that the essential oil of P. amboinicus can be a good candidate for future research.

  1. Anti-inflammatory activity of leaf essential oil from Cinnamomum longepaniculatum (Gamble) N. Chao

    PubMed Central

    Du, Yong-Hua; Feng, Rui-Zhang; Li, Qun; Wei, Qin; Yin, Zhong-Qiong; Zhou, Li-Jun; Tao, Cui; Jia, Ren-Yong

    2014-01-01

    The anti-inflammatory activity of the essential oil from C. longepaniculatum was evaluated by three experimental models including the dimethyl benzene-induced ear edema in mice, the carrageenan-induced paw edema in rat and the acetic acid-induced vascular permeability in mice. The influence of the essential oil on histological changes and prostaglandin E2 (PGE2), histamine and 5-hydroxytryptamine (5-HT) production associated with carrageenan-induced rat paw edema was also investigated. The essential oil (0.5, 0.25, 0.13 ml/kg b.w.) showed significantly inhibition of inflammation along with a dose-dependent manner in the three experimental models. The anti-inflammatory activity of essential oil was occurred both in early and late phase and peaked at 4 h after carrageenan injection. The essential oil resulted in a dose dependent reduction of the paw thickness, connective tissue injury and the infiltration of inflammatory cell. The essential oil also significantly reduced the production of PGE2, histamine and 5-HT in the exudates of edema paw induced by carrageenan. Both the essential oil and indomethacin resulted relative lower percentage inhibition of histamine and 5-HT than that of PGE2 at 4 h after carrageenan injection. PMID:25664080

  2. Efficacy of Essential Oils of Thymus vulgaris and Origanum vulgare on Echinococcus granulosus

    PubMed Central

    Pensel, P. E.; Maggiore, M. A.; Gende, L. B.; Eguaras, M. J.; Denegri, M. G.; Elissondo, M. C.

    2014-01-01

    The aim of the present work was to determine the in vitro effect of T. vulgaris and O. vulgare essential oils against E. granulosus protoscoleces and cysts. Essential oils were added to the medium resulting in thymol final concentrations of 10 μg/mL. The essential oils had a time-dependent effect provoking the complete loss of protoscolex viability after 72 days of postincubation. The results were confirmed at the ultrastructure level. Loss of infectivity in protoscoleces incubated with O. vulgare after 60 days was observed. On the other hand, the weight of cysts recorded in mice inoculated with T. vulgaris treated protoscoleces was significantly lower than that obtained in control group. Gamma-glutamyl-transpeptidase activity was readily detected in the culture supernatant of protoscoleces treated either with the essential oils or thymol. T. vulgaris and O. vulgare essential oils and thymol can induce cell apoptosis of protoscoleces after short incubation times. The efficacy of T. vulgaris and O. vulgare essential oils was also demonstrated in vitro on E. granulosus murine cysts. Our data suggest that essential oils of T. vulgaris and O. vulgare have anthelmintic effect against protoscoleces and cysts of E. granulosus. PMID:25180033

  3. Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils from five selected herbs.

    PubMed

    Tsai, Mei-Lin; Lin, Chih-Chien; Lin, Wei-Chao; Yang, Chao-Hsun

    2011-01-01

    Eucalyptus bridgesiana, Cymbopogon martinii, Thymus vulgaris, Lindernia anagallis, and Pelargonium fragrans are five species of herbs used in Asia. Their essential oils were analyzed by GC-MS, and a total of 36 components were detected. The results of our study indicated that, except for the essential oil of P. fragrans, all of the essential oils demonstrated obvious antimicrobial activity against a broad range of microorganisms. The C. martinii essential oil, which is rich in geraniol, was the most effective antimicrobial additive. All of the essential oils demonstrated antioxidant activities on 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, β-carotene/linoleic acid assay, and nitric oxide radical scavenging assay. Furthermore, the T. vulgaris essential oil, which possesses plentiful thymol, exhibited the highest antioxidant activity. For P. acnes-induced secretion of pro-inflammatory cytokines, the essential oils of P. aeruginosa, C. martinii, and T. vulgaris reduced the TNF-α, IL-1β, and IL-8 secretion levels of THP-1 cells.

  4. Combined effect of ultrasound and essential oils to reduce Listeria monocytogenes on fresh produce.

    PubMed

    Özcan, Gülçin; Demirel Zorba, Nükhet Nilüfer

    2016-06-01

    Salads prepared from contaminated fresh produce have a high risk of causing food-borne illnesses. Essential oils obtained from plants have antimicrobial activity and may provide a natural approach to reduce the pathogens on fresh produce. Additionally, ultrasound treatments have been shown to reduce the microbial counts on different foods. The objective of this study was to investigate the antimicrobial activities of cinnamon and lemon essential oils in vitro and in food applications. Mixtures of lettuce, parsley and dill were inoculated with Listeria monocytogenes and then dip-treated for 5 min in one of the following treatments: sterile tap water, chlorinated water, 1% lemon essential oil, 2% cinnamon essential oil or 2% cinnamon essential oil + ultrasound. The samples were stored at 4 ℃ and collected at d 0, 1, 3, 5, 7 and 9 post inoculation. The 1% lemon (4 log) and 2% cinnamon (2 log) essential oil washes provided partial inhibition against L. monocytogenes by d 1. The combined application of 2% cinnamon oil and ultrasound resulted in only 0.85 log inhibition by d 1; however, the number of L. monocytogenes increased during storage and became nearly equal to the control at d 9. Therefore, different combinations of essential oils with other antimicrobials or novel technologies are required.

  5. Commercial Origanum compactum Benth. and Cinnamomum zeylanicum Blume essential oils against natural mycoflora in Valencia rice.

    PubMed

    Santamarina, M Pilar; Roselló, Josefa; Sempere, Francisca; Giménez, Silvia; Blázquez, M Amparo

    2015-01-01

    Chemical composition of commercial Origanum compactum and Cinnamomum zeylanicum essential oils and the antifungal activity against pathogenic fungi isolated from Mediterranean rice grains have been investigated. Sixty-one compounds accounting for more than 99.5% of the total essential oil were identified by using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Carvacrol (43.26%), thymol (21.64%) and their biogenetic precursors p-cymene (13.95%) and γ-terpinene (11.28%) were the main compounds in oregano essential oil, while the phenylpropanoids, eugenol (62.75%), eugenol acetate (16.36%) and (E)-cinnamyl acetate (6.65%) were found in cinnamon essential oil. Both essential oils at 300 μg/mL showed antifungal activity against all tested strains. O. compactum essential oil showed the best antifungal activity towards Fusarium species and Bipolaris oryzae with a total inhibition of the mycelial growth. In inoculated rice grains at lower doses (100 and 200 μg/mL) significantly reduced the fungal infection, so O. compactum essential oil could be used as ecofriendly preservative for field and stored Valencia rice.

  6. Chemical characterization of Lippia alba essential oil: an alternative to control green molds

    PubMed Central

    Glamočlija, Jasmina; Soković, Marina; Tešević, Vele; Linde, Giani Andrea; Colauto, Nelson Barros

    2011-01-01

    The essential oil of Lippia alba is reported as an antifungal against human pathogenic microorganisms but few articles report its use as an alternative to synthetic fungicides on green mould control. The objective of this study was to determine chemical characteristics of L. alba essential oil and its antifungal activity against green molds as an alternative to synthetic fungicides. Essential oil was extracted by Clevenger hydrodistillation, characterized by GC-MS analysis, and the structure of the main compounds confirmed by 1H and 13C-NMR spectroscopy. Microdilution assays evaluated the essential oil minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC). Commercial fungicides Ketoconazole and Bifonazole were used as control. Essential oil yield is of 0.15% and the major components are neral (33.32%) and geranial (50.94%). The L. alba essential oil has MIC of 0.300–1.250 mg/mL and MFC of 0.600–1.250 mg/mL. Ketoconazole and Bifonazole show MIC ranging from 0.025–0.500 to 0.100–0.200 mg/mL, and MFC ranging from 0.250–0.100 to 0.200–0.250 mg/mL, respectively. L. alba essential oil is classified as citral type and the results indicate that it is a potential alternative to synthetic fungicides. PMID:24031788

  7. Bioactivity of essential oils in phytopathogenic and post-harvest fungi control.

    PubMed

    Santamarina, M P; Ibáñez, M D; Marqués, M; Roselló, J; Giménez, S; Blázquez, M A

    2017-02-09

    Commercial thyme and lavender essential oils were analysed by GC/MS. Sixty-six compounds accounting for 98.6-99.6% of total essential oil were identified. Thymol (52.14 ± 0.21%), followed by p-cymene (32.24 ± 0.16%), carvacrol (3.71 ± 0.01%) and γ-terpinene (3.34 ± 0.02%), were the main compounds in thyme essential oil, while large amounts of oxygenated monoterpenes linalool acetate (37.07 ± 0.24%) and linalool (30.16 ± 0.06%) were found in lavender one. In vitro antifungal activity of the essential oils was evaluated at 200 and 300 μg/mL against 10 phytopathogenic and post-harvest fungi, which significantly affect agriculture. Micelial growth inhibition was calculated for each tested fungus and dose. Thyme essential oil showed satisfactory results with 90-100% growth inhibition in almost all the assayed fungi at 300 μg/mL, while lavender essential oil showed no noteworthy inhibition data at either dose, and its growth was even enhanced. Thyme essential oil represents a natural alternative to control harvest and post-harvest fungi, and to extend the shelf-life of agriculture products.

  8. Contact and Repellent Activities of the Essential Oil from Juniperus formosana against Two Stored Product Insects.

    PubMed

    Guo, Shanshan; Zhang, Wenjuan; Liang, Junyu; You, Chunxue; Geng, Zhufeng; Wang, Chengfang; Du, Shushan

    2016-04-16

    The chemical composition of the essential oil from Juniperus formosana leaves and its contact and repellent activities against Tribolium castaneum and Liposcelis bostrychophila adults were investigated. The essential oil of J. formosana leaves was obtained by hydrodistillation and analyzed by GC-MS. A total of 28 components were identified and the main compounds in the essential oil were α-pinene (21.66%), 4-terpineol (11.25%), limonene (11.00%) and β-phellandrene (6.63%). The constituents α-pinene, 4-terpineol and d-limonene were isolated from the essential oil. It was found that the essential oil exhibited contact activity against T. castaneum and L. bostrychophila adults (LD50 = 29.14 μg/adult and 81.50 µg/cm², respectively). The compound 4-terpineol exhibited the strongest contact activity (LD50 = 7.65 μg/adult). In addition, data showed that at 78.63 nL/cm², the essential oil and the three isolated compounds strongly repelled T. castaneum adults. The compounds α-pinene and d-limonene reached the same level (Class V) of repellency as DEET (p = 0.396 and 0.664) against L. bostrychophila at 63.17 nL/cm² after 2 h treatment. The results indicate that the essential oil and the isolated compounds have potential to be developed into natural insecticides and repellents to control insects in stored products.

  9. In Vitro Trials of Dittrichia graveolens Essential Oil Combined with Antibiotics.

    PubMed

    Miladinović, Dragoljub L; Ilić, Budimir S; Kocić, Branislava D; Marković, Marija S; Miladinović, Ljiljana C

    2016-06-01

    The chemical composition and antibacterial activity of Dittrichia graveolens (L.) Greuter essential oil were examined. Gas chromatography and gas chromatography/mass spectrometry were used to analyze the chemical composition of the essential oil. The antibacterial activity was investigated by the broth microdilution method against thirteen bacterial strains. The interactions of the essential oil and three standard antibiotics: chloramphenicol, tetracycline and streptomycin toward five selected strains were evaluated using the microdilution checkerboard assay in combination with chemometric methods: principal components analysis and hierarchical cluster analysis. Oxygenated monoterpenes were the most abundant compound class in the essential oil (40.6%), with bomyl acetate (21.7%) as the major compound. The essential oil exhibited slight antibacterial activity against the tested bacterial strains in vitro, but the combinations D. graveolens essential oil-chloramphenicol and D. graveolens-tetracycline exhibited mostly synergistic or additive interactions. These combinations reduced the minimum effective dose of the antibiotics and, consequently, minimized their adverse side effects. In contrast, the association of D. graveolens essential oil and streptomycin was characterized by strong antagonistic interactions against E. coli ATCC 25922, S. aureus ATCC 29213 and P. aeruginosa ATCC 27853. In the principal components analysis (PCA) and hierarchical cluster analysis (HCA), streptomycin against these bacterial strains stood out and formed a separate group.

  10. Anti-inflammatory activities of essential oil isolated from the calyx of Hibiscus sabdariffa L.

    PubMed

    Shen, Chun-Yan; Zhang, Tian-Tian; Zhang, Wen-Li; Jiang, Jian-Guo

    2016-10-12

    Hibiscus sabdariffa Linn., belonging to the family of Malvaceae, is considered to be a plant with health care applications in China. The main purpose of this study was to analyze the composition of its essential oil and assess its potential therapeutic effect on anti-inflammatory activity. A water steam distillation method was used to extract the essential oil from H. Sabdariffa. The essential oil components were determined by gas chromatography/mass spectrometry (GC-MS) analysis and a total of 18 volatile constituents were identified, the majority of which were fatty acids and ester compounds. Biological activity showed that the essential oil extracted from H. Sabdariffa exhibited excellent anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated macrophage RAW 264.7 cells. The nitric oxide (NO) inhibition rate reached 67.46% when the concentration of the essential oil was 200 μg mL(-1). Further analysis showed that the anti-inflammatory activity of the essential oil extracted from H. Sabdariffa might be exerted through inhibiting the activation of NF-κB and MAPK (JNK and ERK1/2) signaling pathways to decrease NO and pro-inflammatory cytokine (IL-1, IL-6, TNF-α, COX-2, and iNOS) production. Thus, the essential oil extracted from H. Sabdariffa is a good source of a natural product with a beneficial effect against inflammation, and it may be applied as a food supplement and/or functional ingredient.

  11. Anti-inflammatory activity of leaf essential oil from Cinnamomum longepaniculatum (Gamble) N. Chao.

    PubMed

    Du, Yong-Hua; Feng, Rui-Zhang; Li, Qun; Wei, Qin; Yin, Zhong-Qiong; Zhou, Li-Jun; Tao, Cui; Jia, Ren-Yong

    2014-01-01

    The anti-inflammatory activity of the essential oil from C. longepaniculatum was evaluated by three experimental models including the dimethyl benzene-induced ear edema in mice, the carrageenan-induced paw edema in rat and the acetic acid-induced vascular permeability in mice. The influence of the essential oil on histological changes and prostaglandin E2 (PGE2), histamine and 5-hydroxytryptamine (5-HT) production associated with carrageenan-induced rat paw edema was also investigated. The essential oil (0.5, 0.25, 0.13 ml/kg b.w.) showed significantly inhibition of inflammation along with a dose-dependent manner in the three experimental models. The anti-inflammatory activity of essential oil was occurred both in early and late phase and peaked at 4 h after carrageenan injection. The essential oil resulted in a dose dependent reduction of the paw thickness, connective tissue injury and the infiltration of inflammatory cell. The essential oil also significantly reduced the production of PGE2, histamine and 5-HT in the exudates of edema paw induced by carrageenan. Both the essential oil and indomethacin resulted relative lower percentage inhibition of histamine and 5-HT than that of PGE2 at 4 h after carrageenan injection.

  12. Essential Oil Yield Pattern and Antibacterial and Insecticidal Activities of Trachyspermum ammi and Myristica fragrans

    PubMed Central

    Sharma, Gaurav

    2016-01-01

    Two Indian spices, Trachyspermum ammi and Myristica fragrans, were studied for their essential oil (EO) yielding pattern, insecticidal activity, antibacterial activity, and composition. The essential oils (EOs) of T. ammi (1.94 ± 30 mL/100 gm) and M. fragrans (5.93 ± 90 mL/100 gm) were extracted using hydrodistillation method. In Gas Chromatography analysis, the beta-pinene, alpha-pinene, alpha-p-menth-1-en-4-ol, Limonene, and elemicin were found as major constituents of T. ammi essential oil whereas M. fragrans essential oil mostly contains Gamma-Terpinolene, p-Cymene, Thymol, and beta-pinene. The insecticidal activities of EO were demonstrated using LC50 values against Plodia interpunctella and EO of T. ammi was found comparatively more effective than EO of M. fragrans. Further, individual EO and combination of essential oil were examined for antibacterial activity against three Gram (−) bacterial strains (E. coli-MTCC 443, P. vulgaris-MTCC 1771, and K. pneumoniae-MTCC number 7028) and three Gram (+) bacterial strains (S. aureus-MTCC 3381, B. subtilis-MTCC 10619, and B. megaterium-MTCC 2412) by well agar diffusion method. The essential oil in combination (CEO) exhibited higher antibacterial activity as compared with individual essential oils. PMID:27190677

  13. Essential Oil Yield Pattern and Antibacterial and Insecticidal Activities of Trachyspermum ammi and Myristica fragrans.

    PubMed

    Soni, Rajgovind; Sharma, Gaurav; Jasuja, Nakuleshwar Dut

    2016-01-01

    Two Indian spices, Trachyspermum ammi and Myristica fragrans, were studied for their essential oil (EO) yielding pattern, insecticidal activity, antibacterial activity, and composition. The essential oils (EOs) of T. ammi (1.94 ± 30 mL/100 gm) and M. fragrans (5.93 ± 90 mL/100 gm) were extracted using hydrodistillation method. In Gas Chromatography analysis, the beta-pinene, alpha-pinene, alpha-p-menth-1-en-4-ol, Limonene, and elemicin were found as major constituents of T. ammi essential oil whereas M. fragrans essential oil mostly contains Gamma-Terpinolene, p-Cymene, Thymol, and beta-pinene. The insecticidal activities of EO were demonstrated using LC50 values against Plodia interpunctella and EO of T. ammi was found comparatively more effective than EO of M. fragrans. Further, individual EO and combination of essential oil were examined for antibacterial activity against three Gram (-) bacterial strains (E. coli-MTCC 443, P. vulgaris-MTCC 1771, and K. pneumoniae-MTCC number 7028) and three Gram (+) bacterial strains (S. aureus-MTCC 3381, B. subtilis-MTCC 10619, and B. megaterium-MTCC 2412) by well agar diffusion method. The essential oil in combination (CEO) exhibited higher antibacterial activity as compared with individual essential oils.

  14. Synergistic mosquito-repellent activity of Curcuma longa, Pogostemon heyneanus and Zanthoxylum limonella essential oils.

    PubMed

    Das, N G; Dhiman, Sunil; Talukdar, P K; Rabha, Bipul; Goswami, Diganta; Veer, Vijay

    2015-01-01

    Mosquito repellents play an important role in preventing man-mosquito contact. In the present study, we evaluated the synergistic mosquito-repellent activity of Curcuma longa, Pogostemon heyneanus and Zanthoxylum limonella essential oils. The mosquito repellent efficacies of three essential oils were evaluated separately and in combination under laboratory and field conditions. N,N-Diethylphenylacetamide (DEPA) and dimethylphthalate (DMP) were used for comparison of the protection time of the mixture of essential oils. At an optimum concentration of 20%, the essential oils of C. longa, Z. limonella and P. heyneanus provided complete protection times (CPTs) of 96.2, 91.4 and 123.4 min, respectively, against Aedes albopictus mosquitoes in the laboratory. The 1:1:2 mixture of the essential oils provided 329.4 and 391.0 min of CPT in the laboratory and field trials, respectively. The percent increases in CPTs for the essential oil mixture were 30 for DMP and 55 for N,N-diethylphenylacetamide (DEPA). The synergistic repellent activity of the essential oils used in the present study might be useful for developing safer alternatives to synthetic repellents for personal protection against mosquitoes.

  15. Chemical characterization of Lippia alba essential oil: an alternative to control green molds.

    PubMed

    Glamočlija, Jasmina; Soković, Marina; Tešević, Vele; Linde, Giani Andrea; Colauto, Nelson Barros

    2011-10-01

    The essential oil of Lippia alba is reported as an antifungal against human pathogenic microorganisms but few articles report its use as an alternative to synthetic fungicides on green mould control. The objective of this study was to determine chemical characteristics of L. alba essential oil and its antifungal activity against green molds as an alternative to synthetic fungicides. Essential oil was extracted by Clevenger hydrodistillation, characterized by GC-MS analysis, and the structure of the main compounds confirmed by (1)H and (13)C-NMR spectroscopy. Microdilution assays evaluated the essential oil minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC). Commercial fungicides Ketoconazole and Bifonazole were used as control. Essential oil yield is of 0.15% and the major components are neral (33.32%) and geranial (50.94%). The L. alba essential oil has MIC of 0.300-1.250 mg/mL and MFC of 0.600-1.250 mg/mL. Ketoconazole and Bifonazole show MIC ranging from 0.025-0.500 to 0.100-0.200 mg/mL, and MFC ranging from 0.250-0.100 to 0.200-0.250 mg/mL, respectively. L. alba essential oil is classified as citral type and the results indicate that it is a potential alternative to synthetic fungicides.

  16. Antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced by enzymatic esterification.

    PubMed

    Vanin, Adriana B; Orlando, Tainara; Piazza, Suelen P; Puton, Bruna M S; Cansian, Rogério L; Oliveira, Debora; Paroul, Natalia

    2014-10-01

    This work reports the maximization of eugenyl acetate production by esterification of essential oil of clove in a solvent-free system using Novozym 435 as catalyst. The antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced were determined. The conditions that maximized eugenyl acetate production were 60 °C, essential oil of clove to acetic anhydride ratio of 1:5, 150 rpm, and 10 wt% of enzyme, with a conversion of 99.87 %. A kinetic study was performed to assess the influence of substrates' molar ratio, enzyme concentration, and temperature on product yield. Results show that an excess of anhydride, enzyme concentration of 5.5 wt%, 50 °C, and essential oil of clove to acetic anhydride ratio of 1:5 afforded nearly a complete conversion after 2 h of reaction. Comparing the antibacterial activity of the essential oil of clove before and after esterification, we observed a decrease in the antimicrobial activity of eugenyl acetate, particularly with regard to minimum inhibitory concentration (MIC). Both eugenyl acetate and clove essential oil were most effective to the gram-negative than gram-positive bacteria group. The results showed a high antioxidant potential for essential oil before and particularly after the esterification reaction thus becoming an option for the formulation of new antioxidant products.

  17. Identification of repellent odorants to the body louse, Pediculus humanus corporis, in clove essential oil.

    PubMed

    Iwamatsu, Takuma; Miyamoto, Daisuke; Mitsuno, Hidefumi; Yoshioka, Yoshiaki; Fujii, Takeshi; Sakurai, Takeshi; Ishikawa, Yukio; Kanzaki, Ryohei

    2016-04-01

    The control of body lice is an important issue for human health and welfare because lice act as vectors of disease such as typhus, relapsing fever, and trench fever. Body lice exhibit avoidance behavior to some essential oils, including clove essential oil. Therefore, odorants containing clove essential oil components may potentially be useful in the development of repellents to body lice. However, such odorants that induce avoidance behavior in body lice have not yet been identified from clove essential oil. Here, we established an analysis method to evaluate the avoidance behavior of body lice to specific odorants. The behavioral analysis of the body lice in response to clove essential oil and its constituents revealed that eugenol, a major component of clove essential oil, has strong repellent effect on body lice, whereas the other components failed to induce obvious avoidance behavior. A comparison of the repellent effects of eugenol with those of other structurally related odorants revealed possible moieties that are important for the avoidance effects to body lice. The repellent effect of eugenol to body lice was enhanced by combining it with the other major component of clove essential oil, β-caryophyllene. We conclude that a synthetic blend of eugenol and β-caryophyllene is the most effective repellent to body lice. This finding will be valuable as the potential use of eugenol as body lice repellent.

  18. Insecticidal and repellence activity of the essential oil of Pogostemon cablin against urban ants species.

    PubMed

    Albuquerque, Elânia L D; Lima, Janaína K A; Souza, Felipe H O; Silva, Indira M A; Santos, Abraão A; Araújo, Ana Paula A; Blank, Arie F; Lima, Rafaely N; Alves, Péricles B; Bacci, Leandro

    2013-09-01

    Ants are highly abundant in neotropical regions, with certain species adapted to the urban environment, where they can cause damage to human health. The main method for controlling ants consists of using organosynthetic insecticides, which are potentially toxic to the environment. Essential plant oils are considered a viable alternative to the use of conventional insecticides. In this study, we analyze the bioinsecticidal activity and repellence of patchouli essential oil (Pogostemon cablin) against three species of urban ants: Camponotus melanoticus, Camponotus novograndensis, and Dorymyrmex thoracicus. The chemical composition of the essential oil was analyzed by GC-MS and GC-FID. The major compounds were patchoulol (36.6%) followed by α-bulnesene (13.95%), and α-guaiene (11.96%). Toxicity and repellency bioassays were performed using the essential oil over the ants, and mortality evaluations were performed at 4, 24, and 48 h after performing the bioassays. Mortality percentage of the ants on 7 μg/mg was on average 84%. The essential oil of P. cablin displayed toxicity against all three species of urban ants, with the lowest LD₅₀ being observed for D. thoracicus (2.02 μg oil/mg insect) after 48 h of exposure compared to C. melanoticus (2.34 μg oil/mg insect) and C. novogranadensis (2.95 μg oil/mg insect). The essential oil of P. cablin was strongly repellent to the three species of ants in all concentrations tested (0.01% and 1% v/v). Considering the potential toxicity and repellency of the P. cablin essential oil to the urban ants, future studies could investigate the practical application of this oil to control of this insects.

  19. Field evaluation of essential oils for reducing attraction by the Japanese beetle (Coleoptera: Scarabaeidae).

    PubMed

    Youssef, Nadeer N; Oliver, Jason B; Ranger, Christopher M; Reding, Michael E; Moyseenko, James J; Klein, Michael G; Pappas, Robert S

    2009-08-01

    Forty-one plant essential oils were tested under field conditions for the ability to reduce the attraction of adult Japanese beetles, Popillia japonica Newman (Coleoptera: Scarabaeidae), to attractant-baited or nonbaited traps. Treatments applied to a yellow and green Japanese beetle trap included a nonbaited trap, essential oil alone, a Japanese beetle commercial attractant (phenethyl proprionate:eugenol:geraniol, 3:7:3 by volume) (PEG), and an essential oil plus PEG attractant. Eight of the 41 oils reduced attractiveness of the PEG attractant to the Japanese beetle. When tested singly, wintergreen and peppermint oils were the two most effective essential oils at reducing attractiveness of the PEG attractant by 4.2x and 3.5x, respectively. Anise, bergamont mint, cedarleaf, dalmation sage, tarragon, and wormwood oils also reduced attraction of the Japanese beetle to the PEG attractant. The combination of wintergreen oil with ginger, peppermint, or ginger and citronella oils reduced attractiveness of the PEG attractant by 4.7x to 3.1x. Seventeen of the 41 essential oils also reduced attraction to the nonbaited yellow and green traps, resulting in 2.0x to 11.0x reductions in trap counts relative to nonbaited traps. Camphor, coffee, geranium, grapefruit, elemi, and citronella oils increased attractiveness of nonbaited traps by 2.1x to 7.9x when tested singly, but none were more attractive than the PEG attractant. Results from this study identified several plant essential oils that act as semiochemical disruptants against the Japanese beetle.

  20. In vitro and in vivo anti-plasmodial activity of essential oils, including hinokitiol.

    PubMed

    Fujisaki, Ryuichi; Kamei, Kiyoko; Yamamura, Mariko; Nishiya, Hajime; Inouye, Shigeharu; Takahashi, Miki; Abe, Shigeru

    2012-03-01

    Abstract. The anti-plasmodial activity of 47 essential oils and 10 of their constituents were screened for in vitro activity against Plasmodium falciparum. Five of these essential oils (sandalwood, caraway, monarda, nutmeg, and Thujopsis dolabrata var. hondai) and 2 constituents (thymoquinone and hinokitiol) were found to be active against P. falciparum in vitro, with 50% inhibitory concentration (IC50) values equal to or less than 1.0 microg/ml. Furthermore, in vivo analysis using a rodent model confirmed the anti-plasmodial potential of subcutaneously administered sandalwood oil, and percutaneously administered hinokitiol and caraway oil against rodent P. berghei. Notably, these oils showed no efficacy when administered orally, intraperitoneally or intravenously. Caraway oil and hinokitiol dissolved in carrier oil, applied to the skin of hairless mice caused high levels in the blood, with concentrations exceeding their IC50 values.

  1. Analysis of essential oils from Voacanga africana seeds at different hydrodistillation extraction stages: chemical composition, antioxidant activity and antimicrobial activity.

    PubMed

    Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na

    2015-01-01

    In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.

  2. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components

    PubMed Central

    Hyldgaard, Morten; Mygind, Tina; Meyer, Rikke Louise

    2012-01-01

    Essential oils are aromatic and volatile liquids extracted from plants. The chemicals in essential oils are secondary metabolites, which play an important role in plant defense as they often possess antimicrobial properties. The interest in essential oils and their application in food preservation has been amplified in recent years by an increasingly negative consumer perception of synthetic preservatives. Furthermore, food-borne diseases are a growing public health problem worldwide, calling for more effective preservation strategies. The antibacterial properties of essential oils and their constituents have been documented extensively. Pioneering work has also elucidated the mode of action of a few essential oil constituents, but detailed knowledge about most of the compounds’ mode of action is still lacking. This knowledge is particularly important to predict their effect on different microorganisms, how they interact with food matrix components, and how they work in combination with other antimicrobial compounds. The main obstacle for using essential oil constituents as food preservatives is that they are most often not potent enough as single components, and they cause negative organoleptic effects when added in sufficient amounts to provide an antimicrobial effect. Exploiting synergies between several compounds has been suggested as a solution to this problem. However, little is known about which interactions lead to synergistic, additive, or antagonistic effects. Such knowledge could contribute to design of new and more potent antimicrobial blends, and to understand the interplay between the constituents of crude essential oils. The purpose of this review is to provide an overview of current knowledge about the antibacterial properties and antibacterial mode of action of essential oils and their constituents, and to identify research avenues that can facilitate implementation of essential oils as natural preservatives in foods. PMID:22291693

  3. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components.

    PubMed

    Hyldgaard, Morten; Mygind, Tina; Meyer, Rikke Louise

    2012-01-01

    Essential oils are aromatic and volatile liquids extracted from plants. The chemicals in essential oils are secondary metabolites, which play an important role in plant defense as they often possess antimicrobial properties. The interest in essential oils and their application in food preservation has been amplified in recent years by an increasingly negative consumer perception of synthetic preservatives. Furthermore, food-borne diseases are a growing public health problem worldwide, calling for more effective preservation strategies. The antibacterial properties of essential oils and their constituents have been documented extensively. Pioneering work has also elucidated the mode of action of a few essential oil constituents, but detailed knowledge about most of the compounds' mode of action is still lacking. This knowledge is particularly important to predict their effect on different microorganisms, how they interact with food matrix components, and how they work in combination with other antimicrobial compounds. The main obstacle for using essential oil constituents as food preservatives is that they are most often not potent enough as single components, and they cause negative organoleptic effects when added in sufficient amounts to provide an antimicrobial effect. Exploiting synergies between several compounds has been suggested as a solution to this problem. However, little is known about which interactions lead to synergistic, additive, or antagonistic effects. Such knowledge could contribute to design of new and more potent antimicrobial blends, and to understand the interplay between the constituents of crude essential oils. The purpose of this review is to provide an overview of current knowledge about the antibacterial properties and antibacterial mode of action of essential oils and their constituents, and to identify research avenues that can facilitate implementation of essential oils as natural preservatives in foods.

  4. Analysis of essential oils from wild and micropropagated plants of damiana (Turnera diffusa).

    PubMed

    Alcaraz-Meléndez, Lilia; Delgado-Rodríguez, Javier; Real-Cosío, Sergio

    2004-12-01

    Damiana is a medicinal plant with many traditional uses and a reputation as an aphrodisiac. Essential oils produced by this plant are used in traditional medicine, and for the preparation of liquors and tea. The composition of essential oils from wild damiana, plants grown with micropropagated methods involving cell suspension, and explants in solid medium, is presented. Relevant differences are observed in oils coming from wild and micropropagated plants, where micropropagated plants being more uniform with respect to quality and quantity. The most abundant constituents of the oils were caryophyllene oxide, caryophyllene, delta-cadinene, elemene and 1,8-cineol.

  5. Composition of the essential oil of Helichrysum chasmolycicum growing wild in Turkey.

    PubMed

    Chalchat, J C; Ozcan, M M

    2006-01-01

    The chemical compositions of the essential oil obtained from the aerial parts of Helichrysum chasmolycicum were analyzed by gas chromatography and gas chromatography-mass spectrometry. From the 57 identified constituents, representing 66.55% of the oil, the main constituents of the oil were beta-caryophyllene (27.6%), beta-selinene (8.9%), alpha-selinene (8.4%), caryophyllene oxide (7.3%), and carvacrol (2.4%). The essential oil was almost totally characterized by sesquiterpene hydrocarbons such as beta-caryophyllene and alpha- and beta-selinene.

  6. Composition and Biological Activity of Picea pungens and Picea orientalis Seed and Cone Essential Oils.

    PubMed

    Wajs-Bonikowska, Anna; Szoka, Łukasz; Karna, Ewa; Wiktorowska-Owczarek, Anna; Sienkiewicz, Monika

    2017-03-01

    The increasing consumption of natural products lead us to discover and study new plant materials, such as conifer seeds and cones, which could be easily available from the forest industry as a waste material, for their potential uses. The chemical composition of the essential oils of Picea pungens and Picea orientalis was fully characterized by GC and GC/MS methods. Seed and cone oils of both tree species were composed mainly of monoterpene hydrocarbons, among which limonene, α- and β-pinene were the major, but in different proportions in the examined conifer essential oils. The levorotary form of chiral monoterpene molecules was predominant over the dextrorotary form. The composition of oils from P. pungens seeds and cones was similar, while the hydrodistilled oils of P. orientalis seeds and cones differed from each other, mainly by a higher amount of oxygenated derivatives of monoterpenes and by other higher molar mass terpenes in seed oil. The essential oils showed mild antimicrobial action, however P. orientalis cone oil exhibited stronger antimicrobial properties against tested bacterial species than those of P. pungens. Effects of the tested cone essential oils on human skin fibroblasts and microvascular endothelial cells (HMEC-1) were similar: in a concentration of 0 - 0.075 μl/ml the oils were rather safe for human skin fibroblasts and 0 - 0.005 μl/ml for HMEC-1 cells. IC50 value of Picea pungens oils was 0.115 μl/ml, while that of Picea orientalis was 0.105 μl/ml. The value of IC50 of both oils were 0.035 μl/ml for HMEC-1 cells. The strongest effect on cell viability had the oil from Picea orientalis cones, while on DNA synthesis the oil from Picea pungens cones.

  7. Anticancer activity of essential oils and their chemical components - a review

    PubMed Central

    Bayala, Bagora; Bassole, Imaël HN; Scifo, Riccardo; Gnoula, Charlemagne; Morel, Laurent; Lobaccaro, Jean-Marc A; Simpore, Jacques

    2014-01-01

    Essential oils are widely used in pharmaceutical, sanitary, cosmetic, agriculture and food industries for their bactericidal, virucidal, fungicidal, antiparasitical and insecticidal properties. Their anticancer activity is well documented. Over a hundred essential oils from more than twenty plant families have been tested on more than twenty types of cancers in last past ten years. This review is focused on the activity of essential oils and their components on various types of cancers. For some of them the mechanisms involved in their anticancer activities have been carried out. PMID:25520854

  8. Exploitation of Cytotoxicity of Some Essential Oils for Translation in Cancer Therapy

    PubMed Central

    Russo, Rossella; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Morrone, Luigi Antonio

    2015-01-01

    Essential oils are complex mixtures of several components endowed with a wide range of biological activities, including antiseptic, anti-inflammatory, spasmolytic, sedative, analgesic, and anesthetic properties. A growing body of scientific reports has recently focused on the potential of essential oils as anticancer treatment in the attempt to overcome the development of multidrug resistance and important side effects associated with the antitumor drugs currently used. In this review we discuss the literature on the effects of essential oils in  in vitro and in vivo models of cancer, focusing on the studies performed with the whole phytocomplex rather than single constituents. PMID:25722735

  9. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany) essential oil

    PubMed Central

    Mitropoulou, Gregoria; Fitsiou, Eleni; Stavropoulou, Elisavet; Papavassilopoulou, Eleni; Vamvakias, Manolis; Pappa, Aglaia; Oreopoulou, Antigoni; Kourkoutas, Yiannis

    2015-01-01

    Background Nowadays, there has been an increased interest in essential oils from various plant origins as potential antimicrobial, antioxidant, and antiproliferative agents. This trend can be mainly attributed to the rising number and severity of food poisoning outbreaks worldwide along with the recent negative consumer perception against artificial food additives and the demand for novel functional foods with possible health benefits. Origanum dictamnus (dittany) is an aromatic, tender perennial plant that only grows wild on the mountainsides and gorges of the island of Crete in Greece. Objective The aim of the present study was to investigate the antimicrobial, antioxidant, and antiproliferative properties of O. dictamnus essential oil and its main components and assess its commercial potential in the food industry. Design O. dictamnus essential oil was initially analyzed by gas chromatography–mass spectrometry (GC–MS) to determine semi-quantitative chemical composition of the essential oils. Subsequently, the antimicrobial properties were assayed and the minimum inhibitory and non-inhibitory concentration values were determined. The antioxidant activity and cytotoxic action against the hepatoma adenocarcinoma cell line HepG2 of the essential oil and its main components were further evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and by the sulforhodamine B (SRB) assay, respectively. Results The main constituents of O. dictamnus essential oil identified by GC–MS analysis were carvacrol (52.2%), γ-terpinene (8.4%), p-cymene (6.1%), linalool (1.4%), and caryophyllene (1.3%). O. dictamnus essential oil and its main components were effective against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Listeria monocytogenes, Salmonella Enteritidis, Salmonella typhimurium, Saccharomyces cerevisiae, and Aspergillus niger. In addition, the estimated IC50 value for the DPPH radical scavenging activity for O. dictamnus essential oil was

  10. The effects of wild thyme (Thymus serpyllum L.) essential oil components against ochratoxin-producing Aspergilli.

    PubMed

    Sokolić-Mihalak, Darja; Frece, Jadranka; Slavica, Anita; Delaš, Frane; Pavlović, Hrvoje; Markov, Ksenija

    2012-12-01

    The aim of this study was to determine the effects of the essential oil of Thymus serpyllum L. and of its components thymol and total phenols (total phenolic content, TPC) extracted from the plant on the growth and mycotoxin production of Aspergillus ochraceus, A. carbonarius, and A. niger. Minimal inhibitory concentration (MIC) determined for the essential oil and thymol, and selected concentration of the TPC extract inhibited fungal growth and ochratoxin A biosynthesis by more than 60 %, depending on the conditions and duration of incubation with the fungi. Essential oil showed the strongest inhibitory effect which may have been related to the synergistic or cumulative effects of its components.

  11. Synergistic antibacterial activity of the essential oil of aguaribay (Schinus molle L.).

    PubMed

    de Mendonça Rocha, Pedro M; Rodilla, Jesus M; Díez, David; Elder, Heriberto; Guala, Maria Silvia; Silva, Lúcia A; Pombo, Eunice Baltazar

    2012-10-12

    Schinus molle L. (aguaribay, aroeira-falsa, "molle", family Anacardiaceae), a native of South America, produces an active antibacterial essential oil extracted from the leaves and fruits. This work reports a complete study of its chemical composition and determines the antibacterial activity of Schinus molle L. essential oil and its main components. The results showed that the crude extract essential oil has a potent antibacterial effect on Staphylococcus aureus ATCC 25923, a strong/moderate effect on Escherichia coli ATCC 25922 and moderate/weak one on Pseudomonas aeruginosa ATCC 27853.

  12. Variations in the essential oil composition from different parts of Coriandrum sativum L. cultivated in Tunisia.

    PubMed

    Msaada, Kamel; Hosni, Karim; Taarit, Mouna Ben; Chahed, Thouraya; Marzouk, Brahim

    2007-03-01

    Essential oils obtained by hydrodistillation from different organs (flowers, leaves, stems and roots) of Tunisian coriander (Coriandrum sativum L.) was analyzed. GC and GC-MS analysis enabled us to identify 64 compounds and revealed great qualitative and quantitative differences between the analyzed parts. In all organs, the main compound was (E)-2-dodecenal, followed by (E)-2-tridecenal, gamma-cadinene, (Z)-myroxide, neryl acetate and eugenol. Multivariate analysis (PCA) revealed a high similarity in the essential oils composition between upper leaves and flowers in one hand and basal leaves, roots and stems on the other hand. Further, it has been reported an organ-dependant distribution of essential oil compounds.

  13. Essential oil of Croton zehntneri and its main constituent anethole block excitability of rat peripheral nerve.

    PubMed

    da Silva-Alves, Kerly Shamyra; Ferreira-da-Silva, Francisco Walber; Coelho-de-Souza, Andrelina Noronha; Albuquerque, Aline Alice Cavalcante; do Vale, Otoni Cardoso; Leal-Cardoso, José Henrique

    2015-03-01

    Croton zehntneri is an aromatic plant native to Northeast Brazil and employed by local people to treat various diseases. The leaves of this plant have a rich content of essential oil. The essential oil of C. zehntneri samples, with anethole as the major constituent and anethole itself, have been reported to have several pharmacological activities such as antispasmodic, cardiovascular, and gastroprotective effects and inducing the blockade of neuromuscular transmission and antinociception. Since several works have demonstrated that essential oils and their constituents block cell excitability and in view of the multiple effects of C. zehntneri essential oil and anethole on biological tissues, we undertook this investigation aiming to characterize and compare the effects of this essential oil and its major constituent on nerve excitability. Sciatic nerves of Wistar rats were used. They were mounted in a moist chamber, and evoked compound action potentials were recorded. Nerves were exposed in vitro to the essential oil of C. zehntneri and anethole (0.1-1 mg/mL) up to 180 min, and alterations in excitability (rheobase and chronaxie) and conductibility (peak-to-peak amplitude and conduction velocity) parameters of the compound action potentials were evaluated. The essential oil of C. zehntneri and anethole blocked, in a concentration-dependent manner with similar pharmacological potencies (IC50: 0.32 ± 0.07 and 0.22 ± 0.11 mg/mL, respectively), rat sciatic nerve compound action potentials. Strength-duration curves for both agents were shifted upward and to the right compared to the control curve, and the rheobase and chronaxie were increased following essential oil and anethole exposure. The time courses of the essential oil of C. zehntneri and anethole effects on peak-to-peak amplitude of compound action potentials followed an exponential decay and reached a steady state. The essential oil of C. zehntneri and anethole caused a similar reduction in

  14. Environmental interactions with the toxicity of plant essential oils to the poultry red mite Dermanyssus gallinae.

    PubMed

    George, D R; Sparagano, O A E; Port, G; Okello, E; Shiel, R S; Guy, J H

    2010-03-01

    The toxicity of a range of plant essential oils to the poultry red mite, Dermanyssus gallinae (De Geer) (Acari: Dermanyssidae), a serious ectoparasitic pest of laying hens throughout Europe and elsewhere, was assessed in the laboratory. Dermanyssus gallinae may cause losses in egg production, anaemia and, in extreme cases, death of hens. With changes in legislation and consumer demand, alternatives to synthetic acaricides are needed to manage this pest. Fifty plant essential oils were selected for their toxicity to arthropods reported in the literature. Twenty-four of these essential oils were found to kill > 75% of adult D. gallinae in contact toxicity tests over a 24-h period at a rate of 0.21 mg/cm(2). Subsequent testing at lower rates showed that the essential oils of cade, manuka and thyme were especially toxic to adult D. gallinae. The toxicity of the seven most acaricidal essential oils was found to be stable at different temperatures likely to be encountered in commercial poultry housing (15 degrees C, 22 degrees C and 29 degrees C), although results suggest that humidity and dust might influence the toxicity of some of the oils tested. The toxicity of clove bud essential oil to D. gallinae, for example, was increased at high humidity and dust levels compared with ambient levels. The results suggest that certain essential oils may make effective botanical pesticides for use against D. gallinae, although it is likely that issues relating to the consistency of the toxic effect of some oils will determine which oils will be most effective in practice.

  15. Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines.

    PubMed

    Díaz, Cecilia; Quesada, Silvia; Brenes, Oscar; Aguilar, Gilda; Cicció, José F

    2008-01-01

    The leaf essential oil hydrodistilled from Schinus molle grown in Costa Rica was characterised in terms of its chemical composition, antioxidant activity, ability to induce cytotoxicity and the mechanism of cell death involved in the process. As a result, 42 constituents, accounting for 97.2% of the total oil, were identified. The major constituents of the oil were beta-pinene and alpha-pinene. The antioxidant activity showed an IC(50) of 36.3 microg mL(-1). The essential oil was cytotoxic in several cell lines, showing that it is more effective on breast carcinoma and leukemic cell lines. The LD(50) for cytotoxicity at 48 h in K562 corresponded to 78.7 microg mL(-1), which was very similar to the LD(50) obtained when apoptosis was measured. The essential oil did not induce significant necrosis up to 200 microg mL(-1), which together with the former results indicate that apoptosis is the main mechanism of toxicity induced by S. molle essential oil in this cell line. In conclusion, the essential oil tested was weak antioxidant and induced cytotoxicity in different cell types by a mechanism related to apoptosis. It would be interesting to elucidate the role that different components of the oil play in the effect observed here, since some of them could have potential anti-tumoural effects, either alone or in combination.

  16. Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata

    PubMed Central

    Dai, Jiali; Zhu, Liang; Yang, Li; Qiu, Jun

    2013-01-01

    The following study deals with the chemical composition, antioxidant and antimicrobial activity of essential oils of Wedelia prostrata and their main constituents in vitro. A total of 70 components representing 99.26 % of the total oil were identified. The main compounds in the oil were limonene (11.38 %) and α-pinene (10.74 %). Antioxidant assays (1,1-diphenyl-2-picrylhydrazyl, superoxide anion radical, and reducing power test) demonstrate moderate activities for the essential oil and its main components (limonene and α-pinene). The essential oil (1000 μg/disc) exhibited promising antimicrobial activity against 10 strains of test microorganisms as a diameter of zones of inhibition (20.8 to 22.2 mm) and MIC values (125 to 250 µg/ml). The activities of limonene and α-pinene were also determined as main components of the oil. α-Pinene showed higher antimicrobial activity than the essential oil with a diameter of zones of inhibition (20.7 to 22.3 mm) and MIC values (62.5 to 125 µg/ml). The antioxidant and antimicrobial properties of the essential oil may be attributed to the synergistic effects of its diverse major and minor components. PMID:26648809

  17. The effect of temperature on the essential oil components of Salvia potentillifolia obtained by various methods.

    PubMed

    Oztürk, Mehmet; Tel, Gülsen; Duru, Mehmet Emin; Harmandar, Mansur; Topçu, Gülaçti

    2009-07-01

    The chemical compositions of the essential oils of Salvia potentillifolia (Lamiaceae) were analyzed by GC and GC-MS. The oils were obtained by four different methods (hydrodistillation, steam distillation, and two extraction methods) to investigate the effect of temperature on the volatile compounds. In total, 121 components were detected in the various oils. The major compounds characterized were alpha-pinene (30.2, 31.2, 10.6, and 14.8%) and beta-pinene (15.0, 14.6, 7.6, and 11.4%), respectively. Surprisingly, the percentage concentrations of alpha-pinene and beta-pinene in the hydrodistilled and steam distilled oils were high, even though prepared at high temperature, whereas the contents of both compounds were lower in the essential oils obtained by the extraction methods prepared without added heat. The percentage concentration of 8,13-epoxy-labda-14-en-2-one, a diterpenoid, in the extracted essential oil was 22 times higher than in the hydrodistilled and steam distilled essential oils. However, the concentrations of cis-p-menth-2-en-1-ol was four times, and beta-bourbonene and beta-caryophyllene two times superior than their percentage concentrations in the hydrodistilled and steam distilled essential oils.

  18. Effects of Croton rhamnifolioides essential oil on Aedes aegypti oviposition, larval toxicity and trypsin activity.

    PubMed

    Santos, Geanne K N; Dutra, Kamilla A; Lira, Camila S; Lima, Bheatriz N; Napoleão, Thiago H; Paiva, Patrícia M G; Maranhão, Claudia A; Brandão, Sofia S F; Navarro, Daniela M A F

    2014-10-14

    Although numerous reports are available concerning the larvicidal potential of essential oils, very few investigations have focused on their mechanisms of action. In the present study, we have investigated the chemical composition of the leaf oil of Croton rhamnifolioides during storage and its effects on oviposition and survival of larvae of the dengue fever mosquito Aedes aegypti. In addition, we have established a possible mechanism of action for the larvicidal activity of the essential oil. GC-MS analyses revealed marked differences in the composition of oil that had been freshly isolated and that of a sample that had been stored in a sealed amber-glass vial under refrigeration for three years. However, both fresh and stored oil exhibited substantial larvicidal activities with LC50 values of 122.35 and 89.03 ppm, respectively, and oviposition deterrent effects against gravid females at concentrations of 50 and 100 µg·mL-1. These results demonstrate that the larvicidal effect of the essential oil was unchanged during three years of storage even though its chemical composition altered. Hence, the essential oil could be used in the preparation of commercial products. In addition, we observed that the trypsin-like activity of mosquito larvae was inhibited in vitro by the essential oil of C. rhamnifolioides, suggesting that the larvicidal effect may be associated with inhibition of this enzyme.

  19. Chemical composition and insecticidal activity of Cymbopogon citratus essential oil from Cuba and Brazil against housefly.

    PubMed

    Pinto, Zeneida Teixeira; Sánchez, Félix Fernández; dos Santos, Arith Ramos; Amaral, Ana Claudia Fernandes; Ferreira, José Luiz Pinto; Escalona-Arranz, Julio César; Queiroz, Margareth Maria de Carvalho

    2015-01-01

    Essential oil of Cymbopogon citratus collected from Brazil and Cuba was tested to a chemical characterization and then was tested on the post-embryonic development of Musca domestica. The chemical composition analysis by GC-MS of the oils from Brazil/Cuba allowed the identification of 13 and 12 major constituents respectively; nine of them common to both. In the both oils, the main components were the isomers geranial and neral, which together form the compound citral. This corresponds to a total of 97.92%/Brazil and 97.69%/Cuba of the compounds identified. The monoterpene myrcene, observed only in the sample of Cuba, presented a large relative abundance (6.52%). The essential oil of C. citratus (Brazil/Cuba) was dissolved in DMSO and tested at concentrations of 5, 10, 25, 50, 75 and 100% and citral was prepared by mixing 16.8 mg with 960 µL DMSO. Both essential oils and monoterpene citral were applied topically to newly-hatched larvae (1µL/larva). The results showed a lethal concentration (LC50) of 4.25 and 3.24% for the Brazilian and Cuban essential oils, respectively. Mortalities of larval and newly-hatched larvae to adult periods were dose-dependent for the two both oils as for monoterpene citral, reaching 90%. Both essential oils and citral caused morphological changes in adult specimens.

  20. Distillation time modifies essential oil yield, composition, and antioxidant capacity of fennel (Foeniculum vulgare Mill).

    PubMed

    Zheljazkov, Valtcho D; Horgan, Thomas; Astatkie, Tess; Schlegel, Vicki

    2013-01-01

    Fennel (Foeniculum vulgare Mill) is an essential oil crop grown worldwide for production of essential oil, as medicinal or as culinary herb. The essential oil is extracted via steam distillation either from the whole aboveground biomass (herb) or from fennel fruits (seed). The hypothesis of this study was that distillation time (DT) can modify fennel oil yield, composition, and antioxidant capacity of the oil. Therefore, the objective of this study was to evaluate the effect of eight DT (1.25, 2.5, 5, 10, 20, 40, 80, and 160 min) on fennel herb essential oil. Fennel essential oil yield (content) reached a maximum of 0.68% at 160 min DT. The concentration of trans-anethole (32.6-59.4% range in the oil) was low at 1.25 min DT, and increased with an increase of the DT. Alpha-phelandrene (0.9-10.5% range) was the lowest at 1.25 min DT and higher at 10, 80, and 160 min DT. Alpha-pinene (7.1-12.4% range) and beta-pinene (0.95-1.64% range) were higher in the shortest DT and the lowest at 80 min DT. Myrcene (0.93-1.95% range), delta-3-carene (2.1-3.7% range), cis-ocimene (0-0.23% range), and gamma-terpinene (0.22-2.67% range) were the lowest at 1.25 min DT and the highest at 160 min DT. In contrast, the concentrations of paracymene (0.68-5.97% range), fenchone (9.8-22.7% range), camphor (0.21-0.51% range), and cis-anethole (0.14-4.66% range) were highest at shorter DT (1.25-5 min DT) and the lowest at the longer DT (80-160 min DT). Fennel oils from the 20 and 160 min DT had higher antioxidant capacity than the fennel oil obtained at 1.25 min DT. DT can be used to obtain fennel essential oil with differential composition. DT must be reported when reporting essential oil content and composition of fennel essential oil. The results from this study may be used to compare reports in which different DT to extract essential oil from fennel biomass were used.

  1. Comparison of rumen microbial inhibition resulting from various essential oils isolated from relatively unpalatable plant species.

    PubMed

    Oh, H K; Jones, M B; Longhurst, W M

    1968-01-01

    Essential oils were isolated from eight plant species which were relatively unpalatable to sheep and deer. The inhibitory potency of these essential oils upon sheep and deer rumen microorganisms was compared, in terms of total gas and volatile fatty acid (VFA) production, by use of an anaerobic manometric technique. Inhibitory effects of oils from the eight plant species may be placed in four groups: (i) essential oils from vinegar weed (Trichostema lanceoletum) and California bay (Umbellularia californica) inhibited rumen microbial activity most; (ii) lesser inhibition was exhibited by rosemary (Rosmarinus officinalis) and California mugwort (Artemisia douglasiana) oils, followed by (iii) blue-gum eucalyptus (Eucalyptus globulus) and sagebrush (Artemisia tridentata) oils; and (iv) oils from Douglas fir (Psuedotsuga menziesii) and Jerusalem oak (chenopodium botrys) resulted in the least inhibition, when 0.3 ml of each oil was used. A highly significant correlation coefficient (r = 0.98(**)) between total gas and VFA production indicated the validity of either method to measure the activity of rumen microorganisms. Our results are discussed in relation to the hypothesis that the selectivity and voluntary consumption of ruminants are related to the characteristic odor and antibacterial action of essential oils isolated from relatively unpalatable plant species.

  2. Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from cumin produced in Iran.

    PubMed

    Allahghadri, Tolou; Rasooli, Iraj; Owlia, Parviz; Nadooshan, Mohammadreza Jalali; Ghazanfari, Tooba; Taghizadeh, Massoud; Astaneh, Shakiba Darvish Alipoor

    2010-03-01

    Cumin (Cuminum cyminum) is one of the commonly used spices in food preparations. It is also used in traditional medicine as a stimulant, a carminative, and an astringent. In this study, we characterized the antimicrobial, antioxidant, and cytotoxic activities of cumin. E. coli, S. aureus, and S. faecalis were sensitive to various oil dilutions. The total phenol content of the essential oil was estimated to be 33.43 microg GAE/mg of the oil. The oil showed higher antioxidant activity compared with that of BHT and BHA. The cumin essential oil exhibited a dose-dependent scavenging of DPPH radicals and 5.4 microg of the oil was sufficient to scavenge 50% of DPPH radicals/mL. At a concentration of 0.1 microL/mL, oil destructed Hela cells by 79%. The antioxidant activity of cumin essential oil might contribute to its cytotoxic activity. Acute and subchronic toxicity was studied in a 30-d oral toxicity study by administration to Wistar rats of the essential oil. A 17.38% decrease in WBCs count, and 25.77%, 14.24%, and 108.81% increase in hemoglobin concentration, hematocrit, and platelet count, respectively, were noted. LDL/HDL ratio was reduced to half, which adds to the nutritional effects of cumin. Thus, cumin with a high phenolic content and good antioxidant activity can be supplemented for both nutritional purposes and preservation of foods.

  3. Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae).

    PubMed

    Unlu, Mehmet; Ergene, Emel; Unlu, Gulhan Vardar; Zeytinoglu, Hulya Sivas; Vural, Nilufer

    2010-11-01

    The essential oil from the bark of Cinnamomum zeylanicum Blume was analyzed by GC-MS and bioassays were carried out. Nine constituents representing 99.24% of the oil were identified by GC-MS. The major compounds in the oil were (E)-cinnamaldehyde (68.95%), benzaldehyde (9.94%) and (E)-cinnamyl acetate (7.44%). The antimicrobial activity of the oil was investigated in order to evaluate its efficacy against 21 bacteria and 4 Candida species, using disc diffusion and minimum inhibitory concentration methods. The essential oil showed strong antimicrobial activity against all microorganisms tested. The cytotoxic and apoptotic effects of the essential oil on ras active (5RP7) and normal (F2408) fibroblasts were examined by MTT assay and acridine orange/ethidium bromide staining, respectively. The cytotoxicity of the oil was quite strong with IC(50) values less than 20 μg/mL for both cell lines. 5RP7 cells were affected stronger than normal cells. Morphological observation of apoptotic cells indicated the induction of apoptosis at the high level of the oil, especially in 5RP7 cells. The present study showed the potential antimicrobial and anticarcinogenic properties of the essential oil of cinnamon bark, indicating the possibilities of its potential use in the formula of natural remedies for the topical treatment of infections and neoplasms.

  4. Plant essential oils and potassium metabisulfite as repellents for Drosophila suzukii (Diptera: Drosophilidae)

    PubMed Central

    Renkema, Justin M.; Wright, Derek; Buitenhuis, Rose; Hallett, Rebecca H.

    2016-01-01

    Spotted wing drosophila, Drosophila suzukii, is a globally invasive pest of soft-skinned fruit. Females oviposit into ripening fruit and larvae cause direct destruction of tissues. As many plant essential oils are permitted food additives, they may provide a safe means of protecting fruit from D. suzukii infestation in both conventional and organic production systems. Twelve oils and potassium metabisulfite (KMS) were screened in the laboratory as repellents for D. suzukii flies. Most essential oils deterred D. suzukii flies from cotton wicks containing attractive raspberry juice. Peppermint oil was particularly effective, preventing almost all flies from contacting treated wicks and remaining 100% repellent for 6 d post-application. Thyme oil was unique because it caused high male mortality and reduced the number of responding flies compared to other oils. KMS was not found to be repellent to D. suzukii, but may have fumigant properties, particularly at high concentrations. Peppermint oil appears to be the best candidate for field testing to determine the effectiveness and feasibility of using essential oils as part of a push-pull management strategy against D. suzukii. This is the first time that essential oils have been evaluated and proven effective in preventing fruit-infesting flies from contacting attractive stimuli. PMID:26893197

  5. Diversity of essential oil glands of clary sage (Salvia sclarea L., Lamiaceae).

    PubMed

    Schmiderer, C; Grassi, P; Novak, J; Weber, M; Franz, C

    2008-07-01

    The Lamiaceae is rich in aromatic plant species. Most of these species produce and store essential oils in specialised epidermal oil glands, which are responsible for their specific flavour. Two types of glands producing essential oil and possessing different morphological structure can be found in Salvia sclarea: peltate and capitate glands. The content of single oil glands from different positions on the plant (corolla, calyx and leaf) were sampled using an SPME fibre and analysed by gas chromatography in order to study variability of the essential oil composition. It was found that the composition of terpenoids is quite variable within an individual plant. Capitate oil glands mainly produce three essential oil compounds: the monoterpenes linalool and linalyl acetate, and the diterpene sclareol. Peltate oil glands, however, accumulate noticeable concentrations of sesquiterpenes and an unknown compound (m/z = 354). Furthermore, the oil composition varies within each gland type according to the plant organ. Linalool and linalyl acetate are characteristic substances of flowers, whereas the sesquiterpenes occur in higher proportions in leaves. Even within one gland type on a single leaf, the chemical variability is exceedingly high.

  6. Antifungal and Antioxidant Activities of the Essential Oil from Angelica koreana Nakai

    PubMed Central

    Roh, Junghyun; Shin, Seungwon

    2014-01-01

    Purpose. The purpose of this study is to determine the antifungal and antioxidant activities of the essential oil from Angelica koreana. Methods. Essential oil was obtained from the dried roots of A. koreana by steam distillation, and its composition was identified by gas chromatography and mass spectrometry (GC-MS). The minimal inhibitory concentrations (MICs) of the oil fraction and its main components were determined by broth dilution assay using common pathogenic Aspergillus and Trichophyton species. The combined effects of the oils with itraconazole were evaluated using a checkerboard titer test. In addition, 1,1-diphenyl-2-picryl-hydrazil (DPPH) free radical scavenging, nitrite inhibition, and reducing power were determined to assess the antioxidant activity of this oil. Results. The essential oil fraction and its main components showed inhibitory activity against all of the tested fungi, with minimal inhibitory concentrations (MICs) of 250–1000 μg/mL. Furthermore, this oil exhibited synergism when combined with itraconazole. Conclusion. In the treatment of infections caused by Aspergillus and Trichophyton species, combining itraconazole with either A. koreana essential oil or its main components may reduce the minimum effective dose of itraconazole required and, thus, minimize its side effects. In addition, this oil is a promising source of natural antioxidant agents. PMID:25197308

  7. Hepatoprotective effects of gamma-irradiated caraway essential oils in experimental sepsis.

    PubMed

    Fatemi, F; Allameh, A; Khalafi, H; Ashrafihelan, J

    2010-02-01

    Irradiation is an important method of processing herbal drugs, while our understanding of the effects of gamma-irradiation on pharmacological properties of seed products such as caraway essential oils is however still very limited. In this study, caraway seeds were irradiated at dose levels of 0, 10 and 25kGy. After extracting the essential oils, the effects of fresh and gamma-irradiated caraway oils (100mg/kg b.w) on preventing septic-related oxidative liver injury induced by cecal ligation and puncture (CLP) model were investigated by measuring oxidative stress parameters in the liver. CLP operation caused a marked increase in myeloperoxidase (MPO) activity which was readily reversed in rats treated with fresh and irradiated caraway oils. Likewise, thiobarbituric acid reactive substances (TBARS) level in the liver was compensated in rats treated with the fresh and irradiated caraway oils. Moreover, liver GSH which was initially depleted due to CLP was recovered by essential oil treatments. The protective role of oils was further confirmed by showing that liver function tests (ALT/AST) as well as histopathological changes following CLP operation were recovered in rats treated with oils from either fresh or irradiated caraway seeds. These data may suggest that gamma-irradiation to caraway seeds at 10 and 25kGy has no influence on the antioxidative properties of caraway essential oils.

  8. Coriandrum sativum and Lavandula angustifolia Essential Oils: Chemical Composition and Activity on Central Nervous System

    PubMed Central

    Caputo, Lucia; Souza, Lucéia Fátima; Alloisio, Susanna; Cornara, Laura; De Feo, Vincenzo

    2016-01-01

    The aims of this study are to determine the chemical composition of Lavandula angustifolia Mill. and Coriandrum sativum L. essential oils, to evaluate their cytotoxic effects in SH-SY5Y human neuroblastoma cells, to investigate whether an alteration of adenylate cyclase 1 (ADCY1) and of extracellular signal-regulated kinase (ERK) expression can take part in the molecular mechanisms of the essential oils, and to study their possible neuronal electrophysiological effects. The essential oils were obtained by hydrodistillation, and studied by GC and GC-MS. In the oils from L. angustifolia and C. sativum, linalool was the main component (33.1% and 67.8%, respectively). SH-SY5Y cells were incubated with different concentrations of essential oils and of linalool. Cell viability and effects on ADCY1 and ERK expression were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT and Western blotting, respectively. Variation in cellular electrophysiology was studied in primary cultures of rat cortical neurons with a multi-electrode array (MEA)-based approach. The essential oils and linalool revealed different cytotoxic activities. Linalool inhibited ADCY1 and ERK expression. Neuronal networks subjected to L. angustifolia and C. sativum essential oils showed a concentration-dependent inhibition of spontaneous electrical activity. PMID:27916876

  9. Vibrational spectroscopic studies to acquire a quality control method of Eucalyptus essential oils.

    PubMed

    Baranska, M; Schulz, H; Reitzenstein, S; Uhlemann, U; Strehle, M A; Krüger, H; Quilitzsch, R; Foley, W; Popp, J

    2005-08-05

    This article presents a novel and original approach to analyze in situ the main components of Eucalyptus oil by means of Raman spectroscopy. The obtained two-dimensional Raman maps demonstrate a unique possibility to study the essential oil distribution in the intact plant tissue. Additionally, Fourier Transform (FT)-Raman and attenuated total reflection (ATR)-IR spectra of essential oils isolated from several Eucalyptus species by hydrodistillation are presented. Density Functional Theory (DFT) calculations were performed in order to interpret the spectra of the essential oils of the Eucalyptus species. It is shown that the main components of the essential oils can be recognized by both vibrational spectroscopic techniques using the spectral information of the pure terpenoids. Spectroscopic analysis is based on the key bands of the individual volatile substances and therefore allows one to discriminate different essential oil profiles of several Eucalyptus species. It has been found that the presented spectroscopic data correlate very well with those obtained by gas chromatography (GC) analysis. All these investigations are helpful tools to generate a fast and easy method to control the quality of the essential oils with vibrational spectroscopic techniques in combination with DFT calculations.

  10. Coriandrum sativum and Lavandula angustifolia Essential Oils: Chemical Composition and Activity on Central Nervous System.

    PubMed

    Caputo, Lucia; Souza, Lucéia Fátima; Alloisio, Susanna; Cornara, Laura; De Feo, Vincenzo

    2016-11-30

    The aims of this study are to determine the chemical composition of Lavandula angustifolia Mill. and Coriandrum sativum L. essential oils, to evaluate their cytotoxic effects in SH-SY5Y human neuroblastoma cells, to investigate whether an alteration of adenylate cyclase 1 (ADCY1) and of extracellular signal-regulated kinase (ERK) expression can take part in the molecular mechanisms of the essential oils, and to study their possible neuronal electrophysiological effects. The essential oils were obtained by hydrodistillation, and studied by GC and GC-MS. In the oils from L. angustifolia and C. sativum, linalool was the main component (33.1% and 67.8%, respectively). SH-SY5Y cells were incubated with different concentrations of essential oils and of linalool. Cell viability and effects on ADCY1 and ERK expression were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT and Western blotting, respectively. Variation in cellular electrophysiology was studied in primary cultures of rat cortical neurons with a multi-electrode array (MEA)-based approach. The essential oils and linalool revealed different cytotoxic activities. Linalool inhibited ADCY1 and ERK expression. Neuronal networks subjected to L. angustifolia and C. sativum essential oils showed a concentration-dependent inhibition of spontaneous electrical activity.

  11. An attempt of postharvest orange fruit rot control using essential oils from Mediterranean plants.

    PubMed

    Camele, Ippolito; De Feo, Vincenzo; Altieri, Luciana; Mancini, Emilia; De Martino, Laura; Luigi Rana, Gian

    2010-12-01

    Twelve essential oils from Mediterranean aromatic plants were tested at different doses against four fungi known as causal agents of post-harvest orange fruit rot: Botrytis cinerea, Penicillium italicum, Phytophthora citrophthora, and Rhizopus stolonifer. Essential oils were obtained from Hyssopus officinalis, Lavandula angustifolia, Majorana hortensis, Melissa officinalis, Ocimum basilicum, Origanum vulgare, Salvia officinalis, and Thymus vulgaris (Family Lamiaceae), Verbena officinalis (Family Verbenaceae), and Pimpinella anisum, Foeniculum vulgare, and Carum carvi (Family Apiaceae). Because preliminary in vitro experiments showed that only the oils from V. officinalis, T. vulgaris, and O. vulgare exhibited some fungistatic activity against the above-named fungi, these three essential oils were used in successive in vivo tests carried out to protect healthy "Washington navel" orange fruits from artificial infection by the same micromycetes. The essential oil of T. vulgaris, at a 2,000 ppm dose, controlled fruit rot by B. cinerea, P. citrophthora, and R. stolonifer but was ineffective against P. italicum. Essential oils of V. officinalis and O. vulgare inhibited infection by the first two fungi and only by P. citrophthora, respectively. This finding represents an important result, with the goal of using the essential oils as natural preservatives for food products, due to their positive effect on their safety and shelf life.

  12. Bioactivities and Chemical Constituents of Essential Oil Extracted from Artemisia anethoides Against Two Stored Product Insects.

    PubMed

    Liang, Jun-Yu; Wang, Wen-Ting; Zheng, Yan-Fei; Zhang, Di; Wang, Jun-Long; Guo, Shan-Shan; Zhang, Wen-Juan; Du, Shu-Shan; Zhang, Ji

    2017-01-01

    The chemical constituents of the essential oil extracted from Artemisia anethoides and the bioactivities of essential oil against Tribolium castaneum and Lasioderma serricorne were investigated. The main components of the essential oil were 1,8-cineole (36.54%), 2-isopropyl-5-methyl-3-cyclohexen-1-one (10.40%), terpinen-4-ol (8.58%), 2-isopropyltoluene (6.20) and pinocarveol (5.08%). The essential oil of A. anethoides possessed contact and fumigant toxicities against T. castaneum adults (LD50 = 28.80 μg/adult and LC50 = 13.05 mg/L air, respectively) and against L. serricorne (LD50 = 24.03 μg/adult and LD50 = 8.04 mg/L air, respectively). The crude oil showed repellent activity against T. castaneum and L. serricorne. Especially, the percentage repellency of essential oil was same level with DEET (positive control) against T. castaneum. The results indicated that the essential oil of A. anethoides had the potential to be developed as insecticide and repellent for control of T. castaneum and L. serricorne.

  13. Essential Oil of Amomum maximum Roxb. and Its Bioactivities against Two Stored-Product Insects.

    PubMed

    Guo, Shan-Shan; You, Chun-Xue; Liang, Jun-Yu; Zhang, Wen-Juan; Yang, Kai; Geng, Zhu-Feng; Wang, Cheng-Fang; Du, Shu-Shan; Lei, Ning

    2015-01-01

    Amomum maximum Roxb. is a perennial herb distributed in South China and Southeast Asia. The objective of this work was to analyze the chemical constituents and assess insecticidal and repellent activities of the essential oil from Amomum maximum fruits against Tribolium castaneum (Herbst) and Liposcelis bostrychophila (Badonnel). The essential oil was obtained by hydrodistillation and analyzed by gas chromatography-flame ionization detector and gas chromatography-mass spectrometry. The main components of the essential oil were identified to be β-pinene (23.39%), β-caryophyllene (16.43%), α-pinene (7.55%), sylvestrene (6.61%) and ç-cadinene (4.19%). It was found that the essential oil of A. maximum fruits possessed contact and fumigant toxicities against T. castaneum adults (LD50 = 29.57 μg/adult and LC(50) = 23.09 mg/L air, respectively) and showed contact toxicity against L. bostrychophila (LD(50) = 67.46 μg/cm(2)). Repellency of the crude oil was also evaluated. After 2 h treatment, the essential oil possessed 100% repellency at 78.63 nL/cm(2) against T. castaneum and 84% repellency at 63.17 nL/cm(2) against L. bostrychophila. The results indicated that the essential oil of A. maximum fruits had the potential to be developed as a natural insecticide and repellent for control of T. castaneum and L. bostrychophila.

  14. Chemical composition and antimicrobial activity of the essential oil of kumquat (Fortunella crassifolia Swingle) peel.

    PubMed

    Wang, Yong-Wei; Zeng, Wei-Cai; Xu, Pei-Yu; Lan, Ya-Jia; Zhu, Rui-Xue; Zhong, Kai; Huang, Yi-Na; Gao, Hong

    2012-01-01

    The aim of this study was to determine the main constituents of the essential oil isolated from Fortunella crassifolia Swingle peel by hydro-distillation, and to test the efficacy of the essential oil on antimicrobial activity. Twenty-five components, representing 92.36% of the total oil, were identified by GC-MS analysis. The essential oil showed potent antimicrobial activity against both Gram-negative (E. coli and S. typhimurium) and Gram-positive (S. aureus, B. cereus, B. subtilis, L. bulgaricus, and B. laterosporus) bacteria, together with a remarkable antifungal activity against C. albicans. In a food model of beef extract, the essential oil was observed to possess an effective capacity to control the total counts of viable bacteria. Furthermore, the essential oil showed strongly detrimental effects on the growth and morphological structure of the tested bacteria. It was suggested that the essential oil from Fortunella crassifolia Swingle peel might be used as a natural food preservative against bacteria or fungus in the food industry.

  15. Chemical composition and amoebicidal activity of Croton pallidulus, Croton ericoides, and Croton isabelli (Euphorbiaceae) essential oils.

    PubMed

    Vunda, Sita Luvangadio Lukoki; Sauter, Ismael Pretto; Cibulski, Samuel Paulo; Roehe, Paulo Michel; Bordignon, Sérgio A Loreto; Rott, Marilise Brittes; Apel, Miriam A; von Poser, Gilsane Lino

    2012-09-01

    Acanthamoeba is a free-living amoebae genus that causes amoebic keratitis which is a painful sight-threatening disease of the eyes. Its treatment is difficult, and the search for new drugs is very important. Here, essential oils obtained from the aerial parts of Croton pallidulus, Croton isabelli, and Croton ericoides (Euphorbiaceae), native plants of Southern Brazil, were tested against Acanthamoeba polyphaga and analyzed by gas chromatography and gas chromatography-mass spectrometry. The essential oils of C. pallidulus and C. isabelli were characterized by the presence of sesquiterpenes: germacrene D (15.5 %), terpinen-4-ol (13.2 %), and β-caryophyllene (13.1 %) in C. pallidulus and bicyclogermacrene (48.9 %) in C. isabelli. The essential oil of C. ericoides presented mainly monoterpenes, β-pinene (39.0 %) being the main component. Laboratory tests were carried out to determine the effect of the essential oils against A. polyphaga trophozoites. The essential oil of C. ericoides was the most active, killing 87 % of trophozoites at the concentration of 0.5 mg/mL. The essential oil of C. pallidulus killed only 29 % of the trophozoites at the same concentration. The essential oil of C. isabelli presented the lowest activity, killing only 4 % of the trophozoites at the concentration of 10 mg/mL. The essential oils of the three species showed cytotoxic effect by the methyl thiazolyl tetrazolium (MTT) method in Vero cells. The oil of C. ericoides, which showed the highest amoebicidal activity, was the most cytotoxic on these mammalian cells.

  16. Biological activities of Zingiber officinale (Zingiberaceae) and Piper cubeba (Piperaceae) essential oils against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae).

    PubMed

    Chaubey, Mukesh Kumar

    2013-06-01

    Zingiber officinale (Zingiberaceae) and Piper cubeba (Piperaceae) was essential oils were investigated for repellent, insecticidal, antiovipositional, egg hatching, persistence of its insecticidal activities against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Essential oil vapours repelled bruchid adults significantly as oviposition was found reduced in choice oviposition assay. Z. officinale and P. cubeba essential oils caused both fumigant and contact toxicity in C. chinensis adults. In fumigation toxicity assay, median lethal concentrations (LC50) were 0.34 and 0.27 microL cm(-3) for Z. officinale and P. cubeba essential oils, respectively, while in contact toxicity assay, LC50 were 0.90 and 0.66 microL cm(-2) for Z. officinale and P. cubeba essential oils, respectively. These two essential oils reduced oviposition in C. chinensis adults when treated with sublethal concentrations by fumigation and contact method. Oviposition inhibition was more pronounced when adults come in contact than in vapours. Both essential oils significantly reduced egg hatching rate when fumigated. Persistence in insecticidal efficiency of both essential oils decreased with time. P. cubeba showed less persistence than Z. officinale essential oil because no mortality was observed in C. chinensis adults after 36 h of treatment with P. cubeba and after 48 h of treatment of Z. officinale essential oil. Fumigation with these essential oils has no effect on the germination of the cowpea seeds. Findings of the study suggest that Z. officinale and P. cubeba essential oils can be useful as promising agent in insect pest management programme.

  17. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates

    PubMed Central

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. Results: The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. PMID:27366345

  18. Essential oils from the leaves of three New Zealand species of Pseudopanax (Araliaceae).

    PubMed

    Weston, Roderick J

    2004-01-01

    Essential oils from three of the eleven endemic New Zealand species of Pseudopanax, P. arboreus, P. discolor and P. lessonii, were found to have a fairly uniform composition which was different from that of the oils of Raukaua species that were formerly classified in the Pseudopanax genus. Oils of the three Pseudopanax species all contained significant proportions of viridiflorol and a closely related unidentified hydroazulene alcohol in common. In addition, the oil of P. arboreus contained bicyclogermacrene, linalool and long chain hydrocarbons. The oil of P. discolor contained nerolidol in abundance (36.3%) together with linalool and epi-alpha-muurolol. The oil of P. lessonii contained a complex mixture of sesquiterpene alcohols including epi-alpha-muurolol and a mixture of long chain hydrocarbons. Nerolidol and linalool provided the oil of P. discolor with a pleasant floral aroma, but the yield of oil was very low (0.01%).

  19. Stabilization of sunflower oil with pussy willow (Salix aegyptiaca) extract and essential oil.

    PubMed

    Sayyari, Zahra; Farahmandfar, Reza

    2017-03-01

    The aim of present study was to evaluate antioxidant efficacy of pussy willow extract (PWE) and essential oil (PWEO) in stabilization of sunflower oil (SFO) during ambient storage (60 days at 25°C). Initially, total phenolic (TP) and total flavonoid (TF) contents were evaluated. Then, PWE, PWEO, and TBHQ were added to SFO. Peroxide value (PV), carbonyl value (CV), total polar compound (TPC), acid value (AV), and Oxidative stability index (OSI) were measured every 15 days. The results showed that PWE had higher TP and TF than PWEO (TP: 966.72 mg GAE/g and 355.8472 mg GAE/g, respectively; TF: 619.45 mg/100 g and 195.45 mg/100 g, respectively). Furthermore, according to all stabilization parameters, PWE had higher antioxidant efficacy followed by TBHQ, PWEO, and control, respectively. Therefore, PWE has antioxidant activity and it may be recommended as natural strong antioxidants to suppress lipid oxidation.

  20. Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food commodities.

    PubMed Central

    Mishra, A K; Dubey, N K

    1994-01-01

    During screening of essential oils for their antifungal activities against Aspergillus flavus, the essential oil of Cymbopogon citratus was found to exhibit fungitoxicity. The MIC of the oil was found to be 1,000 ppm, at which it showed its fungistatic nature, wide fungitoxic spectrum, nonphytotoxic nature, and superiority over synthetic fungicides, i.e., Agrosan G. N., Thiride, Ceresan, Dithane M-45, Agrozim, Bavistin, Emison, Thiovit, wettable sulfur, and copper oxychloride. The fungitoxic potency of the oil remained unaltered for 7 months of storage and upon introduction of high doses of inoculum of the test fungus. It was thermostable in nature with treatment at 5 to 100 degrees C. These findings thus indicate the possibility of exploitation of the essential oil of C. citratus as an effective inhibitor of storage fungi. PMID:8017906

  1. Larvicidal and nematicidal activities of the leaf essential oil of Croton regelianus.

    PubMed

    Torres, Maria Conceição M; Assunção, João Carlos; Santiago, Gilvandete Maria P; Andrade-Neto, Manoel; Silveira, Edilberto R; Costa-Lotufo, Leticia V; Bezerra, Daniel P; Marinho Filho, José Delano B; Viana, Francisco Arnaldo; Pessoa, Otília Deusdênia L

    2008-12-01

    The chemical composition of the leaf essential oil of Croton regelianus collected from wild plants growing in two different sites at Ceará State (Brazil) was analyzed by GC/MS and GC-FID. Twenty monoterpenoids, representing more than 96% of the chemical composition of the oils, were identified and quantified. The oils showed similar chemical composition but considerable variation in the levels of each constituent. Ascaridole (33.9-17.0%), p-cymene (22.3-21.6%), and camphor (13.0-3.1%) were the predominant constituents. The monoterpene ascaridole was isolated and characterized by spectroscopic data. The essential oils and the isolated compounds were tested against Aedes aegypti and Artemia sp. larvae, and the root knot nematode Meloidogyne incognita. The bioassay results show that the essential oil of C. regelianus and ascaridole were moderately active against the M. incognita, but strongly effective against both A. aegypti and Artemia sp. larvae.

  2. Chemical constituents, antioxidant and antimocrobial activity of essential oil of Pogostemon paniculatus (Willd.).

    PubMed

    Manoj, Godbole; Manohar, Shiragambi Hanumantagouda; Murthy, Hosakatte Niranjana

    2012-01-01

    The essential oil extracted from the leaves of Pogostemon paniculatus (Willd.) Benth. (Lamiaceae), was analysed by gas chromatography-mass spectrometry (GC-MS). Nineteen compounds constituting 85.36% of the total oil were identified in the oil. Patchouli alcohol (30.65%), α-guaiene (10.67%), β-guaiene (9.09%), caryophyllene (8.64%), eicosene (5.27%) were the major constituents present. The essential oil was analysed for antimicrobial activity by disc diffusion assay and minimum inhibition concentration against six bacteria and three fungi. Results showed inhibitory activity against some of the tested microorganisms. The essential oil was also tested for the DPPH free-radical scavenging activity and had an inhibitory concentration (IC(50)) value of 18.5 µg mL(-1).

  3. The in vitro Antimicrobial Activity and Chemometric Modelling of 59 Commercial Essential Oils against Pathogens of Dermatological Relevance.

    PubMed

    Orchard, Ané; Sandasi, Maxleene; Kamatou, Guy; Viljoen, Alvaro; van Vuuren, Sandy

    2017-01-01

    This study reports on the inhibitory concentration of 59 commercial essential oils recommended for dermatological conditions, and identifies putative compounds responsible for antimicrobial activity. Essential oils were investigated for antimicrobial activity using minimum inhibitory concentration assays. Ten essential oils were identified as having superior antimicrobial activity. The essential oil compositions were determined using gas chromatography coupled to mass spectrometry and the data analysed with the antimicrobial activity using multivariate tools. Orthogonal projections to latent structures models were created for seven of the pathogens. Eugenol was identified as the main biomarker responsible for antimicrobial activity in the majority of the essential oils. The essential oils mostly displayed noteworthy antimicrobial activity, with five oils displaying broad-spectrum activity against the 13 tested micro-organisms. The antimicrobial efficacies of the essential oils highlight their potential in treating dermatological infections and through chemometric modelling, bioactive volatiles have been identified.

  4. Influence of viral infection on essential oil composition of Ocimum basilicum (Lamiaceae).

    PubMed

    Nagai, Alice; Duarte, Ligia M L; Santos, Déborah Y A C

    2011-08-01

    Ocimum basilicum L., popularly known as sweet basil, is a Lamiaceae species whose essential oil is mainly composed of monoterpenes, sesquiterpenes and phenylpropanoids. The contents of these compounds can be affected by abiotic and biotic factors such as infections caused by viruses. The main goal of this research was an investigation of the effects of viral infection on the essential oil profile of common basil. Seeds of O. basilicum L. cv. Genovese were sowed and kept in a greenhouse. Plants presenting two pairs of leaves above the cotyledons were inoculated with an unidentified virus isolated from a field plant showing chlorotic yellow spots and foliar deformation. Essential oils of healthy and infected plants were extracted by hydrodistillation and analyzed by GCMS. Changes in essential oil composition due to viral infection were observed. Methyleugenol and p-cresol,2,6-di-tert-butyl were the main constituents. However, methyleugenol contents were significantly decreased in infected plants.

  5. Incresing antioxidant activity and reducing decay of blueberries by essential oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several naturally occurring essential oils including carvacrol, anethole, cinnamaldehyde, cinnamic acid, perillaldehyde, linalool, and p-cymene were evaluated for their effectiveness in reducing decay and increasing antioxidant levels and activities in ‘Duke’ blueberries (Vaccinium corymbosum). Carv...

  6. Citrus essential oils and their influence on the anaerobic digestion process: an overview.

    PubMed

    Ruiz, B; Flotats, X

    2014-11-01

    Citrus waste accounts for more than half of the whole fruit when processed for juice extraction. Among valorisation possibilities, anaerobic digestion for methane generation appears to be the most technically feasible and environmentally friendly alternative. However, citrus essential oils can inhibit this biological process. In this paper, the characteristics of citrus essential oils, as well as the mechanisms of their antimicrobial effects and potential adaptation mechanisms are reviewed. Previous studies of anaerobic digestion of citrus waste under different conditions are presented; however, some controversy exists regarding the limiting dosage of limonene for a stable process (24-192 mg of citrus essential oil per liter of digester and day). Successful strategies to avoid process inhibition by citrus essential oils are based either on recovery or removal of the limonene, by extraction or fungal pre-treatment respectively.

  7. Specific Selection of Essential Oil Compounds for Treatment of Children’s Infection Diseases

    PubMed Central

    Pauli, Alexander; Schilcher, Heinz

    2004-01-01

    Preparations with essential oils and their dosages applied in the therapy of children’s infectious diseases are well documented. In contrast, information is only sparingly available about uses of isolated pure essential oil compounds for the treatment of such infections. To find out safe antimicrobials from essential oils, microbiological inhibitory data of children pathogens were combined with oral and dermal acute toxicity data to calculate oral and dermal therapeutical indices (TI). The superiority of antibiotic drugs became obvious following calculating oral TIs of antimicrobials from higher plants, which suggests that oral administrations of essential oil compounds are not suitable to cure severe infections. A few selected compounds from higher plants show moderate effectiveness against gram-positive bacteria, yeast and fungi, but not gram-negative bacteria. Topical application or inhalation of selected compounds for the treatment or additional treatment of mild infections is reasonable.

  8. Evidence for synergistic activity of plant-derived volatile essential oils against fungal pathogens of food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antifungal activities of eight essential oils (EOs) namely basil, cinnamon, eucalyptus, mandarin, oregano, peppermint, tea tree and thyme were evaluated for their ability to inhibit growth of Aspergillus niger, Aspergillus flavus, Aspergillus paraciticus and Penicillium chrysogenum. The antifung...

  9. Phytotoxic activity of foliar volatiles and essential oils of Calamintha nepeta (L.) Savi.

    PubMed

    Araniti, Fabrizio; Lupini, Antonio; Sorgonà, Agostino; Statti, Giancarlo Antonio; Abenavoli, Maria Rosa

    2013-01-01

    Foliar volatiles and essential oils of Calamintha nepeta (L.) Savi, a Mediterranean plant species belonging to the Labiatae family, were investigated for their phytotoxic activities on seed germination and root growth of crops (Lactuca sativa L. and Raphanus sativus L.) and weed species (Lolium perenne L. and Amaranthus retroflexus L.). Foliar volatiles of C. nepeta (L.) Savi strongly inhibited both germination and root growth of lettuce, and its essential oils, especially at 125, 250 and 500 μL/L, inhibited both processes in lettuce, radish and A. retroflexus L. species, while displaying a little effect on L. perenne L. By GC-MS, 28 chemicals were identified: 17 monoterpenes, 8 sesquiterpenes, 1 diterpene and 2 miscellaneous. Pulegone was the main constituent of the C. nepeta (L.) Savi essential oils. The terpenic components of essentials oils were probably responsible for the phytotoxic activities.

  10. Sensitivity of fungi isolated from onychomycosis to Eugenia cariophyllata essential oil and eugenol.

    PubMed

    Gayoso, C W; Lima, E O; Oliveira, V T; Pereira, F O; Souza, E L; Lima, I O; Navarro, D F

    2005-03-01

    The antifungal activity of Eugenia cariophyllata essential oil and eugenol, its major constituent, on fungal strains isolated from onychomycosis was evaluated. The natural products presented prominent antifungal action with MIC of 1% and 4%, respectively.

  11. Browning inhibition and quality preservation of button mushroom (Agaricus bisporus) by essential oils fumigation treatment.

    PubMed

    Gao, Mengsha; Feng, Lifang; Jiang, Tianjia

    2014-04-15

    The effect of essential oil fumigation treatment on browning and postharvest quality of button mushrooms (Agaricus bisporus) was evaluated upon 16 days cold storage. Button mushrooms were fumigated with essential oils, including clove, cinnamaldehyde, and thyme. Changes in the browning index (BI), weight loss, firmness, percentage of open caps, total phenolics, ascorbic acid, microbial activity and activities of polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL), and peroxidase (POD) were measured. The results indicated that all essential oils could inhibit the senescence of mushrooms, and the most effective compound was cinnamaldehyde. Fumigation treatment with 5 μl l⁻¹ cinnamaldehyde decreased BI, delayed cap opening, reduced microorganism counts, promoted the accumulation of phenolics and ascorbic acid. In addition, 5 μl l⁻¹ cinnamaldehyde fumigation treatment inhibited the activities of PPO and POD, and increased PAL activity during the storage period. Thus, postharvest essential oil fumigation treatment has positive effects on improving the quality of button mushrooms.

  12. Avoidance behavior to essential oils by Anopheles minimus, a malaria vector in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excito-repellency tests were used to characterize behavioral responses of laboratory colonized Anopheles minimus, a malaria vector in Thailand, using four essential oils, citronella (Cymbopogom nadus), hairy basil (Ocimum americanum), sweet basil (Ocimum basilicum), vetiver (Vetiveria zizanioides), ...

  13. Depolymerized carrageenan ameliorates growth, physiological attributes, essential oil yield and active constituents of Foeniculum vulgare Mill.

    PubMed

    Hashmi, Nadeem; Khan, M Masroor A; Moinuddin; Idrees, Mohd; Khan, Zeba H; Ali, Akbar; Varshney, Lalit

    2012-09-01

    Irradiated carrageenan (IC) elicits an array of plant defense responses and biological activities in plants. An experiment was carried out in the naturally illuminated conditions of net house in order to assess the effects of foliar spray of IC on agricultural performance of fennel (Foeniculum vulgare Mill.), which is a high-value essential oil bearing medicinal crop used in pharmaceutical, food and cosmetic industries. There were applied four IC concentrations (40, 60, 80 and 100 mg L(-1)) as foliar sprays. Application of IC significantly improved the growth attributes, physiological and biochemical parameters, essential oil yield and the contents of main components of essential oil of fennel. IC applied at 80 mg L(-1) enhanced these parameters maximally. Unirradiated carrageenan and deionized water had no effect on the attributes studied. Moreover, GLC analysis revealed a significant increase in the components of essential oil, viz. fenchone (4.48-7.82%) and anethole (78.38-86.08%) compared to the control.

  14. Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils.

    PubMed

    Vian, Maryline Abert; Fernandez, Xavier; Visinoni, Franco; Chemat, Farid

    2008-05-09

    A new process design and operation for the extraction of essential oils was developed. Microwave hydrodiffusion and gravity (MHG) is a combination of microwaves for hydrodiffusion of essential oils from the inside to the exterior of biological material and earth gravity to collect and separate. MHG is performed at atmospheric pressure without adding any solvent or water. MHG has been compared with a conventional technique, hydrodistillation (HD), for the extraction of essential oil from two aromatic herbs: spearmint (Mentha spicata L.) and pennyroyal (Mentha pulegium L.) belonging to the Labiatae family. The essential oils extracted by MHG for 15 min were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained by conventional hydrodistillation for 90 min. MHG also prevents pollution through potential 90% of energy saved which can lead to greenhouse gas emission benefits.

  15. Evaluation of toxicity of essential oils palmarosa, citronella, lemongrass and vetiver in human lymphocytes.

    PubMed

    Sinha, Sonali; Jothiramajayam, Manivannan; Ghosh, Manosij; Mukherjee, Anita

    2014-06-01

    The present investigation was undertaken to study the cytotoxic and genotoxic potential of the essential oils (palmarosa, citronella, lemongrass and vetiver) and monoterpenoids (citral and geraniol) in human lymphocytes. Trypan blue dye exclusion and MTT test was used to evaluate cytotoxicity. The genotoxicity studies were carried out by comet and DNA diffusion assays. Apoptosis was confirmed by Annexin/PI double staining. In addition, generation of reactive oxygen species was evaluated by DCFH-DA staining using flow cytometry. The results demonstrated that the four essential oils and citral induced cytotoxicity and genotoxicity at higher concentrations. The essential oils were found to induce oxidative stress evidenced by the generation of reactive oxygen species. With the exception of geraniol, induction of apoptosis was confirmed at higher concentrations of the test substances. Based on the results, the four essential oils are considered safe for human consumption at low concentrations.

  16. Using Essential Oils to Enhance Nursing Practice and for Self-Care.

    PubMed

    Allard, Melissa E; Katseres, Julie

    2016-02-01

    With the growing popularity of integrative medicine, essential oils have found their way back into health care. Essential oils provide a simple way to alleviate certain physical symptoms, promote emotional well-being, and provide comfort. This article, the last in a five-part series on holistic nursing, discusses the administration and common uses of essential oils; their reported benefits, potential risks, and contraindications; and the current state of associated research. The authors focus specifically on the inhalation, both direct and by diffusion, as well as the topical application of essential oils, providing guidance for their use in acute care, self-care, community nursing, and long-term care that will enable readers to incorporate this modality into nursing practice.

  17. Effect of chitosan-lemon essential oil coatings on volatile profile of strawberries during storage.

    PubMed

    Perdones, Ángela; Escriche, Isabel; Chiralt, Amparo; Vargas, Maria

    2016-04-15

    Chitosan coatings containing lemon essential oils were described as effective at controlling fruit fungal decay at 20°C during 7 days. In this work, GC-MS was used to characterise the volatile compounds of strawberries during cold storage in order to analyse the influence of fruit coatings with chitosan, containing or not containing lemon essential oil, on the volatile profile of the fruits. The coatings affected the metabolic pathways and volatile profile of the fruits. Pure chitosan promoted the formation of esters and dimethyl furfural in very short time after coating, while coatings containing lemon essential oil incorporated terpenes (limonene, γ-terpinene, p-cymene and α-citral) to the fruit volatiles and enhanced the fermentative process, modifying the typical fruit aroma composition. No effect of chitosan coatings was sensorially perceived, the changes induced by lemon essential oil were notably appreciated.

  18. Effect of cultural system and essential oil treatment on antioxidant capacity in raspberries.

    PubMed

    Jin, Peng; Wang, Shiow Y; Gao, Haiyan; Chen, Hangjun; Zheng, Yonghua; Wang, Chien Y

    2012-05-01

    The effects of cultural system and essential oil treatment on antioxidant capacities in raspberries were evaluated. Raspberries were hand-harvested from organic and conventional farms in Maryland, USA, and were treated with essential oil including carvacrol, anethole, cinnamic acid, perillaldehyde, cinnamaldehyde, and linalool. Results from this study showed that raspberries grown from organic culture exhibited higher value of antioxidant capacities and individual flavonoids contents. Moreover, the organic culture also enhanced the activities of antioxidant enzymes. In addition, essential oil treatments promoted the antioxidant enzymes activities and antioxidant capacities of raspberries, and the most effective compound was perillaldehyde. In conclusion, raspberries produced from organic culture contained significantly higher antioxidant capacities than those produce from conventional culture. Postharvest essential oil treatments have positive effect on enhancing antioxidant capacities in raspberries from both organic and conventional cultures.

  19. Development of alginate microspheres containing thyme essential oil using ionic gelation.

    PubMed

    Benavides, Sergio; Cortés, Pablo; Parada, Javier; Franco, Wendy

    2016-08-01

    Essential oils are a good antimicrobial and antioxidant agent alternative in human or animal feed. However, their direct use has several disadvantages such as volatilization or oxidation. The development of essential oil microspheres may help to avoid these problems. The objective of the present research was to microencapsulate thyme essential oil by generating emulsions with different dispersion degrees. The emulsions were encapsulated in calcium-alginate microspheres by ionic gelation. The microspheres were evaluated regarding size, shape, encapsulation efficiency, loading capacity and antimicrobial properties. The results indicate that encapsulation efficiency and loading capacity are dependent on concentration and degree of dispersion. The best encapsulation conditions were obtained at 2% v/v of thyme essential oil with a high dispersion degree (18,000rpm/5min), which was achieved with an efficiency of 85%. Finally, the microspheres obtained showed significant antimicrobial effect, especially in gram-positive bacteria.

  20. A New Fluorinated Tyrosinase Inhibitor from a Chemically Engineered Essential Oil.

    PubMed

    García, Paula; Salazar, Mario O; Ramallo, I Ayelen; Furlan, Ricardo L E

    2016-06-13

    The generation of fluorinated essential oils as a source of bioactive compounds is described. Most of the components of the natural mixtures were altered, leading to the discovery of a new fluorinated tyrosinase inhibitor.

  1. Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts.

    PubMed

    Al-Bayati, Firas A

    2008-03-28

    Essential oils (EOs) and methanol extracts obtained from aerial parts of Thymus vulgaris and Pimpinella anisum seeds were evaluated for their single and combined antibacterial activities against nine Gram-positive and Gram-negative pathogenic bacteria: Staphylococcus aureus, Bacillus cereus, Escherichia coli, Proteus vulgaris, Proteus mirabilis, Salmonella typhi, Salmonella typhimurium, Klebsiella pneumoniae and Pseudomonas aeruginosa. The essential oils and methanol extracts revealed promising antibacterial activities against most pathogens using broth microdilution method. Maximum activity of Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts (MIC 15.6 and 62.5mug/ml) were observed against Staphylococcus aureus, Bacillus cereus and Proteus vulgaris. Combinations of essential oils and methanol extracts showed an additive action against most tested pathogens especially Pseudomonas aeruginosa.

  2. Effects of rootstock on the composition of bergamot (Citrus bergamia Risso et Poiteau) essential oil.

    PubMed

    Verzera, Antonella; Trozzi, Alessandra; Gazea, Florea; Cicciarello, Giuseppe; Cotroneo, Antonella

    2003-01-01

    This paper reports the composition of bergamot oils obtained from plants grafted on the following rootstocks: sour orange, Carrizo citrange, trifoliate orange, Alemow, Volkamerian lemon, and Troyer citrange. The aim of this study is to evaluate the possibility of using rootstocks other than sour orange, checking their effect on the composition of the essential oil. Results are reported for analysis of 203 bergamot oils during the years 1997-1998, 1998-1999, and 1999-2000. The oils were analyzed by HRGC and HRGC/MS; 78 components were identified, and the results were in agreement with those reported in the literature for the Calabrian bergamot oils obtained from industry. Because of the quality of their essential oils, Alemow and Volkamerian lemon can be considered as substitutes for sour orange rootstocks.

  3. Antimicrobial activity and chemical composition of the essential oil of Nepeta crispa Willd. from Iran.

    PubMed

    Sonboli, Ali; Salehi, Peyman; Yousefzadi, Morteza

    2004-01-01

    The composition and antimicrobial activity of the essential oil of Nepeta crispa Willd., an endemic species from Iran, was studied. The oil was obtained from the aerial parts of the plant and analyzed by GC and GC/MS. Twenty-three compounds, accounting for 99.8% of the total oil, were identified. The main constituents were 1,8-cineol (47.9%) and 4aalpha,7alpha,7abetanepetalactone (20.3%). The antimicrobial activity of essential oil of N. crispa was tested against seven gram-negative or gram-positive bacteria and four fungi. The results of the bioassays showed the interesting antimicrobial activity, in which the gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, were the most sensitive to the oil. Also, the oil exhibited a remarkable antifungal activity against all the tested fungi.

  4. Toxic effect of Atalantia monophylla essential oil on Callosobruchus maculatus and Sitophilus oryzae.

    PubMed

    Nattudurai, Gopal; Baskar, Kathirvelu; Paulraj, Micheal Gabrial; Islam, Villianur Ibrahim Hairul; Ignacimuthu, Savarimuthu; Duraipandiyan, Veeramuthu

    2017-01-01

    The hydrodistillated essential oil of Atalantia monophylla was subjected to GC-MS. Forty compounds were presented in the essential oil. Eugenol (19.76 %), sabinene (19.57 %), 1,2-dimethoxy-4-(2-methoxyethenyl) benzene (9.84 %), beta-asarone (7.02 %) and methyl eugenol (5.52 %) were found the predominant compounds. The oil was tested for fumigant toxicity and repellent activity against Callosobruchus maculatus and Sitophilus oryzae. The development stage of C. maculatus fecundity, adult emergence and also ovicidal activities were studied by the treatment of A. monophylla oil. The oil exhibited considerable fumigation toxicity (70.22 %), repellent activity (85.24 %) and ovicidal activity (100 %) against C. maculatus. The oil significantly reduced the protein, esterase, acetylcholinesterase and glutathione S-transferase on C. maculatus and S. oryzae. It can be considered that A. monophylla has a potential insecticide against stored product pests.

  5. The use of essential oils in veterinary ectoparasite control: a review.

    PubMed

    Ellse, L; Wall, R

    2014-09-01

    There is a growing body of evidence indicating the potential value of essential oils as control agents against a range of arthropod ectoparasites, particularly lice, mites and ticks. Toxicity has been demonstrated following immersion and physical contact with treated surfaces, as well as after exposure to the vapour of these oils; the last of these factors implies that there is a neurotoxic, rather than simply a mechanical, pathway in their mode of action. However, the volatile nature of essential oils suggests that their residual activity is likely to be short-lived. A possible advantage of essential oils over conventional ectoparasite treatments may refer to their reported ovicidal efficacy, although it is unclear whether this results from neurotoxicity or mechanical suffocation. There are many difficulties in comparing the findings of existing studies of essential oil toxicity. One major issue is the wide variation among batches in the relative concentrations of oil constituents. A second issue concerns the fact that many experimental designs make it difficult to confirm that the effect seen is attributable to the oil; in many cases inappropriate controls mean that the effects of the excipient on mortality cannot be distinguished. Hence, it is important that an excipient-only control is always included in these bioassays. Furthermore, in direct contact assays, when attempting to identify the toxicity pathway of the essential oil tested, it is important to include a hydrophobic control. Without this, it is impossible to distinguish simple mechanical effects from neurological or other cellular toxicity. The use of essential oils in the control of veterinary ectoparasites is an area which holds considerable potential for the future and research into their use is still at an early stage. More extensive field trials, the standardization of components, the standardization of extraction, the standardization of good experimental design, mammalian toxicology profiling

  6. Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice

    PubMed Central

    Muchtaridi; Diantini, Adjeng; Subarnas, Anas

    2011-01-01

    Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L.) leaves, lemongrass (Cymbopogon citrates L.) herbs, ki lemo (Litsea cubeba L.) bark, and laja gowah (Alpinia malaccencis Roxb.) rhizomes on locomotor activity in mice and identify the active component(s) that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%), 0.1 (55.72%), 0.5 (60.75%), and 0.1 mL/cage (47.09%), respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  7. Chemical composition and antifungal activity of the essential oils of Lavandula viridis L'Her.

    PubMed

    Zuzarte, Mónica; Gonçalves, Maria José; Cavaleiro, Carlos; Canhoto, Jorge; Vale-Silva, Luís; Silva, Maria João; Pinto, Eugénia; Salgueiro, Lígia

    2011-05-01

    In the present work we report for what we believe to be the first time the antifungal activity and mechanism of action of the essential oils of Lavandula viridis from Portugal. The essential oils were isolated by hydrodistillation and analysed by GC and GC/MS. The MIC and the minimal lethal concentration (MLC) of the essential oil and its major compounds were determined against several pathogenic fungi. The influence of subinhibitory concentrations of the essential oil on the dimorphic transition in Candida albicans was also studied, as well as propidium iodide and FUN-1 staining of Candida albicans cells by flow cytometry following short treatments with the essential oil. The oils were characterized by a high content of oxygen-containing monoterpenes, with 1,8-cineole being the main constituent. Monoterpene hydrocarbons were present at lower concentrations. According to the determined MIC and MLC values, the dermatophytes and Cryptococcus neoformans were the most sensitive fungi (MIC and MLC values ranging from 0.32 to 0.64 µl ml⁻¹), followed by Candida species (at 0.64-2.5 µl ml⁻¹). For most of these strains, MICs were equivalent to MLCs, indicating a fungicidal effect of the essential oil. The oil was further shown to completely inhibit filamentation in Candida albicans at concentrations well below the respective MICs (as low as MIC/16). Flow cytometry results suggested a mechanism of action ultimately leading to cytoplasmic membrane disruption and cell death. Our results show that L. viridis essential oils may be useful in the clinical treatment of fungal diseases, particularly dermatophytosis and candidosis, although clinical trials are required to evaluate the practical relevance of our in vitro research.

  8. The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay.

    PubMed

    Evandri, M G; Battinelli, L; Daniele, C; Mastrangelo, S; Bolle, P; Mazzanti, G

    2005-09-01

    Essential oils from Melaleuca alternifolia (tea-tree oil) and Lavandula angustifolia (lavender oil) are commonly used to treat minor health problems. Tea-tree oil possesses broad-spectrum antimicrobial activity, and is increasingly used for skin problems. Lavender oil, traditionally used as an antiseptic agent, is now predominantly used as a relaxant, carminative, and sedative in aromatherapy. Despite their growing use no data are available on their mutagenic potential. In this study, after determining the chemical composition of tea-tree oil and lavender oil, by gas-chromatography and mass spectrometry, we investigated their mutagenic and antimutagenic activities by the bacterial reverse mutation assay in Salmonella typhimurium TA98 and TA100 strains and in Escherichia coli WP2 uvrA strain, with and without an extrinsic metabolic activation system. Neither essential oil had mutagenic activity on the two tested Salmonella strains or on E. coli, with or without the metabolic activation system. Conversely, lavender oil exerted strong antimutagenic activity, reducing mutant colonies in the TA98 strain exposed to the direct mutagen 2-nitrofluorene. Antimutagenicity was concentration-dependent: the maximal concentration (0.80 mg/plate) reduced the number of histidine-independent revertant colonies by 66.4%. Lavender oil (0.80 mg/plate) also showed moderate antimutagenicity against the TA98 strain exposed to the direct mutagen 1-nitropyrene. Its antimutagenic property makes lavender oil a promising candidate for new applications in human healthcare.

  9. Effect of synergist piperonyl butoxide (PBO) on the toxicity of some essential oils against mosquito larvae.

    PubMed

    Yadav, S; Mittal, P K; Saxena, P N; Singh, R K

    2008-12-01

    Effect of a known synergist piperonyl butoxide on the toxicity of steam distillate essential oils of Jamarosa (Cymbopogan nardus), Pacholli (Pogostemon pacholli), Basil (Ocimum basilicum), and Peppermint (Mentha pipreta) plant species against Anopheles stephensi larvae were evaluated. The purpose of the present study was to identify the insecticidal potential of these oils against mosquito larvae. The Piperonyl Butoxide (PBO) was used to enhance the activity of these oils with the aim of developing essential oil based formulations. The bioassays of these oils with and without PBO were performed against late 3rd instar larvae of An. stephensi. The LC50 values against An. stephensi were 44.19 ppm for Ocimum basilicum oil, followed by, Mentha pipreta, Cymbopogan nardus, and Pogostemon pacholli oil which gave LC50 values above 250 ppm. Thus in the present study the Ocimum basilicum oil was found to be most effective, whereas Pogostemon pacholli oil was found to least effective against mosquitoes for larvicidal action. The effect of synergist PBO led to the enhancement of toxicity of oils, the LC50 value for Ocimum basilicum were reduced from 44.19 ppm to 23.87 ppm. Similarly the oil of Pogostemon pacholli showed most significant results where the LC50 value was >250 ppm it was reduced to 50 ppm with PBO.

  10. Effect of synergist piperonyl butoxide (PBO) on the toxicity of some essential oils against mosquito larvae.

    PubMed

    Yadav, S; Mittal, P K; Saxena, P N; Singh, R K

    2009-03-01

    Effect of a known synergist piperonyl butoxide on the toxicity of steam distillate essential oils of Jamarosa (Cymbopogan nardus), Pacholli (Pogostemon pacholli), Basil (Ocimum basilicum), and Peppermint (Mentha pipreta) plant species against Anopheles stephensi larvae were evaluated. The purpose of the present study was to identify the insecticidal potential of these oils against mosquito larvae. The Piperonyl Butoxide (PBO) was used to enhance the activity of these oils with the aim of developing essential oil based formulations. The bioassays of these oils with and without PBO were performed against late 3rd instar larvae of An. stephensi. The LC50 values against An. stephensi were 44.19 ppm for Ocimum basilicum oil, followed by, Mentha pipreta, Cymbopogan nardus, and Pogostemon pacholli oil which gave LC50 values above 250 ppm. Thus in the present study the Ocimum basilicum oil was found to be most effective, whereas Pogostemon pacholli oil was found to least effective against mosquitoes for larvicidal action. The effect of synergist PBO led to the enhancement of toxicity of oils, the LC50 value for Ocimum basilicum were reduced from 44.19 ppm to 23.87 ppm. Similarly the oil of Pogostemon pacholli showed most significant results where the LC50 value was > 250 ppm it was reduced to 50 ppm with PBO.

  11. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential

    PubMed Central

    2014-01-01

    Background Natural antioxidant products are increasingly being used to treat various pathological liver conditions considering the role of oxidative stress in their pathogenesis. Rosemary essential oil has already being used as a preservative in food industry due to its antioxidant and antimicrobial activities, but it was shown to possess additional health benefits. The aim of our study was to evaluate the protective effect of rosemary essential oil on carbon tetrachloride - induced liver injury in rats and to explore whether its mechanism of action is associated with modulation of hepatic oxidative status. Methods Chemical composition of isolated rosemary essential oil was determined by gas chromatography and mass spectrometry. Antioxidant activity was determined in vitro using DPPH assay. Activities of enzyme markers of hepatocellular damage in serum and antioxidant enzymes in the liver homogenates were measured using the kinetic spectrophotometric methods. Results In this research, we identified 29 chemical compounds of the studied rosemary essential oil, and the main constituents were 1,8-cineole (43.77%), camphor (12.53%), and α-pinene (11.51%). Investigated essential oil was found to exert hepatoprotective effects in the doses of 5 mg/kg and 10 mg/kg by diminishing AST and ALT activities up to 2-fold in serum of rats with carbon tetrachloride - induced acute liver damage. Rosemary essential oil prevented carbon tetrachloride - induced increase of lipid peroxidation in liver homogenates. Furthermore, pre-treatment with studied essential oil during 7 days significantly reversed the activities of antioxidant enzymes catalase, peroxidase, glutathione peroxidase and glutathione reductase in liver homogenates, especially in the dose of 10 mg/kg. Conclusions Our results demonstrate that rosemary essential oil, beside exhibiting free radical scavenging activity determined by DPPH assay, mediates its hepatoprotective effects also through activation of

  12. Composition and insect attracting activity of the essential oil of Rosmarinus officinalis.

    PubMed

    Katerinopoulos, Haralambos E; Pagona, Georgia; Afratis, Athanasios; Stratigakis, Nicolaos; Roditakis, Nikolaos

    2005-01-01

    The essential oil and a number of extracts of Rosmarinus officinalis L. in solvents of increasing polarity were isolated, and their components identified and tested as pest control agents. Ethanol and acetone extracts attract grape berry moth Lobesia botrana. However, none of the extracts had a significant effect on western flower thrips Frankliniella occidentalis, which is attracted by 1,8-cineole, a major essential oil component.

  13. Essential oil composition and antioxidant activity of aerial parts of Grindelia robusta from Central Italy.

    PubMed

    Fraternale, Daniele; Giamperi, Laura; Bucchini, Anahi; Ricci, Donata

    2007-09-01

    The chemical composition of the essential oil obtained from Grindelia robusta aerial parts from central Italy was analyzed by GC and GC/MS and 45 components were identified. Borneol (15.2%), alpha pinene (10.3%), trans-pinocarveol (7.0%), bornyl acetate (4.5%), limonene (4.3%) were the main components. The antioxidant activity of the essential oil was evaluated using the DPPH and 5-lipoxygenase tests.

  14. Fractionation by SFE and microcolumn analysis of the essential oil and the bitter principles of hops.

    PubMed

    Verschuere, M; Sandra, P; David, F

    1992-10-01

    Supercritical fluid extraction (SFE) is evaluated and optimized for the enrichment and fractionation of the essential oil and the bitter principles of hops (Humulus lupulus), both of which contribute to the flavor of beer. Profiles of the essential oil of different hop varieties are compared. The bitter principles, the humulones and lupulones, are analyzed by miniaturized liquid chromatography (micro-LC) and by micellar electrokinetic chromatography (MEKC).

  15. Comparison of the susceptibilities of clinical isolates of Candida albicans and Candida dubliniensis to essential oils.

    PubMed

    Pozzatti, Patrícia; Loreto, Erico Silva; Lopes, Paulo Guilherme Markus; Athayde, Margareth Linde; Santurio, Janio Morais; Alves, Sydney Hartz

    2010-01-01

    Here, a microdilution technique based on the M27-A2 protocol (NCCLS, 2002) was employed to compare the susceptibilities of Candida albicans and Candida dubliniensis to essential oils extracted from plants used as spices. The chemical compositions of the essential oils were defined based on the analysis of retention indices obtained by gas chromatography-mass spectroscopy. Taken together, the results showed that the activity of the compounds against the two species was similar.

  16. Chemical Constituents and Activity of Murraya microphylla Essential Oil against Lasioderma serricorne.

    PubMed

    You, Chun-Xue; Guo, Shan-Shan; Zhang, Wen-Juan; Yang, Kai; Wang, Cheng-Fang; Geng, Zhu-Feng; Du, Shu-Shan; Deng, Zhi-Wei; Wang, Yong-Yan

    2015-09-01

    The chemical composition, contact and repellent activities of the essential oil from Murraya microphylla branches and leaves against Lasioderma serricorne adults were determined and six compounds from the essential oil were isolated as well. The essential oil of M microphylla obtained by hydrodistillation was analyzed by gas chromatography-mass spectrometric (GC-MS) analysis; 22 compounds were identified. The main constituents of the essential oil included β-caryophyllene (18.0%), α-pinene (13.8%), spathulenol (9.5%), α-humulene (6.0%), γ-elemene (5.1%) and zingiberene (4.6%), followed by α-cadinol (3.9%) and caryophyllene oxide (3.8%). Six of these compounds were isolated and fully identified as α-pinene, β-caryophyllene, α-humulene, caryophyllene oxide, spathulenol and α-cadinol. L. serricorne adults had different sensitivities to the crude essential oil and isolated compounds. α-Humulene exhibited the strongest contact activity against L. serricorne, showing an LD50 value of 13.1 µg adult(-1). However, spathulenol, the crude essential oil and α-cadinol showed stronger contact activity against L. serricorne than caryophyllene oxide and β-caryophyllene. The essential oil, α-humulene and spathulenol showed comparable repellency against L. serricorne adults at 2 h after exposure, relative to the positive control, DEET. The results demonstrate that the essential oil and isolated compounds exhibited important contact and repellent activities against L. serricorne. Thus, they could become potential natural insecticides or repellents for control of insects in stored products.

  17. Antidepressant-like effect of essential oil isolated from Toona ciliata Roem. var. yunnanensis.

    PubMed

    Duan, Dongmei; Chen, Liping; Yang, Xiuyan; Tu, Ya; Jiao, Shuang

    2015-04-01

    Depressive order is one of the most common psychiatric diseases, and Toona ciliata Roem. var. yunnanensis has shown many bioactivities in folk medicine. This study was designed to investigate the antidepressant-like effect of essential oil isolated from T. ciliata Roem. var. yunnanensis. Gas chromatography and mass spectrometry (GC-MS) was used to analyze the compositions of essential oil. The immobility time in the forced swimming test (FST), tail suspending test (TST), and open field test (OFT) were used to evaluate the antidepressive effects of essential oil. Furthermore, chronic mild stress (CMS) rats were established, and contents of dopamine (DA), norepinephrine (NE), and 5-hydroxytryptamine (5-HT) in the brain were determined by high-performance liquid chromatography-electron capture detector (HPLC-ECD). Western blotting was performed to investigate the effects of essential oil on the expressions of brain-derived neurotrophic factor (BDNF) protein in rats' brain. The GC-MS analysis showed that the main components of essential oil were estragole (6.16 %), β-elemene (24.91 %), β-cubebene (14.29 %), and γ-elemene (8.05 %). The results from the FST and TST demonstrated that the immobility time could be significantly reduced by essential oil (10, 20, 40, and 80 mg/kg), without accompanying changes in ambulation when assessed in the OFT. Additionally, the contents of DA, NE, 5-HT, and BDNF in the hippocampus of CMS rats could be increased by treatment with essential oil at doses of 20, 40, and 80 mg/kg. All these results suggested that essential oil could be considered as a new candidate for curing depressive disorders.

  18. Effect of Hinoki and Meniki Essential Oils on Human Autonomic Nervous System Activity and Mood States.

    PubMed

    Chen, Chi-Jung; Kumar, K J Senthil; Chen, Yu-Ting; Tsao, Nai-Wen; Chien, Shih-Chang; Chang, Shang-Tzen; Chu, Fang-Hua; Wang, Sheng-Yang

    2015-07-01

    Meniki (Chamecyparis formosensis) and Hinoki (C. obtusa) are precious conifers with excellent wood properties and distinctive fragrances that make these species popular in Taiwan for construction, interiors and furniture. In the present study, the compositions of essential oils prepared from Meniki and Hinoki were analyzed by gas chromatography-mass spectrometry (GC/MS). Thirty-six compounds were identified from the wood essential oil of Meniki, including Δ-cadinene, γ-cadinene, Δ-cadinol, α-muurolene, calamenene, linalyl acetate and myrtenol; 29 compounds were identified from Hinoki, including α-terpineol, α-pinene, Δ-cadinene, borneol, terpinolene, and limonene. Next, we examined the effect of Meniki and Hinoki essential oils on human autonomic nervous system activity. Sixteen healthy adults received Meniki or Hinoki by inhalation for 5 min, and the physiological and psychological effects were examined. After inhaling Meniki essential oil, participant's systolic blood pressure and heart rate (HR) were decreased, and diastolic blood pressure increased. In addition, sympathetic nervous activity (SNS) was significantly decreased, and parasympathetic activity (PSNS) was significantly increased. On the other hand, after inhaling Hinoki essential oil, systolic blood pressure, heart rate and PSNS were decreased, whereas SNA was increased. Indeed, both Meniki and Hinoki essential oils increased heart rate variability (HRV) in tested adults. Furthermore, in the Profile of Mood States (POMS) test, both Meniki and Hinoki wood essential oils stimulated a pleasant mood status. Our results strongly suggest that Meniki and Hinoki essential oils could be suitable agents for the development of regulators of sympathetic nervous system dysfunctions.

  19. Larvicidal activity of Tagetes patula essential oil against three mosquito species.

    PubMed

    Dharmagadda, V S S; Naik, S N; Mittal, P K; Vasudevan, P

    2005-07-01

    Larvicidal activity of Tagetes patula essential oil was tested against the fourth instar larvae of Aedes aegypti, Anopheles stephensi, and Culex quinquefaciatus. Five different concentrations of essential oil were studied and the results were compared with that of synthetic insecticide, malathion. A. aegypti (LC(50) 13.57, LC(90) 37.91) was most susceptible followed by An. stephensi (LC(50) 12.08, LC(90) 57.62) and C. quinquefaciatus (LC(50) 22.33, LC(90) 71.89).

  20. Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L

    PubMed Central

    Kumar, Sarita; Wahab, Naim; Warikoo, Radhika

    2011-01-01

    Objective To assess the larvicidal and repellent potential of the essential oil extracted from the leaves of peppermint plant, Mentha piperita (M. piperita) against the larval and adult stages of Aedes aegypti (Ae. Aegypti). Methods The larvicidal potential of peppermint oil was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 and 48 h, and LC50 and LC90 values were calculated. The efficacy of peppermint oil as mosquito repellent was assessed using the human-bait technique. The measured area of one arm of a human volunteer was applied with the oil and the other arm was applied with ethanol. The mosquito bites on both the arms were recorded for 3 min after every 15 min. The experiment continued for 3 h and the percent protection was calculated. Results The essential oil extracted from M. piperita possessed excellent larvicidal efficiency against dengue vector. The bioassays showed an LC50 and LC90 value of 111.9 and 295.18 ppm, respectively after 24 h of exposure. The toxicity of the oil increased 11.8% when the larvae were exposed to the oil for 48 h. The remarkable repellent properties of M. piperita essential oil were established against adults Ae. aegypti. The application of oil resulted in 100% protection till 150 min. After next 30 min, only 1-2 bites were recorded as compared with 8-9 bites on the control arm. Conclusions The peppermint essential oil is proved to be efficient larvicide and repellent against dengue vector. Further studies are needed to identify the possible role of oil as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the oil could help in formulating strategies for mosquito control. PMID:23569733

  1. Chemical Composition and Allelopathic Potential of Essential Oils from Tipuana tipu (Benth.) Kuntze Cultivated in Tunisia.

    PubMed

    El Ayeb-Zakhama, Asma; Sakka-Rouis, Lamia; Bergaoui, Afifa; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2016-03-01

    In Tunisia, Tipuana tipu (Benth.) Kuntze is an exotic tree, which was introduced many years ago and planted as ornamental street, garden, and park tree. The present work reported, for the first time, the chemical composition and evaluates the allelopathic effect of the hydrodistilled essential oils of the different parts of this tree, viz., roots, stems, leaves, flowers, and pods gathered in the area of Sousse, a coastal region, in the East of Tunisia. In total, 86 compounds representing 89.9 - 94.9% of the whole oil composition, were identified in these oils by GC-FID and GC/MS analyses. The root essential oil was clearly distinguished for its high content in sesquiterpene hydrocarbons (β-caryophyllene, 1 (44); 24.1% and germacrene D, 2 (53); 20.0%), while those obtained from pods, leaves, stems, and flowers were dominated by non-terpene hydrocarbons. The most important ones were n-tetradecane (41, 16.3%, pod oil), 1,7-dimethylnaphthalene (43, 15.6%, leaf oil), and n-octadecane (77, 13.1%, stem oil). The leaf oil was rich in the apocarotene (E)-β-ionone (4 (54); 33.8%), and the oil obtained from flowers was characterized by hexahydrofarnesylacetone (5 (81); 19.9%) and methyl hexadecanoate (83, 10.2%). Principal component and hierarchical cluster analyses separated the five essential oils into three groups and two subgroups, each characterized by the major oil constituents. Contact tests showed that the germination of lettuce seeds was totally inhibited by the root essential oil tested at 1 mg/ml. The inhibitory effect on the shoot and root elongation varied from -1.6% to -32.4%, and from -2.5% to -64.4%, respectively.

  2. Chemical composition and antimicrobial activity of the essential oil from the edible aromatic plant Aristolochia delavayi.

    PubMed

    Li, Zhi-Jian; Njateng, Guy S S; He, Wen-Jia; Zhang, Hong-Xia; Gu, Jian-Long; Chen, Shan-Na; Du, Zhi-Zhi

    2013-11-01

    The essential oil obtained by hydrodistillation from the aerial parts of Aristolochia delavayi Franch. (Aristolochiaceae), a unique edible aromatic plant consumed by the Nakhi (Naxi) people in Yunnan, China, was investigated using GC/MS analysis. In total, 95 components, representing more than 95% of the oil composition, were identified, and the main constituents found were (E)-dec-2-enal (52.0%), (E)-dodec-2-enal (6.8%), dodecanal (3.35%), heptanal (2.88%), and decanal (2.63%). The essential oil showed strong inhibitory activity (96% reduction) of the production of bacterial volatile sulfide compounds (VSC) by Klebsiella pneumoniae, an effect that was comparable with that of the reference compound citral (91% reduction). Moreover, the antimicrobial activity of the essential oil and the isolated major compound against eight bacterial and six fungal strains were evaluated. The essential oil showed significant antibacterial activity against Providencia stuartii and Escherichia coli, with minimal inhibitory concentrations (MIC) ranging from 3.9 to 62.5 μg/ml. The oil also showed strong inhibitory activity against the fungal strains Trichophyton ajelloi, Trichophyton terrestre, Candida glabrata, Candida guilliermondii, and Cryptococcus neoformans, with MIC values ranging from 3.9 to 31.25 μg/ml, while (E)-dec-2-enal presented a lower antifungal activity than the essential oil.

  3. Efficacy of an essential oil of Cinnamomum zeylanicum against Psoroptes cuniculi.

    PubMed

    Fichi, G; Flamini, G; Zaralli, L J; Perrucci, S

    2007-02-01

    The aim of the present study was to investigate the in vitro and in vivo acaricidal effects of an essential oil of Cinnamomum zeylanicun leaves on Psoroptes cuniculi, a mange mite. In vitro, 2.5 ml of the essential oil diluted at different concentrations, from 10% to 0.03%, in paraffin oil were added to Petri dishes containing all motile stages of P. cuniculi. Mites mortality observed in these dishes was compared with that observed in untreated and treated (AcaCerulen R) control plates. In vivo, one group of six P. cuniculi infected rabbits was topically treated two times at seven days interval with two ml of the essential oil at the concentration of 2.5% in paraffin oil and compared with untreated and treated (AcaCerulen R) control groups of six rabbits each. After 24 h of contact, all concentrations of essential oil between 0.10 and 10% showed a good in vitro acaricidal efficacy if compared with the untreated controls (p<0.01), but only the concentrations between 0.16 and 10% turned out as active as the drug. In vivo, the treatment with the essential oil cured all infested rabbits and no statistical differences were observed with the treated control group.

  4. Molluscicidal and leishmanicidal activity of the leaf essential oil of Syzygium cumini (L.) SKEELS from Brazil.

    PubMed

    Dias, Clarice N; Rodrigues, Klinger A F; Carvalho, Fernando A A; Carneiro, Sabrina M P; Maia, Jose G S; Andrade, Eloisa H A; Moraes, Denise F C

    2013-06-01

    The chemical composition and biological potential of the essential oil extracted from Syzygium cumini leaves collected in Brazil were examined. GC/MS Analyses revealed a high abundance of monoterpenes (87.12%) in the oil. Eleven compounds were identified, with the major components being α-pinene (31.85%), (Z)-β-ocimene (28.98%), and (E)-β-ocimene (11.71%). To evaluate the molluscicidal effect of the oil, it was tested against Biomphalaria glabrata and the LC₅₀ obtained was 90 mg/l. The essential oil also showed significant activity against Leishmania amazonensis, with an IC50 value equal to 60 mg/l. In addition, to evaluate its toxicity towards a non-target organism, the essential oil was tested against Artemia salina and showed a LC₅₀ of 175 mg/l. Thus, the essential oil of S. cumini showed promising activity as a molluscicidal and leishmanicidal agent and might be valuable in combating neglected tropical diseases such as sch