Sample records for single 2d image

  1. Surface Imaging Skin Friction Instrument and Method

    NASA Technical Reports Server (NTRS)

    Brown, James L. (Inventor); Naughton, Jonathan W. (Inventor)

    1999-01-01

    A surface imaging skin friction instrument allowing 2D resolution of spatial image by a 2D Hilbert transform and 2D inverse thin-oil film solver, providing an innovation over prior art single point approaches. Incoherent, monochromatic light source can be used. The invention provides accurate, easy to use, economical measurement of larger regions of surface shear stress in a single test.

  2. Three-Dimensional Photoactivated Localization Microscopy with Genetically Expressed Probes

    PubMed Central

    Temprine, Kelsey; York, Andrew G.; Shroff, Hari

    2017-01-01

    Photoactivated localization microscopy (PALM) and related single-molecule imaging techniques enable biological image acquisition at ~20 nm lateral and ~50–100 nm axial resolution. Although such techniques were originally demonstrated on single imaging planes close to the coverslip surface, recent technical developments now enable the 3D imaging of whole fixed cells. We describe methods for converting a 2D PALM into a system capable of acquiring such 3D images, with a particular emphasis on instrumentation that is compatible with choosing relatively dim, genetically expressed photoactivatable fluorescent proteins (PA-FPs) as PALM probes. After reviewing the basics of 2D PALM, we detail astigmatic and multiphoton imaging approaches well suited to working with PA-FPs. We also discuss the use of open-source localization software appropriate for 3D PALM. PMID:25391803

  3. SU-C-9A-06: The Impact of CT Image Used for Attenuation Correction in 4D-PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Y; Bowsher, J; Yan, S

    2014-06-01

    Purpose: To evaluate the appropriateness of using 3D non-gated CT image for attenuation correction (AC) in a 4D-PET (gated PET) imaging protocol used in radiotherapy treatment planning simulation. Methods: The 4D-PET imaging protocol in a Siemens PET/CT simulator (Biograph mCT, Siemens Medical Solutions, Hoffman Estates, IL) was evaluated. CIRS Dynamic Thorax Phantom (CIRS Inc., Norfolk, VA) with a moving glass sphere (8 mL) in the middle of its thorax portion was used in the experiments. The glass was filled with {sup 18}F-FDG and was in a longitudinal motion derived from a real patient breathing pattern. Varian RPM system (Varian Medicalmore » Systems, Palo Alto, CA) was used for respiratory gating. Both phase-gating and amplitude-gating methods were tested. The clinical imaging protocol was modified to use three different CT images for AC in 4D-PET reconstruction: first is to use a single-phase CT image to mimic actual clinical protocol (single-CT-PET); second is to use the average intensity projection CT (AveIP-CT) derived from 4D-CT scanning (AveIP-CT-PET); third is to use 4D-CT image to do the phase-matched AC (phase-matching- PET). Maximum SUV (SUVmax) and volume of the moving target (glass sphere) with threshold of 40% SUVmax were calculated for comparison between 4D-PET images derived with different AC methods. Results: The SUVmax varied 7.3%±6.9% over the breathing cycle in single-CT-PET, compared to 2.5%±2.8% in AveIP-CT-PET and 1.3%±1.2% in phasematching PET. The SUVmax in single-CT-PET differed by up to 15% from those in phase-matching-PET. The target volumes measured from single- CT-PET images also presented variations up to 10% among different phases of 4D PET in both phase-gating and amplitude-gating experiments. Conclusion: Attenuation correction using non-gated CT in 4D-PET imaging is not optimal process for quantitative analysis. Clinical 4D-PET imaging protocols should consider phase-matched 4D-CT image if available to achieve better accuracy.« less

  4. Semi-automatic central-chest lymph-node definition from 3D MDCT images

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Higgins, William E.

    2010-03-01

    Central-chest lymph nodes play a vital role in lung-cancer staging. The three-dimensional (3D) definition of lymph nodes from multidetector computed-tomography (MDCT) images, however, remains an open problem. This is because of the limitations in the MDCT imaging of soft-tissue structures and the complicated phenomena that influence the appearance of a lymph node in an MDCT image. In the past, we have made significant efforts toward developing (1) live-wire-based segmentation methods for defining 2D and 3D chest structures and (2) a computer-based system for automatic definition and interactive visualization of the Mountain central-chest lymph-node stations. Based on these works, we propose new single-click and single-section live-wire methods for segmenting central-chest lymph nodes. The single-click live wire only requires the user to select an object pixel on one 2D MDCT section and is designed for typical lymph nodes. The single-section live wire requires the user to process one selected 2D section using standard 2D live wire, but it is more robust. We applied these methods to the segmentation of 20 lymph nodes from two human MDCT chest scans (10 per scan) drawn from our ground-truth database. The single-click live wire segmented 75% of the selected nodes successfully and reproducibly, while the success rate for the single-section live wire was 85%. We are able to segment the remaining nodes, using our previously derived (but more interaction intense) 2D live-wire method incorporated in our lymph-node analysis system. Both proposed methods are reliable and applicable to a wide range of pulmonary lymph nodes.

  5. Aerial image based die-to-model inspections of advanced technology masks

    NASA Astrophysics Data System (ADS)

    Kim, Jun; Lei, Wei-Guo; McCall, Joan; Zaatri, Suheil; Penn, Michael; Nagpal, Rajesh; Faivishevsky, Lev; Ben-Yishai, Michael; Danino, Udy; Tam, Aviram; Dassa, Oded; Balasubramanian, Vivek; Shah, Tejas H.; Wagner, Mark; Mangan, Shmoolik

    2009-10-01

    Die-to-Model (D2M) inspection is an innovative approach to running inspection based on a mask design layout data. The D2M concept takes inspection from the traditional domain of mask pattern to the preferred domain of the wafer aerial image. To achieve this, D2M transforms the mask layout database into a resist plane aerial image, which in turn is compared to the aerial image of the mask, captured by the inspection optics. D2M detection algorithms work similarly to an Aerial D2D (die-to-die) inspection, but instead of comparing a die to another die it is compared to the aerial image model. D2M is used whenever D2D inspection is not practical (e.g., single die) or when a validation of mask conformity to design is needed, i.e., for printed pattern fidelity. D2M is of particular importance for inspection of logic single die masks, where no simplifying assumption of pattern periodicity may be done. The application can tailor the sensitivity to meet the needs at different locations, such as device area, scribe lines and periphery. In this paper we present first test results of the D2M mask inspection application at a mask shop. We describe the methodology of using D2M, and review the practical aspects of the D2M mask inspection.

  6. A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes

    PubMed Central

    2011-01-01

    Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions. Conclusions Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views. PMID:21251284

  7. A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes.

    PubMed

    Yu, Honggang; Pattichis, Marios S; Agurto, Carla; Beth Goens, M

    2011-01-20

    A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes.For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions. Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views.

  8. Snapshot 3D tracking of insulin granules in live cells

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolei; Huang, Xiang; Gdor, Itay; Daddysman, Matthew; Yi, Hannah; Selewa, Alan; Haunold, Theresa; Hereld, Mark; Scherer, Norbert F.

    2018-02-01

    Rapid and accurate volumetric imaging remains a challenge, yet has the potential to enhance understanding of cell function. We developed and used a multifocal microscope (MFM) for 3D snapshot imaging to allow 3D tracking of insulin granules labeled with mCherry in MIN6 cells. MFM employs a special diffractive optical element (DOE) to simultaneously image multiple focal planes. This simultaneous acquisition of information determines the 3D location of single objects at a speed only limited by the array detector's frame rate. We validated the accuracy of MFM imaging/tracking with fluorescence beads; the 3D positions and trajectories of single fluorescence beads can be determined accurately over a wide range of spatial and temporal scales. The 3D positions and trajectories of single insulin granules in a 3.2um deep volume were determined with imaging processing that combines 3D decovolution, shift correction, and finally tracking using the Imaris software package. We find that the motion of the granules is superdiffusive, but less so in 3D than 2D for cells grown on coverslip surfaces, suggesting an anisotropy in the cytoskeleton (e.g. microtubules and action).

  9. Magnetic Resonance-Based Electrical Property Tomography (MR- EPT) for Prostate Cancer Grade Imaging

    DTIC Science & Technology

    2014-07-01

    TV 2D 5 10 15 2 4 6 8 10 12 14 i 5 10 15 2 4 6 8 10 12 14 Figure 10. Prostate-like gelatin phantom with one inclusion (5mm, play dough ...magnitude image (TSE) and reconstructions. 11 c) Multiple Inclusions Two 5 mm diameter inclusions ( play dough to provide significant conductivity...reconstruction, 2D inverse reconstruction with Total Variation, 3D inverse reconstruction 10 b) Single inclusion A single 5 mm diameter inclusion ( play

  10. Evaluation of Methods for Coregistration and Fusion of Rpas-Based 3d Point Clouds and Thermal Infrared Images

    NASA Astrophysics Data System (ADS)

    Hoegner, L.; Tuttas, S.; Xu, Y.; Eder, K.; Stilla, U.

    2016-06-01

    This paper discusses the automatic coregistration and fusion of 3d point clouds generated from aerial image sequences and corresponding thermal infrared (TIR) images. Both RGB and TIR images have been taken from a RPAS platform with a predefined flight path where every RGB image has a corresponding TIR image taken from the same position and with the same orientation with respect to the accuracy of the RPAS system and the inertial measurement unit. To remove remaining differences in the exterior orientation, different strategies for coregistering RGB and TIR images are discussed: (i) coregistration based on 2D line segments for every single TIR image and the corresponding RGB image. This method implies a mainly planar scene to avoid mismatches; (ii) coregistration of both the dense 3D point clouds from RGB images and from TIR images by coregistering 2D image projections of both point clouds; (iii) coregistration based on 2D line segments in every single TIR image and 3D line segments extracted from intersections of planes fitted in the segmented dense 3D point cloud; (iv) coregistration of both the dense 3D point clouds from RGB images and from TIR images using both ICP and an adapted version based on corresponding segmented planes; (v) coregistration of both image sets based on point features. The quality is measured by comparing the differences of the back projection of homologous points in both corrected RGB and TIR images.

  11. Volumetric Arterial Spin-labeled Perfusion Imaging of the Kidneys with a Three-dimensional Fast Spin Echo Acquisition.

    PubMed

    Robson, Philip M; Madhuranthakam, Ananth J; Smith, Martin P; Sun, Maryellen R M; Dai, Weiying; Rofsky, Neil M; Pedrosa, Ivan; Alsop, David C

    2016-02-01

    Renal perfusion measurements using noninvasive arterial spin-labeled (ASL) magnetic resonance imaging techniques are gaining interest. Currently, focus has been on perfusion in the context of renal transplant. Our objectives were to explore the use of ASL in patients with renal cancer, and to evaluate three-dimensional (3D) fast spin echo (FSE) acquisition, a robust volumetric imaging method for abdominal applications. We evaluate 3D ASL perfusion magnetic resonance imaging in the kidneys compared to two-dimensional (2D) ASL in patients and healthy subjects. Isotropic resolution (2.6 × 2.6 × 2.8 mm(3)) 3D ASL using segmented FSE was compared to 2D single-shot FSE. ASL used pseudo-continuous labeling, suppression of background signal, and synchronized breathing. Quantitative perfusion values and signal-to-noise ratio (SNR) were compared between 3D and 2D ASL in four healthy volunteers and semiquantitative assessments were made by four radiologists in four patients with known renal masses (primary renal cell carcinoma). Renal cortex perfusion in healthy subjects was 284 ± 21 mL/100 g/min, with test-retest repeatability of 8.8%. No significant differences were found between the quantitative perfusion value and SNR in volunteers between 3D ASL and 2D ASL, or in 3D ASL with synchronized or free breathing. In patients, semiquantitative assessment by radiologists showed no significant difference in image quality between 2D ASL and 3D ASL. In one case, 2D ASL missed a high perfusion focus in a mass that was seen by 3D ASL. 3D ASL renal perfusion imaging provides isotropic-resolution images, with comparable quantitative perfusion values and image SNR in similar imaging time to single-slice 2D ASL. Copyright © 2015 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. A general framework for face reconstruction using single still image based on 2D-to-3D transformation kernel.

    PubMed

    Fooprateepsiri, Rerkchai; Kurutach, Werasak

    2014-03-01

    Face authentication is a biometric classification method that verifies the identity of a user based on image of their face. Accuracy of the authentication is reduced when the pose, illumination and expression of the training face images are different than the testing image. The methods in this paper are designed to improve the accuracy of a features-based face recognition system when the pose between the input images and training images are different. First, an efficient 2D-to-3D integrated face reconstruction approach is introduced to reconstruct a personalized 3D face model from a single frontal face image with neutral expression and normal illumination. Second, realistic virtual faces with different poses are synthesized based on the personalized 3D face to characterize the face subspace. Finally, face recognition is conducted based on these representative virtual faces. Compared with other related works, this framework has the following advantages: (1) only one single frontal face is required for face recognition, which avoids the burdensome enrollment work; and (2) the synthesized face samples provide the capability to conduct recognition under difficult conditions like complex pose, illumination and expression. From the experimental results, we conclude that the proposed method improves the accuracy of face recognition by varying the pose, illumination and expression. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Framework for 2D-3D image fusion of infrared thermography with preoperative MRI.

    PubMed

    Hoffmann, Nico; Weidner, Florian; Urban, Peter; Meyer, Tobias; Schnabel, Christian; Radev, Yordan; Schackert, Gabriele; Petersohn, Uwe; Koch, Edmund; Gumhold, Stefan; Steiner, Gerald; Kirsch, Matthias

    2017-11-27

    Multimodal medical image fusion combines information of one or more images in order to improve the diagnostic value. While previous applications mainly focus on merging images from computed tomography, magnetic resonance imaging (MRI), ultrasonic and single-photon emission computed tomography, we propose a novel approach for the registration and fusion of preoperative 3D MRI with intraoperative 2D infrared thermography. Image-guided neurosurgeries are based on neuronavigation systems, which further allow us track the position and orientation of arbitrary cameras. Hereby, we are able to relate the 2D coordinate system of the infrared camera with the 3D MRI coordinate system. The registered image data are now combined by calibration-based image fusion in order to map our intraoperative 2D thermographic images onto the respective brain surface recovered from preoperative MRI. In extensive accuracy measurements, we found that the proposed framework achieves a mean accuracy of 2.46 mm.

  14. Characterization of separability and entanglement in (2xD)- and (3xD)-dimensional systems by single-qubit and single-qutrit unitary transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giampaolo, Salvatore M.; CNR-INFM Coherentia, Naples; CNISM Unita di Salerno and INFN Sezione di Napoli, Gruppo collegato di Salerno, Baronissi

    2007-10-15

    We investigate the geometric characterization of pure state bipartite entanglement of (2xD)- and (3xD)-dimensional composite quantum systems. To this aim, we analyze the relationship between states and their images under the action of particular classes of local unitary operations. We find that invariance of states under the action of single-qubit and single-qutrit transformations is a necessary and sufficient condition for separability. We demonstrate that in the (2xD)-dimensional case the von Neumann entropy of entanglement is a monotonic function of the minimum squared Euclidean distance between states and their images over the set of single qubit unitary transformations. Moreover, both inmore » the (2xD)- and in the (3xD)-dimensional cases the minimum squared Euclidean distance exactly coincides with the linear entropy [and thus as well with the tangle measure of entanglement in the (2xD)-dimensional case]. These results provide a geometric characterization of entanglement measures originally established in informational frameworks. Consequences and applications of the formalism to quantum critical phenomena in spin systems are discussed.« less

  15. A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-10-01

    A two-dimensional (2D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric wafer mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region in the vicinity of the PZT to capture the scattered wavefield. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, a reflectivity coefficients of the delamination is calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2D areal scans and 1D line scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  16. An automatic 2D–3D image matching method for reproducing spatial knee joint positions using single or dual fluoroscopic images

    PubMed Central

    Zhu, Zhonglin; Li, Guoan

    2013-01-01

    Fluoroscopic image technique, using either a single image or dual images, has been widely applied to measure in vivo human knee joint kinematics. However, few studies have compared the advantages of using single and dual fluoroscopic images. Furthermore, due to the size limitation of the image intensifiers, it is possible that only a portion of the knee joint could be captured by the fluoroscopy during dynamic knee joint motion. In this paper, we presented a systematic evaluation of an automatic 2D–3D image matching method in reproducing spatial knee joint positions using either single or dual fluoroscopic image techniques. The data indicated that for the femur and tibia, their spatial positions could be determined with an accuracy and precision less than 0.2 mm in translation and less than 0.4° in orientation when dual fluoroscopic images were used. Using single fluoroscopic images, the method could produce satisfactory accuracy in joint positions in the imaging plane (average up to 0.5 mm in translation and 1.3° in rotation), but large variations along the out-plane direction (in average up to 4.0 mm in translation and 2.28 in rotation). The precision of using single fluoroscopic images to determine the actual knee positions was worse than its accuracy obtained. The data also indicated that when using dual fluoroscopic image technique, if the knee joint outlines in one image were incomplete by 80%, the algorithm could still reproduce the joint positions with high precisions. PMID:21806411

  17. 2D-3D registration for cranial radiation therapy using a 3D kV CBCT and a single limited field-of-view 2D kV radiograph.

    PubMed

    Munbodh, Reshma; Knisely, Jonathan Ps; Jaffray, David A; Moseley, Douglas J

    2018-05-01

    We present and evaluate a fully automated 2D-3D intensity-based registration framework using a single limited field-of-view (FOV) 2D kV radiograph and a 3D kV CBCT for 3D estimation of patient setup errors during brain radiotherapy. We evaluated two similarity measures, the Pearson correlation coefficient on image intensity values (ICC) and maximum likelihood measure with Gaussian noise (MLG), derived from the statistics of transmission images. Pose determination experiments were conducted on 2D kV radiographs in the anterior-posterior (AP) and left lateral (LL) views and 3D kV CBCTs of an anthropomorphic head phantom. In order to minimize radiation exposure and exclude nonrigid structures from the registration, limited FOV 2D kV radiographs were employed. A spatial frequency band useful for the 2D-3D registration was identified from the bone-to-no-bone spectral ratio (BNBSR) of digitally reconstructed radiographs (DRRs) computed from the 3D kV planning CT of the phantom. The images being registered were filtered accordingly prior to computation of the similarity measures. We evaluated the registration accuracy achievable with a single 2D kV radiograph and with the registration results from the AP and LL views combined. We also compared the performance of the 2D-3D registration solutions proposed to that of a commercial 3D-3D registration algorithm, which used the entire skull for the registration. The ground truth was determined from markers affixed to the phantom and visible in the CBCT images. The accuracy of the 2D-3D registration solutions, as quantified by the root mean squared value of the target registration error (TRE) calculated over a radius of 3 cm for all poses tested, was ICC AP : 0.56 mm, MLG AP : 0.74 mm, ICC LL : 0.57 mm, MLG LL : 0.54 mm, ICC (AP and LL combined): 0.19 mm, and MLG (AP and LL combined): 0.21 mm. The accuracy of the 3D-3D registration algorithm was 0.27 mm. There was no significant difference in mean TRE for the 2D-3D registration algorithms using a single 2D kV radiograph with similarity measure and image view point. There was no significant difference in mean TRE between ICC LL , MLG LL , ICC (AP and LL combined), MLG (AP and LL combined), and the 3D-3D registration algorithm despite the smaller FOV used for the 2D-3D registration. While submillimeter registration accuracy was obtained with both ICC and MLG using a single 2D kV radiograph, combining the results from the two projection views resulted in a significantly smaller (P≤0.05) mean TRE. Our results indicate that it is possible to achieve submillimeter registration accuracy with both ICC and MLG using either single or dual limited FOV 2D kV radiographs of the head in the AP and LL views. The registration accuracy suggests that the 2D-3D registration solutions presented are suitable for the estimation of patient setup errors not only during conventional brain radiation therapy, but also during stereotactic procedures and proton radiation therapy where tighter setup margins are required. © 2018 American Association of Physicists in Medicine.

  18. Single-shot three-dimensional reconstruction based on structured light line pattern

    NASA Astrophysics Data System (ADS)

    Wang, ZhenZhou; Yang, YongMing

    2018-07-01

    Reconstruction of the object by single-shot is of great importance in many applications, in which the object is moving or its shape is non-rigid and changes irregularly. In this paper, we propose a single-shot structured light 3D imaging technique that calculates the phase map from the distorted line pattern. This technique makes use of the image processing techniques to segment and cluster the projected structured light line pattern from one single captured image. The coordinates of the clustered lines are extracted to form a low-resolution phase matrix which is then transformed to full-resolution phase map by spline interpolation. The 3D shape of the object is computed from the full-resolution phase map and the 2D camera coordinates. Experimental results show that the proposed method was able to reconstruct the three-dimensional shape of the object robustly from one single image.

  19. A novel three-dimensional image reconstruction method for near-field coded aperture single photon emission computerized tomography

    PubMed Central

    Mu, Zhiping; Hong, Baoming; Li, Shimin; Liu, Yi-Hwa

    2009-01-01

    Coded aperture imaging for two-dimensional (2D) planar objects has been investigated extensively in the past, whereas little success has been achieved in imaging 3D objects using this technique. In this article, the authors present a novel method of 3D single photon emission computerized tomography (SPECT) reconstruction for near-field coded aperture imaging. Multiangular coded aperture projections are acquired and a stack of 2D images is reconstructed separately from each of the projections. Secondary projections are subsequently generated from the reconstructed image stacks based on the geometry of parallel-hole collimation and the variable magnification of near-field coded aperture imaging. Sinograms of cross-sectional slices of 3D objects are assembled from the secondary projections, and the ordered subset expectation and maximization algorithm is employed to reconstruct the cross-sectional image slices from the sinograms. Experiments were conducted using a customized capillary tube phantom and a micro hot rod phantom. Imaged at approximately 50 cm from the detector, hot rods in the phantom with diameters as small as 2.4 mm could be discerned in the reconstructed SPECT images. These results have demonstrated the feasibility of the authors’ 3D coded aperture image reconstruction algorithm for SPECT, representing an important step in their effort to develop a high sensitivity and high resolution SPECT imaging system. PMID:19544769

  20. An enhanced CCRTM (E-CCRTM) damage imaging technique using a 2D areal scan for composite plates

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-04-01

    A two-dimensional (2-D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric actuator mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region to capture the scattered wavefield in the vicinity of the PZT. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, the reflectivity coefficients of the delamination can be calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2-D areal scans and linear scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2-D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  1. A statistically harmonized alignment-classification in image space enables accurate and robust alignment of noisy images in single particle analysis.

    PubMed

    Kawata, Masaaki; Sato, Chikara

    2007-06-01

    In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.

  2. Single-particle cryo-EM-Improved ab initio 3D reconstruction with SIMPLE/PRIME.

    PubMed

    Reboul, Cyril F; Eager, Michael; Elmlund, Dominika; Elmlund, Hans

    2018-01-01

    Cryogenic electron microscopy (cryo-EM) and single-particle analysis now enables the determination of high-resolution structures of macromolecular assemblies that have resisted X-ray crystallography and other approaches. We developed the SIMPLE open-source image-processing suite for analysing cryo-EM images of single-particles. A core component of SIMPLE is the probabilistic PRIME algorithm for identifying clusters of images in 2D and determine relative orientations of single-particle projections in 3D. Here, we extend our previous work on PRIME and introduce new stochastic optimization algorithms that improve the robustness of the approach. Our refined method for identification of homogeneous subsets of images in accurate register substantially improves the resolution of the cluster centers and of the ab initio 3D reconstructions derived from them. We now obtain maps with a resolution better than 10 Å by exclusively processing cluster centers. Excellent parallel code performance on over-the-counter laptops and CPU workstations is demonstrated. © 2017 The Protein Society.

  3. [Image fusion: use in the control of the distribution of prostatic biopsies].

    PubMed

    Mozer, Pierre; Baumann, Michaël; Chevreau, Grégoire; Troccaz, Jocelyne

    2008-02-01

    Prostate biopsies are performed under 2D TransRectal UltraSound (US) guidance by sampling the prostate according to a predefined pattern. Modern image processing tools allow better control of biopsy distribution. We evaluated the accuracy of a single operator performing a pattern of 12 ultrasound-guided biopsies by registering 3D ultrasound control images acquired after each biopsy. For each patient, prostate image alignment was performed automatically with a voxel-based registration algorithm allowing visualization of each biopsy trajectory in a single ultrasound reference volume. On average, the operator reached the target in 60% of all cases. This study shows that it is difficult to accurately reach targets in the prostate using 2D ultrasound. In the near future, real-time fusion of MRI and US images will allow selection of a target in previously acquired MR images and biopsy of this target by US guidance.

  4. Imaging the 3D flow around swimming Chlamydomonas reinhardtii using digital inline holographic microscopy

    NASA Astrophysics Data System (ADS)

    Welch, Kyle; Kumar, Santosh; Hong, Jiarong; Cheng, Xiang

    2017-11-01

    Understanding the 3D flow induced by microswimmers is paramount to revealing how they interact with each other and their environment. While many studies have measured 2D projections of flow fields around single microorganisms, reliable 3D measurement remains elusive due to the difficulty in imaging fast 3D fluid flows at submicron spatial and millisecond temporal scales. Here, we present a precision measurement of the 3D flow field induced by motile planktonic algae cells, Chlamydomonas reinhardtii. We manually capture and hold stationary a single alga using a micropipette, while still allowing it to beat its flagella in the breastroke pattern characteristic to C. reinhardtii. The 3D flow field around the alga is then tracked by employing fast holographic imaging on 1 um tracer particles, which leads to a spatial resolution of 100 nm along the optical axis and 40 nm in the imaging plane normal to the optical axis. We image the flow around a single alga continuously through thousands of flagellar beat cycles and aggregate that data into a complete 3D flow field. Our study demonstrates the power of holography in imaging fast complex microscopic flow structures and provides crucial information for understanding the detailed locomotion of swimming microorganisms.

  5. Tilted light sheet microscopy with 3D point spread functions for single-molecule super-resolution imaging in mammalian cells

    NASA Astrophysics Data System (ADS)

    Gustavsson, Anna-Karin; Petrov, Petar N.; Lee, Maurice Y.; Shechtman, Yoav; Moerner, W. E.

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D superresolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  6. 2D-3D registration for brain radiation therapy using a 3D CBCT and a single limited field-of-view 2D kV radiograph

    NASA Astrophysics Data System (ADS)

    Munbodh, R.; Moseley, D. J.

    2014-03-01

    We report results of an intensity-based 2D-3D rigid registration framework for patient positioning and monitoring during brain radiotherapy. We evaluated two intensity-based similarity measures, the Pearson Correlation Coefficient (ICC) and Maximum Likelihood with Gaussian noise (MLG) derived from the statistics of transmission images. A useful image frequency band was identified from the bone-to-no-bone ratio. Validation was performed on gold-standard data consisting of 3D kV CBCT scans and 2D kV radiographs of an anthropomorphic head phantom acquired at 23 different poses with parameter variations along six degrees of freedom. At each pose, a single limited field of view kV radiograph was registered to the reference CBCT. The ground truth was determined from markers affixed to the phantom and visible in the CBCT images. The mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters along the x, y and z axes for ICC were varphix: 0.08(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.03(0.03)°, tx: 0.13(0.11) mm, ty: 0.08(0.06) mm and tz: 0.44(0.23) mm. For MLG, the corresponding results were varphix: 0.10(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.05(0.07)°, tx: 0.11(0.13) mm, ty: 0.05(0.05) mm and tz: 0.44(0.31) mm. It is feasible to accurately estimate all six transformation parameters from a 3D CBCT of the head and a single 2D kV radiograph within an intensity-based registration framework that incorporates the physics of transmission images.

  7. Social smile reproducibility using 3-D stereophotogrammetry and reverse engineering technology.

    PubMed

    Dindaroğlu, Furkan; Duran, Gökhan Serhat; Görgülü, Serkan; Yetkiner, Enver

    2016-05-01

    To assess the range of social smile reproducibility using 3-D stereophotogrammetry and reverse engineering technology. Social smile images of white adolescents (N  =  15, mean age  =  15.4 ±1.5 years; range  =  14-17 years) were obtained using 3dMDFlex (3dMD, Atlanta, Ga). Each participant was asked to produce 16 social smiles at 3-minute intervals. All images were obtained in natural head position. Alignment of images, segmentation of smile area, and 3-D deviation analysis were carried out using Geomagic Control software (3D Systems Inc, Cary, NC). A single image was taken as a reference, and the remaining 15 images were compared with the reference image to evaluate positive and negative deviations. The differences between the mean deviation limits of participants with the highest and the lowest deviations and the total mean deviations were evaluated using Bland-Altman Plots. Minimum and maximum deviations of a single image from the reference image were 0.34 and 2.69 mm, respectively. Lowest deviation between two images was within 0.5 mm and 1.54 mm among all participants (mean, 0.96 ± 0.21 mm), and the highest deviation was between 0.41 mm and 2.69 mm (mean, 1.53 ± 0.46 mm). For a single patient, when all alignments were considered together, the mean deviation was between 0.32 ± 0.10 mm and 0.59 ± 0.24 mm. Mean deviation for one image was between 0.14 and 1.21 mm. The range of reproducibility of the social smile presented individual variability, but this variation was not clinically significant or detectable under routine clinical observation.

  8. 20 MHz Forward-imaging Single-element Beam Steering with an Internal Rotating Variable-Angle Reflecting Surface: Wire phantom and Ex vivo pilot study

    PubMed Central

    Raphael, David T.; Li, Xiang; Park, Jinhyoung; Chen, Ruimin; Chabok, Hamid; Barukh, Arthur; Zhou, Qifa; Elgazery, Mahmoud; Shung, K. Kirk

    2012-01-01

    Feasibility is demonstrated for a forward-imaging beam steering system involving a single-element 20 MHz angled-face acoustic transducer combined with an internal rotating variable-angle reflecting surface (VARS). Rotation of the VARS structure, for a fixed position of the transducer, generates a 2-D angular sector scan. If these VARS revolutions were to be accompanied by successive rotations of the single-element transducer, 3-D imaging would be achieved. In the design of this device, a single-element 20 MHz PMN-PT press-focused angled-face transducer is focused on the circle of midpoints of a micro-machined VARS within the distal end of an endoscope. The 2-D imaging system was tested in water bath experiments with phantom wire structures at a depth of 10 mm, and exhibited an axial resolution of 66 μm and a lateral resolution of 520 μm. Chirp coded excitation was used to enhance the signal-to-noise ratio, and to increase the depth of penetration. Images of an ex vivo cow eye were obtained. This VARS-based approach offers a novel forward-looking beam-steering method, which could be useful in intra-cavity imaging. PMID:23122968

  9. 20 MHz forward-imaging single-element beam steering with an internal rotating variable-angle reflecting surface: Wire phantom and ex vivo pilot study.

    PubMed

    Raphael, David T; Li, Xiang; Park, Jinhyoung; Chen, Ruimin; Chabok, Hamid; Barukh, Arthur; Zhou, Qifa; Elgazery, Mahmoud; Shung, K Kirk

    2013-02-01

    Feasibility is demonstrated for a forward-imaging beam steering system involving a single-element 20MHz angled-face acoustic transducer combined with an internal rotating variable-angle reflecting surface (VARS). Rotation of the VARS structure, for a fixed position of the transducer, generates a 2-D angular sector scan. If these VARS revolutions were to be accompanied by successive rotations of the single-element transducer, 3-D imaging would be achieved. In the design of this device, a single-element 20MHz PMN-PT press-focused angled-face transducer is focused on the circle of midpoints of a micro-machined VARS within the distal end of an endoscope. The 2-D imaging system was tested in water bath experiments with phantom wire structures at a depth of 10mm, and exhibited an axial resolution of 66μm and a lateral resolution of 520μm. Chirp coded excitation was used to enhance the signal-to-noise ratio, and to increase the depth of penetration. Images of an ex vivo cow eye were obtained. This VARS-based approach offers a novel forward-looking beam-steering method, which could be useful in intra-cavity imaging. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Accuracy and reading time for six strategies using digital breast tomosynthesis in women with mammographically negative dense breasts.

    PubMed

    Tagliafico, Alberto Stefano; Calabrese, Massimo; Bignotti, Bianca; Signori, Alessio; Fisci, Erica; Rossi, Federica; Valdora, Francesca; Houssami, Nehmat

    2017-12-01

    To compare six strategies using digital breast tomosynthesis in women with mammographically negative dense breasts. This is a substudy of the 'ASTOUND' trial. 163 women who underwent tomosynthesis with synthetically reconstructed projection images (S-2D) inclusive of 13 (7.9%) cases diagnosed with breast cancer at histopathology after surgery were evaluated. Accuracy measures and screen-reading time of six reading strategies were assessed: (A) Single reading of S-2D alone, (B) single reading of tomosynthesis alone, (C) single reading of joint interpretation of tomosynthesis + S-2D, (D) double-reading of S-2D alone, (E) double reading of tomosynthesis alone, (F) double reading of joint interpretation of tomosynthesis + S-2D. The median age of the patients was 53 years (range, 36-88 years). The highest global accuracy was obtained with double reading of tomosynthesis + S2D (F) with an AUC of 0.979 (p<0.001) and a mean reading time of 154 s versus 34 s for the fastest strategy (single reading of S-2D alone). The AUCs for the other five strategies did not differ from each other. Double reading of tomosynthesis+ S2D had the best accuracy of six screen-reading strategies although it had the longest reading time. • Tomosynthesis acquisitions are progressively implemented with reconstructed synthesized 2D images • Double reading using S-2D plus tomosynthesis had the highest global accuracy (p<0.001). • Double reading of S-2D plus tomosynthesis increased reading time.

  11. 3D hybrid profile order technique in a single breath-hold 3D T2-weighted fast spin-echo sequence: Usefulness in diagnosis of small liver lesions.

    PubMed

    Hirata, Kenichiro; Nakaura, Takeshi; Okuaki, Tomoyuki; Tsuda, Noriko; Taguchi, Narumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki

    2018-01-01

    We compared the efficacy of three-dimensional (3D) isotropic T2-weighted fast spin-echo imaging using a 3D hybrid profile order technique with a single-breath-hold (3D-Hybrid BH) with a two-dimensional (2D) T2-weighted fast spin-echo conventional respiratory-gated (2D-Conventional RG) technique for visualising small liver lesions. This study was approved by our institutional review board. The requirement to obtain written informed consent was waived. Fifty patients with small (≤15mm) hepatocellular carcinomas (HCC) (n=26), or benign cysts (n=24), had undergone hepatic MRI including both 2D-Conventional RG and 3D-Hybrid BH. We calculated the signal-to-noise ratio (SNR) and tumour-to-liver contrast (TLC). The diagnostic performance of the two protocols was analysed. The image acquisition time was 89% shorter with the 3D-Hybrid BH than with 2D-Conventional RG. There was no significant difference in the SNR between the two protocols. The area under the curve (AUC) of the TLC was significantly higher on 3D-Hybrid BH than on 2D-Conventional RG. The 3D-Hybrid BH sequence significantly improved diagnostic performance for small liver lesions with a shorter image acquisition time without sacrificing accuracy. Copyright © 2017. Published by Elsevier B.V.

  12. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    PubMed Central

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-01-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939

  13. Surface coverage with single vs. multiple gaze surface topography to fit scleral lenses.

    PubMed

    DeNaeyer, Gregory; Sanders, Donald R; Farajian, Timothy S

    2017-06-01

    To determine surface coverage of measurements using the sMap3D ® corneo-scleral topographer in patients presenting for scleral lens fitting. Twenty-five eyes of 23 scleral lens patients were examined. Up-gaze, straight-gaze, and down-gaze positions of each eye were "stitched" into a single map. The percentage surface coverage between 10mm and 20mm diameter circles from corneal center was compared between the straight-gaze and stitched images. Scleral toricity magnitude was calculated at 100% coverage and at the same diameter after 50% of the data was removed. At a 10mm diameter from corneal center, the straight-gaze and stitched images both had 100% coverage. At the 14, 15, 16, 18 and 20mm diameters, the straight-gaze image only covered 68%, 53%, 39%, 18%, and 6% of the ocular surface diameters while the stitched image covered 98%, 96%, 93%, 75%, and 32% respectively. In the case showing the most scleral coverage at 16mm (straight-gaze), there was only 75% coverage (straight-gaze) compared to 100% (stitched image); the case with the least coverage had 7% (straight gaze) and 92% (stitched image). The 95% limits of agreement between the 50% and 100% coverage scleral toricity was between -1.4D (50% coverage value larger) and 1.2D (100% coverage larger), a 2.6D spread. The absolute difference between 50% to 100% coverage scleral toricity was ≥0.50D in 28% and ≥1.0D in 16% of cases. It appears that a single straight-gaze image would introduce significant measurement inaccuracy in fitting scleral lenses using the sMap3D while a 3-gaze stitched image would not. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  14. Tilted Light Sheet Microscopy with 3D Point Spread Functions for Single-Molecule Super-Resolution Imaging in Mammalian Cells.

    PubMed

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  15. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    PubMed

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality.

  16. Volumetric particle image velocimetry with a single plenoptic camera

    NASA Astrophysics Data System (ADS)

    Fahringer, Timothy W.; Lynch, Kyle P.; Thurow, Brian S.

    2015-11-01

    A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) technique based on volume illumination and light field imaging with a single plenoptic camera is described. A plenoptic camera uses a densely packed microlens array mounted near a high resolution image sensor to sample the spatial and angular distribution of light collected by the camera. The multiplicative algebraic reconstruction technique (MART) computed tomography algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed particle volumes. This work provides an introduction to the basic concepts of light field imaging with a plenoptic camera and describes the unique implementation of MART in the context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic camera using geometric optics are used to generate synthetic plenoptic particle images, which are subsequently used to estimate the quality of particle volume reconstructions at various particle number densities. 3D reconstructions using this method produce reconstructed particles that are elongated by a factor of approximately 4 along the optical axis of the camera. A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic PIV to produce a 3D/3C vector field, where it was found that lateral displacements could be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the depth direction over a 300× 200× 200 voxel volume. The feasibility of the technique is demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel interline CCD camera and a 289× 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C measurements were performed in the wake of a low Reynolds number circular cylinder and compared with measurements made using a conventional 2D/2C PIV system. Overall, single camera plenoptic PIV is shown to be a viable 3D/3C velocimetry technique.

  17. 3D FaceCam: a fast and accurate 3D facial imaging device for biometrics applications

    NASA Astrophysics Data System (ADS)

    Geng, Jason; Zhuang, Ping; May, Patrick; Yi, Steven; Tunnell, David

    2004-08-01

    Human faces are fundamentally three-dimensional (3D) objects, and each face has its unique 3D geometric profile. The 3D geometric features of a human face can be used, together with its 2D texture, for rapid and accurate face recognition purposes. Due to the lack of low-cost and robust 3D sensors and effective 3D facial recognition (FR) algorithms, almost all existing FR systems use 2D face images. Genex has developed 3D solutions that overcome the inherent problems in 2D while also addressing limitations in other 3D alternatives. One important aspect of our solution is a unique 3D camera (the 3D FaceCam) that combines multiple imaging sensors within a single compact device to provide instantaneous, ear-to-ear coverage of a human face. This 3D camera uses three high-resolution CCD sensors and a color encoded pattern projection system. The RGB color information from each pixel is used to compute the range data and generate an accurate 3D surface map. The imaging system uses no moving parts and combines multiple 3D views to provide detailed and complete 3D coverage of the entire face. Images are captured within a fraction of a second and full-frame 3D data is produced within a few seconds. This described method provides much better data coverage and accuracy in feature areas with sharp features or details (such as the nose and eyes). Using this 3D data, we have been able to demonstrate that a 3D approach can significantly improve the performance of facial recognition. We have conducted tests in which we have varied the lighting conditions and angle of image acquisition in the "field." These tests have shown that the matching results are significantly improved when enrolling a 3D image rather than a single 2D image. With its 3D solutions, Genex is working toward unlocking the promise of powerful 3D FR and transferring FR from a lab technology into a real-world biometric solution.

  18. 3D single-molecule super-resolution microscopy with a tilted light sheet.

    PubMed

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-01-09

    Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.

  19. High Information Capacity Quantum Imaging

    DTIC Science & Technology

    2014-09-19

    single-pixel camera [41, 75]. An object is imaged onto a Digital Micromirror device ( DMD ), a 2D binary array of individually-addressable mirrors that...reflect light either to a single detector or a dump. Rows of the sensing matrix A consist of random, binary patterns placed sequentially on the DMD ...The single-pixel camera concept naturally adapts to imaging correlations by adding a second detector. Consider placing separate DMDs in the near-field

  20. Research into a Single-aperture Light Field Camera System to Obtain Passive Ground-based 3D Imagery of LEO Objects

    NASA Astrophysics Data System (ADS)

    Bechis, K.; Pitruzzello, A.

    2014-09-01

    This presentation describes our ongoing research into using a ground-based light field camera to obtain passive, single-aperture 3D imagery of LEO objects. Light field cameras are an emerging and rapidly evolving technology for passive 3D imaging with a single optical sensor. The cameras use an array of lenslets placed in front of the camera focal plane, which provides angle of arrival information for light rays originating from across the target, allowing range to target and 3D image to be obtained from a single image using monocular optics. The technology, which has been commercially available for less than four years, has the potential to replace dual-sensor systems such as stereo cameras, dual radar-optical systems, and optical-LIDAR fused systems, thus reducing size, weight, cost, and complexity. We have developed a prototype system for passive ranging and 3D imaging using a commercial light field camera and custom light field image processing algorithms. Our light field camera system has been demonstrated for ground-target surveillance and threat detection applications, and this paper presents results of our research thus far into applying this technology to the 3D imaging of LEO objects. The prototype 3D imaging camera system developed by Northrop Grumman uses a Raytrix R5 C2GigE light field camera connected to a Windows computer with an nVidia graphics processing unit (GPU). The system has a frame rate of 30 Hz, and a software control interface allows for automated camera triggering and light field image acquisition to disk. Custom image processing software then performs the following steps: (1) image refocusing, (2) change detection, (3) range finding, and (4) 3D reconstruction. In Step (1), a series of 2D images are generated from each light field image; the 2D images can be refocused at up to 100 different depths. Currently, steps (1) through (3) are automated, while step (4) requires some user interaction. A key requirement for light field camera operation is that the target must be within the near-field (Fraunhofer distance) of the collecting optics. For example, in visible light the near-field of a 1-m telescope extends out to about 3,500 km, while the near-field of the AEOS telescope extends out over 46,000 km. For our initial proof of concept, we have integrated our light field camera with a 14-inch Meade LX600 advanced coma-free telescope, to image various surrogate ground targets at up to tens of kilometers range. Our experiments with the 14-inch telescope have assessed factors and requirements that are traceable and scalable to a larger-aperture system that would have the near-field distance needed to obtain 3D images of LEO objects. The next step would be to integrate a light field camera with a 1-m or larger telescope and evaluate its 3D imaging capability against LEO objects. 3D imaging of LEO space objects with light field camera technology can potentially provide a valuable new tool for space situational awareness, especially for those situations where laser or radar illumination of the target objects is not feasible.

  1. Tomographic phase microscopy and its biological applications

    NASA Astrophysics Data System (ADS)

    Choi, Wonshik

    2012-12-01

    Conventional interferometric microscopy techniques such as digital holographic microscopy and quantitative phase microscopy are often classified as 3D imaging techniques because a recorded complex field image can be numerically propagated to a different depth. In a strict sense, however, a single complex field image contains only 2D information on a specimen. The measured 2D image is only a subset of the 3D structure. For the 3D mapping of an object, multiple independent 2D images are to be taken, for example at multiple incident angles or wavelengths, and then combined by the so-called optical diffraction tomography (ODT). In this Letter, tomographic phase microscopy (TPM) is reviewed that experimentally realizes the concept of the ODT for the 3D mapping of biological cells in their native state, and some of its interesting biological and biomedical applications are introduced. [Figure not available: see fulltext.

  2. Large scale superres 3D imaging: light-sheet single-molecule localization microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lu, Chieh Han; Chen, Peilin; Chen, Bi-Chang

    2017-02-01

    Optical imaging techniques provide much important information in understanding life science especially cellular structure and morphology because "seeing is believing". However, the resolution of optical imaging is limited by the diffraction limit, which is discovered by Ernst Abbe, i.e. λ/2(NA) (NA is the numerical aperture of the objective lens). Fluorescence super-resolution microscopic techniques such as Stimulated emission depletion microscopy (STED), Photoactivated localization microscopy (PALM), and Stochastic optical reconstruction microscopy (STORM) are invented to have the capability of seeing biological entities down to molecular level that are smaller than the diffraction limit (around 200-nm in lateral resolution). These techniques do not physically violate the Abbe limit of resolution but exploit the photoluminescence properties and labelling specificity of fluorescence molecules to achieve super-resolution imaging. However, these super-resolution techniques limit most of their applications to the 2D imaging of fixed or dead samples due to the high laser power needed or slow speed for the localization process. Extended from 2D imaging, light sheet microscopy has been proven to have a lot of applications on 3D imaging at much better spatiotemporal resolutions due to its intrinsic optical sectioning and high imaging speed. Herein, we combine the advantage of localization microscopy and light-sheet microscopy to have super-resolved cellular imaging in 3D across large field of view. With high-density labeled spontaneous blinking fluorophore and wide-field detection of light-sheet microscopy, these allow us to construct 3D super-resolution multi-cellular imaging at high speed ( minutes) by light-sheet single-molecule localization microscopy.

  3. 3D Fast Spin Echo T2-weighted Contrast for Imaging the Female Cervix

    NASA Astrophysics Data System (ADS)

    Vargas Sanchez, Andrea Fernanda

    Magnetic Resonance Imaging (MRI) with T2-weighted contrast is the preferred modality for treatment planning and monitoring of cervical cancer. Current clinical protocols image the volume of interest multiple times with two dimensional (2D) T2-weighted MRI techniques. It is of interest to replace these multiple 2D acquisitions with a single three dimensional (3D) MRI acquisition to save time. However, at present the image contrast of standard 3D MRI does not distinguish cervical healthy tissue from cancerous tissue. The purpose of this thesis is to better understand the underlying factors that govern the contrast of 3D MRI and exploit this understanding via sequence modifications to improve the contrast. Numerical simulations are developed to predict observed contrast alterations and to propose an improvement. Improvements of image contrast are shown in simulation and with healthy volunteers. Reported results are only preliminary but a promising start to establish definitively 3D MRI for cervical cancer applications.

  4. Deep neural network using color and synthesized three-dimensional shape for face recognition

    NASA Astrophysics Data System (ADS)

    Rhee, Seon-Min; Yoo, ByungIn; Han, Jae-Joon; Hwang, Wonjun

    2017-03-01

    We present an approach for face recognition using synthesized three-dimensional (3-D) shape information together with two-dimensional (2-D) color in a deep convolutional neural network (DCNN). As 3-D facial shape is hardly affected by the extrinsic 2-D texture changes caused by illumination, make-up, and occlusions, it could provide more reliable complementary features in harmony with the 2-D color feature in face recognition. Unlike other approaches that use 3-D shape information with the help of an additional depth sensor, our approach generates a personalized 3-D face model by using only face landmarks in the 2-D input image. Using the personalized 3-D face model, we generate a frontalized 2-D color facial image as well as 3-D facial images (e.g., a depth image and a normal image). In our DCNN, we first feed 2-D and 3-D facial images into independent convolutional layers, where the low-level kernels are successfully learned according to their own characteristics. Then, we merge them and feed into higher-level layers under a single deep neural network. Our proposed approach is evaluated with labeled faces in the wild dataset and the results show that the error rate of the verification rate at false acceptance rate 1% is improved by up to 32.1% compared with the baseline where only a 2-D color image is used.

  5. Protein secondary structure determination by constrained single-particle cryo-electron tomography.

    PubMed

    Bartesaghi, Alberto; Lecumberry, Federico; Sapiro, Guillermo; Subramaniam, Sriram

    2012-12-05

    Cryo-electron microscopy (cryo-EM) is a powerful technique for 3D structure determination of protein complexes by averaging information from individual molecular images. The resolutions that can be achieved with single-particle cryo-EM are frequently limited by inaccuracies in assigning molecular orientations based solely on 2D projection images. Tomographic data collection schemes, however, provide powerful constraints that can be used to more accurately determine molecular orientations necessary for 3D reconstruction. Here, we propose "constrained single-particle tomography" as a general strategy for 3D structure determination in cryo-EM. A key component of our approach is the effective use of images recorded in tilt series to extract high-resolution information and correct for the contrast transfer function. By incorporating geometric constraints into the refinement to improve orientational accuracy of images, we reduce model bias and overrefinement artifacts and demonstrate that protein structures can be determined at resolutions of ∼8 Å starting from low-dose tomographic tilt series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Cryo-electron microscopy and cryo-electron tomography of nanoparticles.

    PubMed

    Stewart, Phoebe L

    2017-03-01

    Cryo-transmission electron microscopy (cryo-TEM or cryo-EM) and cryo-electron tomography (cryo-ET) offer robust and powerful ways to visualize nanoparticles. These techniques involve imaging of the sample in a frozen-hydrated state, allowing visualization of nanoparticles essentially as they exist in solution. Cryo-TEM grid preparation can be performed with the sample in aqueous solvents or in various organic and ionic solvents. Two-dimensional (2D) cryo-TEM provides a direct way to visualize the polydispersity within a nanoparticle preparation. Fourier transforms of cryo-TEM images can confirm the structural periodicity within a sample. While measurement of specimen parameters can be performed with 2D TEM images, determination of a three-dimensional (3D) structure often facilitates more spatially accurate quantization. 3D structures can be determined in one of two ways. If the nanoparticle has a homogeneous structure, then 2D projection images of different particles can be averaged using a computational process referred to as single particle reconstruction. Alternatively, if the nanoparticle has a heterogeneous structure, then a structure can be generated by cryo-ET. This involves collecting a tilt-series of 2D projection images for a defined region of the grid, which can be used to generate a 3D tomogram. Occasionally it is advantageous to calculate both a single particle reconstruction, to reveal the regular portions of a nanoparticle structure, and a cryo-electron tomogram, to reveal the irregular features. A sampling of 2D cryo-TEM images and 3D structures are presented for protein based, DNA based, lipid based, and polymer based nanoparticles. WIREs Nanomed Nanobiotechnol 2017, 9:e1417. doi: 10.1002/wnan.1417 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  7. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    DOE PAGES

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; ...

    2016-01-01

    Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less

  8. T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging.

    PubMed

    Tamir, Jonathan I; Uecker, Martin; Chen, Weitian; Lai, Peng; Alley, Marcus T; Vasanawala, Shreyas S; Lustig, Michael

    2017-01-01

    A new acquisition and reconstruction method called T 2 Shuffling is presented for volumetric fast spin-echo (three-dimensional [3D] FSE) imaging. T 2 Shuffling reduces blurring and recovers many images at multiple T 2 contrasts from a single acquisition at clinically feasible scan times (6-7 min). The parallel imaging forward model is modified to account for temporal signal relaxation during the echo train. Scan efficiency is improved by acquiring data during the transient signal decay and by increasing echo train lengths without loss in signal-to-noise ratio (SNR). By (1) randomly shuffling the phase encode view ordering, (2) constraining the temporal signal evolution to a low-dimensional subspace, and (3) promoting spatio-temporal correlations through locally low rank regularization, a time series of virtual echo time images is recovered from a single scan. A convex formulation is presented that is robust to partial voluming and radiofrequency field inhomogeneity. Retrospective undersampling and in vivo scans confirm the increase in sharpness afforded by T 2 Shuffling. Multiple image contrasts are recovered and used to highlight pathology in pediatric patients. A proof-of-principle method is integrated into a clinical musculoskeletal imaging workflow. The proposed T 2 Shuffling method improves the diagnostic utility of 3D FSE by reducing blurring and producing multiple image contrasts from a single scan. Magn Reson Med 77:180-195, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  10. A Plenoptic Multi-Color Imaging Pyrometer

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Hutchins, William D.; Fahringer, Timothy; Thurow, Brian S.

    2017-01-01

    A three-color pyrometer has been developed based on plenoptic imaging technology. Three bandpass filters placed in front of a camera lens allow separate 2D images to be obtained on a single image sensor at three different and adjustable wavelengths selected by the user. Images were obtained of different black- or grey-bodies including a calibration furnace, a radiation heater, and a luminous sulfur match flame. The images obtained of the calibration furnace and radiation heater were processed to determine 2D temperature distributions. Calibration results in the furnace showed that the instrument can measure temperature with an accuracy and precision of 10 Kelvins between 1100 and 1350 K. Time-resolved 2D temperature measurements of the radiation heater are shown.

  11. Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform

    NASA Astrophysics Data System (ADS)

    Liu, Bao-Lei; Yang, Zhao-Hua; Liu, Xia; Wu, Ling-An

    2017-02-01

    We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-colour image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily cancelled to give excellent image quality. Moreover, the experimental set-up is very simple.

  12. Photogrammetry Toolbox Reference Manual

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Burner, Alpheus W.

    2014-01-01

    Specialized photogrammetric and image processing MATLAB functions useful for wind tunnel and other ground-based testing of aerospace structures are described. These functions include single view and multi-view photogrammetric solutions, basic image processing to determine image coordinates, 2D and 3D coordinate transformations and least squares solutions, spatial and radiometric camera calibration, epipolar relations, and various supporting utility functions.

  13. A Bayesian approach to real-time 3D tumor localization via monoscopic x-ray imaging during treatment delivery.

    PubMed

    Li, Ruijiang; Fahimian, Benjamin P; Xing, Lei

    2011-07-01

    Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a "plug-and-play" fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not statistically significant. The proposed algorithm eliminates the need for any population based model parameters in monoscopic image guided radiotherapy and allows accurate and real-time 3D tumor localization on current standard LINACs with a single x-ray imager.

  14. Prior Image Constrained Compressed Sensing Metal Artifact Reduction (PICCS-MAR): 2D and 3D Image Quality Improvement with Hip Prostheses at CT Colonography.

    PubMed

    Bannas, Peter; Li, Yinsheng; Motosugi, Utaroh; Li, Ke; Lubner, Meghan; Chen, Guang-Hong; Pickhardt, Perry J

    2016-07-01

    To assess the effect of the prior-image-constrained-compressed-sensing-based metal-artefact-reduction (PICCS-MAR) algorithm on streak artefact reduction and 2D and 3D-image quality improvement in patients with total hip arthroplasty (THA) undergoing CT colonography (CTC). PICCS-MAR was applied to filtered-back-projection (FBP)-reconstructed DICOM CTC-images in 52 patients with THA (unilateral, n = 30; bilateral, n = 22). For FBP and PICCS-MAR series, ROI-measurements of CT-numbers were obtained at predefined levels for fat, muscle, air, and the most severe artefact. Two radiologists independently reviewed 2D and 3D CTC-images and graded artefacts and image quality using a five-point-scale (1 = severe streak/no-diagnostic confidence, 5 = no streak/excellent image-quality, high-confidence). Results were compared using paired and unpaired t-tests and Wilcoxon signed-rank and Mann-Whitney-tests. Streak artefacts and image quality scores for FBP versus PICCS-MAR 2D-images (median: 1 vs. 3 and 2 vs. 3, respectively) and 3D images (median: 2 vs. 4 and 3 vs. 4, respectively) showed significant improvement after PICCS-MAR (all P < 0.001). PICCS-MAR significantly improved the accuracy of mean CT numbers for fat, muscle and the area with the most severe artefact (all P < 0.001). PICCS-MAR substantially reduces streak artefacts related to THA on DICOM images, thereby enhancing visualization of anatomy on 2D and 3D CTC images and increasing diagnostic confidence. • PICCS-MAR significantly reduces streak artefacts associated with total hip arthroplasty on 2D and 3D CTC. • PICCS-MAR significantly improves 2D and 3D CTC image quality and diagnostic confidence. • PICCS-MAR can be applied retrospectively to DICOM images from single-kVp CT.

  15. Methodological development of topographic correction in 2D/3D ToF-SIMS images using AFM images

    NASA Astrophysics Data System (ADS)

    Jung, Seokwon; Lee, Nodo; Choi, Myungshin; Lee, Jungmin; Cho, Eunkyunng; Joo, Minho

    2018-02-01

    Time-of-flight secondary-ion mass spectrometry (ToF-SIMS) is an emerging technique that provides chemical information directly from the surface of electronic materials, e.g. OLED and solar cell. It is very versatile and highly sensitive mass spectrometric technique that provides surface molecular information with their lateral distribution as a two-dimensional (2D) molecular image. Extending the usefulness of ToF-SIMS, a 3D molecular image can be generated by acquiring multiple 2D images in a stack. These imaging techniques by ToF-SIMS provide an insight into understanding the complex structures of unknown composition in electronic material. However, one drawback in ToF-SIMS is not able to represent topographical information in 2D and 3D mapping images. To overcome this technical limitation, topographic information by ex-situ technique such as atomic force microscopy (AFM) has been combined with chemical information from SIMS that provides both chemical and physical information in one image. The key to combine two different images obtained from ToF-SIMS and AFM techniques is to develop the image processing algorithm, which performs resize and alignment by comparing the specific pixel information of each image. In this work, we present methodological development of the semiautomatic alignment and the 3D structure interpolation system for the combination of 2D/3D images obtained by ToF-SIMS and AFM measurements, which allows providing useful analytical information in a single representation.

  16. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.

    PubMed

    Li, Ruijiang; Jia, Xun; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B

    2010-06-01

    To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, new DVFs can be generated, which, when applied on the reference image, lead to new volumetric images. A volumetric image can then be reconstructed from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. The algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. The training data were generated using a realistic and dynamic mathematical phantom with ten breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude. The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 s (range: 0.17 and 0.35 s). The authors have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.

  17. Dose fractionation theorem in 3-D reconstruction (tomography)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaeser, R.M.

    It is commonly assumed that the large number of projections for single-axis tomography precludes its application to most beam-labile specimens. However, Hegerl and Hoppe have pointed out that the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. Thus a statistically significant 3-D image can be computed from statistically insignificant projections, as along as the total dosage that is distributed among these projections is high enough that it would have resultedmore » in a statistically significant projection, if applied to only one image. We have tested this critical theorem by simulating the tomographic reconstruction of a realistic 3-D model created from an electron micrograph. The simulations verify the basic conclusions of high absorption, signal-dependent noise, varying specimen contrast and missing angular range. Furthermore, the simulations demonstrate that individual projections in the series of fractionated-dose images can be aligned by cross-correlation because they contain significant information derived from the summation of features from different depths in the structure. This latter information is generally not useful for structural interpretation prior to 3-D reconstruction, owing to the complexity of most specimens investigated by single-axis tomography. These results, in combination with dose estimates for imaging single voxels and measurements of radiation damage in the electron microscope, demonstrate that it is feasible to use single-axis tomography with soft X-ray microscopy of frozen-hydrated specimens.« less

  18. MRI of gallstones with different compositions.

    PubMed

    Tsai, Hong-Ming; Lin, Xi-Zhang; Chen, Chiung-Yu; Lin, Pin-Wen; Lin, Jui-Che

    2004-06-01

    Gallstones are usually recognized on MRI as filling defects of hypointensity. However, they sometimes may appear as hyperintensities on T1-weighted imaging. This study investigated how gallstones appear on MRI and how their appearance influences the detection of gallstones. Gallstones from 24 patients who had MRI performed before the removal of the gallstones were collected for study. The gallstones were classified either as cholesterol gallstone (n = 4) or as pigment gallstone (n = 20) according to their gross appearance and based on analysis by Fourier transform infrared spectroscopy. MRI included three sequences: single-shot fast spin-echo T2-weighted imaging, 3D fast spoiled gradient-echo T1-weighted imaging, and in-phase fast spoiled gradient-echo T1-weighted imaging. The signal intensity and the detection rate of gallstones on MRI were further correlated with the character of the gallstones. On T1-weighted 3D fast spoiled gradient-echo images, most of the pigment gallstones (18/20) were hyperintense and all the cholesterol gallstones (4/4) were hypointense. The mean ratio of the signal intensity of gallstone to bile was (+/- standard deviation) 3.36 +/- 1.88 for pigment gallstone and 0.24 +/- 0.10 for cholesterol gallstone on the 3D fast spoiled gradient-echo sequence (p < 0.001). Combining the 3D fast spoiled gradient-echo and single-shot fast spin-echo sequences achieved the highest gallstone detection rate (96.4%). Based on the differences of signal intensity of gallstones, the 3D fast spoiled gradient-echo T1-weighted imaging was able to diagnose the composition of gallstones. Adding the 3D fast spoiled gradient-echo imaging to the single-shot fast spin-echo T2-weighted sequence can further improve the detection rate of gallstones.

  19. Preoperative detection of malignant liver tumors: Comparison of 3D-T2-weighted sequences with T2-weighted turbo spin-echo and single shot T2 at 1.5 T.

    PubMed

    Barat, Maxime; Soyer, Philippe; Dautry, Raphael; Pocard, Marc; Lo-Dico, Rea; Najah, Haythem; Eveno, Clarisse; Cassinotto, Christophe; Dohan, Anthony

    2018-03-01

    To assess the performances of three-dimensional (3D)-T2-weighted sequences compared to standard T2-weighted turbo spin echo (T2-TSE), T2-half-Fourier acquisition single-shot turbo spin-echo (T2-HASTE), diffusion weighted imaging (DWI) and 3D-T1-weighted VIBE sequences in the preoperative detection of malignant liver tumors. From 2012 to 2015, all patients of our institution undergoing magnetic resonance imaging (MRI) examination for suspected malignant liver tumors were prospectively included. Patients had contrast-enhanced 3D-T1-weighted, DWI, 3D-T2-SPACE, T2-HASTE and T2-TSE sequences. Imaging findings were compared with those obtained at follow-up, surgery and histopathological analysis. Sensitivities for the detection of malignant liver tumors were compared for each sequence using McNemar test. A subgroup analysis was conducted for HCCs. Image artifacts were analyzed and compared using Wilcoxon paired signed rank-test. Thirty-three patients were included: 13 patients had 40 hepatocellular carcinomas (HCC) and 20 had 54 liver metastases. 3D-T2-weighted sequences had a higher sensitivity than T2-weighted TSE sequences for the detection of malignant liver tumors (79.8% versus 68.1%; P < 0.001). The difference did not reach significance for HCC. T1-weighted VIBE and DWI had a higher sensitivity than T2-weighted sequences. 3D-T2-weighted-SPACE sequences showed significantly less artifacts than T2-weitghted TSE. 3D-T2-weighted sequences show very promising performances for the detection of liver malignant tumors compared to T2-weighted TSE sequences. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the highmore » efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N 2 and air over a 2D field of 40 mm 2.« less

  1. Registration of fast cine cardiac MR slices to 3D preprocedural images: toward real-time registration for MRI-guided procedures

    NASA Astrophysics Data System (ADS)

    Smolikova, Renata; Wachowiak, Mark P.; Drangova, Maria

    2004-05-01

    Interventional cardiac magnetic resonance (MR) procedures are the subject of an increasing number of research studies. Typically, during the procedure only two-dimensional images of oblique slices can be presented to the interventionalist in real time. There is a clear benefit to being able to register the real-time 2D slices to a previously acquired 3D computed tomography (CT) or MR image of the heart. Results from a study of the accuracy of registration of 2D cardiac images of an anesthetized pig to a 3D volume obtained in diastole are presented. Fast cine MR images representing twenty phases of the cardiac cycle were obtained of a 2D slice in a known oblique orientation. The 2D images were initially mis-oriented at distances ranging from 2 to 20 mm, and rotations of +/-10 degrees about all three axes. Images from all 20 cardiac phases were registered to examine the effect of timing between the 2D image and the 3D pre-procedural image. Linear registration using mutual information computed with 64 histogram bins yielded the highest accuracy. For the diastolic phases, mean translation and rotation errors ranged between 0.91 and 1.32 mm and between 1.73 and 2.10 degrees. Scans acquired at other phases also had high accuracy. These results are promising for the use of real time MR in image-guided cardiac interventions, and demonstrate the feasibility of registering 2D oblique MR slices to previously acquired single-phase volumes without preprocessing.

  2. Principal component analysis-based imaging angle determination for 3D motion monitoring using single-slice on-board imaging.

    PubMed

    Chen, Ting; Zhang, Miao; Jabbour, Salma; Wang, Hesheng; Barbee, David; Das, Indra J; Yue, Ning

    2018-04-10

    Through-plane motion introduces uncertainty in three-dimensional (3D) motion monitoring when using single-slice on-board imaging (OBI) modalities such as cine MRI. We propose a principal component analysis (PCA)-based framework to determine the optimal imaging plane to minimize the through-plane motion for single-slice imaging-based motion monitoring. Four-dimensional computed tomography (4DCT) images of eight thoracic cancer patients were retrospectively analyzed. The target volumes were manually delineated at different respiratory phases of 4DCT. We performed automated image registration to establish the 4D respiratory target motion trajectories for all patients. PCA was conducted using the motion information to define the three principal components of the respiratory motion trajectories. Two imaging planes were determined perpendicular to the second and third principal component, respectively, to avoid imaging with the primary principal component of the through-plane motion. Single-slice images were reconstructed from 4DCT in the PCA-derived orthogonal imaging planes and were compared against the traditional AP/Lateral image pairs on through-plane motion, residual error in motion monitoring, absolute motion amplitude error and the similarity between target segmentations at different phases. We evaluated the significance of the proposed motion monitoring improvement using paired t test analysis. The PCA-determined imaging planes had overall less through-plane motion compared against the AP/Lateral image pairs. For all patients, the average through-plane motion was 3.6 mm (range: 1.6-5.6 mm) for the AP view and 1.7 mm (range: 0.6-2.7 mm) for the Lateral view. With PCA optimization, the average through-plane motion was 2.5 mm (range: 1.3-3.9 mm) and 0.6 mm (range: 0.2-1.5 mm) for the two imaging planes, respectively. The absolute residual error of the reconstructed max-exhale-to-inhale motion averaged 0.7 mm (range: 0.4-1.3 mm, 95% CI: 0.4-1.1 mm) using optimized imaging planes, averaged 0.5 mm (range: 0.3-1.0 mm, 95% CI: 0.2-0.8 mm) using an imaging plane perpendicular to the minimal motion component only and averaged 1.3 mm (range: 0.4-2.8 mm, 95% CI: 0.4-2.3 mm) in AP/Lateral orthogonal image pairs. The root-mean-square error of reconstructed displacement was 0.8 mm for optimized imaging planes, 0.6 mm for imaging plane perpendicular to the minimal motion component only, and 1.6 mm for AP/Lateral orthogonal image pairs. When using the optimized imaging planes for motion monitoring, there was no significant absolute amplitude error of the reconstructed motion (P = 0.0988), while AP/Lateral images had significant error (P = 0.0097) with a paired t test. The average surface distance (ASD) between overlaid two-dimensional (2D) tumor segmentation at end-of-inhale and end-of-exhale for all eight patients was 0.6 ± 0.2 mm in optimized imaging planes and 1.4 ± 0.8 mm in AP/Lateral images. The Dice similarity coefficient (DSC) between overlaid 2D tumor segmentation at end-of-inhale and end-of-exhale for all eight patients was 0.96 ± 0.03 in optimized imaging planes and 0.89 ± 0.05 in AP/Lateral images. Both ASD (P = 0.034) and DSC (P = 0.022) were significantly improved in the optimized imaging planes. Motion monitoring using imaging planes determined by the proposed PCA-based framework had significantly improved performance. Single-slice image-based motion tracking can be used for clinical implementations such as MR image-guided radiation therapy (MR-IGRT). © 2018 American Association of Physicists in Medicine.

  3. Color image enhancement of medical images using alpha-rooting and zonal alpha-rooting methods on 2D QDFT

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; John, Aparna; Agaian, Sos S.

    2017-03-01

    2-D quaternion discrete Fourier transform (2-D QDFT) is the Fourier transform applied to color images when the color images are considered in the quaternion space. The quaternion numbers are four dimensional hyper-complex numbers. Quaternion representation of color image allows us to see the color of the image as a single unit. In quaternion approach of color image enhancement, each color is seen as a vector. This permits us to see the merging effect of the color due to the combination of the primary colors. The color images are used to be processed by applying the respective algorithm onto each channels separately, and then, composing the color image from the processed channels. In this article, the alpha-rooting and zonal alpha-rooting methods are used with the 2-D QDFT. In the alpha-rooting method, the alpha-root of the transformed frequency values of the 2-D QDFT are determined before taking the inverse transform. In the zonal alpha-rooting method, the frequency spectrum of the 2-D QDFT is divided by different zones and the alpha-rooting is applied with different alpha values for different zones. The optimization of the choice of alpha values is done with the genetic algorithm. The visual perception of 3-D medical images is increased by changing the reference gray line.

  4. Parallel phase-sensitive three-dimensional imaging camera

    DOEpatents

    Smithpeter, Colin L.; Hoover, Eddie R.; Pain, Bedabrata; Hancock, Bruce R.; Nellums, Robert O.

    2007-09-25

    An apparatus is disclosed for generating a three-dimensional (3-D) image of a scene illuminated by a pulsed light source (e.g. a laser or light-emitting diode). The apparatus, referred to as a phase-sensitive 3-D imaging camera utilizes a two-dimensional (2-D) array of photodetectors to receive light that is reflected or scattered from the scene and processes an electrical output signal from each photodetector in the 2-D array in parallel using multiple modulators, each having inputs of the photodetector output signal and a reference signal, with the reference signal provided to each modulator having a different phase delay. The output from each modulator is provided to a computational unit which can be used to generate intensity and range information for use in generating a 3-D image of the scene. The 3-D camera is capable of generating a 3-D image using a single pulse of light, or alternately can be used to generate subsequent 3-D images with each additional pulse of light.

  5. Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope

    PubMed Central

    Adams, Jesse K.; Boominathan, Vivek; Avants, Benjamin W.; Vercosa, Daniel G.; Ye, Fan; Baraniuk, Richard G.; Robinson, Jacob T.; Veeraraghavan, Ashok

    2017-01-01

    Modern biology increasingly relies on fluorescence microscopy, which is driving demand for smaller, lighter, and cheaper microscopes. However, traditional microscope architectures suffer from a fundamental trade-off: As lenses become smaller, they must either collect less light or image a smaller field of view. To break this fundamental trade-off between device size and performance, we present a new concept for three-dimensional (3D) fluorescence imaging that replaces lenses with an optimized amplitude mask placed a few hundred micrometers above the sensor and an efficient algorithm that can convert a single frame of captured sensor data into high-resolution 3D images. The result is FlatScope: perhaps the world’s tiniest and lightest microscope. FlatScope is a lensless microscope that is scarcely larger than an image sensor (roughly 0.2 g in weight and less than 1 mm thick) and yet able to produce micrometer-resolution, high–frame rate, 3D fluorescence movies covering a total volume of several cubic millimeters. The ability of FlatScope to reconstruct full 3D images from a single frame of captured sensor data allows us to image 3D volumes roughly 40,000 times faster than a laser scanning confocal microscope while providing comparable resolution. We envision that this new flat fluorescence microscopy paradigm will lead to implantable endoscopes that minimize tissue damage, arrays of imagers that cover large areas, and bendable, flexible microscopes that conform to complex topographies. PMID:29226243

  6. Imaging diffusive media using time-independent and time-harmonic sources: dependence of image quality on imaging algorithms, target volume, weight matrix, and view angles

    NASA Astrophysics Data System (ADS)

    Chang, Jenghwa; Aronson, Raphael; Graber, Harry L.; Barbour, Randall L.

    1995-05-01

    We present results examining the dependence of image quality for imaging in dense scattering media as influenced by the choice of parameters pertaining to the physical measurement and factors influencing the efficiency of the computation. The former includes the density of the weight matrix as affected by the target volume, view angle, and source condition. The latter includes the density of the weight matrix and type of algorithm used. These were examined by solving a one-step linear perturbation equation derived from the transport equation using three different algorithms: POCS, CGD, and SART algorithms with contraints. THe above were explored by evaluating four different 3D cylindrical phantom media: a homogeneous medium, an media containing a single black rod on the axis, a single black rod parallel to the axis, and thirteen black rods arrayed in the shape of an 'X'. Solutions to the forward problem were computed using Monte Carlo methods for an impulse source, from which was calculated time- independent and time harmonic detector responses. The influence of target volume on image quality and computational efficiency was studied by computing solution to three types of reconstructions: 1) 3D reconstruction, which considered each voxel individually, 2) 2D reconstruction, which assumed that symmetry along the cylinder axis was know a proiri, 3) 2D limited reconstruction, which assumed that only those voxels in the plane of the detectors contribute information to the detecot readings. The effect of view angle was explored by comparing computed images obtained from a single source, whose position was varied, as well as for the type of tomographic measurement scheme used (i.e., radial scan versus transaxial scan). The former condition was also examined for the dependence of the above on choice of source condition [ i.e., cw (2D reconstructions) versus time-harmonic (2D limited reconstructions) source]. The efficiency of the computational effort was explored, principally, by conducting a weight matrix 'threshold titration' study. This involved computing the ratio of each matrix element to the maximum element of its row and setting this to zero if the ratio was less than a preselected threshold. Results obtained showed that all three types of reconstructions provided good image quality. The 3D reconstruction outperformed the other two reconstructions. The time required for 2D and 2D limited reconstruction is much less (< 10%) than that for the 3D reconstruction. The 'threshold titration' study shows that artifacts were present when the threshold was 5% or higher, and no significant differences of image quality were observed when the thresholds were less tha 1%, in which case 38% (21,849 of 57,600) of the total weight elements were set to zero. Restricting the view angle produced degradation in image quality, but, in all cases, clearly recognizable images were obtained.

  7. Assessment of left ventricular mass in hypertrophic cardiomyopathy by real-time three-dimensional echocardiography using single-beat capture image.

    PubMed

    Chang, Sung-A; Kim, Hyung-Kwan; Lee, Sang-Chol; Kim, Eun-Young; Hahm, Seung-Hee; Kwon, Oh Min; Park, Seung Woo; Choe, Yeon Hyeon; Oh, Jae K

    2013-04-01

    Left ventricular (LV) mass is an important prognostic indicator in hypertrophic cardiomyopathy. Although LV mass can be easily calculated using conventional echocardiography, it is based on geometric assumptions and has inherent limitations in asymmetric left ventricles. Real-time three-dimensional echocardiographic (RT3DE) imaging with single-beat capture provides an opportunity for the accurate estimation of LV mass. The aim of this study was to validate this new technique for LV mass measurement in patients with hypertrophic cardiomyopathy. Sixty-nine patients with adequate two-dimensional (2D) and three-dimensional echocardiographic image quality underwent cardiac magnetic resonance (CMR) imaging and echocardiography on the same day. Real-time three-dimensional echocardiographic images were acquired using an Acuson SC2000 system, and CMR-determined LV mass was considered the reference standard. Left ventricular mass was derived using the formula of the American Society of Echocardiography (M-mode mass), the 2D-based truncated ellipsoid method (2D mass), and the RT3DE technique (RT3DE mass). The mean time for RT3DE analysis was 5.85 ± 1.81 min. Intraclass correlation analysis showed a close relationship between RT3DE and CMR LV mass (r = 0.86, P < .0001). However, LV mass by the M-mode or 2D technique showed a smaller intraclass correlation coefficient compared with CMR-determined mass (r = 0.48, P = .01, and r = 0.71, P < .001, respectively). Bland-Altman analysis showed reasonable limits of agreement between LV mass by RT3DE imaging and by CMR, with a smaller positive bias (19.5 g [9.1%]) compared with that by the M-mode and 2D methods (-35.1 g [-20.2%] and 30.6 g [17.6%], respectively). RT3DE measurement of LV mass using the single-beat capture technique is practical and more accurate than 2D or M-mode LV mass in patients with hypertrophic cardiomyopathy. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  8. In Situ Identification of Nanoparticle Structural Information Using Optical Microscopy.

    PubMed

    Culver, Kayla S B; Liu, Tingting; Hryn, Alexander J; Fang, Ning; Odom, Teri W

    2018-05-11

    Diffraction-limited optical microscopy lacks the resolution to characterize directly nanoscale features of single nanoparticles. This paper describes how surprisingly rich structural features of small gold nanostars can be identified using differential interference contrast (DIC) microscopy. First, we established a library of structure-property relationships between nanoparticle shape and DIC optical image and then validated the correlation with electrodynamic simulations and electron microscopy. We found that DIC image patterns of single nanostars could be differentiated between 2D and 3D geometries. Also, DIC images could elucidate the symmetry properties and orientation of nanoparticles. Finally, we demonstrated how this wide-field optical technique can be used for in situ characterization of single nanoparticles rotating at a glass-water interface.

  9. Research on respiratory motion correction method based on liver contrast-enhanced ultrasound images of single mode

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Li, Tao; Zheng, Shiqiang; Li, Yiyong

    2015-03-01

    To reduce the effects of respiratory motion in the quantitative analysis based on liver contrast-enhanced ultrasound (CEUS) image sequencesof single mode. The image gating method and the iterative registration method using model image were adopted to register liver contrast-enhanced ultrasound image sequences of single mode. The feasibility of the proposed respiratory motion correction method was explored preliminarily using 10 hepatocellular carcinomas CEUS cases. The positions of the lesions in the time series of 2D ultrasound images after correction were visually evaluated. Before and after correction, the quality of the weighted sum of transit time (WSTT) parametric images were also compared, in terms of the accuracy and spatial resolution. For the corrected and uncorrected sequences, their mean deviation values (mDVs) of time-intensity curve (TIC) fitting derived from CEUS sequences were measured. After the correction, the positions of the lesions in the time series of 2D ultrasound images were almost invariant. In contrast, the lesions in the uncorrected images all shifted noticeably. The quality of the WSTT parametric maps derived from liver CEUS image sequences were improved more greatly. Moreover, the mDVs of TIC fitting derived from CEUS sequences after the correction decreased by an average of 48.48+/-42.15. The proposed correction method could improve the accuracy of quantitative analysis based on liver CEUS image sequences of single mode, which would help in enhancing the differential diagnosis efficiency of liver tumors.

  10. Fast and background-free three-dimensional (3D) live-cell imaging with lanthanide-doped upconverting nanoparticles.

    PubMed

    Jo, Hong Li; Song, Yo Han; Park, Jinho; Jo, Eun-Jung; Goh, Yeongchang; Shin, Kyujin; Kim, Min-Gon; Lee, Kang Taek

    2015-12-14

    We report on the development of a three-dimensional (3D) live-cell imaging technique with high spatiotemporal resolution using lanthanide-doped upconverting nanoparticles (UCNPs). It employs the sectioning capability of confocal microscopy except that the two-dimensional (2D) section images are acquired by wide-field epi-fluorescence microscopy. Although epi-fluorescence images are contaminated with the out-of-focus background in general, the near-infrared (NIR) excitation used for the excitation of UCNPs does not generate any autofluorescence, which helps to lower the background. Moreover, the image blurring due to defocusing was naturally eliminated in the image reconstruction process. The 3D images were used to investigate the cellular dynamics such as nuclear uptake and single-particle tracking that require 3D description.

  11. Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis.

    PubMed

    Peng, Hanchuan; Tang, Jianyong; Xiao, Hang; Bria, Alessandro; Zhou, Jianlong; Butler, Victoria; Zhou, Zhi; Gonzalez-Bellido, Paloma T; Oh, Seung W; Chen, Jichao; Mitra, Ananya; Tsien, Richard W; Zeng, Hongkui; Ascoli, Giorgio A; Iannello, Giulio; Hawrylycz, Michael; Myers, Eugene; Long, Fuhui

    2014-07-11

    Three-dimensional (3D) bioimaging, visualization and data analysis are in strong need of powerful 3D exploration techniques. We develop virtual finger (VF) to generate 3D curves, points and regions-of-interest in the 3D space of a volumetric image with a single finger operation, such as a computer mouse stroke, or click or zoom from the 2D-projection plane of an image as visualized with a computer. VF provides efficient methods for acquisition, visualization and analysis of 3D images for roundworm, fruitfly, dragonfly, mouse, rat and human. Specifically, VF enables instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and 3D visualization and annotation of terabytes of whole-brain image volumes. VF also leads to orders of magnitude better efficiency of automated 3D reconstruction of neurons and similar biostructures over our previous systems. We use VF to generate from images of 1,107 Drosophila GAL4 lines a projectome of a Drosophila brain.

  12. 3D T2-weighted imaging to shorten multiparametric prostate MRI protocols.

    PubMed

    Polanec, Stephan H; Lazar, Mathias; Wengert, Georg J; Bickel, Hubert; Spick, Claudio; Susani, Martin; Shariat, Shahrokh; Clauser, Paola; Baltzer, Pascal A T

    2018-04-01

    To determine whether 3D acquisitions provide equivalent image quality, lesion delineation quality and PI-RADS v2 performance compared to 2D acquisitions in T2-weighted imaging of the prostate at 3 T. This IRB-approved, prospective study included 150 consecutive patients (mean age 63.7 years, 35-84 years; mean PSA 7.2 ng/ml, 0.4-31.1 ng/ml). Two uroradiologists (R1, R2) independently rated image quality and lesion delineation quality using a five-point ordinal scale and assigned a PI-RADS score for 2D and 3D T2-weighted image data sets. Data were compared using visual grading characteristics (VGC) and receiver operating characteristics (ROC)/area under the curve (AUC) analysis. Image quality was similarly good to excellent for 2D T2w (mean score R1, 4.3 ± 0.81; R2, 4.7 ± 0.83) and 3D T2w (mean score R1, 4.3 ± 0.82; R2, 4.7 ± 0.69), p = 0.269. Lesion delineation was rated good to excellent for 2D (mean score R1, 4.16 ± 0.81; R2, 4.19 ± 0.92) and 3D T2w (R1, 4.19 ± 0.94; R2, 4.27 ± 0.94) without significant differences (p = 0.785). ROC analysis showed an equivalent performance for 2D (AUC 0.580-0.623) and 3D (AUC 0.576-0.629) T2w (p > 0.05, respectively). Three-dimensional acquisitions demonstrated equivalent image and lesion delineation quality, and PI-RADS v2 performance, compared to 2D in T2-weighted imaging of the prostate. Three-dimensional T2-weighted imaging could be used to considerably shorten prostate MRI protocols in clinical practice. • 3D shows equivalent image quality and lesion delineation compared to 2D T2w. • 3D T2w and 2D T2w image acquisition demonstrated comparable diagnostic performance. • Using a single 3D T2w acquisition may shorten the protocol by 40%. • Combined with short DCE, multiparametric protocols of 10 min are feasible.

  13. Display of travelling 3D scenes from single integral-imaging capture

    NASA Astrophysics Data System (ADS)

    Martinez-Corral, Manuel; Dorado, Adrian; Hong, Seok-Min; Sola-Pikabea, Jorge; Saavedra, Genaro

    2016-06-01

    Integral imaging (InI) is a 3D auto-stereoscopic technique that captures and displays 3D images. We present a method for easily projecting the information recorded with this technique by transforming the integral image into a plenoptic image, as well as choosing, at will, the field of view (FOV) and the focused plane of the displayed plenoptic image. Furthermore, with this method we can generate a sequence of images that simulates a camera travelling through the scene from a single integral image. The application of this method permits to improve the quality of 3D display images and videos.

  14. Lesion detection performance of cone beam CT images with anatomical background noise: single-slice vs. multi-slice human and model observer study

    NASA Astrophysics Data System (ADS)

    Han, Minah; Jang, Hanjoo; Baek, Jongduk

    2018-03-01

    We investigate lesion detectability and its trends for different noise structures in single-slice and multislice CBCT images with anatomical background noise. Anatomical background noise is modeled using a power law spectrum of breast anatomy. Spherical signal with a 2 mm diameter is used for modeling a lesion. CT projection data are acquired by the forward projection and reconstructed by the Feldkamp-Davis-Kress algorithm. To generate different noise structures, two types of reconstruction filters (Hanning and Ram-Lak weighted ramp filters) are used in the reconstruction, and the transverse and longitudinal planes of reconstructed volume are used for detectability evaluation. To evaluate single-slice images, the central slice, which contains the maximum signal energy, is used. To evaluate multislice images, central nine slices are used. Detectability is evaluated using human and model observer studies. For model observer, channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels are used. For all noise structures, detectability by a human observer is higher for multislice images than single-slice images, and the degree of detectability increase in multislice images depends on the noise structure. Variation in detectability for different noise structures is reduced in multislice images, but detectability trends are not much different between single-slice and multislice images. The CHO with D-DOG channels predicts detectability by a human observer well for both single-slice and multislice images.

  15. Modeling ECM fiber formation: structure information extracted by analysis of 2D and 3D image sets

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Voytik-Harbin, Sherry L.; Filmer, David L.; Hoffman, Christoph M.; Yuan, Bo; Chiang, Ching-Shoei; Sturgis, Jennis; Robinson, Joseph P.

    2002-05-01

    Recent evidence supports the notion that biological functions of extracellular matrix (ECM) are highly correlated to its structure. Understanding this fibrous structure is very crucial in tissue engineering to develop the next generation of biomaterials for restoration of tissues and organs. In this paper, we integrate confocal microscopy imaging and image-processing techniques to analyze the structural properties of ECM. We describe a 2D fiber middle-line tracing algorithm and apply it via Euclidean distance maps (EDM) to extract accurate fibrous structure information, such as fiber diameter, length, orientation, and density, from single slices. Based on a 2D tracing algorithm, we extend our analysis to 3D tracing via Euclidean distance maps to extract 3D fibrous structure information. We use computer simulation to construct the 3D fibrous structure which is subsequently used to test our tracing algorithms. After further image processing, these models are then applied to a variety of ECM constructions from which results of 2D and 3D traces are statistically analyzed.

  16. A new method for spatial structure detection of complex inner cavities based on 3D γ-photon imaging

    NASA Astrophysics Data System (ADS)

    Xiao, Hui; Zhao, Min; Liu, Jiantang; Liu, Jiao; Chen, Hao

    2018-05-01

    This paper presents a new three-dimensional (3D) imaging method for detecting the spatial structure of a complex inner cavity based on positron annihilation and γ-photon detection. This method first marks carrier solution by a certain radionuclide and injects it into the inner cavity where positrons are generated. Subsequently, γ-photons are released from positron annihilation, and the γ-photon detector ring is used for recording the γ-photons. Finally, the two-dimensional (2D) image slices of the inner cavity are constructed by the ordered-subset expectation maximization scheme and the 2D image slices are merged to the 3D image of the inner cavity. To eliminate the artifact in the reconstructed image due to the scattered γ-photons, a novel angle-traversal model is proposed for γ-photon single-scattering correction, in which the path of the single scattered γ-photon is analyzed from a spatial geometry perspective. Two experiments are conducted to verify the effectiveness of the proposed correction model and the advantage of the proposed testing method in detecting the spatial structure of the inner cavity, including the distribution of gas-liquid multi-phase mixture inside the inner cavity. The above two experiments indicate the potential of the proposed method as a new tool for accurately delineating the inner structures of industrial complex parts.

  17. Fast volumetric imaging of bound and pore water in cortical bone using three-dimensional ultrashort-TE (UTE) and inversion recovery UTE sequences.

    PubMed

    Chen, Jun; Carl, Michael; Ma, Yajun; Shao, Hongda; Lu, Xing; Chen, Bimin; Chang, Eric Y; Wu, Zhihong; Du, Jiang

    2016-10-01

    We report the three-dimensional ultrashort-TE (3D UTE) and adiabatic inversion recovery UTE (IR-UTE) sequences employing a radial trajectory with conical view ordering for bi-component T2 * analysis of bound water (T2 *(BW) ) and pore water (T2 *(PW) ) in cortical bone. An interleaved dual-echo 3D UTE acquisition scheme was developed for fast bi-component analysis of bound and pore water in cortical bone. A 3D IR-UTE acquisition scheme employing multiple spokes per IR was developed for bound water imaging. Two-dimensional UTE (2D UTE) and IR-UTE sequences were employed for comparison. The sequences were applied to bovine bone samples (n = 6) and volunteers (n = 6) using a 3-T scanner. Bi-component fitting of 3D UTE images of bovine samples showed a mean T2 *(BW) of 0.26 ± 0.04 ms and T2 *(PW) of 4.16 ± 0.35 ms, with fractions of 21.5 ± 3.6% and 78.5 ± 3.6%, respectively. The 3D IR-UTE signal showed a single-component decay with a mean T2 *(BW) of 0.29 ± 0.05 ms, suggesting selective imaging of bound water. Similar results were achieved with the 2D UTE and IR-UTE sequences. Bi-component fitting of 3D UTE images of the tibial midshafts of healthy volunteers showed a mean T2 *(BW) of 0.32 ± 0.08 ms and T2 *(PW) of 5.78 ± 1.24 ms, with fractions of 34.2 ± 7.4% and 65.8 ± 7.4%, respectively. Single-component fitting of 3D IR-UTE images showed a mean T2 *(BW) of 0.35 ± 0.09 ms. The 3D UTE and 3D IR-UTE techniques allow fast volumetric mapping of bound and pore water in cortical bone. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Three-dimensional object recognition based on planar images

    NASA Astrophysics Data System (ADS)

    Mital, Dinesh P.; Teoh, Eam-Khwang; Au, K. C.; Chng, E. K.

    1993-01-01

    This paper presents the development and realization of a robotic vision system for the recognition of 3-dimensional (3-D) objects. The system can recognize a single object from among a group of known regular convex polyhedron objects that is constrained to lie on a calibrated flat platform. The approach adopted comprises a series of image processing operations on a single 2-dimensional (2-D) intensity image to derive an image line drawing. Subsequently, a feature matching technique is employed to determine 2-D spatial correspondences of the image line drawing with the model in the database. Besides its identification ability, the system can also provide important position and orientation information of the recognized object. The system was implemented on an IBM-PC AT machine executing at 8 MHz without the 80287 Maths Co-processor. In our overall performance evaluation based on a 600 recognition cycles test, the system demonstrated an accuracy of above 80% with recognition time well within 10 seconds. The recognition time is, however, indirectly dependent on the number of models in the database. The reliability of the system is also affected by illumination conditions which must be clinically controlled as in any industrial robotic vision system.

  19. Evaluation of low-dose limits in 3D-2D rigid registration for surgical guidance

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Wang, A. S.; Otake, Y.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Gallia, G. L.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2014-09-01

    An algorithm for intensity-based 3D-2D registration of CT and C-arm fluoroscopy is evaluated for use in surgical guidance, specifically considering the low-dose limits of the fluoroscopic x-ray projections. The registration method is based on a framework using the covariance matrix adaptation evolution strategy (CMA-ES) to identify the 3D patient pose that maximizes the gradient information similarity metric. Registration performance was evaluated in an anthropomorphic head phantom emulating intracranial neurosurgery, using target registration error (TRE) to characterize accuracy and robustness in terms of 95% confidence upper bound in comparison to that of an infrared surgical tracking system. Three clinical scenarios were considered: (1) single-view image + guidance, wherein a single x-ray projection is used for visualization and 3D-2D guidance; (2) dual-view image + guidance, wherein one projection is acquired for visualization, combined with a second (lower-dose) projection acquired at a different C-arm angle for 3D-2D guidance; and (3) dual-view guidance, wherein both projections are acquired at low dose for the purpose of 3D-2D guidance alone (not visualization). In each case, registration accuracy was evaluated as a function of the entrance surface dose associated with the projection view(s). Results indicate that images acquired at a dose as low as 4 μGy (approximately one-tenth the dose of a typical fluoroscopic frame) were sufficient to provide TRE comparable or superior to that of conventional surgical tracking, allowing 3D-2D guidance at a level of dose that is at most 10% greater than conventional fluoroscopy (scenario #2) and potentially reducing the dose to approximately 20% of the level in a conventional fluoroscopically guided procedure (scenario #3).

  20. Artificial intelligence (AI)-based relational matching and multimodal medical image fusion: generalized 3D approaches

    NASA Astrophysics Data System (ADS)

    Vajdic, Stevan M.; Katz, Henry E.; Downing, Andrew R.; Brooks, Michael J.

    1994-09-01

    A 3D relational image matching/fusion algorithm is introduced. It is implemented in the domain of medical imaging and is based on Artificial Intelligence paradigms--in particular, knowledge base representation and tree search. The 2D reference and target images are selected from 3D sets and segmented into non-touching and non-overlapping regions, using iterative thresholding and/or knowledge about the anatomical shapes of human organs. Selected image region attributes are calculated. Region matches are obtained using a tree search, and the error is minimized by evaluating a `goodness' of matching function based on similarities of region attributes. Once the matched regions are found and the spline geometric transform is applied to regional centers of gravity, images are ready for fusion and visualization into a single 3D image of higher clarity.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.

    Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less

  2. A Method for 3D-Reconstruction of a Muscle Thick Filament Using the Tilt Series Images of a Single Filament Electron Tomogram

    PubMed Central

    Márquez, G.; Pinto, A.; Alamo, L.; Baumann, B.; Ye, F.; Winkler, H.; Taylor, K.; Padrón, R.

    2014-01-01

    Summary Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament –calculated without any image averaging and/or imposition of helical symmetry- only reveals MIH motifs infrequently. This is –to our knowledge- the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. PMID:24727133

  3. A method for 3D-reconstruction of a muscle thick filament using the tilt series images of a single filament electron tomogram.

    PubMed

    Márquez, G; Pinto, A; Alamo, L; Baumann, B; Ye, F; Winkler, H; Taylor, K; Padrón, R

    2014-05-01

    Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament - calculated without any image averaging and/or imposition of helical symmetry - only reveals MIH motifs infrequently. This is - to our knowledge - the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A Compact 600 GHz Electronically Tunable Vector Measurement System for Submillimeter Wave Imaging

    NASA Technical Reports Server (NTRS)

    Dengler, Robert J.; Maiwald, Frank; Siegel, Peter H.

    2006-01-01

    A compact submillimeter wave transmission / reflection measurement system has been demonstrated at 560-635 GHz, with electronic tuning over the entire band. Maximum dynamic range measured at a single frequency is 90 dB (60 dB typical), and phase noise is less than +/- 2(deg). By using a frequency steerable lens at the source output and mixer input, the frequency agility of the system can be used to scan the source and receive beams, resulting in near real-time imaging capability using only a single pixel.

  5. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    NASA Astrophysics Data System (ADS)

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio

    2014-03-01

    Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model.

  6. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    PubMed Central

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio

    2016-01-01

    Hyperpolarized metabolic imaging is a growing field that has provided a tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model. PMID:24486720

  7. Single Molecule and Nanoparticle Imaging in Biophysical, Surface, and Photocatalysis Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Ji Won

    2013-01-01

    A differential interference contrast (DIC) polarization anisotropy is reported that was successfully used for rotational tracking of gold nanorods attached onto a kinesin-driven microtubule. A dual-wavelength detection of single gold nanorods rotating on a live cell membrane is described. Both transverse and longitudinal surface plasmon resonance (SPR) modes were used for tracking the rotational motions during a fast dynamic process under a DIC microscope. A novel method is presented to determine the full three-dimensional (3D) orientation of single plasmonic gold nanorods rotating on live cell membranes by combining DIC polarization anisotropy with an image pattern recognition technique. Polarization- and wavelength-sensitivemore » DIC microscopy imaging of 2- m long gold nanowires as optical probes in biological studies is reported. A new method is demonstrated to track 3D orientation of single gold nanorods supported on a gold film without angular degeneracy. The idea is to use the interaction (or coupling) of gold nanorods with gold film, yielding characteristic scattering patterns such as a doughnut shape. Imaging of photocatalytic activity, polarity and selectivity on single Au-CdS hybrid nanocatalysts using a high-resolution superlocalization fluorescence imaging technique is described.« less

  8. Postinjection single photon transmission tomography with ordered-subset algorithms for whole-body PET imaging

    NASA Astrophysics Data System (ADS)

    Bai, Chuanyong; Kinahan, P. E.; Brasse, D.; Comtat, C.; Townsend, D. W.

    2002-02-01

    We have evaluated the penalized ordered-subset transmission reconstruction (OSTR) algorithm for postinjection single photon transmission scanning. The OSTR algorithm of Erdogan and Fessler (1999) uses a more accurate model for transmission tomography than ordered-subsets expectation-maximization (OSEM) when OSEM is applied to the logarithm of the transmission data. The OSTR algorithm is directly applicable to postinjection transmission scanning with a single photon source, as emission contamination from the patient mimics the effect, in the original derivation of OSTR, of random coincidence contamination in a positron source transmission scan. Multiple noise realizations of simulated postinjection transmission data were reconstructed using OSTR, filtered backprojection (FBP), and OSEM algorithms. Due to the nonspecific task performance, or multiple uses, of the transmission image, multiple figures of merit were evaluated, including image noise, contrast, uniformity, and root mean square (rms) error. We show that: 1) the use of a three-dimensional (3-D) regularizing image roughness penalty with OSTR improves the tradeoffs in noise, contrast, and rms error relative to the use of a two-dimensional penalty; 2) OSTR with a 3-D penalty has improved tradeoffs in noise, contrast, and rms error relative to FBP or OSEM; and 3) the use of image standard deviation from a single realization to estimate the true noise can be misleading in the case of OSEM. We conclude that using OSTR with a 3-D penalty potentially allows for shorter postinjection transmission scans in single photon transmission tomography in positron emission tomography (PET) relative to FBP or OSEM reconstructed images with the same noise properties. This combination of singles+OSTR is particularly suitable for whole-body PET oncology imaging.

  9. In Situ 3D Coherent X-ray Diffraction Imaging of Shock Experiments: Possible?

    NASA Astrophysics Data System (ADS)

    Barber, John

    2011-03-01

    In traditional coherent X-ray diffraction imaging (CXDI), a 2D or quasi-2D object is illuminated by a beam of coherent X-rays to produce a diffraction pattern, which is then manipulated via a process known as iterative phase retrieval to reconstruct an image of the original 2D sample. Recently, there have been dramatic advances in methods for performing fully 3D CXDI of a sample from a single diffraction pattern [Raines et al, Nature 463 214-7 (2010)], and these methods have been used to image samples tens of microns in size using soft X-rays. In this work, I explore the theoretical possibility of applying 3D CXDI techniques to the in situ imaging of the interaction between a shock front and a polycrystal, a far more stringent problem. A delicate trade-off is required between photon energy, spot size, imaging resolution, and the dimensions of the experimental setup. In this talk, I will outline the experimental and computational requirements for performing such an experiment, and I will present images and movies from simulations of one such hypothetical experiment, including both the time-resolved X-ray diffraction patterns and the time-resolved sample imagery.

  10. Quantification of the kV X-ray imaging dose during real-time tumor tracking and from three- and four-dimensional cone-beam computed tomography in lung cancer patients using a Monte Carlo simulation.

    PubMed

    Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Matsuo, Yukinori; Iizuka, Yusuke; Ueki, Nami; Iramina, Hiraku; Hirashima, Hideaki; Mizowaki, Takashi

    2018-03-01

    Knowledge of the imaging doses delivered to patients and accurate dosimetry of the radiation to organs from various imaging procedures is becoming increasingly important for clinicians. The purposes of this study were to calculate imaging doses delivered to the organs of lung cancer patients during real-time tumor tracking (RTTT) with three-dimensional (3D), and four-dimensional (4D) cone-beam computed tomography (CBCT), using Monte Carlo techniques to simulate kV X-ray dose distributions delivered using the Vero4DRT. Imaging doses from RTTT, 3D-CBCT and 4D-CBCT were calculated with the planning CT images for nine lung cancer patients who underwent stereotactic body radiotherapy (SBRT) with RTTT. With RTTT, imaging doses from correlation modeling and from monitoring of imaging during beam delivery were calculated. With CBCT, doses from 3D-CBCT and 4D-CBCT were also simulated. The doses covering 2-cc volumes (D2cc) in correlation modeling were up to 9.3 cGy for soft tissues and 48.4 cGy for bone. The values from correlation modeling and monitoring were up to 11.0 cGy for soft tissues and 59.8 cGy for bone. Imaging doses in correlation modeling were larger with RTTT. On a single 4D-CBCT, the skin and bone D2cc values were in the ranges of 7.4-10.5 cGy and 33.5-58.1 cGy, respectively. The D2cc from 4D-CBCT was approximately double that from 3D-CBCT. Clinicians should Figure that the imaging dose increases the cumulative doses to organs.

  11. Quantification of the kV X-ray imaging dose during real-time tumor tracking and from three- and four-dimensional cone-beam computed tomography in lung cancer patients using a Monte Carlo simulation

    PubMed Central

    Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Matsuo, Yukinori; Iizuka, Yusuke; Ueki, Nami; Iramina, Hiraku; Hirashima, Hideaki; Mizowaki, Takashi

    2018-01-01

    Abstract Knowledge of the imaging doses delivered to patients and accurate dosimetry of the radiation to organs from various imaging procedures is becoming increasingly important for clinicians. The purposes of this study were to calculate imaging doses delivered to the organs of lung cancer patients during real-time tumor tracking (RTTT) with three-dimensional (3D), and four-dimensional (4D) cone-beam computed tomography (CBCT), using Monte Carlo techniques to simulate kV X-ray dose distributions delivered using the Vero4DRT. Imaging doses from RTTT, 3D-CBCT and 4D-CBCT were calculated with the planning CT images for nine lung cancer patients who underwent stereotactic body radiotherapy (SBRT) with RTTT. With RTTT, imaging doses from correlation modeling and from monitoring of imaging during beam delivery were calculated. With CBCT, doses from 3D-CBCT and 4D-CBCT were also simulated. The doses covering 2-cc volumes (D2cc) in correlation modeling were up to 9.3 cGy for soft tissues and 48.4 cGy for bone. The values from correlation modeling and monitoring were up to 11.0 cGy for soft tissues and 59.8 cGy for bone. Imaging doses in correlation modeling were larger with RTTT. On a single 4D-CBCT, the skin and bone D2cc values were in the ranges of 7.4–10.5 cGy and 33.5–58.1 cGy, respectively. The D2cc from 4D-CBCT was approximately double that from 3D-CBCT. Clinicians should Figure that the imaging dose increases the cumulative doses to organs. PMID:29385514

  12. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yun

    The purpose of this research was to expand the chemiluminescence microscopy applications in live bacterial/mammalian cell imaging and to improve the detection sensitivity for ATP leaking or release events. We first demonstrated that chemiluminescence (CL) imaging can be used to interrogate single bacterial cells. While using a luminometer allows detecting ATP from cell lysate extracted from at least 10 bacterial cells, all previous cell CL detection never reached this sensitivity of single bacteria level. We approached this goal with a different strategy from before: instead of breaking bacterial cell membrane and trying to capture the transiently diluted ATP with themore » firefly luciferase CL assay, we introduced the firefly luciferase enzyme into bacteria using the modern genetic techniques and placed the CL reaction substrate D-luciferin outside the cells. By damaging the cell membrane with various antibacterial drugs including antibiotics such as Penicillins and bacteriophages, the D-luciferin molecules diffused inside the cell and initiated the reaction that produces CL light. As firefly luciferases are large protein molecules which are retained within the cells before the total rupture and intracellular ATP concentration is high at the millmolar level, the CL reaction of firefly luciferase, ATP and D-luciferin can be kept for a relatively long time within the cells acting as a reaction container to generate enough photons for detection by the extremely sensitive intensified charge coupled device (ICCD) camera. The result was inspiring as various single bacterium lysis and leakage events were monitored with 10-s temporal resolution movies. We also found a new way of enhancing diffusion D-luciferin into cells by dehydrating the bacteria. Then we started with this novel single bacterial CL imaging technique, and applied it for quantifying gene expression levels from individual bacterial cells. Previous published result in single cell gene expression quantification mainly used a fluorescence method; CL detection is limited because of the difficulty to introduce enough D-luciferin molecules. Since dehydration could easily cause proper size holes in bacterial cell membranes and facilitate D-luciferin diffusion, we used this method and recorded CL from individual cells each hour after induction. The CL light intensity from each individual cell was integrated and gene expression levels of two strain types were compared. Based on our calculation, the overall sensitivity of our system is already approaching the single enzyme level. The median enzyme number inside a single bacterium from the higher expression strain after 2 hours induction was quantified to be about 550 molecules. Finally we imaged ATP release from astrocyte cells. Upon mechanical stimulation, astrocyte cells respond by increasing intracellular Ca 2+ level and releasing ATP to extracellular spaces as signaling molecules. The ATP release imaged by direct CL imaging using free firefly luciferase and D-luciferin outside cells reflects the transient release as well as rapid ATP diffusion. Therefore ATP release detection at the cell surface is critical to study the ATP release mechanism and signaling propagation pathway. We realized this cell surface localized ATP release imaging detection by immobilizing firefly luciferase to streptavidin beads that attached to the cell surface via streptavidin-biotin interactions. Both intracellular Ca 2+ propagation wave and extracellular ATP propagation wave at the cell surface were recorded with fluorescence and CL respectively. The results imply that at close distances from the stimulation center (<120 μm) extracellular ATP pathway is faster, while at long distances (>120 μm) intracellular Ca 2+ signaling through gap junctions seems more effective.« less

  13. Single-Grating Talbot Imaging for Wavefront Sensing and X-Ray Metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grizolli, Walan; Shi, Xianbo; Kolodziej, Tomasz

    2017-01-01

    Single-grating Talbot imaging relies on high-spatial-resolution detectors to perform accurate measurements of X-ray beam wavefronts. The wavefront can be retrieved with a single image, and a typical measurement and data analysis can be performed in few seconds. These qualities make it an ideal tool for synchrotron beamline diagnostics and in-situ metrology. The wavefront measurement can be used both to obtain a phase contrast image of an object and to characterize an X-ray beam. In this work, we explore the concept in two cases: at-wavelength metrology of 2D parabolic beryllium lenses and a wavefront sensor using a diamond crystal beam splitter.

  14. Single Pixel Black Phosphorus Photodetector for Near-Infrared Imaging.

    PubMed

    Miao, Jinshui; Song, Bo; Xu, Zhihao; Cai, Le; Zhang, Suoming; Dong, Lixin; Wang, Chuan

    2018-01-01

    Infrared imaging systems have wide range of military or civil applications and 2D nanomaterials have recently emerged as potential sensing materials that may outperform conventional ones such as HgCdTe, InGaAs, and InSb. As an example, 2D black phosphorus (BP) thin film has a thickness-dependent direct bandgap with low shot noise and noncryogenic operation for visible to mid-infrared photodetection. In this paper, the use of a single-pixel photodetector made with few-layer BP thin film for near-infrared imaging applications is demonstrated. The imaging is achieved by combining the photodetector with a digital micromirror device to encode and subsequently reconstruct the image based on compressive sensing algorithm. Stationary images of a near-infrared laser spot (λ = 830 nm) with up to 64 × 64 pixels are captured using this single-pixel BP camera with 2000 times of measurements, which is only half of the total number of pixels. The imaging platform demonstrated in this work circumvents the grand challenges of scalable BP material growth for photodetector array fabrication and shows the efficacy of utilizing the outstanding performance of BP photodetector for future high-speed infrared camera applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. In vivo verification of particle therapy: how Compton camera configurations affect 3D image quality

    NASA Astrophysics Data System (ADS)

    Mackin, D.; Draeger, E.; Peterson, S.; Polf, J.; Beddar, S.

    2017-05-01

    The steep dose gradients enabled by the Bragg peaks of particle therapy beams are a double edged sword. They enable highly conformal dose distributions, but even small deviations from the planned beam range can cause overdosing of healthy tissue or under-dosing of the tumour. To reduce this risk, particle therapy treatment plans include margins large enough to account for all the sources of range uncertainty, which include patient setup errors, patient anatomy changes, and CT number to stopping power ratios. Any system that could verify the beam range in vivo, would allow reduced margins and more conformal dose distributions. Toward our goal developing such a system based on Compton camera (CC) imaging, we studied how three configurations (single camera, parallel opposed, and orthogonal) affect the quality of the 3D images. We found that single CC and parallel opposed configurations produced superior images in 2D. The increase in parallax produced by an orthogonal CC configuration was shown to be beneficial in producing artefact free 3D images.

  16. The evaluation of single-view and multi-view fusion 3D echocardiography using image-driven segmentation and tracking.

    PubMed

    Rajpoot, Kashif; Grau, Vicente; Noble, J Alison; Becher, Harald; Szmigielski, Cezary

    2011-08-01

    Real-time 3D echocardiography (RT3DE) promises a more objective and complete cardiac functional analysis by dynamic 3D image acquisition. Despite several efforts towards automation of left ventricle (LV) segmentation and tracking, these remain challenging research problems due to the poor-quality nature of acquired images usually containing missing anatomical information, speckle noise, and limited field-of-view (FOV). Recently, multi-view fusion 3D echocardiography has been introduced as acquiring multiple conventional single-view RT3DE images with small probe movements and fusing them together after alignment. This concept of multi-view fusion helps to improve image quality and anatomical information and extends the FOV. We now take this work further by comparing single-view and multi-view fused images in a systematic study. In order to better illustrate the differences, this work evaluates image quality and information content of single-view and multi-view fused images using image-driven LV endocardial segmentation and tracking. The image-driven methods were utilized to fully exploit image quality and anatomical information present in the image, thus purposely not including any high-level constraints like prior shape or motion knowledge in the analysis approaches. Experiments show that multi-view fused images are better suited for LV segmentation and tracking, while relatively more failures and errors were observed on single-view images. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. A real-time multi-scale 2D Gaussian filter based on FPGA

    NASA Astrophysics Data System (ADS)

    Luo, Haibo; Gai, Xingqin; Chang, Zheng; Hui, Bin

    2014-11-01

    Multi-scale 2-D Gaussian filter has been widely used in feature extraction (e.g. SIFT, edge etc.), image segmentation, image enhancement, image noise removing, multi-scale shape description etc. However, their computational complexity remains an issue for real-time image processing systems. Aimed at this problem, we propose a framework of multi-scale 2-D Gaussian filter based on FPGA in this paper. Firstly, a full-hardware architecture based on parallel pipeline was designed to achieve high throughput rate. Secondly, in order to save some multiplier, the 2-D convolution is separated into two 1-D convolutions. Thirdly, a dedicate first in first out memory named as CAFIFO (Column Addressing FIFO) was designed to avoid the error propagating induced by spark on clock. Finally, a shared memory framework was designed to reduce memory costs. As a demonstration, we realized a 3 scales 2-D Gaussian filter on a single ALTERA Cyclone III FPGA chip. Experimental results show that, the proposed framework can computing a Multi-scales 2-D Gaussian filtering within one pixel clock period, is further suitable for real-time image processing. Moreover, the main principle can be popularized to the other operators based on convolution, such as Gabor filter, Sobel operator and so on.

  18. Angular reconstitution-based 3D reconstructions of nanomolecular structures from superresolution light-microscopy images

    PubMed Central

    Salas, Desirée; Le Gall, Antoine; Fiche, Jean-Bernard; Valeri, Alessandro; Ke, Yonggang; Bron, Patrick; Bellot, Gaetan

    2017-01-01

    Superresolution light microscopy allows the imaging of labeled supramolecular assemblies at a resolution surpassing the classical diffraction limit. A serious limitation of the superresolution approach is sample heterogeneity and the stochastic character of the labeling procedure. To increase the reproducibility and the resolution of the superresolution results, we apply multivariate statistical analysis methods and 3D reconstruction approaches originally developed for cryogenic electron microscopy of single particles. These methods allow for the reference-free 3D reconstruction of nanomolecular structures from two-dimensional superresolution projection images. Since these 2D projection images all show the structure in high-resolution directions of the optical microscope, the resulting 3D reconstructions have the best possible isotropic resolution in all directions. PMID:28811371

  19. Distance-based over-segmentation for single-frame RGB-D images

    NASA Astrophysics Data System (ADS)

    Fang, Zhuoqun; Wu, Chengdong; Chen, Dongyue; Jia, Tong; Yu, Xiaosheng; Zhang, Shihong; Qi, Erzhao

    2017-11-01

    Over-segmentation, known as super-pixels, is a widely used preprocessing step in segmentation algorithms. Oversegmentation algorithm segments an image into regions of perceptually similar pixels, but performs badly based on only color image in the indoor environments. Fortunately, RGB-D images can improve the performances on the images of indoor scene. In order to segment RGB-D images into super-pixels effectively, we propose a novel algorithm, DBOS (Distance-Based Over-Segmentation), which realizes full coverage of super-pixels on the image. DBOS fills the holes in depth images to fully utilize the depth information, and applies SLIC-like frameworks for fast running. Additionally, depth features such as plane projection distance are extracted to compute distance which is the core of SLIC-like frameworks. Experiments on RGB-D images of NYU Depth V2 dataset demonstrate that DBOS outperforms state-ofthe-art methods in quality while maintaining speeds comparable to them.

  20. Attenuation correction in 4D-PET using a single-phase attenuation map and rigidity-adaptive deformable registration

    PubMed Central

    Kalantari, Faraz; Wang, Jing

    2017-01-01

    Purpose Four-dimensional positron emission tomography (4D-PET) imaging is a potential solution to the respiratory motion effect in the thoracic region. Computed tomography (CT)-based attenuation correction (AC) is an essential step toward quantitative imaging for PET. However, due to the temporal difference between 4D-PET and a single attenuation map from CT, typically available in routine clinical scanning, motion artifacts are observed in the attenuation-corrected PET images, leading to errors in tumor shape and uptake. We introduced a practical method to align single-phase CT with all other 4D-PET phases for AC. Methods A penalized non-rigid Demons registration between individual 4D-PET frames without AC provides the motion vectors to be used for warping single-phase attenuation map. The non-rigid Demons registration was used to derive deformation vector fields (DVFs) between PET matched with the CT phase and other 4D-PET images. While attenuated PET images provide useful data for organ borders such as those of the lung and the liver, tumors cannot be distinguished from the background due to loss of contrast. To preserve the tumor shape in different phases, an ROI-covering tumor was excluded from non-rigid transformation. Instead the mean DVF of the central region of the tumor was assigned to all voxels in the ROI. This process mimics a rigid transformation of the tumor along with a non-rigid transformation of other organs. A 4D-XCAT phantom with spherical lung tumors, with diameters ranging from 10 to 40 mm, was used to evaluate the algorithm. The performance of the proposed hybrid method for attenuation map estimation was compared to 1) the Demons non-rigid registration only and 2) a single attenuation map based on quantitative parameters in individual PET frames. Results Motion-related artifacts were significantly reduced in the attenuation-corrected 4D-PET images. When a single attenuation map was used for all individual PET frames, the normalized root mean square error (NRMSE) values in tumor region were 49.3% (STD: 8.3%), 50.5% (STD: 9.3%), 51.8% (STD: 10.8%) and 51.5% (STD: 12.1%) for 10-mm, 20-mm, 30-mm and 40-mm tumors respectively. These errors were reduced to 11.9% (STD: 2.9%), 13.6% (STD: 3.9%), 13.8% (STD: 4.8%), and 16.7% (STD: 9.3%) by our proposed method for deforming the attenuation map. The relative errors in total lesion glycolysis (TLG) values were −0.25% (STD: 2.87%) and 3.19% (STD: 2.35%) for 30-mm and 40-mm tumors respectively in proposed method. The corresponding values for Demons method were 25.22% (STD: 14.79%) and 18.42% (STD: 7.06%). Our proposed hybrid method outperforms the Demons method especially for larger tumors. For tumors smaller than 20 mm, non-rigid transformation could also provide quantitative results. Conclusion Although non-AC 4D-PET frames include insignificant anatomical information, they are still useful to estimate the DVFs to align the attenuation map for accurate AC. The proposed hybrid method can recover the AC-related artifacts and provide quantitative AC-PET images. PMID:27987223

  1. Easy-DHPSF open-source software for three-dimensional localization of single molecules with precision beyond the optical diffraction limit.

    PubMed

    Lew, Matthew D; von Diezmann, Alexander R S; Moerner, W E

    2013-02-25

    Automated processing of double-helix (DH) microscope images of single molecules (SMs) streamlines the protocol required to obtain super-resolved three-dimensional (3D) reconstructions of ultrastructures in biological samples by single-molecule active control microscopy. Here, we present a suite of MATLAB subroutines, bundled with an easy-to-use graphical user interface (GUI), that facilitates 3D localization of single emitters (e.g. SMs, fluorescent beads, or quantum dots) with precisions of tens of nanometers in multi-frame movies acquired using a wide-field DH epifluorescence microscope. The algorithmic approach is based upon template matching for SM recognition and least-squares fitting for 3D position measurement, both of which are computationally expedient and precise. Overlapping images of SMs are ignored, and the precision of least-squares fitting is not as high as maximum likelihood-based methods. However, once calibrated, the algorithm can fit 15-30 molecules per second on a 3 GHz Intel Core 2 Duo workstation, thereby producing a 3D super-resolution reconstruction of 100,000 molecules over a 20×20×2 μm field of view (processing 128×128 pixels × 20000 frames) in 75 min.

  2. Optimization of compressive 4D-spatio-spectral snapshot imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Feng, Weiyi; Lin, Lihua; Su, Wu; Xu, Guoqing

    2017-10-01

    In this paper, a modified 3D computational reconstruction method in the compressive 4D-spectro-volumetric snapshot imaging system is proposed for better sensing spectral information of 3D objects. In the design of the imaging system, a microlens array (MLA) is used to obtain a set of multi-view elemental images (EIs) of the 3D scenes. Then, these elemental images with one dimensional spectral information and different perspectives are captured by the coded aperture snapshot spectral imager (CASSI) which can sense the spectral data cube onto a compressive 2D measurement image. Finally, the depth images of 3D objects at arbitrary depths, like a focal stack, are computed by inversely mapping the elemental images according to geometrical optics. With the spectral estimation algorithm, the spectral information of 3D objects is also reconstructed. Using a shifted translation matrix, the contrast of the reconstruction result is further enhanced. Numerical simulation results verify the performance of the proposed method. The system can obtain both 3D spatial information and spectral data on 3D objects using only one single snapshot, which is valuable in the agricultural harvesting robots and other 3D dynamic scenes.

  3. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.

    PubMed

    Kim, K; Lee, S

    2015-05-01

    Diagnosis of skin conditions is dependent on the assessment of skin surface properties that are represented by more tactile properties such as stiffness, roughness, and friction than visual information. Due to this reason, adding tactile feedback to existing vision based diagnosis systems can help dermatologists diagnose skin diseases or disorders more accurately. The goal of our research was therefore to develop a tactile rendering system for skin examinations by dynamic touch. Our development consists of two stages: converting a single image to a 3D haptic surface and rendering the generated haptic surface in real-time. Converting to 3D surfaces from 2D single images was implemented with concerning human perception data collected by a psychophysical experiment that measured human visual and haptic sensibility to 3D skin surface changes. For the second stage, we utilized real skin biomechanical properties found by prior studies. Our tactile rendering system is a standalone system that can be used with any single cameras and haptic feedback devices. We evaluated the performance of our system by conducting an identification experiment with three different skin images with five subjects. The participants had to identify one of the three skin surfaces by using a haptic device (Falcon) only. No visual cue was provided for the experiment. The results indicate that our system provides sufficient performance to render discernable tactile rendering with different skin surfaces. Our system uses only a single skin image and automatically generates a 3D haptic surface based on human haptic perception. Realistic skin interactions can be provided in real-time for the purpose of skin diagnosis, simulations, or training. Our system can also be used for other applications like virtual reality and cosmetic applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Phase retrieval and 3D imaging in gold nanoparticles based fluorescence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh M.; Meir, Rinat; Zalevsky, Zeev

    2017-02-01

    Optical sectioning microscopy can provide highly detailed three dimensional (3D) images of biological samples. However, it requires acquisition of many images per volume, and is therefore time consuming, and may not be suitable for live cell 3D imaging. We propose the use of the modified Gerchberg-Saxton phase retrieval algorithm to enable full 3D imaging of gold nanoparticles tagged sample using only two images. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. The proposed concept is then further enhanced also for tracking of single fluorescent particles within a three dimensional (3D) cellular environment based on image processing algorithms that can significantly increases localization accuracy of the 3D point spread function in respect to regular Gaussian fitting. All proposed concepts are validated both on simulated data as well as experimentally.

  5. Joint Spatial-Spectral Reconstruction and k-t Spirals for Accelerated 2D Spatial/1D Spectral Imaging of 13C Dynamics

    PubMed Central

    Gordon, Jeremy W.; Niles, David J.; Fain, Sean B.; Johnson, Kevin M.

    2014-01-01

    Purpose To develop a novel imaging technique to reduce the number of excitations and required scan time for hyperpolarized 13C imaging. Methods A least-squares based optimization and reconstruction is developed to simultaneously solve for both spatial and spectral encoding. By jointly solving both domains, spectral imaging can potentially be performed with a spatially oversampled single echo spiral acquisition. Digital simulations, phantom experiments, and initial in vivo hyperpolarized [1-13C]pyruvate experiments were performed to assess the performance of the algorithm as compared to a multi-echo approach. Results Simulations and phantom data indicate that accurate single echo imaging is possible when coupled with oversampling factors greater than six (corresponding to a worst case of pyruvate to metabolite ratio < 9%), even in situations of substantial T2* decay and B0 heterogeneity. With lower oversampling rates, two echoes are required for similar accuracy. These results were confirmed with in vivo data experiments, showing accurate single echo spectral imaging with an oversampling factor of 7 and two echo imaging with an oversampling factor of 4. Conclusion The proposed k-t approach increases data acquisition efficiency by reducing the number of echoes required to generate spectroscopic images, thereby allowing accelerated acquisition speed, preserved polarization, and/or improved temporal or spatial resolution. Magn Reson Med PMID:23716402

  6. Pulmonary tumor measurements from x-ray computed tomography in one, two, and three dimensions.

    PubMed

    Villemaire, Lauren; Owrangi, Amir M; Etemad-Rezai, Roya; Wilson, Laura; O'Riordan, Elaine; Keller, Harry; Driscoll, Brandon; Bauman, Glenn; Fenster, Aaron; Parraga, Grace

    2011-11-01

    We evaluated the accuracy and reproducibility of three-dimensional (3D) measurements of lung phantoms and patient tumors from x-ray computed tomography (CT) and compared these to one-dimensional (1D) and two-dimensional (2D) measurements. CT images of three spherical and three irregularly shaped tumor phantoms were evaluated by three observers who performed five repeated measurements. Additionally, three observers manually segmented 29 patient lung tumors five times each. Follow-up imaging was performed for 23 tumors and response criteria were compared. For a single subject, imaging was performed on nine occasions over 2 years to evaluate multidimensional tumor response. To evaluate measurement accuracy, we compared imaging measurements to ground truth using analysis of variance. For estimates of precision, intraobserver and interobserver coefficients of variation and intraclass correlations (ICC) were used. Linear regression and Pearson correlations were used to evaluate agreement and tumor response was descriptively compared. For spherical shaped phantoms, all measurements were highly accurate, but for irregularly shaped phantoms, only 3D measurements were in high agreement with ground truth measurements. All phantom and patient measurements showed high intra- and interobserver reproducibility (ICC >0.900). Over a 2-year period for a single patient, there was disagreement between tumor response classifications based on 3D measurements and those generated using 1D and 2D measurements. Tumor volume measurements were highly reproducible and accurate for irregular, spherical phantoms and patient tumors with nonuniform dimensions. Response classifications obtained from multidimensional measurements suggest that 3D measurements provide higher sensitivity to tumor response. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  7. A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models.

    PubMed

    Wood, Scott T; Dean, Brian C; Dean, Delphine

    2013-04-01

    This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Local carrier distribution imaging on few-layer MoS2 exfoliated on SiO2 by scanning nonlinear dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Yamasue, Kohei; Cho, Yasuo

    2018-06-01

    We demonstrate that scanning nonlinear dielectric microscopy (SNDM) can be used for the nanoscale characterization of dominant carrier distribution on atomically thin MoS2 mechanically exfoliated on SiO2. For stable imaging without damaging microscopy tips and samples, SNDM was combined with peak-force tapping mode atomic force microscopy. The identification of dominant carriers and their spatial distribution becomes possible even for single and few-layer MoS2 on SiO2 using the proposed method allowing differential capacitance (dC/dV) imaging. We can expect that SNDM can also be applied to the evaluation of other two-dimensional semiconductors and devices.

  9. Single-shot hyperspectral coherent Raman planar imaging in the range 0–4200 cm⁻¹

    DOE PAGES

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-10-23

    We propose a technique for ultrabroadband planar coherent Raman spectroscopy that enables wideband chemically selective mapping of molecular partition functions in the gas-phase within a single-laser-shot. A spectral region spanning 0–4200 cm⁻¹ is excited simultaneously, in principle allowing for coherent planar imaging of most all fundamental Raman-active modes. This unique instantaneous and spatially correlated assessment enables multiplexed studies of transient dynamical systems in a two-dimensional (2D) field. Here, we demonstrate single-laser-shot high temperature diagnostics of H₂, with spatially resolved 2D measurement of transitions of both the pure-rotational H₂ S-branch and the vibrational H₂ Q-branch, analyzing the temperature contour of amore » reacting fuel-species as it evolves at a flame-front.« less

  10. Airborne 3D Imaging Lidar for Contiguous Decimeter Resolution Terrain Mapping and Shallow Water Bathymetry

    NASA Astrophysics Data System (ADS)

    Degnan, J. J.; Wells, D. N.; Huet, H.; Chauvet, N.; Lawrence, D. W.; Mitchell, S. E.; Eklund, W. D.

    2005-12-01

    A 3D imaging lidar system, developed for the University of Florida at Gainesville and operating at the water transmissive wavelength of 532 nm, is designed to contiguously map underlying terrain and/or perform shallow water bathymetry on a single overflight from an altitude of 600 m with a swath width of 225 m and a horizontal spatial resolution of 20 cm. Each 600 psec pulse from a frequency-doubled, low power (~3 microjoules @ 8 kHz = 24 mW), passively Q-switched Nd:YAG microchip laser is passed through a holographic element which projects a 10x10 array of spots onto a 2m x 2m target area. The individual ground spots are then imaged onto individual anodes within a 10x10 segmented anode photomultiplier. The latter is followed by a 100 channel multistop ranging receiver with a range resolution of about 4 cm. The multistop feature permits single photon detection in daylight with wide range gates as well as multiple single photon returns per pixel per laser fire from volumetric scatterers such as tree canopies or turbid water columns. The individual single pulse 3D images are contiguously mosaiced together through the combined action of the platform velocity and a counter-rotating dual wedge optical scanner whose rotations are synchronized to the laser pulse train. The paper provides an overview of the lidar opto-mechanical design, the synchronized dual wedge scanner and servo controller, and the experimental results obtained to date.

  11. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

    PubMed

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi

    2017-10-01

    We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. We simplify the segmentation algorithms of anatomical structures (including multiple organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inherits the spirit of fully convolutional networks (FCNs) that consist of "convolution" and "deconvolution" layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are trained pixel-to-label from a small number of CT cases with human annotations as the ground truth. The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases of different sizes that cover arbitrary scan regions without any adjustment. The proposed network was trained and validated using the simultaneous segmentation of 19 anatomical structures in the human torso, including 17 major organs and two special regions (lumen and content inside of stomach). Some of these structures have never been reported in previous research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D CT scans, together with their manually annotated ground-truth segmentations, was used in our experiments. The results show that the 19 structures of interest were segmented with acceptable accuracy (88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly) against the ground truth. We propose a single network based on pixel-to-label deep learning to address the challenging issue of anatomical structure segmentation in 3D CT cases. The novelty of this work is the policy of deep learning of the different 2D sectional appearances of 3D anatomical structures for CT cases and the majority voting of the 3D segmentation results from multiple crossed 2D sections to achieve availability and reliability with better efficiency, generality, and flexibility than conventional segmentation methods, which must be guided by human expertise. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  12. Three-dimensional ultrasound imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Fenster, Aaron; Downey, Donal B.

    1999-05-01

    Ultrasonography, a widely used imaging modality for the diagnosis and staging of many diseases, is an important cost- effective technique, however, technical improvements are necessary to realize its full potential. Two-dimensional viewing of 3D anatomy, using conventional ultrasonography, limits our ability to quantify and visualize most diseases, causing, in part, the reported variability in diagnosis and ultrasound guided therapy and surgery. This occurs because conventional ultrasound images are 2D, yet the anatomy is 3D; hence the diagnostician must integrate multiple images in his mind. This practice is inefficient, and may lead to operator variability and incorrect diagnoses. In addition, the 2D ultrasound image represents a single thin plane at some arbitrary angle in the body. It is difficult to localize and reproduce the image plane subsequently, making conventional ultrasonography unsatisfactory for follow-up studies and for monitoring therapy. Our efforts have focused on overcoming these deficiencies by developing 3D ultrasound imaging techniques that can acquire B-mode, color Doppler and power Doppler images. An inexpensive desktop computer is used to reconstruct the information in 3D, and then is also used for interactive viewing of the 3D images. We have used 3D ultrasound images for the diagnosis of prostate cancer, carotid disease, breast cancer and liver disease and for applications in obstetrics and gynecology. In addition, we have also used 3D ultrasonography for image-guided minimally invasive therapeutic applications of the prostate such as cryotherapy and brachytherapy.

  13. The use of combined single photon emission computed tomography and X-ray computed tomography to assess the fate of inhaled aerosol.

    PubMed

    Fleming, John; Conway, Joy; Majoral, Caroline; Tossici-Bolt, Livia; Katz, Ira; Caillibotte, Georges; Perchet, Diane; Pichelin, Marine; Muellinger, Bernhard; Martonen, Ted; Kroneberg, Philipp; Apiou-Sbirlea, Gabriela

    2011-02-01

    Gamma camera imaging is widely used to assess pulmonary aerosol deposition. Conventional planar imaging provides limited information on its regional distribution. In this study, single photon emission computed tomography (SPECT) was used to describe deposition in three dimensions (3D) and combined with X-ray computed tomography (CT) to relate this to lung anatomy. Its performance was compared to planar imaging. Ten SPECT/CT studies were performed on five healthy subjects following carefully controlled inhalation of radioaerosol from a nebulizer, using a variety of inhalation regimes. The 3D spatial distribution was assessed using a central-to-peripheral ratio (C/P) normalized to lung volume and for the right lung was compared to planar C/P analysis. The deposition by airway generation was calculated for each lung and the conducting airways deposition fraction compared to 24-h clearance. The 3D normalized C/P ratio correlated more closely with 24-h clearance than the 2D ratio for the right lung [coefficient of variation (COV), 9% compared to 15% p < 0.05]. Analysis of regional distribution was possible for both lungs in 3D but not in 2D due to overlap of the stomach on the left lung. The mean conducting airways deposition fraction from SPECT for both lungs was not significantly different from 24-h clearance (COV 18%). Both spatial and generational measures of central deposition were significantly higher for the left than for the right lung. Combined SPECT/CT enabled improved analysis of aerosol deposition from gamma camera imaging compared to planar imaging. 3D radionuclide imaging combined with anatomical information from CT and computer analysis is a useful approach for applications requiring regional information on deposition.

  14. Rectification of curved document images based on single view three-dimensional reconstruction.

    PubMed

    Kang, Lai; Wei, Yingmei; Jiang, Jie; Bai, Liang; Lao, Songyang

    2016-10-01

    Since distortions in camera-captured document images significantly affect the accuracy of optical character recognition (OCR), distortion removal plays a critical role for document digitalization systems using a camera for image capturing. This paper proposes a novel framework that performs three-dimensional (3D) reconstruction and rectification of camera-captured document images. While most existing methods rely on additional calibrated hardware or multiple images to recover the 3D shape of a document page, or make a simple but not always valid assumption on the corresponding 3D shape, our framework is more flexible and practical since it only requires a single input image and is able to handle a general locally smooth document surface. The main contributions of this paper include a new iterative refinement scheme for baseline fitting from connected components of text line, an efficient discrete vertical text direction estimation algorithm based on convex hull projection profile analysis, and a 2D distortion grid construction method based on text direction function estimation using 3D regularization. In order to examine the performance of our proposed method, both qualitative and quantitative evaluation and comparison with several recent methods are conducted in our experiments. The experimental results demonstrate that the proposed method outperforms relevant approaches for camera-captured document image rectification, in terms of improvements on both visual distortion removal and OCR accuracy.

  15. Two-dimensional single-shot diffusion-weighted stimulated EPI with reduced FOV for ultrahigh-b radial diffusion-weighted imaging of spinal cord.

    PubMed

    Sapkota, Nabraj; Shi, Xianfeng; Shah, Lubdha M; Bisson, Erica F; Rose, John W; Jeong, Eun-Kee

    2017-06-01

    High-resolution diffusion-weighted imaging (DWI) of the spinal cord (SC) is problematic because of the small cross-section of the SC and the large field inhomogeneity. Obtaining the ultrahigh-b DWI poses a further challenge. The purpose of the study was to design and validate two-dimensional (2D) single-shot diffusion-weighted stimulated echo planar imaging with reduced field of view (2D ss-DWSTEPI-rFOV) for ultrahigh-b radial DWI (UHB-rDWI) of the SC. A novel time-efficient 2D ss-DWSTEPI-rFOV sequence was developed based on the stimulated echo sequence. Reduced-phase field of view was obtained by using two slice-selective 90 ° radiofrequency pulses in the presence of the orthogonal slice selection gradients. The sequence was validated on a cylindrical phantom and demonstrated on SC imaging. Ultrahigh-b radial diffusion-weighted ( bmax = 7300 s/mm2) images of the SC with greatly reduced distortion were obtained. The exponential plus constant fitting of the diffusion-decay curve estimated the constant fraction (restricted water fraction) as 0.36 ± 0.05 in the SC white matter. A novel 2D ss-DWSTEPI-rFOV sequence has been designed and demonstrated for high-resolution UHB-rDWI of localized anatomic structures with significantly reduced distortion induced by nonlinear static field inhomogeneity. Magn Reson Med 77:2167-2173, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. A probability-based multi-cycle sorting method for 4D-MRI: A simulation study.

    PubMed

    Liang, Xiao; Yin, Fang-Fang; Liu, Yilin; Cai, Jing

    2016-12-01

    To develop a novel probability-based sorting method capable of generating multiple breathing cycles of 4D-MRI images and to evaluate performance of this new method by comparing with conventional phase-based methods in terms of image quality and tumor motion measurement. Based on previous findings that breathing motion probability density function (PDF) of a single breathing cycle is dramatically different from true stabilized PDF that resulted from many breathing cycles, it is expected that a probability-based sorting method capable of generating multiple breathing cycles of 4D images may capture breathing variation information missing from conventional single-cycle sorting methods. The overall idea is to identify a few main breathing cycles (and their corresponding weightings) that can best represent the main breathing patterns of the patient and then reconstruct a set of 4D images for each of the identified main breathing cycles. This method is implemented in three steps: (1) The breathing signal is decomposed into individual breathing cycles, characterized by amplitude, and period; (2) individual breathing cycles are grouped based on amplitude and period to determine the main breathing cycles. If a group contains more than 10% of all breathing cycles in a breathing signal, it is determined as a main breathing pattern group and is represented by the average of individual breathing cycles in the group; (3) for each main breathing cycle, a set of 4D images is reconstructed using a result-driven sorting method adapted from our previous study. The probability-based sorting method was first tested on 26 patients' breathing signals to evaluate its feasibility of improving target motion PDF. The new method was subsequently tested for a sequential image acquisition scheme on the 4D digital extended cardiac torso (XCAT) phantom. Performance of the probability-based and conventional sorting methods was evaluated in terms of target volume precision and accuracy as measured by the 4D images, and also the accuracy of average intensity projection (AIP) of 4D images. Probability-based sorting showed improved similarity of breathing motion PDF from 4D images to reference PDF compared to single cycle sorting, indicated by the significant increase in Dice similarity coefficient (DSC) (probability-based sorting, DSC = 0.89 ± 0.03, and single cycle sorting, DSC = 0.83 ± 0.05, p-value <0.001). Based on the simulation study on XCAT, the probability-based method outperforms the conventional phase-based methods in qualitative evaluation on motion artifacts and quantitative evaluation on tumor volume precision and accuracy and accuracy of AIP of the 4D images. In this paper the authors demonstrated the feasibility of a novel probability-based multicycle 4D image sorting method. The authors' preliminary results showed that the new method can improve the accuracy of tumor motion PDF and the AIP of 4D images, presenting potential advantages over the conventional phase-based sorting method for radiation therapy motion management.

  17. True 3D digital holographic tomography for virtual reality applications

    NASA Astrophysics Data System (ADS)

    Downham, A.; Abeywickrema, U.; Banerjee, P. P.

    2017-09-01

    Previously, a single CCD camera has been used to record holograms of an object while the object is rotated about a single axis to reconstruct a pseudo-3D image, which does not show detailed depth information from all perspectives. To generate a true 3D image, the object has to be rotated through multiple angles and along multiple axes. In this work, to reconstruct a true 3D image including depth information, a die is rotated along two orthogonal axes, and holograms are recorded using a Mach-Zehnder setup, which are subsequently numerically reconstructed. This allows for the generation of multiple images containing phase (i.e., depth) information. These images, when combined, create a true 3D image with depth information which can be exported to a Microsoft® HoloLens for true 3D virtual reality.

  18. A Novel Image Compression Algorithm for High Resolution 3D Reconstruction

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2014-06-01

    This research presents a novel algorithm to compress high-resolution images for accurate structured light 3D reconstruction. Structured light images contain a pattern of light and shadows projected on the surface of the object, which are captured by the sensor at very high resolutions. Our algorithm is concerned with compressing such images to a high degree with minimum loss without adversely affecting 3D reconstruction. The Compression Algorithm starts with a single level discrete wavelet transform (DWT) for decomposing an image into four sub-bands. The sub-band LL is transformed by DCT yielding a DC-matrix and an AC-matrix. The Minimize-Matrix-Size Algorithm is used to compress the AC-matrix while a DWT is applied again to the DC-matrix resulting in LL2, HL2, LH2 and HH2 sub-bands. The LL2 sub-band is transformed by DCT, while the Minimize-Matrix-Size Algorithm is applied to the other sub-bands. The proposed algorithm has been tested with images of different sizes within a 3D reconstruction scenario. The algorithm is demonstrated to be more effective than JPEG2000 and JPEG concerning higher compression rates with equivalent perceived quality and the ability to more accurately reconstruct the 3D models.

  19. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking

    PubMed Central

    von Diezmann, Alex; Shechtman, Yoav; Moerner, W. E.

    2017-01-01

    Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers, or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information of single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field-dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems. PMID:28151646

  20. Resolving power of diffraction imaging with an objective: a numerical study.

    PubMed

    Wang, Wenjin; Liu, Jing; Lu, Jun Qing; Ding, Junhua; Hu, Xin-Hua

    2017-05-01

    Diffraction imaging in the far-field can detect 3D morphological features of an object for its coherent nature. We describe methods for accurate calculation and analysis of diffraction images of scatterers of single and double spheres by an imaging unit based on microscope objective at non-conjugate positions. A quantitative study of the calculated diffraction imaging in spectral domain has been performed to assess the resolving power of diffraction imaging. It has been shown numerically that with coherent illumination of 532 nm in wavelength the imaging unit can resolve single spheres of 2 μm or larger in diameters and double spheres separated by less than 300 nm between their centers.

  1. Single-cell resolution fluorescence imaging of circadian rhythms detected with a Nipkow spinning disk confocal system.

    PubMed

    Enoki, Ryosuke; Ono, Daisuke; Hasan, Mazahir T; Honma, Sato; Honma, Ken-Ichi

    2012-05-30

    Single-point laser scanning confocal imaging produces signals with high spatial resolution in living organisms. However, photo-induced toxicity, bleaching, and focus drift remain challenges, especially when recording over several days for monitoring circadian rhythms. Bioluminescence imaging is a tool widely used for this purpose, and does not cause photo-induced difficulties. However, bioluminescence signals are dimmer than fluorescence signals, and are potentially affected by levels of cofactors, including ATP, O(2), and the substrate, luciferin. Here we describe a novel time-lapse confocal imaging technique to monitor circadian rhythms in living tissues. The imaging system comprises a multipoint scanning Nipkow spinning disk confocal unit and a high-sensitivity EM-CCD camera mounted on an inverted microscope with auto-focusing function. Brain slices of the suprachiasmatic nucleus (SCN), the central circadian clock, were prepared from transgenic mice expressing a clock gene, Period 1 (Per1), and fluorescence reporter protein (Per1::d2EGFP). The SCN slices were cut out together with membrane, flipped over, and transferred to the collagen-coated glass dishes to obtain signals with a high signal-to-noise ratio and to minimize focus drift. The imaging technique and improved culture method enabled us to monitor the circadian rhythm of Per1::d2EGFP from optically confirmed single SCN neurons without noticeable photo-induced effects or focus drift. Using recombinant adeno-associated virus carrying a genetically encoded calcium indicator, we also monitored calcium circadian rhythms at a single-cell level in a large population of SCN neurons. Thus, the Nipkow spinning disk confocal imaging system developed here facilitates long-term visualization of circadian rhythms in living cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. [Research on fast implementation method of image Gaussian RBF interpolation based on CUDA].

    PubMed

    Chen, Hao; Yu, Haizhong

    2014-04-01

    Image interpolation is often required during medical image processing and analysis. Although interpolation method based on Gaussian radial basis function (GRBF) has high precision, the long calculation time still limits its application in field of image interpolation. To overcome this problem, a method of two-dimensional and three-dimensional medical image GRBF interpolation based on computing unified device architecture (CUDA) is proposed in this paper. According to single instruction multiple threads (SIMT) executive model of CUDA, various optimizing measures such as coalesced access and shared memory are adopted in this study. To eliminate the edge distortion of image interpolation, natural suture algorithm is utilized in overlapping regions while adopting data space strategy of separating 2D images into blocks or dividing 3D images into sub-volumes. Keeping a high interpolation precision, the 2D and 3D medical image GRBF interpolation achieved great acceleration in each basic computing step. The experiments showed that the operative efficiency of image GRBF interpolation based on CUDA platform was obviously improved compared with CPU calculation. The present method is of a considerable reference value in the application field of image interpolation.

  3. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrović, Uroš; Pernuš, Franjo; Likar, Boštjan

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3Dmore » image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and template matching and final registration involving C-arm calibration were 36%, 73%, and 93%, respectively, while registration accuracy of 0.59 mm was the best after final registration. By compensating in-plane translation errors by initial template matching, the success rates achieved after the final stage improved consistently for all methods, especially if C-arm calibration was performed simultaneously with the 3D–2D image registration. Conclusions: Because the tested methods perform simultaneous C-arm calibration and 3D–2D registration based solely on anatomical information, they have a high potential for automation and thus for an immediate integration into current interventional workflow. One of the authors’ main contributions is also comprehensive and representative validation performed under realistic conditions as encountered during cerebral EIGI.« less

  4. Phase aided 3D imaging and modeling: dedicated systems and case studies

    NASA Astrophysics Data System (ADS)

    Yin, Yongkai; He, Dong; Liu, Zeyi; Liu, Xiaoli; Peng, Xiang

    2014-05-01

    Dedicated prototype systems for 3D imaging and modeling (3DIM) are presented. The 3D imaging systems are based on the principle of phase-aided active stereo, which have been developed in our laboratory over the past few years. The reported 3D imaging prototypes range from single 3D sensor to a kind of optical measurement network composed of multiple node 3D-sensors. To enable these 3D imaging systems, we briefly discuss the corresponding calibration techniques for both single sensor and multi-sensor optical measurement network, allowing good performance of the 3DIM prototype systems in terms of measurement accuracy and repeatability. Furthermore, two case studies including the generation of high quality color model of movable cultural heritage and photo booth from body scanning are presented to demonstrate our approach.

  5. Reflex-free digital fundus photography using a simple and portable camera adaptor system. A viable alternative.

    PubMed

    Pirie, Chris G; Pizzirani, Stefano

    2011-12-01

    To describe a digital single lens reflex (dSLR) camera adaptor for posterior segment photography. A total of 30 normal canine and feline animals were imaged using a dSLR adaptor which mounts between a dSLR camera body and lens. Posterior segment viewing and imaging was performed with the aid of an indirect lens ranging from 28-90D. Coaxial illumination for viewing was provided by a single white light emitting diode (LED) within the adaptor, while illumination during exposure was provided by the pop-up flash or an accessory flash. Corneal and/or lens reflections were reduced using a pair of linear polarizers, having their azimuths perpendicular to one another. Quality high-resolution, reflection-free, digital images of the retina were obtained. Subjective image evaluation demonstrated the same amount of detail, as compared to a conventional fundus camera. A wide range of magnification(s) [1.2-4X] and/or field(s) of view [31-95 degrees, horizontal] were obtained by altering the indirect lens utilized. The described adaptor may provide an alternative to existing fundus camera systems. Quality images were obtained and the adapter proved to be versatile, portable and of low cost.

  6. Reconstructing 3D Face Model with Associated Expression Deformation from a Single Face Image via Constructing a Low-Dimensional Expression Deformation Manifold.

    PubMed

    Wang, Shu-Fan; Lai, Shang-Hong

    2011-10-01

    Facial expression modeling is central to facial expression recognition and expression synthesis for facial animation. In this work, we propose a manifold-based 3D face reconstruction approach to estimating the 3D face model and the associated expression deformation from a single face image. With the proposed robust weighted feature map (RWF), we can obtain the dense correspondences between 3D face models and build a nonlinear 3D expression manifold from a large set of 3D facial expression models. Then a Gaussian mixture model in this manifold is learned to represent the distribution of expression deformation. By combining the merits of morphable neutral face model and the low-dimensional expression manifold, a novel algorithm is developed to reconstruct the 3D face geometry as well as the facial deformation from a single face image in an energy minimization framework. Experimental results on simulated and real images are shown to validate the effectiveness and accuracy of the proposed algorithm.

  7. 2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance.

    PubMed

    Beltran, M A; Paganin, D M; Uesugi, K; Kitchen, M J

    2010-03-29

    A method of tomographic phase retrieval is developed for multi-material objects whose components each has a distinct complex refractive index. The phase-retrieval algorithm, based on the Transport-of-Intensity equation, utilizes propagation-based X-ray phase contrast images acquired at a single defocus distance for each tomographic projection. The method requires a priori knowledge of the complex refractive index for each material present in the sample, together with the total projected thickness of the object at each orientation. The requirement of only a single defocus distance per projection simplifies the experimental setup and imposes no additional dose compared to conventional tomography. The algorithm was implemented using phase contrast data acquired at the SPring-8 Synchrotron facility in Japan. The three-dimensional (3D) complex refractive index distribution of a multi-material test object was quantitatively reconstructed using a single X-ray phase-contrast image per projection. The technique is robust in the presence of noise, compared to conventional absorption based tomography.

  8. 4-D spatiotemporal analysis of ultrasound contrast agent dispersion for prostate cancer localization: a feasibility study.

    PubMed

    Schalk, Stefan G; Demi, Libertario; Smeenge, Martijn; Mills, David M; Wallace, Kirk D; de la Rosette, Jean J M C H; Wijkstra, Hessel; Mischi, Massimo

    2015-05-01

    Currently, nonradical treatment for prostate cancer is hampered by the lack of reliable diagnostics. Contrastultrasound dispersion imaging (CUDI) has recently shown great potential as a prostate cancer imaging technique. CUDI estimates the local dispersion of intravenously injected contrast agents, imaged by transrectal dynamic contrast-enhanced ultrasound (DCE-US), to detect angiogenic processes related to tumor growth. The best CUDI results have so far been obtained by similarity analysis of the contrast kinetics in neighboring pixels. To date, CUDI has been investigated in 2-D only. In this paper, an implementation of 3-D CUDI based on spatiotemporal similarity analysis of 4-D DCE-US is described. Different from 2-D methods, 3-D CUDI permits analysis of the entire prostate using a single injection of contrast agent. To perform 3-D CUDI, a new strategy was designed to estimate the similarity in the contrast kinetics at each voxel, and data processing steps were adjusted to the characteristics of 4-D DCE-US images. The technical feasibility of 4-D DCE-US in 3-D CUDI was assessed and confirmed. Additionally, in a preliminary validation in two patients, dispersion maps by 3-D CUDI were quantitatively compared with those by 2-D CUDI and with 12-core systematic biopsies with promising results.

  9. Single-camera three-dimensional tracking of natural particulate and zooplankton

    NASA Astrophysics Data System (ADS)

    Troutman, Valerie A.; Dabiri, John O.

    2018-07-01

    We develop and characterize an image processing algorithm to adapt single-camera defocusing digital particle image velocimetry (DDPIV) for three-dimensional (3D) particle tracking velocimetry (PTV) of natural particulates, such as those present in the ocean. The conventional DDPIV technique is extended to facilitate tracking of non-uniform, non-spherical particles within a volume depth an order of magnitude larger than current single-camera applications (i.e. 10 cm  ×  10 cm  ×  24 cm depth) by a dynamic template matching method. This 2D cross-correlation method does not rely on precise determination of the centroid of the tracked objects. To accommodate the broad range of particle number densities found in natural marine environments, the performance of the measurement technique at higher particle densities has been improved by utilizing the time-history of tracked objects to inform 3D reconstruction. The developed processing algorithms were analyzed using synthetically generated images of flow induced by Hill’s spherical vortex, and the capabilities of the measurement technique were demonstrated empirically through volumetric reconstructions of the 3D trajectories of particles and highly non-spherical, 5 mm zooplankton.

  10. Intracranial MRA: single volume vs. multiple thin slab 3D time-of-flight acquisition.

    PubMed

    Davis, W L; Warnock, S H; Harnsberger, H R; Parker, D L; Chen, C X

    1993-01-01

    Single volume three-dimensional (3D) time-of-flight (TOF) MR angiography is the most commonly used noninvasive method for evaluating the intracranial vasculature. The sensitivity of this technique to signal loss from flow saturation limits its utility. A recently developed multislab 3D TOF technique, MOTSA, is less affected by flow saturation and would therefore be expected to yield improved vessel visualization. To study this hypothesis, intracranial MR angiograms were obtained on 10 volunteers using three techniques: MOTSA, single volume 3D TOF using a standard 4.9 ms TE (3D TOFA), and single volume 3D TOF using a 6.8 ms TE (3D TOFB). All three sets of axial source images and maximum intensity projection (MIP) images were reviewed. Each exam was evaluated for the number of intracranial vessels visualized. A total of 502 vessel segments were studied with each technique. With use of the MIP images, 86% of selected vessels were visualized with MOTSA, 64% with 3D TOFA (TE = 4.9 ms), and 67% with TOFB (TE = 6.8 ms). Similarly, with the axial source images, 91% of selected vessels were visualized with MOTSA, 77% with 3D TOFA (TE = 4.9 ms), and 82% with 3D TOFB (TE = 6.8 ms). There is improved visualization of selected intracranial vessels in normal volunteers with MOTSA as compared with single volume 3D TOF. These improvements are believed to be primarily a result of decreased sensitivity to flow saturation seen with the MOTSA technique. No difference in overall vessel visualization was noted for the two single volume 3D TOF techniques.

  11. 2D-3D registration using gradient-based MI for image guided surgery systems

    NASA Astrophysics Data System (ADS)

    Yim, Yeny; Chen, Xuanyi; Wakid, Mike; Bielamowicz, Steve; Hahn, James

    2011-03-01

    Registration of preoperative CT data to intra-operative video images is necessary not only to compare the outcome of the vocal fold after surgery with the preplanned shape but also to provide the image guidance for fusion of all imaging modalities. We propose a 2D-3D registration method using gradient-based mutual information. The 3D CT scan is aligned to 2D endoscopic images by finding the corresponding viewpoint between the real camera for endoscopic images and the virtual camera for CT scans. Even though mutual information has been successfully used to register different imaging modalities, it is difficult to robustly register the CT rendered image to the endoscopic image due to varying light patterns and shape of the vocal fold. The proposed method calculates the mutual information in the gradient images as well as original images, assigning more weight to the high gradient regions. The proposed method can emphasize the effect of vocal fold and allow a robust matching regardless of the surface illumination. To find the viewpoint with maximum mutual information, a downhill simplex method is applied in a conditional multi-resolution scheme which leads to a less-sensitive result to local maxima. To validate the registration accuracy, we evaluated the sensitivity to initial viewpoint of preoperative CT. Experimental results showed that gradient-based mutual information provided robust matching not only for two identical images with different viewpoints but also for different images acquired before and after surgery. The results also showed that conditional multi-resolution scheme led to a more accurate registration than single-resolution.

  12. 3D EIT image reconstruction with GREIT.

    PubMed

    Grychtol, Bartłomiej; Müller, Beat; Adler, Andy

    2016-06-01

    Most applications of thoracic EIT use a single plane of electrodes on the chest from which a transverse image 'slice' is calculated. However, interpretation of EIT images is made difficult by the large region above and below the electrode plane to which EIT is sensitive. Volumetric EIT images using two (or more) electrode planes should help compensate, but are little used currently. The Graz consensus reconstruction algorithm for EIT (GREIT) has become popular in lung EIT. One shortcoming of the original formulation of GREIT is its restriction to reconstruction onto a 2D planar image. We present an extension of the GREIT algorithm to 3D and develop open-source tools to evaluate its performance as a function of the choice of stimulation and measurement pattern. Results show 3D GREIT using two electrode layers has significantly more uniform sensitivity profiles through the chest region. Overall, the advantages of 3D EIT are compelling.

  13. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    NASA Astrophysics Data System (ADS)

    Vinding, Mads S.; Laustsen, Christoffer; Maximov, Ivan I.; Søgaard, Lise Vejby; Ardenkjær-Larsen, Jan H.; Nielsen, Niels Chr.

    2013-02-01

    Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction. This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7 T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region-of-interest (ROI) single metabolite signals available for higher image resolution or single-peak spectra. The 2D spatial-selective rf pulses were designed using a novel Krotov-based optimal control approach capable of iteratively fast providing successful pulse sequences in the absence of qualified initial guesses. The technique may be important for early detection of abnormal metabolism, monitoring disease progression, and drug research.

  14. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2012-03-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 μJ within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  15. Noise-free accurate count of microbial colonies by time-lapse shadow image analysis.

    PubMed

    Ogawa, Hiroyuki; Nasu, Senshi; Takeshige, Motomu; Funabashi, Hisakage; Saito, Mikako; Matsuoka, Hideaki

    2012-12-01

    Microbial colonies in food matrices could be counted accurately by a novel noise-free method based on time-lapse shadow image analysis. An agar plate containing many clusters of microbial colonies and/or meat fragments was trans-illuminated to project their 2-dimensional (2D) shadow images on a color CCD camera. The 2D shadow images of every cluster distributed within a 3-mm thick agar layer were captured in focus simultaneously by means of a multiple focusing system, and were then converted to 3-dimensional (3D) shadow images. By time-lapse analysis of the 3D shadow images, it was determined whether each cluster comprised single or multiple colonies or a meat fragment. The analytical precision was high enough to be able to distinguish a microbial colony from a meat fragment, to recognize an oval image as two colonies contacting each other, and to detect microbial colonies hidden under a food fragment. The detection of hidden colonies is its outstanding performance in comparison with other systems. The present system attained accuracy for counting fewer than 5 colonies and is therefore of practical importance. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 μm Triple-Gain Pixel Fabricated in a Standard BSI Process.

    PubMed

    Takayanagi, Isao; Yoshimura, Norio; Mori, Kazuya; Matsuo, Shinichiro; Tanaka, Shunsuke; Abe, Hirofumi; Yasuda, Naoto; Ishikawa, Kenichiro; Okura, Shunsuke; Ohsawa, Shinji; Otaka, Toshinori

    2018-01-12

    To respond to the high demand for high dynamic range imaging suitable for moving objects with few artifacts, we have developed a single-exposure dynamic range image sensor by introducing a triple-gain pixel and a low noise dual-gain readout circuit. The developed 3 μm pixel is capable of having three conversion gains. Introducing a new split-pinned photodiode structure, linear full well reaches 40 ke - . Readout noise under the highest pixel gain condition is 1 e - with a low noise readout circuit. Merging two signals, one with high pixel gain and high analog gain, and the other with low pixel gain and low analog gain, a single exposure dynamic rage (SEHDR) signal is obtained. Using this technology, a 1/2.7", 2M-pixel CMOS image sensor has been developed and characterized. The image sensor also employs an on-chip linearization function, yielding a 16-bit linear signal at 60 fps, and an intra-scene dynamic range of higher than 90 dB was successfully demonstrated. This SEHDR approach inherently mitigates the artifacts from moving objects or time-varying light sources that can appear in the multiple exposure high dynamic range (MEHDR) approach.

  17. An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 μm Triple-Gain Pixel Fabricated in a Standard BSI Process †

    PubMed Central

    Takayanagi, Isao; Yoshimura, Norio; Mori, Kazuya; Matsuo, Shinichiro; Tanaka, Shunsuke; Abe, Hirofumi; Yasuda, Naoto; Ishikawa, Kenichiro; Okura, Shunsuke; Ohsawa, Shinji; Otaka, Toshinori

    2018-01-01

    To respond to the high demand for high dynamic range imaging suitable for moving objects with few artifacts, we have developed a single-exposure dynamic range image sensor by introducing a triple-gain pixel and a low noise dual-gain readout circuit. The developed 3 μm pixel is capable of having three conversion gains. Introducing a new split-pinned photodiode structure, linear full well reaches 40 ke−. Readout noise under the highest pixel gain condition is 1 e− with a low noise readout circuit. Merging two signals, one with high pixel gain and high analog gain, and the other with low pixel gain and low analog gain, a single exposure dynamic rage (SEHDR) signal is obtained. Using this technology, a 1/2.7”, 2M-pixel CMOS image sensor has been developed and characterized. The image sensor also employs an on-chip linearization function, yielding a 16-bit linear signal at 60 fps, and an intra-scene dynamic range of higher than 90 dB was successfully demonstrated. This SEHDR approach inherently mitigates the artifacts from moving objects or time-varying light sources that can appear in the multiple exposure high dynamic range (MEHDR) approach. PMID:29329210

  18. Two-dimensional thermography image retrieval from zig-zag scanned data with TZ-SCAN

    NASA Astrophysics Data System (ADS)

    Okumura, Hiroshi; Yamasaki, Ryohei; Arai, Kohei

    2008-10-01

    TZ-SCAN is a simple and low cost thermal imaging device which consists of a single point radiation thermometer on a tripod with a pan-tilt rotator, a DC motor controller board with a USB interface, and a laptop computer for rotator control, data acquisition, and data processing. TZ-SCAN acquires a series of zig-zag scanned data and stores the data as CSV file. A 2-D thermal distribution image can be retrieved by using the second quefrency peak calculated from TZ-SCAN data. An experiment is conducted to confirm the validity of the thermal retrieval algorithm. The experimental result shows efficient accuracy for 2-D thermal distribution image retrieval.

  19. Construction of high frame rate images with Fourier transform

    NASA Astrophysics Data System (ADS)

    Peng, Hu; Lu, Jian-Yu

    2002-05-01

    Traditionally, images are constructed with a delay-and-sum method that adjusts the phases of received signals (echoes) scattered from the same point in space so that they are summed in phase. Recently, the relationship between the delay-and-sum method and the Fourier transform is investigated [Jian-yu Lu, Anjun Liu, and Hu Peng, ``High frame rate and delay-and-sum imaging methods,'' IEEE Trans. Ultrason. Ferroelectr. Freq. Control (submitted)]. In this study, a generic Fourier transform method is developed. Two-dimensional (2-D) or three-dimensional (3-D) high frame rate images can be constructed using the Fourier transform with a single transmission of an ultrasound pulse from an array as long as the transmission field of the array is known. To verify our theory, computer simulations have been performed with a linear array, a 2-D array, a convex curved array, and a spherical 2-D array. The simulation results are consistent with our theory. [Work supported in part by Grant 5RO1 HL60301 from NIH.

  20. Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.

    PubMed

    Xiao, Dan; Balcom, Bruce J

    2012-07-01

    Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Single shot laser speckle based 3D acquisition system for medical applications

    NASA Astrophysics Data System (ADS)

    Khan, Danish; Shirazi, Muhammad Ayaz; Kim, Min Young

    2018-06-01

    The state of the art techniques used by medical practitioners to extract the three-dimensional (3D) geometry of different body parts requires a series of images/frames such as laser line profiling or structured light scanning. Movement of the patients during scanning process often leads to inaccurate measurements due to sequential image acquisition. Single shot structured techniques are robust to motion but the prevalent challenges in single shot structured light methods are the low density and algorithm complexity. In this research, a single shot 3D measurement system is presented that extracts the 3D point cloud of human skin by projecting a laser speckle pattern using a single pair of images captured by two synchronized cameras. In contrast to conventional laser speckle 3D measurement systems that realize stereo correspondence by digital correlation of projected speckle patterns, the proposed system employs KLT tracking method to locate the corresponding points. The 3D point cloud contains no outliers and sufficient quality of 3D reconstruction is achieved. The 3D shape acquisition of human body parts validates the potential application of the proposed system in the medical industry.

  2. Dual-frequency super harmonic imaging piezoelectric transducers for transrectal ultrasound

    NASA Astrophysics Data System (ADS)

    Kim, Jinwook; Li, Sibo; Kasoji, Sandeep; Dayton, Paul A.; Jiang, Xiaoning

    2015-03-01

    In this paper, a 2/14 MHz dual-frequency single-element transducer and a 2/22 MHz sub-array (16/48-elements linear array) transducer were developed for contrast enhanced super-harmonic ultrasound imaging of prostate cancer with the low frequency ultrasound transducer as a transmitter for contrast agent (microbubble) excitation and the high frequency transducer as a receiver for detection of nonlinear responses from microbubbles. The 1-3 piezoelectric composite was used as active materials of the single-element transducers due to its low acoustic impedance and high coupling factor. A high dielectric constant PZT ceramic was used for the sub-array transducer due to its high dielectric property induced relatively low electrical impedance. The possible resonance modes of the active elements were estimated using finite element analysis (FEA). The pulse-echo response, peak-negative pressure and bubble response were tested, followed by in vitro contrast imaging tests using a graphite-gelatin tissue-mimicking phantom. The single-element dual frequency transducer (8 × 4 × 2 mm3) showed a -6 dB fractional bandwidth of 56.5% for the transmitter, and 41.8% for the receiver. A 2 MHz-transmitter (730 μm pitch and 6.5 mm elevation aperture) and a 22 MHz-receiver (240 μm pitch and 1.5 mm aperture) of the sub-array transducer exhibited -6 dB fractional bandwidth of 51.0% and 40.2%, respectively. The peak negative pressure at the far field was about -1.3 MPa with 200 Vpp, 1-cycle 2 MHz burst, which is high enough to excite microbubbles for nonlinear responses. The 7th harmonic responses from micro bubbles were successfully detected in the phantom imaging test showing a contrast-to-tissue ratio (CTR) of 16 dB.

  3. Joint estimation of high resolution images and depth maps from light field cameras

    NASA Astrophysics Data System (ADS)

    Ohashi, Kazuki; Takahashi, Keita; Fujii, Toshiaki

    2014-03-01

    Light field cameras are attracting much attention as tools for acquiring 3D information of a scene through a single camera. The main drawback of typical lenselet-based light field cameras is the limited resolution. This limitation comes from the structure where a microlens array is inserted between the sensor and the main lens. The microlens array projects 4D light field on a single 2D image sensor at the sacrifice of the resolution; the angular resolution and the position resolution trade-off under the fixed resolution of the image sensor. This fundamental trade-off remains after the raw light field image is converted to a set of sub-aperture images. The purpose of our study is to estimate a higher resolution image from low resolution sub-aperture images using a framework of super-resolution reconstruction. In this reconstruction, these sub-aperture images should be registered as accurately as possible. This registration is equivalent to depth estimation. Therefore, we propose a method where super-resolution and depth refinement are performed alternatively. Most of the process of our method is implemented by image processing operations. We present several experimental results using a Lytro camera, where we increased the resolution of a sub-aperture image by three times horizontally and vertically. Our method can produce clearer images compared to the original sub-aperture images and the case without depth refinement.

  4. A Comparison of Four-Image Reconstruction Algorithms for 3-D PET Imaging of MDAPET Camera Using Phantom Data

    NASA Astrophysics Data System (ADS)

    Baghaei, H.; Wong, Wai-Hoi; Uribe, J.; Li, Hongdi; Wang, Yu; Liu, Yaqiang; Xing, Tao; Ramirez, R.; Xie, Shuping; Kim, Soonseok

    2004-10-01

    We compared two fully three-dimensional (3-D) image reconstruction algorithms and two 3-D rebinning algorithms followed by reconstruction with a two-dimensional (2-D) filtered-backprojection algorithm for 3-D positron emission tomography (PET) imaging. The two 3-D image reconstruction algorithms were ordered-subsets expectation-maximization (3D-OSEM) and 3-D reprojection (3DRP) algorithms. The two rebinning algorithms were Fourier rebinning (FORE) and single slice rebinning (SSRB). The 3-D projection data used for this work were acquired with a high-resolution PET scanner (MDAPET) with an intrinsic transaxial resolution of 2.8 mm. The scanner has 14 detector rings covering an axial field-of-view of 38.5 mm. We scanned three phantoms: 1) a uniform cylindrical phantom with inner diameter of 21.5 cm; 2) a uniform 11.5-cm cylindrical phantom with four embedded small hot lesions with diameters of 3, 4, 5, and 6 mm; and 3) the 3-D Hoffman brain phantom with three embedded small hot lesion phantoms with diameters of 3, 5, and 8.6 mm in a warm background. Lesions were placed at different radial and axial distances. We evaluated the different reconstruction methods for MDAPET camera by comparing the noise level of images, contrast recovery, and hot lesion detection, and visually compared images. We found that overall the 3D-OSEM algorithm, especially when images post filtered with the Metz filter, produced the best results in terms of contrast-noise tradeoff, and detection of hot spots, and reproduction of brain phantom structures. Even though the MDAPET camera has a relatively small maximum axial acceptance (/spl plusmn/5 deg), images produced with the 3DRP algorithm had slightly better contrast recovery and reproduced the structures of the brain phantom slightly better than the faster 2-D rebinning methods.

  5. 4D Light Field Imaging System Using Programmable Aperture

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam

    2012-01-01

    Complete depth information can be extracted from analyzing all angles of light rays emanated from a source. However, this angular information is lost in a typical 2D imaging system. In order to record this information, a standard stereo imaging system uses two cameras to obtain information from two view angles. Sometimes, more cameras are used to obtain information from more angles. However, a 4D light field imaging technique can achieve this multiple-camera effect through a single-lens camera. Two methods are available for this: one using a microlens array, and the other using a moving aperture. The moving-aperture method can obtain more complete stereo information. The existing literature suggests a modified liquid crystal panel [LC (liquid crystal) panel, similar to ones commonly used in the display industry] to achieve a moving aperture. However, LC panels cannot withstand harsh environments and are not qualified for spaceflight. In this regard, different hardware is proposed for the moving aperture. A digital micromirror device (DMD) will replace the liquid crystal. This will be qualified for harsh environments for the 4D light field imaging. This will enable an imager to record near-complete stereo information. The approach to building a proof-ofconcept is using existing, or slightly modified, off-the-shelf components. An SLR (single-lens reflex) lens system, which typically has a large aperture for fast imaging, will be modified. The lens system will be arranged so that DMD can be integrated. The shape of aperture will be programmed for single-viewpoint imaging, multiple-viewpoint imaging, and coded aperture imaging. The novelty lies in using a DMD instead of a LC panel to move the apertures for 4D light field imaging. The DMD uses reflecting mirrors, so any light transmission lost (which would be expected from the LC panel) will be minimal. Also, the MEMS-based DMD can withstand higher temperature and pressure fluctuation than a LC panel can. Robotics need near complete stereo images for their autonomous navigation, manipulation, and depth approximation. The imaging system can provide visual feedback

  6. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.

    PubMed

    Scharfe, Michael; Pielot, Rainer; Schreiber, Falk

    2010-01-11

    Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  7. Diuretic-enhanced gadolinium excretory MR urography: comparison of conventional gradient-echo sequences and echo-planar imaging.

    PubMed

    Nolte-Ernsting, C C; Tacke, J; Adam, G B; Haage, P; Jung, P; Jakse, G; Günther, R W

    2001-01-01

    The aim of this study was to investigate the utility of different gadolinium-enhanced T1-weighted gradient-echo techniques in excretory MR urography. In 74 urologic patients, excretory MR urography was performed using various T1-weighted gradient-echo (GRE) sequences after injection of gadolinium-DTPA and low-dose furosemide. The examinations included conventional GRE sequences and echo-planar imaging (GRE EPI), both obtained with 3D data sets and 2D projection images. Breath-hold acquisition was used primarily. In 20 of 74 examinations, we compared breath-hold imaging with respiratory gating. Breath-hold imaging was significantly superior to respiratory gating for the visualization of pelvicaliceal systems, but not for the ureters. Complete MR urograms were obtained within 14-20 s using 3D GRE EPI sequences and in 20-30 s with conventional 3D GRE sequences. Ghost artefacts caused by ureteral peristalsis often occurred with conventional 3D GRE imaging and were almost completely suppressed in EPI sequences (p < 0.0001). Susceptibility effects were more pronounced on GRE EPI MR urograms and calculi measured 0.8-21.7% greater in diameter compared with conventional GRE sequences. Increased spatial resolution degraded the image quality only in GRE-EPI urograms. In projection MR urography, the entire pelvicaliceal system was imaged by acquisition of a fast single-slice sequence and the conventional 2D GRE technique provided superior morphological accuracy than 2D GRE EPI projection images (p < 0.0003). Fast 3D GRE EPI sequences improve the clinical practicability of excretory MR urography especially in old or critically ill patients unable to suspend breathing for more than 20 s. Conventional GRE sequences are superior to EPI in high-resolution detail MR urograms and in projection imaging.

  8. Merging Surface Reconstructions of Terrestrial and Airborne LIDAR Range Data

    DTIC Science & Technology

    2009-05-19

    Mangan and R. Whitaker. Partitioning 3D surface meshes using watershed segmentation . IEEE Trans. on Visualization and Computer Graphics, 5(4), pp...Jain, and A. Zakhor. Data Processing Algorithms for Generating Textured 3D Building Facade Meshes from Laser Scans and Camera Images. International...acquired set of overlapping range images into a single mesh [2,9,10]. However, due to the volume of data involved in large scale urban modeling, data

  9. Plenoptic Imaging of a Three Dimensional Cold Atom Cloud

    NASA Astrophysics Data System (ADS)

    Lott, Gordon

    2017-04-01

    A plenoptic imaging system is capable of sampling the rays of light in a volume, both spatially and angularly, providing information about the three dimensional (3D) volume being imaged. The extraction of the 3D structure of a cold atom cloud is demonstrated, using a single plenoptic camera and a single image. The reconstruction is tested against a reference image and the results discussed along with the capabilities and limitations of the imaging system. This capability is useful when the 3D distribution of the atoms is desired, such as determining the shape of an atom trap, particularly when there is limited optical access. Gratefully acknowledge support from AFRL.

  10. A probability-based multi-cycle sorting method for 4D-MRI: A simulation study

    PubMed Central

    Liang, Xiao; Yin, Fang-Fang; Liu, Yilin; Cai, Jing

    2016-01-01

    Purpose: To develop a novel probability-based sorting method capable of generating multiple breathing cycles of 4D-MRI images and to evaluate performance of this new method by comparing with conventional phase-based methods in terms of image quality and tumor motion measurement. Methods: Based on previous findings that breathing motion probability density function (PDF) of a single breathing cycle is dramatically different from true stabilized PDF that resulted from many breathing cycles, it is expected that a probability-based sorting method capable of generating multiple breathing cycles of 4D images may capture breathing variation information missing from conventional single-cycle sorting methods. The overall idea is to identify a few main breathing cycles (and their corresponding weightings) that can best represent the main breathing patterns of the patient and then reconstruct a set of 4D images for each of the identified main breathing cycles. This method is implemented in three steps: (1) The breathing signal is decomposed into individual breathing cycles, characterized by amplitude, and period; (2) individual breathing cycles are grouped based on amplitude and period to determine the main breathing cycles. If a group contains more than 10% of all breathing cycles in a breathing signal, it is determined as a main breathing pattern group and is represented by the average of individual breathing cycles in the group; (3) for each main breathing cycle, a set of 4D images is reconstructed using a result-driven sorting method adapted from our previous study. The probability-based sorting method was first tested on 26 patients’ breathing signals to evaluate its feasibility of improving target motion PDF. The new method was subsequently tested for a sequential image acquisition scheme on the 4D digital extended cardiac torso (XCAT) phantom. Performance of the probability-based and conventional sorting methods was evaluated in terms of target volume precision and accuracy as measured by the 4D images, and also the accuracy of average intensity projection (AIP) of 4D images. Results: Probability-based sorting showed improved similarity of breathing motion PDF from 4D images to reference PDF compared to single cycle sorting, indicated by the significant increase in Dice similarity coefficient (DSC) (probability-based sorting, DSC = 0.89 ± 0.03, and single cycle sorting, DSC = 0.83 ± 0.05, p-value <0.001). Based on the simulation study on XCAT, the probability-based method outperforms the conventional phase-based methods in qualitative evaluation on motion artifacts and quantitative evaluation on tumor volume precision and accuracy and accuracy of AIP of the 4D images. Conclusions: In this paper the authors demonstrated the feasibility of a novel probability-based multicycle 4D image sorting method. The authors’ preliminary results showed that the new method can improve the accuracy of tumor motion PDF and the AIP of 4D images, presenting potential advantages over the conventional phase-based sorting method for radiation therapy motion management. PMID:27908178

  11. 3D MALDI Mass Spectrometry Imaging of a Single Cell: Spatial Mapping of Lipids in the Embryonic Development of Zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dueñas, Maria Emilia; Essner, Jeffrey J.; Lee, Young Jin

    The zebrafish ( Danio rerio) has been widely used as a model vertebrate system to study lipid metabolism, the roles of lipids in diseases, and lipid dynamics in embryonic development. Here, we applied high-spatial resolution matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) to map and visualize the three-dimensional spatial distribution of phospholipid classes, phosphatidylcholine (PC), phosphatidylethanolamines (PE), and phosphatidylinositol (PI), in newly fertilized individual zebrafish embryos. This is the first time MALDI-MSI has been applied for three dimensional chemical imaging of a single cell. PC molecular species are present inside the yolk in addition to the blastodisc, while PE andmore » PI species are mostly absent in the yolk. Two-dimensional MSI was also studied for embryos at different cell stages (1-, 2-, 4-, 8-, and 16-cell stage) to investigate the localization changes of some lipids at various cell developmental stages. Lastly, four different normalization approaches were compared to find reliable relative quantification in 2D- and 3D- MALDI MSI data sets.« less

  12. 3D MALDI Mass Spectrometry Imaging of a Single Cell: Spatial Mapping of Lipids in the Embryonic Development of Zebrafish

    DOE PAGES

    Dueñas, Maria Emilia; Essner, Jeffrey J.; Lee, Young Jin

    2017-11-02

    The zebrafish ( Danio rerio) has been widely used as a model vertebrate system to study lipid metabolism, the roles of lipids in diseases, and lipid dynamics in embryonic development. Here, we applied high-spatial resolution matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) to map and visualize the three-dimensional spatial distribution of phospholipid classes, phosphatidylcholine (PC), phosphatidylethanolamines (PE), and phosphatidylinositol (PI), in newly fertilized individual zebrafish embryos. This is the first time MALDI-MSI has been applied for three dimensional chemical imaging of a single cell. PC molecular species are present inside the yolk in addition to the blastodisc, while PE andmore » PI species are mostly absent in the yolk. Two-dimensional MSI was also studied for embryos at different cell stages (1-, 2-, 4-, 8-, and 16-cell stage) to investigate the localization changes of some lipids at various cell developmental stages. Lastly, four different normalization approaches were compared to find reliable relative quantification in 2D- and 3D- MALDI MSI data sets.« less

  13. Fractal evaluation of drug amorphicity from optical and scanning electron microscope images

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Bogdan-Mihai G.; Vizireanu, Radu C.; Neamtu, Catalin I.; Gavriloaia, Gheorghe V.

    2013-09-01

    Amorphous materials are metastable, more reactive than the crystalline ones, and have to be evaluated before pharmaceutical compound formulation. Amorphicity is interpreted as a spatial chaos, and patterns of molecular aggregates of dexamethasone, D, were investigated in this paper by using fractal dimension, FD. Images having three magnifications of D were taken from an optical microscope, OM, and with eight magnifications, from a scanning electron microscope, SEM, were analyzed. The average FD for pattern irregularities of OM images was 1.538, and about 1.692 for SEM images. The FDs of the two kinds of images are less sensitive of threshold level. 3D images were shown to illustrate dependence of FD of threshold and magnification level. As a result, optical image of single scale is enough to characterize the drug amorphicity. As a result, the OM image at a single scale is enough to characterize the amorphicity of D.

  14. A fast calibration method for 3-D tracking of ultrasound images using a spatial localizer.

    PubMed

    Pagoulatos, N; Haynor, D R; Kim, Y

    2001-09-01

    We have developed a fast calibration method for computing the position and orientation of 2-D ultrasound (US) images in 3-D space where a position sensor is mounted on the US probe. This calibration is required in the fields of 3-D ultrasound and registration of ultrasound with other imaging modalities. Most of the existing calibration methods require a complex and tedious experimental procedure. Our method is simple and it is based on a custom-built phantom. Thirty N-fiducials (markers in the shape of the letter "N") embedded in the phantom provide the basis for our calibration procedure. We calibrated a 3.5-MHz sector phased-array probe with a magnetic position sensor, and we studied the accuracy and precision of our method. A typical calibration procedure requires approximately 2 min. We conclude that we can achieve accurate and precise calibration using a single US image, provided that a large number (approximately ten) of N-fiducials are captured within the US image, enabling a representative sampling of the imaging plane.

  15. Development and proof-of-concept of three-dimensional lung histology volumes

    NASA Astrophysics Data System (ADS)

    Mathew, Lindsay; Alabousi, Mostafa; Wheatley, Andrew; Aladl, Usaf; Slipetz, Deborah; Hogg, James C.; Fenster, Aaron; Parraga, Grace

    2012-03-01

    Most medical imaging is inherently three-dimensional (3D) but for validation of pathological findings, histopathology is commonly used and typically histopathology images are acquired as twodimensional slices with quantitative analysis performed in a single dimension. Histopathology is invasive, labour-intensive, and the analysis cannot be performed in real time, yet it remains the gold standard for the pathological diagnosis and validation of clinical or radiological diagnoses of disease. A major goal worldwide is to improve medical imaging resolution, sensitivity and specificity to better guide therapy and biopsy and to one day delay or replace biopsy. A key limitation however is the lack of tools to directly compare 3D macroscopic imaging acquired in patients with histopathology findings, typically provided in a single dimension (1D) or in two dimensions (2D). To directly address this, we developed methods for 2D histology slice visualization/registration to generate 3D volumes and quantified tissue components in the 3D volume for direct comparison to volumetric micro-CT and clinical CT. We used the elastase-instilled mouse emphysema lung model to evaluate our methods with murine lungs sectioned (5 μm thickness/10 μm gap) and digitized with 2μm in-plane resolution. 3D volumes were generated for wildtype and elastase mouse lung sections after semi-automated registration of all tissue slices. The 1D mean linear intercept (Lm) for wildtype (WT) (47.1 μm +/- 9.8 μm) and elastase mouse lung (64.5 μm +/- 14.0 μm) was significantly different (p<.001). We also generated 3D measurements based on tissue and airspace morphometry from the 3D volumes and all of these were significantly different (p<.0001) when comparing elastase and WT mouse lung. The ratio of the airspace-to-lung volume for the entire lung volume was also significantly and strongly correlated with Lm.

  16. Dual-color 3D superresolution microscopy by combined spectral-demixing and biplane imaging.

    PubMed

    Winterflood, Christian M; Platonova, Evgenia; Albrecht, David; Ewers, Helge

    2015-07-07

    Multicolor three-dimensional (3D) superresolution techniques allow important insight into the relative organization of cellular structures. While a number of innovative solutions have emerged, multicolor 3D techniques still face significant technical challenges. In this Letter we provide a straightforward approach to single-molecule localization microscopy imaging in three dimensions and two colors. We combine biplane imaging and spectral-demixing, which eliminates a number of problems, including color cross-talk, chromatic aberration effects, and problems with color registration. We present 3D dual-color images of nanoscopic structures in hippocampal neurons with a 3D compound resolution routinely achieved only in a single color. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. 3D single point imaging with compressed sensing provides high temporal resolution R 2* mapping for in vivo preclinical applications.

    PubMed

    Rioux, James A; Beyea, Steven D; Bowen, Chris V

    2017-02-01

    Purely phase-encoded techniques such as single point imaging (SPI) are generally unsuitable for in vivo imaging due to lengthy acquisition times. Reconstruction of highly undersampled data using compressed sensing allows SPI data to be quickly obtained from animal models, enabling applications in preclinical cellular and molecular imaging. TurboSPI is a multi-echo single point technique that acquires hundreds of images with microsecond spacing, enabling high temporal resolution relaxometry of large-R 2 * systems such as iron-loaded cells. TurboSPI acquisitions can be pseudo-randomly undersampled in all three dimensions to increase artifact incoherence, and can provide prior information to improve reconstruction. We evaluated the performance of CS-TurboSPI in phantoms, a rat ex vivo, and a mouse in vivo. An algorithm for iterative reconstruction of TurboSPI relaxometry time courses does not affect image quality or R 2 * mapping in vitro at acceleration factors up to 10. Imaging ex vivo is possible at similar acceleration factors, and in vivo imaging is demonstrated at an acceleration factor of 8, such that acquisition time is under 1 h. Accelerated TurboSPI enables preclinical R 2 * mapping without loss of data quality, and may show increased specificity to iron oxide compared to other sequences.

  18. Comparative Study of 2D and 3D Optical Imaging Systems: Laparoendoscopic Single-Site Surgery in an Ex Vivo Model.

    PubMed

    Vilaça, Jaime; Pinto, José Pedro; Fernandes, Sandra; Costa, Patrício; Pinto, Jorge Correia; Leão, Pedro

    2017-12-01

    Usually laparoscopy is performed by means of a 2-dimensional (2D) image system and multiport approach. To overcome the lack of depth perception, new 3-dimensional (3D) systems are arising with the added advantage of providing stereoscopic vision. To further reduce surgery-related trauma, there are new minimally invasive surgical techniques being developed, such as LESS (laparoendoscopic single-site) surgery. The aim of this study was to compare 2D and 3D laparoscopic systems in LESS surgical procedures. All participants were selected from different levels of experience in laparoscopic surgery-10 novices, 7 intermediates, and 10 experts were included. None of the participants had had previous experience in LESS surgery. Participants were chosen randomly to begin their experience with either the 2D or 3D laparoscopic system. The exercise consisted of performing an ex vivo pork cholecystectomy through a SILS port with the assistance of a fixed distance laparoscope. Errors, time, and participants' preference were recorded. Statistical analysis of time and errors between groups was conducted with a Student's t test (using independent samples) and the Mann-Whitney test. In all 3 groups, the average time with the 2D system was significantly reduced after having used the 3D system ( P < .05). In the postexercise questionnaire, two thirds of participants showed a preference for using the 3D system. This study suggests that the 3D system may improve the learning curve and that learning from the 3D system is transferable to the 2D environment. Additionally, the majority of participants prefer 3D equipment.

  19. Low-energy transmission electron diffraction and imaging of large-area graphene

    PubMed Central

    Zhao, Wei; Xia, Bingyu; Lin, Li; Xiao, Xiaoyang; Liu, Peng; Lin, Xiaoyang; Peng, Hailin; Zhu, Yuanmin; Yu, Rong; Lei, Peng; Wang, Jiangtao; Zhang, Lina; Xu, Yong; Zhao, Mingwen; Peng, Lianmao; Li, Qunqing; Duan, Wenhui; Liu, Zhongfan; Fan, Shoushan; Jiang, Kaili

    2017-01-01

    Two-dimensional (2D) materials have attracted interest because of their excellent properties and potential applications. A key step in realizing industrial applications is to synthesize wafer-scale single-crystal samples. Until now, single-crystal samples, such as graphene domains up to the centimeter scale, have been synthesized. However, a new challenge is to efficiently characterize large-area samples. Currently, the crystalline characterization of these samples still relies on selected-area electron diffraction (SAED) or low-energy electron diffraction (LEED), which is more suitable for characterizing very small local regions. This paper presents a highly efficient characterization technique that adopts a low-energy electrostatically focused electron gun and a super-aligned carbon nanotube (SACNT) film sample support. It allows rapid crystalline characterization of large-area graphene through a single photograph of a transmission-diffracted image at a large beam size. Additionally, the low-energy electron beam enables the observation of a unique diffraction pattern of adsorbates on the suspended graphene at room temperature. This work presents a simple and convenient method for characterizing the macroscopic structures of 2D materials, and the instrument we constructed allows the study of the weak interaction with 2D materials. PMID:28879233

  20. Low-energy transmission electron diffraction and imaging of large-area graphene.

    PubMed

    Zhao, Wei; Xia, Bingyu; Lin, Li; Xiao, Xiaoyang; Liu, Peng; Lin, Xiaoyang; Peng, Hailin; Zhu, Yuanmin; Yu, Rong; Lei, Peng; Wang, Jiangtao; Zhang, Lina; Xu, Yong; Zhao, Mingwen; Peng, Lianmao; Li, Qunqing; Duan, Wenhui; Liu, Zhongfan; Fan, Shoushan; Jiang, Kaili

    2017-09-01

    Two-dimensional (2D) materials have attracted interest because of their excellent properties and potential applications. A key step in realizing industrial applications is to synthesize wafer-scale single-crystal samples. Until now, single-crystal samples, such as graphene domains up to the centimeter scale, have been synthesized. However, a new challenge is to efficiently characterize large-area samples. Currently, the crystalline characterization of these samples still relies on selected-area electron diffraction (SAED) or low-energy electron diffraction (LEED), which is more suitable for characterizing very small local regions. This paper presents a highly efficient characterization technique that adopts a low-energy electrostatically focused electron gun and a super-aligned carbon nanotube (SACNT) film sample support. It allows rapid crystalline characterization of large-area graphene through a single photograph of a transmission-diffracted image at a large beam size. Additionally, the low-energy electron beam enables the observation of a unique diffraction pattern of adsorbates on the suspended graphene at room temperature. This work presents a simple and convenient method for characterizing the macroscopic structures of 2D materials, and the instrument we constructed allows the study of the weak interaction with 2D materials.

  1. Freehand three-dimensional ultrasound imaging of carotid artery using motion tracking technology.

    PubMed

    Chung, Shao-Wen; Shih, Cho-Chiang; Huang, Chih-Chung

    2017-02-01

    Ultrasound imaging has been extensively used for determining the severity of carotid atherosclerotic stenosis. In particular, the morphological characterization of carotid plaques can be performed for risk stratification of patients. However, using 2D ultrasound imaging for detecting morphological changes in plaques has several limitations. Due to the scan was performed on a single longitudinal cross-section, the selected 2D image is difficult to represent the entire morphology and volume of plaque and vessel lumen. In addition, the precise positions of 2D ultrasound images highly depend on the radiologists' experience, it makes the serial long-term exams of anti-atherosclerotic therapies are difficult to relocate the same corresponding planes by using 2D B-mode images. This has led to the recent development of three-dimensional (3D) ultrasound imaging, which offers improved visualization and quantification of complex morphologies of carotid plaques. In the present study, a freehand 3D ultrasound imaging technique based on optical motion tracking technology is proposed. Unlike other optical tracking systems, the marker is a small rigid body that is attached to the ultrasound probe and is tracked by eight high-performance digital cameras. The probe positions in 3D space coordinates are then calibrated at spatial and temporal resolutions of 10μm and 0.01s, respectively. The image segmentation procedure involves Otsu's and the active contour model algorithms and accurately detects the contours of the carotid arteries. The proposed imaging technique was verified using normal artery and atherosclerotic stenosis phantoms. Human experiments involving freehand scanning of the carotid artery of a volunteer were also performed. The results indicated that compared with manual segmentation, the lowest percentage errors of the proposed segmentation procedure were 7.8% and 9.1% for the external and internal carotid arteries, respectively. Finally, the effect of handshaking was calibrated using the optical tracking system for reconstructing a 3D image. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Recognition of rotated images using the multi-valued neuron and rotation-invariant 2D Fourier descriptors

    NASA Astrophysics Data System (ADS)

    Aizenberg, Evgeni; Bigio, Irving J.; Rodriguez-Diaz, Eladio

    2012-03-01

    The Fourier descriptors paradigm is a well-established approach for affine-invariant characterization of shape contours. In the work presented here, we extend this method to images, and obtain a 2D Fourier representation that is invariant to image rotation. The proposed technique retains phase uniqueness, and therefore structural image information is not lost. Rotation-invariant phase coefficients were used to train a single multi-valued neuron (MVN) to recognize satellite and human face images rotated by a wide range of angles. Experiments yielded 100% and 96.43% classification rate for each data set, respectively. Recognition performance was additionally evaluated under effects of lossy JPEG compression and additive Gaussian noise. Preliminary results show that the derived rotation-invariant features combined with the MVN provide a promising scheme for efficient recognition of rotated images.

  3. Basic level scene understanding: categories, attributes and structures

    PubMed Central

    Xiao, Jianxiong; Hays, James; Russell, Bryan C.; Patterson, Genevieve; Ehinger, Krista A.; Torralba, Antonio; Oliva, Aude

    2013-01-01

    A longstanding goal of computer vision is to build a system that can automatically understand a 3D scene from a single image. This requires extracting semantic concepts and 3D information from 2D images which can depict an enormous variety of environments that comprise our visual world. This paper summarizes our recent efforts toward these goals. First, we describe the richly annotated SUN database which is a collection of annotated images spanning 908 different scene categories with object, attribute, and geometric labels for many scenes. This database allows us to systematically study the space of scenes and to establish a benchmark for scene and object recognition. We augment the categorical SUN database with 102 scene attributes for every image and explore attribute recognition. Finally, we present an integrated system to extract the 3D structure of the scene and objects depicted in an image. PMID:24009590

  4. Four-dimensional diffusion-weighted MR imaging (4D-DWI): a feasibility study.

    PubMed

    Liu, Yilin; Zhong, Xiaodong; Czito, Brian G; Palta, Manisha; Bashir, Mustafa R; Dale, Brian M; Yin, Fang-Fang; Cai, Jing

    2017-02-01

    Diffusion-weighted Magnetic Resonance Imaging (DWI) has been shown to be a powerful tool for cancer detection with high tumor-to-tissue contrast. This study aims to investigate the feasibility of developing a four-dimensional DWI technique (4D-DWI) for imaging respiratory motion for radiation therapy applications. Image acquisition was performed by repeatedly imaging a volume of interest (VOI) using an interleaved multislice single-shot echo-planar imaging (EPI) 2D-DWI sequence in the axial plane. Each 2D-DWI image was acquired with an intermediately low b-value (b = 500 s/mm 2 ) and with diffusion-encoding gradients in x, y, and z diffusion directions. Respiratory motion was simultaneously recorded using a respiratory bellow, and the synchronized respiratory signal was used to retrospectively sort the 2D images to generate 4D-DWI. Cine MRI using steady-state free precession was also acquired as a motion reference. As a preliminary feasibility study, this technique was implemented on a 4D digital human phantom (XCAT) with a simulated pancreas tumor. The respiratory motion of the phantom was controlled by regular sinusoidal motion profile. 4D-DWI tumor motion trajectories were extracted and compared with the input breathing curve. The mean absolute amplitude differences (D) were calculated in superior-inferior (SI) direction and anterior-posterior (AP) direction. The technique was then evaluated on two healthy volunteers. Finally, the effects of 4D-DWI on apparent diffusion coefficient (ADC) measurements were investigated for hypothetical heterogeneous tumors via simulations. Tumor trajectories extracted from XCAT 4D-DWI were consistent with the input signal: the average D value was 1.9 mm (SI) and 0.4 mm (AP). The average D value was 2.6 mm (SI) and 1.7 mm (AP) for the two healthy volunteers. A 4D-DWI technique has been developed and evaluated on digital phantom and human subjects. 4D-DWI can lead to more accurate respiratory motion measurement. This has a great potential to improve the visualization and delineation of cancer tumors for radiotherapy. © 2016 American Association of Physicists in Medicine.

  5. Contextual convolutional neural networks for lung nodule classification using Gaussian-weighted average image patches

    NASA Astrophysics Data System (ADS)

    Lee, Haeil; Lee, Hansang; Park, Minseok; Kim, Junmo

    2017-03-01

    Lung cancer is the most common cause of cancer-related death. To diagnose lung cancers in early stages, numerous studies and approaches have been developed for cancer screening with computed tomography (CT) imaging. In recent years, convolutional neural networks (CNN) have become one of the most common and reliable techniques in computer aided detection (CADe) and diagnosis (CADx) by achieving state-of-the-art-level performances for various tasks. In this study, we propose a CNN classification system for false positive reduction of initially detected lung nodule candidates. First, image patches of lung nodule candidates are extracted from CT scans to train a CNN classifier. To reflect the volumetric contextual information of lung nodules to 2D image patch, we propose a weighted average image patch (WAIP) generation by averaging multiple slice images of lung nodule candidates. Moreover, to emphasize central slices of lung nodules, slice images are locally weighted according to Gaussian distribution and averaged to generate the 2D WAIP. With these extracted patches, 2D CNN is trained to achieve the classification of WAIPs of lung nodule candidates into positive and negative labels. We used LUNA 2016 public challenge database to validate the performance of our approach for false positive reduction in lung CT nodule classification. Experiments show our approach improves the classification accuracy of lung nodules compared to the baseline 2D CNN with patches from single slice image.

  6. Hand-held optical imager (Gen-2): improved instrumentation and target detectability

    PubMed Central

    Gonzalez, Jean; DeCerce, Joseph; Erickson, Sarah J.; Martinez, Sergio L.; Nunez, Annie; Roman, Manuela; Traub, Barbara; Flores, Cecilia A.; Roberts, Seigbeh M.; Hernandez, Estrella; Aguirre, Wenceslao; Kiszonas, Richard

    2012-01-01

    Abstract. Hand-held optical imagers are developed by various researchers towards reflectance-based spectroscopic imaging of breast cancer. Recently, a Gen-1 handheld optical imager was developed with capabilities to perform two-dimensional (2-D) spectroscopic as well as three-dimensional (3-D) tomographic imaging studies. However, the imager was bulky with poor surface contact (∼30%) along curved tissues, and limited sensitivity to detect targets consistently. Herein, a Gen-2 hand-held optical imager that overcame the above limitations of the Gen-1 imager has been developed and the instrumentation described. The Gen-2 hand-held imager is less bulky, portable, and has improved surface contact (∼86%) on curved tissues. Additionally, the forked probe head design is capable of simultaneous bilateral reflectance imaging of both breast tissues, and also transillumination imaging of a single breast tissue. Experimental studies were performed on tissue phantoms to demonstrate the improved sensitivity in detecting targets using the Gen-2 imager. The improved instrumentation of the Gen-2 imager allowed detection of targets independent of their location with respect to the illumination points, unlike in Gen-1 imager. The developed imager has potential for future clinical breast imaging with enhanced sensitivity, via both reflectance and transillumination imaging. PMID:23224163

  7. Capability of long distance 100  GHz FMCW using a single GDD lamp sensor.

    PubMed

    Levanon, Assaf; Rozban, Daniel; Aharon Akram, Avihai; Kopeika, Natan S; Yitzhaky, Yitzhak; Abramovich, Amir

    2014-12-20

    Millimeter wave (MMW)-based imaging systems are required for applications in medicine, homeland security, concealed weapon detection, and space technology. The lack of inexpensive room temperature imaging sensors makes it difficult to provide a suitable MMW system for many of the above applications. A 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The radar system requires that the millimeter wave detector will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the 2D image. New experiments show the capability of long distance FMCW detection by using a large scale Cassegrain projection system, described first (to our knowledge) in this paper. The system presents the capability to employ a long distance of at least 20 m with a low-cost plasma-based glow discharge detector (GDD) focal plane array (FPA). Each point on the object corresponds to a point in the image and includes the distance information. This will enable relatively inexpensive 3D MMW imaging.

  8. Performance evaluation of a two detector camera for real-time video.

    PubMed

    Lochocki, Benjamin; Gambín-Regadera, Adrián; Artal, Pablo

    2016-12-20

    Single pixel imaging can be the preferred method over traditional 2D-array imaging in spectral ranges where conventional cameras are not available. However, when it comes to real-time video imaging, single pixel imaging cannot compete with the framerates of conventional cameras, especially when high-resolution images are desired. Here we evaluate the performance of an imaging approach using two detectors simultaneously. First, we present theoretical results on how low SNR affects final image quality followed by experimentally determined results. Obtained video framerates were doubled compared to state of the art systems, resulting in a framerate from 22 Hz for a 32×32 resolution to 0.75 Hz for a 128×128 resolution image. Additionally, the two detector imaging technique enables the acquisition of images with a resolution of 256×256 in less than 3 s.

  9. A rapid and robust gradient measurement technique using dynamic single-point imaging.

    PubMed

    Jang, Hyungseok; McMillan, Alan B

    2017-09-01

    We propose a new gradient measurement technique based on dynamic single-point imaging (SPI), which allows simple, rapid, and robust measurement of k-space trajectory. To enable gradient measurement, we utilize the variable field-of-view (FOV) property of dynamic SPI, which is dependent on gradient shape. First, one-dimensional (1D) dynamic SPI data are acquired from a targeted gradient axis, and then relative FOV scaling factors between 1D images or k-spaces at varying encoding times are found. These relative scaling factors are the relative k-space position that can be used for image reconstruction. The gradient measurement technique also can be used to estimate the gradient impulse response function for reproducible gradient estimation as a linear time invariant system. The proposed measurement technique was used to improve reconstructed image quality in 3D ultrashort echo, 2D spiral, and multi-echo bipolar gradient-echo imaging. In multi-echo bipolar gradient-echo imaging, measurement of the k-space trajectory allowed the use of a ramp-sampled trajectory for improved acquisition speed (approximately 30%) and more accurate quantitative fat and water separation in a phantom. The proposed dynamic SPI-based method allows fast k-space trajectory measurement with a simple implementation and no additional hardware for improved image quality. Magn Reson Med 78:950-962, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Three-dimensional Visualization of Ultrasound Backscatter Statistics by Window-modulated Compounding Nakagami Imaging.

    PubMed

    Zhou, Zhuhuang; Wu, Shuicai; Lin, Man-Yen; Fang, Jui; Liu, Hao-Li; Tsui, Po-Hsiang

    2018-05-01

    In this study, the window-modulated compounding (WMC) technique was integrated into three-dimensional (3D) ultrasound Nakagami imaging for improving the spatial visualization of backscatter statistics. A 3D WMC Nakagami image was produced by summing and averaging a number of 3D Nakagami images (number of frames denoted as N) formed using sliding cubes with varying side lengths ranging from 1 to N times the transducer pulse. To evaluate the performance of the proposed 3D WMC Nakagami imaging method, agar phantoms with scatterer concentrations ranging from 2 to 64 scatterers/mm 3 were made, and six stages of fatty liver (zero, one, two, four, six, and eight weeks) were induced in rats by methionine-choline-deficient diets (three rats for each stage, total n = 18). A mechanical scanning system with a 5-MHz focused single-element transducer was used for ultrasound radiofrequency data acquisition. The experimental results showed that 3D WMC Nakagami imaging was able to characterize different scatterer concentrations. Backscatter statistics were visualized with various numbers of frames; N = 5 reduced the estimation error of 3D WMC Nakagami imaging in visualizing the backscatter statistics. Compared with conventional 3D Nakagami imaging, 3D WMC Nakagami imaging improved the image smoothness without significant image resolution degradation, and it can thus be used for describing different stages of fatty liver in rats.

  11. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Guoyan

    2010-04-15

    Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction.more » The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark-based initialization. Depending on the surface-based matching techniques, the reconstruction errors were slightly different. When a surface-based iterative affine registration was used, an average reconstruction error of 1.6 mm was observed. This error was increased to 1.9 mm, when a surface-based iterative scaled rigid registration was used. Conclusions: It is feasible to reconstruct a scaled, patient-specific surface model of the pelvis from single standard AP x-ray radiograph using the present approach. The unknown scale of the reconstructed model can be estimated by performing a surface-based 3D/3D matching.« less

  12. Multiocular image sensor with on-chip beam-splitter and inner meta-micro-lens for single-main-lens stereo camera.

    PubMed

    Koyama, Shinzo; Onozawa, Kazutoshi; Tanaka, Keisuke; Saito, Shigeru; Kourkouss, Sahim Mohamed; Kato, Yoshihisa

    2016-08-08

    We developed multiocular 1/3-inch 2.75-μm-pixel-size 2.1M- pixel image sensors by co-design of both on-chip beam-splitter and 100-nm-width 800-nm-depth patterned inner meta-micro-lens for single-main-lens stereo camera systems. A camera with the multiocular image sensor can capture horizontally one-dimensional light filed by both the on-chip beam-splitter horizontally dividing ray according to incident angle, and the inner meta-micro-lens collecting the divided ray into pixel with small optical loss. Cross-talks between adjacent light field images of a fabricated binocular image sensor and of a quad-ocular image sensor are as low as 6% and 7% respectively. With the selection of two images from one-dimensional light filed images, a selective baseline for stereo vision is realized to view close objects with single-main-lens. In addition, by adding multiple light field images with different ratios, baseline distance can be tuned within an aperture of a main lens. We suggest the electrically selective or tunable baseline stereo vision to reduce 3D fatigue of viewers.

  13. Development of a novel 2D color map for interactive segmentation of histological images.

    PubMed

    Chaudry, Qaiser; Sharma, Yachna; Raza, Syed H; Wang, May D

    2012-05-01

    We present a color segmentation approach based on a two-dimensional color map derived from the input image. Pathologists stain tissue biopsies with various colored dyes to see the expression of biomarkers. In these images, because of color variation due to inconsistencies in experimental procedures and lighting conditions, the segmentation used to analyze biological features is usually ad-hoc. Many algorithms like K-means use a single metric to segment the image into different color classes and rarely provide users with powerful color control. Our 2D color map interactive segmentation technique based on human color perception information and the color distribution of the input image, enables user control without noticeable delay. Our methodology works for different staining types and different types of cancer tissue images. Our proposed method's results show good accuracy with low response and computational time making it a feasible method for user interactive applications involving segmentation of histological images.

  14. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm

    PubMed Central

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis. PMID:27959895

  15. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.

    PubMed

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.

  16. 3D high- and super-resolution imaging using single-objective SPIM.

    PubMed

    Galland, Remi; Grenci, Gianluca; Aravind, Ajay; Viasnoff, Virgile; Studer, Vincent; Sibarita, Jean-Baptiste

    2015-07-01

    Single-objective selective-plane illumination microscopy (soSPIM) is achieved with micromirrored cavities combined with a laser beam-steering unit installed on a standard inverted microscope. The illumination and detection are done through the same objective. soSPIM can be used with standard sample preparations and features high background rejection and efficient photon collection, allowing for 3D single-molecule-based super-resolution imaging of whole cells or cell aggregates. Using larger mirrors enabled us to broaden the capabilities of our system to image Drosophila embryos.

  17. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    PubMed Central

    2010-01-01

    Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics. PMID:20064262

  18. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network.

    PubMed

    Prasoon, Adhish; Petersen, Kersten; Igel, Christian; Lauze, François; Dam, Erik; Nielsen, Mads

    2013-01-01

    Segmentation of anatomical structures in medical images is often based on a voxel/pixel classification approach. Deep learning systems, such as convolutional neural networks (CNNs), can infer a hierarchical representation of images that fosters categorization. We propose a novel system for voxel classification integrating three 2D CNNs, which have a one-to-one association with the xy, yz and zx planes of 3D image, respectively. We applied our method to the segmentation of tibial cartilage in low field knee MRI scans and tested it on 114 unseen scans. Although our method uses only 2D features at a single scale, it performs better than a state-of-the-art method using 3D multi-scale features. In the latter approach, the features and the classifier have been carefully adapted to the problem at hand. That we were able to get better results by a deep learning architecture that autonomously learns the features from the images is the main insight of this study.

  19. Three-dimensional imaging of dislocation propagation during crystal growth and dissolution

    PubMed Central

    Schenk, Anna S.; Kim, Yi-Yeoun; Kulak, Alexander N.; Campbell, James M.; Nisbet, Gareth; Meldrum, Fiona C.; Robinson, Ian K.

    2015-01-01

    Atomic level defects such as dislocations play key roles in determining the macroscopic properties of crystalline materials 1,2. Their effects range from increased chemical reactivity 3,4 to enhanced mechanical properties 5,6. Dislocations have been widely studied using traditional techniques such as X-ray diffraction and optical imaging. Recent advances have enabled atomic force microscopy to study single dislocations 7 in two-dimensions (2D), while transmission electron microscopy (TEM) can now visualise strain fields in three-dimensions (3D) with near atomic resolution 8–10. However, these techniques cannot offer 3D imaging of the formation or movement of dislocations during dynamic processes. Here, we describe how Bragg Coherent Diffraction Imaging (BCDI) 11,12 can be used to visualize in 3D, the entire network of dislocations present within an individual calcite crystal during repeated growth and dissolution cycles. These investigations demonstrate the potential of BCDI for studying the mechanisms underlying the response of crystalline materials to external stimuli. PMID:26030304

  20. Registration of angiographic image on real-time fluoroscopic image for image-guided percutaneous coronary intervention.

    PubMed

    Kim, Dongkue; Park, Sangsoo; Jeong, Myung Ho; Ryu, Jeha

    2018-02-01

    In percutaneous coronary intervention (PCI), cardiologists must study two different X-ray image sources: a fluoroscopic image and an angiogram. Manipulating a guidewire while alternately monitoring the two separate images on separate screens requires a deep understanding of the anatomy of coronary vessels and substantial training. We propose 2D/2D spatiotemporal image registration of the two images in a single image in order to provide cardiologists with enhanced visual guidance in PCI. The proposed 2D/2D spatiotemporal registration method uses a cross-correlation of two ECG series in each image to temporally synchronize two separate images and register an angiographic image onto the fluoroscopic image. A guidewire centerline is then extracted from the fluoroscopic image in real time, and the alignment of the centerline with vessel outlines of the chosen angiographic image is optimized using the iterative closest point algorithm for spatial registration. A proof-of-concept evaluation with a phantom coronary vessel model with engineering students showed an error reduction rate greater than 74% on wrong insertion to nontarget branches compared to the non-registration method and more than 47% reduction in the task completion time in performing guidewire manipulation for very difficult tasks. Evaluation with a small number of experienced doctors shows a potentially significant reduction in both task completion time and error rate for difficult tasks. The total registration time with real procedure X-ray (angiographic and fluoroscopic) images takes [Formula: see text] 60 ms, which is within the fluoroscopic image acquisition rate of 15 Hz. By providing cardiologists with better visual guidance in PCI, the proposed spatiotemporal image registration method is shown to be useful in advancing the guidewire to the coronary vessel branches, especially those difficult to insert into.

  1. ON THE FREEZING AND IDENTIFICATION OF LIPID MONOLAYER 2-D ARRAYS FOR CRYOELECTRON MICROSCOPY

    PubMed Central

    Taylor, Dianne W.; Kelly, Deborah F.; Cheng, Anchi; Taylor, Kenneth A.

    2008-01-01

    Lipid monolayers provide a convenient vehicle for the crystallization of biological macromolecules for 3-D electron microscopy. Although numerous examples of 3-D images from 2-D protein arrays have been described from negatively stained specimens, only six structures have been done from frozen hydrated specimens. We describe here a method that makes high quality frozen-hydrated specimens of lipid monolayer arrays for cryoelectron microscopy. The method uses holey carbon films with patterned holes for monolayer recovery, blotting and plunge freezing to produce thin aqueous films which cover >90% of the available grid area. With this method, even specimens with relatively infrequent crystals can be screened using automated data collection techniques. Though developed for microscopic examination of 2-D arrays, the method may have wider application to the preparation of single particle specimens for 3-D image reconstruction. PMID:17561414

  2. Volumetric Two-photon Imaging of Neurons Using Stereoscopy (vTwINS)

    PubMed Central

    Song, Alexander; Charles, Adam S.; Koay, Sue Ann; Gauthier, Jeff L.; Thiberge, Stephan Y.; Pillow, Jonathan W.; Tank, David W.

    2017-01-01

    Two-photon laser scanning microscopy of calcium dynamics using fluorescent indicators is a widely used imaging method for large scale recording of neural activity in vivo. Here we introduce volumetric Two-photon Imaging of Neurons using Stereoscopy (vTwINS), a volumetric calcium imaging method that employs an elongated, V-shaped point spread function to image a 3D brain volume. Single neurons project to spatially displaced “image pairs” in the resulting 2D image, and the separation distance between images is proportional to depth in the volume. To demix the fluorescence time series of individual neurons, we introduce a novel orthogonal matching pursuit algorithm that also infers source locations within the 3D volume. We illustrate vTwINS by imaging neural population activity in mouse primary visual cortex and hippocampus. Our results demonstrate that vTwINS provides an effective method for volumetric two-photon calcium imaging that increases the number of neurons recorded while maintaining a high frame-rate. PMID:28319111

  3. Reconstruction of three-dimensional porous media using a single thin section

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman; Sahimi, Muhammad

    2012-06-01

    The purpose of any reconstruction method is to generate realizations of two- or multiphase disordered media that honor limited data for them, with the hope that the realizations provide accurate predictions for those properties of the media for which there are no data available, or their measurement is difficult. An important example of such stochastic systems is porous media for which the reconstruction technique must accurately represent their morphology—the connectivity and geometry—as well as their flow and transport properties. Many of the current reconstruction methods are based on low-order statistical descriptors that fail to provide accurate information on the properties of heterogeneous porous media. On the other hand, due to the availability of high resolution two-dimensional (2D) images of thin sections of a porous medium, and at the same time, the high cost, computational difficulties, and even unavailability of complete 3D images, the problem of reconstructing porous media from 2D thin sections remains an outstanding unsolved problem. We present a method based on multiple-point statistics in which a single 2D thin section of a porous medium, represented by a digitized image, is used to reconstruct the 3D porous medium to which the thin section belongs. The method utilizes a 1D raster path for inspecting the digitized image, and combines it with a cross-correlation function, a grid splitting technique for deciding the resolution of the computational grid used in the reconstruction, and the Shannon entropy as a measure of the heterogeneity of the porous sample, in order to reconstruct the 3D medium. It also utilizes an adaptive technique for identifying the locations and optimal number of hard (quantitative) data points that one can use in the reconstruction process. The method is tested on high resolution images for Berea sandstone and a carbonate rock sample, and the results are compared with the data. To make the comparison quantitative, two sets of statistical tests consisting of the autocorrelation function, histogram matching of the local coordination numbers, the pore and throat size distributions, multiple-points connectivity, and single- and two-phase flow permeabilities are used. The comparison indicates that the proposed method reproduces the long-range connectivity of the porous media, with the computed properties being in good agreement with the data for both porous samples. The computational efficiency of the method is also demonstrated.

  4. cisTEM, user-friendly software for single-particle image processing.

    PubMed

    Grant, Timothy; Rohou, Alexis; Grigorieff, Nikolaus

    2018-03-07

    We have developed new open-source software called cis TEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cis TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cis TEM is available for download from cistem.org. © 2018, Grant et al.

  5. cisTEM, user-friendly software for single-particle image processing

    PubMed Central

    2018-01-01

    We have developed new open-source software called cisTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cisTEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k – 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cisTEM is available for download from cistem.org. PMID:29513216

  6. 3D GRASE PROPELLER: Improved Image Acquisition Technique for Arterial Spin Labeling Perfusion Imaging

    PubMed Central

    Tan, Huan; Hoge, W. Scott; Hamilton, Craig A.; Günther, Matthias; Kraft, Robert A.

    2014-01-01

    Arterial spin labeling (ASL) is a non-invasive technique that can quantitatively measure cerebral blood flow (CBF). While traditionally ASL employs 2D EPI or spiral acquisition trajectories, single-shot 3D GRASE is gaining popularity in ASL due to inherent SNR advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T2 decay. A novel technique combining 3D GRASE and a PROPELLER trajectory (3DGP) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3×3×5mm3 nominal voxel size with Q2TIPS-FAIR as the ASL preparation sequence. Data from 5 healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in CBF quantification with 3D GRASE, 3DGP demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. PMID:21254211

  7. Multi-purpose two- and three-dimensional momentum imaging of charged particles for attosecond experiments at 1 kHz repetition rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Månsson, Erik P., E-mail: erik.mansson@sljus.lu.se; Sorensen, Stacey L.; Gisselbrecht, Mathieu

    2014-12-15

    We report on the versatile design and operation of a two-sided spectrometer for the imaging of charged-particle momenta in two dimensions (2D) and three dimensions (3D). The benefits of 3D detection are to discern particles of different mass and to study correlations between fragments from multi-ionization processes, while 2D detectors are more efficient for single-ionization applications. Combining these detector types in one instrument allows us to detect positive and negative particles simultaneously and to reduce acquisition times by using the 2D detector at a higher ionization rate when the third dimension is not required. The combined access to electronic andmore » nuclear dynamics available when both sides are used together is important for studying photoreactions in samples of increasing complexity. The possibilities and limitations of 3D momentum imaging of electrons or ions in the same spectrometer geometry are investigated analytically and three different modes of operation demonstrated experimentally, with infrared or extreme ultraviolet light and an atomic/molecular beam.« less

  8. Bayesian depth estimation from monocular natural images.

    PubMed

    Su, Che-Chun; Cormack, Lawrence K; Bovik, Alan C

    2017-05-01

    Estimating an accurate and naturalistic dense depth map from a single monocular photographic image is a difficult problem. Nevertheless, human observers have little difficulty understanding the depth structure implied by photographs. Two-dimensional (2D) images of the real-world environment contain significant statistical information regarding the three-dimensional (3D) structure of the world that the vision system likely exploits to compute perceived depth, monocularly as well as binocularly. Toward understanding how this might be accomplished, we propose a Bayesian model of monocular depth computation that recovers detailed 3D scene structures by extracting reliable, robust, depth-sensitive statistical features from single natural images. These features are derived using well-accepted univariate natural scene statistics (NSS) models and recent bivariate/correlation NSS models that describe the relationships between 2D photographic images and their associated depth maps. This is accomplished by building a dictionary of canonical local depth patterns from which NSS features are extracted as prior information. The dictionary is used to create a multivariate Gaussian mixture (MGM) likelihood model that associates local image features with depth patterns. A simple Bayesian predictor is then used to form spatial depth estimates. The depth results produced by the model, despite its simplicity, correlate well with ground-truth depths measured by a current-generation terrestrial light detection and ranging (LIDAR) scanner. Such a strong form of statistical depth information could be used by the visual system when creating overall estimated depth maps incorporating stereopsis, accommodation, and other conditions. Indeed, even in isolation, the Bayesian predictor delivers depth estimates that are competitive with state-of-the-art "computer vision" methods that utilize highly engineered image features and sophisticated machine learning algorithms.

  9. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  10. Volumetric Forest Change Detection Through Vhr Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Akca, Devrim; Stylianidis, Efstratios; Smagas, Konstantinos; Hofer, Martin; Poli, Daniela; Gruen, Armin; Sanchez Martin, Victor; Altan, Orhan; Walli, Andreas; Jimeno, Elisa; Garcia, Alejandro

    2016-06-01

    Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D forest information solution was developed during a Eurostars project. FORSAT includes two main units. The first one is dedicated to the geometric and radiometric processing of satellite optical imagery and 2D/3D information extraction. This includes: image radiometric pre-processing, image and ground point measurement, improvement of geometric sensor orientation, quasiepipolar image generation for stereo measurements, digital surface model (DSM) extraction by using a precise and robust image matching approach specially designed for VHR satellite imagery, generation of orthoimages, and 3D measurements in single images using mono-plotting and in stereo images as well as triplets. FORSAT supports most of the VHR optically imagery commonly used for civil applications: IKONOS, OrbView - 3, SPOT - 5 HRS, SPOT - 5 HRG, QuickBird, GeoEye-1, WorldView-1/2, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the future. The second unit of FORSAT is dedicated to 3D surface comparison for change detection. It allows users to import digital elevation models (DEMs), align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes between epochs. To this end our 3D surface matching method LS3D is being used. FORSAT is a single source and flexible forest information solution with a very competitive price/quality ratio, allowing expert and non-expert remote sensing users to monitor forests in three and four dimensions from VHR optical imagery for many forest information needs. The capacity and benefits of FORSAT have been tested in six case studies located in Austria, Cyprus, Spain, Switzerland and Turkey, using optical data from different sensors and with the purpose to monitor forest with different geometric characteristics. The validation run on Cyprus dataset is reported and commented.

  11. Single-Crystal Germanium Core Optoelectronic Fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Xiaoyu; Page, Ryan L.; Chaudhuri, Subhasis

    Synthesis and fabrication of high-quality, small-core single-crystal germanium fibers that are photosensitive at the near-infrared and have low optical losses ≈1 dB cm-1 at 2 μm are reported. These fibers have potential applications in fiber-based spectroscopic imaging, nonlinear optical devices, and photodetection at the telecommunication wavelengths.

  12. Oscillatory network with self-organized dynamical connections for synchronization-based image segmentation.

    PubMed

    Kuzmina, Margarita; Manykin, Eduard; Surina, Irina

    2004-01-01

    An oscillatory network of columnar architecture located in 3D spatial lattice was recently designed by the authors as oscillatory model of the brain visual cortex. Single network oscillator is a relaxational neural oscillator with internal dynamics tunable by visual image characteristics - local brightness and elementary bar orientation. It is able to demonstrate either activity state (stable undamped oscillations) or "silence" (quickly damped oscillations). Self-organized nonlocal dynamical connections of oscillators depend on oscillator activity levels and orientations of cortical receptive fields. Network performance consists in transfer into a state of clusterized synchronization. At current stage grey-level image segmentation tasks are carried out by 2D oscillatory network, obtained as a limit version of the source model. Due to supplemented network coupling strength control the 2D reduced network provides synchronization-based image segmentation. New results on segmentation of brightness and texture images presented in the paper demonstrate accurate network performance and informative visualization of segmentation results, inherent in the model.

  13. A single-sided representation for the homogeneous Green's function of a unified scalar wave equation.

    PubMed

    Wapenaar, Kees

    2017-06-01

    A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.

  14. Medipix2 based CdTe microprobe for dental imaging

    NASA Astrophysics Data System (ADS)

    Vykydal, Z.; Fauler, A.; Fiederle, M.; Jakubek, J.; Svestkova, M.; Zwerger, A.

    2011-12-01

    Medical imaging devices and techniques are demanded to provide high resolution and low dose images of samples or patients. Hybrid semiconductor single photon counting devices together with suitable sensor materials and advanced techniques of image reconstruction fulfil these requirements. In particular cases such as the direct observation of dental implants also the size of the imaging device itself plays a critical role. This work presents the comparison of 2D radiographs of tooth provided by a standard commercial dental imaging system (Gendex 765DC X-ray tube with VisualiX scintillation detector) and two Medipix2 USB Lite detectors one equipped with a Si sensor (300 μm thick) and one with a CdTe sensor (1 mm thick). Single photon counting capability of the Medipix2 device allows virtually unlimited dynamic range of the images and thus increases the contrast significantly. The dimensions of the whole USB Lite device are only 15 mm × 60 mm of which 25% consists of the sensitive area. Detector of this compact size can be used directly inside the patients' mouth.

  15. WE-H-207A-02: Attenuation Correction in 4D-PET Using a Single-Phase Attenuation Map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalantari, F; Wang, J

    2016-06-15

    Purpose: 4D-PET imaging has been proposed as a potential solution to the respiratory motion effect in thoracic region. CT-based attenuation correction (AC) is an essential step toward quantitative imaging for PET. However, due to the temporal difference of 4D-PET and a single breath-hold CT, motion artifacts are observed in the attenuation-corrected PET images that can lead to error in tumor shape and uptake. We introduce a practical method for aligning single-phase CT to all other 4D-PET phases using a penalized non-rigid demons registration. Methods: Individual 4D-PET frames were reconstructed without AC. Non-rigid Demons registration was used to derive deformation vectormore » fields (DVFs) between the PET matched with CT phase and other 4D-PET images. While attenuated PET images provide enough useful data for organ borders such as lung and liver, tumors are not distinguishable from background due to loss of contrast. To preserve tumor shape in different phases, from CT image an ROI covering tumor was excluded from non-rigid transformation. Mean DVF of the central region of the tumor was assigned to all voxels in the ROI. This process mimics a rigid transformation of tumor along with a non-rigid transformation of other organs. 4D XCAT phantom with spherical tumors in lung with diameters ranging from 10 to 40 mm was used to evaluate the algorithm. Results: Motion related induced artifacts in attenuation-corrected 4D-PET images were significantly reduced. For tumors smaller than 20 mm, non-rigid transformation was capable to provide quantitative results. However, for larger tumors, where tumor self-attenuation is considerable, our combined method yields superior results. Conclusion: We introduced a practical method for deforming a single CT to match all 4D-PET images for accurate AC. Although 4D-PET data include insignificant anatomical information, we showed that they are still useful to estimate DVFs for aligning attenuation map and accurate AC.« less

  16. 4-mm-diameter three-dimensional imaging endoscope with steerable camera for minimally invasive surgery (3-D-MARVEL).

    PubMed

    Bae, Sam Y; Korniski, Ronald J; Shearn, Michael; Manohara, Harish M; Shahinian, Hrayr

    2017-01-01

    High-resolution three-dimensional (3-D) imaging (stereo imaging) by endoscopes in minimally invasive surgery, especially in space-constrained applications such as brain surgery, is one of the most desired capabilities. Such capability exists at larger than 4-mm overall diameters. We report the development of a stereo imaging endoscope of 4-mm maximum diameter, called Multiangle, Rear-Viewing Endoscopic Tool (MARVEL) that uses a single-lens system with complementary multibandpass filter (CMBF) technology to achieve 3-D imaging. In addition, the system is endowed with the capability to pan from side-to-side over an angle of [Formula: see text], which is another unique aspect of MARVEL for such a class of endoscopes. The design and construction of a single-lens, CMBF aperture camera with integrated illumination to generate 3-D images, and the actuation mechanism built into it is summarized.

  17. The depth estimation of 3D face from single 2D picture based on manifold learning constraints

    NASA Astrophysics Data System (ADS)

    Li, Xia; Yang, Yang; Xiong, Hailiang; Liu, Yunxia

    2018-04-01

    The estimation of depth is virtual important in 3D face reconstruction. In this paper, we propose a t-SNE based on manifold learning constraints and introduce K-means method to divide the original database into several subset, and the selected optimal subset to reconstruct the 3D face depth information can greatly reduce the computational complexity. Firstly, we carry out the t-SNE operation to reduce the key feature points in each 3D face model from 1×249 to 1×2. Secondly, the K-means method is applied to divide the training 3D database into several subset. Thirdly, the Euclidean distance between the 83 feature points of the image to be estimated and the feature point information before the dimension reduction of each cluster center is calculated. The category of the image to be estimated is judged according to the minimum Euclidean distance. Finally, the method Kong D will be applied only in the optimal subset to estimate the depth value information of 83 feature points of 2D face images. Achieving the final depth estimation results, thus the computational complexity is greatly reduced. Compared with the traditional traversal search estimation method, although the proposed method error rate is reduced by 0.49, the number of searches decreases with the change of the category. In order to validate our approach, we use a public database to mimic the task of estimating the depth of face images from 2D images. The average number of searches decreased by 83.19%.

  18. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    NASA Astrophysics Data System (ADS)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  19. Modeling and Measurement of 3D Deformation of Scoliotic Spine Using 2D X-ray Images

    NASA Astrophysics Data System (ADS)

    Li, Hao; Leow, Wee Kheng; Huang, Chao-Hui; Howe, Tet Sen

    Scoliosis causes deformations such as twisting and lateral bending of the spine. To correct scoliotic deformation, the extents of 3D spinal deformation need to be measured. This paper studies the modeling and measurement of scoliotic spine based on 3D curve model. Through modeling the spine as a 3D Cosserat rod, the 3D structure of a scoliotic spine can be recovered by obtaining the minimum potential energy registration of the rod to the scoliotic spine in the x-ray image. Test results show that it is possible to obtain accurate 3D reconstruction using only the landmarks in a single view, provided that appropriate boundary conditions and elastic properties are included as constraints.

  20. Assessment of illumination conditions in a single-pixel imaging configuration

    NASA Astrophysics Data System (ADS)

    Garoi, Florin; Udrea, Cristian; Damian, Cristian; Logofǎtu, Petre C.; Colţuc, Daniela

    2016-12-01

    Single-pixel imaging based on multiplexing is a promising technique, especially in applications where 2D detectors or raster scanning imaging are not readily applicable. With this method, Hadamard masks are projected on a spatial light modulator to encode an incident scene and a signal is recorded at the photodiode detector for each of these masks. Ultimately, the image is reconstructed on the computer by applying the inverse transform matrix. Thus, various algorithms were optimized and several spatial light modulators already characterized for such a task. This work analyses the imaging quality of such a single-pixel arrangement, when various illumination conditions are used. More precisely, the main comparison is made between coherent and incoherent ("white light") illumination and between two multiplexing methods, namely Hadamard and Scanning. The quality of the images is assessed by calculating their SNR, using two relations. The results show better images are obtained with "white light" illumination for the first method and coherent one for the second.

  1. PET and MRI image fusion based on combination of 2-D Hilbert transform and IHS method.

    PubMed

    Haddadpour, Mozhdeh; Daneshvar, Sabalan; Seyedarabi, Hadi

    2017-08-01

    The process of medical image fusion is combining two or more medical images such as Magnetic Resonance Image (MRI) and Positron Emission Tomography (PET) and mapping them to a single image as fused image. So purpose of our study is assisting physicians to diagnose and treat the diseases in the least of the time. We used Magnetic Resonance Image (MRI) and Positron Emission Tomography (PET) as input images, so fused them based on combination of two dimensional Hilbert transform (2-D HT) and Intensity Hue Saturation (IHS) method. Evaluation metrics that we apply are Discrepancy (D k ) as an assessing spectral features and Average Gradient (AG k ) as an evaluating spatial features and also Overall Performance (O.P) to verify properly of the proposed method. In this paper we used three common evaluation metrics like Average Gradient (AG k ) and the lowest Discrepancy (D k ) and Overall Performance (O.P) to evaluate the performance of our method. Simulated and numerical results represent the desired performance of proposed method. Since that the main purpose of medical image fusion is preserving both spatial and spectral features of input images, so based on numerical results of evaluation metrics such as Average Gradient (AG k ), Discrepancy (D k ) and Overall Performance (O.P) and also desired simulated results, it can be concluded that our proposed method can preserve both spatial and spectral features of input images. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  2. Introducing the depth transfer curve for 3D capture system characterization

    NASA Astrophysics Data System (ADS)

    Goma, Sergio R.; Atanassov, Kalin; Ramachandra, Vikas

    2011-03-01

    3D technology has recently made a transition from movie theaters to consumer electronic devices such as 3D cameras and camcorders. In addition to what 2D imaging conveys, 3D content also contains information regarding the scene depth. Scene depth is simulated through the strongest brain depth cue, namely retinal disparity. This can be achieved by capturing an image by horizontally separated cameras. Objects at different depths will be projected with different horizontal displacement on the left and right camera images. These images, when fed separately to either eye, leads to retinal disparity. Since the perception of depth is the single most important 3D imaging capability, an evaluation procedure is needed to quantify the depth capture characteristics. Evaluating depth capture characteristics subjectively is a very difficult task since the intended and/or unintended side effects from 3D image fusion (depth interpretation) by the brain are not immediately perceived by the observer, nor do such effects lend themselves easily to objective quantification. Objective evaluation of 3D camera depth characteristics is an important tool that can be used for "black box" characterization of 3D cameras. In this paper we propose a methodology to evaluate the 3D cameras' depth capture capabilities.

  3. Synthesis and identification of three-dimensional faces from image(s) and three-dimensional generic models

    NASA Astrophysics Data System (ADS)

    Liu, Zexi; Cohen, Fernand

    2017-11-01

    We describe an approach for synthesizing a three-dimensional (3-D) face structure from an image or images of a human face taken at a priori unknown poses using gender and ethnicity specific 3-D generic models. The synthesis process starts with a generic model, which is personalized as images of the person become available using preselected landmark points that are tessellated to form a high-resolution triangular mesh. From a single image, two of the three coordinates of the model are reconstructed in accordance with the given image of the person, while the third coordinate is sampled from the generic model, and the appearance is made in accordance with the image. With multiple images, all coordinates and appearance are reconstructed in accordance with the observed images. This method allows for accurate pose estimation as well as face identification in 3-D rendering of a difficult two-dimensional (2-D) face recognition problem into a much simpler 3-D surface matching problem. The estimation of the unknown pose is achieved using the Levenberg-Marquardt optimization process. Encouraging experimental results are obtained in a controlled environment with high-resolution images under a good illumination condition, as well as for images taken in an uncontrolled environment under arbitrary illumination with low-resolution cameras.

  4. Breast segmentation in MR images using three-dimensional spiral scanning and dynamic programming

    NASA Astrophysics Data System (ADS)

    Jiang, Luan; Lian, Yanyun; Gu, Yajia; Li, Qiang

    2013-03-01

    Magnetic resonance (MR) imaging has been widely used for risk assessment and diagnosis of breast cancer in clinic. To develop a computer-aided diagnosis (CAD) system, breast segmentation is the first important and challenging task. The accuracy of subsequent quantitative measurement of breast density and abnormalities depends on accurate definition of the breast area in the images. The purpose of this study is to develop and evaluate a fully automated method for accurate segmentation of breast in three-dimensional (3-D) MR images. A fast method was developed to identify bounding box, i.e., the volume of interest (VOI), for breasts. A 3-D spiral scanning method was used to transform the VOI of each breast into a single two-dimensional (2-D) generalized polar-coordinate image. Dynamic programming technique was applied to the transformed 2-D image for delineating the "optimal" contour of the breast. The contour of the breast in the transformed 2-D image was utilized to reconstruct the segmentation results in the 3-D MR images using interpolation and lookup table. The preliminary results on 17 cases show that the proposed method can obtain accurate segmentation of the breast based on subjective observation. By comparing with the manually delineated region of 16 breasts in 8 cases, an overlap index of 87.6% +/- 3.8% (mean +/- SD), and a volume agreement of 93.4% +/- 4.5% (mean +/- SD) were achieved, respectively. It took approximately 3 minutes for our method to segment the breast in an MR scan of 256 slices.

  5. Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography

    PubMed Central

    Liang, Jinyang; Gao, Liang; Hai, Pengfei; Li, Chiye; Wang, Lihong V.

    2015-01-01

    Compressed ultrafast photography (CUP), a computational imaging technique, is synchronized with short-pulsed laser illumination to enable dynamic three-dimensional (3D) imaging. By leveraging the time-of-flight (ToF) information of pulsed light backscattered by the object, ToF-CUP can reconstruct a volumetric image from a single camera snapshot. In addition, the approach unites the encryption of depth data with the compressed acquisition of 3D data in a single snapshot measurement, thereby allowing efficient and secure data storage and transmission. We demonstrated high-speed 3D videography of moving objects at up to 75 volumes per second. The ToF-CUP camera was applied to track the 3D position of a live comet goldfish. We have also imaged a moving object obscured by a scattering medium. PMID:26503834

  6. Dual-modal three-dimensional imaging of single cells with isometric high resolution using an optical projection tomography microscope

    NASA Astrophysics Data System (ADS)

    Miao, Qin; Rahn, J. Richard; Tourovskaia, Anna; Meyer, Michael G.; Neumann, Thomas; Nelson, Alan C.; Seibel, Eric J.

    2009-11-01

    The practice of clinical cytology relies on bright-field microscopy using absorption dyes like hematoxylin and eosin in the transmission mode, while the practice of research microscopy relies on fluorescence microscopy in the epi-illumination mode. The optical projection tomography microscope is an optical microscope that can generate 3-D images of single cells with isometric high resolution both in absorption and fluorescence mode. Although the depth of field of the microscope objective is in the submicron range, it can be extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. Cells suspended in optical gel flow through a custom-designed microcapillary. Multiple pseudoprojection images are taken by rotating the microcapillary. After these pseudoprojection images are further aligned, computed tomography methods are applied to create 3-D reconstruction. 3-D reconstructed images of single cells are shown in both absorption and fluorescence mode. Fluorescence spatial resolution is measured at 0.35 μm in both axial and lateral dimensions. Since fluorescence and absorption images are taken in two different rotations, mechanical error may cause misalignment of 3-D images. This mechanical error is estimated to be within the resolution of the system.

  7. Chemotaxis of cancer cells in three-dimensional environment monitored label-free by quantitative phase digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Schnekenburger, Jürgen; Ketelhut, Steffi

    2017-02-01

    We investigated the capabilities of digital holographic microscopy (DHM) for label-free quantification of the response of living single cells to chemical stimuli in 3D assays. Fibro sarcoma cells were observed in a collagen matrix inside 3D chemotaxis chambers with a Mach-Zehnder interferometer-based DHM setup. From the obtained series of quantitative phase images, the migration trajectories of single cells were retrieved by automated cell tracking and subsequently analyzed for maximum migration distance and motility. Our results demonstrate DHM as a highly reliable and efficient tool for label-free quantification of chemotaxis in 2D and 3D environments.

  8. 3D skin surface reconstruction from a single image by merging global curvature and local texture using the guided filtering for 3D haptic palpation.

    PubMed

    Lee, K; Kim, M; Kim, K

    2018-05-11

    Skin surface evaluation has been studied using various imaging techniques. However, all these studies had limited impact because they were performed using visual exam only. To improve on this scenario with haptic feedback, we propose 3D reconstruction of the skin surface using a single image. Unlike extant 3D skin surface reconstruction algorithms, we utilize the local texture and global curvature regions, combining the results for reconstruction. The first entails the reconstruction of global curvature, achieved by bilateral filtering that removes noise on the surface while maintaining the edge (ie, furrow) to obtain the overall curvature. The second entails the reconstruction of local texture, representing the fine wrinkles of the skin, using an advanced form of bilateral filtering. The final image is then composed by merging the two reconstructed images. We tested the curvature reconstruction part by comparing the resulting curvatures with measured values from real phantom objects while local texture reconstruction was verified by measuring skin surface roughness. Then, we showed the reconstructed result of our proposed algorithm via the reconstruction of various real skin surfaces. The experimental results demonstrate that our approach is a promising technology to reconstruct an accurate skin surface with a single skin image. We proposed 3D skin surface reconstruction using only a single camera. We highlighted the utility of global curvature, which has not been considered important in the past. Thus, we proposed a new method for 3D reconstruction that can be used for 3D haptic palpation, dividing the concepts of local and global regions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Multi-distance diffuse optical spectroscopy with a single optode via hypotrochoidal scanning.

    PubMed

    Applegate, Matthew B; Roblyer, Darren

    2018-02-15

    Frequency-domain diffuse optical spectroscopy (FD-DOS) is an established technique capable of determining optical properties and chromophore concentrations in biological tissue. Most FD-DOS systems use either manually positioned, handheld probes or complex arrays of source and detector fibers to acquire data from many tissue locations, allowing for the generation of 2D or 3D maps of tissue. Here, we present a new method to rapidly acquire a wide range of source-detector (SD) separations by mechanically scanning a single SD pair. The source and detector fibers are mounted on a scan head that traces a hypotrochoidal pattern over the sample that, when coupled with a high-speed FD-DOS system, enables the rapid collection of dozens of SD separations for depth-resolved imaging. We demonstrate that this system has an average error of 4±2.6% in absorption and 2±1.8% in scattering across all SD separations. Additionally, by linearly translating the device, the size and location of an absorbing inhomogeneity can be determined through the generation of B-scan images in a manner conceptually analogous to ultrasound imaging. This work demonstrates the potential of single optode diffuse optical scanning for depth resolved visualization of heterogeneous biological tissues at near real-time rates.

  10. Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells

    PubMed Central

    Kelbauskas, Laimonas; Shetty, Rishabh; Cao, Bin; Wang, Kuo-Chen; Smith, Dean; Wang, Hong; Chao, Shi-Hui; Gangaraju, Sandhya; Ashcroft, Brian; Kritzer, Margaret; Glenn, Honor; Johnson, Roger H.; Meldrum, Deirdre R.

    2017-01-01

    Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of interest to be viewed and measured from any orientation. However, x-ray CT has not been useful at the level of single cells because there is insufficient contrast to form an image. Recently, optical CT has been developed successfully for fixed cells, but this technology called Cell-CT is incompatible with live-cell imaging due to the use of stains, such as hematoxylin, that are not compatible with cell viability. We present a novel development of optical CT for quantitative, multispectral functional 4D (three spatial + one spectral dimension) imaging of living single cells. The method applied to immune system cells offers truly isotropic 3D spatial resolution and enables time-resolved imaging studies of cells suspended in aqueous medium. Using live-cell optical CT, we found a heterogeneous response to mitochondrial fission inhibition in mouse macrophages and differential basal remodeling of small (0.1 to 1 fl) and large (1 to 20 fl) nuclear and mitochondrial structures on a 20- to 30-s time scale in human myelogenous leukemia cells. Because of its robust 3D measurement capabilities, live-cell optical CT represents a powerful new tool in the biomedical research field. PMID:29226240

  11. Volumetric Light-field Encryption at the Microscopic Scale

    PubMed Central

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu

    2017-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale. PMID:28059149

  12. Volumetric Light-field Encryption at the Microscopic Scale

    NASA Astrophysics Data System (ADS)

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu

    2017-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.

  13. Dual lumen transducer probes for real-time 3-D interventional cardiac ultrasound.

    PubMed

    Lee, Warren; Idriss, Salim F; Wolf, Patrick D; Smith, Stephen W

    2003-09-01

    We have developed dual lumen probes incorporating a forward-viewing matrix array transducer with an integrated working lumen for delivery of tools in real-time 3-D (RT3-D) interventional echocardiography. The probes are of 14 Fr and 22 Fr sizes, with 112 channel 2-D arrays operating at 5 MHz. We obtained images of cardiac anatomy and simultaneous interventional device delivery with an in vivo sheep model, including: manipulation of a 0.36-mm diameter guidewire into the coronary sinus, guidance of a transseptal puncture using a 1.2-mm diameter Brockenbrough needle, and guidance of a right ventricular biopsy using 3 Fr biopsy forceps. We have also incorporated the 22 Fr probe within a 6-mm surgical trocar to obtain apical four-chamber ultrasound (US) scans from a subcostal position. Combining the imaging catheter with a working lumen in a single device may simplify cardiac interventional procedures by allowing clinicians to easily visualize cardiac structures and simultaneously direct interventional tools in a RT3-D image.

  14. High resolution human diffusion tensor imaging using 2-D navigated multi-shot SENSE EPI at 7 Tesla

    PubMed Central

    Jeong, Ha-Kyu; Gore, John C.; Anderson, Adam W.

    2012-01-01

    The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 Tesla. Increased off-resonance effects and reduced transverse relaxation times at 7 Tesla, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multi-shot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multi-shot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multi-shot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard SENSE algorithm to account for shot-to-shot phase errors; the method is called Image Reconstruction using Image-space Sampling functions (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 Tesla. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. PMID:22592941

  15. 3D digital image correlation using single color camera pseudo-stereo system

    NASA Astrophysics Data System (ADS)

    Li, Junrui; Dan, Xizuo; Xu, Wan; Wang, Yonghong; Yang, Guobiao; Yang, Lianxiang

    2017-10-01

    Three dimensional digital image correlation (3D-DIC) has been widely used by industry to measure the 3D contour and whole-field displacement/strain. In this paper, a novel single color camera 3D-DIC setup, using a reflection-based pseudo-stereo system, is proposed. Compared to the conventional single camera pseudo-stereo system, which splits the CCD sensor into two halves to capture the stereo views, the proposed system achieves both views using the whole CCD chip and without reducing the spatial resolution. In addition, similarly to the conventional 3D-DIC system, the center of the two views stands in the center of the CCD chip, which minimizes the image distortion relative to the conventional pseudo-stereo system. The two overlapped views in the CCD are separated by the color domain, and the standard 3D-DIC algorithm can be utilized directly to perform the evaluation. The system's principle and experimental setup are described in detail, and multiple tests are performed to validate the system.

  16. Accuracy of UTE-MRI-based patient setup for brain cancer radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yingli; Cao, Minsong; Kaprealian, Tania

    2016-01-15

    Purpose: Radiation therapy simulations solely based on MRI have advantages compared to CT-based approaches. One feature readily available from computed tomography (CT) that would need to be reproduced with MR is the ability to compute digitally reconstructed radiographs (DRRs) for comparison against on-board radiographs commonly used for patient positioning. In this study, the authors generate MR-based bone images using a single ultrashort echo time (UTE) pulse sequence and quantify their 3D and 2D image registration accuracy to CT and radiographic images for treatments in the cranium. Methods: Seven brain cancer patients were scanned at 1.5 T using a radial UTEmore » sequence. The sequence acquired two images at two different echo times. The two images were processed using an in-house software to generate the UTE bone images. The resultant bone images were rigidly registered to simulation CT data and the registration error was determined using manually annotated landmarks as references. DRRs were created based on UTE-MRI and registered to simulated on-board images (OBIs) and actual clinical 2D oblique images from ExacTrac™. Results: UTE-MRI resulted in well visualized cranial, facial, and vertebral bones that quantitatively matched the bones in the CT images with geometric measurement errors of less than 1 mm. The registration error between DRRs generated from 3D UTE-MRI and the simulated 2D OBIs or the clinical oblique x-ray images was also less than 1 mm for all patients. Conclusions: UTE-MRI-based DRRs appear to be promising for daily patient setup of brain cancer radiotherapy with kV on-board imaging.« less

  17. Near-isotropic 3D optical nanoscopy with photon-limited chromophores

    PubMed Central

    Tang, Jianyong; Akerboom, Jasper; Vaziri, Alipasha; Looger, Loren L.; Shank, Charles V.

    2010-01-01

    Imaging approaches based on single molecule localization break the diffraction barrier of conventional fluorescence microscopy, allowing for bioimaging with nanometer resolution. It remains a challenge, however, to precisely localize photon-limited single molecules in 3D. We have developed a new localization-based imaging technique achieving almost isotropic subdiffraction resolution in 3D. A tilted mirror is used to generate a side view in addition to the front view of activated single emitters, allowing their 3D localization to be precisely determined for superresolution imaging. Because both front and side views are in focus, this method is able to efficiently collect emitted photons. The technique is simple to implement on a commercial fluorescence microscope, and especially suitable for biological samples with photon-limited chromophores such as endogenously expressed photoactivatable fluorescent proteins. Moreover, this method is relatively resistant to optical aberration, as it requires only centroid determination for localization analysis. Here we demonstrate the application of this method to 3D imaging of bacterial protein distribution and neuron dendritic morphology with subdiffraction resolution. PMID:20472826

  18. Efficient dense blur map estimation for automatic 2D-to-3D conversion

    NASA Astrophysics Data System (ADS)

    Vosters, L. P. J.; de Haan, G.

    2012-03-01

    Focus is an important depth cue for 2D-to-3D conversion of low depth-of-field images and video. However, focus can be only reliably estimated on edges. Therefore, Bea et al. [1] first proposed an optimization based approach to propagate focus to non-edge image portions, for single image focus editing. While their approach produces accurate dense blur maps, the computational complexity and memory requirements for solving the resulting sparse linear system with standard multigrid or (multilevel) preconditioning techniques, are infeasible within the stringent requirements of the consumer electronics and broadcast industry. In this paper we propose fast, efficient, low latency, line scanning based focus propagation, which mitigates the need for complex multigrid or (multilevel) preconditioning techniques. In addition we propose facial blur compensation to compensate for false shading edges that cause incorrect blur estimates in people's faces. In general shading leads to incorrect focus estimates, which may lead to unnatural 3D and visual discomfort. Since visual attention mostly tends to faces, our solution solves the most distracting errors. A subjective assessment by paired comparison on a set of challenging low-depth-of-field images shows that the proposed approach achieves equal 3D image quality as optimization based approaches, and that facial blur compensation results in a significant improvement.

  19. Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy

    PubMed Central

    Young, Jonathan W; Locke, James C W; Altinok, Alphan; Rosenfeld, Nitzan; Bacarian, Tigran; Swain, Peter S; Mjolsness, Eric; Elowitz, Michael B

    2014-01-01

    Quantitative single-cell time-lapse microscopy is a powerful method for analyzing gene circuit dynamics and heterogeneous cell behavior. We describe the application of this method to imaging bacteria by using an automated microscopy system. This protocol has been used to analyze sporulation and competence differentiation in Bacillus subtilis, and to quantify gene regulation and its fluctuations in individual Escherichia coli cells. The protocol involves seeding and growing bacteria on small agarose pads and imaging the resulting microcolonies. Images are then reviewed and analyzed using our laboratory's custom MATLAB analysis code, which segments and tracks cells in a frame-to-frame method. This process yields quantitative expression data on cell lineages, which can illustrate dynamic expression profiles and facilitate mathematical models of gene circuits. With fast-growing bacteria, such as E. coli or B. subtilis, image acquisition can be completed in 1 d, with an additional 1–2 d for progressing through the analysis procedure. PMID:22179594

  20. Three-dimensional T1 and T2* mapping of human lung parenchyma using interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE).

    PubMed

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-04-01

    To develop and assess a new technique for three-dimensional (3D) full lung T1 and T2* mapping using a single free breathing scan during a clinically feasible time. A 3D stack of dual-echo ultrashort echo time (UTE) radial acquisition interleaved with and without a WET (water suppression enhanced through T1 effects) saturation pulse was used to map T1 and T2* simultaneously in a single scan. Correction for modulation due to multiple views per segment was derived. Bloch simulations were performed to study saturation pulse excitation profile on lung tissue. Optimization of the saturation delay time (for T1 mapping) and echo time (for T2* mapping) was performed. Monte Carlo simulation was done to predict accuracy and precision of the sequence with signal-to-noise ratio of in vivo images used in the simulation. A phantom study was carried out using the 3D interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE) sequence and reference standard inversion recovery spin echo sequence (IR-SE) to compare accuracy of the sequence. Nine healthy volunteers were imaged and mean (SD) of T1 and T2* in lung parenchyma at 3T were estimated through manually assisted segmentation. 3D lung coverage with a resolution of 2.5 × 2.5 × 6 mm 3 was performed and nominal scan time was recorded for the scans. Repeatability was assessed in three of the volunteers. Regional differences in T1/T2* values were also assessed. The phantom study showed accuracy of T1 values to be within 2.3% of values obtained from IR-SE. Mean T1 value in lung parenchyma was 1002 ± 82 ms while T2* was 0.85 ± 0.1 ms. Scan time was ∼10 min for volunteer scans. Mean coefficient of variation (CV) across slices was 0.057 and 0.09, respectively. Regional variation along the gravitational direction and between right and left lung were not significant (P = 0.25 and P = 0.06, respectively) for T1. T2* showed significant variation (P = 0.03) along the gravitational direction. Repeatability for three volunteers was within 0.7% for T1 and 1.9% for T2*. 3D T1 and T2* maps of the entire lung can be obtained in a single scan of ∼10 min with a resolution of 2.5 × 2.5 × 6 mm 3 . 2 J. Magn. Reson. Imaging 2017;45:1097-1104. 2016 International Society for Magnetic Resonance in Medicine.

  1. Cryo-imaging of fluorescently labeled single cells in a mouse

    NASA Astrophysics Data System (ADS)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron-scale, fluorescence, and bright field image data. Here we describe our image preprocessing, analysis, and visualization techniques. Processing improves axial resolution, reduces subsurface fluorescence by 97%, and enables single cell detection and counting. High quality 3D volume renderings enable us to evaluate cell distribution patterns. Applications include the myriad of biomedical experiments using fluorescent reporter gene and exogenous fluorophore labeling of cells in applications such as stem cell regenerative medicine, cancer, tissue engineering, etc.

  2. Chiral Asymmetric Structures in Aspartic Acid and Valine Crystals Assessed by Atomic Force Microscopy.

    PubMed

    Teschke, Omar; Soares, David Mendez

    2016-03-29

    Structures of crystallized deposits formed by the molecular self-assembly of aspartic acid and valine on silicon substrates were imaged by atomic force microscopy. Images of d- and l-aspartic acid crystal surfaces showing extended molecularly flat sheets or regions separated by single molecule thick steps are presented. Distinct orientation surfaces were imaged, which, combined with the single molecule step size, defines the geometry of the crystal. However, single molecule step growth also reveals the crystal chirality, i.e., growth orientations. The imaged ordered lattice of aspartic acid (asp) and valine (val) mostly revealed periodicities corresponding to bulk terminations, but a previously unreported molecular hexagonal lattice configuration was observed for both l-asp and l-val but not for d-asp or d-val. Atomic force microscopy can then be used to identify the different chiral forms of aspartic acid and valine crystals.

  3. Geiger-mode APD camera system for single-photon 3D LADAR imaging

    NASA Astrophysics Data System (ADS)

    Entwistle, Mark; Itzler, Mark A.; Chen, Jim; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir

    2012-06-01

    The unparalleled sensitivity of 3D LADAR imaging sensors based on single photon detection provides substantial benefits for imaging at long stand-off distances and minimizing laser pulse energy requirements. To obtain 3D LADAR images with single photon sensitivity, we have demonstrated focal plane arrays (FPAs) based on InGaAsP Geiger-mode avalanche photodiodes (GmAPDs) optimized for use at either 1.06 μm or 1.55 μm. These state-of-the-art FPAs exhibit excellent pixel-level performance and the capability for 100% pixel yield on a 32 x 32 format. To realize the full potential of these FPAs, we have recently developed an integrated camera system providing turnkey operation based on FPGA control. This system implementation enables the extremely high frame-rate capability of the GmAPD FPA, and frame rates in excess of 250 kHz (for 0.4 μs range gates) can be accommodated using an industry-standard CameraLink interface in full configuration. Real-time data streaming for continuous acquisition of 2 μs range gate point cloud data with 13-bit time-stamp resolution at 186 kHz frame rates has been established using multiple solid-state storage drives. Range gate durations spanning 4 ns to 10 μs provide broad operational flexibility. The camera also provides real-time signal processing in the form of multi-frame gray-scale contrast images and single-frame time-stamp histograms, and automated bias control has been implemented to maintain a constant photon detection efficiency in the presence of ambient temperature changes. A comprehensive graphical user interface has been developed to provide complete camera control using a simple serial command set, and this command set supports highly flexible end-user customization.

  4. Analog signal processing for optical coherence imaging systems

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    Optical coherence tomography (OCT) and optical coherence microscopy (OCM) are non-invasive optical coherence imaging techniques, which enable micron-scale resolution, depth resolved imaging capability. Both OCT and OCM are based on Michelson interferometer theory. They are widely used in ophthalmology, gastroenterology and dermatology, because of their high resolution, safety and low cost. OCT creates cross sectional images whereas OCM obtains en face images. In this dissertation, the design and development of three increasingly complicated analog signal processing (ASP) solutions for optical coherence imaging are presented. The first ASP solution was implemented for a time domain OCT system with a Rapid Scanning Optical Delay line (RSOD)-based optical signal modulation and logarithmic amplifier (Log amp) based demodulation. This OCT system can acquire up to 1600 A-scans per second. The measured dynamic range is 106dB at 200A-scan per second. This OCT signal processing electronics includes an off-the-shelf filter box with a Log amp circuit implemented on a PCB board. The second ASP solution was developed for an OCM system with synchronized modulation and demodulation and compensation for interferometer phase drift. This OCM acquired micron-scale resolution, high dynamic range images at acquisition speeds up to 45,000 pixels/second. This OCM ASP solution is fully custom designed on a perforated circuit board. The third ASP solution was implemented on a single 2.2 mm x 2.2 mm complementary metal oxide semiconductor (CMOS) chip. This design is expandable to a multiple channel OCT system. A single on-chip CMOS photodetector and ASP channel was used for coherent demodulation in a time domain OCT system. Cross-sectional images were acquired with a dynamic range of 76dB (limited by photodetector responsivity). When incorporated with a bump-bonded InGaAs photodiode with higher responsivity, the expected dynamic range is close to 100dB.

  5. Colorization and Automated Segmentation of Human T2 MR Brain Images for Characterization of Soft Tissues

    PubMed Central

    Attique, Muhammad; Gilanie, Ghulam; Hafeez-Ullah; Mehmood, Malik S.; Naweed, Muhammad S.; Ikram, Masroor; Kamran, Javed A.; Vitkin, Alex

    2012-01-01

    Characterization of tissues like brain by using magnetic resonance (MR) images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i) a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii) a segmentation method (both hard and soft segmentation) to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using prior anatomical knowledge). Results have been successfully validated on human T2-weighted (T2) brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described. PMID:22479421

  6. Dual optimization based prostate zonal segmentation in 3D MR images.

    PubMed

    Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron

    2014-05-01

    Efficient and accurate segmentation of the prostate and two of its clinically meaningful sub-regions: the central gland (CG) and peripheral zone (PZ), from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, a novel multi-region segmentation approach is proposed to simultaneously segment the prostate and its two major sub-regions from only a single 3D T2-weighted (T2w) MR image, which makes use of the prior spatial region consistency and incorporates a customized prostate appearance model into the segmentation task. The formulated challenging combinatorial optimization problem is solved by means of convex relaxation, for which a novel spatially continuous max-flow model is introduced as the dual optimization formulation to the studied convex relaxed optimization problem with region consistency constraints. The proposed continuous max-flow model derives an efficient duality-based algorithm that enjoys numerical advantages and can be easily implemented on GPUs. The proposed approach was validated using 18 3D prostate T2w MR images with a body-coil and 25 images with an endo-rectal coil. Experimental results demonstrate that the proposed method is capable of efficiently and accurately extracting both the prostate zones: CG and PZ, and the whole prostate gland from the input 3D prostate MR images, with a mean Dice similarity coefficient (DSC) of 89.3±3.2% for the whole gland (WG), 82.2±3.0% for the CG, and 69.1±6.9% for the PZ in 3D body-coil MR images; 89.2±3.3% for the WG, 83.0±2.4% for the CG, and 70.0±6.5% for the PZ in 3D endo-rectal coil MR images. In addition, the experiments of intra- and inter-observer variability introduced by user initialization indicate a good reproducibility of the proposed approach in terms of volume difference (VD) and coefficient-of-variation (CV) of DSC. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Two- versus three-dimensional imaging in subjects with unerupted maxillary canines.

    PubMed

    Botticelli, Susanna; Verna, Carlalberta; Cattaneo, Paolo M; Heidmann, Jens; Melsen, Birte

    2011-08-01

    The aim of this study was to evaluate whether there is any difference in the diagnostic information provided by conventional two-dimensional (2D) images or by three-dimensional (3D) cone beam computed tomography (CBCT) in subjects with unerupted maxillary canines. Twenty-seven patients (17 females and 10 males, mean age 11.8 years) undergoing orthodontic treatment with 39 impacted or retained maxillary canines were included. For each canine, two different digital image sets were obtained: (1) A 2D image set including a panoramic radiograph, a lateral cephalogram, and the available periapical radiographs with different projections and (2) A 3D image set obtained with CBCT. Both sets of images were submitted, in a single-blind randomized order, to eight dentists. A questionnaire was used to assess the position of the canine, the presence of root resorption, the difficulty of the case, treatment choice options, and the quality of the images. Data analysis was performed using the McNemar-Bowker test for paired data, Kappa statistics, and paired t-tests. The findings demonstrated a difference in the localization of the impacted canines between the two techniques, which can be explained by factors affecting the conventional 2D radiographs such as distortion, magnification, and superimposition of anatomical structures situated in different planes of space. The increased precision in the localization of the canines and the improved estimation of the space conditions in the arch obtained with CBCT resulted in a difference in diagnosis and treatment planning towards a more clinically orientated approach.

  8. 3-D airborne ultrasound synthetic aperture imaging based on capacitive micromachined ultrasonic transducers.

    PubMed

    Park, Kwan Kyu; Khuri-Yakub, Butrus T

    2013-09-01

    In this paper, we present an airborne 3-D volumetric imaging system based on capacitive micromachined ultrasonic transducers (CMUTs). For this purpose we fabricated 89-kHz CMUTs where each CMUT is made of a circular single-crystal silicon plate with a radius of 1mm and a thickness of 20 μm, which is actuated by electrostatic force through a 20-μm vacuum gap. The measured transmit sensitivity at 300-V DC bias is 14.6 Pa/V and 24.2 Pa/V, when excited by a 30-cycle burst and a continuous wave, respectively. The measured receive sensitivity at 300-V DC bias is 16.6 mV/Pa (-35.6 dB re 1 V/Pa) for a 30-cycle burst. A 26×26 2-D array was implemented by mechanical scanning a co-located transmitter and receiver using the classic synthetic aperture (CSA) method. The measurement of a 1.6λ-size target at a distance of 500 mm presented a lateral resolution of 3.17° and also showed good agreement with the theoretical point spread function. The 3-D imaging of two plates at a distance of 350 mm and 400 mm was constructed to exhibit the capability of the imaging system. This study experimentally demonstrates that a 2-D CMUT array can be used for practical 3-D imaging applications in air, such as a human-machine interface. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. High-resolution gadolinium-enhanced 3D MRA of the infrapopliteal arteries. Lessons for improving bolus-chase peripheral MRA.

    PubMed

    Hood, Maureen N; Ho, Vincent B; Foo, Thomas K F; Marcos, Hani B; Hess, Sandra L; Choyke, Peter L

    2002-09-01

    Peripheral magnetic resonance angiography (MRA) is growing in use. However, methods of performing peripheral MRA vary widely and continue to be optimized, especially for improvement in illustration of infrapopliteal arteries. The main purpose of this project was to identify imaging factors that can improve arterial visualization in the lower leg using bolus chase peripheral MRA. Eighteen healthy adults were imaged on a 1.5T MR scanner. The calf was imaged using conventional three-station bolus chase three-dimensional (3D) MRA, two dimensional (2D) time-of-flight (TOF) MRA and single-station Gadolinium (Gd)-enhanced 3D MRA. Observer comparisons of vessel visualization, signal to noise ratios (SNR), contrast to noise ratios (CNR) and spatial resolution comparisons were performed. Arterial SNR and CNR were similar for all three techniques. However, arterial visualization was dramatically improved on dedicated, arterial-phase Gd-enhanced 3D MRA compared with the multi-station bolus chase MRA and 2D TOF MRA. This improvement was related to optimization of Gd-enhanced 3D MRA parameters (fast injection rate of 2 mL/sec, high spatial resolution imaging, the use of dedicated phased array coils, elliptical centric k-space sampling and accurate arterial phase timing for image acquisition). The visualization of the infrapopliteal arteries can be substantially improved in bolus chase peripheral MRA if voxel size, contrast delivery, and central k-space data acquisition for arterial enhancement are optimized. Improvements in peripheral MRA should be directed at these parameters.

  10. Novel fusion for hybrid optical/microcomputed tomography imaging based on natural light surface reconstruction and iterated closest point

    NASA Astrophysics Data System (ADS)

    Ning, Nannan; Tian, Jie; Liu, Xia; Deng, Kexin; Wu, Ping; Wang, Bo; Wang, Kun; Ma, Xibo

    2014-02-01

    In mathematics, optical molecular imaging including bioluminescence tomography (BLT), fluorescence tomography (FMT) and Cerenkov luminescence tomography (CLT) are concerned with a similar inverse source problem. They all involve the reconstruction of the 3D location of a single/multiple internal luminescent/fluorescent sources based on 3D surface flux distribution. To achieve that, an accurate fusion between 2D luminescent/fluorescent images and 3D structural images that may be acquired form micro-CT, MRI or beam scanning is extremely critical. However, the absence of a universal method that can effectively convert 2D optical information into 3D makes the accurate fusion challengeable. In this study, to improve the fusion accuracy, a new fusion method for dual-modality tomography (luminescence/fluorescence and micro-CT) based on natural light surface reconstruction (NLSR) and iterated closest point (ICP) was presented. It consisted of Octree structure, exact visual hull from marching cubes and ICP. Different from conventional limited projection methods, it is 360° free-space registration, and utilizes more luminescence/fluorescence distribution information from unlimited multi-orientation 2D optical images. A mouse mimicking phantom (one XPM-2 Phantom Light Source, XENOGEN Corporation) and an in-vivo BALB/C mouse with implanted one luminescent light source were used to evaluate the performance of the new fusion method. Compared with conventional fusion methods, the average error of preset markers was improved by 0.3 and 0.2 pixels from the new method, respectively. After running the same 3D internal light source reconstruction algorithm of the BALB/C mouse, the distance error between the actual and reconstructed internal source was decreased by 0.19 mm.

  11. A Dual-Layer Transducer Array for 3-D Rectilinear Imaging

    PubMed Central

    Yen, Jesse T.; Seo, Chi Hyung; Awad, Samer I.; Jeong, Jong S.

    2010-01-01

    2-D arrays for 3-D rectilinear imaging require very large element counts (16,000–65,000). The difficulties in fabricating and interconnecting 2-D arrays with a large number of elements (>5,000) have limited the development of suitable transducers for 3-D rectilinear imaging. In this paper, we propose an alternative solution to this problem by using a dual-layer transducer array design. This design consists of two perpendicular 1-D arrays for clinical 3-D imaging of targets near the transducer. These targets include the breast, carotid artery, and musculoskeletal system. This transducer design reduces the fabrication complexity and the channel count making 3-D rectilinear imaging more realizable. With this design, an effective N × N 2-D array can be developed using only N transmitters and N receivers. This benefit becomes very significant when N becomes greater than 128, for example. To demonstrate feasibility, we constructed a 4 × 4 cm prototype dual-layer array. The transmit array uses diced PZT-5H elements, and the receive array is a single sheet of undiced P[VDF-TrFE] copolymer. The receive elements are defined by the copper traces on the flexible interconnect circuit. The measured −6 dB fractional bandwidth was 80% with a center frequency of 4.8 MHz. At 5 MHz, the nearest neighbor crosstalk of the PZT array and PVDF array was −30.4 ± 3.1 dB and −28.8 ± 3.7 dB respectively. This dual-layer transducer was interfaced with an Ultrasonix Sonix RP system, and a synthetic aperture 3-D data set was acquired. We then performed off-line 3-D beamforming to obtain volumes of nylon wire targets. The theoretical lateral beamwidth was 0.52 mm compared to measured beamwidths of 0.65 mm and 0.67 mm in azimuth and elevation respectively. 3-D images of an 8 mm diameter anechoic cyst phantom were also acquired. PMID:19213647

  12. Abdominal 4D flow MR imaging in a breath hold: combination of spiral sampling and dynamic compressed sensing for highly accelerated acquisition.

    PubMed

    Dyvorne, Hadrien; Knight-Greenfield, Ashley; Jajamovich, Guido; Besa, Cecilia; Cui, Yong; Stalder, Aurélien; Markl, Michael; Taouli, Bachir

    2015-04-01

    To develop a highly accelerated phase-contrast cardiac-gated volume flow measurement (four-dimensional [4D] flow) magnetic resonance (MR) imaging technique based on spiral sampling and dynamic compressed sensing and to compare this technique with established phase-contrast imaging techniques for the quantification of blood flow in abdominal vessels. This single-center prospective study was compliant with HIPAA and approved by the institutional review board. Ten subjects (nine men, one woman; mean age, 51 years; age range, 30-70 years) were enrolled. Seven patients had liver disease. Written informed consent was obtained from all participants. Two 4D flow acquisitions were performed in each subject, one with use of Cartesian sampling with respiratory tracking and the other with use of spiral sampling and a breath hold. Cartesian two-dimensional (2D) cine phase-contrast images were also acquired in the portal vein. Two observers independently assessed vessel conspicuity on phase-contrast three-dimensional angiograms. Quantitative flow parameters were measured by two independent observers in major abdominal vessels. Intertechnique concordance was quantified by using Bland-Altman and logistic regression analyses. There was moderate to substantial agreement in vessel conspicuity between 4D flow acquisitions in arteries and veins (κ = 0.71 and 0.61, respectively, for observer 1; κ = 0.71 and 0.44 for observer 2), whereas more artifacts were observed with spiral 4D flow (κ = 0.30 and 0.20). Quantitative measurements in abdominal vessels showed good equivalence between spiral and Cartesian 4D flow techniques (lower bound of the 95% confidence interval: 63%, 77%, 60%, and 64% for flow, area, average velocity, and peak velocity, respectively). For portal venous flow, spiral 4D flow was in better agreement with 2D cine phase-contrast flow (95% limits of agreement: -8.8 and 9.3 mL/sec, respectively) than was Cartesian 4D flow (95% limits of agreement: -10.6 and 14.6 mL/sec). The combination of highly efficient spiral sampling with dynamic compressed sensing results in major acceleration for 4D flow MR imaging, which allows comprehensive assessment of abdominal vessel hemodynamics in a single breath hold.

  13. Hydrothermal synthesis of ultralong and single-crystalline Cd(OH)2 nanowires using alkali salts as mineralizers.

    PubMed

    Tang, Bo; Zhuo, Linhai; Ge, Jiechao; Niu, Jinye; Shi, Zhiqiang

    2005-04-18

    Ultralong and single-crystalline Cd(OH)(2) nanowires were fabricated by a hydrothermal method using alkali salts as mineralizers. The morphology and size of the final products strongly depend on the effects of the alkali salts (e.g., KCl, KNO(3), and K(2)SO(4) or NaCl, NaNO(3), and Na(2)SO(4)). When the salt is absent, only nanoparticles are observed in TEM images of the products. The 1D nanostructure growth method presented herein offers an excellent tool for the design of other advanced materials with anisotropic properties. In addition, the Cd(OH)(2) nanowires might act as a template or precursor that is potentially converted into 1D cadmium oxide through dehydration or into 1D nanostructures of other functional materials (e.g., CdS, CdSe).

  14. Dynamic Human Body Modeling Using a Single RGB Camera.

    PubMed

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-03-18

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.

  15. Dynamic Human Body Modeling Using a Single RGB Camera

    PubMed Central

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-01-01

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones. PMID:26999159

  16. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-07

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  17. Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, D J; Smith, R F; Bolme, C

    2011-03-23

    We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISARmore » optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.« less

  18. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).

    PubMed

    Phillips, Zachary F; Chen, Michael; Waller, Laura

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  19. Patient-specific 3D models created by 3D imaging system or bi-planar imaging coupled with Moiré-Fringe projections: a comparative study of accuracy and reliability on spinal curvatures and vertebral rotation data.

    PubMed

    Hocquelet, Arnaud; Cornelis, François; Jirot, Anna; Castaings, Laurent; de Sèze, Mathieu; Hauger, Olivier

    2016-10-01

    The aim of this study is to compare the accuracy and reliability of spinal curvatures and vertebral rotation data based on patient-specific 3D models created by 3D imaging system or by bi-planar imaging coupled with Moiré-Fringe projections. Sixty-two consecutive patients from a single institution were prospectively included. For each patient, frontal and sagittal calibrated low-dose bi-planar X-rays were performed and coupled simultaneously with an optical Moiré back surface-based technology. The 3D reconstructions of spine and pelvis were performed independently by one radiologist and one technician in radiology using two different semi-automatic methods using 3D radio-imaging system (method 1) or bi-planar imaging coupled with Moiré projections (method 2). Both methods were compared using Bland-Altman analysis, and reliability using intraclass correlation coefficient (ICC). ICC showed good to very good agreement. Between the two techniques, the maximum 95 % prediction limits was -4.9° degrees for the measurements of spinal coronal curves and less than 5° for other parameters. Inter-rater reliability was excellent for all parameters across both methods, except for axial rotation with method 2 for which ICC was fair. Method 1 was faster for reconstruction time than method 2 for both readers (13.4 vs. 20.7 min and 10.6 vs. 13.9 min; p = 0.0001). While a lower accuracy was observed for the evaluation of the axial rotation, bi-planar imaging coupled with Moiré-Fringe projections may be an accurate and reliable tool to perform 3D reconstructions of the spine and pelvis.

  20. Implicit multiplane 3D camera calibration matrices for stereo image processing

    NASA Astrophysics Data System (ADS)

    McKee, James W.; Burgett, Sherrie J.

    1997-12-01

    By implicit camera calibration, we mean the process of calibrating cameras without explicitly computing their physical parameters. We introduce a new implicit model based on a generalized mapping between an image plane and multiple, parallel calibration planes (usually between four to seven planes). This paper presents a method of computing a relationship between a point on a three-dimensional (3D) object and its corresponding two-dimensional (2D) coordinate in a camera image. This relationship is expanded to form a mapping of points in 3D space to points in image (camera) space and visa versa that requires only matrix multiplication operations. This paper presents the rationale behind the selection of the forms of four matrices and the algorithms to calculate the parameters for the matrices. Two of the matrices are used to map 3D points in object space to 2D points on the CCD camera image plane. The other two matrices are used to map 2D points on the image plane to points on user defined planes in 3D object space. The mappings include compensation for lens distortion and measurement errors. The number of parameters used can be increased, in a straight forward fashion, to calculate and use as many parameters as needed to obtain a user desired accuracy. Previous methods of camera calibration use a fixed number of parameters which can limit the obtainable accuracy and most require the solution of nonlinear equations. The procedure presented can be used to calibrate a single camera to make 2D measurements or calibrate stereo cameras to make 3D measurements. Positional accuracy of better than 3 parts in 10,000 have been achieved. The algorithms in this paper were developed and are implemented in MATLABR (registered trademark of The Math Works, Inc.). We have developed a system to analyze the path of optical fiber during high speed payout (unwinding) of optical fiber off a bobbin. This requires recording and analyzing high speed (5 microsecond exposure time), synchronous, stereo images of the optical fiber during payout. A 3D equation for the fiber at an instant in time is calculated from the corresponding pair of stereo images as follows. In each image, about 20 points along the 2D projection of the fiber are located. Each of these 'fiber points' in one image is mapped to its projection line in 3D space. Each projection line is mapped into another line in the second image. The intersection of each mapped projection line and a curve fitted to the fiber points of the second image (fiber projection in second image) is calculated. Each intersection point is mapped back to the 3D space. A 3D fiber coordinate is formed from the intersection, in 3D space, of a mapped intersection point with its corresponding projection line. The 3D equation for the fiber is computed from this ordered list of 3D coordinates. This process requires a method of accurately mapping 2D (image space) to 3D (object space) and visa versa.3173

  1. Relating transverse ray error and light fields in plenoptic camera images

    NASA Astrophysics Data System (ADS)

    Schwiegerling, Jim; Tyo, J. Scott

    2013-09-01

    Plenoptic cameras have emerged in recent years as a technology for capturing light field data in a single snapshot. A conventional digital camera can be modified with the addition of a lenslet array to create a plenoptic camera. The camera image is focused onto the lenslet array. The lenslet array is placed over the camera sensor such that each lenslet forms an image of the exit pupil onto the sensor. The resultant image is an array of circular exit pupil images, each corresponding to the overlying lenslet. The position of the lenslet encodes the spatial information of the scene, whereas as the sensor pixels encode the angular information for light incident on the lenslet. The 4D light field is therefore described by the 2D spatial information and 2D angular information captured by the plenoptic camera. In aberration theory, the transverse ray error relates the pupil coordinates of a given ray to its deviation from the ideal image point in the image plane and is consequently a 4D function as well. We demonstrate a technique for modifying the traditional transverse ray error equations to recover the 4D light field of a general scene. In the case of a well corrected optical system, this light field is easily related to the depth of various objects in the scene. Finally, the effects of sampling with both the lenslet array and the camera sensor on the 4D light field data are analyzed to illustrate the limitations of such systems.

  2. Phosphoglucoisomerase-catalyzed interconversion of hexose phosphates. Study by 13C NMR of proton and deuteron exchange.

    PubMed

    Malaisse, W J; Liemans, V; Malaisse-Lagae, F; Ottinger, R; Willem, R

    1991-05-15

    The exchange of protons and deuterons by phosphoglucoisomerase during the single passage conversion of D-[2-13C,1-2H]fructose 6-phosphate in H2O or D-[2-13C]fructose 6-phosphate in D2O to D-[2-13C]glucose 6-phosphate, as coupled with the further generation of 6-phospho-D-[2-13C]gluconate in the presence of excess glucose-6-phosphate dehydrogenase was investigated by 13C NMR spectroscopy of the latter metabolite. In H2O, the intramolecular deuteron transfer from the C1 of D-fructose 6-phosphate to the C2 of D-glucose 6-phosphate amounted to 65%, a value only slightly lower than the 72% intramolecular proton transfer in D2O. Both percentages, especially the latter one, were lower than those previously recorded during the single passage conversion of D-[1-13C,2-2H]glucose 6-phosphate in H2O or D-[1-13C]glucose 6-phosphate in D2O to D-fructose 6-phosphate and then to D-fructose 1,6-bisphosphate. These differences indicate that the sequence of interactions between the hexose esters and the binding sites of phosphoglucoisomerase is not strictly in mirror image during, respectively, the conversion of the aldose phosphate to ketose phosphate and the opposite process.

  3. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, Normand, E-mail: normand.robert@sri.utoronto.ca; Polack, George G.; Sethi, Benu

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied.more » The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize performance in clinical images as well as the sensitivity to clinical image quality.« less

  4. Evaluation of prospective motion correction of high-resolution 3D-T2-FLAIR acquisitions in epilepsy patients.

    PubMed

    Vos, Sjoerd B; Micallef, Caroline; Barkhof, Frederik; Hill, Andrea; Winston, Gavin P; Ourselin, Sebastien; Duncan, John S

    2018-03-02

    T2-FLAIR is the single most sensitive MRI contrast to detect lesions underlying focal epilepsies but 3D sequences used to obtain isotropic high-resolution images are susceptible to motion artefacts. Prospective motion correction (PMC) - demonstrated to improve 3D-T1 image quality in a pediatric population - was applied to high-resolution 3D-T2-FLAIR scans in adult epilepsy patients to evaluate its clinical benefit. Coronal 3D-T2-FLAIR scans were acquired with a 1mm isotropic resolution on a 3T MRI scanner. Two expert neuroradiologists reviewed 40 scans without PMC and 40 with navigator-based PMC. Visual assessment addressed six criteria of image quality (resolution, SNR, WM-GM contrast, intensity homogeneity, lesion conspicuity, diagnostic confidence) on a seven-point Likert scale (from non-diagnostic to outstanding). SNR was also objectively quantified within the white matter. PMC scans had near-identical scores on the criteria of image quality to non-PMC scans, with the notable exception that intensity homogeneity was generally worse. Using PMC, the percentage of scans with bad image quality was substantially lower than without PMC (3.25% vs. 12.5%) on the other five criteria. Quantitative SNR estimates revealed that PMC and non-PMC had no significant difference in SNR (P=0.07). Application of prospective motion correction to 3D-T2-FLAIR sequences decreased the percentage of low-quality scans, reducing the number of scans that need to be repeated to obtain clinically useful data. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  5. 3D GRASE PROPELLER: improved image acquisition technique for arterial spin labeling perfusion imaging.

    PubMed

    Tan, Huan; Hoge, W Scott; Hamilton, Craig A; Günther, Matthias; Kraft, Robert A

    2011-07-01

    Arterial spin labeling is a noninvasive technique that can quantitatively measure cerebral blood flow. While traditionally arterial spin labeling employs 2D echo planar imaging or spiral acquisition trajectories, single-shot 3D gradient echo and spin echo (GRASE) is gaining popularity in arterial spin labeling due to inherent signal-to-noise ratio advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T(2) decay. A novel technique combining 3D GRASE and a periodically rotated overlapping parallel lines with enhanced reconstruction trajectory (PROPELLER) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3 × 3 × 5 mm(3) nominal voxel size with pulsed arterial spin labeling preparation sequence. Data from five healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in cerebral blood flow quantification with 3D gradient echo and spin echo, 3D GRASE PROPELLER demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. Copyright © 2011 Wiley-Liss, Inc.

  6. High-resolution proton density weighted three-dimensional fast spin echo (3D-FSE) of the knee with IDEAL at 1.5 Tesla: comparison with 3D-FSE and 2D-FSE--initial experience.

    PubMed

    McMahon, Colm J; Madhuranthakam, Ananth J; Wu, Jim S; Yablon, Corrie M; Wei, Jesse L; Rofsky, Neil M; Hochman, Mary G

    2012-02-01

    To assess the feasibility of combining three-dimensional fast spin echo (3D-FSE) and Iterative-decomposition-of water-and-fat-with-echo asymmetry-and-least-squares-estimation (IDEAL) at 1.5 Tesla (T), generating a high-resolution 3D isotropic proton density-weighted image set with and without "fat-suppression" (FS) in a single acquisition, and to compare with 2D-FSE and 3D-FSE (without IDEAL). Ten asymptomatic volunteers prospectively underwent sagittal 3D-FSE-IDEAL, 3D-FSE, and 2D-FSE sequences at 1.5T (slice thickness [ST]: 0.8 mm, 0.8 mm, and 3.5 mm, respectively). 3D-FSE and 2D-FSE were repeated with frequency-selective FS. Fluid, cartilage, and muscle signal-to-noise ratio (SNR) and fluid-cartilage contrast-to-noise ratio (CNR) were compared among sequences. Three blinded reviewers independently scored quality of menisci/cartilage depiction for all sequences. "Fat-suppression" was qualitatively scored and compared among sequences. 3D-FSE-IDEAL fluid-cartilage CNR was higher than in 2D-FSE (P < 0.05), not different from 3D-FSE (P = 0.31). There was no significant difference in fluid SNR among sequences. 2D-FSE cartilage SNR was higher than in 3D FSE-IDEAL (P < 0.05), not different to 3D-FSE (P = 0.059). 2D-FSE muscle SNR was higher than in 3D-FSE-IDEAL (P < 0.05) and 3D-FSE (P < 0.05). Good or excellent depiction of menisci/cartilage was achieved using 3D-FSE-IDEAL in the acquired sagittal and reformatted planes. Excellent, homogeneous "fat-suppression" was achieved using 3D-FSE-IDEAL, superior to FS-3D-FSE and FS-2D-FSE (P < 0.05). 3D FSE-IDEAL is a feasible approach to acquire multiplanar images of diagnostic quality, both with and without homogeneous "fat-suppression" from a single acquisition. Copyright © 2011 Wiley Periodicals, Inc.

  7. Breath-hold imaging of the coronary arteries using Quiescent-Interval Slice-Selective (QISS) magnetic resonance angiography: pilot study at 1.5 Tesla and 3 Tesla.

    PubMed

    Edelman, Robert R; Giri, S; Pursnani, A; Botelho, M P F; Li, W; Koktzoglou, I

    2015-11-23

    Coronary magnetic resonance angiography (MRA) is usually obtained with a free-breathing navigator-gated 3D acquisition. Our aim was to develop an alternative breath-hold approach that would allow the coronary arteries to be evaluated in a much shorter time and without risk of degradation by respiratory motion artifacts. For this purpose, we implemented a breath-hold, non-contrast-enhanced, quiescent-interval slice-selective (QISS) 2D technique. Sequence performance was compared at 1.5 and 3 Tesla using both radial and Cartesian k-space trajectories. The left coronary circulation was imaged in six healthy subjects and two patients with coronary artery disease. Breath-hold QISS was compared with T2-prepared 2D balanced steady-state free-precession (bSSFP) and free-breathing, navigator-gated 3D bSSFP. Approximately 10 2.1-mm thick slices were acquired in a single ~20-s breath-hold using two-shot QISS. QISS contrast-to-noise ratio (CNR) was 1.5-fold higher at 3 Tesla than at 1.5 Tesla. Cartesian QISS provided the best coronary-to-myocardium CNR, whereas radial QISS provided the sharpest coronary images. QISS image quality exceeded that of free-breathing 3D coronary MRA with few artifacts at either field strength. Compared with T2-prepared 2D bSSFP, multi-slice capability was not restricted by the specific absorption rate at 3 Tesla and pericardial fluid signal was better suppressed. In addition to depicting the coronary arteries, QISS could image intra-cardiac structures, pericardium, and the aortic root in arbitrary slice orientations. Breath-hold QISS is a simple, versatile, and time-efficient method for coronary MRA that provides excellent image quality at both 1.5 and 3 Tesla. Image quality exceeded that of free-breathing, navigator-gated 3D MRA in a much shorter scan time. QISS also allowed rapid multi-slice bright-blood, diastolic phase imaging of the heart, which may have complementary value to multi-phase cine imaging. We conclude that, with further clinical validation, QISS might provide an efficient alternative to commonly used free-breathing coronary MRA techniques.

  8. WE-G-BRF-03: A Quasi-Cine CBCT Reconstruction Technique for Real-Time On- Board Target Tracking of Lung Cancer Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y; Yin, F; Ren, L

    2014-06-15

    Purpose: To develop a quasi-cine CBCT reconstruction technique that uses extremely-small angle (∼3°) projections to generate real-time high-quality lung CBCT images. Method: 4D-CBCT is obtained at the beginning and used as prior images. This study uses extremely-small angle (∼3°) on-board projections acquired at a single respiratory phase to reconstruct the CBCT image at this phase. An adaptive constrained free-form deformation (ACFD) method is developed to deform the prior 4D-CBCT volume at the same phase to reconstruct the new CBCT. Quasi-cine CBCT images are obtained by continuously reconstructing CBCT images at subsequent phases every 3° angle (∼0.5s). Note that the priormore » 4D-CBCT images are dynamically updated using the latest CBCT images. The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the efficacy of ACFD. A lung patient was simulated with a tumor baseline shift of 2mm along superior-inferior (SI) direction after every respiratory cycle for 5 cycles. Limited-angle projections were simulated for each cycle. The 4D-CBCT reconstructed by these projections were compared with the ground-truth generated in XCAT.Volume-percentage-difference (VPD) and center-of-mass-shift (COMS) were calculated between the reconstructed and the ground-truth tumors to evaluate their geometric differences.The ACFD was also compared to a principal-component-analysis based motion-modeling (MM) method. Results: Using orthogonal-view 3° projections, the VPD/COMS values for tumor baseline shifts of 2mm, 4mm, 6mm, 8mm, 10mm were 11.0%/0.3mm, 25.3%/2.7mm, 22.4%/2.9mm, 49.5%/5.4mm, 77.2%/8.1mm for the MM method, and 2.9%/0.7mm, 3.9%/0.8mm, 6.2%/1mm, 7.9%/1.2mm, 10.1%/1.1mm for the ACFD method. Using orthogonal-view 0° projections (1 projection only), the ACFD method yielded VPD/COMS results of 5.0%/0.9mm, 10.5%/1.2mm, 15.1%/1.4mm, 20.9%/1.6mm and 24.8%/1.6mm. Using single-view instead of orthogonal-view projections yielded less accurate results for ACFD. Conclusion: The ACFD method accurately reconstructs snapshot CBCT images using orthogonal-view 3° projections. It has a great potential to provide real-time quasi-cine CBCT images for verification in lung radiation therapy. The research is supported by grant from Varian Medical Systems.« less

  9. Cyclops: single-pixel imaging lidar system based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Magalhães, F.; Correia, M. V.; Farahi, F.; Pereira do Carmo, J.; Araújo, F. M.

    2017-11-01

    Mars and the Moon are envisaged as major destinations of future space exploration missions in the upcoming decades. Imaging LIDARs are seen as a key enabling technology in the support of autonomous guidance, navigation and control operations, as they can provide very accurate, wide range, high-resolution distance measurements as required for the exploration missions. Imaging LIDARs can be used at critical stages of these exploration missions, such as descent and selection of safe landing sites, rendezvous and docking manoeuvres, or robotic surface navigation and exploration. Despite these devices have been commercially available and used for long in diverse metrology and ranging applications, their size, mass and power consumption are still far from being suitable and attractive for space exploratory missions. Here, we describe a compact Single-Pixel Imaging LIDAR System that is based on a compressive sensing technique. The application of the compressive codes to a DMD array enables compression of the spatial information, while the collection of timing histograms correlated to the pulsed laser source ensures image reconstruction at the ranged distances. Single-pixel cameras have been compared with raster scanning and array based counterparts in terms of noise performance, and proved to be superior. Since a single photodetector is used, a better SNR and higher reliability is expected in contrast with systems using large format photodetector arrays. Furthermore, the event of failure of one or more micromirror elements in the DMD does not prevent full reconstruction of the images. This brings additional robustness to the proposed 3D imaging LIDAR. The prototype that was implemented has three modes of operation. Range Finder: outputs the average distance between the system and the area of the target under illumination; Attitude Meter: provides the slope of the target surface based on distance measurements in three areas of the target; 3D Imager: produces 3D ranged images of the target surface. The implemented prototype demonstrated a frame rate of 30 mHz for 16x16 pixels images, a transversal (xy) resolution of 2 cm at 10 m for images with 64x64 pixels and the range (z) resolution proved to be better than 1 cm. The experimental results obtained for the "3D imaging" mode of operation demonstrated that it was possible to reconstruct spherical smooth surfaces. The proposed solution demonstrates a great potential for: miniaturization; increase spatial resolution without using large format detector arrays; eliminate the need for scanning mechanisms; implementing simple and robust configurations.

  10. 3D nanometer images of biological fibers by directed motion of gold nanoparticles.

    PubMed

    Estrada, Laura C; Gratton, Enrico

    2011-11-09

    Using near-infrared femtosecond pulses, we move single gold nanoparticles (AuNPs) along biological fibers, such as collagen and actin filaments. While the AuNP is sliding on the fiber, its trajectory is measured in three dimensions (3D) with nanometer resolution providing a high-resolution image of the fiber. Here, we systematically moved a single AuNP along nanometer-size collagen fibers and actin filament inside chinese hamster ovary K1 living cells, mapping their 3D topography with high fidelity.

  11. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens

    PubMed Central

    Grewe, Benjamin F.; Voigt, Fabian F.; van ’t Hoff, Marcel; Helmchen, Fritjof

    2011-01-01

    Functional two-photon Ca2+-imaging is a versatile tool to study the dynamics of neuronal populations in brain slices and living animals. However, population imaging is typically restricted to a single two-dimensional image plane. By introducing an electrically tunable lens into the excitation path of a two-photon microscope we were able to realize fast axial focus shifts within 15 ms. The maximum axial scan range was 0.7 mm employing a 40x NA0.8 water immersion objective, plenty for typically required ranges of 0.2–0.3 mm. By combining the axial scanning method with 2D acousto-optic frame scanning and random-access scanning, we measured neuronal population activity of about 40 neurons across two imaging planes separated by 40 μm and achieved scan rates up to 20–30 Hz. The method presented is easily applicable and allows upgrading of existing two-photon microscopes for fast 3D scanning. PMID:21750778

  12. Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance

    NASA Astrophysics Data System (ADS)

    Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey

    2016-03-01

    Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.

  13. Design of a single projector multiview 3D display system

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2014-03-01

    Multiview three-dimensional (3D) display is able to provide horizontal parallax to viewers with high-resolution and fullcolor images being presented to each view. Most multiview 3D display systems are designed and implemented using multiple projectors, each generating images for one view. Although this multi-projector design strategy is conceptually straightforward, implementation of such multi-projector design often leads to a very expensive system and complicated calibration procedures. Even for a multiview system with a moderate number of projectors (e.g., 32 or 64 projectors), the cost of a multi-projector 3D display system may become prohibitive due to the cost and complexity of integrating multiple projectors. In this article, we describe an optical design technique for a class of multiview 3D display systems that use only a single projector. In this single projector multiview (SPM) system design, multiple views for the 3D display are generated in a time-multiplex fashion by the single high speed projector with specially designed optical components, a scanning mirror, and a reflective mirror array. Images of all views are generated sequentially and projected via the specially design optical system from different viewing directions towards a 3D display screen. Therefore, the single projector is able to generate equivalent number of multiview images from multiple viewing directions, thus fulfilling the tasks of multiple projectors. An obvious advantage of the proposed SPM technique is the significant reduction of cost, size, and complexity, especially when the number of views is high. The SPM strategy also alleviates the time-consuming procedures for multi-projector calibration. The design method is flexible and scalable and can accommodate systems with different number of views.

  14. T2-weighted four dimensional magnetic resonance imaging with result-driven phase sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yilin; Yin, Fang-Fang; Cai, Jing, E-mail: jing.cai@duke.edu

    2015-08-15

    Purpose: T2-weighted MRI provides excellent tumor-to-tissue contrast for target volume delineation in radiation therapy treatment planning. This study aims at developing a novel T2-weighted retrospective four dimensional magnetic resonance imaging (4D-MRI) phase sorting technique for imaging organ/tumor respiratory motion. Methods: A 2D fast T2-weighted half-Fourier acquisition single-shot turbo spin-echo MR sequence was used for image acquisition of 4D-MRI, with a frame rate of 2–3 frames/s. Respiratory motion was measured using an external breathing monitoring device. A phase sorting method was developed to sort the images by their corresponding respiratory phases. Besides, a result-driven strategy was applied to effectively utilize redundantmore » images in the case when multiple images were allocated to a bin. This strategy, selecting the image with minimal amplitude error, will generate the most representative 4D-MRI. Since we are using a different image acquisition mode for 4D imaging (the sequential image acquisition scheme) with the conventionally used cine or helical image acquisition scheme, the 4D dataset sufficient condition was not obviously and directly predictable. An important challenge of the proposed technique was to determine the number of repeated scans (N{sub R}) required to obtain sufficient phase information at each slice position. To tackle this challenge, the authors first conducted computer simulations using real-time position management respiratory signals of the 29 cancer patients under an IRB-approved retrospective study to derive the relationships between N{sub R} and the following factors: number of slices (N{sub S}), number of 4D-MRI respiratory bins (N{sub B}), and starting phase at image acquisition (P{sub 0}). To validate the authors’ technique, 4D-MRI acquisition and reconstruction were simulated on a 4D digital extended cardiac-torso (XCAT) human phantom using simulation derived parameters. Twelve healthy volunteers were involved in an IRB-approved study to investigate the feasibility of this technique. Results: 4D data acquisition completeness (C{sub p}) increases as NR increases in an inverse-exponential fashion (C{sub p} = 100 − 99 × exp(−0.18 × N{sub R}), when N{sub B} = 6, fitted using 29 patients’ data). The N{sub R} required for 4D-MRI reconstruction (defined as achieving 95% completeness, C{sub p} = 95%, N{sub R} = N{sub R,95}) is proportional to N{sub B} (N{sub R,95} ∼ 2.86 × N{sub B}, r = 1.0), but independent of N{sub S} and P{sub 0}. Simulated XCAT 4D-MRI showed a clear pattern of respiratory motion. Tumor motion trajectories measured on 4D-MRI were comparable to the average input signal, with a mean relative amplitude error of 2.7% ± 2.9%. Reconstructed 4D-MRI for healthy volunteers illustrated clear respiratory motion on three orthogonal planes, with minimal image artifacts. The artifacts were presumably caused by breathing irregularity and incompleteness of data acquisition (95% acquired only). The mean relative amplitude error between critical structure trajectory and average breathing curve for 12 healthy volunteers is 2.5 ± 0.3 mm in superior–inferior direction. Conclusions: A novel T2-weighted retrospective phase sorting 4D-MRI technique has been developed and successfully applied on digital phantom and healthy volunteers.« less

  15. Dense 3D Face Alignment from 2D Video for Real-Time Use

    PubMed Central

    Jeni, László A.; Cohn, Jeffrey F.; Kanade, Takeo

    2018-01-01

    To enable real-time, person-independent 3D registration from 2D video, we developed a 3D cascade regression approach in which facial landmarks remain invariant across pose over a range of approximately 60 degrees. From a single 2D image of a person’s face, a dense 3D shape is registered in real time for each frame. The algorithm utilizes a fast cascade regression framework trained on high-resolution 3D face-scans of posed and spontaneous emotion expression. The algorithm first estimates the location of a dense set of landmarks and their visibility, then reconstructs face shapes by fitting a part-based 3D model. Because no assumptions are required about illumination or surface properties, the method can be applied to a wide range of imaging conditions that include 2D video and uncalibrated multi-view video. The method has been validated in a battery of experiments that evaluate its precision of 3D reconstruction, extension to multi-view reconstruction, temporal integration for videos and 3D head-pose estimation. Experimental findings strongly support the validity of real-time, 3D registration and reconstruction from 2D video. The software is available online at http://zface.org. PMID:29731533

  16. Single-Side Two-Location Spotlight Imaging for Building Based on MIMO Through-Wall-Radar.

    PubMed

    Jia, Yong; Zhong, Xiaoling; Liu, Jiangang; Guo, Yong

    2016-09-07

    Through-wall-radar imaging is of interest for mapping the wall layout of buildings and for the detection of stationary targets within buildings. In this paper, we present an easy single-side two-location spotlight imaging method for both wall layout mapping and stationary target detection by utilizing multiple-input multiple-output (MIMO) through-wall-radar. Rather than imaging for building walls directly, the images of all building corners are generated to speculate wall layout indirectly by successively deploying the MIMO through-wall-radar at two appropriate locations on only one side of the building and then carrying out spotlight imaging with two different squint-views. In addition to the ease of implementation, the single-side two-location squint-view detection also has two other advantages for stationary target imaging. The first one is the fewer multi-path ghosts, and the second one is the smaller region of side-lobe interferences from the corner images in comparison to the wall images. Based on Computer Simulation Technology (CST) electromagnetic simulation software, we provide multiple sets of validation results where multiple binary panorama images with clear images of all corners and stationary targets are obtained by combining two single-location images with the use of incoherent additive fusion and two-dimensional cell-averaging constant-false-alarm-rate (2D CA-CFAR) detection.

  17. Web tools for large-scale 3D biological images and atlases

    PubMed Central

    2012-01-01

    Background Large-scale volumetric biomedical image data of three or more dimensions are a significant challenge for distributed browsing and visualisation. Many images now exceed 10GB which for most users is too large to handle in terms of computer RAM and network bandwidth. This is aggravated when users need to access tens or hundreds of such images from an archive. Here we solve the problem for 2D section views through archive data delivering compressed tiled images enabling users to browse through very-large volume data in the context of a standard web-browser. The system provides an interactive visualisation for grey-level and colour 3D images including multiple image layers and spatial-data overlay. Results The standard Internet Imaging Protocol (IIP) has been extended to enable arbitrary 2D sectioning of 3D data as well a multi-layered images and indexed overlays. The extended protocol is termed IIP3D and we have implemented a matching server to deliver the protocol and a series of Ajax/Javascript client codes that will run in an Internet browser. We have tested the server software on a low-cost linux-based server for image volumes up to 135GB and 64 simultaneous users. The section views are delivered with response times independent of scale and orientation. The exemplar client provided multi-layer image views with user-controlled colour-filtering and overlays. Conclusions Interactive browsing of arbitrary sections through large biomedical-image volumes is made possible by use of an extended internet protocol and efficient server-based image tiling. The tools open the possibility of enabling fast access to large image archives without the requirement of whole image download and client computers with very large memory configurations. The system was demonstrated using a range of medical and biomedical image data extending up to 135GB for a single image volume. PMID:22676296

  18. High-performance floating-point image computing workstation for medical applications

    NASA Astrophysics Data System (ADS)

    Mills, Karl S.; Wong, Gilman K.; Kim, Yongmin

    1990-07-01

    The medical imaging field relies increasingly on imaging and graphics techniques in diverse applications with needs similar to (or more stringent than) those of the military, industrial and scientific communities. However, most image processing and graphics systems available for use in medical imaging today are either expensive, specialized, or in most cases both. High performance imaging and graphics workstations which can provide real-time results for a number of applications, while maintaining affordability and flexibility, can facilitate the application of digital image computing techniques in many different areas. This paper describes the hardware and software architecture of a medium-cost floating-point image processing and display subsystem for the NeXT computer, and its applications as a medical imaging workstation. Medical imaging applications of the workstation include use in a Picture Archiving and Communications System (PACS), in multimodal image processing and 3-D graphics workstation for a broad range of imaging modalities, and as an electronic alternator utilizing its multiple monitor display capability and large and fast frame buffer. The subsystem provides a 2048 x 2048 x 32-bit frame buffer (16 Mbytes of image storage) and supports both 8-bit gray scale and 32-bit true color images. When used to display 8-bit gray scale images, up to four different 256-color palettes may be used for each of four 2K x 2K x 8-bit image frames. Three of these image frames can be used simultaneously to provide pixel selectable region of interest display. A 1280 x 1024 pixel screen with 1: 1 aspect ratio can be windowed into the frame buffer for display of any portion of the processed image or images. In addition, the system provides hardware support for integer zoom and an 82-color cursor. This subsystem is implemented on an add-in board occupying a single slot in the NeXT computer. Up to three boards may be added to the NeXT for multiple display capability (e.g., three 1280 x 1024 monitors, each with a 16-Mbyte frame buffer). Each add-in board provides an expansion connector to which an optional image computing coprocessor board may be added. Each coprocessor board supports up to four processors for a peak performance of 160 MFLOPS. The coprocessors can execute programs from external high-speed microcode memory as well as built-in internal microcode routines. The internal microcode routines provide support for 2-D and 3-D graphics operations, matrix and vector arithmetic, and image processing in integer, IEEE single-precision floating point, or IEEE double-precision floating point. In addition to providing a library of C functions which links the NeXT computer to the add-in board and supports its various operational modes, algorithms and medical imaging application programs are being developed and implemented for image display and enhancement. As an extension to the built-in algorithms of the coprocessors, 2-D Fast Fourier Transform (FF1), 2-D Inverse FFF, convolution, warping and other algorithms (e.g., Discrete Cosine Transform) which exploit the parallel architecture of the coprocessor board are being implemented.

  19. Fluorine-18 Labeling of the HER2-Targeting Single-Domain Antibody 2Rs15d Using a Residualizing Label and Preclinical Evaluation.

    PubMed

    Zhou, Zhengyuan; Vaidyanathan, Ganesan; McDougald, Darryl; Kang, Choong Mo; Balyasnikova, Irina; Devoogdt, Nick; Ta, Angeline N; McNaughton, Brian R; Zalutsky, Michael R

    2017-12-01

    Our previous studies with F-18-labeled anti-HER2 single-domain antibodies (sdAbs) utilized 5F7, which binds to the same epitope on HER2 as trastuzumab, complicating its use for positron emission tomography (PET) imaging of patients undergoing trastuzumab therapy. On the other hand, sdAb 2Rs15d binds to a different epitope on HER2 and thus might be a preferable vector for imaging in these patients. The aim of this study was to evaluate the tumor targeting of F-18 -labeled 2Rs15d in HER2-expressing breast carcinoma cells and xenografts. sdAb 2Rs15d was labeled with the residualizing labels N-succinimidyl 3-((4-(4-[ 18 F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ([ 18 F]RL-I) and N-succinimidyl 4-guanidinomethyl-3-[ 125 I]iodobenzoate ([ 125 I]SGMIB), and the purity and HER2-specific binding affinity and immunoreactivity were assessed after labeling. The biodistribution of I-125- and F-18-labeled 2Rs15d was determined in SCID mice bearing subcutaneous BT474M1 xenografts. MicroPET/x-ray computed tomograph (CT) imaging of [ 18 F]RL-I-2Rs15d was performed in this model and compared to that of nonspecific sdAb [ 18 F]RL-I-R3B23. MicroPET/CT imaging was also done in an intracranial HER2-positive breast cancer brain metastasis model after administration of 2Rs15d-, 5F7-, and R3B23-[ 18 F]RL-I conjugates. [ 18 F]RL-I was conjugated to 2Rs15d in 40.8 ± 9.1 % yield and with a radiochemical purity of 97-100 %. Its immunoreactive fraction (IRF) and affinity for HER2-specific binding were 79.2 ± 5.4 % and 7.1 ± 0.4 nM, respectively. [ 125 I]SGMIB was conjugated to 2Rs15d in 58.4 ± 8.2 % yield and with a radiochemical purity of 95-99 %; its IRF and affinity for HER2-specific binding were 79.0 ± 12.9 % and 4.5 ± 0.8 nM, respectively. Internalized radioactivity in BT474M1 cells in vitro for [ 18 F]RL-I-2Rs15d was 43.7 ± 3.6, 36.5 ± 2.6, and 21.7 ± 1.2 % of initially bound radioactivity at 1, 2, and 4 h, respectively, and was similar to that seen for [ 125 I]SGMIB-2Rs15d. Uptake of [ 18 F]RL-I-2Rs15d in subcutaneous xenografts was 16-20 %ID/g over 1-3 h. Subcutaneous tumor could be clearly delineated by microPET/CT imaging with [ 18 F]RL-I-2Rs15d but not with [ 18 F]RL-I-R3B23. Intracranial breast cancer brain metastases could be visualized after intravenous administration of both [ 18 F]RL-I-2Rs15d and [ 18 F]RL-I-5F7. Although radiolabeled 2Rs15d conjugates exhibited lower tumor cell retention both in vitro and in vivo than that observed previously for 5F7, given that it binds to a different epitope on HER2 from those targeted by the clinically utilized HER2-targeted therapeutic antibodies trastuzumab and pertuzumab, F-18-labeled 2Rs15d has potential for assessing HER2 status by PET imaging after trastuzumab and/or pertuzumab therapy.

  20. A quantum spin-probe molecular microscope

    NASA Astrophysics Data System (ADS)

    Perunicic, V. S.; Hill, C. D.; Hall, L. T.; Hollenberg, L. C. L.

    2016-10-01

    Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy.

  1. Two-dimensional simulation and modeling in scanning electron microscope imaging and metrology research.

    PubMed

    Postek, Michael T; Vladár, András E; Lowney, Jeremiah R; Keery, William J

    2002-01-01

    Traditional Monte Carlo modeling of the electron beam-specimen interactions in a scanning electron microscope (SEM) produces information about electron beam penetration and output signal generation at either a single beam-landing location, or multiple landing positions. If the multiple landings lie on a line, the results can be graphed in a line scan-like format. Monte Carlo results formatted as line scans have proven useful in providing one-dimensional information about the sample (e.g., linewidth). When used this way, this process is called forward line scan modeling. In the present work, the concept of image simulation (or the first step in the inverse modeling of images) is introduced where the forward-modeled line scan data are carried one step further to construct theoretical two-dimensional (2-D) micrographs (i.e., theoretical SEM images) for comparison with similar experimentally obtained micrographs. This provides an ability to mimic and closely match theory and experiment using SEM images. Calculated and/or measured libraries of simulated images can be developed with this technique. The library concept will prove to be very useful in the determination of dimensional and other properties of simple structures, such as integrated circuit parts, where the shape of the features is preferably measured from a single top-down image or a line scan. This paper presents one approach to the generation of 2-D simulated images and presents some suggestions as to their application to critical dimension metrology.

  2. Combined in-depth, 3D, en face imaging of the optic disc, optic disc pits and optic disc pit maculopathy using swept-source megahertz OCT at 1050 nm.

    PubMed

    Maertz, Josef; Kolb, Jan Philip; Klein, Thomas; Mohler, Kathrin J; Eibl, Matthias; Wieser, Wolfgang; Huber, Robert; Priglinger, Siegfried; Wolf, Armin

    2018-02-01

    To demonstrate papillary imaging of eyes with optic disc pits (ODP) or optic disc pit associated maculopathy (ODP-M) with ultrahigh-speed swept-source optical coherence tomography (SS-OCT) at 1.68 million A-scans/s. To generate 3D-renderings of the papillary area with 3D volume-reconstructions of the ODP and highly resolved en face images from a single densely-sampled megahertz-OCT (MHz-OCT) dataset for investigation of ODP-characteristics. A 1.68 MHz-prototype SS-MHz-OCT system at 1050 nm based on a Fourier-domain mode-locked laser was employed to acquire high-definition, 3D datasets with a dense sampling of 1600 × 1600 A-scans over a 45° field of view. Six eyes with ODPs, and two further eyes with glaucomatous alteration or without ocular pathology are presented. 3D-rendering of the deep papillary structures, virtual 3D-reconstructions of the ODPs and depth resolved isotropic en face images were generated using semiautomatic segmentation. 3D-rendering and en face imaging of the optic disc, ODPs and ODP associated pathologies showed a broad spectrum regarding ODP characteristics. Between individuals the shape of the ODP and the appending pathologies varied considerably. MHz-OCT en face imaging generates distinct top-view images of ODPs and ODP-M. MHz-OCT generates high resolution images of retinal pathologies associated with ODP-M and allows visualizing ODPs with depths of up to 2.7 mm. Different patterns of ODPs can be visualized in patients for the first time using 3D-reconstructions and co-registered high-definition en face images extracted from a single densely sampled 1050 nm megahertz-OCT (MHz-OCT) dataset. As the immediate vicinity to the SAS and the site of intrapapillary proliferation is located at the bottom of the ODP it is crucial to image the complete structure and the whole depth of ODPs. Especially in very deep pits, where non-swept-source OCT fails to reach the bottom, conventional swept-source devices and the MHz-OCT alike are feasible and beneficial methods to examine deep details of optic disc pathologies, while the MHz-OCT bears the advantage of an essentially swifter imaging process.

  3. Mobile viewer system for virtual 3D space using infrared LED point markers and camera

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Taneji, Shoto

    2006-09-01

    The authors have developed a 3D workspace system using collaborative imaging devices. A stereoscopic display enables this system to project 3D information. In this paper, we describe the position detecting system for a see-through 3D viewer. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1)2)3)4). The purpose of this paper is to propose the interactive system using these 3D imaging technologies. The observer can view virtual images in the real world when the user watches the screen of a see-through 3D viewer. The goal of our research is to build the display system as follows; when users see the real world through the mobile viewer, the display system gives users virtual 3D images, which is floating in the air, and the observers can touch these floating images and interact them such that kids can make play clay. The key technologies of this system are the position recognition system and the spatial imaging display. The 3D images are presented by the improved parallax barrier 3D display. Here the authors discuss the measuring method of the mobile viewer using infrared LED point markers and a camera in the 3D workspace (augmented reality world). The authors show the geometric analysis of the proposed measuring method, which is the simplest method using a single camera not the stereo camera, and the results of our viewer system.

  4. Multi-GPU Jacobian accelerated computing for soft-field tomography.

    PubMed

    Borsic, A; Attardo, E A; Halter, R J

    2012-10-01

    Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use finite element models (FEMs) to represent the volume of interest and solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are 3D. Although the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in electrical impedance tomography (EIT) applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15-20 min with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Furthermore, providing high-speed reconstructions is essential for some promising clinical application of EIT. For 3D problems, 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In this work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with the use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of 20 times on a single NVIDIA S1070 GPU, and of 50 times on four GPUs, bringing the Jacobian computing time for a fine 3D mesh from 12 min to 14 s. We regard this as an important step toward gaining interactive reconstruction times in 3D imaging, particularly when coupled in the future with acceleration of the forward problem. While we demonstrate results for EIT, these results apply to any soft-field imaging modality where the Jacobian matrix is computed with the adjoint method.

  5. Techniques for 3D tracking of single molecules with nanometer accuracy in living cells

    NASA Astrophysics Data System (ADS)

    Gardini, Lucia; Capitanio, Marco; Pavone, Francesco S.

    2013-06-01

    We describe a microscopy technique that, combining wide-field single molecule microscopy, bifocal imaging and Highly Inclined and Laminated Optical sheet (HILO) microscopy, allows a 3D tracking with nanometer accuracy of single fluorescent molecules in vitro and in living cells.

  6. Navigation for fluoroscopy-guided cryo-balloon ablation procedures of atrial fibrillation

    NASA Astrophysics Data System (ADS)

    Bourier, Felix; Brost, Alexander; Kleinoeder, Andreas; Kurzendorfer, Tanja; Koch, Martin; Kiraly, Attila; Schneider, Hans-Juergen; Hornegger, Joachim; Strobel, Norbert; Kurzidim, Klaus

    2012-02-01

    Atrial fibrillation (AFib), the most common arrhythmia, has been identified as a major cause of stroke. The current standard in interventional treatment of AFib is the pulmonary vein isolation (PVI). PVI is guided by fluoroscopy or non-fluoroscopic electro-anatomic mapping systems (EAMS). Either classic point-to-point radio-frequency (RF)- catheter ablation or so-called single-shot-devices like cryo-balloons are used to achieve electrically isolation of the pulmonary veins and the left atrium (LA). Fluoroscopy-based systems render overlay images from pre-operative 3-D data sets which are then merged with fluoroscopic imaging, thereby adding detailed 3-D information to conventional fluoroscopy. EAMS provide tracking and visualization of RF catheters by means of electro-magnetic tracking. Unfortunately, current navigation systems, fluoroscopy-based or EAMS, do not provide tools to localize and visualize single shot devices like cryo-balloon catheters in 3-D. We present a prototype software for fluoroscopy-guided ablation procedures that is capable of superimposing 3-D datasets as well as reconstructing cyro-balloon catheters in 3-D. The 3-D cyro-balloon reconstruction was evaluated on 9 clinical data sets, yielded a reprojected 2-D error of 1.72 mm +/- 1.02 mm.

  7. 3D Imaging of Density Gradients Using Plenoptic BOS

    NASA Astrophysics Data System (ADS)

    Klemkowsky, Jenna; Clifford, Chris; Fahringer, Timothy; Thurow, Brian

    2016-11-01

    The combination of background oriented schlieren (BOS) and a plenoptic camera, termed Plenoptic BOS, is explored through two proof-of-concept experiments. The motivation of this work is to provide a 3D technique capable of observing density disturbances. BOS uses the relationship between density and refractive index gradients to observe an apparent shift in a patterned background through image comparison. Conventional BOS systems acquire a single line-of-sight measurement, and require complex configurations to obtain 3D measurements, which are not always conducive to experimental facilities. Plenoptic BOS exploits the plenoptic camera's ability to generate multiple perspective views and refocused images from a single raw plenoptic image during post processing. Using such capabilities, with regards to BOS, provides multiple line-of-sight measurements of density disturbances, which can be collectively used to generate refocused BOS images. Such refocused images allow the position of density disturbances to be qualitatively and quantitatively determined. The image that provides the sharpest density gradient signature corresponds to a specific depth. These results offer motivation to advance Plenoptic BOS with an ultimate goal of reconstructing a 3D density field.

  8. Design of an MR image processing module on an FPGA chip

    NASA Astrophysics Data System (ADS)

    Li, Limin; Wyrwicz, Alice M.

    2015-06-01

    We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128 × 128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments.

  9. Design of an MR image processing module on an FPGA chip

    PubMed Central

    Li, Limin; Wyrwicz, Alice M.

    2015-01-01

    We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128 × 128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments. PMID:25909646

  10. Software manual for operating particle displacement tracking data acquisition and reduction system

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    The software manual is presented. The necessary steps required to record, analyze, and reduce Particle Image Velocimetry (PIV) data using the Particle Displacement Tracking (PDT) technique are described. The new PDT system is an all electronic technique employing a CCD video camera and a large memory buffer frame-grabber board to record low velocity (less than or equal to 20 cm/s) flows. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine 2-D velocity vectors. All the PDT data acquisition, analysis, and data reduction software is written to run on an 80386 PC.

  11. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing

    PubMed Central

    Jung, Jaewook; Sohn, Gunho; Bang, Kiin; Wichmann, Andreas; Armenakis, Costas; Kada, Martin

    2016-01-01

    A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH) method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1) feature extraction; (2) similarity measure; and matching, and (3) estimating exterior orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process. PMID:27338410

  12. Measurement of complex joint trajectories using slice-to-volume 2D/3D registration and cine MR

    NASA Astrophysics Data System (ADS)

    Bloch, C.; Figl, M.; Gendrin, C.; Weber, C.; Unger, E.; Aldrian, S.; Birkfellner, W.

    2010-02-01

    A method for studying the in vivo kinematics of complex joints is presented. It is based on automatic fusion of single slice cine MR images capturing the dynamics and a static MR volume. With the joint at rest the 3D scan is taken. In the data the anatomical compartments are identified and segmented resulting in a 3D volume of each individual part. In each of the cine MR images the joint parts are segmented and their pose and position are derived using a 2D/3D slice-to-volume registration to the volumes. The method is tested on the carpal joint because of its complexity and the small but complex motion of its compartments. For a first study a human cadaver hand was scanned and the method was evaluated with artificially generated slice images. Starting from random initial positions of about 5 mm translational and 12° rotational deviation, 70 to 90 % of the registrations converged successfully to a deviation better than 0.5 mm and 5°. First evaluations using real data from a cine MR were promising. The feasibility of the method was demonstrated. However we experienced difficulties with the segmentation of the cine MR images. We therefore plan to examine different parameters for the image acquisition in future studies.

  13. ToF-SIMS measurements with topographic information in combined images.

    PubMed

    Koch, Sabrina; Ziegler, Georg; Hutter, Herbert

    2013-09-01

    In 2D and 3D time-of-flight secondary ion mass spectrometric (ToF-SIMS) analysis, accentuated structures on the sample surface induce distorted element distributions in the measurement. The origin of this effect is the 45° incidence angle of the analysis beam, recording planar images with distortion of the sample surface. For the generation of correct element distributions, these artifacts associated with the sample surface need to be eliminated by measuring the sample surface topography and applying suitable algorithms. For this purpose, the next generation of ToF-SIMS instruments will feature a scanning probe microscope directly implemented in the sample chamber which allows the performance of topography measurements in situ. This work presents the combination of 2D and 3D ToF-SIMS analysis with topographic measurements by ex situ techniques such as atomic force microscopy (AFM), confocal microscopy (CM), and digital holographic microscopy (DHM). The concept of the combination of topographic and ToF-SIMS measurements in a single representation was applied to organic and inorganic samples featuring surface structures in the nanometer and micrometer ranges. The correct representation of planar and distorted ToF-SIMS images was achieved by the combination of topographic data with images of 2D as well as 3D ToF-SIMS measurements, using either AFM, CM, or DHM for the recording of topographic data.

  14. Missouri University Multi-Plane Imager (MUMPI): A high sensitivity rapid dynamic ECT brain imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, K.W.; Holmes, R.A.

    1984-01-01

    The authors have designed a unique ECT imaging device that can record rapid dynamic images of brain perfusion. The Missouri University Multi-Plane Imager (MUMPI) uses a single crystal detector that produces four orthogonal two-dimensional images simultaneously. Multiple slice images are reconstructed from counts recorded from stepwise or continuous collimator rotation. Four simultaneous 2-d image fields may also be recorded and reviewed. The cylindrical sodium iodide crystal and the rotating collimator concentrically surround the source volume being imaged with the collimator the only moving part. The design and function parameters of MUMPI have been compared to other competitive tomographic head imagingmore » devices. MUMPI's principal advantages are: 1) simultaneous direct acquisition of four two-dimensional images; 2) extremely rapid project set acquisition for ECT reconstruction; and 3) instrument practicality and economy due to single detector design and the absence of heavy mechanical moving components (only collimator rotation is required). MUMPI should be ideal for imaging neutral lipophilic chelates such as Tc-99m-PnAO which passively diffuses across the intact blood-brain-barrier and rapidly clears from brain tissue.« less

  15. A Versatile High Speed 250 MHz Pulse Imager for Biomedical Applications

    PubMed Central

    Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2009-01-01

    A versatile 250 MHz pulse electron paramagnetic resonance (EPR) instrument for imaging of small animals is presented. Flexible design of the imager hardware and software makes it possible to use virtually any pulse EPR imaging modality. A fast pulse generation and data acquisition system based on general purpose PCI boards performs measurements with minimal additional delays. Careful design of receiver protection circuitry allowed us to achieve very high sensitivity of the instrument. In this article we demonstrate the ability of the instrument to obtain three dimensional images using the electron spin echo (ESE) and single point imaging (SPI) methods. In a phantom that contains a 1 mM solution of narrow line (16 μT, peak-to-peak) paramagnetic spin probe we achieved an acquisition time of 32 seconds per image with a fast 3D ESE imaging protocol. Using an 18 minute 3D phase relaxation (T2e) ESE imaging protocol in a homogeneous sample a spatial resolution of 1.4 mm and a standard deviation of T2e of 8.5% were achieved. When applied to in vivo imaging this precision of T2e determination would be equivalent to 2 torr resolution of oxygen partial pressure in animal tissues. PMID:19924261

  16. Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis

    PubMed Central

    Traboulsee, A.; Simon, J.H.; Stone, L.; Fisher, E.; Jones, D.E.; Malhotra, A.; Newsome, S.D.; Oh, J.; Reich, D.S.; Richert, N.; Rammohan, K.; Khan, O.; Radue, E.-W.; Ford, C.; Halper, J.; Li, D.

    2016-01-01

    SUMMARY An international group of neurologists and radiologists developed revised guidelines for standardized brain and spinal cord MR imaging for the diagnosis and follow-up of MS. A brain MR imaging with gadolinium is recommended for the diagnosis of MS. A spinal cord MR imaging is recommended if the brain MR imaging is nondiagnostic or if the presenting symptoms are at the level of the spinal cord. A follow-up brain MR imaging with gadolinium is recommended to demonstrate dissemination in time and ongoing clinically silent disease activity while on treatment, to evaluate unexpected clinical worsening, to re-assess the original diagnosis, and as a new baseline before starting or modifying therapy. A routine brain MR imaging should be considered every 6 months to 2 years for all patients with relapsing MS. The brain MR imaging protocol includes 3D T1-weighted, 3D T2-FLAIR, 3D T2-weighted, post-single-dose gadolinium-enhanced T1-weighted sequences, and a DWI sequence. The progressive multifocal leukoencephalopathy surveillance protocol includes FLAIR and DWI sequences only. The spinal cord MR imaging protocol includes sagittal T1-weighted and proton attenuation, STIR or phase-sensitive inversion recovery, axial T2- or T2*-weighted imaging through suspicious lesions, and, in some cases, postcontrast gadolinium-enhanced T1-weighted imaging. The clinical question being addressed should be provided in the requisition for the MR imaging. The radiology report should be descriptive, with results referenced to previous studies. MR imaging studies should be permanently retained and available. The current revision incorporates new clinical information and imaging techniques that have become more available. PMID:26564433

  17. Tracking Image Correlation: Combining Single-Particle Tracking and Image Correlation

    PubMed Central

    Dupont, A.; Stirnnagel, K.; Lindemann, D.; Lamb, D.C.

    2013-01-01

    The interactions and coordination of biomolecules are crucial for most cellular functions. The observation of protein interactions in live cells may provide a better understanding of the underlying mechanisms. After fluorescent labeling of the interacting partners and live-cell microscopy, the colocalization is generally analyzed by quantitative global methods. Recent studies have addressed questions regarding the individual colocalization of moving biomolecules, usually by using single-particle tracking (SPT) and comparing the fluorescent intensities in both color channels. Here, we introduce a new method that combines SPT and correlation methods to obtain a dynamical 3D colocalization analysis along single trajectories of dual-colored particles. After 3D tracking, the colocalization is computed at each particle’s position via the local 3D image cross correlation of the two detection channels. For every particle analyzed, the output consists of the 3D trajectory, the time-resolved 3D colocalization information, and the fluorescence intensity in both channels. In addition, the cross-correlation analysis shows the 3D relative movement of the two fluorescent labels with an accuracy of 30 nm. We apply this method to the tracking of viral fusion events in live cells and demonstrate its capacity to obtain the time-resolved colocalization status of single particles in dense and noisy environments. PMID:23746509

  18. 3D texture analysis for classification of second harmonic generation images of human ovarian cancer

    NASA Astrophysics Data System (ADS)

    Wen, Bruce; Campbell, Kirby R.; Tilbury, Karissa; Nadiarnykh, Oleg; Brewer, Molly A.; Patankar, Manish; Singh, Vikas; Eliceiri, Kevin. W.; Campagnola, Paul J.

    2016-10-01

    Remodeling of the collagen architecture in the extracellular matrix (ECM) has been implicated in ovarian cancer. To quantify these alterations we implemented a form of 3D texture analysis to delineate the fibrillar morphology observed in 3D Second Harmonic Generation (SHG) microscopy image data of normal (1) and high risk (2) ovarian stroma, benign ovarian tumors (3), low grade (4) and high grade (5) serous tumors, and endometrioid tumors (6). We developed a tailored set of 3D filters which extract textural features in the 3D image sets to build (or learn) statistical models of each tissue class. By applying k-nearest neighbor classification using these learned models, we achieved 83-91% accuracies for the six classes. The 3D method outperformed the analogous 2D classification on the same tissues, where we suggest this is due the increased information content. This classification based on ECM structural changes will complement conventional classification based on genetic profiles and can serve as an additional biomarker. Moreover, the texture analysis algorithm is quite general, as it does not rely on single morphological metrics such as fiber alignment, length, and width but their combined convolution with a customizable basis set.

  19. Mapping Cd²⁺-induced membrane permeability changes of single live cells by means of scanning electrochemical microscopy.

    PubMed

    Filice, Fraser P; Li, Michelle S M; Henderson, Jeffrey D; Ding, Zhifeng

    2016-02-18

    Scanning Electrochemical Microscopy (SECM) is a powerful, non-invasive, analytical methodology that can be used to investigate live cell membrane permeability. Depth scan SECM imaging allowed for the generation of 2D current maps of live cells relative to electrode position in the x-z or y-z plane. Depending on resolution, one depth scan image can contain hundreds of probe approach curves (PACs). Individual PACs were obtained by simply extracting vertical cross-sections from the 2D image. These experimental PACs were overlaid onto theoretically generated PACs simulated at specific geometry conditions. Simulations were carried out using 3D models in COMSOL Multiphysics to determine the cell membrane permeability coefficients at different locations on the surface of the cells. Common in literature, theoretical PACs are generated using a 2D axially symmetric geometry. This saves on both compute time and memory utilization. However, due to symmetry limitations of the model, only one experimental PAC right above the cell can be matched with simulated PAC data. Full 3D models in this article were developed for the SECM system of live cells, allowing all experimental PACs over the entire cell to become usable. Cd(2+)-induced membrane permeability changes of single human bladder (T24) cells were investigated at several positions above the cell, displaced from the central axis. The experimental T24 cells under study were incubated with Cd(2+) in varying concentrations. It is experimentally observed that 50 and 100 μM Cd(2+) caused a decrease in membrane permeability, which was uniform across all locations over the cell regardless of Cd(2+) concentration. The Cd(2+) was found to have detrimental effects on the cell, with cells shrinking in size and volume, and the membrane permeability decreasing. A mapping technique for the analysis of the cell membrane permeability under the Cd(2+) stress is realized by the methodology presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Simultaneous multi-slice combined with PROPELLER.

    PubMed

    Norbeck, Ola; Avventi, Enrico; Engström, Mathias; Rydén, Henric; Skare, Stefan

    2018-08-01

    Simultaneous multi-slice (SMS) imaging is an advantageous method for accelerating MRI scans, allowing reduced scan time, increased slice coverage, or high temporal resolution with limited image quality penalties. In this work we combine the advantages of SMS acceleration with the motion correction and artifact reduction capabilities of the PROPELLER technique. A PROPELLER sequence was developed with support for CAIPIRINHA and phase optimized multiband radio frequency pulses. To minimize the time spent on acquiring calibration data, both in-plane-generalized autocalibrating partial parallel acquisition (GRAPPA) and slice-GRAPPA weights for all PROPELLER blade angles were calibrated on a single fully sampled PROPELLER blade volume. Therefore, the proposed acquisition included a single fully sampled blade volume, with the remaining blades accelerated in both the phase and slice encoding directions without additional auto calibrating signal lines. Comparison to 3D RARE was performed as well as demonstration of 3D motion correction performance on the SMS PROPELLER data. We show that PROPELLER acquisitions can be efficiently accelerated with SMS using a short embedded calibration. The potential in combining these two techniques was demonstrated with a high quality 1.0 × 1.0 × 1.0 mm 3 resolution T 2 -weighted volume, free from banding artifacts, and capable of 3D retrospective motion correction, with higher effective resolution compared to 3D RARE. With the combination of SMS acceleration and PROPELLER imaging, thin-sliced reformattable T 2 -weighted image volumes with 3D retrospective motion correction capabilities can be rapidly acquired with low sensitivity to flow and head motion. Magn Reson Med 80:496-506, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. An all-silica three element wide-field corrector for GMT

    NASA Astrophysics Data System (ADS)

    Saunders, Will; Gillingham, Peter; Lin, Sean; Woodruff, Bob; Rakich, Andrew

    2016-08-01

    We present an alternative Corrector-ADC design for GMT. The design consists of just 3 silica lenses, of maximum size 1.51m, and includes only a single low-precision asphere for 20' field-of-view, and none for 10'. The polychromatic (360nm-1300nm) image quality is d80<0.043" at zenith and d80<0.20" for ZD<60 degrees. The monochromatic image quality is d80<0.1" everywhere, and typically 0.05". The ADC action is achieved by tilt and translation of all three lenses; L1 and L2 via simple slide mechanisms each using a single encoded actuator, and L3 via a novel `tracker-ball' support and three actuators. There is also a small motion of M2 via the hexapod, automatically generated by the AGWS system. The ADC action causes a small non-telecentricity, but this is much less than the unavoidable chromatic effects shared with the baseline design. The ADC action also changes the distortion pattern of the telescope, but this can be used positively, to reduce the maximum image motion due to differential refraction by a factor of three. The transmission is superb at all wavelengths, because of the reduced number of air/glass surfaces, and the use only of fused silica.

  2. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning.

    PubMed

    Gee, Carole T

    2013-11-01

    As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction.

  3. Combining fluorescence imaging with Hi-C to study 3D genome architecture of the same single cell.

    PubMed

    Lando, David; Basu, Srinjan; Stevens, Tim J; Riddell, Andy; Wohlfahrt, Kai J; Cao, Yang; Boucher, Wayne; Leeb, Martin; Atkinson, Liam P; Lee, Steven F; Hendrich, Brian; Klenerman, Dave; Laue, Ernest D

    2018-05-01

    Fluorescence imaging and chromosome conformation capture assays such as Hi-C are key tools for studying genome organization. However, traditionally, they have been carried out independently, making integration of the two types of data difficult to perform. By trapping individual cell nuclei inside a well of a 384-well glass-bottom plate with an agarose pad, we have established a protocol that allows both fluorescence imaging and Hi-C processing to be carried out on the same single cell. The protocol identifies 30,000-100,000 chromosome contacts per single haploid genome in parallel with fluorescence images. Contacts can be used to calculate intact genome structures to better than 100-kb resolution, which can then be directly compared with the images. Preparation of 20 single-cell Hi-C libraries using this protocol takes 5 d of bench work by researchers experienced in molecular biology techniques. Image acquisition and analysis require basic understanding of fluorescence microscopy, and some bioinformatics knowledge is required to run the sequence-processing tools described here.

  4. Single particle analysis based on Zernike phase contrast transmission electron microscopy.

    PubMed

    Danev, Radostin; Nagayama, Kuniaki

    2008-02-01

    We present the first application of Zernike phase-contrast transmission electron microscopy to single-particle 3D reconstruction of a protein, using GroEL chaperonin as the test specimen. We evaluated the performance of the technique by comparing 3D models derived from Zernike phase contrast imaging, with models from conventional underfocus phase contrast imaging. The same resolution, about 12A, was achieved by both imaging methods. The reconstruction based on Zernike phase contrast data required about 30% fewer particles. The advantages and prospects of each technique are discussed.

  5. Compton imaging tomography for nondestructive evaluation of large multilayer aircraft components and structures

    NASA Astrophysics Data System (ADS)

    Romanov, Volodymyr; Grubsky, Victor; Zahiri, Feraidoon

    2017-02-01

    We present a novel NDT/NDE tool for non-contact, single-sided 3D inspection of aerospace components, based on Compton Imaging Tomography (CIT) technique, which is applicable to large, non-uniform, and/or multilayer structures made of composites or lightweight metals. CIT is based on the registration of Compton-scattered X-rays, and permits the reconstruction of the full 3D (tomographic) image of the inspected objects. Unlike conventional computerized tomography (CT), CIT requires only single-sided access to objects, and therefore can be applied to large structures without their disassembly. The developed tool provides accurate detection, identification, and precise 3D localizations and measurements of any possible internal and surface defects (corrosions, cracks, voids, delaminations, porosity, and inclusions), and also disbonds, core and skin defects, and intrusion of foreign fluids (e.g., fresh and salt water, oil) inside of honeycomb sandwich structures. The NDE capabilities of the system were successfully demonstrated on various aerospace structure samples provided by several major aerospace companies. Such a CIT-based tool can detect and localize individual internal defects with dimensions about 1-2 mm3, and honeycomb disbond defects less than 6 mm by 6 mm area with the variations in the thickness of the adhesive by 100 m. Current maximum scanning speed of aircraft/spacecraft structures is about 5-8 min/ft2 (50-80 min/m2).

  6. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)

    PubMed Central

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification—an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel. PMID:28152023

  7. Cryo-EM image alignment based on nonuniform fast Fourier transform.

    PubMed

    Yang, Zhengfan; Penczek, Pawel A

    2008-08-01

    In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform fast Fourier transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis.

  8. Cryo-EM Image Alignment Based on Nonuniform Fast Fourier Transform

    PubMed Central

    Yang, Zhengfan; Penczek, Pawel A.

    2008-01-01

    In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform Fast Fourier Transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis. PMID:18499351

  9. Micromachined mirrors for raster-scanning displays and optical fiber switches

    NASA Astrophysics Data System (ADS)

    Hagelin, Paul Merritt

    Micromachines and micro-optics have the potential to shrink the size and cost of free-space optical systems, enabling a new generation of high-performance, compact projection displays and telecommunications equipment. In raster-scanning displays and optical fiber switches, a free-space optical beam can interact with multiple tilt- up micromirrors fabricated on a single substrate. The size, rotation angle, and flatness of the mirror surfaces determine the number of pixels in a raster-display or ports in an optical switch. Single-chip and two-chip optical raster display systems demonstrate static mirror curvature correction, an integrated electronic driver board, and dynamic micromirror performance. Correction for curvature caused by a stress gradient in the micromirror leads to resolution of 102 by 119 pixels in the single-chip display. The optical design of the two-chip display features in-situ mirror curvature measurement and adjustable image magnification with a single output lens. An electronic driver board synchronizes modulation of the optical source with micromirror actuation for the display of images. Dynamic off-axis mirror motion is shown to have minimal influence on resolution. The confocal switch, a free-space optical fiber cross- connect, incorporates micromirrors having a design similar to the image-refresh scanner. Two micromirror arrays redirect optical beams from an input fiber array to the output fibers. The switch architecture supports simultaneous switching of multiple wavelength channels. A 2x2 switch configuration, using single-mode optical fiber at 1550 mn, is demonstrated with insertion loss of -4.2 dB and cross-talk of -50.5 dB. The micromirrors have sufficient size and angular range for scaling to a 32x32 cross-connect switch that has low insertion-loss and low cross-talk.

  10. 4D (x-y-z-t) imaging of thick biological samples by means of Two-Photon inverted Selective Plane Illumination Microscopy (2PE-iSPIM)

    PubMed Central

    Lavagnino, Zeno; Sancataldo, Giuseppe; d’Amora, Marta; Follert, Philipp; De Pietri Tonelli, Davide; Diaspro, Alberto; Cella Zanacchi, Francesca

    2016-01-01

    In the last decade light sheet fluorescence microscopy techniques, such as selective plane illumination microscopy (SPIM), has become a well established method for developmental biology. However, conventional SPIM architectures hardly permit imaging of certain tissues since the common sample mounting procedure, based on gel embedding, could interfere with the sample morphology. In this work we propose an inverted selective plane microscopy system (iSPIM), based on non-linear excitation, suitable for 3D tissue imaging. First, the iSPIM architecture provides flexibility on the sample mounting, getting rid of the gel-based mounting typical of conventional SPIM, permitting 3D imaging of hippocampal slices from mouse brain. Moreover, all the advantages brought by two photon excitation (2PE) in terms of reduction of scattering effects and contrast improvement are exploited, demonstrating an improved image quality and contrast compared to single photon excitation. The system proposed represents an optimal platform for tissue imaging and it smooths the way to the applicability of light sheet microscopy to a wider range of samples including those that have to be mounted on non-transparent surfaces. PMID:27033347

  11. Dual-view inverted selective plane illumination microscopy (diSPIM) with improved background rejection for accurate 3D digital pathology

    NASA Astrophysics Data System (ADS)

    Hu, Bihe; Bolus, Daniel; Brown, J. Quincy

    2018-02-01

    Current gold-standard histopathology for cancerous biopsies is destructive, time consuming, and limited to 2D slices, which do not faithfully represent true 3D tumor micro-morphology. Light sheet microscopy has emerged as a powerful tool for 3D imaging of cancer biospecimens. Here, we utilize the versatile dual-view inverted selective plane illumination microscopy (diSPIM) to render digital histological images of cancer biopsies. Dual-view architecture enabled more isotropic resolution in X, Y, and Z; and different imaging modes, such as adding electronic confocal slit detection (eCSD) or structured illumination (SI), can be used to improve degraded image quality caused by background signal of large, scattering samples. To obtain traditional H&E-like images, we used DRAQ5 and eosin (D&E) staining, with 488nm and 647nm laser illumination, and multi-band filter sets. Here, phantom beads and a D&E stained buccal cell sample have been used to verify our dual-view method. We also show that via dual view imaging and deconvolution, more isotropic resolution has been achieved for optical cleared human prostate sample, providing more accurate quantitation of 3D tumor architecture than was possible with single-view SPIM methods. We demonstrate that the optimized diSPIM delivers more precise analysis of 3D cancer microarchitecture in human prostate biopsy than simpler light sheet microscopy arrangements.

  12. Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution.

    PubMed

    B, Vinoth; Lai, Xin-Ji; Lin, Yu-Chih; Tu, Han-Yen; Cheng, Chau-Jern

    2018-04-13

    Digital holographic microtomography is a promising technique for three-dimensional (3D) measurement of the refractive index (RI) profiles of biological specimens. Measurement of the RI distribution of a free-floating single living cell with an isotropic superresolution had not previously been accomplished. To the best of our knowledge, this is the first study focusing on the development of an integrated dual-tomographic (IDT) imaging system for RI measurement of an unlabelled free-floating single living cell with an isotropic superresolution by combining the spatial frequencies of full-angle specimen rotation with those of beam rotation. A novel 'UFO' (unidentified flying object) like shaped coherent transfer function is obtained. The IDT imaging system does not require any complex image-processing algorithm for 3D reconstruction. The working principle was successfully demonstrated and a 3D RI profile of a single living cell, Candida rugosa, was obtained with an isotropic superresolution. This technology is expected to set a benchmark for free-floating single live sample measurements without labeling or any special sample preparations for the experiments.

  13. Enhanced labeling density and whole-cell 3D dSTORM imaging by repetitive labeling of target proteins.

    PubMed

    Venkataramani, Varun; Kardorff, Markus; Herrmannsdörfer, Frank; Wieneke, Ralph; Klein, Alina; Tampé, Robert; Heilemann, Mike; Kuner, Thomas

    2018-04-03

    With continuing advances in the resolving power of super-resolution microscopy, the inefficient labeling of proteins with suitable fluorophores becomes a limiting factor. For example, the low labeling density achieved with antibodies or small molecule tags limits attempts to reveal local protein nano-architecture of cellular compartments. On the other hand, high laser intensities cause photobleaching within and nearby an imaged region, thereby further reducing labeling density and impairing multi-plane whole-cell 3D super-resolution imaging. Here, we show that both labeling density and photobleaching can be addressed by repetitive application of trisNTA-fluorophore conjugates reversibly binding to a histidine-tagged protein by a novel approach called single-epitope repetitive imaging (SERI). For single-plane super-resolution microscopy, we demonstrate that, after multiple rounds of labeling and imaging, the signal density is increased. Using the same approach of repetitive imaging, washing and re-labeling, we demonstrate whole-cell 3D super-resolution imaging compensated for photobleaching above or below the imaging plane. This proof-of-principle study demonstrates that repetitive labeling of histidine-tagged proteins provides a versatile solution to break the 'labeling barrier' and to bypass photobleaching in multi-plane, whole-cell 3D experiments.

  14. In vivo microvascular imaging of human oral and nasal cavities using swept-source optical coherence tomography with a single forward/side viewing probe

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Wang, Ruikang K.

    2015-03-01

    We report three-dimensional (3D) imaging of microcirculation within human cavity tissues in vivo using a high-speed swept-source optical coherence tomography (SS-OCT) at 1.3 μm with a modified probe interface. Volumetric structural OCT images of the inner tissues of oral and nasal cavities are acquired with a field of view of 2 mm x 2 mm. Two types of disposable and detachable probe attachments are devised and applied to the port of the imaging probe of OCT system, enabling forward and side imaging scans for selective and easy access to specific cavity tissue sites. Blood perfusion is mapped with OCT-based microangiography from 3D structural OCT images, in which a novel vessel extraction algorithm is used to decouple dynamic light scattering signals, due to moving blood cells, from the background scattering signals due to static tissue elements. Characteristic tissue anatomy and microvessel architectures of various cavity tissue regions of a healthy human volunteer are identified with the 3D OCT images and the corresponding 3D vascular perfusion maps at a level approaching capillary resolution. The initial finding suggests that the proposed method may be engineered into a promising tool for evaluating and monitoring tissue microcirculation and its alteration within a wide-range of cavity tissues in the patients with various pathological conditions.

  15. Retrospective single center study of the efficacy of large spot 532 nm laser for the treatment of facial capillary malformations in 44 patients with the use of three-dimensional image analysis.

    PubMed

    Kwiek, Bartłomiej; Rożalski, Michał; Kowalewski, Cezary; Ambroziak, Marcin

    2017-10-01

    We wanted to asses the efficacy of large spot 532 nm laser for the treatment of facial capillary malformations with the use of three-dimensional (3D) image analysis. Retrospective single center study on previously non-treated patients with facial capillary malformations (CM) was performed. A total of 44 consecutive Caucasian patients aged 5-66 were included. Patients had 3D photography performed before and after and had at least one single session of treatment with 532 nm neodymium-doped yttrium aluminum garnet (Nd:YAG) laser with contact cooling, fluencies ranging from 8 to 11.5 J/cm 2 , pulse duration ranging from 5 to 9 milliseconds and spot size ranging from 5 to 10 mm. Objective analysis of percentage improvement based on 3D digital assessment of combined color and area improvement (global clearance effect [GCE]) were performed. Median maximal improvement achieved during the treatment (GCE max ) was 70.4%. Mean number of laser procedures required to achieve this improvement was 7.1 (ranging from 2 to 14)). Improvement of minimum 25% (GCE 25) was achieved by all patients, of minimum 50% (GCE 50) by 77.3%, of minimum 75% (GCE 75) by 38.6%, and of minimum 90% (GCE 90) by 13.64. Large spot 532 nm laser is highly effective in the treatment of facial CM. 3D color and area image analysis provides an objective method to compare different methods of facial CM treatment in future studies. Lasers Surg. Med. 49:743-749, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications.

    PubMed

    Cannata, Jonathan M; Ritter, Timothy A; Chen, Wo-Hsing; Silverman, Ronald H; Shung, K Kirk

    2003-11-01

    This paper discusses the design, fabrication, and testing of sensitive broadband lithium niobate (LiNbO3) single-element ultrasonic transducers in the 20-80 MHz frequency range. Transducers of varying dimensions were built for an f# range of 2.0-3.1. The desired focal depths were achieved by either casting an acoustic lens on the transducer face or press-focusing the piezoelectric into a spherical curvature. For designs that required electrical impedance matching, a low impedance transmission line coaxial cable was used. All transducers were tested in a pulse-echo arrangement, whereby the center frequency, bandwidth, insertion loss, and focal depth were measured. Several transducers were fabricated with center frequencies in the 20-80 MHz range with the measured -6 dB bandwidths and two-way insertion loss values ranging from 57 to 74% and 9.6 to 21.3 dB, respectively. Both transducer focusing techniques proved successful in producing highly sensitive, high-frequency, single-element, ultrasonic-imaging transducers. In vivo and in vitro ultrasonic backscatter microscope (UBM) images of human eyes were obtained with the 50 MHz transducers. The high sensitivity of these devices could possibly allow for an increase in depth of penetration, higher image signal-to-noise ratio (SNR), and improved image contrast at high frequencies when compared to previously reported results.

  17. Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application.

    PubMed

    Grepstad, Jon Olav; Kaspar, Peter; Solgaard, Olav; Johansen, Ib-Rune; Sudbø, Aasmund S

    2012-03-26

    A sensor designed to detect bio-molecules is presented. The sensor exploits a planar 2D photonic crystal (PC) membrane with sub-micron thickness and through holes, to induce high optical fields that allow detection of nano-particles smaller than the diffraction limit of an optical microscope. We report on our design and fabrication of a PC membrane with a nano-particle trapped inside. We have also designed and built an imaging system where an optical microscope and a CCD camera are used to take images of the PC membrane. Results show how the trapped nano-particle appears as a bright spot in the image. In a first experimental realization of the imaging system, single particles with a radius of 75 nm can be detected.

  18. Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology.

    PubMed

    Chen, Shuo; Luo, Chenggao; Deng, Bin; Wang, Hongqiang; Cheng, Yongqiang; Zhuang, Zhaowen

    2018-01-19

    As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI) can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D) TCAI architecture based on single input multiple output (SIMO) technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.

  19. On-line 3-dimensional confocal imaging in vivo.

    PubMed

    Li, J; Jester, J V; Cavanagh, H D; Black, T D; Petroll, W M

    2000-09-01

    In vivo confocal microscopy through focusing (CMTF) can provide a 3-D stack of high-resolution corneal images and allows objective measurements of corneal sublayer thickness and backscattering. However, current systems require time-consuming off-line image processing and analysis on multiple software platforms. Furthermore, there is a trade off between the CMTF speed and measurement precision. The purpose of this study was to develop a novel on-line system for in vivo corneal imaging and analysis that overcomes these limitations. A tandem scanning confocal microscope (TSCM) was used for corneal imaging. The TSCM video camera was interfaced directly to a PC image acquisition board to implement real-time digitization. Software was developed to allow in vivo 2-D imaging, CMTF image acquisition, interactive 3-D reconstruction, and analysis of CMTF data to be performed on line in a single user-friendly environment. A procedure was also incorporated to separate the odd/even video fields, thereby doubling the CMTF sampling rate and theoretically improving the precision of CMTF thickness measurements by a factor of two. In vivo corneal examinations of a normal human and a photorefractive keratectomy patient are presented to demonstrate the capabilities of the new system. Improvements in the convenience, speed, and functionality of in vivo CMTF image acquisition, display, and analysis are demonstrated. This is the first full-featured software package designed for in vivo TSCM imaging of the cornea, which performs both 2-D and 3-D image acquisition, display, and processing as well as CMTF analysis. The use of a PC platform and incorporation of easy to use, on line, and interactive features should help to improve the clinical utility of this technology.

  20. Single-scatter vector-wave scattering from surfaces with infinite slopes using the Kirchhoff approximation.

    PubMed

    Bruce, Neil C

    2008-08-01

    This paper presents a new formulation of the 3D Kirchhoff approximation that allows calculation of the scattering of vector waves from 2D rough surfaces containing structures with infinite slopes. This type of surface has applications, for example, in remote sensing and in testing or imaging of printed circuits. Some preliminary calculations for rectangular-shaped grooves in a plane are presented for the 2D surface method and are compared with the equivalent 1D surface calculations for the Kirchhoff and integral equation methods. Good agreement is found between the methods.

  1. Coupled Dictionary Learning for the Detail-Enhanced Synthesis of 3-D Facial Expressions.

    PubMed

    Liang, Haoran; Liang, Ronghua; Song, Mingli; He, Xiaofei

    2016-04-01

    The desire to reconstruct 3-D face models with expressions from 2-D face images fosters increasing interest in addressing the problem of face modeling. This task is important and challenging in the field of computer animation. Facial contours and wrinkles are essential to generate a face with a certain expression; however, these details are generally ignored or are not seriously considered in previous studies on face model reconstruction. Thus, we employ coupled radius basis function networks to derive an intermediate 3-D face model from a single 2-D face image. To optimize the 3-D face model further through landmarks, a coupled dictionary that is related to 3-D face models and their corresponding 3-D landmarks is learned from the given training set through local coordinate coding. Another coupled dictionary is then constructed to bridge the 2-D and 3-D landmarks for the transfer of vertices on the face model. As a result, the final 3-D face can be generated with the appropriate expression. In the testing phase, the 2-D input faces are converted into 3-D models that display different expressions. Experimental results indicate that the proposed approach to facial expression synthesis can obtain model details more effectively than previous methods can.

  2. Microradiography with Semiconductor Pixel Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubek, Jan; Cejnarova, Andrea; Dammer, Jiri

    High resolution radiography (with X-rays, neutrons, heavy charged particles, ...) often exploited also in tomographic mode to provide 3D images stands as a powerful imaging technique for instant and nondestructive visualization of fine internal structure of objects. Novel types of semiconductor single particle counting pixel detectors offer many advantages for radiation imaging: high detection efficiency, energy discrimination or direct energy measurement, noiseless digital integration (counting), high frame rate and virtually unlimited dynamic range. This article shows the application and potential of pixel detectors (such as Medipix2 or TimePix) in different fields of radiation imaging.

  3. High-resolution 3D coronary vessel wall imaging with near 100% respiratory efficiency using epicardial fat tracking: reproducibility and comparison with standard methods.

    PubMed

    Scott, Andrew D; Keegan, Jennifer; Firmin, David N

    2011-01-01

    To quantitatively assess the performance and reproducibility of 3D spiral coronary artery wall imaging with beat-to-beat respiratory-motion-correction (B2B-RMC) compared to navigator gated 2D spiral and turbo-spin-echo (TSE) acquisitions. High-resolution (0.7 × 0.7 mm) cross-sectional right coronary wall acquisitions were performed in 10 subjects using four techniques (B2B-RMC 3D spiral with alternate (2RR) and single (1RR) R-wave gating, navigator-gated 2D spiral (2RR) and navigator-gated 2D TSE (2RR)) on two occasions. Wall thickness measurements were compared with repeated measures analysis of variance (ANOVA). Reproducibility was assessed with the intraclass correlation coefficient (ICC). In all, 91% (73/80) of acquisitions were successful (failures: four TSE, two 3D spiral (1RR) and one 3D spiral (2RR)). Respiratory efficiency of the B2B-RMC was less variable and substantially higher than for navigator gating (99.6 ± 1.2% vs. 39.0 ± 7.5%, P < 0.0001). Coronary wall thicknesses (± standard deviation [SD]) were not significantly different: 1.10 ± 0.14 mm (3D spiral (2RR)), 1.20 ± 0.16 mm (3D spiral (1RR)), 1.14 ± 0.15 mm (2D spiral), and 1.21 ± 0.17 mm (TSE). Wall thickness reproducibility ranged from good (ICC = 0.65, 3D spiral (1RR)) to excellent (ICC = 0.87, 3D spiral (2RR)). High-resolution 3D spiral imaging with B2B-RMC permits coronary vessel wall assessment over multiple thin contiguous slices in a clinically feasible duration. Excellent reproducibility of the technique potentially enables studies of disease progression/regression. Copyright © 2010 Wiley-Liss, Inc.

  4. High-frequency 3D echodentographic imaging modality for early assessment of periodontal diseases: in vitro study

    NASA Astrophysics Data System (ADS)

    Mahmoud, Ahmed M.; Ngan, Peter; Crout, Richard; Mukdadi, Osama M.

    2009-02-01

    The use of ultrasound in dentistry is still an open growing area of research. Currently, there is a lack of imaging modalities to accurately predict minute structures and defects in the jawbone. In particular, the inability of 2D radiographic images to detect bony periodontal defects resulted from infection of the periodontium. This study investigates the feasibility of high frequency ultrasound to reconstruct high resolution 3D surface images of human jawbone. Methods: A dentate and non-dentate mandibles were used in this study. The system employs high frequency single-element ultrasound focused transducers (15-30 MHz) for scanning. Continuous acquisition using a 1 GHz data acquisition card is synchronized with a high precision two-dimensional stage positioning system of +/-1 μm resolution for acquiring accurate and quantitative measurements of the mandible in vitro. Radio frequency (RF) signals are acquired laterally 44-45.5 μm apart for each frame. Different frames are reconstructed 500 μm apart for the 3D reconstruction. Signal processing algorithms are applied on the received ultrasound signals for filtering, focusing, and envelope detection before frame reconstruction. Furthermore, an edge detection technique is adopted to detect the bone surface in each frame. Finally, all edges are combined together in order to render a 3D surface image of the jawbone. Major anatomical landmarks on the resultant images were confirmed with the anatomical structures on the mandibles to show the efficacy of the system. Comparison were also made with conventional 2D radiographs to show the superiority of the ultrasound imaging system in diagnosing small defects in the lateral, axial and elevation planes of space. Results: The landmarks on all ultrasound images matched with those on the mandible, indicating the efficacy of the system in detecting small structures in human jaw bones. Comparison with conventional 2D radiographic images of the same mandible showed superiority of the 3D ultrasound images in detecting defects in the elevation plane of space. These results suggest that the high frequency ultrasound system shows great potential in providing a non-invasive method to characterize the jawbone and detect periodontal diseases at earlier stages.

  5. Multi-GPU Jacobian Accelerated Computing for Soft Field Tomography

    PubMed Central

    Borsic, A.; Attardo, E. A.; Halter, R. J.

    2012-01-01

    Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use Finite Element Models to represent the volume of interest and to solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are three-dimensional. Though the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in Electrical Impedance Tomography applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15 to 20 minutes with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Further, providing high-speed reconstructions are essential for some promising clinical application of EIT. For 3D problems 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In the present work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have a much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of 20 times on a single NVIDIA S1070 GPU, and of 50 times on 4 GPUs, bringing the Jacobian computing time for a fine 3D mesh from 12 minutes to 14 seconds. We regard this as an important step towards gaining interactive reconstruction times in 3D imaging, particularly when coupled in the future with acceleration of the forward problem. While we demonstrate results for Electrical Impedance Tomography, these results apply to any soft-field imaging modality where the Jacobian matrix is computed with the Adjoint Method. PMID:23010857

  6. Development of a stationary digital breast tomosynthesis system for clinical applications

    NASA Astrophysics Data System (ADS)

    Tucker, Andrew Wallace

    Digital breast tomosynthesis (DBT) has been shown to be a very beneficial tool in the fight against breast cancer. However, current DBT systems have poor spatial resolution compared to full field digital mammography (FFDM), the current gold standard for screening mammography. The poor spatial resolution of DBT systems is a result of the single X-ray source design. In DBT systems a single X-ray source is rotated over an angular span in order to acquire the images needed for 3D reconstruction. The rotation of the X-ray source degrades the spatial resolution of the images. DBT systems which are approved for use in the United States for screening mammography are required to also take a full field digital mammogram with every DBT acquisition in order to compensate for the poor spatial resolution. This double exposure essentially doubles the radiation dose to patients. Over the past few years our research group has developed a carbon nanotube (CNT) based X-ray source technology. The unique nature of CNT X-ray sources allows for multiple X-ray focal spots in a single X-ray source. Using this technology we have recently developed a stationary DBT system (s-DBT) system which is capable of producing a full tomosynthesis image dataset with zero motion of the X-ray source. This system has been shown to have increased spatial resolution over other DBT systems in a laboratory setting. The goal of this thesis work was to optimize the s-DBT system, demonstrate its usefulness over other systems, and finally implement it into the clinic for a clinical trial. The s-DBT system was optimized using different image quality measurements. The optimized system was then used in a breast specimen imaging trial which compared s-DBT to magnified 2D mammography and a conventional single source DBT system. Readers preferred s-DBT to magnified 2D mammography for specimen margin delineation and mass detection, these results were not significant. Using physical measures for spatial resolution the s-DBT system was shown to have improved image quality over conventional single source DBT systems in breast tissue. A separate study showed that s-DBT could be a feasible alternative to FFDM for screening patients with breast implants. Finally, a second s-DBT system was constructed and implemented into the Department of Mammography at UNC hospitals. The first patient was imaged on the system in December of 2013.

  7. Water and lipid diffusion MRI using chemical shift displacement-based separation of lipid tissue (SPLIT).

    PubMed

    Ohno, Naoki; Kan, Hirohito; Miyati, Tosiaki; Aoki, Toshitaka; Ishida, Shota; Gabata, Toshifumi

    2017-06-01

    To obtain water and lipid diffusion-weighted images (DWIs) simultaneously, we devised a novel method utilizing chemical shift displacement-based separation of lipid tissue (SPLIT) imaging. Single-shot diffusion echo-planar imaging without fat suppression was used and the imaging parameters were optimized to separate water and lipid DWIs by chemical shift displacement of the lipid signals along the phase-encoding direction. Using the optimized conditions, transverse DWIs at the maximum diameter of the right calf were scanned with multiple b-values in five healthy subjects. Then, apparent diffusion coefficients (ADCs) were calculated in the tibialis anterior muscle (TA), tibialis bone marrow (TB), and subcutaneous fat (SF), as well as restricted and perfusion-related diffusion coefficients (D and D*, respectively) and the fraction of the perfusion-related diffusion component (F) for TA. Water and lipid DWIs were separated adequately. The mean ADCs of the TA, TB, and SF were 1.56±0.03mm 2 /s, 0.01±0.01mm 2 /s, and 0.06±0.02mm 2 /s, respectively. The mean D*, D, and F of the TA were 13.7±4.3mm 2 /s, 1.48±0.05mm 2 /s, and 4.3±1.6%, respectively. SPLIT imaging makes it possible to simply and simultaneously obtain water and lipid DWIs without special pulse sequence and increases the amount of diffusion information of water and lipid tissue. Copyright © 2017. Published by Elsevier Inc.

  8. Accelerated echo planar J-resolved spectroscopic imaging in prostate cancer: a pilot validation of non-linear reconstruction using total variation and maximum entropy.

    PubMed

    Nagarajan, Rajakumar; Iqbal, Zohaib; Burns, Brian; Wilson, Neil E; Sarma, Manoj K; Margolis, Daniel A; Reiter, Robert E; Raman, Steven S; Thomas, M Albert

    2015-11-01

    The overlap of metabolites is a major limitation in one-dimensional (1D) spectral-based single-voxel MRS and multivoxel-based MRSI. By combining echo planar spectroscopic imaging (EPSI) with a two-dimensional (2D) J-resolved spectroscopic (JPRESS) sequence, 2D spectra can be recorded in multiple locations in a single slice of prostate using four-dimensional (4D) echo planar J-resolved spectroscopic imaging (EP-JRESI). The goal of the present work was to validate two different non-linear reconstruction methods independently using compressed sensing-based 4D EP-JRESI in prostate cancer (PCa): maximum entropy (MaxEnt) and total variation (TV). Twenty-two patients with PCa with a mean age of 63.8 years (range, 46-79 years) were investigated in this study. A 4D non-uniformly undersampled (NUS) EP-JRESI sequence was implemented on a Siemens 3-T MRI scanner. The NUS data were reconstructed using two non-linear reconstruction methods, namely MaxEnt and TV. Using both TV and MaxEnt reconstruction methods, the following observations were made in cancerous compared with non-cancerous locations: (i) higher mean (choline + creatine)/citrate metabolite ratios; (ii) increased levels of (choline + creatine)/spermine and (choline + creatine)/myo-inositol; and (iii) decreased levels of (choline + creatine)/(glutamine + glutamate). We have shown that it is possible to accelerate the 4D EP-JRESI sequence by four times and that the data can be reliably reconstructed using the TV and MaxEnt methods. The total acquisition duration was less than 13 min and we were able to detect and quantify several metabolites. Copyright © 2015 John Wiley & Sons, Ltd.

  9. 3D Convolutional Neural Network for Automatic Detection of Lung Nodules in Chest CT.

    PubMed

    Hamidian, Sardar; Sahiner, Berkman; Petrick, Nicholas; Pezeshk, Aria

    2017-01-01

    Deep convolutional neural networks (CNNs) form the backbone of many state-of-the-art computer vision systems for classification and segmentation of 2D images. The same principles and architectures can be extended to three dimensions to obtain 3D CNNs that are suitable for volumetric data such as CT scans. In this work, we train a 3D CNN for automatic detection of pulmonary nodules in chest CT images using volumes of interest extracted from the LIDC dataset. We then convert the 3D CNN which has a fixed field of view to a 3D fully convolutional network (FCN) which can generate the score map for the entire volume efficiently in a single pass. Compared to the sliding window approach for applying a CNN across the entire input volume, the FCN leads to a nearly 800-fold speed-up, and thereby fast generation of output scores for a single case. This screening FCN is used to generate difficult negative examples that are used to train a new discriminant CNN. The overall system consists of the screening FCN for fast generation of candidate regions of interest, followed by the discrimination CNN.

  10. 3D convolutional neural network for automatic detection of lung nodules in chest CT

    NASA Astrophysics Data System (ADS)

    Hamidian, Sardar; Sahiner, Berkman; Petrick, Nicholas; Pezeshk, Aria

    2017-03-01

    Deep convolutional neural networks (CNNs) form the backbone of many state-of-the-art computer vision systems for classification and segmentation of 2D images. The same principles and architectures can be extended to three dimensions to obtain 3D CNNs that are suitable for volumetric data such as CT scans. In this work, we train a 3D CNN for automatic detection of pulmonary nodules in chest CT images using volumes of interest extracted from the LIDC dataset. We then convert the 3D CNN which has a fixed field of view to a 3D fully convolutional network (FCN) which can generate the score map for the entire volume efficiently in a single pass. Compared to the sliding window approach for applying a CNN across the entire input volume, the FCN leads to a nearly 800-fold speed-up, and thereby fast generation of output scores for a single case. This screening FCN is used to generate difficult negative examples that are used to train a new discriminant CNN. The overall system consists of the screening FCN for fast generation of candidate regions of interest, followed by the discrimination CNN.

  11. A method of 2D/3D registration of a statistical mouse atlas with a planar X-ray projection and an optical photo.

    PubMed

    Wang, Hongkai; Stout, David B; Chatziioannou, Arion F

    2013-05-01

    The development of sophisticated and high throughput whole body small animal imaging technologies has created a need for improved image analysis and increased automation. The registration of a digital mouse atlas to individual images is a prerequisite for automated organ segmentation and uptake quantification. This paper presents a fully-automatic method for registering a statistical mouse atlas with individual subjects based on an anterior-posterior X-ray projection and a lateral optical photo of the mouse silhouette. The mouse atlas was trained as a statistical shape model based on 83 organ-segmented micro-CT images. For registration, a hierarchical approach is applied which first registers high contrast organs, and then estimates low contrast organs based on the registered high contrast organs. To register the high contrast organs, a 2D-registration-back-projection strategy is used that deforms the 3D atlas based on the 2D registrations of the atlas projections. For validation, this method was evaluated using 55 subjects of preclinical mouse studies. The results showed that this method can compensate for moderate variations of animal postures and organ anatomy. Two different metrics, the Dice coefficient and the average surface distance, were used to assess the registration accuracy of major organs. The Dice coefficients vary from 0.31 ± 0.16 for the spleen to 0.88 ± 0.03 for the whole body, and the average surface distance varies from 0.54 ± 0.06 mm for the lungs to 0.85 ± 0.10mm for the skin. The method was compared with a direct 3D deformation optimization (without 2D-registration-back-projection) and a single-subject atlas registration (instead of using the statistical atlas). The comparison revealed that the 2D-registration-back-projection strategy significantly improved the registration accuracy, and the use of the statistical mouse atlas led to more plausible organ shapes than the single-subject atlas. This method was also tested with shoulder xenograft tumor-bearing mice, and the results showed that the registration accuracy of most organs was not significantly affected by the presence of shoulder tumors, except for the lungs and the spleen. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Three-dimensional nanoscale imaging by plasmonic Brownian microscopy

    NASA Astrophysics Data System (ADS)

    Labno, Anna; Gladden, Christopher; Kim, Jeongmin; Lu, Dylan; Yin, Xiaobo; Wang, Yuan; Liu, Zhaowei; Zhang, Xiang

    2017-12-01

    Three-dimensional (3D) imaging at the nanoscale is a key to understanding of nanomaterials and complex systems. While scanning probe microscopy (SPM) has been the workhorse of nanoscale metrology, its slow scanning speed by a single probe tip can limit the application of SPM to wide-field imaging of 3D complex nanostructures. Both electron microscopy and optical tomography allow 3D imaging, but are limited to the use in vacuum environment due to electron scattering and to optical resolution in micron scales, respectively. Here we demonstrate plasmonic Brownian microscopy (PBM) as a way to improve the imaging speed of SPM. Unlike photonic force microscopy where a single trapped particle is used for a serial scanning, PBM utilizes a massive number of plasmonic nanoparticles (NPs) under Brownian diffusion in solution to scan in parallel around the unlabeled sample object. The motion of NPs under an evanescent field is three-dimensionally localized to reconstruct the super-resolution topology of 3D dielectric objects. Our method allows high throughput imaging of complex 3D structures over a large field of view, even with internal structures such as cavities that cannot be accessed by conventional mechanical tips in SPM.

  13. An object-oriented framework for medical image registration, fusion, and visualization.

    PubMed

    Zhu, Yang-Ming; Cochoff, Steven M

    2006-06-01

    An object-oriented framework for image registration, fusion, and visualization was developed based on the classic model-view-controller paradigm. The framework employs many design patterns to facilitate legacy code reuse, manage software complexity, and enhance the maintainability and portability of the framework. Three sample applications built a-top of this framework are illustrated to show the effectiveness of this framework: the first one is for volume image grouping and re-sampling, the second one is for 2D registration and fusion, and the last one is for visualization of single images as well as registered volume images.

  14. One-stop shop for 3-dimensional anatomy of hepatic vasculature and bile duct with special reference to biliary image reconstruction.

    PubMed

    Enkhbold, Ch; Shimada, M; Utsunomiya, T; Ishibashi, H; Yamada, S; Kanamoto, M; Arakawa, Y; Ikemoto, Z; Morine, E; Imura, S

    2013-01-01

    Three-dimensional CT has become an essential tool for successful hepatic surgery. Up to now, efforts have been made to simultaneously visualize hepatic vasculature and bile ducts. Herein, we introduce a new one-stop shop approach to hepatic 3D-anatomy, using a standard enhanced MDCT alone. A 3D-reconstruction of hepatic vasculature was made using data from contrast enhanced MDCT and SYNAPSE VINCENT software. We identified bile ducts from axial 2D image, and then reconstructed the 3D image. Both hepatic vasculature and bile duct images were integrated into a single image and it was compared with the 3D image, utilized with MRCP or DIC-CT. The first branches of both the right and left hepatic ducts were hand-traced and visualized for all 100 cases. The second branches of these ducts were visualized in 69 cases, and only the right second branch was recognized in 52 cases. Anomalous variations of bile ducts, such as posterior branch joining into common hepatic duct, were recognized in 12 cases. These biliary tract variations were all confirmed by MRCP or DIC-CT. Our new one-stop shop approach using the 3D imaging technique might contribute to successful hepatectomy as well as reduce medical costs and radiation exposure by omission of MRCP and DIC-CT.

  15. Model-based measurement of food portion size for image-based dietary assessment using 3D/2D registration

    PubMed Central

    Chen, Hsin-Chen; Jia, Wenyan; Yue, Yaofeng; Li, Zhaoxin; Sun, Yung-Nien; Fernstrom, John D.; Sun, Mingui

    2013-01-01

    Dietary assessment is important in health maintenance and intervention in many chronic conditions, such as obesity, diabetes, and cardiovascular disease. However, there is currently a lack of convenient methods for measuring the volume of food (portion size) in real-life settings. We present a computational method to estimate food volume from a single photographical image of food contained in a typical dining plate. First, we calculate the food location with respect to a 3D camera coordinate system using the plate as a scale reference. Then, the food is segmented automatically from the background in the image. Adaptive thresholding and snake modeling are implemented based on several image features, such as color contrast, regional color homogeneity and curve bending degree. Next, a 3D model representing the general shape of the food (e.g., a cylinder, a sphere, etc.) is selected from a pre-constructed shape model library. The position, orientation and scale of the selected shape model are determined by registering the projected 3D model and the food contour in the image, where the properties of the reference are used as constraints. Experimental results using various realistically shaped foods with known volumes demonstrated satisfactory performance of our image based food volume measurement method even if the 3D geometric surface of the food is not completely represented in the input image. PMID:24223474

  16. Model-based measurement of food portion size for image-based dietary assessment using 3D/2D registration

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Chen; Jia, Wenyan; Yue, Yaofeng; Li, Zhaoxin; Sun, Yung-Nien; Fernstrom, John D.; Sun, Mingui

    2013-10-01

    Dietary assessment is important in health maintenance and intervention in many chronic conditions, such as obesity, diabetes and cardiovascular disease. However, there is currently a lack of convenient methods for measuring the volume of food (portion size) in real-life settings. We present a computational method to estimate food volume from a single photographic image of food contained on a typical dining plate. First, we calculate the food location with respect to a 3D camera coordinate system using the plate as a scale reference. Then, the food is segmented automatically from the background in the image. Adaptive thresholding and snake modeling are implemented based on several image features, such as color contrast, regional color homogeneity and curve bending degree. Next, a 3D model representing the general shape of the food (e.g., a cylinder, a sphere, etc) is selected from a pre-constructed shape model library. The position, orientation and scale of the selected shape model are determined by registering the projected 3D model and the food contour in the image, where the properties of the reference are used as constraints. Experimental results using various realistically shaped foods with known volumes demonstrated satisfactory performance of our image-based food volume measurement method even if the 3D geometric surface of the food is not completely represented in the input image.

  17. Differential conductance (dI/dV) imaging of a heterojunction-nanorod

    NASA Astrophysics Data System (ADS)

    Kundu, Biswajit; Bera, Abhijit; Pal, Amlan J.

    2017-03-01

    Through scanning tunneling spectroscopy, we envisage imaging a heterostructure, namely a junction formed in a single nanorod. While the differential conductance spectrum provides location of conduction and valence band edges, dI/dV images record energy levels of materials. Such dI/dV images at different voltages allowed us to view p- and n-sections of heterojunction nanorods and more importantly the depletion region in such a junction that has a type-II band alignment. Viewing of selective sections in a heterojunction occurred due to band-bending in the junction and is correlated to the density of states spectrum of the individual semiconductors. The dI/dV images recorded at different voltages could be used to generate a band diagram of a pn junction.

  18. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography

    DOE PAGES

    Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang; ...

    2018-02-09

    Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less

  19. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang

    Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less

  20. Increasing the automation of a 2D-3D registration system.

    PubMed

    Varnavas, Andreas; Carrell, Tom; Penney, Graeme

    2013-02-01

    Routine clinical use of 2D-3D registration algorithms for Image Guided Surgery remains limited. A key aspect for routine clinical use of this technology is its degree of automation, i.e., the amount of necessary knowledgeable interaction between the clinicians and the registration system. Current image-based registration approaches usually require knowledgeable manual interaction during two stages: for initial pose estimation and for verification of produced results. We propose four novel techniques, particularly suited to vertebra-based registration systems, which can significantly automate both of the above stages. Two of these techniques are based upon the intraoperative "insertion" of a virtual fiducial marker into the preoperative data. The remaining two techniques use the final registration similarity value between multiple CT vertebrae and a single fluoroscopy vertebra. The proposed methods were evaluated with data from 31 operations (31 CT scans, 419 fluoroscopy images). Results show these methods can remove the need for manual vertebra identification during initial pose estimation, and were also very effective for result verification, producing a combined true positive rate of 100% and false positive rate equal to zero. This large decrease in required knowledgeable interaction is an important contribution aiming to enable more widespread use of 2D-3D registration technology.

  1. 3D-printed eagle eye: Compound microlens system for foveated imaging

    PubMed Central

    Thiele, Simon; Arzenbacher, Kathrin; Gissibl, Timo; Giessen, Harald; Herkommer, Alois M.

    2017-01-01

    We present a highly miniaturized camera, mimicking the natural vision of predators, by 3D-printing different multilens objectives directly onto a complementary metal-oxide semiconductor (CMOS) image sensor. Our system combines four printed doublet lenses with different focal lengths (equivalent to f = 31 to 123 mm for a 35-mm film) in a 2 × 2 arrangement to achieve a full field of view of 70° with an increasing angular resolution of up to 2 cycles/deg field of view in the center of the image. The footprint of the optics on the chip is below 300 μm × 300 μm, whereas their height is <200 μm. Because the four lenses are printed in one single step without the necessity for any further assembling or alignment, this approach allows for fast design iterations and can lead to a plethora of different miniaturized multiaperture imaging systems with applications in fields such as endoscopy, optical metrology, optical sensing, surveillance drones, or security. PMID:28246646

  2. Development of an EMC3-EIRENE Synthetic Imaging Diagnostic

    NASA Astrophysics Data System (ADS)

    Meyer, William; Allen, Steve; Samuell, Cameron; Lore, Jeremy

    2017-10-01

    2D and 3D flow measurements are critical for validating numerical codes such as EMC3-EIRENE. Toroidal symmetry assumptions preclude tomographic reconstruction of 3D flows from single camera views. In addition, the resolution of the grids utilized in numerical code models can easily surpass the resolution of physical camera diagnostic geometries. For these reasons we have developed a Synthetic Imaging Diagnostic capability for forward projection comparisons of EMC3-EIRENE model solutions with the line integrated images from the Doppler Coherence Imaging diagnostic on DIII-D. The forward projection matrix is 2.8 Mpixel by 6.4 Mcells for the non-axisymmetric case we present. For flow comparisons, both simple line integral, and field aligned component matrices must be calculated. The calculation of these matrices is a massive embarrassingly parallel problem and performed with a custom dispatcher that allows processing platforms to join mid-problem as they become available, or drop out if resources are needed for higher priority tasks. The matrices are handled using standard sparse matrix techniques. Prepared by LLNL under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. DOE, Office of Science, Office of Fusion Energy Sciences. LLNL-ABS-734800.

  3. Tunable surface plasmon instability leading to emission of radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumbs, Godfrey; Donostia International Physics Center; Iurov, Andrii, E-mail: aiurov@chtm.unm.edu

    2015-08-07

    We propose a new approach for energy conversion from a dc electric field to tunable terahertz emission based on hybrid semiconductors by combining two-dimensional (2D) crystalline layers and a thick conducting material with possible applications for chemical analysis, security scanning, medical (single-molecule) imaging, and telecommunications. The hybrid nano-structure may consist of a single or pair of sheets of graphene, silicene, or a 2D electron gas. When an electric current is passed through a 2D layer, we discover that two low-energy plasmon branches exhibit a characteristic loop in their dispersion before they merge into an unstable region beyond a critical wavemore » vector q{sub c}. This finite q{sub c} gives rise to a wavenumber cutoff in the emission dispersion of the surface plasmon induced instability and emission of radiation (spiler). However, there is no instability for a single driven layer far from the conductor, and the instability of an isolated pair of 2D layers occurs without a wavenumber cutoff. The wavenumber cutoff is found to depend on the conductor electron density, layer separation, distances of layers from the conductor surface, and the driving-current strength.« less

  4. Real-Time Time-Frequency Two-Dimensional Imaging of Ultrafast Transient Signals in Solid-State Organic Materials

    PubMed Central

    Takeda, Jun; Ishida, Akihiro; Makishima, Yoshinori; Katayama, Ikufumi

    2010-01-01

    In this review, we demonstrate a real-time time-frequency two-dimensional (2D) pump-probe imaging spectroscopy implemented on a single shot basis applicable to excited-state dynamics in solid-state organic and biological materials. Using this technique, we could successfully map ultrafast time-frequency 2D transient absorption signals of β-carotene in solid films with wide temporal and spectral ranges having very short accumulation time of 20 ms per unit frame. The results obtained indicate the high potential of this technique as a powerful and unique spectroscopic tool to observe ultrafast excited-state dynamics of organic and biological materials in solid-state, which undergo rapid photodegradation. PMID:22399879

  5. Investigation of radical locations in various sesame seeds by CW EPR and 9-GHz EPR imaging.

    PubMed

    Nakagawa, K; Hara, H

    2015-01-01

    We investigated the location of radical in various sesame seeds using continuous-wave (CW) electron paramagnetic resonance (EPR) and 9-GHz EPR imaging. CW EPR detected persistent radicals (single line) for various sesame seeds. The EPR linewidth of black sesame seeds was narrower than that of the irradiated white sesame seeds. A very small signal was detected for the white sesame seeds. Two-dimensional (2D) imaging using a 9-GHz EPR imager showed that radical locations vary for various sesame seeds. The paramagnetic species in black sesame seeds were located on the seed coat (skin) and in the hilum region. The signal with the highest intensity was obtained from the hilum part. A very low-intensity image was observed for the white sesame seeds. In addition, the 2D imaging of the irradiated white sesame seeds showed that free radicals were located throughout the entire seed. For the first time, CW EPR and 9-GHz EPR imaging showed the exact location of radical species in various sesame seeds.

  6. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging

    PubMed Central

    Yan, Jing; Sharo, Andrew G.; Stone, Howard A.; Wingreen, Ned S.; Bassler, Bonnie L.

    2016-01-01

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA. Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli. PMID:27555592

  7. Lensfree diffractive tomography for the imaging of 3D cell cultures

    NASA Astrophysics Data System (ADS)

    Berdeu, Anthony; Momey, Fabien; Dinten, Jean-Marc; Gidrol, Xavier; Picollet-D'hahan, Nathalie; Allier, Cédric

    2017-02-01

    New microscopes are needed to help reaching the full potential of 3D organoid culture studies by gathering large quantitative and systematic data over extended periods of time while preserving the integrity of the living sample. In order to reconstruct large volumes while preserving the ability to catch every single cell, we propose new imaging platforms based on lens-free microscopy, a technic which is addressing these needs in the context of 2D cell culture, providing label-free and non-phototoxic acquisition of large datasets. We built lens-free diffractive tomography setups performing multi-angle acquisitions of 3D organoid cultures embedded in Matrigel and developed dedicated 3D holographic reconstruction algorithms based on the Fourier diffraction theorem. Nonetheless, holographic setups do not record the phase of the incident wave front and the biological samples in Petri dish strongly limit the angular coverage. These limitations introduce numerous artefacts in the sample reconstruction. We developed several methods to overcome them, such as multi-wavelength imaging or iterative phase retrieval. The most promising technic currently developed is based on a regularised inverse problem approach directly applied on the 3D volume to reconstruct. 3D reconstructions were performed on several complex samples such as 3D networks or spheroids embedded in capsules with large reconstructed volumes up to 25 mm3 while still being able to identify single cells. To our knowledge, this is the first time that such an inverse problem approach is implemented in the context of lens-free diffractive tomography enabling to reconstruct large fully 3D volumes of unstained biological samples.

  8. Spin-echo Echo-planar Imaging MR Elastography versus Gradient-echo MR Elastography for Assessment of Liver Stiffness in Children and Young Adults Suspected of Having Liver Disease.

    PubMed

    Serai, Suraj D; Dillman, Jonathan R; Trout, Andrew T

    2017-03-01

    Purpose To compare two-dimensional (2D) gradient-recalled echo (GRE) and 2D spin-echo (SE) echo-planar imaging (EPI) magnetic resonance (MR) elastography for measurement of hepatic stiffness in pediatric and young adult patients suspected of having liver disease. Materials and Methods In this institutional review board-approved, HIPAA-compliant study, 58 patients underwent both 2D GRE and 2D SE-EPI MR elastography at 1.5 T during separate breath holds. Liver stiffness (mean of means; in kilopascals) was measured by five blinded reviewers. Pooled mean liver stiffness and region-of-interest (ROI) size were compared by using paired t tests. Intraclass correlation coefficients (ICCs) were used to assess agreement between techniques. Respiratory motion artifacts were compared across sequences by using the Fisher exact test. Results Mean patient age was 14.7 years ± 5.2 (standard deviation; age range, 0.7-20.5 years), and 55.2% (32 of 58) of patients were male. Mean liver stiffness was 2.92 kPa ± 1.29 measured at GRE MR elastography and 2.76 kPa ± 1.39 at SE-EPI MR elastography (n = 290; P = .15). Mean ROI sizes were 8495 mm 2 ± 4482 for 2D GRE MR elastography and 15 176 mm 2 ± 7609 for 2D SE-EPI MR elastography (n = 290; P < .001). Agreement was excellent for measured stiffness between five reviewers for both 2D GRE (ICC, 0.97; 95% confidence interval: 0.95, 0.98) and 2D SE-EPI (ICC, 0.98; 95% confidence interval: 0.96, 0.99). Mean ICC (n = 5) for agreement between 2D GRE and 2D SE-EPI MR elastography was 0.93 (range, 0.91-0.95). Moderate or severe breathing artifacts were observed on 27.5% (16 of 58) of 2D GRE images versus 0% 2D SE-EPI images (P < .001). Conclusion There is excellent agreement on measured hepatic stiffness between 2D GRE and 2D SE-EPI MR elastography across multiple reviewers. SE-EPI MR elastography allowed for stiffness measurement across larger areas of the liver and can be performed in a single breath hold. © RSNA, 2016.

  9. 3D Imaging Millimeter Wave Circular Synthetic Aperture Radar

    PubMed Central

    Zhang, Renyuan; Cao, Siyang

    2017-01-01

    In this paper, a new millimeter wave 3D imaging radar is proposed. The user just needs to move the radar along a circular track, and high resolution 3D imaging can be generated. The proposed radar uses the movement of itself to synthesize a large aperture in both the azimuth and elevation directions. It can utilize inverse Radon transform to resolve 3D imaging. To improve the sensing result, the compressed sensing approach is further investigated. The simulation and experimental result further illustrated the design. Because a single transceiver circuit is needed, a light, affordable and high resolution 3D mmWave imaging radar is illustrated in the paper. PMID:28629140

  10. Ultra-wide-band 3D microwave imaging scanner for the detection of concealed weapons

    NASA Astrophysics Data System (ADS)

    Rezgui, Nacer-Ddine; Andrews, David A.; Bowring, Nicholas J.

    2015-10-01

    The threat of concealed weapons, explosives and contraband in footwear, bags and suitcases has led to the development of new devices, which can be deployed for security screening. To address known deficiencies of metal detectors and x-rays, an UWB 3D microwave imaging scanning apparatus using FMCW stepped frequency working in the K and Q bands and with a planar scanning geometry based on an x y stage, has been developed to screen suspicious luggage and footwear. To obtain microwave images of the concealed weapons, the targets are placed above the platform and the single transceiver horn antenna attached to the x y stage is moved mechanically to perform a raster scan to create a 2D synthetic aperture array. The S11 reflection signal of the transmitted sweep frequency from the target is acquired by a VNA in synchronism with each position step. To enhance and filter from clutter and noise the raw data and to obtain the 2D and 3D microwave images of the concealed weapons or explosives, data processing techniques are applied to the acquired signals. These techniques include background subtraction, Inverse Fast Fourier Transform (IFFT), thresholding, filtering by gating and windowing and deconvolving with the transfer function of the system using a reference target. To focus the 3D reconstructed microwave image of the target in range and across the x y aperture without using focusing elements, 3D Synthetic Aperture Radar (SAR) techniques are applied to the post-processed data. The K and Q bands, between 15 to 40 GHz, show good transmission through clothing and dielectric materials found in luggage and footwear. A description of the system, algorithms and some results with replica guns and a comparison of microwave images obtained by IFFT, 2D and 3D SAR techniques are presented.

  11. A new assessment model for tumor heterogeneity analysis with [18]F-FDG PET images.

    PubMed

    Wang, Ping; Xu, Wengui; Sun, Jian; Yang, Chengwen; Wang, Gang; Sa, Yu; Hu, Xin-Hua; Feng, Yuanming

    2016-01-01

    It has been shown that the intratumor heterogeneity can be characterized with quantitative analysis of the [18]F-FDG PET image data. The existing models employ multiple parameters for feature extraction which makes it difficult to implement in clinical settings for the quantitative characterization. This article reports an easy-to-use and differential SUV based model for quantitative assessment of the intratumor heterogeneity from 3D [18]F-FDG PET image data. An H index is defined to assess tumor heterogeneity by summing voxel-wise distribution of differential SUV from the [18]F-FDG PET image data. The summation is weighted by the distance of SUV difference among neighboring voxels from the center of the tumor and can thus yield increased values for tumors with peripheral sub-regions of high SUV that often serves as an indicator of augmented malignancy. Furthermore, the sign of H index is used to differentiate the rate of change for volume averaged SUV from its center to periphery. The new model with the H index has been compared with a widely-used model of gray level co-occurrence matrix (GLCM) for image texture characterization with phantoms of different configurations and the [18]F-FDG PET image data of 6 lung cancer patients to evaluate its effectiveness and feasibility for clinical uses. The comparison of the H index and GLCM parameters with the phantoms demonstrate that the H index can characterize the SUV heterogeneity in all of 6 2D phantoms while only 1 GLCM parameter can do for 1 and fail to differentiate for other 2D phantoms. For the 8 3D phantoms, the H index can clearly differentiate all of them while the 4 GLCM parameters provide complicated patterns in the characterization. Feasibility study with the PET image data from 6 lung cancer patients show that the H index provides an effective single-parameter metric to characterize tumor heterogeneity in terms of the local SUV variation, and it has higher correlation with tumor volume change after radiotherapy (R(2) = 0.83) than the 4 GLCM parameters (R(2) = 0.63, 0.73, 0.59 and 0.75 for Energy, Contrast, Local Homogeneity and Entropy respectively). The new model of the H index has the capacity to characterize the intratumor heterogeneity feature from 3D [18]F-FDG PET image data. As a single parameter with an intuitive definition, the H index offers potential for clinical applications.

  12. Rapid simulation of X-ray transmission imaging for baggage inspection via GPU-based ray-tracing

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Stoian, Razvan-Ionut; Coccarelli, David S.; Greenberg, Joel A.; Vera, Esteban; Gehm, Michael E.

    2018-01-01

    We present a pipeline that rapidly simulates X-ray transmission imaging for arbitrary system architectures using GPU-based ray-tracing techniques. The purpose of the pipeline is to enable statistical analysis of threat detection in the context of airline baggage inspection. As a faster alternative to Monte Carlo methods, we adopt a deterministic approach for simulating photoelectric absorption-based imaging. The highly-optimized NVIDIA OptiX API is used to implement ray-tracing, greatly speeding code execution. In addition, we implement the first hierarchical representation structure to determine the interaction path length of rays traversing heterogeneous media described by layered polygons. The accuracy of the pipeline has been validated by comparing simulated data with experimental data collected using a heterogenous phantom and a laboratory X-ray imaging system. On a single computer, our approach allows us to generate over 400 2D transmission projections (125 × 125 pixels per frame) per hour for a bag packed with hundreds of everyday objects. By implementing our approach on cloud-based GPU computing platforms, we find that the same 2D projections of approximately 3.9 million bags can be obtained in a single day using 400 GPU instances, at a cost of only 0.001 per bag.

  13. 3D ocular ultrasound using gaze tracking on the contralateral eye: a feasibility study.

    PubMed

    Afsham, Narges; Najafi, Mohammad; Abolmaesumi, Purang; Rohling, Robert

    2011-01-01

    A gaze-deviated examination of the eye with a 2D ultrasound transducer is a common and informative ophthalmic test; however, the complex task of the pose estimation of the ultrasound images relative to the eye affects 3D interpretation. To tackle this challenge, a novel system for 3D image reconstruction based on gaze tracking of the contralateral eye has been proposed. The gaze fixates on several target points and, for each fixation, the pose of the examined eye is inferred from the gaze tracking. A single camera system has been developed for pose estimation combined with subject-specific parameter identification. The ultrasound images are then transformed to the coordinate system of the examined eye to create a 3D volume. Accuracy of the proposed gaze tracking system and the pose estimation of the eye have been validated in a set of experiments. Overall system error, including pose estimation and calibration, are 3.12 mm and 4.68 degrees.

  14. Imaging of cellular spread on a three-dimensional scaffold by means of a novel cell-labeling technique for high-resolution computed tomography.

    PubMed

    Thimm, Benjamin W; Hofmann, Sandra; Schneider, Philipp; Carretta, Roberto; Müller, Ralph

    2012-03-01

    Computed tomography (CT) represents a truly three-dimensional (3D) imaging technique that can provide high-resolution images on the cellular level. Thus, one approach to detect single cells is X-ray absorption-based CT, where cells are labeled with a dense, opaque material providing the required contrast for CT imaging. Within the present work, a novel cell-labeling method has been developed showing the feasibility of labeling fixed cells with iron oxide (FeO) particles for subsequent CT imaging and quantitative morphometry. A biotin-streptavidin detection system was exploited to bind FeO particles to its target endothelial cells. The binding of the particles was predominantly close to the cell centers on 2D surfaces as shown by light microscopy, scanning electron microscopy, and CT. When cells were cultured on porous, 3D polyurethane surfaces, significantly more FeO particles were detected compared with surfaces without cells and FeO particle labeling using CT. Here, we report on the implementation and evaluation of a novel cell detection method based on high-resolution CT. This system has potential in cell tracking for 3D in vitro imaging in the future.

  15. Vectorized Rebinning Algorithm for Fast Data Down-Sampling

    NASA Technical Reports Server (NTRS)

    Dean, Bruce; Aronstein, David; Smith, Jeffrey

    2013-01-01

    A vectorized rebinning (down-sampling) algorithm, applicable to N-dimensional data sets, has been developed that offers a significant reduction in computer run time when compared to conventional rebinning algorithms. For clarity, a two-dimensional version of the algorithm is discussed to illustrate some specific details of the algorithm content, and using the language of image processing, 2D data will be referred to as "images," and each value in an image as a "pixel." The new approach is fully vectorized, i.e., the down-sampling procedure is done as a single step over all image rows, and then as a single step over all image columns. Data rebinning (or down-sampling) is a procedure that uses a discretely sampled N-dimensional data set to create a representation of the same data, but with fewer discrete samples. Such data down-sampling is fundamental to digital signal processing, e.g., for data compression applications.

  16. Design of a front-end integrated circuit for 3D acoustic imaging using 2D CMUT arrays.

    PubMed

    Ciçek, Ihsan; Bozkurt, Ayhan; Karaman, Mustafa

    2005-12-01

    Integration of front-end electronics with 2D capacitive micromachined ultrasonic transducer (CMUT) arrays has been a challenging issue due to the small element size and large channel count. We present design and verification of a front-end drive-readout integrated circuit for 3D ultrasonic imaging using 2D CMUT arrays. The circuit cell dedicated to a single CMUT array element consists of a high-voltage pulser and a low-noise readout amplifier. To analyze the circuit cell together with the CMUT element, we developed an electrical CMUT model with parameters derived through finite element analysis, and performed both the pre- and postlayout verification. An experimental chip consisting of 4 X 4 array of the designed circuit cells, each cell occupying a 200 X 200 microm2 area, was formed for the initial test studies and scheduled for fabrication in 0.8 microm, 50 V CMOS technology. The designed circuit is suitable for integration with CMUT arrays through flip-chip bonding and the CMUT-on-CMOS process.

  17. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    PubMed Central

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  18. Acquiring 4D Thoracic CT Scans Using Ciné CT Acquisition

    NASA Astrophysics Data System (ADS)

    Low, Daniel

    One method for acquiring 4D thoracic CT scans is to use ciné acquisition. Ciné acquisition is conducted by rotating the gantry and acquiring x-ray projections while keeping the couch stationary. After a complete rotation, a single set of CT slices, the number corresponding to the number of CT detector rows, is produced. The rotation period is typically sub second so each image set corresponds to a single point in time. The ciné image acquisition is repeated for at least one breathing cycle to acquire images throughout the breathing cycle. Once the images are acquired at a single couch position, the couch is moved to the abutting position and the acquisition is repeated. Post-processing of the images sets typically resorts the sets into breathing phases, stacking images from a specific phase to produce a thoracic CT scan at that phase. Benefits of the ciné acquisition protocol include, the ability to precisely identify the phase with respect to the acquired image, the ability to resort images after reconstruction, and the ability to acquire images over arbitrarily long times and for arbitrarily many images (within dose constraints).

  19. Scalable, large area compound array refractive lens for hard X-rays

    NASA Astrophysics Data System (ADS)

    Reich, Stefan; dos Santos Rolo, Tomy; Letzel, Alexander; Baumbach, Tilo; Plech, Anton

    2018-04-01

    We demonstrate the fabrication of a 2D Compound Array Refractive Lens (CARL) for multi-contrast X-ray imaging. The CARL consists of six stacked polyimide foils with each displaying a 2D array of lenses with a 65 μm pitch aiming for a sensitivity on sub-micrometer structures with a (few-)micrometer resolution in sensing through phase and scattering contrast at multiple keV. The parabolic lenses are formed by indents in the foils by a paraboloid needle. The ability for fast single-exposure multi-contrast imaging is demonstrated by filming the kinetics of pulsed laser ablation in liquid. The three contrast channels, absorption, differential phase, and scattering, are imaged with a time resolution of 25 μs. By changing the sample-detector distance, it is possible to distinguish between nanoparticles and microbubbles.

  20. GrayQb TM Single-Faced Version 2 (SF2) Hanford Plutonium Reclamation Facility (PRF) deployment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plummer, J. R.; Immel, D. M.; Serrato, M. G.

    2015-11-18

    The Savannah River National Laboratory (SRNL) in partnership with CH2M Plateau Remediation Company (CHPRC) deployed the GrayQb TM SF2 radiation imaging device at the Hanford Plutonium Reclamation Facility (PRF) to assist in the radiological characterization of the canyon. The deployment goal was to locate radiological contamination hot spots in the PRF canyon, where pencil tanks were removed and decontamination/debris removal operations are on-going, to support the CHPRC facility decontamination and decommissioning (D&D) effort. The PRF canyon D&D effort supports completion of the CHPRC Plutonium Finishing Plant Decommissioning Project. The GrayQb TM SF2 (Single Faced Version 2) is a non-destructive examinationmore » device developed by SRNL to generate radiation contour maps showing source locations and relative radiological levels present in the area under examination. The Hanford PRF GrayQbTM Deployment was sponsored by CH2M Plateau Remediation Company (CHPRC) through the DOE Richland Operations Office, Inter-Entity Work Order (IEWO), DOE-RL IEWO- M0SR900210.« less

  1. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    PubMed Central

    Boulos, Maged N Kamel; Robinson, Larry R

    2009-01-01

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system. PMID:19849837

  2. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes.

    PubMed

    Boulos, Maged N Kamel; Robinson, Larry R

    2009-10-22

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system.

  3. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    USGS Publications Warehouse

    Boulos, Maged N.K.; Robinson, Larry R.

    2009-01-01

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system.

  4. The Ames MER microscopic imager toolkit

    USGS Publications Warehouse

    Sargent, R.; Deans, Matthew; Kunz, C.; Sims, M.; Herkenhoff, K.

    2005-01-01

    12The Mars Exploration Rovers, Spirit and Opportunity, have spent several successful months on Mars, returning gigabytes of images and spectral data to scientists on Earth. One of the instruments on the MER rovers, the Athena Microscopic Imager (MI), is a fixed focus, megapixel camera providing a ??3mm depth of field and a 31??31mm field of view at a working distance of 63 mm from the lens to the object being imaged. In order to maximize the science return from this instrument, we developed the Ames MI Toolkit and supported its use during the primary mission. The MI Toolkit is a set of programs that operate on collections of MI images, with the goal of making the data more understandable to the scientists on the ground. Because of the limited depth of field of the camera, and the often highly variable topography of the terrain being imaged, MI images of a given rock are often taken as a stack, with the Instrument Deployment Device (IDD) moving along a computed normal vector, pausing every few millimeters for the MI to acquire an image. The MI Toolkit provides image registration and focal section merging, which combine these images to form a single, maximally in-focus image, while compensating for changes in lighting as well as parallax due to the motion of the camera. The MI Toolkit also provides a 3-D reconstruction of the surface being imaged using stereo and can embed 2-D MI images as texture maps into 3-D meshes produced by other imagers on board the rover to provide context. The 2-D images and 3-D meshes output from the Toolkit are easily viewed by scientists using other mission tools, such as Viz or the MI Browser.This paper describes the MI Toolkit in detail, as well as our experience using it with scientists at JPL during the primary MER mission. ?? 2005 IEEE.

  5. The Ames MER Microscopic Imager Toolkit

    NASA Technical Reports Server (NTRS)

    Sargent, Randy; Deans, Matthew; Kunz, Clayton; Sims, Michael; Herkenhoff, Ken

    2005-01-01

    The Mars Exploration Rovers, Spirit and Opportunity, have spent several successful months on Mars, returning gigabytes of images and spectral data to scientists on Earth. One of the instruments on the MER rovers, the Athena Microscopic Imager (MI), is a fixed focus, megapixel camera providing a plus or minus mm depth of field and a 3lx31mm field of view at a working distance of 63 mm from the lens to the object being imaged. In order to maximize the science return from this instrument, we developed the Ames MI Toolkit and supported its use during the primary mission. The MI Toolkit is a set of programs that operate on collections of MI images, with the goal of making the data more understandable to the scientists on the ground. Because of the limited depth of field of the camera, and the often highly variable topography of the terrain being imaged, MI images of a given rock are often taken as a stack, with the Instrument Deployment Device (IDD) moving along a computed normal vector, pausing every few millimeters for the MI to acquire an image. The MI Toolkit provides image registration and focal section merging, which combine these images to form a single, maximally in-focus image, while compensating for changes in lighting as well as parallax due to the motion of the camera. The MI Toolkit also provides a 3-D reconstruction of the surface being imaged using stereo and can embed 2-D MI images as texture maps into 3-D meshes produced by other imagers on board the rover to provide context. The 2-D images and 3-D meshes output from the Toolkit are easily viewed by scientists using other mission tools, such as Viz or the MI Browser. This paper describes the MI Toolkit in detail, as well as our experience using it with scientists at JPL during the primary MER mission.

  6. Investigation of sagittal image acquisition for 4D-MRI with body area as respiratory surrogate.

    PubMed

    Liu, Yilin; Yin, Fang-Fang; Chang, Zheng; Czito, Brian G; Palta, Manisha; Bashir, Mustafa R; Qin, Yujiao; Cai, Jing

    2014-10-01

    The authors have recently developed a novel 4D-MRI technique for imaging organ respiratory motion employing cine acquisition in the axial plane and using body area (BA) as a respiratory surrogate. A potential disadvantage associated with axial image acquisition is the space-dependent phase shift in the superior-inferior (SI) direction, i.e., different axial slice positions reach the respiratory peak at different respiratory phases. Since respiratory motion occurs mostly in the SI and anterior-posterior (AP) directions, sagittal image acquisition, which embeds motion information in these two directions, is expected to be more robust and less affected by phase-shift than axial image acquisition. This study aims to develop and evaluate a 4D-MRI technique using sagittal image acquisition. The authors evaluated axial BA and sagittal BA using both 4D-CT images (11 cancer patients) and cine MR images (6 healthy volunteers and 1 cancer patient) by comparing their corresponding space-dependent phase-shift in the SI direction (δSPS (SI)) and in the lateral direction (δSPS (LAT)), respectively. To evaluate sagittal BA 4D-MRI method, a motion phantom study and a digital phantom study were performed. Additionally, six patients who had cancer(s) in the liver were prospectively enrolled in this study. For each patient, multislice sagittal MR images were acquired for 4D-MRI reconstruction. 4D retrospective sorting was performed based on respiratory phases. Single-slice cine MRI was also acquired in the axial, coronal, and sagittal planes across the tumor center from which tumor motion trajectories in the SI, AP, and medial-lateral (ML) directions were extracted and used as references from comparison. All MR images were acquired in a 1.5 T scanner using a steady-state precession sequence (frame rate ∼ 3 frames/s). 4D-CT scans showed that δSPS (SI) was significantly greater than δSPS (LAT) (p-value: 0.012); the median phase-shift was 16.9% and 7.7%, respectively. Body surface motion measurement from axial and sagittal MR cines also showed δSPS (SI) was significantly greater than δSPS (LAT). The median δSPS (SI) and δSPS (LAT) was 11.0% and 9.2% (p-value = 0.008), respectively. Tumor motion trajectories from 4D-MRI matched with those from single-slice cine MRI: the mean (±SD) absolute differences in tumor motion amplitude between the two were 1.5 ± 1.6 mm, 2.1 ± 1.9 mm, and 1.1 ± 1.0 mm in the SI, ML, and AP directions from this patient study. Space-dependent phase shift is less problematic for sagittal acquisition than for axial acquisition. 4D-MRI using sagittal acquisition was successfully carried out in patients with hepatic tumors.

  7. Three-dimensional transesophageal echocardiography: Principles and clinical applications.

    PubMed

    Vegas, Annette

    2016-10-01

    A basic understanding of evolving 3D technology enables the echocardiographer to master the new skills necessary to acquire, manipulate, and interpret 3D datasets. Single button activation of specific 3D imaging modes for both TEE and transthoracic echocardiography (TTE) matrix array probes include (a) live, (b) zoom, (c) full volume (FV), and (d) color Doppler FV. Evaluation of regional LV wall motion by RT 3D TEE is based on a change in LV chamber subvolume over time from altered segmental myocardial contractility. Unlike standard 2D TEE, there is no direct measurement of myocardial thickening or displacement of individual segments.

  8. Enhancing the image resolution in a single-pixel sub-THz imaging system based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Alkus, Umit; Ermeydan, Esra Sengun; Sahin, Asaf Behzat; Cankaya, Ilyas; Altan, Hakan

    2018-04-01

    Compressed sensing (CS) techniques allow for faster imaging when combined with scan architectures, which typically suffer from speed. This technique when implemented with a subterahertz (sub-THz) single detector scan imaging system provides images whose resolution is only limited by the pixel size of the pattern used to scan the image plane. To overcome this limitation, the image of the target can be oversampled; however, this results in slower imaging rates especially if this is done in two-dimensional across the image plane. We show that by implementing a one-dimensional (1-D) scan of the image plane, a modified approach to CS theory applied with an appropriate reconstruction algorithm allows for successful reconstruction of the reflected oversampled image of a target placed in standoff configuration from the source. The experiments are done in reflection mode configuration where the operating frequency is 93 GHz and the corresponding wavelength is λ = 3.2 mm. To reconstruct the image with fewer samples, CS theory is applied using masks where the pixel size is 5 mm × 5 mm, and each mask covers an image area of 5 cm × 5 cm, meaning that the basic image is resolved as 10 × 10 pixels. To enhance the resolution, the information between two consecutive pixels is used, and oversampling along 1-D coupled with a modification of the masks in CS theory allowed for oversampled images to be reconstructed rapidly in 20 × 20 and 40 × 40 pixel formats. These are then compared using two different reconstruction algorithms, TVAL3 and ℓ1-MAGIC. The performance of these methods is compared for both simulated signals and real signals. It is found that the modified CS theory approach coupled with the TVAL3 reconstruction process, even when scanning along only 1-D, allows for rapid precise reconstruction of the oversampled target.

  9. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging.

    PubMed

    De Ciantis, Alessio; Barba, Carmen; Tassi, Laura; Cosottini, Mirco; Tosetti, Michela; Costagli, Mauro; Bramerio, Manuela; Bartolini, Emanuele; Biagi, Laura; Cossu, Massimo; Pelliccia, Veronica; Symms, Mark R; Guerrini, Renzo

    2016-03-01

    To assess the diagnostic yield of 7T magnetic resonance imaging (MRI) in detecting and characterizing structural lesions in patients with intractable focal epilepsy and unrevealing conventional (1.5 or 3T) MRI. We conducted an observational clinical imaging study on 21 patients (17 adults and 4 children) with intractable focal epilepsy, exhibiting clinical and electroencephalographic features consistent with a single seizure-onset zone (SOZ) and unrevealing conventional MRI. Patients were enrolled at two tertiary epilepsy surgery centers and imaged at 7T, including whole brain (three-dimensional [3D] T1 -weighted [T1W] fast-spoiled gradient echo (FSPGR), 3D susceptibility-weighted angiography [SWAN], 3D fluid-attenuated inversion recovery [FLAIR]) and targeted imaging (2D T2*-weighted dual-echo gradient-recalled echo [GRE] and 2D gray-white matter tissue border enhancement [TBE] fast spin echo inversion recovery [FSE-IR]). MRI studies at 1.5 or 3T deemed unrevealing at the referral center were reviewed by three experts in epilepsy imaging. Reviewers were provided information regarding the suspected localization of the SOZ. The same team subsequently reviewed 7T images. Agreement in imaging interpretation was reached through consensus-based discussions based on visual identification of structural abnormalities and their likely correlation with clinical and electrographic data. 7T MRI revealed structural lesions in 6 (29%) of 21 patients. The diagnostic gain in detection was obtained using GRE and FLAIR images. Four of the six patients with abnormal 7T underwent epilepsy surgery. Histopathology revealed focal cortical dysplasia (FCD) in all. In the remaining 15 patients (71%), 7T MRI remained unrevealing; 4 of the patients underwent epilepsy surgery and histopathologic evaluation revealed gliosis. 7T MRI improves detection of epileptogenic FCD that is not visible at conventional field strengths. A dedicated protocol including whole brain FLAIR and GRE images at 7T targeted at the suspected SOZ increases the diagnostic yield. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  10. 1-kHz two-dimensional coherent anti-Stokes Raman scattering (2D-CARS) for gas-phase thermometry.

    PubMed

    Miller, Joseph D; Slipchenko, Mikhail N; Mance, Jason G; Roy, Sukesh; Gord, James R

    2016-10-31

    Two-dimensional gas-phase coherent anti-Stokes Raman scattering (2D-CARS) thermometry is demonstrated at 1 kHz in a heated jet. A hybrid femtosecond/picosecond CARS configuration is used in a two-beam phase-matching arrangement with a 100-femtosecond pump/Stokes pulse and a 107-picosecond probe pulse. The femtosecond pulse is generated using a mode-locked oscillator and regenerative amplifier that is synchronized to a separate picosecond oscillator and burst-mode amplifier. The CARS signal is spectrally dispersed in a custom imaging spectrometer and detected using a high-speed camera with image intensifier. 1-kHz, single-shot planar measurements at room temperature exhibit error of 2.6% and shot-to-shot variations of 2.6%. The spatial variation in measured temperature is 9.4%. 2D-CARS temperature measurements are demonstrated in a heated O2 jet to capture the spatiotemporal evolution of the temperature field.

  11. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager.

    PubMed

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2011-10-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm(2) at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm(2). Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm(2) while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt.

  12. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager

    PubMed Central

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2012-01-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm2 at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm2. Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm2 while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624

  13. Integrated light-sheet imaging and flow-based enquiry (iLIFE) system for 3D in-vivo imaging of multicellular organism

    NASA Astrophysics Data System (ADS)

    Rasmi, Chelur K.; Padmanabhan, Sreedevi; Shirlekar, Kalyanee; Rajan, Kanhirodan; Manjithaya, Ravi; Singh, Varsha; Mondal, Partha Pratim

    2017-12-01

    We propose and demonstrate a light-sheet-based 3D interrogation system on a microfluidic platform for screening biological specimens during flow. To achieve this, a diffraction-limited light-sheet (with a large field-of-view) is employed to optically section the specimens flowing through the microfluidic channel. This necessitates optimization of the parameters for the illumination sub-system (illumination intensity, light-sheet width, and thickness), microfluidic specimen platform (channel-width and flow-rate), and detection sub-system (camera exposure time and frame rate). Once optimized, these parameters facilitate cross-sectional imaging and 3D reconstruction of biological specimens. The proposed integrated light-sheet imaging and flow-based enquiry (iLIFE) imaging technique enables single-shot sectional imaging of a range of specimens of varying dimensions, ranging from a single cell (HeLa cell) to a multicellular organism (C. elegans). 3D reconstruction of the entire C. elegans is achieved in real-time and with an exposure time of few hundred micro-seconds. A maximum likelihood technique is developed and optimized for the iLIFE imaging system. We observed an intracellular resolution for mitochondria-labeled HeLa cells, which demonstrates the dynamic resolution of the iLIFE system. The proposed technique is a step towards achieving flow-based 3D imaging. We expect potential applications in diverse fields such as structural biology and biophysics.

  14. DRD2 genotype-based variation of default mode network activity and of its relationship with striatal DAT binding.

    PubMed

    Sambataro, Fabio; Fazio, Leonardo; Taurisano, Paolo; Gelao, Barbara; Porcelli, Annamaria; Mancini, Marina; Sinibaldi, Lorenzo; Ursini, Gianluca; Masellis, Rita; Caforio, Grazia; Di Giorgio, Annabella; Niccoli-Asabella, Artor; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro

    2013-01-01

    The default mode network (DMN) comprises a set of brain regions with "increased" activity during rest relative to cognitive processing. Activity in the DMN is associated with functional connections with the striatum and dopamine (DA) levels in this brain region. A functional single-nucleotide polymorphism within the dopamine D2 receptor gene (DRD2, rs1076560 G > T) shifts splicing of the 2 D2 isoforms, D2 short and D2 long, and has been associated with striatal DA signaling as well as with cognitive processing. However, the effects of this polymorphism on DMN have not been explored. The aim of this study was to evaluate the effects of rs1076560 on DMN and striatal connectivity and on their relationship with striatal DA signaling. Twenty-eight subjects genotyped for rs1076560 underwent functional magnetic resonance imaging during a working memory task and 123 55 I-Fluoropropyl-2-beta-carbomethoxy-3-beta(4-iodophenyl) nortropan Single Photon Emission Computed Tomography ([(123)I]-FP-CIT SPECT) imaging (a measure of dopamine transporter [DAT] binding). Spatial group-independent component (IC) analysis was used to identify DMN and striatal ICs. Within the anterior DMN IC, GG subjects had relatively greater connectivity in medial prefrontal cortex (MPFC), which was directly correlated with striatal DAT binding. Within the posterior DMN IC, GG subjects had reduced connectivity in posterior cingulate relative to T carriers. Additionally, rs1076560 genotype predicted connectivity differences within a striatal network, and these changes were correlated with connectivity in MPFC and posterior cingulate within the DMN. These results suggest that genetically determined D2 receptor signaling is associated with DMN connectivity and that these changes are correlated with striatal function and presynaptic DA signaling.

  15. DRD2 Genotype-Based Variation of Default Mode Network Activity and of Its Relationship With Striatal DAT Binding

    PubMed Central

    Sambataro, Fabio; Fazio, Leonardo; Taurisano, Paolo; Gelao, Barbara; Porcelli, Annamaria; Mancini, Marina; Sinibaldi, Lorenzo; Ursini, Gianluca; Masellis, Rita; Caforio, Grazia; Di Giorgio, Annabella; Niccoli-Asabella, Artor; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro

    2013-01-01

    The default mode network (DMN) comprises a set of brain regions with “increased” activity during rest relative to cognitive processing. Activity in the DMN is associated with functional connections with the striatum and dopamine (DA) levels in this brain region. A functional single-nucleotide polymorphism within the dopamine D2 receptor gene (DRD2, rs1076560 G > T) shifts splicing of the 2 D2 isoforms, D2 short and D2 long, and has been associated with striatal DA signaling as well as with cognitive processing. However, the effects of this polymorphism on DMN have not been explored. The aim of this study was to evaluate the effects of rs1076560 on DMN and striatal connectivity and on their relationship with striatal DA signaling. Twenty-eight subjects genotyped for rs1076560 underwent functional magnetic resonance imaging during a working memory task and 123 55 I-Fluoropropyl-2-beta-carbomethoxy-3-beta(4-iodophenyl) nortropan Single Photon Emission Computed Tomography ([123I]-FP-CIT SPECT) imaging (a measure of dopamine transporter [DAT] binding). Spatial group-independent component (IC) analysis was used to identify DMN and striatal ICs. Within the anterior DMN IC, GG subjects had relatively greater connectivity in medial prefrontal cortex (MPFC), which was directly correlated with striatal DAT binding. Within the posterior DMN IC, GG subjects had reduced connectivity in posterior cingulate relative to T carriers. Additionally, rs1076560 genotype predicted connectivity differences within a striatal network, and these changes were correlated with connectivity in MPFC and posterior cingulate within the DMN. These results suggest that genetically determined D2 receptor signaling is associated with DMN connectivity and that these changes are correlated with striatal function and presynaptic DA signaling. PMID:21976709

  16. Optical scanning holography based on compressive sensing using a digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    A-qian, Sun; Ding-fu, Zhou; Sheng, Yuan; You-jun, Hu; Peng, Zhang; Jian-ming, Yue; xin, Zhou

    2017-02-01

    Optical scanning holography (OSH) is a distinct digital holography technique, which uses a single two-dimensional (2D) scanning process to record the hologram of a three-dimensional (3D) object. Usually, these 2D scanning processes are in the form of mechanical scanning, and the quality of recorded hologram may be affected due to the limitation of mechanical scanning accuracy and unavoidable vibration of stepper motor's start-stop. In this paper, we propose a new framework, which replaces the 2D mechanical scanning mirrors with a Digital Micro-mirror Device (DMD) to modulate the scanning light field, and we call it OSH based on Compressive Sensing (CS) using a digital micro-mirror device (CS-OSH). CS-OSH can reconstruct the hologram of an object through the use of compressive sensing theory, and then restore the image of object itself. Numerical simulation results confirm this new type OSH can get a reconstructed image with favorable visual quality even under the condition of a low sample rate.

  17. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning1

    PubMed Central

    Gee, Carole T.

    2013-01-01

    • Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction. PMID:25202495

  18. Optical Inspection In Hostile Industrial Environments: Single-Sensor VS. Imaging Methods

    NASA Astrophysics Data System (ADS)

    Cielo, P.; Dufour, M.; Sokalski, A.

    1988-11-01

    On-line and unsupervised industrial inspection for quality control and process monitoring is increasingly required in the modern automated factory. Optical techniques are particularly well suited to industrial inspection in hostile environments because of their noncontact nature, fast response time and imaging capabilities. Optical sensors can be used for remote inspection of high temperature products or otherwise inaccessible parts, provided they are in a line-of-sight relation with the sensor. Moreover, optical sensors are much easier to adapt to a variety of part shapes, position or orientation and conveyor speeds as compared to contact-based sensors. This is an important requirement in a flexible automation environment. A number of choices are possible in the design of optical inspection systems. General-purpose two-dimensional (2-D) or three-dimensional (3-D) imaging techniques have advanced very rapidly in the last years thanks to a substantial research effort as well as to the availability of increasingly powerful and affordable hardware and software. Imaging can be realized using 2-D arrays or simpler one-dimensional (1-D) line-array detectors. Alternatively, dedicated single-spot sensors require a smaller amount of data processing and often lead to robust sensors which are particularly appropriate to on-line operation in hostile industrial environments. Many specialists now feel that dedicated sensors or clusters of sensors are often more effective for specific industrial automation and control tasks, at least in the short run. This paper will discuss optomechanical and electro-optical choices with reference to the design of a number of on-line inspection sensors which have been recently developed at our institute. Case studies will include real-time surface roughness evaluation on polymer cables extruded at high speed, surface characterization of hot-rolled or galvanized-steel sheets, temperature evaluation and pinhole detection in aluminum foil, multi-wavelength polymer sheet thickness gauging and thermographic imaging, 3-D lumber profiling, line-array inspection of textiles and glassware, as well as on-line optical inspection for the control of automated arc welding. In each case the design choices between single or multiple-element detectors, mechanical vs. electronic scanning, laser vs. incoherent illumination, etc. will be discussed in terms of industrial constraints such as speed requirements, protection against the environment or reliability of the sensor output.

  19. MO-FG-CAMPUS-JeP3-03: Detection of Unpredictable Patient Movement During SBRT Using a Single KV Projection of An On-Board CBCT System: Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Y; Sharp, G; Winey, B

    Purpose: An unpredictable movement of a patient can occur during SBRT even when immobilization devices are applied. In the SBRT treatments using a conventional linear accelerator detection of such movements relies heavily on human interaction and monitoring. This study aims to detect such positional abnormalities in real-time by assessing intra-fractional gantry mounted kV projection images of a patient’s spine. Methods: We propose a self-CBCT image based spine tracking method consisting of the following steps: (1)Acquire a pre-treatment CBCT image; (2)Transform the CBCT volume according to the couch correction; (3)Acquire kV projections during treatment beam delivery; (4)Simultaneously with each acquisition generatemore » a DRR from the CBCT volume based-on the current projection geometry; (5)Perform an intensity gradient-based 2D registration between spine ROI images of the projection and the DRR images; (6)Report an alarm if the detected 2D displacement is beyond a threshold value. To demonstrate the feasibility, retrospective simulations were performed on 1,896 projections from nine CBCT sessions of three patients who received lung SBRT. The unpredictable movements were simulated by applying random rotations and translations to the reference CBCT prior to each DRR generation. As the ground truth, the 3D translations and/or rotations causing >3 mm displacement of the midpoint of the thoracic spine were regarded as abnormal. In the measurements, different threshold values of 2D displacement were tested to investigate sensitivity and specificity of the proposed method. Results: A linear relationship between the ground truth 3D displacement and the detected 2D displacement was observed (R{sup 2} = 0.44). When the 2D displacement threshold was set to 3.6 mm the overall sensitivity and specificity were 77.7±5.7% and 77.9±3.5% respectively. Conclusion: In this simulation study, it was demonstrated that intrafractional kV projections from an on-board CBCT system have a potential to detect unpredictable patient movement during SBRT. This research is funded by Interfractional Imaging Research Grant from Elekta.« less

  20. Multiview hyperspectral topography of tissue structural and functional characteristics

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Huang, Jiwei; Zhang, Shiwu; Xu, Ronald X.

    2016-01-01

    Accurate and in vivo characterization of structural, functional, and molecular characteristics of biological tissue will facilitate quantitative diagnosis, therapeutic guidance, and outcome assessment in many clinical applications, such as wound healing, cancer surgery, and organ transplantation. We introduced and tested a multiview hyperspectral imaging technique for noninvasive topographic imaging of cutaneous wound oxygenation. The technique integrated a multiview module and a hyperspectral module in a single portable unit. Four plane mirrors were cohered to form a multiview reflective mirror set with a rectangular cross section. The mirror set was placed between a hyperspectral camera and the target biological tissue. For a single image acquisition task, a hyperspectral data cube with five views was obtained. The five-view hyperspectral image consisted of a main objective image and four reflective images. Three-dimensional (3-D) topography of the scene was achieved by correlating the matching pixels between the objective image and the reflective images. 3-D mapping of tissue oxygenation was achieved using a hyperspectral oxygenation algorithm. The multiview hyperspectral imaging technique was validated in a wound model, a tissue-simulating blood phantom, and in vivo biological tissue. The experimental results demonstrated the technical feasibility of using multiview hyperspectral imaging for 3-D topography of tissue functional properties.

  1. Single-snapshot 2D color measurement by plenoptic imaging system

    NASA Astrophysics Data System (ADS)

    Masuda, Kensuke; Yamanaka, Yuji; Maruyama, Go; Nagai, Sho; Hirai, Hideaki; Meng, Lingfei; Tosic, Ivana

    2014-03-01

    Plenoptic cameras enable capture of directional light ray information, thus allowing applications such as digital refocusing, depth estimation, or multiband imaging. One of the most common plenoptic camera architectures contains a microlens array at the conventional image plane and a sensor at the back focal plane of the microlens array. We leverage the multiband imaging (MBI) function of this camera and develop a single-snapshot, single-sensor high color fidelity camera. Our camera is based on a plenoptic system with XYZ filters inserted in the pupil plane of the main lens. To achieve high color measurement precision of this system, we perform an end-to-end optimization of the system model that includes light source information, object information, optical system information, plenoptic image processing and color estimation processing. Optimized system characteristics are exploited to build an XYZ plenoptic colorimetric camera prototype that achieves high color measurement precision. We describe an application of our colorimetric camera to color shading evaluation of display and show that it achieves color accuracy of ΔE<0.01.

  2. An interactive, stereoscopic virtual environment for medical imaging visualization, simulation and training

    NASA Astrophysics Data System (ADS)

    Krueger, Evan; Messier, Erik; Linte, Cristian A.; Diaz, Gabriel

    2017-03-01

    Recent advances in medical image acquisition allow for the reconstruction of anatomies with 3D, 4D, and 5D renderings. Nevertheless, standard anatomical and medical data visualization still relies heavily on the use of traditional 2D didactic tools (i.e., textbooks and slides), which restrict the presentation of image data to a 2D slice format. While these approaches have their merits beyond being cost effective and easy to disseminate, anatomy is inherently three-dimensional. By using 2D visualizations to illustrate more complex morphologies, important interactions between structures can be missed. In practice, such as in the planning and execution of surgical interventions, professionals require intricate knowledge of anatomical complexities, which can be more clearly communicated and understood through intuitive interaction with 3D volumetric datasets, such as those extracted from high-resolution CT or MRI scans. Open source, high quality, 3D medical imaging datasets are freely available, and with the emerging popularity of 3D display technologies, affordable and consistent 3D anatomical visualizations can be created. In this study we describe the design, implementation, and evaluation of one such interactive, stereoscopic visualization paradigm for human anatomy extracted from 3D medical images. A stereoscopic display was created by projecting the scene onto the lab floor using sequential frame stereo projection and viewed through active shutter glasses. By incorporating a PhaseSpace motion tracking system, a single viewer can navigate an augmented reality environment and directly manipulate virtual objects in 3D. While this paradigm is sufficiently versatile to enable a wide variety of applications in need of 3D visualization, we designed our study to work as an interactive game, which allows users to explore the anatomy of various organs and systems. In this study we describe the design, implementation, and evaluation of an interactive and stereoscopic visualization platform for exploring and understanding human anatomy. This system can present medical imaging data in three dimensions and allows for direct physical interaction and manipulation by the viewer. This should provide numerous benefits over traditional, 2D display and interaction modalities, and in our analysis, we aim to quantify and qualify users' visual and motor interactions with the virtual environment when employing this interactive display as a 3D didactic tool.

  3. A robust statistical estimation (RoSE) algorithm jointly recovers the 3D location and intensity of single molecules accurately and precisely

    NASA Astrophysics Data System (ADS)

    Mazidi, Hesam; Nehorai, Arye; Lew, Matthew D.

    2018-02-01

    In single-molecule (SM) super-resolution microscopy, the complexity of a biological structure, high molecular density, and a low signal-to-background ratio (SBR) may lead to imaging artifacts without a robust localization algorithm. Moreover, engineered point spread functions (PSFs) for 3D imaging pose difficulties due to their intricate features. We develop a Robust Statistical Estimation algorithm, called RoSE, that enables joint estimation of the 3D location and photon counts of SMs accurately and precisely using various PSFs under conditions of high molecular density and low SBR.

  4. THCOBRA X-ray imaging detector operating in pure Kr

    NASA Astrophysics Data System (ADS)

    Carramate, L. F. N. D.; Silva, A. L. M.; Azevedo, C. D. R.; Fortes, I.; Monteiro, S. G.; Sousa, S.; Ribeiro, F. M.; De Francesco, S.; Covita, D. S.; Veloso, J. F. C. A.

    2017-05-01

    MicroPattern Gaseous Detectors (MPGD) have been explored for X-ray imaging, namely for photon counting imaging which allows the improvement of image quality and the collection of more information than the conventional commercial systems. A 2D-THCOBRA based detector was developed, studied and used to acquire X-ray transmission images. The 2D-THCOBRA structure used has an active area of 2.8 × 2.8 cm2 and allows obtaining the position and energy information of each single photon that interacts with the detector. It is filled with pure Kr at 1 bar operating in a sealed mode. Within this work the performance of the detector is evaluated in terms of charge gain, count rate, time stability, energy and spatial resolutions. The detector presents a charge gain of 2 × 104 and an energy resolution of 23% for 5.9 keV, showing gain stability along time for a count rate of about 1 × 105 Hz/mm2. It presents a spatial resolution of 600 μm (σ = 255 μm) and 500 μm (σ = 213 μm) for x and y directions, respectively, and, considering energy bins about 650 μm (σ = 277 μm) for approximately 16.5 keV. X-ray transmission images of some samples presented here show good prospects for X-ray imaging applications.

  5. Comparison of three-dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography.

    PubMed

    Hall, Elise M; Thurow, Brian S; Guildenbecher, Daniel R

    2016-08-10

    Digital in-line holography (DIH) and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with DIH. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and DIH successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. In contrast, plenoptic imaging allows for a simpler experimental configuration and, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments.

  6. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging.

    PubMed

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan; Pernot, Mathieu; Tanter, Mickael

    2015-11-07

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz(-1) cm(-1)). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep structures of the rodent brain.

  7. Anti-spoof touchless 3D fingerprint recognition system using single shot fringe projection and biospeckle analysis

    NASA Astrophysics Data System (ADS)

    Chatterjee, Amit; Bhatia, Vimal; Prakash, Shashi

    2017-08-01

    Fingerprint is a unique, un-alterable and easily collected biometric of a human being. Although it is a 3D biological characteristic, traditional methods are designed to provide only a 2D image. This touch based mapping of 3D shape to 2D image losses information and leads to nonlinear distortions. Moreover, as only topographic details are captured, conventional systems are potentially vulnerable to spoofing materials (e.g. artificial fingers, dead fingers, false prints, etc.). In this work, we demonstrate an anti-spoof touchless 3D fingerprint detection system using a combination of single shot fringe projection and biospeckle analysis. For fingerprint detection using fringe projection, light from a low power LED source illuminates a finger through a sinusoidal grating. The fringe pattern modulated because of features on the fingertip is captured using a CCD camera. Fourier transform method based frequency filtering is used for the reconstruction of 3D fingerprint from the captured fringe pattern. In the next step, for spoof detection using biospeckle analysis a visuo-numeric algorithm based on modified structural function and non-normalized histogram is proposed. High activity biospeckle patterns are generated because of interaction of collimated laser light with internal fluid flow of the real finger sample. This activity reduces abruptly in case of layered fake prints, and is almost absent in dead or fake fingers. Furthermore, the proposed setup is fast, low-cost, involves non-mechanical scanning and is highly stable.

  8. Design of an MR image processing module on an FPGA chip.

    PubMed

    Li, Limin; Wyrwicz, Alice M

    2015-06-01

    We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128×128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A COMPUTER MODEL OF LUNG MORPHOLOGY TO ANALYZE SPECT IMAGES

    EPA Science Inventory

    Measurement of the three-dimensional (3-D) spatial distribution of aerosol deposition can be performed using Single Photon Emission Computed Tomography (SPECT). The advantage of using 3-D techniques over planar gamma imaging is that deposition patterns can be related to real lun...

  10. Imaging strategies using focusing functions with applications to a North Sea field

    NASA Astrophysics Data System (ADS)

    da Costa Filho, C. A.; Meles, G. A.; Curtis, A.; Ravasi, M.; Kritski, A.

    2018-04-01

    Seismic methods are used in a wide variety of contexts to investigate subsurface Earth structures, and to explore and monitor resources and waste-storage reservoirs in the upper ˜100 km of the Earth's subsurface. Reverse-time migration (RTM) is one widely used seismic method which constructs high-frequency images of subsurface structures. Unfortunately, RTM has certain disadvantages shared with other conventional single-scattering-based methods, such as not being able to correctly migrate multiply scattered arrivals. In principle, the recently developed Marchenko methods can be used to migrate all orders of multiples correctly. In practice however, using Marchenko methods are costlier to compute than RTM—for a single imaging location, the cost of performing the Marchenko method is several times that of standard RTM, and performing RTM itself requires dedicated use of some of the largest computers in the world for individual data sets. A different imaging strategy is therefore required. We propose a new set of imaging methods which use so-called focusing functions to obtain images with few artifacts from multiply scattered waves, while greatly reducing the number of points across the image at which the Marchenko method need be applied. Focusing functions are outputs of the Marchenko scheme: they are solutions of wave equations that focus in time and space at particular surface or subsurface locations. However, they are mathematical rather than physical entities, being defined only in reference media that equal to the true Earth above their focusing depths but are homogeneous below. Here, we use these focusing functions as virtual source/receiver surface seismic surveys, the upgoing focusing function being the virtual received wavefield that is created when the downgoing focusing function acts as a spatially distributed source. These source/receiver wavefields are used in three imaging schemes: one allows specific individual reflectors to be selected and imaged. The other two schemes provide either targeted or complete images with distinct advantages over current RTM methods, such as fewer artifacts and artifacts that occur in different locations. The latter property allows the recently published `combined imaging' method to remove almost all artifacts. We show several examples to demonstrate the methods: acoustic 1-D and 2-D synthetic examples, and a 2-D line from an ocean bottom cable field data set. We discuss an extension to elastic media, which is illustrated by a 1.5-D elastic synthetic example.

  11. Facile synthesis of a two-photon fluorescent probe based on pyrimidine 2-isothiocyanate and its application in bioimaging.

    PubMed

    Yang, Jie; Hu, Wei; Li, Huirong; Hou, Hanna; Tu, Yi; Liu, Bo

    2018-04-18

    Two-photon microscopy imaging has been widely applied in biological imaging, but the development of two-photon absorption probes is obviously lagging behind in the development of imaging technology. In this paper, a two-photon fluorescent probe (1) based on pyrimidine 2-isothiocyanate has been designed and synthesized through a simple method for two-photon biological imaging. Probe 1 was able to couple effectively with the amino groups on biomolecules. To verify the reactivity of the isothiocyanate group on probe 1 and the amine groups on the biomolecules, d-glucosamine was chosen as a model biomolecule to conjugate with probe 1. The result showed that probe 1 could effectively conjugate with d-glucosamine to synthesize probe 2, and the yield of probe 2 was 83%. After conjugating with d-glucosamine, linear absorption spectra, single-photon fluorescence spectra, and two-photon fluorescence spectra of probes 1 and 2 did not present significant changes. Probes 1 and 2 exhibited high fluorescence quantum yields (0.71-0.79) in toluene and chloroform. They also exhibited different photo-physical properties in solvents with different polarities. The two-photon absorption cross-section of probe 1 was 953 GM in toluene. In addition, probe 1 could be effectively conjugated with transferrin, and the conjugated probe (Tf-1) could be transported into Hep G2 cells through a receptor-mediated process for biological imaging. These results demonstrate that such probes are expected to have great potential applications in two-photon fluorescence bioimaging.

  12. Multiple comparisons permutation test for image based data mining in radiotherapy.

    PubMed

    Chen, Chun; Witte, Marnix; Heemsbergen, Wilma; van Herk, Marcel

    2013-12-23

    : Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy.

  13. Single-image-based Modelling Architecture from a Historical Photograph

    NASA Astrophysics Data System (ADS)

    Dzwierzynska, Jolanta

    2017-10-01

    Historical photographs are proved to be very useful to provide a dimensional and geometrical analysis of buildings as well as to generate 3D reconstruction of the whole structure. The paper addresses the problem of single historical photograph analysis and modelling of an architectural object from it. Especially, it focuses on reconstruction of the original look of New-Town synagogue from the single historic photograph, when camera calibration is completely unknown. Due to the fact that the photograph faithfully followed the geometric rules of perspective, it was possible to develop and apply the method to obtain a correct 3D reconstruction of the building. The modelling process consisted of a series of familiar steps: feature extraction, determination of base elements of perspective, dimensional analyses and 3D reconstruction. Simple formulas were proposed in order to estimate location of characteristic points of the building in 3D Cartesian system of axes on the base of their location in 2D Cartesian system of axes. The reconstruction process proceeded well, although slight corrections were necessary. It was possible to reconstruct the shape of the building in general, and two of its facades in detail. The reconstruction of the other two facades requires some additional information or the additional picture. The success of the presented reconstruction method depends on the geometrical content of the photograph as well as quality of the picture, which ensures the legibility of building edges. The presented method of reconstruction is a combination of the descriptive method of reconstruction and computer aid; therefore, it seems to be universal. It can prove useful for single-image-based modelling architecture.

  14. Hollow-core screw dislocations in 6H-SiC single crystals: A test of Frank`s theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, W.; Dudley, M.; Glass, R.

    1997-03-01

    Hollow-core screw dislocations, also known as `micropipes`, along the [0001] axis in 6H-SiC single crystals, have been studied by synchrotron white beam x-ray topography (SWBXT), scanning electron microscopy (SEM), and Nomarski optical microscopy (NOM). Using SWBXT, the magnitude of the burgers vector of screw dislocations has been determined by measuring the following four parameters: (1) the diameter of dislocation images in back-reflection topographs; (2) the width of bimodal dislocation images in transmission topographs; (3) the magnitude of the tilt of lattice planes on both sides of dislocation core in projection topographs; and (4) the magnitude of the tilt of latticemore » planes in section topographs. The four methods show good agreement. The burgers vector magnitude of screw dislocations, b, and the diameter of associated micropipes, D, were fitted to Frank`s prediction for hollow-core screw dislocations: D = {mu}b{sup 2}/4{pi}{sup 2}{gamma}, where {mu} is shear modulus, and {gamma} is specific surface energy. 15 refs., 17 figs.« less

  15. Double image encryption in Fresnel domain using wavelet transform, gyrator transform and spiral phase masks

    NASA Astrophysics Data System (ADS)

    Kumar, Ravi; Bhaduri, Basanta

    2017-06-01

    In this paper, we propose a new technique for double image encryption in the Fresnel domain using wavelet transform (WT), gyrator transform (GT) and spiral phase masks (SPMs). The two input mages are first phase encoded and each of them are then multiplied with SPMs and Fresnel propagated with distances d1 and d2, respectively. The single-level discrete WT is applied to Fresnel propagated complex images to decompose each into sub-band matrices i.e. LL, HL, LH and HH. Further, the sub-band matrices of two complex images are interchanged after modulation with random phase masks (RPMs) and subjected to inverse discrete WT. The resulting images are then both added and subtracted to get intermediate images which are further Fresnel propagated with distances d3 and d4, respectively. These outputs are finally gyrator transformed with the same angle α to get the encrypted images. The proposed technique provides enhanced security in terms of a large set of security keys. The sensitivity of security keys such as SPM parameters, GT angle α, Fresnel propagation distances are investigated. The robustness of the proposed techniques against noise and occlusion attacks are also analysed. The numerical simulation results are shown in support of the validity and effectiveness of the proposed technique.

  16. Spin echo SPI methods for quantitative analysis of fluids in porous media.

    PubMed

    Li, Linqing; Han, Hui; Balcom, Bruce J

    2009-06-01

    Fluid density imaging is highly desirable in a wide variety of porous media measurements. The SPRITE class of MRI methods has proven to be robust and general in their ability to generate density images in porous media, however the short encoding times required, with correspondingly high magnetic field gradient strengths and filter widths, and low flip angle RF pulses, yield sub-optimal S/N images, especially at low static field strength. This paper explores two implementations of pure phase encode spin echo 1D imaging, with application to a proposed new petroleum reservoir core analysis measurement. In the first implementation of the pulse sequence, we modify the spin echo single point imaging (SE-SPI) technique to acquire the k-space origin data point, with a near zero evolution time, from the free induction decay (FID) following a 90 degrees excitation pulse. Subsequent k-space data points are acquired by separately phase encoding individual echoes in a multi-echo acquisition. T(2) attenuation of the echo train yields an image convolution which causes blurring. The T(2) blur effect is moderate for porous media with T(2) lifetime distributions longer than 5 ms. As a robust, high S/N, and fast 1D imaging method, this method will be highly complementary to SPRITE techniques for the quantitative analysis of fluid content in porous media. In the second implementation of the SE-SPI pulse sequence, modification of the basic measurement permits fast determination of spatially resolved T(2) distributions in porous media through separately phase encoding each echo in a multi-echo CPMG pulse train. An individual T(2) weighted image may be acquired from each echo. The echo time (TE) of each T(2) weighted image may be reduced to 500 micros or less. These profiles can be fit to extract a T(2) distribution from each pixel employing a variety of standard inverse Laplace transform methods. Fluid content 1D images are produced as an essential by product of determining the spatially resolved T(2) distribution. These 1D images do not suffer from a T(2) related blurring. The above SE-SPI measurements are combined to generate 1D images of the local saturation and T(2) distribution as a function of saturation, upon centrifugation of petroleum reservoir core samples. The logarithm mean T(2) is observed to shift linearly with water saturation. This new reservoir core analysis measurement may provide a valuable calibration of the Coates equation for irreducible water saturation, which has been widely implemented in NMR well logging measurements.

  17. Characteristics of mist 3D screen for projection type electro-holography

    NASA Astrophysics Data System (ADS)

    Sato, Koki; Okumura, Toshimichi; Kanaoka, Takumi; Koizumi, Shinya; Nishikawa, Satoko; Takano, Kunihiko

    2006-01-01

    The specification of hologram image is the full parallax 3D image. In this case we can get more natural 3D image because focusing and convergence are coincident each other. We try to get practical electro-holography system because for conventional electro-holography the image viewing angle is very small. This is due to the limited display pixel size. Now we are developing new method for large viewing angle by space projection method. White color laser is irradiated to single DMD panel (time shared CGH of RGB three colors). 3D space screen constructed by very small water particle is used to reconstruct the 3D image with large viewing angle by scattering of water particle.

  18. 3D X-Ray Luggage-Screening System

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth

    2006-01-01

    A three-dimensional (3D) x-ray luggage- screening system has been proposed to reduce the fatigue experienced by human inspectors and increase their ability to detect weapons and other contraband. The system and variants thereof could supplant thousands of xray scanners now in use at hundreds of airports in the United States and other countries. The device would be applicable to any security checkpoint application where current two-dimensional scanners are in use. A conventional x-ray luggage scanner generates a single two-dimensional (2D) image that conveys no depth information. Therefore, a human inspector must scrutinize the image in an effort to understand ambiguous-appearing objects as they pass by at high speed on a conveyor belt. Such a high level of concentration can induce fatigue, causing the inspector to reduce concentration and vigilance. In addition, because of the lack of depth information, contraband objects could be made more difficult to detect by positioning them near other objects so as to create x-ray images that confuse inspectors. The proposed system would make it unnecessary for a human inspector to interpret 2D images, which show objects at different depths as superimposed. Instead, the system would take advantage of the natural human ability to infer 3D information from stereographic or stereoscopic images. The inspector would be able to perceive two objects at different depths, in a more nearly natural manner, as distinct 3D objects lying at different depths. Hence, the inspector could recognize objects with greater accuracy and less effort. The major components of the proposed system would be similar to those of x-ray luggage scanners now in use. As in a conventional x-ray scanner, there would be an x-ray source. Unlike in a conventional scanner, there would be two x-ray image sensors, denoted the left and right sensors, located at positions along the conveyor that are upstream and downstream, respectively (see figure). X-ray illumination may be provided by a single source or by two sources. The position of the conveyor would be detected to provide a means of matching the appropriate left- and right-eye images of an item under inspection. The appropriate right- and left-eye images of an item would be displayed simultaneously to the right and left eyes, respectively, of the human inspector, using commercially available stereo display screens. The human operator could adjust viewing parameters for maximum viewing comfort. The stereographic images thus generated would differ from true stereoscopic images by small distortions that are characteristic of radiographic images in general, but these distortions would not diminish the value of the images for identifying distinct objects at different depths.

  19. 4-D ultrafast shear-wave imaging.

    PubMed

    Gennisson, Jean-Luc; Provost, Jean; Deffieux, Thomas; Papadacci, Clément; Imbault, Marion; Pernot, Mathieu; Tanter, Mickael

    2015-06-01

    Over the last ten years, shear wave elastography (SWE) has seen considerable development and is now routinely used in clinics to provide mechanical characterization of tissues to improve diagnosis. The most advanced technique relies on the use of an ultrafast scanner to generate and image shear waves in real time in a 2-D plane at several thousands of frames per second. We have recently introduced 3-D ultrafast ultrasound imaging to acquire with matrix probes the 3-D propagation of shear waves generated by a dedicated radiation pressure transducer in a single acquisition. In this study, we demonstrate 3-D SWE based on ultrafast volumetric imaging in a clinically applicable configuration. A 32 × 32 matrix phased array driven by a customized, programmable, 1024-channel ultrasound system was designed to perform 4-D shear-wave imaging. A matrix phased array was used to generate and control in 3-D the shear waves inside the medium using the acoustic radiation force. The same matrix array was used with 3-D coherent plane wave compounding to perform high-quality ultrafast imaging of the shear wave propagation. Volumetric ultrafast acquisitions were then beamformed in 3-D using a delay-and-sum algorithm. 3-D volumetric maps of the shear modulus were reconstructed using a time-of-flight algorithm based on local multiscale cross-correlation of shear wave profiles in the three main directions using directional filters. Results are first presented in an isotropic homogeneous and elastic breast phantom. Then, a full 3-D stiffness reconstruction of the breast was performed in vivo on healthy volunteers. This new full 3-D ultrafast ultrasound system paves the way toward real-time 3-D SWE.

  20. WE-G-BRD-06: Volumetric Cine MRI (VC-MRI) Estimated Based On Prior Knowledge for On-Board Target Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, W; Yin, F; Cai, J

    Purpose: To develop a technique to generate on-board VC-MRI using patient prior 4D-MRI, motion modeling and on-board 2D-cine MRI for real-time 3D target verification of liver and lung radiotherapy. Methods: The end-expiration phase images of a 4D-MRI acquired during patient simulation are used as patient prior images. Principal component analysis (PCA) is used to extract 3 major respiratory deformation patterns from the Deformation Field Maps (DFMs) generated between end-expiration phase and all other phases. On-board 2D-cine MRI images are acquired in the axial view. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI atmore » the end-expiration phase. The DFM is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by matching the corresponding 2D slice of the estimated VC-MRI with the acquired single 2D-cine MRI. The method was evaluated using both XCAT (a computerized patient model) simulation of lung cancer patients and MRI data from a real liver cancer patient. The 3D-MRI at every phase except end-expiration phase was used to simulate the ground-truth on-board VC-MRI at different instances, and the center-tumor slice was selected to simulate the on-board 2D-cine images. Results: Image subtraction of ground truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground truth with prior image. Excellent agreement between profiles was achieved. The normalized cross correlation coefficients between the estimated and ground-truth in the axial, coronal and sagittal views for each time step were >= 0.982, 0.905, 0.961 for XCAT data and >= 0.998, 0.911, 0.9541 for patient data. For XCAT data, the maximum-Volume-Percent-Difference between ground-truth and estimated tumor volumes was 1.6% and the maximum-Center-of-Mass-Shift was 0.9 mm. Conclusion: Preliminary studies demonstrated the feasibility to estimate real-time VC-MRI for on-board target localization before or during radiotherapy treatments. National Institutes of Health Grant No. R01-CA184173; Varian Medical System.« less

  1. Unsupervised fuzzy segmentation of 3D magnetic resonance brain images

    NASA Astrophysics Data System (ADS)

    Velthuizen, Robert P.; Hall, Lawrence O.; Clarke, Laurence P.; Bensaid, Amine M.; Arrington, J. A.; Silbiger, Martin L.

    1993-07-01

    Unsupervised fuzzy methods are proposed for segmentation of 3D Magnetic Resonance images of the brain. Fuzzy c-means (FCM) has shown promising results for segmentation of single slices. FCM has been investigated for volume segmentations, both by combining results of single slices and by segmenting the full volume. Different strategies and initializations have been tried. In particular, two approaches have been used: (1) a method by which, iteratively, the furthest sample is split off to form a new cluster center, and (2) the traditional FCM in which the membership grade matrix is initialized in some way. Results have been compared with volume segmentations by k-means and with two supervised methods, k-nearest neighbors and region growing. Results of individual segmentations are presented as well as comparisons on the application of the different methods to a number of tumor patient data sets.

  2. Coupled multiview autoencoders with locality sensitivity for three-dimensional human pose estimation

    NASA Astrophysics Data System (ADS)

    Yu, Jialin; Sun, Jifeng; Luo, Shasha; Duan, Bichao

    2017-09-01

    Estimating three-dimensional (3D) human poses from a single camera is usually implemented by searching pose candidates with image descriptors. Existing methods usually suppose that the mapping from feature space to pose space is linear, but in fact, their mapping relationship is highly nonlinear, which heavily degrades the performance of 3D pose estimation. We propose a method to recover 3D pose from a silhouette image. It is based on the multiview feature embedding (MFE) and the locality-sensitive autoencoders (LSAEs). On the one hand, we first depict the manifold regularized sparse low-rank approximation for MFE and then the input image is characterized by a fused feature descriptor. On the other hand, both the fused feature and its corresponding 3D pose are separately encoded by LSAEs. A two-layer back-propagation neural network is trained by parameter fine-tuning and then used to map the encoded 2D features to encoded 3D poses. Our LSAE ensures a good preservation of the local topology of data points. Experimental results demonstrate the effectiveness of our proposed method.

  3. Active-Pixel Image Sensor With Analog-To-Digital Converters

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.

    1995-01-01

    Proposed single-chip integrated-circuit image sensor contains 128 x 128 array of active pixel sensors at 50-micrometer pitch. Output terminals of all pixels in each given column connected to analog-to-digital (A/D) converter located at bottom of column. Pixels scanned in semiparallel fashion, one row at time; during time allocated to scanning row, outputs of all active pixel sensors in row fed to respective A/D converters. Design of chip based on complementary metal oxide semiconductor (CMOS) technology, and individual circuit elements fabricated according to 2-micrometer CMOS design rules. Active pixel sensors designed to operate at video rate of 30 frames/second, even at low light levels. A/D scheme based on first-order Sigma-Delta modulation.

  4. Dual-camera design for coded aperture snapshot spectral imaging.

    PubMed

    Wang, Lizhi; Xiong, Zhiwei; Gao, Dahua; Shi, Guangming; Wu, Feng

    2015-02-01

    Coded aperture snapshot spectral imaging (CASSI) provides an efficient mechanism for recovering 3D spectral data from a single 2D measurement. However, since the reconstruction problem is severely underdetermined, the quality of recovered spectral data is usually limited. In this paper we propose a novel dual-camera design to improve the performance of CASSI while maintaining its snapshot advantage. Specifically, a beam splitter is placed in front of the objective lens of CASSI, which allows the same scene to be simultaneously captured by a grayscale camera. This uncoded grayscale measurement, in conjunction with the coded CASSI measurement, greatly eases the reconstruction problem and yields high-quality 3D spectral data. Both simulation and experimental results demonstrate the effectiveness of the proposed method.

  5. High-resolution vascular tissue characterization in mice using 55 MHz ultrasound hybrid imaging

    PubMed Central

    Mahmoud, Ahmed M.; Sandoval, Cesar; Teng, Bunyen; Schnermann, Jurgen B.; Martin, Karen H.; Mustafa, S. Jamal; Mukdadi, Osama M.

    2012-01-01

    Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (TIB), time variance (Tvar), time entropy (TE), frequency integrated backscatter (FIB), wavelet root mean square value (Wrms), and wavelet integrated backscatter (WIB). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A1 adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency = 55 MHz) and commercial array (center frequency = 40 MHz) systems providing superior spatial resolutions of 24 μm and 40 μm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of −10.11 ± 1.92 dB, −12.13 ± 2.13 dB, −7.54 ± 1.45 dB, −5.10 ± 1.06 dB, −5.25 ± 0.94 dB, and −10.23 ± 2.12 dB in TIB, Tvar, TE, FIB, Wrms, WIB hybrid images (n = 10, p < 0.05), respectively. Control segments of normal vascular tissue showed the lowest values of −20.20 ± 2.71 dB, −22.54 ± 4.54 dB, −14.94 ± 2.05 dB, −9.64 ± 1.34 dB, −10.20 ± 1.27 dB, and −19.36 ± 3.24 dB in same hybrid images (n = 6, p < 0.05). Results from both histology and optical images showed good agreement with ultrasound findings within a maximum error of 3.6% in lesion estimation. This study demonstrated the feasibility of a high-resolution hybrid imaging technique to diagnose atherosclerosis and characterize plaque components in mouse. In the future, it can be easily implemented on commercial ultrasound systems and eventually translated into clinics as a screening tool for atherosclerosis and the assessment of vulnerable plaques. PMID:23218908

  6. The Riesz transform and simultaneous representations of phase, energy and orientation in spatial vision.

    PubMed

    Langley, Keith; Anderson, Stephen J

    2010-08-06

    To represent the local orientation and energy of a 1-D image signal, many models of early visual processing employ bandpass quadrature filters, formed by combining the original signal with its Hilbert transform. However, representations capable of estimating an image signal's 2-D phase have been largely ignored. Here, we consider 2-D phase representations using a method based upon the Riesz transform. For spatial images there exist two Riesz transformed signals and one original signal from which orientation, phase and energy may be represented as a vector in 3-D signal space. We show that these image properties may be represented by a Singular Value Decomposition (SVD) of the higher-order derivatives of the original and the Riesz transformed signals. We further show that the expected responses of even and odd symmetric filters from the Riesz transform may be represented by a single signal autocorrelation function, which is beneficial in simplifying Bayesian computations for spatial orientation. Importantly, the Riesz transform allows one to weight linearly across orientation using both symmetric and asymmetric filters to account for some perceptual phase distortions observed in image signals - notably one's perception of edge structure within plaid patterns whose component gratings are either equal or unequal in contrast. Finally, exploiting the benefits that arise from the Riesz definition of local energy as a scalar quantity, we demonstrate the utility of Riesz signal representations in estimating the spatial orientation of second-order image signals. We conclude that the Riesz transform may be employed as a general tool for 2-D visual pattern recognition by its virtue of representing phase, orientation and energy as orthogonal signal quantities.

  7. Large-viewing-angle electroholography by space projection

    NASA Astrophysics Data System (ADS)

    Sato, Koki; Obana, Kazuki; Okumura, Toshimichi; Kanaoka, Takumi; Nishikawa, Satoko; Takano, Kunihiko

    2004-06-01

    The specification of hologram image is the full parallax 3D image. In this case we can get more natural 3D image because focusing and convergence are coincident each other. We try to get practical electro-holography system because for conventional electro-holography the image viewing angle is very small. This is due to the limited display pixel size. Now we are developing new method for large viewing angle by space projection method. White color laser is irradiated to single DMD panel ( time shared CGH of RGB three colors ). 3D space screen constructed by very small water particle is used to reconstruct the 3D image with large viewing angle by scattering of water particle.

  8. Compressive Coded-Aperture Multimodal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Rueda-Chacon, Hoover F.

    Multimodal imaging refers to the framework of capturing images that span different physical domains such as space, spectrum, depth, time, polarization, and others. For instance, spectral images are modeled as 3D cubes with two spatial and one spectral coordinate. Three-dimensional cubes spanning just the space domain, are referred as depth volumes. Imaging cubes varying in time, spectra or depth, are referred as 4D-images. Nature itself spans different physical domains, thus imaging our real world demands capturing information in at least 6 different domains simultaneously, giving turn to 3D-spatial+spectral+polarized dynamic sequences. Conventional imaging devices, however, can capture dynamic sequences with up-to 3 spectral channels, in real-time, by the use of color sensors. Capturing multiple spectral channels require scanning methodologies, which demand long time. In general, to-date multimodal imaging requires a sequence of different imaging sensors, placed in tandem, to simultaneously capture the different physical properties of a scene. Then, different fusion techniques are employed to mix all the individual information into a single image. Therefore, new ways to efficiently capture more than 3 spectral channels of 3D time-varying spatial information, in a single or few sensors, are of high interest. Compressive spectral imaging (CSI) is an imaging framework that seeks to optimally capture spectral imagery (tens of spectral channels of 2D spatial information), using fewer measurements than that required by traditional sensing procedures which follows the Shannon-Nyquist sampling. Instead of capturing direct one-to-one representations of natural scenes, CSI systems acquire linear random projections of the scene and then solve an optimization algorithm to estimate the 3D spatio-spectral data cube by exploiting the theory of compressive sensing (CS). To date, the coding procedure in CSI has been realized through the use of ``block-unblock" coded apertures, commonly implemented as chrome-on-quartz photomasks. These apertures block or permit to pass the entire spectrum from the scene at given spatial locations, thus modulating the spatial characteristics of the scene. In the first part, this thesis aims to expand the framework of CSI by replacing the traditional block-unblock coded apertures by patterned optical filter arrays, referred as ``color" coded apertures. These apertures are formed by tiny pixelated optical filters, which in turn, allow the input image to be modulated not only spatially but spectrally as well, entailing more powerful coding strategies. The proposed colored coded apertures are either synthesized through linear combinations of low-pass, high-pass and band-pass filters, paired with binary pattern ensembles realized by a digital-micromirror-device (DMD), or experimentally realized through thin-film color-patterned filter arrays. The optical forward model of the proposed CSI architectures will be presented along with the design and proof-of-concept implementations, which achieve noticeable improvements in the quality of the reconstructions compared with conventional block-unblock coded aperture-based CSI architectures. On another front, due to the rich information contained in the infrared spectrum as well as the depth domain, this thesis aims to explore multimodal imaging by extending the range sensitivity of current CSI systems to a dual-band visible+near-infrared spectral domain, and also, it proposes, for the first time, a new imaging device that captures simultaneously 4D data cubes (2D spatial+1D spectral+depth imaging) with as few as a single snapshot. Due to the snapshot advantage of this camera, video sequences are possible, thus enabling the joint capture of 5D imagery. It aims to create super-human sensing that will enable the perception of our world in new and exciting ways. With this, we intend to advance in the state of the art in compressive sensing systems to extract depth while accurately capturing spatial and spectral material properties. The applications of such a sensor are self-evident in fields such as computer/robotic vision because they would allow an artificial intelligence to make informed decisions about not only the location of objects within a scene but also their material properties.

  9. Time-resolved particle image velocimetry measurements of the 3D single-mode Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Krivets, Vitaliy V.; Sewell, Everest G.; Jacobs, Jeffrey W.

    2016-11-01

    A vertical shock tube is used to perform experiments on the single-mode three-dimensional Richtmyer-Meshkov Instability (RMI). The light gas (Air) and the heavy gas (SF6) enter from the top and the bottom of the shock tube driven section to form the interface. The initial perturbation is then generated by oscillating the gases vertically. Both gases are seeded with particles generated through vaporizing propylene glycol. An incident shock wave (M 1.2) impacts the interface to create an impulsive acceleration. The seeded particles are illuminated by a dual cavity 75W, Nd: YLF laser. Three high-speed CMOS cameras record time sequences of image pairs at a rate of 2 kHz. The initial perturbation used is that of a single, square-mode perturbation with either a single spike or a single bubble positioned at the center of the shock tube. The full time dependent velocity field is obtained allowing the determination of the circulation versus time. In addition, the evolution of time dependent amplitude is also determined. The results are compared with PIV measurements from previous two-dimensional single mode experiments along with PLIF measurements from previous three-dimensional single mode experiments.

  10. Extending X-Ray Crystallography to Allow the Imaging of Noncrystalline Materials, Cells, and Single Protein Complexes

    NASA Astrophysics Data System (ADS)

    Miao, Jianwei; Ishikawa, Tetsuya; Shen, Qun; Earnest, Thomas

    2008-05-01

    In 1999, researchers extended X-ray crystallography to allow the imaging of noncrystalline specimens by measuring the X-ray diffraction pattern of a noncrystalline specimen and then directly phasing it using the oversampling method with iterative algorithms. Since then, the field has evolved moving in three important directions. The first is the 3D structural determination of noncrystalline materials, which includes the localization of the defects and strain field inside nanocrystals, and quantitative 3D imaging of disordered materials such as nanoparticles and biomaterials. The second is the 3D imaging of frozen-hydrated whole cells at a resolution of 10 nm or better. A main thrust is to localize specific multiprotein complexes inside cells. The third is the potential of imaging single large protein complexes using extremely intense and ultrashort X-ray pulses. In this article, we review the principles of this methodology, summarize recent developments in each of the three directions, and illustrate a few examples.

  11. Feasibility of in vivo three-dimensional T 2* mapping using dicarboxy-PROXYL and CW-EPR-based single-point imaging.

    PubMed

    Kubota, Harue; Komarov, Denis A; Yasui, Hironobu; Matsumoto, Shingo; Inanami, Osamu; Kirilyuk, Igor A; Khramtsov, Valery V; Hirata, Hiroshi

    2017-06-01

    The aim of this study was to demonstrate the feasibility of in vivo three-dimensional (3D) relaxation time T 2 * mapping of a dicarboxy-PROXYL radical using continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Isotopically substituted dicarboxy-PROXYL radicals, 3,4-dicarboxy-2,2,5,5-tetra( 2 H 3 )methylpyrrolidin-(3,4- 2 H 2 )-(1- 15 N)-1-oxyl ( 2 H, 15 N-DCP) and 3,4-dicarboxy-2,2,5,5-tetra( 2 H 3 )methylpyrrolidin-(3,4- 2 H 2 )-1-oxyl ( 2 H-DCP), were used in the study. A clonogenic cell survival assay was performed with the 2 H-DCP radical using squamous cell carcinoma (SCC VII) cells. The time course of EPR signal intensities of intravenously injected 2 H, 15 N-DCP and 2 H-DCP radicals were determined in tumor-bearing hind legs of mice (C3H/HeJ, male, n = 5). CW-EPR-based single-point imaging (SPI) was performed for 3D T 2 * mapping. 2 H-DCP radical did not exhibit cytotoxicity at concentrations below 10 mM. The in vivo half-life of 2 H, 15 N-DCP in tumor tissues was 24.7 ± 2.9 min (mean ± standard deviation [SD], n = 5). The in vivo time course of the EPR signal intensity of the 2 H, 15 N-DCP radical showed a plateau of 10.2 ± 1.2 min (mean ± SD) where the EPR signal intensity remained at more than 90% of the maximum intensity. During the plateau, in vivo 3D T 2 * maps with 2 H, 15 N-DCP were obtained from tumor-bearing hind legs, with a total acquisition time of 7.5 min. EPR signals of 2 H, 15 N-DCP persisted long enough after bolus intravenous injection to conduct in vivo 3D T 2 * mapping with CW-EPR-based SPI.

  12. Genetic variation and dopamine D2 receptor availability: a systematic review and meta-analysis of human in vivo molecular imaging studies.

    PubMed

    Gluskin, B S; Mickey, B J

    2016-03-01

    The D2 dopamine receptor mediates neuropsychiatric symptoms and is a target of pharmacotherapy. Inter-individual variation of D2 receptor density is thought to influence disease risk and pharmacological response. Numerous molecular imaging studies have tested whether common genetic variants influence D2 receptor binding potential (BP) in humans, but demonstration of robust effects has been limited by small sample sizes. We performed a systematic search of published human in vivo molecular imaging studies to estimate effect sizes of common genetic variants on striatal D2 receptor BP. We identified 21 studies examining 19 variants in 11 genes. The most commonly studied variant was a single-nucleotide polymorphism in ANKK1 (rs1800497, Glu713Lys, also called 'Taq1A'). Fixed- and random-effects meta-analyses of this variant (5 studies, 194 subjects total) revealed that striatal BP was significantly and robustly lower among carriers of the minor allele (Lys713) relative to major allele homozygotes. The weighted standardized mean difference was -0.57 under the fixed-effect model (95% confidence interval=(-0.87, -0.27), P=0.0002). The normal relationship between rs1800497 and BP was not apparent among subjects with neuropsychiatric diseases. Significant associations with baseline striatal D2 receptor BP have been reported for four DRD2 variants (rs1079597, rs1076560, rs6277 and rs1799732) and a PER2 repeat polymorphism, but none have yet been tested in more than two independent samples. Our findings resolve apparent discrepancies in the literature and establish that rs1800497 robustly influences striatal D2 receptor availability. This genetic variant is likely to contribute to important individual differences in human striatal function, neuropsychiatric disease risk and pharmacological response.

  13. Improving the visualization of 3D ultrasound data with 3D filtering

    NASA Astrophysics Data System (ADS)

    Shamdasani, Vijay; Bae, Unmin; Managuli, Ravi; Kim, Yongmin

    2005-04-01

    3D ultrasound imaging is quickly gaining widespread clinical acceptance as a visualization tool that allows clinicians to obtain unique views not available with traditional 2D ultrasound imaging and an accurate understanding of patient anatomy. The ability to acquire, manipulate and interact with the 3D data in real time is an important feature of 3D ultrasound imaging. Volume rendering is often used to transform the 3D volume into 2D images for visualization. Unlike computed tomography (CT) and magnetic resonance imaging (MRI), volume rendering of 3D ultrasound data creates noisy images in which surfaces cannot be readily discerned due to speckles and low signal-to-noise ratio. The degrading effect of speckles is especially severe when gradient shading is performed to add depth cues to the image. Several researchers have reported that smoothing the pre-rendered volume with a 3D convolution kernel, such as 5x5x5, can significantly improve the image quality, but at the cost of decreased resolution. In this paper, we have analyzed the reasons for the improvement in image quality with 3D filtering and determined that the improvement is due to two effects. The filtering reduces speckles in the volume data, which leads to (1) more accurate gradient computation and better shading and (2) decreased noise during compositing. We have found that applying a moderate-size smoothing kernel (e.g., 7x7x7) to the volume data before gradient computation combined with some smoothing of the volume data (e.g., with a 3x3x3 lowpass filter) before compositing yielded images with good depth perception and no appreciable loss in resolution. Providing the clinician with the flexibility to control both of these effects (i.e., shading and compositing) independently could improve the visualization of the 3D ultrasound data. Introducing this flexibility into the ultrasound machine requires 3D filtering to be performed twice on the volume data, once before gradient computation and again before compositing. 3D filtering of an ultrasound volume containing millions of voxels requires a large amount of computation, and doing it twice decreases the number of frames that can be visualized per second. To address this, we have developed several techniques to make computation efficient. For example, we have used the moving average method to filter a 128x128x128 volume with a 3x3x3 boxcar kernel in 17 ms on a single MAP processor running at 400 MHz. The same methods reduced the computing time on a Pentium 4 running at 3 GHz from 110 ms to 62 ms. We believe that our proposed method can improve 3D ultrasound visualization without sacrificing resolution and incurring an excessive computing time.

  14. SU-E-J-90: MRI-Based Treatment Simulation and Patient Setup for Radiation Therapy of Brain Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y; Cao, M; Han, F

    2014-06-01

    Purpose: Traditional radiation therapy of cancer is heavily dependent on CT. CT provides excellent depiction of the bones but lacks good soft tissue contrast, which makes contouring difficult. Often, MRIs are fused with CT to take advantage of its superior soft tissue contrast. Such an approach has drawbacks. It is desirable to perform treatment simulation entirely based on MRI. To achieve MR-based simulation for radiation therapy, bone imaging is an important challenge because of the low MR signal intensity from bone due to its ultra-short T2 and T1, which presents difficulty for both dose calculation and patient setup in termsmore » of digitally reconstructed radiograph (DRR) generation. Current solutions will either require manual bone contouring or multiple MR scans. We present a technique to generate DRR using MRI with an Ultra Short Echo Time (UTE) sequence which is applicable to both OBI and ExacTrac 2D patient setup. Methods: Seven brain cancer patients were scanned at 1.5 Tesla using a radial UTE sequence. The sequence acquires two images at two different echo times. The two images were processed using in-house software. The resultant bone images were subsequently loaded into commercial systems to generate DRRs. Simulation and patient clinical on-board images were used to evaluate 2D patient setup with MRI-DRRs. Results: The majority bones are well visualized in all patients. The fused image of patient CT with the MR bone image demonstrates the accuracy of automatic bone identification using our technique. The generated DRR is of good quality. Accuracy of 2D patient setup by using MRI-DRR is comparable to CT-based 2D patient setup. Conclusion: This study shows the potential of DRR generation with single MR sequence. Further work will be needed on MR sequence development and post-processing procedure to achieve robust MR bone imaging for other human sites in addition to brain.« less

  15. High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission.

    PubMed

    Wu, Xiaoping; Auerbach, Edward J; Vu, An T; Moeller, Steen; Lenglet, Christophe; Schmitter, Sebastian; Van de Moortele, Pierre-François; Yacoub, Essa; Uğurbil, Kâmil

    2018-03-30

    Investigating the utility of RF parallel transmission (pTx) for Human Connectome Project (HCP)-style whole-brain diffusion MRI (dMRI) data at 7 Tesla (7T). Healthy subjects were scanned in pTx and single-transmit (1Tx) modes. Multiband (MB), single-spoke pTx pulses were designed to image sagittal slices. HCP-style dMRI data (i.e., 1.05-mm resolutions, MB2, b-values = 1000/2000 s/mm 2 , 286 images and 40-min scan) and data with higher accelerations (MB3 and MB4) were acquired with pTx. pTx significantly improved flip-angle detected signal uniformity across the brain, yielding ∼19% increase in temporal SNR (tSNR) averaged over the brain relative to 1Tx. This allowed significantly enhanced estimation of multiple fiber orientations (with ∼21% decrease in dispersion) in HCP-style 7T dMRI datasets. Additionally, pTx pulses achieved substantially lower power deposition, permitting higher accelerations, enabling collection of the same data in 2/3 and 1/2 the scan time or of more data in the same scan time. pTx provides a solution to two major limitations for slice-accelerated high-resolution whole-brain dMRI at 7T; it improves flip-angle uniformity, and enables higher slice acceleration relative to current state-of-the-art. As such, pTx provides significant advantages for rapid acquisition of high-quality, high-resolution truly whole-brain dMRI data. © 2018 International Society for Magnetic Resonance in Medicine.

  16. An efficient hole-filling method based on depth map in 3D view generation

    NASA Astrophysics Data System (ADS)

    Liang, Haitao; Su, Xiu; Liu, Yilin; Xu, Huaiyuan; Wang, Yi; Chen, Xiaodong

    2018-01-01

    New virtual view is synthesized through depth image based rendering(DIBR) using a single color image and its associated depth map in 3D view generation. Holes are unavoidably generated in the 2D to 3D conversion process. We propose a hole-filling method based on depth map to address the problem. Firstly, we improve the process of DIBR by proposing a one-to-four (OTF) algorithm. The "z-buffer" algorithm is used to solve overlap problem. Then, based on the classical patch-based algorithm of Criminisi et al., we propose a hole-filling algorithm using the information of depth map to handle the image after DIBR. In order to improve the accuracy of the virtual image, inpainting starts from the background side. In the calculation of the priority, in addition to the confidence term and the data term, we add the depth term. In the search for the most similar patch in the source region, we define the depth similarity to improve the accuracy of searching. Experimental results show that the proposed method can effectively improve the quality of the 3D virtual view subjectively and objectively.

  17. Super-resolved Mirau digital holography by structured illumination

    NASA Astrophysics Data System (ADS)

    Ganjkhani, Yasaman; Charsooghi, Mohammad A.; Akhlaghi, Ehsan A.; Moradi, Ali-Reza

    2017-12-01

    In this paper, we apply structured illumination toward super-resolved 3D imaging in a common-path digital holography arrangement. Digital holographic microscopy (DHM) provides non-invasive 3D images of transparent samples as well as 3D profiles of reflective surfaces. A compact and vibration-immune arrangement for DHM may be obtained through the use of a Mirau microscope objective. However, high-magnification Mirau objectives have a low working distance and are expensive. Low-magnification ones, on the other hand, suffer from low lateral resolution. Structured illumination has been widely used for resolution improvement of intensity images, but the technique can also be readily applied to DHM. We apply structured illumination to Mirau DHM by implementing successive sinusoidal gratings with different orientations onto a spatial light modulator (SLM) and forming its image on the specimen. Moreover, we show that, instead of different orientations of 1D gratings, alternative single 2D gratings, e.g. checkerboard or hexagonal patterns, can provide resolution enhancement in multiple directions. Our results show a 35% improvement in the resolution power of the DHM. The presented arrangement has the potential to serve as a table-top device for high resolution holographic microscopy.

  18. A three-dimensional image processing program for accurate, rapid, and semi-automated segmentation of neuronal somata with dense neurite outgrowth

    PubMed Central

    Ross, James D.; Cullen, D. Kacy; Harris, James P.; LaPlaca, Michelle C.; DeWeerth, Stephen P.

    2015-01-01

    Three-dimensional (3-D) image analysis techniques provide a powerful means to rapidly and accurately assess complex morphological and functional interactions between neural cells. Current software-based identification methods of neural cells generally fall into two applications: (1) segmentation of cell nuclei in high-density constructs or (2) tracing of cell neurites in single cell investigations. We have developed novel methodologies to permit the systematic identification of populations of neuronal somata possessing rich morphological detail and dense neurite arborization throughout thick tissue or 3-D in vitro constructs. The image analysis incorporates several novel automated features for the discrimination of neurites and somata by initially classifying features in 2-D and merging these classifications into 3-D objects; the 3-D reconstructions automatically identify and adjust for over and under segmentation errors. Additionally, the platform provides for software-assisted error corrections to further minimize error. These features attain very accurate cell boundary identifications to handle a wide range of morphological complexities. We validated these tools using confocal z-stacks from thick 3-D neural constructs where neuronal somata had varying degrees of neurite arborization and complexity, achieving an accuracy of ≥95%. We demonstrated the robustness of these algorithms in a more complex arena through the automated segmentation of neural cells in ex vivo brain slices. These novel methods surpass previous techniques by improving the robustness and accuracy by: (1) the ability to process neurites and somata, (2) bidirectional segmentation correction, and (3) validation via software-assisted user input. This 3-D image analysis platform provides valuable tools for the unbiased analysis of neural tissue or tissue surrogates within a 3-D context, appropriate for the study of multi-dimensional cell-cell and cell-extracellular matrix interactions. PMID:26257609

  19. Single Breath-Hold Non-Contrast Thoracic MRA Using Highly-Accelerated Parallel Imaging With a 32-element Coil Array

    PubMed Central

    Xu, Jian; Mcgorty, Kelly Anne; Lim, Ruth. P.; Bruno, Mary; Babb, James S.; Srichai, Monvadi B.; Kim, Daniel; Sodickson, Daniel K.

    2011-01-01

    OBJECTIVE To evaluate the feasibility of performing single breath-hold 3D thoracic non-contrast magnetic resonance angiography (NC-MRA) using highly-accelerated parallel imaging. MATERIALS AND METHODS We developed a single breath-hold NC MRA pulse sequence using balanced steady state free precession (SSFP) readout and highly-accelerated parallel imaging. In 17 subjects, highly-accelerated non-contrast MRA was compared against electrocardiogram (ECG)-triggered contrast-enhanced MRA. Anonymized images were randomized for blinded review by two independent readers for image quality, artifact severity in 8 defined vessel segments and aortic dimensions in 6 standard sites. NC-MRA and CE-MRA were compared in terms of these measures using paired sample t and Wilcoxon tests. RESULTS The overall image quality (3.21±0.68 for NC-MRA vs. 3.12±0.71 for CE-MRA) and artifact (2.87±1.01 for NC-MRA vs. 2.92±0.87 for CE-MRA) scores were not significantly different, but there were significant differences for the great vessel and coronary artery origins. NC-MRA demonstrated significantly lower aortic diameter measurements compared to CE-MRA; however, this difference was not considered clinically relevant (>3 mm difference) for less than 12% of segments, most commonly at the sinotubular junction. Mean total scan time was significantly lower for NC-MRA compared to CE-MRA (18.2 ± 6.0s vs. 28.1 ± 5.4s, respectively; p < 0.05). CONCLUSION Single breath-hold NC-MRA is feasible and can be a useful alternative for evaluation and follow-up of thoracic aortic diseases. PMID:22147589

  20. A dual-view digital tomosynthesis imaging technique for improved chest imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng

    Purpose: Digital tomosynthesis (DTS) has been shown to be useful for reducing the overlapping of abnormalities with anatomical structures at various depth levels along the posterior–anterior (PA) direction in chest radiography. However, DTS provides crude three-dimensional (3D) images that have poor resolution in the lateral view and can only be displayed with reasonable quality in the PA view. Furthermore, the spillover of high-contrast objects from off-fulcrum planes generates artifacts that may impede the diagnostic use of the DTS images. In this paper, the authors describe and demonstrate the use of a dual-view DTS technique to improve the accuracy of themore » reconstructed volume image data for more accurate rendition of the anatomy and slice images with improved resolution and reduced artifacts, thus allowing the 3D image data to be viewed in views other than the PA view. Methods: With the dual-view DTS technique, limited angle scans are performed and projection images are acquired in two orthogonal views: PA and lateral. The dual-view projection data are used together to reconstruct 3D images using the maximum likelihood expectation maximization iterative algorithm. In this study, projection images were simulated or experimentally acquired over 360° using the scanning geometry for cone beam computed tomography (CBCT). While all projections were used to reconstruct CBCT images, selected projections were extracted and used to reconstruct single- and dual-view DTS images for comparison with the CBCT images. For realistic demonstration and comparison, a digital chest phantom derived from clinical CT images was used for the simulation study. An anthropomorphic chest phantom was imaged for the experimental study. The resultant dual-view DTS images were visually compared with the single-view DTS images and CBCT images for the presence of image artifacts and accuracy of CT numbers and anatomy and quantitatively compared with root-mean-square-deviation (RMSD) values computed using the digital chest phantom or the CBCT images as the reference in the simulation and experimental study, respectively. High-contrast wires with vertical, oblique, and horizontal orientations in a PA view plane were also imaged to investigate the spatial resolutions and how the wire signals spread in the PA view and lateral view slice images. Results: Both the digital phantom images (simulated) and the anthropomorphic phantom images (experimentally generated) demonstrated that the dual-view DTS technique resulted in improved spatial resolution in the depth (PA) direction, more accurate representation of the anatomy, and significantly reduced artifacts. The RMSD values corroborate well with visual observations with substantially lower RMSD values measured for the dual-view DTS images as compared to those measured for the single-view DTS images. The imaging experiment with the high-contrast wires shows that while the vertical and oblique wires could be resolved in the lateral view in both single- and dual-view DTS images, the horizontal wire could only be resolved in the dual-view DTS images. This indicates that with single-view DTS, the wire signals spread liberally to off-fulcrum planes and generated wire shadow there. Conclusions: The authors have demonstrated both visually and quantitatively that the dual-view DTS technique can be used to achieve more accurate rendition of the anatomy and to obtain slice images with improved resolution and reduced artifacts as compared to the single-view DTS technique, thus allowing the 3D image data to be viewed in views other than the PA view. These advantages could make the dual-view DTS technique useful in situations where better separation of the objects-of-interest from the off-fulcrum structures or more accurate 3D rendition of the anatomy are required while a regular CT examination is undesirable due to radiation dose considerations.« less

  1. Design of high energy laser pulse delivery in a multimode fiber for photoacoustic tomography.

    PubMed

    Ai, Min; Shu, Weihang; Salcudean, Tim; Rohling, Robert; Abolmaesumi, Purang; Tang, Shuo

    2017-07-24

    In photoacoustic tomography (PAT), delivering high energy pulses through optical fiber is critical for achieving high quality imaging. A fiber coupling scheme with a beam homogenizer is demonstrated for coupling high energy pulses in a single multimode fiber. This scheme can benefit PAT applications that require miniaturized illumination or internal illumination with a small fiber. The beam homogenizer is achieved by using a cross cylindrical lens array, which provides a periodic spatial modulation on the phase of the input light. Thus the lens array acts as a phase grating which diffracts the beam into a 2D diffraction pattern. Both theoretical analysis and experiments demonstrate that the focused beam can be split into a 2D spot array that can reduce the peak power on the fiber tip surface and thus enhance the coupling performance. The theoretical analysis of the intensity distribution of the focused beam is carried out by Fourier optics. In experiments, coupled energy at 48 mJ/pulse and 60 mJ/pulse have been achieved and the corresponding coupling efficiency is 70% and 90% in a 1000-μm and a 1500-μm-core-diameter fiber, respectively. The high energy pulses delivered by the multimode fiber are further tested for PAT imaging in phantoms. PAT imaging of a printed dot array shows a large illumination area of 7 cm 2 under 5 mm thick chicken breast tissue. In vivo imaging is also demonstrated on the human forearm. The large improvement in coupling energy can potentially benefit PAT with single fiber delivery to achieve large area imaging and deep penetration detection.

  2. Harmonic source wavefront aberration correction for ultrasound imaging

    PubMed Central

    Dianis, Scott W.; von Ramm, Olaf T.

    2011-01-01

    A method is proposed which uses a lower-frequency transmit to create a known harmonic acoustical source in tissue suitable for wavefront correction without a priori assumptions of the target or requiring a transponder. The measurement and imaging steps of this method were implemented on the Duke phased array system with a two-dimensional (2-D) array. The method was tested with multiple electronic aberrators [0.39π to 1.16π radians root-mean-square (rms) at 4.17 MHz] and with a physical aberrator 0.17π radians rms at 4.17 MHz) in a variety of imaging situations. Corrections were quantified in terms of peak beam amplitude compared to the unaberrated case, with restoration between 0.6 and 36.6 dB of peak amplitude with a single correction. Standard phantom images before and after correction were obtained and showed both visible improvement and 14 dB contrast improvement after correction. This method, when combined with previous phase correction methods, may be an important step that leads to improved clinical images. PMID:21303031

  3. Single-field slice-imaging with a movable repeller: photodissociation of N₂O from a hot nozzle.

    PubMed

    Harding, Dan J; Neugebohren, J; Grütter, M; Schmidt-May, A F; Auerbach, D J; Kitsopoulos, T N; Wodtke, A M

    2014-08-07

    We present a new photo-fragment imaging spectrometer, which employs a movable repeller in a single field imaging geometry. This innovation offers two principal advantages. First, the optimal fields for velocity mapping can easily be achieved even using a large molecular beam diameter (5 mm); the velocity resolution (better than 1%) is sufficient to easily resolve photo-electron recoil in (2 + 1) resonant enhanced multiphoton ionization of N2 photoproducts from N2O or from molecular beam cooled N2. Second, rapid changes between spatial imaging, velocity mapping, and slice imaging are straightforward. We demonstrate this technique's utility in a re-investigation of the photodissociation of N2O. Using a hot nozzle, we observe slice images that strongly depend on nozzle temperature. Our data indicate that in our hot nozzle expansion, only pure bending vibrations--(0, v2, 0)--are populated, as vibrational excitation in pure stretching or bend-stretch combination modes are quenched via collisional near-resonant V-V energy transfer to the nearly degenerate bending states. We derive vibrationally state resolved absolute absorption cross-sections for (0, v2 ≤ 7, 0). These results agree well with previous work at lower values of v2, both experimental and theoretical. The dissociation energy of N2O with respect to the O((1)D) + N2¹Σ(g)⁺ asymptote was determined to be 3.65 ± 0.02 eV.

  4. Artifact suppression in electron paramagnetic resonance imaging of 14N- and 15N-labeled nitroxyl radicals with asymmetric absorption spectra

    NASA Astrophysics Data System (ADS)

    Takahashi, Wataru; Miyake, Yusuke; Hirata, Hiroshi

    2014-10-01

    This article describes an improved method for suppressing image artifacts in the visualization of 14N- and 15N-labeled nitroxyl radicals in a single image scan using electron paramagnetic resonance (EPR). The purpose of this work was to solve the problem of asymmetric EPR absorption spectra in spectral processing. A hybrid function of Gaussian and Lorentzian lineshapes was used to perform spectral line-fitting to successfully separate the two kinds of nitroxyl radicals. This approach can process the asymmetric EPR absorption spectra of the nitroxyl radicals being measured, and can suppress image artifacts due to spectral asymmetry. With this improved visualization method and a 750-MHz continuous-wave EPR imager, a temporal change in the distributions of a two-phase paraffin oil and water/glycerin solution system was visualized using lipophilic and hydrophilic nitroxyl radicals, i.e., 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy (16-DOXYL stearic acid) and 4-hydroxyl-2,2,6,6-tetramethylpiperidine-d17-1-15N-1-oxyl (TEMPOL-d17-15N). The results of the two-phase separation experiment verified that reasonable artifact suppression could be achieved by the present method that deals with asymmetric absorption spectra in the EPR imaging of 14N- and 15N-labeled nitroxyl radicals.

  5. Contrast-Enhanced Magnetic Resonance Cholangiography: Practical Tips and Clinical Indications for Biliary Disease Management.

    PubMed

    Palmucci, Stefano; Roccasalva, Federica; Piccoli, Marina; Fuccio Sanzà, Giovanni; Foti, Pietro Valerio; Ragozzino, Alfonso; Milone, Pietro; Ettorre, Giovanni Carlo

    2017-01-01

    Since its introduction, MRCP has been improved over the years due to the introduction of several technical advances and innovations. It consists of a noninvasive method for biliary tree representation, based on heavily T2-weighted images. Conventionally, its protocol includes two-dimensional single-shot fast spin-echo images, acquired with thin sections or with multiple thick slabs. In recent years, three-dimensional T2-weighted fast-recovery fast spin-echo images have been added to the conventional protocol, increasing the possibility of biliary anatomy demonstration and leading to a significant benefit over conventional 2D imaging. A significant innovation has been reached with the introduction of hepatobiliary contrasts, represented by gadoxetic acid and gadobenate dimeglumine: they are excreted into the bile canaliculi, allowing the opacification of the biliary tree. Recently, 3D interpolated T1-weighted spoiled gradient echo images have been proposed for the evaluation of the biliary tree, obtaining images after hepatobiliary contrast agent administration. Thus, the acquisition of these excretory phases improves the diagnostic capability of conventional MRCP-based on T2 acquisitions. In this paper, technical features of contrast-enhanced magnetic resonance cholangiography are briefly discussed; main diagnostic tips of hepatobiliary phase are showed, emphasizing the benefit of enhanced cholangiography in comparison with conventional MRCP.

  6. Introductory review on `Flying Triangulation': a motion-robust optical 3D measurement principle

    NASA Astrophysics Data System (ADS)

    Ettl, Svenja

    2015-04-01

    'Flying Triangulation' (FlyTri) is a recently developed principle which allows for a motion-robust optical 3D measurement of rough surfaces. It combines a simple sensor with sophisticated algorithms: a single-shot sensor acquires 2D camera images. From each camera image, a 3D profile is generated. The series of 3D profiles generated are aligned to one another by algorithms, without relying on any external tracking device. It delivers real-time feedback of the measurement process which enables an all-around measurement of objects. The principle has great potential for small-space acquisition environments, such as the measurement of the interior of a car, and motion-sensitive measurement tasks, such as the intraoral measurement of teeth. This article gives an overview of the basic ideas and applications of FlyTri. The main challenges and their solutions are discussed. Measurement examples are also given to demonstrate the potential of the measurement principle.

  7. SU-F-303-13: Initial Evaluation of Four Dimensional Diffusion- Weighted MRI (4D-DWI) and Its Effect On Apparent Diffusion Coefficient (ADC) Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Yin, F; Czito, B

    2015-06-15

    Purpose: Diffusion-weighted imaging(DWI) has been shown to have superior tumor-to-tissue contrast for cancer detection.This study aims at developing and evaluating a four dimensional DWI(4D-DWI) technique using retrospective sorting method for imaging respiratory motion for radiotherapy planning,and evaluate its effect on Apparent Diffusion Coefficient(ADC) measurement. Materials/Methods: Image acquisition was performed by repeatedly imaging a volume of interest using a multi-slice single-shot 2D-DWI sequence in the axial planes and cine MRI(served as reference) using FIESTA sequence.Each 2D-DWI image were acquired in xyz-diffusion-directions with a high b-value(b=500s/mm2).The respiratory motion was simultaneously recorded using bellows.Retrospective sorting was applied in each direction to reconstruct 4D-DWI.Themore » technique was evaluated using a computer simulated 4D-digital human phantom(XCAT),a motion phantom and a healthy volunteer under an IRB-approved study.Motion trajectories of regions-of-interests(ROI) were extracted from 4D-DWI and compared with reference.The mean motion trajectory amplitude differences(D) between the two was calculated.To quantitatively analyze the motion artifacts,XCAT were controlled to simulate regular motion and the motions of 10 liver cancer patients.4D-DWI,free-breathing DWI(FB- DWI) were reconstructed.Tumor volume difference(VD) of each phase of 4D-DWI and FB-DWI from the input static tumor were calculated.Furthermore, ADC was measured for each phase of 4D-DWI and FB-DWI data,and mean tumor ADC values(M-ADC) were calculated.Mean M-ADC over all 4D-DWI phases was compared with M-ADC calculated from FB-DWI. Results: 4D-DWI of XCAT,the motion phantom and the healthy volunteer demonstrated the respiratory motion clearly.ROI D values were 1.9mm,1.7mm and 2.0mm,respectively.For motion artifacts analysis,XCAT 4D-DWI images show much less motion artifacts compare to FB-DWI.Mean VD for 4D-WDI and FB-DWI were 8.5±1.4% and 108±15%,respectively.Mean M-ADC for ADC measured from 4D-DWI and M-ADC measured from FB-DWI were (2.29±0.04)*0.001*mm2/s and (3.80±0.01)*0.001*mm2/s,respectively.ADC value ground-truth is 2.24*0.001*mm2/s from the input of the simulation. Conclusion: A respiratory correlated 4D-DWI technique has been initially evaluated in phantoms and a human subject.Comparing to free breathing DWI,4D-DWI can lead to more accurate measurement of ADC.« less

  8. Prestack depth migration for complex 2D structure using phase-screen propagators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, P.; Huang, Lian-Jie; Burch, C.

    1997-11-01

    We present results for the phase-screen propagator method applied to prestack depth migration of the Marmousi synthetic data set. The data were migrated as individual common-shot records and the resulting partial images were superposed to obtain the final complete Image. Tests were performed to determine the minimum number of frequency components required to achieve the best quality image and this in turn provided estimates of the minimum computing time. Running on a single processor SUN SPARC Ultra I, high quality images were obtained in as little as 8.7 CPU hours and adequate images were obtained in as little as 4.4more » CPU hours. Different methods were tested for choosing the reference velocity used for the background phase-shift operation and for defining the slowness perturbation screens. Although the depths of some of the steeply dipping, high-contrast features were shifted slightly the overall image quality was fairly insensitive to the choice of the reference velocity. Our jests show the phase-screen method to be a reliable and fast algorithm for imaging complex geologic structures, at least for complex 2D synthetic data where the velocity model is known.« less

  9. Sparse matrix beamforming and image reconstruction for 2-D HIFU monitoring using harmonic motion imaging for focused ultrasound (HMIFU) with in vitro validation.

    PubMed

    Hou, Gary Y; Provost, Jean; Grondin, Julien; Wang, Shutao; Marquet, Fabrice; Bunting, Ethan; Konofagou, Elisa E

    2014-11-01

    Harmonic motion imaging for focused ultrasound (HMIFU) utilizes an amplitude-modulated HIFU beam to induce a localized focal oscillatory motion simultaneously estimated. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system. A single divergent transmit beam was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface with frame rates up to 15 Hz, a 100-fold increase compared to conventional CPU-based processing. The real-time feedback rate does not require interrupting the HIFU treatment. Results in phantom experiments showed reproducible HMI images and monitoring of 22 in vitro HIFU treatments using the new 2-D system demonstrated reproducible displacement imaging, and monitoring of 22 in vitro HIFU treatments using the new 2-D system showed a consistent average focal displacement decrease of 46.7 ±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15%/(°)C, and 2.03±0.93%/(°)C , respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications.

  10. Experimental and numerical investigation of tissue harmonic imaging (THI)

    NASA Astrophysics Data System (ADS)

    Jing, Yuan; Yang, Xinmai; Cleveland, Robin O.

    2003-04-01

    In THI the probing ultrasonic pulse has enough amplitude that it undergoes nonlinear distortion and energy shifts from the fundamental frequency of the pulse into its higher harmonics. Images generated from the second harmonic (SH) have superior quality to the images formed from the fundamental frequency. Experiments with a single element focused ultrasound transducer were used to compare a line target embedded in a tissue phantom using either fundamental or SH imaging. SH imaging showed an improvement in both the axial resolution (0.70 mm vs 0.92 mm) and the lateral resolution (1.02 mm vs 2.70 mm) of the target. In addition, the contrast-to-tissue ratio of the target was 2 dB higher with SH imaging. A three-dimensional model of the forward propagation has been developed to simulate the experimental system. The model is based on a time-domain code for solving the KZK equation and accounts for arbitrary spatial variations in all tissue properties. The code was used to determine the impact of a nearfield layer of fat on the fundamental and second harmonic signals. For a 15 mm thick layer the SH side-lobes remained the same but the fundamental side-lobes increased by 2 dB. [Work supported by the NSF through the Center for Subsurface Sensing and Imaging Systems.

  11. Effects of intra-operative fluoroscopic 3D-imaging on peri-operative imaging strategy in calcaneal fracture surgery.

    PubMed

    Beerekamp, M S H; Backes, M; Schep, N W L; Ubbink, D T; Luitse, J S; Schepers, T; Goslings, J C

    2017-12-01

    Previous studies demonstrated that intra-operative fluoroscopic 3D-imaging (3D-imaging) in calcaneal fracture surgery is promising to prevent revision surgery and save costs. However, these studies limited their focus to corrections performed after 3D-imaging, thereby neglecting corrections after intra-operative fluoroscopic 2D-imaging (2D-imaging). The aim of this study was to assess the effects of additional 3D-imaging on intra-operative corrections, peri-operative imaging used, and patient-relevant outcomes compared to 2D-imaging alone. In this before-after study, data of adult patients who underwent open reduction and internal fixation (ORIF) of a calcaneal fracture between 2000 and 2014 in our level-I Trauma center were collected. 3D-imaging (BV Pulsera with 3D-RX, Philips Healthcare, Best, The Netherlands) was available as of 2007 at the surgeons' discretion. Patient and fracture characteristics, peri-operative imaging, intra-operative corrections and patient-relevant outcomes were collected from the hospital databases. Patients in whom additional 3D-imaging was applied were compared to those undergoing 2D-imaging alone. A total of 231 patients were included of whom 107 (46%) were operated with the use of 3D-imaging. No significant differences were found in baseline characteristics. The median duration of surgery was significantly longer when using 3D-imaging (2:08 vs. 1:54 h; p = 0.002). Corrections after additional 3D-imaging were performed in 53% of the patients. However, significantly fewer corrections were made after 2D-imaging when 3D-imaging was available (Risk difference (RD) -15%; 95% Confidence interval (CI) -29 to -2). Peri-operative imaging, besides intra-operative 3D-imaging, and patient-relevant outcomes were similar between groups. Intra-operative 3D-imaging provides additional information resulting in additional corrections. Moreover, 3D-imaging probably changed the surgeons' attitude to rely more on 3D-imaging, hence a 15%-decrease of corrections performed after 2D-imaging when 3D imaging was available. No substantiation for cost reduction was found through reduction in peri-operative imaging or in terms of improved patient-relevant outcomes.

  12. SU-E-T-10: A Clinical Implementation and the Dosimetric Evidence in High Dose Rate Vaginal Multichannel Applicator Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syh, J; Syh, J; Patel, B

    2015-06-15

    Purpose: The multichannel cylindrical applicator has a distinctive modification of the traditional single channel cylindrical applicator. The novel multichannel applicator has additional peripheral channels that provide more flexibility both in treatment planning process and outcomes. To protect by reducing doses to adjacent organ at risk (OAR) while maintaining target coverage with inverse plan optimization are the goals for such novel Brachytherapy device. Through a series of comparison and analysis of reults in more than forty patients who received HDR Brachytherapy using multichannel vaginal applicator, this procedure has been implemented in our institution. Methods: Multichannel planning was CT image based. Themore » CTV of 5mm vaginal cuff rind with prescribed length was well reconstructed as well as bladder and rectum. At least D95 of CTV coverage is 95% of prescribed dose. Multichannel inverse plan optimization algorithm not only shapes target dose cloud but set dose avoids to OAR’s exclusively. The doses of D2cc, D5cc and D5; volume of V2Gy in OAR’s were selected to compare with single channel results when sole central channel is only possibility. Results: Study demonstrates plan superiorly in OAR’s doe reduction in multi-channel plan. The D2cc of the rectum and bladder were showing a little lower for multichannel vs. single channel. The V2Gy of the rectum was 93.72% vs. 83.79% (p=0.007) for single channel vs. multichannel respectively. Absolute reduced mean dose of D5 by multichannel was 17 cGy (s.d.=6.4) and 44 cGy (s.d.=15.2) in bladder and rectum respectively. Conclusion: The optimization solution in multichannel was to maintain D95 CTV coverage while reducing the dose to OAR’s. Dosimetric advantage in sparing critical organs by using a multichannel applicator in HDR Brachytherapy treatment of the vaginal cuff is so promising and has been implemented clinically.« less

  13. Automatic lumen and outer wall segmentation of the carotid artery using deformable three-dimensional models in MR angiography and vessel wall images.

    PubMed

    van 't Klooster, Ronald; de Koning, Patrick J H; Dehnavi, Reza Alizadeh; Tamsma, Jouke T; de Roos, Albert; Reiber, Johan H C; van der Geest, Rob J

    2012-01-01

    To develop and validate an automated segmentation technique for the detection of the lumen and outer wall boundaries in MR vessel wall studies of the common carotid artery. A new segmentation method was developed using a three-dimensional (3D) deformable vessel model requiring only one single user interaction by combining 3D MR angiography (MRA) and 2D vessel wall images. This vessel model is a 3D cylindrical Non-Uniform Rational B-Spline (NURBS) surface which can be deformed to fit the underlying image data. Image data of 45 subjects was used to validate the method by comparing manual and automatic segmentations. Vessel wall thickness and volume measurements obtained by both methods were compared. Substantial agreement was observed between manual and automatic segmentation; over 85% of the vessel wall contours were segmented successfully. The interclass correlation was 0.690 for the vessel wall thickness and 0.793 for the vessel wall volume. Compared with manual image analysis, the automated method demonstrated improved interobserver agreement and inter-scan reproducibility. Additionally, the proposed automated image analysis approach was substantially faster. This new automated method can reduce analysis time and enhance reproducibility of the quantification of vessel wall dimensions in clinical studies. Copyright © 2011 Wiley Periodicals, Inc.

  14. 2D radially compensating excitation pulse in combination with an internal transceiver antenna for 3D MRI of the rectum at 7 T.

    PubMed

    van Kalleveen, I M L; Kroeze, H; Sbrizzi, A; Boer, V O; Reerink, O; Philippens, M E P; van de Berg, C A T; Luijten, P R; Klomp, D W J

    2016-07-01

    The high precession frequency in ultrahigh field MRI coincides with reduced RF penetration, increased RF power deposition and consequently can lead to reduced scan efficiency. However, the shorter wavelength enables the use of efficient antennas rather than loop coils. In fact, ultrathin monopole antennas have been demonstrated at 7 T, which fit in natural cavities like the rectum in the human body. As the RF field generated by the antenna provides an extremely nonuniform B1 field, the use of conventional RF pulses will lead to severe image distortions and highly nonuniform contrast. However, using the two predominant dimensions (orthogonal to the antenna), 2D RF pulses can be designed that counteract the nonuniform B1 into uniform flip angles. In this study the authors investigate the use of an ultrathin antenna not only for reception, but also for transmission in 7 T MRI of the rectum. The 2D radially compensating excitation (2D RACE) pulse was designed in matlab. SAR calculations between the 2D RACE pulse and an adiabatic RF pulse (BIR-4) have been obtained, to visualize the gain in decreasing the SAR when using the 2D RACE pulse instead of an adiabatic RF pulse. The authors used the 7 T whole body MR system in combination with an internally placed monopole antenna used for transceiving and obtained 3D gradient echo images with a conventional sinc pulse and with the 2D RACE pulse. For extra clarity, they also reconstructed an image where the receive field of the antenna was removed. Comparing the results of the SAR simulations of the 2D RACE pulse with a BIR-4 pulse shows that for low flip angles (θ < 41°) the SAR can be decreased with a factor of 4.8 or even more, when using the 2D RACE pulse. Relative to a conventional sinc excitation, the 2D RACE pulse achieves more uniform flip angle distributions than a BIR-4 pulse with a smaller SAR increase (16 × versus 64 ×). The authors have shown that the 2D RACE pulse provides more homogeneous flip angles for gradient echo sequences when compared to a conventional sinc pulse albeit at increased SAR. However, when compared to adiabatic RF pulses, as shown by simulations, the SAR of the 2D RACE pulse can be an order of magnitude less. Phantom and in vivo human rectum images are obtained to demonstrate that the 2D RACE pulse can provide a uniform excitation while transmitting with a single ultrathin endorectal antenna at 7 T. The combination of thin rectal antennas with efficient uniform transmit can open up new possibilities in high resolution imaging of rectal cancer.

  15. Single-Molecule Real-Time 3D Imaging of the Transcription Cycle by Modulation Interferometry.

    PubMed

    Wang, Guanshi; Hauver, Jesse; Thomas, Zachary; Darst, Seth A; Pertsinidis, Alexandros

    2016-12-15

    Many essential cellular processes, such as gene control, employ elaborate mechanisms involving the coordination of large, multi-component molecular assemblies. Few structural biology tools presently have the combined spatial-temporal resolution and molecular specificity required to capture the movement, conformational changes, and subunit association-dissociation kinetics, three fundamental elements of how such intricate molecular machines work. Here, we report a 3D single-molecule super-resolution imaging study using modulation interferometry and phase-sensitive detection that achieves <2 nm axial localization precision, well below the few-nanometer-sized individual protein components. To illustrate the capability of this technique in probing the dynamics of complex macromolecular machines, we visualize the movement of individual multi-subunit E. coli RNA polymerases through the complete transcription cycle, dissect the kinetics of the initiation-elongation transition, and determine the fate of σ 70 initiation factors during promoter escape. Modulation interferometry sets the stage for single-molecule studies of several hitherto difficult-to-investigate multi-molecular transactions that underlie genome regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Phase-sensitive two-dimensional neutron shearing interferometer and Hartmann sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kevin

    2015-12-08

    A neutron imaging system detects both the phase shift and absorption of neutrons passing through an object. The neutron imaging system is based on either of two different neutron wavefront sensor techniques: 2-D shearing interferometry and Hartmann wavefront sensing. Both approaches measure an entire two-dimensional neutron complex field, including its amplitude and phase. Each measures the full-field, two-dimensional phase gradients and, concomitantly, the two-dimensional amplitude mapping, requiring only a single measurement.

  17. Assessing Cardiac Injury in Mice With Dual Energy-MicroCT, 4D-MicroCT, and MicroSPECT Imaging After Partial Heart Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chang-Lung; Min, Hooney; Befera, Nicholas

    Purpose: To develop a mouse model of cardiac injury after partial heart irradiation (PHI) and to test whether dual energy (DE)-microCT and 4-dimensional (4D)-microCT can be used to assess cardiac injury after PHI to complement myocardial perfusion imaging using micro-single photon emission computed tomography (SPECT). Methods and Materials: To study cardiac injury from tangent field irradiation in mice, we used a small-field biological irradiator to deliver a single dose of 12 Gy x-rays to approximately one-third of the left ventricle (LV) of Tie2Cre; p53{sup FL/+} and Tie2Cre; p53{sup FL/−} mice, where 1 or both alleles of p53 are deleted in endothelialmore » cells. Four and 8 weeks after irradiation, mice were injected with gold and iodinated nanoparticle-based contrast agents, and imaged with DE-microCT and 4D-microCT to evaluate myocardial vascular permeability and cardiac function, respectively. Additionally, the same mice were imaged with microSPECT to assess myocardial perfusion. Results: After PHI with tangent fields, DE-microCT scans showed a time-dependent increase in accumulation of gold nanoparticles (AuNp) in the myocardium of Tie2Cre; p53{sup FL/−} mice. In Tie2Cre; p53{sup FL/−} mice, extravasation of AuNp was observed within the irradiated LV, whereas in the myocardium of Tie2Cre; p53{sup FL/+} mice, AuNp were restricted to blood vessels. In addition, data from DE-microCT and microSPECT showed a linear correlation (R{sup 2} = 0.97) between the fraction of the LV that accumulated AuNp and the fraction of LV with a perfusion defect. Furthermore, 4D-microCT scans demonstrated that PHI caused a markedly decreased ejection fraction, and higher end-diastolic and end-systolic volumes, to develop in Tie2Cre; p53{sup FL/−} mice, which were associated with compensatory cardiac hypertrophy of the heart that was not irradiated. Conclusions: Our results show that DE-microCT and 4D-microCT with nanoparticle-based contrast agents are novel imaging approaches complementary to microSPECT for noninvasive assessment of the change in myocardial vascular permeability and cardiac function of mice in whom myocardial injury develops after PHI.« less

  18. Glycosidases induced in Aspergillus tamarii. Mycelial alpha-D-galactosidases.

    PubMed Central

    Civas, A; Eberhard, R; Le Dizet, P; Petek, F

    1984-01-01

    Two alpha-D-galactosidases (alpha-D-galactoside galactohydrolase, EC 3.2.1.22) produced by Aspergillus tamarii were purified from the mycelial extract by a procedure including chromatography on hydroxyapatite, DEAE-cellulose and ECTEOLA-cellulose. Each of these enzymes showed a single protein band corresponding to the alpha-D-galactosidase activity when examined by polyacrylamide-gel electrophoresis. They catalysed the hydrolysis of o-nitrophenyl alpha-D-galactoside, melibiose, raffinose and stachyose, but did not attack the galactomannans. Their Mr values were respectively 265000 +/- 5000 and 254000 +/- 5000 by the method of Hedrick & Smith [(1968) Arch. Biochem. Biophys. 126, 155-164]. Polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate in each case showed a single protein band, with Mr 88000 and 77500 respectively. The purified enzymes contained carbohydrate, consisting of N-acetylglucosamine, mannose, glucose and galactose in the estimated molar proportions of 1:9:5:8 in alpha-galactosidase I. Images Fig. 1. PMID:6331398

  19. Resolution Measurement from a Single Reconstructed Cryo-EM Density Map with Multiscale Spectral Analysis.

    PubMed

    Yang, Yu-Jiao; Wang, Shuai; Zhang, Biao; Shen, Hong-Bin

    2018-06-25

    As a relatively new technology to solve the three-dimensional (3D) structure of a protein or protein complex, single-particle reconstruction (SPR) of cryogenic electron microscopy (cryo-EM) images shows much superiority and is in a rapidly developing stage. Resolution measurement in SPR, which evaluates the quality of a reconstructed 3D density map, plays a critical role in promoting methodology development of SPR and structural biology. Because there is no benchmark map in the generation of a new structure, how to realize the resolution estimation of a new map is still an open problem. Existing approaches try to generate a hypothetical benchmark map by reconstructing two 3D models from two halves of the original 2D images for cross-reference, which may result in a premature estimation with a half-data model. In this paper, we report a new self-reference-based resolution estimation protocol, called SRes, that requires only a single reconstructed 3D map. The core idea of SRes is to perform a multiscale spectral analysis (MSSA) on the map through multiple size-variable masks segmenting the map. The MSSA-derived multiscale spectral signal-to-noise ratios (mSSNRs) reveal that their corresponding estimated resolutions will show a cliff jump phenomenon, indicating a significant change in the SSNR properties. The critical point on the cliff borderline is demonstrated to be the right estimator for the resolution of the map.

  20. The spread of Ras activity triggered by activation of a single dendritic spine.

    PubMed

    Harvey, Christopher D; Yasuda, Ryohei; Zhong, Haining; Svoboda, Karel

    2008-07-04

    In neurons, individual dendritic spines isolate N-methyl-d-aspartate (NMDA) receptor-mediated calcium ion (Ca2+) accumulations from the dendrite and other spines. However, the extent to which spines compartmentalize signaling events downstream of Ca2+ influx is not known. We combined two-photon fluorescence lifetime imaging with two-photon glutamate uncaging to image the activity of the small guanosine triphosphatase Ras after NMDA receptor activation at individual spines. Induction of long-term potentiation (LTP) triggered robust Ca2+-dependent Ras activation in single spines that decayed in approximately 5 minutes. Ras activity spread over approximately 10 micrometers of dendrite and invaded neighboring spines by diffusion. The spread of Ras-dependent signaling was necessary for the local regulation of the threshold for LTP induction. Thus, Ca2+-dependent synaptic signals can spread to couple multiple synapses on short stretches of dendrite.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnello, A.; et al.

    We present gravitational lens models of the multiply imaged quasar DES J0408-5354, recently discovered in the Dark Energy Survey (DES) footprint, with the aim of interpreting its remarkable quad-like configuration. We first model the DES single-epochmore » $grizY$ images as a superposition of a lens galaxy and four point-like objects, obtaining spectral energy distributions (SEDs) and relative positions for the objects. Three of the point sources (A,B,D) have SEDs compatible with the discovery quasar spectra, while the faintest point-like image (G2/C) shows significant reddening and a `grey' dimming of $$\\approx0.8$$mag. In order to understand the lens configuration, we fit different models to the relative positions of A,B,D. Models with just a single deflector predict a fourth image at the location of G2/C but considerably brighter and bluer. The addition of a small satellite galaxy ($$R_{\\rm E}\\approx0.2$$") in the lens plane near the position of G2/C suppresses the flux of the fourth image and can explain both the reddening and grey dimming. All models predict a main deflector with Einstein radius between $1.7"$ and $2.0",$ velocity dispersion $267-280$km/s and enclosed mass $$\\approx 6\\times10^{11}M_{\\odot},$$ even though higher resolution imaging data are needed to break residual degeneracies in model parameters. The longest time-delay (B-A) is estimated as $$\\approx 85$$ (resp. $$\\approx125$$) days by models with (resp. without) a perturber near G2/C. The configuration and predicted time-delays of J0408-5354 make it an excellent target for follow-up aimed at understanding the source quasar host galaxy and substructure in the lens, and measuring cosmological parameters. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.« less

  2. Models of the strongly lensed quasar DES J0408−5354

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnello, A.; et al.

    We present gravitational lens models of the multiply imaged quasar DES J0408-5354, recently discovered in the Dark Energy Survey (DES) footprint, with the aim of interpreting its remarkable quad-like configuration. We first model the DES single-epochmore » $grizY$ images as a superposition of a lens galaxy and four point-like objects, obtaining spectral energy distributions (SEDs) and relative positions for the objects. Three of the point sources (A,B,D) have SEDs compatible with the discovery quasar spectra, while the faintest point-like image (G2/C) shows significant reddening and a `grey' dimming of $$\\approx0.8$$mag. In order to understand the lens configuration, we fit different models to the relative positions of A,B,D. Models with just a single deflector predict a fourth image at the location of G2/C but considerably brighter and bluer. The addition of a small satellite galaxy ($$R_{\\rm E}\\approx0.2$$") in the lens plane near the position of G2/C suppresses the flux of the fourth image and can explain both the reddening and grey dimming. All models predict a main deflector with Einstein radius between $1.7"$ and $2.0",$ velocity dispersion $267-280$km/s and enclosed mass $$\\approx 6\\times10^{11}M_{\\odot},$$ even though higher resolution imaging data are needed to break residual degeneracies in model parameters. The longest time-delay (B-A) is estimated as $$\\approx 85$$ (resp. $$\\approx125$$) days by models with (resp. without) a perturber near G2/C. The configuration and predicted time-delays of J0408-5354 make it an excellent target for follow-up aimed at understanding the source quasar host galaxy and substructure in the lens, and measuring cosmological parameters. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.« less

  3. Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model

    DOE PAGES

    Fridlind, Ann M.; Atlas, Rachel; van Diedenhoven, Bastiaan; ...

    2016-06-10

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension ( D max) greater than 100 µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bulletmore » rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5–2 greater fall speeds, and, in the limit of large D max, near-infrared single-scattering albedo and asymmetry parameter ( g) greater by ~0.2 and 0.05, respectively. Furthermore, a model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from ~0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.« less

  4. The linac coherent light source single particle imaging road map

    PubMed Central

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R. N. C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Santra, R.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-01-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801

  5. The linac coherent light source single particle imaging road map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, A.; Barty, A.; Bostedt, C.

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore » laser sources.« less

  6. Singleshot T1 Mapping using Simultaneous Acquisitions of Spin- and STimulated-Echo Planar Imaging (2D ss-SESTEPI)

    PubMed Central

    Shi, Xianfeng; Kim, Seong-Eun; Jeong, Eun-Kee

    2011-01-01

    The conventional stimulated-echo NMR sequence only measures the longitudinal component, while discarding the transverse component, after tipping up the prepared magnetization. This transverse magnetization can be used to measure a spin-echo, in addition to the stimulated-echo. 2D ss-SESTEPI is an EPI-based singleshot imaging technique that simultaneously acquires a spin-echo-planar image (SEPI) and a stimulated-echo-planar image (STEPI) after a single RF excitation. The magnitudes of SEPI and STEPI differ by T1 decay and diffusion weighting for perfect 90° RF, and thus can be used to rapidly measure T1. However, the spatial variation of B1 amplitude induces un-even splitting of the transverse magnetization for SEPI and STEPI within the imaging FOV. Correction for B1 inhomogeneity is therefore critical for 2D ss-SESTEPI to be used for T1 measurement. We developed a method for B1 inhomogeneity correction by acquiring an additional STEPI with minimal mixing time, calculating the difference between the spin-echo and the stimulated-echo and multiplying the STEPI by the inverse functional map. Diffusion-induced decay is corrected by measuring the average diffusivity during the prescanning. Rapid singleshot T1 mapping may be useful for various applications, such as dynamic T1 mapping for real-time estimation of the concentration of contrast agent in DCE-MRI. PMID:20564579

  7. Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach.

    PubMed

    Hu, Zhenhua; Ma, Xiaowei; Qu, Xiaochao; Yang, Weidong; Liang, Jimin; Wang, Jing; Tian, Jie

    2012-01-01

    Cerenkov luminescence tomography (CLT) provides the three-dimensional (3D) radiopharmaceutical biodistribution in small living animals, which is vital to biomedical imaging. However, existing single-spectral and multispectral methods are not very efficient and effective at reconstructing the distribution of the radionuclide tracer. In this paper, we present a semi-quantitative Cerenkov radiation spectral characteristic-based source reconstruction method named the hybrid spectral CLT, to efficiently reconstruct the radionuclide tracer with both encouraging reconstruction results and less acquisition and image reconstruction time. We constructed the implantation mouse model implanted with a 400 µCi Na(131)I radioactive source and the physiological mouse model received an intravenous tail injection of 400 µCi radiopharmaceutical Iodine-131 (I-131) to validate the performance of the hybrid spectral CLT and compared the reconstruction results, acquisition, and image reconstruction time with that of single-spectral and multispectral CLT. Furthermore, we performed 3D noninvasive monitoring of I-131 uptake in the thyroid and quantified I-131 uptake in vivo using hybrid spectral CLT. Results showed that the reconstruction based on the hybrid spectral CLT was more accurate in localization and quantification than using single-spectral CLT, and was more efficient in the in vivo experiment compared with multispectral CLT. Additionally, 3D visualization of longitudinal observations suggested that the reconstructed energy of I-131 uptake in the thyroid increased with acquisition time and there was a robust correlation between the reconstructed energy versus the gamma ray counts of I-131 (r(2) = 0.8240). The ex vivo biodistribution experiment further confirmed the I-131 uptake in the thyroid for hybrid spectral CLT. Results indicated that hybrid spectral CLT could be potentially used for thyroid imaging to evaluate its function and monitor its treatment for thyroid cancer.

  8. Simultaneous, accurate measurement of the 3D position and orientation of single molecules

    PubMed Central

    Backlund, Mikael P.; Lew, Matthew D.; Backer, Adam S.; Sahl, Steffen J.; Grover, Ginni; Agrawal, Anurag; Piestun, Rafael; Moerner, W. E.

    2012-01-01

    Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule’s 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x, y) mislocalizations (up to ∼50–200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit). PMID:23129640

  9. Use of cone-beam imaging to correct for catheter displacement in high dose-rate prostate brachytherapy.

    PubMed

    Holly, Rick; Morton, Gerard C; Sankreacha, Raxa; Law, Niki; Cisecki, Thomas; Loblaw, D Andrew; Chung, Hans T

    2011-01-01

    To determine the magnitude of catheter displacement between time of planning and time of treatment delivery for patients undergoing high dose-rate (HDR) brachytherapy, the dosimetric impact of catheter displacement, and the ability to improve dosimetry by catheter readjustment. Twenty consecutive patients receiving single fraction HDR brachytherapy underwent kilovoltage cone-beam CT in the treatment room before treatment. If catheter displacement was apparent, catheters were adjusted and imaging repeated. Both sets of kilovoltage cone-beam CT image sets were coregistered off-line with the CT data set used for planning with rigid fusion of anatomy based on implanted fiducials. Catheter displacement was measured on both sets of images and dosimetry calculated. Mean internal displacement of catheters was 11mm. This would have resulted in a decrease in mean volume receiving 100% of prescription dose (V(100)) from the planned 97.6% to 77.3% (p<0.001), a decrease of the mean dose to 90% of the prostate (D(90)) from 110.5% to 72.9% (p<0.001), and increase in dose to 10% of urethra (urethra D(10)) from 118% to 125% (p=0.0094). Each 1cm of catheter displacement resulted in a 20% decrease in V(100) and 36% decrease in D(90). Catheter readjustment resulted in a final treated mean V(100) of 90.2% and D(90) of 97.4%, both less than planned. Mean urethra D(10) remained higher at126% (p=0.0324). Significantly, internal displacement of HDR catheters commonly occurs between time of CT planning and treatment delivery, even when only a single fraction is used. The adverse effects on dosimetry can be partly corrected by readjustment of catheter position. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. Imaging of autoimmune encephalitis--Relevance for clinical practice and hippocampal function.

    PubMed

    Heine, J; Prüss, H; Bartsch, T; Ploner, C J; Paul, F; Finke, C

    2015-11-19

    The field of autoimmune encephalitides associated with antibodies targeting cell-surface antigens is rapidly expanding and new antibodies are discovered frequently. Typical clinical presentations include cognitive deficits, psychiatric symptoms, movement disorders and seizures and the majority of patients respond well to immunotherapy. Pathophysiological mechanisms and clinical features are increasingly recognized and indicate hippocampal dysfunction in most of these syndromes. Here, we review the neuroimaging characteristics of autoimmune encephalitides, including N-methyl-d-aspartate (NMDA) receptor, leucine-rich glioma inactivated 1 (LGI1), contactin-associated protein-like 2 (CASPR2) encephalitis as well as more recently discovered and less frequent forms such as dipeptidyl-peptidase-like protein 6 (DPPX) or glycine receptor encephalitis. We summarize findings of routine magnetic resonance imaging (MRI) investigations as well as (18)F-fluoro-2-deoxy-d-glucose (FDG)-positron emission tomography (PET) and single photon emission tomography (SPECT) imaging and relate these observations to clinical features and disease outcome. We furthermore review results of advanced imaging analyses such as diffusion tensor imaging, volumetric analyses and resting-state functional MRI. Finally, we discuss contributions of these neuroimaging observations to the understanding of the pathophysiology of autoimmune encephalitides. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Compatibility of a Diffractive Pupil and Coronagraphic Imaging

    NASA Technical Reports Server (NTRS)

    Bendek, Eduardo; Belikov, Rusian; Pluzhnyk, Yevgeniy; Guyon, Olivier

    2013-01-01

    Detection and characterization of exo-earths require direct-imaging techniques that can deliver contrast ratios of 10(exp 10) at 100 milliarc-seconds or smaller angular separation. At the same time, astrometric data is required to measure planet masses and can help detect planets and constrain their orbital parameters. To minimize costs, a single space mission can be designed using a high efficiency coronograph to perform direct imaging and a diffractive pupil to calibrate wide-field distortions to enable high precision astrometric measurements. This paper reports the testing of a diffractive pupil on the high-contrast test bed at the NASA Ames Research Center to assess the compatibility of using a diffractive pupil with coronographic imaging systems. No diffractive contamination was found within our detectability limit of 2x10(exp -7) contrast outside a region of 12lambda/D and 2.5x10(exp -6) within a region spanning from 2 to 12lambda/D. Morphology of the image features suggests that no contamination exists even beyond the detectability limit specified or at smaller working angles. In the case that diffractive contamination is found beyond these stated levels, active wavefront control would be able to mitigate its intensity to 10(exp -7) or better contrast.

  12. Acceleration of fluoro-CT reconstruction for a mobile C-Arm on GPU and FPGA hardware: a simulation study

    NASA Astrophysics Data System (ADS)

    Xue, Xinwei; Cheryauka, Arvi; Tubbs, David

    2006-03-01

    CT imaging in interventional and minimally-invasive surgery requires high-performance computing solutions that meet operational room demands, healthcare business requirements, and the constraints of a mobile C-arm system. The computational requirements of clinical procedures using CT-like data are increasing rapidly, mainly due to the need for rapid access to medical imagery during critical surgical procedures. The highly parallel nature of Radon transform and CT algorithms enables embedded computing solutions utilizing a parallel processing architecture to realize a significant gain of computational intensity with comparable hardware and program coding/testing expenses. In this paper, using a sample 2D and 3D CT problem, we explore the programming challenges and the potential benefits of embedded computing using commodity hardware components. The accuracy and performance results obtained on three computational platforms: a single CPU, a single GPU, and a solution based on FPGA technology have been analyzed. We have shown that hardware-accelerated CT image reconstruction can be achieved with similar levels of noise and clarity of feature when compared to program execution on a CPU, but gaining a performance increase at one or more orders of magnitude faster. 3D cone-beam or helical CT reconstruction and a variety of volumetric image processing applications will benefit from similar accelerations.

  13. Photon-Counting H33D Detector for Biological Fluorescence Imaging

    PubMed Central

    Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Millaud, J.E.; Weiss, S.

    2010-01-01

    We have developed a photon-counting High-temporal and High-spatial resolution, High-throughput 3-Dimensional detector (H33D) for biological imaging of fluorescent samples. The design is based on a 25 mm diameter S20 photocathode followed by a 3-microchannel plate stack, and a cross delay line anode. We describe the bench performance of the H33D detector, as well as preliminary imaging results obtained with fluorescent beads, quantum dots and live cells and discuss applications of future generation detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:20151021

  14. Radiation dose and magnification in pelvic X-ray: EOS™ imaging system versus plain radiographs.

    PubMed

    Chiron, P; Demoulin, L; Wytrykowski, K; Cavaignac, E; Reina, N; Murgier, J

    2017-12-01

    In plain pelvic X-ray, magnification makes measurement unreliable. The EOS™ (EOS Imaging, Paris France) imaging system is reputed to reproduce patient anatomy exactly, with a lower radiation dose. This, however, has not been assessed according to patient weight, although both magnification and irradiation are known to vary with weight. We therefore conducted a prospective comparative study, to compare: (1) image magnification and (2) radiation dose between the EOS imaging system and plain X-ray. The EOS imaging system reproduces patient anatomy exactly, regardless of weight, unlike plain X-ray. A single-center comparative study of plain pelvic X-ray and 2D EOS radiography was performed in 183 patients: 186 arthroplasties; 104 male, 81 female; mean age 61.3±13.7years (range, 24-87years). Magnification and radiation dose (dose-area product [DAP]) were compared between the two systems in 186 hips in patients with a mean body-mass index (BMI) of 27.1±5.3kg/m 2 (range, 17.6-42.3kg/m 2 ), including 7 with morbid obesity. Mean magnification was zero using the EOS system, regardless of patient weight, compared to 1.15±0.05 (range, 1-1.32) on plain X-ray (P<10 -5 ). In patients with BMI<25, mean magnification on plain X-ray was 1.15±0.05 (range, 1-1.25) and, in patients with morbid obesity, 1.22±0.06 (range, 1.18-1.32). The mean radiation dose was 8.19±2.63dGy/cm 2 (range, 1.77-14.24) with the EOS system, versus 19.38±12.37dGy/cm 2 (range, 4.77-81.75) with plain X-ray (P<10 -4 ). For BMI >40, mean radiation dose was 9.36±2.57dGy/cm 2 (range, 7.4-14.2) with the EOS system, versus 44.76±22.21 (range, 25.2-81.7) with plain X-ray. Radiation dose increased by 0.20dGy with each extra BMI point for the EOS system, versus 0.74dGy for plain X-ray. Magnification did not vary with patient weight using the EOS system, unlike plain X-ray, and radiation dose was 2.5-fold lower. 3, prospective case-control study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Image Segmentation, Registration, Compression, and Matching

    NASA Technical Reports Server (NTRS)

    Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina

    2011-01-01

    A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity/topology components of the generated models. The highly efficient triangular mesh compression compacts the connectivity information at the rate of 1.5-4 bits per vertex (on average for triangle meshes), while reducing the 3D geometry by 40-50 percent. Finally, taking into consideration the characteristics of 3D terrain data, and using the innovative, regularized binary decomposition mesh modeling, a multistage, pattern-drive modeling, and compression technique has been developed to provide an effective framework for compressing digital elevation model (DEM) surfaces, high-resolution aerial imagery, and other types of NASA data.

  16. Anterior segment angiography of the normal canine eye: a comparison between indocyanine green and sodium fluorescein.

    PubMed

    Pirie, C G; Alario, A

    2014-03-01

    The objective of this study was to assess and compare indocyanine green (IG) and sodium fluorescein (SF) angiographic findings in the normal canine anterior segment using a digital single lens reflex (dSLR) camera adaptor. Images were obtained from 10 brown-eyed Beagles, free of ocular and systemic disease. All animals received butorphanol (0.2 mg/kg IM), maropitant citrate (1.0 mg/kg SC) and diphenhydramine (2.0 mg/kg SC) 20 min prior to propofol (4 mg/kg IV bolus, 0.2 mg/kg/min continuous rate infusion). Standard color imaging was performed prior to the administration of 0.25% IG (1 mg/kg IV). Imaging was performed using a full spectrum dSLR camera, dSLR camera adaptor, camera lens (Canon 60 mm f/2.8 Macro) and an accessory flash. Images were obtained at a rate of 1/s immediately following IG bolus for 30 s, then at 1, 2, 3, 4 and 5 min. Ten minutes later, 10% SF (20 mg/kg IV) was administered. Imaging was repeated using the same adaptor system and imaging sequence protocol. Arterial, capillary and venous phases were identified during anterior segment IG angiography (ASIGA) and their time sequences were recorded. ASIGA offered improved visualization of the iris vasculature in heavily pigmented eyes compared to anterior segment SF angiography (ASSFA), since visualization of the vascular pattern during ASSFA was not possible due to pigment masking. Leakage of SF was noted in a total of six eyes. The use of IG and SF was not associated with any observed adverse events. The adaptor described here provides a cost-effective alternative to existing imaging systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe

    PubMed Central

    Nankivil, Derek; Waterman, Gar; LaRocca, Francesco; Keller, Brenton; Kuo, Anthony N.; Izatt, Joseph A.

    2015-01-01

    We describe the first handheld, swept source optical coherence tomography (SSOCT) system capable of imaging both the anterior and posterior segments of the eye in rapid succession. A single 2D microelectromechanical systems (MEMS) scanner was utilized for both imaging modes, and the optical paths for each imaging mode were optimized for their respective application using a combination of commercial and custom optics. The system has a working distance of 26.1 mm and a measured axial resolution of 8 μm (in air). In posterior segment mode, the design has a lateral resolution of 9 μm, 7.4 mm imaging depth range (in air), 4.9 mm 6dB fall-off range (in air), and peak sensitivity of 103 dB over a 22° field of view (FOV). In anterior segment mode, the design has a lateral resolution of 24 μm, imaging depth range of 7.4 mm (in air), 6dB fall-off range of 4.5 mm (in air), depth-of-focus of 3.6 mm, and a peak sensitivity of 99 dB over a 17.5 mm FOV. In addition, the probe includes a wide-field iris imaging system to simplify alignment. A fold mirror assembly actuated by a bi-stable rotary solenoid was used to switch between anterior and posterior segment imaging modes, and a miniature motorized translation stage was used to adjust the objective lens position to correct for patient refraction between −12.6 and + 9.9 D. The entire probe weighs less than 630 g with a form factor of 20.3 x 9.5 x 8.8 cm. Healthy volunteers were imaged to illustrate imaging performance. PMID:26601014

  18. Tracking initially unresolved thrusting objects in 3D using a single stationary optical sensor

    NASA Astrophysics Data System (ADS)

    Lu, Qin; Bar-Shalom, Yaakov; Willett, Peter; Granström, Karl; Ben-Dov, R.; Milgrom, B.

    2017-05-01

    This paper considers the problem of estimating the 3D states of a salvo of thrusting/ballistic endo-atmospheric objects using 2D Cartesian measurements from the focal plane array (FPA) of a single fixed optical sensor. Since the initial separations in the FPA are smaller than the resolution of the sensor, this results in merged measurements in the FPA, compounding the usual false-alarm and missed-detection uncertainty. We present a two-step methodology. First, we assume a Wiener process acceleration (WPA) model for the motion of the images of the projectiles in the optical sensor's FPA. We model the merged measurements with increased variance, and thence employ a multi-Bernoulli (MB) filter using the 2D measurements in the FPA. Second, using the set of associated measurements for each confirmed MB track, we formulate a parameter estimation problem, whose maximum likelihood estimate can be obtained via numerical search and can be used for impact point prediction. Simulation results illustrate the performance of the proposed method.

  19. Single organelle dynamics linked to 3D structure by correlative live-cell imaging and 3D electron microscopy.

    PubMed

    Fermie, Job; Liv, Nalan; Ten Brink, Corlinda; van Donselaar, Elly G; Müller, Wally H; Schieber, Nicole L; Schwab, Yannick; Gerritsen, Hans C; Klumperman, Judith

    2018-05-01

    Live-cell correlative light-electron microscopy (live-cell-CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3-dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB-SEM) in a modular live-cell-CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal-associated membrane protein 1-green fluorescent protein (LAMP-1-GFP), analyzed the dynamics of individual GFP-positive spots, and correlated these to their corresponding fine-architecture and immediate cellular environment. By FIB-SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB-SEM, which significantly reduces time required for image acquisition and data processing. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Multi-MHz laser-scanning single-cell fluorescence microscopy by spatiotemporally encoded virtual source array

    PubMed Central

    Wu, Jianglai; Tang, Anson H. L.; Mok, Aaron T. Y.; Yan, Wenwei; Chan, Godfrey C. F.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2017-01-01

    Apart from the spatial resolution enhancement, scaling of temporal resolution, equivalently the imaging throughput, of fluorescence microscopy is of equal importance in advancing cell biology and clinical diagnostics. Yet, this attribute has mostly been overlooked because of the inherent speed limitation of existing imaging strategies. To address the challenge, we employ an all-optical laser-scanning mechanism, enabled by an array of reconfigurable spatiotemporally-encoded virtual sources, to demonstrate ultrafast fluorescence microscopy at line-scan rate as high as 8 MHz. We show that this technique enables high-throughput single-cell microfluidic fluorescence imaging at 75,000 cells/second and high-speed cellular 2D dynamical imaging at 3,000 frames per second, outperforming the state-of-the-art high-speed cameras and the gold-standard laser scanning strategies. Together with its wide compatibility to the existing imaging modalities, this technology could empower new forms of high-throughput and high-speed biological fluorescence microscopy that was once challenged. PMID:28966855

  1. Fast imaging of live organisms with sculpted light sheets

    NASA Astrophysics Data System (ADS)

    Chmielewski, Aleksander K.; Kyrsting, Anders; Mahou, Pierre; Wayland, Matthew T.; Muresan, Leila; Evers, Jan Felix; Kaminski, Clemens F.

    2015-04-01

    Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed.

  2. Comparison of three-dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography

    DOE PAGES

    Hall, Elise M.; Thurow, Brian S.; Guildenbecher, Daniel R.

    2016-08-08

    Digital in-line holography (DIH) and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with DIH. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and DIH successfully quantify the 3D nature of these particle fields. Furthermore, this includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. Formore » the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1–2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. In contrast, plenoptic imaging allows for a simpler experimental configuration and, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments.« less

  3. Digital immunohistochemistry wizard: image analysis-assisted stereology tool to produce reference data set for calibration and quality control.

    PubMed

    Plancoulaine, Benoît; Laurinaviciene, Aida; Meskauskas, Raimundas; Baltrusaityte, Indra; Besusparis, Justinas; Herlin, Paulette; Laurinavicius, Arvydas

    2014-01-01

    Digital image analysis (DIA) enables better reproducibility of immunohistochemistry (IHC) studies. Nevertheless, accuracy of the DIA methods needs to be ensured, demanding production of reference data sets. We have reported on methodology to calibrate DIA for Ki67 IHC in breast cancer tissue based on reference data obtained by stereology grid count. To produce the reference data more efficiently, we propose digital IHC wizard generating initial cell marks to be verified by experts. Digital images of proliferation marker Ki67 IHC from 158 patients (one tissue microarray spot per patient) with an invasive ductal carcinoma of the breast were used. Manual data (mD) were obtained by marking Ki67-positive and negative tumour cells, using a stereological method for 2D object enumeration. DIA was used as an initial step in stereology grid count to generate the digital data (dD) marks by Aperio Genie and Nuclear algorithms. The dD were collected into XML files from the DIA markup images and overlaid on the original spots along with the stereology grid. The expert correction of the dD marks resulted in corrected data (cD). The percentages of Ki67 positive tumour cells per spot in the mD, dD, and cD sets were compared by single linear regression analysis. Efficiency of cD production was estimated based on manual editing effort. The percentage of Ki67-positive tumor cells was in very good agreement in the mD, dD, and cD sets: regression of cD from dD (R2=0.92) reflects the impact of the expert editing the dD as well as accuracy of the DIA used; regression of the cD from the mD (R2=0.94) represents the consistency of the DIA-assisted ground truth (cD) with the manual procedure. Nevertheless, the accuracy of detection of individual tumour cells was much lower: in average, 18 and 219 marks per spot were edited due to the Genie and Nuclear algorithm errors, respectively. The DIA-assisted cD production in our experiment saved approximately 2/3 of manual marking. Digital IHC wizard enabled DIA-assisted stereology to produce reference data in a consistent and efficient way. It can provide quality control measure for appraising accuracy of the DIA steps.

  4. Digital immunohistochemistry wizard: image analysis-assisted stereology tool to produce reference data set for calibration and quality control

    PubMed Central

    2014-01-01

    Background Digital image analysis (DIA) enables better reproducibility of immunohistochemistry (IHC) studies. Nevertheless, accuracy of the DIA methods needs to be ensured, demanding production of reference data sets. We have reported on methodology to calibrate DIA for Ki67 IHC in breast cancer tissue based on reference data obtained by stereology grid count. To produce the reference data more efficiently, we propose digital IHC wizard generating initial cell marks to be verified by experts. Methods Digital images of proliferation marker Ki67 IHC from 158 patients (one tissue microarray spot per patient) with an invasive ductal carcinoma of the breast were used. Manual data (mD) were obtained by marking Ki67-positive and negative tumour cells, using a stereological method for 2D object enumeration. DIA was used as an initial step in stereology grid count to generate the digital data (dD) marks by Aperio Genie and Nuclear algorithms. The dD were collected into XML files from the DIA markup images and overlaid on the original spots along with the stereology grid. The expert correction of the dD marks resulted in corrected data (cD). The percentages of Ki67 positive tumour cells per spot in the mD, dD, and cD sets were compared by single linear regression analysis. Efficiency of cD production was estimated based on manual editing effort. Results The percentage of Ki67-positive tumor cells was in very good agreement in the mD, dD, and cD sets: regression of cD from dD (R2=0.92) reflects the impact of the expert editing the dD as well as accuracy of the DIA used; regression of the cD from the mD (R2=0.94) represents the consistency of the DIA-assisted ground truth (cD) with the manual procedure. Nevertheless, the accuracy of detection of individual tumour cells was much lower: in average, 18 and 219 marks per spot were edited due to the Genie and Nuclear algorithm errors, respectively. The DIA-assisted cD production in our experiment saved approximately 2/3 of manual marking. Conclusions Digital IHC wizard enabled DIA-assisted stereology to produce reference data in a consistent and efficient way. It can provide quality control measure for appraising accuracy of the DIA steps. PMID:25565221

  5. Large area planar stanene epitaxially grown on Ag(1 1 1)

    NASA Astrophysics Data System (ADS)

    Yuhara, Junji; Fujii, Yuya; Nishino, Kazuki; Isobe, Naoki; Nakatake, Masashi; Xian, Lede; Rubio, Angel; Le Lay, Guy

    2018-04-01

    Artificial post-graphene elemental 2D materials have received much attention recently. Especially, stanene, the tin analogue of graphene, is expected to be a robust 2D topological insulator, even above room temperature. We have grown epitaxial 2D stanene on a Ag(1 1 1) single crystal template and determined its crystalline structure synergetically by scanning tunneling microscopy, high-resolution synchrotron radiation photoemission spectroscopy, and advanced first principles calculations. From the STM images, we show that stanene forms a nearly planar structure in large domains. A detailed core-level spectroscopy analysis as well as DFT calculations reveal that the stanene sheet lays over an ordered 2D Ag2Sn surface alloy, but not directly on a bulk-terminated Ag(1 1 1) surface. The electronic structure exhibits a characteristic 2D band with parabolic dispersion due to the non-negligible interaction with the underlying surface alloy.

  6. Real time 3D visualization of intraoperative organ deformations using structured dictionary.

    PubMed

    Wang, Dan; Tewfik, Ahmed H

    2012-04-01

    Restricted visualization of the surgical field is one of the most critical challenges for minimally invasive surgery (MIS). Current intraoperative visualization systems are promising. However, they can hardly meet the requirements of high resolution and real time 3D visualization of the surgical scene to support the recognition of anatomic structures for safe MIS procedures. In this paper, we present a new approach for real time 3D visualization of organ deformations based on optical imaging patches with limited field-of-view and a single preoperative scan of magnetic resonance imaging (MRI) or computed tomography (CT). The idea for reconstruction is motivated by our empirical observation that the spherical harmonic coefficients corresponding to distorted surfaces of a given organ lie in lower dimensional subspaces in a structured dictionary that can be learned from a set of representative training surfaces. We provide both theoretical and practical designs for achieving these goals. Specifically, we discuss details about the selection of limited optical views and the registration of partial optical images with a single preoperative MRI/CT scan. The design proposed in this paper is evaluated with both finite element modeling data and ex vivo experiments. The ex vivo test is conducted on fresh porcine kidneys using 3D MRI scans with 1.2 mm resolution and a portable laser scanner with an accuracy of 0.13 mm. Results show that the proposed method achieves a sub-3 mm spatial resolution in terms of Hausdorff distance when using only one preoperative MRI scan and the optical patch from the single-sided view of the kidney. The reconstruction frame rate is between 10 frames/s and 39 frames/s depending on the complexity of the test model.

  7. Next Generation Image-Based Phenotyping of Root System Architecture

    NASA Astrophysics Data System (ADS)

    Davis, T. W.; Shaw, N. M.; Cheng, H.; Larson, B. G.; Craft, E. J.; Shaff, J. E.; Schneider, D. J.; Piñeros, M. A.; Kochian, L. V.

    2016-12-01

    The development of the Plant Root Imaging and Data Acquisition (PRIDA) hardware/software system enables researchers to collect digital images, along with all the relevant experimental details, of a range of hydroponically grown agricultural crop roots for 2D and 3D trait analysis. Previous efforts of image-based root phenotyping focused on young cereals, such as rice; however, there is a growing need to measure both older and larger root systems, such as those of maize and sorghum, to improve our understanding of the underlying genetics that control favorable rooting traits for plant breeding programs to combat the agricultural risks presented by climate change. Therefore, a larger imaging apparatus has been prototyped for capturing 3D root architecture with an adaptive control system and innovative plant root growth media that retains three-dimensional root architectural features. New publicly available multi-platform software has been released with considerations for both high throughput (e.g., 3D imaging of a single root system in under ten minutes) and high portability (e.g., support for the Raspberry Pi computer). The software features unified data collection, management, exploration and preservation for continued trait and genetics analysis of root system architecture. The new system makes data acquisition efficient and includes features that address the needs of researchers and technicians, such as reduced imaging time, semi-automated camera calibration with uncertainty characterization, and safe storage of the critical experimental data.

  8. Optimizing Imaging Conditions for Demanding Multi-Color Super Resolution Localization Microscopy

    PubMed Central

    Nahidiazar, Leila; Agronskaia, Alexandra V.; Broertjes, Jorrit; van den Broek, Bram; Jalink, Kees

    2016-01-01

    Single Molecule Localization super-resolution Microscopy (SMLM) has become a powerful tool to study cellular architecture at the nanometer scale. In SMLM, single fluorophore labels are made to repeatedly switch on and off (“blink”), and their exact locations are determined by mathematically finding the centers of individual blinks. The image quality obtainable by SMLM critically depends on efficacy of blinking (brightness, fraction of molecules in the on-state) and on preparation longevity and labeling density. Recent work has identified several combinations of bright dyes and imaging buffers that work well together. Unfortunately, different dyes blink optimally in different imaging buffers, and acquisition of good quality 2- and 3-color images has therefore remained challenging. In this study we describe a new imaging buffer, OxEA, that supports 3-color imaging of the popular Alexa dyes. We also describe incremental improvements in preparation technique that significantly decrease lateral- and axial drift, as well as increase preparation longevity. We show that these improvements allow us to collect very large series of images from the same cell, enabling image stitching, extended 3D imaging as well as multi-color recording. PMID:27391487

  9. Report on New Mission Concept Study: Stereo X-Ray Corona Imager Mission

    NASA Technical Reports Server (NTRS)

    Liewer, Paulett C.; Davis, John M.; DeJong, E. M.; Gary, G. Allen; Klimchuk, James A.; Reinert, R. P.

    1998-01-01

    Studies of the three-dimensional structure and dynamics of the solar corona have been severely limited by the constraint of single viewpoint observations. The Stereo X-Ray Coronal Imager (SXCI) mission will send a single instrument, an X-ray telescope, into deep space expressly to record stereoscopic images of the solar corona. The SXCI spacecraft will be inserted into a approximately 1 AU heliocentric orbit leading Earth by approximately 25 deg at the end of nine months. The SXCI X-ray telescope forms one element of a stereo pair, the second element being an identical X-ray telescope in Earth orbit placed there as part of the NOAA GOES program. X-ray emission is a powerful diagnostic of the corona and its magnetic fields, and three dimensional information on the coronal magnetic structure would be obtained by combining the data from the two X-ray telescopes. This information can be used to address the major solar physics questions of (1) what causes explosive coronal events such as coronal mass ejections (CMEs), eruptive flares and prominence eruptions and (2) what causes the transient heating of coronal loops. Stereoscopic views of the optically thin corona will resolve some ambiguities inherent in single line-of-sight observations. Triangulation gives 3D solar coordinates of features which can be seen in the simultaneous images from both telescopes. As part of this study, tools were developed for determining the 3D geometry of coronal features using triangulation. Advanced technologies for visualization and analysis of stereo images were tested. Results of mission and spacecraft studies are also reported.

  10. Advanced flow MRI: emerging techniques and applications

    PubMed Central

    Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A. J.; Robinson, J. D.; Rigsby, C. K.

    2016-01-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  11. Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas.

    PubMed

    Boyarsky, Michael; Sleasman, Timothy; Pulido-Mancera, Laura; Diebold, Aaron V; Imani, Mohammadreza F; Smith, David R

    2018-05-20

    Through aperture synthesis, an electrically small antenna can be used to form a high-resolution imaging system capable of reconstructing three-dimensional (3D) scenes. However, the large spectral bandwidth typically required in synthetic aperture radar systems to resolve objects in range often requires costly and complex RF components. We present here an alternative approach based on a hybrid imaging system that combines a dynamically reconfigurable aperture with synthetic aperture techniques, demonstrating the capability to resolve objects in three dimensions (3D), with measurements taken at a single frequency. At the core of our imaging system are two metasurface apertures, both of which consist of a linear array of metamaterial irises that couple to a common waveguide feed. Each metamaterial iris has integrated within it a diode that can be biased so as to switch the element on (radiating) or off (non-radiating), such that the metasurface antenna can produce distinct radiation profiles corresponding to different on/off patterns of the metamaterial element array. The electrically large size of the metasurface apertures enables resolution in range and one cross-range dimension, while aperture synthesis provides resolution in the other cross-range dimension. The demonstrated imaging capabilities of this system represent a step forward in the development of low-cost, high-performance 3D microwave imaging systems.

  12. 4D multiple-cathode ultrafast electron microscopy

    PubMed Central

    Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H.

    2014-01-01

    Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging. PMID:25006261

  13. 4D multiple-cathode ultrafast electron microscopy.

    PubMed

    Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H

    2014-07-22

    Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging.

  14. Dual energy exposure control (DEEC) for computed tomography: algorithm and simulation study.

    PubMed

    Stenner, Philip; Kachelriess, Marc

    2008-11-01

    DECT means acquiring the same object at two different energies, respectively two different tube voltages U1 and U2. The raw data q1 and q2 undergo a decomposition process of type p = p(q1,q2). The raw data p are reconstructed to obtain monochromatic images of the attenuation mu, of the object density rho, or of a specific material distribution. Recent advances in DECT focus on noise reduction techniques [S. Richard and J. H. Siewerdsen, Med. Phys. 35(2), 586-600 (2008)] and enable high performance DECT such as lung nodule detection [Shkumat et al., Med. Phys. 35(2), 629-632 (2008)]. Given p and a raw data-based projection-wise patient dose estimation D(alpha) the authors determine the optimal tube current curves I1(alpha) and I2(alpha), with alpha being the view angle, which minimizes image noise for a given patient dose level. DEEC can perform online; I1(alpha) and I2(alpha) can be determined during the scan. Simulation studies using semianthropomorphic phantom data were carried out. In particular, functions p that generate mu-images and density images were evaluated. Image quality was compared to standard scans at U0=120 kV (clinical CT) and U0=45 kV (micro-CT) that were taken at the same dose level (D0=D1 + D2) and identical spatial resolution. Appropriate choice of p(q1, q2) allows to obtain mu-images that show fewer artifacts and yield image noise levels comparable to the noise of the standard scan. The authors compared the standard scan to mu-images at 70 keV, which is the effective energy used in clinical CT, and found optimal results with mu-images at 25 keV for micro-CT. Nonoptimal choice of the decomposition function will, however, significantly increase image noise. In particular mu-images at 511 keV, as needed for PET/CT attenuation correction, exhibit more than twice as much image noise as the standard scan. With DEEC, which guarantees best dose usage possible, monochromatic images are generated with only slightly increased noise levels at the same dose compared to a standard scan. The benefit of significantly decreased artifacts appears to allow using DEEC-generated monochromatic images in daily routine. Furthermore, DEEC is not restricted to DECT and the inherent tube current modulation algorithm may also be applied to single energy CT.

  15. Dual energy exposure control (DEEC) for computed tomography: Algorithm and simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenner, Philip; Kachelriess, Marc

    2008-11-15

    DECT means acquiring the same object at two different energies, respectively two different tube voltages U{sub 1} and U{sub 2}. The raw data q{sub 1} and q{sub 2} undergo a decomposition process of type p=p(q{sub 1},q{sub 2}). The raw data p are reconstructed to obtain monochromatic images of the attenuation {mu}, of the object density {rho}, or of a specific material distribution. Recent advances in DECT focus on noise reduction techniques [S. Richard and J. H. Siewerdsen, Med. Phys. 35(2), 586-600 (2008)] and enable high performance DECT such as lung nodule detection [Shkumat et al., Med. Phys. 35(2), 629-632 (2008)].more » Given p and a raw data-based projection-wise patient dose estimation D({alpha}) the authors determine the optimal tube current curves I{sub 1}({alpha}) and I{sub 2}({alpha}), with {alpha} being the view angle, which minimizes image noise for a given patient dose level. DEEC can perform online; I{sub 1}({alpha}) and I{sub 2}({alpha}) can be determined during the scan. Simulation studies using semianthropomorphic phantom data were carried out. In particular, functions p that generate {mu}-images and density images were evaluated. Image quality was compared to standard scans at U{sub 0}=120 kV (clinical CT) and U{sub 0}=45 kV (micro-CT) that were taken at the same dose level (D{sub 0}=D{sub 1}+D{sub 2}) and identical spatial resolution. Appropriate choice of p(q{sub 1},q{sub 2}) allows to obtain {mu}-images that show fewer artifacts and yield image noise levels comparable to the noise of the standard scan. The authors compared the standard scan to {mu}-images at 70 keV, which is the effective energy used in clinical CT, and found optimal results with {mu}-images at 25 keV for micro-CT. Nonoptimal choice of the decomposition function will, however, significantly increase image noise. In particular {mu}-images at 511 keV, as needed for PET/CT attenuation correction, exhibit more than twice as much image noise as the standard scan. With DEEC, which guarantees best dose usage possible, monochromatic images are generated with only slightly increased noise levels at the same dose compared to a standard scan. The benefit of significantly decreased artifacts appears to allow using DEEC-generated monochromatic images in daily routine. Furthermore, DEEC is not restricted to DECT and the inherent tube current modulation algorithm may also be applied to single energy CT.« less

  16. Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs).

    PubMed

    Jaramillo, Carlos; Valenti, Roberto G; Guo, Ling; Xiao, Jizhong

    2016-02-06

    We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor's projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances.

  17. Object detection in natural backgrounds predicted by discrimination performance and models

    NASA Technical Reports Server (NTRS)

    Rohaly, A. M.; Ahumada, A. J. Jr; Watson, A. B.

    1997-01-01

    Many models of visual performance predict image discriminability, the visibility of the difference between a pair of images. We compared the ability of three image discrimination models to predict the detectability of objects embedded in natural backgrounds. The three models were: a multiple channel Cortex transform model with within-channel masking; a single channel contrast sensitivity filter model; and a digital image difference metric. Each model used a Minkowski distance metric (generalized vector magnitude) to summate absolute differences between the background and object plus background images. For each model, this summation was implemented with three different exponents: 2, 4 and infinity. In addition, each combination of model and summation exponent was implemented with and without a simple contrast gain factor. The model outputs were compared to measures of object detectability obtained from 19 observers. Among the models without the contrast gain factor, the multiple channel model with a summation exponent of 4 performed best, predicting the pattern of observer d's with an RMS error of 2.3 dB. The contrast gain factor improved the predictions of all three models for all three exponents. With the factor, the best exponent was 4 for all three models, and their prediction errors were near 1 dB. These results demonstrate that image discrimination models can predict the relative detectability of objects in natural scenes.

  18. Real-time ultrasound angiography using superharmonic dual-frequency (2.25MHz/30MHz) cylindrical array: In vitro study.

    PubMed

    Wang, Zhuochen; Martin, K Heath; Dayton, Paul A; Jiang, Xiaoning

    2018-01-01

    Recent studies suggest that dual-frequency intravascular ultrasound (IVUS) transducers allow detection of superharmonic bubble signatures, enabling acoustic angiography for microvascular and molecular imaging. In this paper, a dual-frequency IVUS cylindrical array transducer was developed for real-time superharmonic imaging. A reduced form-factor lateral mode transmitter (2.25MHz) was used to excite microbubbles effectively at 782kPa with single-cycle excitation while still maintaining the small size and low profile (5Fr) (3Fr=1mm) for intravascular imaging applications. Superharmonic microbubble responses generated in simulated microvessels were captured by the high frequency receiver (30MHz). The axial and lateral full-width half-maximum of microbubbles in a 200-μm-diameter cellulose tube were measured to be 162μm and 1039μm, respectively, with a contrast-to-noise ratio (CNR) of 16.6dB. Compared to our previously reported single-element IVUS transducers, this IVUS array design achieves a higher CNR (16.6dBvs 11dB) and improved axial resolution (162μmvs 616μm). The results show that this dual-frequency IVUS array transducer with a lateral-mode transmitter can fulfill the native design requirement (∼3-5Fr) for acoustic angiography by generating nonlinear microbubble responses as well as detecting their superharmonic responses in a 5Fr form factor. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Temporary Hearing Threshold Shift in Healthy Volunteers with Hearing Protection Caused by Acoustic Noise Exposure during 3-T Multisequence MR Neuroimaging.

    PubMed

    Jin, Chao; Li, Huan; Li, Xianjun; Wang, Miaomiao; Liu, Congcong; Guo, Jianxin; Yang, Jian

    2018-02-01

    Purpose To determine whether a single 51-minute exposure to acoustic noise during 3-T multisequence magnetic resonance (MR) neuroimaging could affect the hearing threshold of healthy adults with earplugs and sponge mats as hearing protection. Materials and Methods With earplugs and motion-refraining sponge mats as hearing protection, 26 healthy young adults underwent 3-T MR neuroimaging imaging that included T1-weighted three-dimensional gradient-echo sequence, T2-weighted fast spin-echo sequence, diffusion-tensor imaging, diffusion-kurtosis imaging, T2*-weighted three-dimensional multiecho gradient-echo sequence, and blood oxygen level-dependent imaging. Automated auditory brainstem response (ABR) was used to measure the hearing thresholds within 24 hours before, within 20 minutes after, and 25 days after the MR examination. One-way repeated-measure analysis of variance with Bonferroni adjustment was used to compare automated ABR results among the three tests and partial η 2 (η p 2 ) was reported as a measure of effect size. Results Automated ABR results showed significantly increased mean threshold shift of 5.0 dB ± 8.1 (standard deviation) (left ear: 4.8 dB ± 9.2 [95% confidence interval: 1.09, 8.53], η p 2 = 0.221, P = .013; right ear: 5.2 dB ± 6.9 [95% confidence interval: 2.36, 8.02], η p 2 = 0.364, P = .001) immediately after the MR examination compared with the baseline study. This shift is below the temporary threshold shift of 40-50 dB that is associated with cochlea nerve changes. Automated ABR obtained at day 25 after MR imaging showed no significant differences from baseline (left ear: -2.3 dB ± 8.6 [95% confidence interval: -5.79, 1.78], η p 2 = 0.069, P = .185; right ear: 0.4 dB ± 7.3 [95% confidence interval: -3.35, 2.58], η p 2 = 0.003, P = .791). Conclusion A 3-T MR neuroimaging examination with the acoustic noise at equivalent sound pressure level of 103.5-111.3 dBA lasting 51 minutes can cause temporary hearing threshold shift in healthy volunteers with hearing protection. © RSNA, 2017.

  20. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy.

    PubMed

    Gualda, Emilio J; Simão, Daniel; Pinto, Catarina; Alves, Paula M; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment.

  1. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    PubMed Central

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  2. 3D-2D registration in endovascular image-guided surgery: evaluation of state-of-the-art methods on cerebral angiograms.

    PubMed

    Mitrović, Uroš; Likar, Boštjan; Pernuš, Franjo; Špiclin, Žiga

    2018-02-01

    Image guidance for minimally invasive surgery is based on spatial co-registration and fusion of 3D pre-interventional images and treatment plans with the 2D live intra-interventional images. The spatial co-registration or 3D-2D registration is the key enabling technology; however, the performance of state-of-the-art automated methods is rather unclear as they have not been assessed under the same test conditions. Herein we perform a quantitative and comparative evaluation of ten state-of-the-art methods for 3D-2D registration on a public dataset of clinical angiograms. Image database consisted of 3D and 2D angiograms of 25 patients undergoing treatment for cerebral aneurysms or arteriovenous malformations. On each of the datasets, highly accurate "gold-standard" registrations of 3D and 2D images were established based on patient-attached fiducial markers. The database was used to rigorously evaluate ten state-of-the-art 3D-2D registration methods, namely two intensity-, two gradient-, three feature-based and three hybrid methods, both for registration of 3D pre-interventional image to monoplane or biplane 2D images. Intensity-based methods were most accurate in all tests (0.3 mm). One of the hybrid methods was most robust with 98.75% of successful registrations (SR) and capture range of 18 mm for registrations of 3D to biplane 2D angiograms. In general, registration accuracy was similar whether registration of 3D image was performed onto mono- or biplanar 2D images; however, the SR was substantially lower in case of 3D to monoplane 2D registration. Two feature-based and two hybrid methods had clinically feasible execution times in the order of a second. Performance of methods seems to fall below expectations in terms of robustness in case of registration of 3D to monoplane 2D images, while translation into clinical image guidance systems seems readily feasible for methods that perform registration of the 3D pre-interventional image onto biplanar intra-interventional 2D images.

  3. Imaging of 2-D multichannel land seismic data using an iterative inversion-migration scheme, Naga Thrust and Fold Belt, Assam, India

    NASA Astrophysics Data System (ADS)

    Jaiswal, Priyank; Dasgupta, Rahul

    2010-05-01

    We demonstrate that imaging of 2-D multichannel land seismic data can be effectively accomplished by a combination of reflection traveltime tomography and pre-stack depth migration (PSDM); we refer to the combined process as "the unified imaging". The unified imaging comprises cyclic runs of joint reflection and direct arrival inversion and pre-stack depth migration. From one cycle to another, both the inversion and the migration provide mutual feedbacks that are guided by the geological interpretation. The unified imaging is implemented in two broad stages. The first stage is similar to the conventional imaging except that it involves a significant use of velocity model from the inversion of the direct arrivals for both datuming and stacking velocity analysis. The first stage ends with an initial interval velocity model (from the stacking velocity analysis) and a corresponding depth migrated image. The second stage updates the velocity model and the depth image from the first stage in a cyclic manner; a single cycle comprises a single run of reflection traveltime inversion followed by PSDM. Interfaces used in the inversion are interpretations of the PSDM image in the previous cycle and the velocity model used in PSDM is from the joint inversion in the current cycle. Additionally in every cycle interpreted horizons in the stacked data are inverted as zero-offset reflections for constraining the interfaces; the velocity model is maintained stationary for the zero-offset inversion. A congruency factor, j, which measures the discrepancy between interfaces from the interpretation of the PSDM image and their corresponding counterparts from the inversion of the zero-offset reflections within assigned uncertainties, is computed in every cycle. A value of unity for jindicates that images from both the inversion and the migration are equivalent; at this point the unified imaging is said to have converged and is halted. We apply the unified imaging to 2-D multichannel seismic data from the Naga Thrust and Fold Belt (NTFB), India, were several exploratory wells in the last decade targeting sub-thrust leads in the footwall have failed. This failure is speculatively due to incorrect depth images which are in turn attributed to incorrect velocity models that are developed using conventional methods. The 2-D seismic data in this study is acquired perpendicular to the trend of the NTFB where the outcropping hanging wall has a topographic culmination. The acquisition style is split-spread with 30 m shot and receiver spacing and a nominal fold of 90. The data are recorded with a sample interval of 2 ms. Overall the data have a moderate signal-to-noise ratio and a broad frequency bandwidth of 8-80 Hz. The seismic line contains the failed exploratory well in the central part. The final results from unified imaging (both the depth image and the corresponding velocity model) suggest presence of a triangle zone, which was previously undiscovered. Conventional imaging had falsely portrayed the triangle zone as structural high which was interpreted as an anticline. As a result, the exploratory well, meant to target the anticline, met with pressure changes which were neither expected nor explained. The unified imaging results not only explain the observations in the well but also reveal new leads in the region. The velocity model from unified imaging was also found to be adequate for frequency-domain full-waveform imaging of the hanging wall. Results from waveform inversion are further corroborated by the geological interpretation of the exploratory well.

  4. Single-photon Coulomb explosion of methanol using broad bandwidth ultrafast EUV pulses.

    PubMed

    Luzon, Itamar; Jagtap, Krishna; Livshits, Ester; Lioubashevski, Oleg; Baer, Roi; Strasser, Daniel

    2017-05-31

    Single-photon Coulomb explosion of methanol is instigated using the broad bandwidth pulse achieved through high-order harmonics generation. Using 3D coincidence fragment imaging of one molecule at a time, the kinetic energy release (KER) and angular distributions of the products are measured in different Coulomb explosion (CE) channels. Two-body CE channels breaking either the C-O or the C-H bonds are described as well as a proton migration channel forming H 2 O + , which is shown to exhibit higher KER. The results are compared to intense-field Coulomb explosion measurements in the literature. The interpretation of broad bandwidth single-photon CE data is discussed and supported by ab initio calculations of the predominant C-O bond breaking CE channel. We discuss the importance of these findings for achieving time resolved imaging of ultrafast dynamics.

  5. Fast modular data acquisition system for GEM-2D detector

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Byszuk, Adrian; Wojeński, A.; Zienkiewicz, P.; Czarski, T.; Chernyshova, M.; Poźniak, K.; Rzadkiewicz, J.; Zabolotny, W.; Juszczyk, B.

    2014-11-01

    A novel approach to two dimensional Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators and analogue FIFOs, the method developed uses simulta- neously sampling high speed ADCs with fast hybrid integrator and advanced FPGA-based processing logic to estimate the energy of every single photon. Such a method is applied to every GEM strip / pixel signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, 2D imaging for plasma tomography and all these applications where energy resolution of every single photon is required. For the purpose of the detector readout, a novel, highly modular and extendable conception of the measurement platform was developed. It is evolution of already deployed measurement system for JET Spectrometer.

  6. Vertically oriented metamaterial broadband linear polariser

    DOE PAGES

    Campione, Salvatore; Burckel, David Bruce

    2018-03-14

    Control and manipulation of polarization is an important topic for imaging and light matter interactions. In the infrared regime, the large wavelengths make wire grid polarizers a viable option, as it is possible to create periodic arrays of metallic wires at that scale. The recent advent of metamaterials has spurred an increase in non-traditional polarizer motifs centred around more complicated repeat units, which potentially provide more functionality. In this paper we explore the use of two-dimensional (2D) arrays of single and back-to-back vertically oriented cross dipoles arranged in a cubic in-plane silicon matrix. Here, we show that both single andmore » back-to-back versions have higher rejection ratios and larger bandwidths than either wire grid polarizers or 2D arrays of linear dipoles.« less

  7. Four-Dimensional Magnetic Resonance Imaging Using Axial Body Area as Respiratory Surrogate: Initial Patient Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Juan; School of Information Science and Engineering, Shandong University, Jinan, Shandong; Cai, Jing

    Purpose: To evaluate the feasibility of a retrospective binning technique for 4-dimensional magnetic resonance imaging (4D-MRI) using body area (BA) as a respiratory surrogate. Methods and Materials: Seven patients with hepatocellular carcinoma (4 of 7) or liver metastases (3 of 7) were enrolled in an institutional review board-approved prospective study. All patients were simulated with both computed tomography (CT) and MRI to acquire 3-dimensinal and 4D images for treatment planning. Multiple-slice multiple-phase cine-MR images were acquired in the axial plane for 4D-MRI reconstruction. Image acquisition time per slice was set to 10-15 seconds. Single-slice 2-dimensinal cine-MR images were also acquiredmore » across the center of the tumor in orthogonal planes. Tumor motion trajectories from 4D-MRI, cine-MRI, and 4D-CT were analyzed in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions, respectively. Their correlation coefficients (CC) and differences in tumor motion amplitude were determined. Tumor-to-liver contrast-to-noise ratio (CNR) was measured and compared between 4D-CT, 4D-MRI, and conventional T2-weighted fast spin echo MRI. Results: The means (±standard deviations) of CC comparing 4D-MRI with cine-MRI were 0.97 ± 0.03, 0.97 ± 0.02, and 0.99 ± 0.04 in SI, AP, and ML directions, respectively. The mean differences were 0.61 ± 0.17 mm, 0.32 ± 0.17 mm, and 0.14 ± 0.06 mm in SI, AP, and ML directions, respectively. The means of CC comparing 4D-MRI and 4D-CT were 0.95 ± 0.02, 0.94 ± 0.02, and 0.96 ± 0.02 in SI, AP, and ML directions, respectively. The mean differences were 0.74 ± 0.02 mm, 0.33 ± 0.13 mm, and 0.18 ± 0.07 mm in SI, AP, and ML directions, respectively. The mean tumor-to-tissue CNRs were 2.94 ± 1.51, 19.44 ± 14.63, and 39.47 ± 20.81 in 4D-CT, 4D-MRI, and T2-weighted MRI, respectively. Conclusions: The preliminary evaluation of our 4D-MRI technique results in oncologic patients demonstrates its potential usefulness to accurately measure tumor respiratory motion with improved tumor CNR compared with 4D-CT.« less

  8. Single-camera stereo-digital image correlation with a four-mirror adapter: optimized design and validation

    NASA Astrophysics Data System (ADS)

    Yu, Liping; Pan, Bing

    2016-12-01

    A low-cost, easy-to-implement but practical single-camera stereo-digital image correlation (DIC) system using a four-mirror adapter is established for accurate shape and three-dimensional (3D) deformation measurements. The mirrors assisted pseudo-stereo imaging system can convert a single camera into two virtual cameras, which view a specimen from different angles and record the surface images of the test object onto two halves of the camera sensor. To enable deformation measurement in non-laboratory conditions or extreme high temperature environments, an active imaging optical design, combining an actively illuminated monochromatic source with a coupled band-pass optical filter, is compactly integrated to the pseudo-stereo DIC system. The optical design, basic principles and implementation procedures of the established system for 3D profile and deformation measurements are described in detail. The effectiveness and accuracy of the established system are verified by measuring the profile of a regular cylinder surface and displacements of a translated planar plate. As an application example, the established system is used to determine the tensile strains and Poisson's ratio of a composite solid propellant specimen during stress relaxation test. Since the established single-camera stereo-DIC system only needs a single camera and presents strong robustness against variations in ambient light or the thermal radiation of a hot object, it demonstrates great potential in determining transient deformation in non-laboratory or high-temperature environments with the aid of a single high-speed camera.

  9. High Frequency Ultrasound Array Designed for Ultrasound Guided Breast Biopsy

    PubMed Central

    Cummins, Thomas; Eliahoo, Payam; Shung, K. Kirk

    2016-01-01

    This paper describes the development of a miniaturized high frequency linear array that can be integrated within a core biopsy needle to improve tissue sampling accuracy during breast cancer biopsy procedures. The 64 element linear array has an element width of 14 μm, kerf width of 6 μm, element length of 1 mm and element thickness of 24 μm. The 2–2 array composite was fabricated using deep reactive ion etching of PMN-PT single crystal material. The array composite fabrication process as well as a novel high density electrical interconnect solution are presented and discussed. Array performance measurements show that the array had a center frequency and fractional bandwidth (−6 dB) of 59.1 MHz and 29.4%, respectively. Insertion loss and adjacent element cross talk at the center frequency were −41.0 dB and −23.7 dB, respectively. A B-mode image of a tungsten wire target phantom was captured using a synthetic aperture imaging system and the imaging test results demonstrate axial and lateral resolutions of 33.2 μm and 115.6 um, respectively. PMID:27046895

  10. Viewing experience and naturalness of 3D images

    NASA Astrophysics Data System (ADS)

    Seuntiëns, Pieter J.; Heynderickx, Ingrid E.; IJsselsteijn, Wijnand A.; van den Avoort, Paul M. J.; Berentsen, Jelle; Dalm, Iwan J.; Lambooij, Marc T.; Oosting, Willem

    2005-11-01

    The term 'image quality' is often used to measure the performance of an imaging system. Recent research showed however that image quality may not be the most appropriate term to capture the evaluative processes associated with experiencing 3D images. The added value of depth in 3D images is clearly recognized when viewers judge image quality of unimpaired 3D images against their 2D counterparts. However, when viewers are asked to rate image quality of impaired 2D and 3D images, the image quality results for both 2D and 3D images are mainly determined by the introduced artefacts, and the addition of depth in the 3D images is hardly accounted for. In this experiment we applied and tested the more general evaluative concepts of 'naturalness' and 'viewing experience'. It was hypothesized that these concepts would better reflect the added value of depth in 3D images. Four scenes were used varying in dimension (2D and 3D) and noise level (6 levels of white gaussian noise). Results showed that both viewing experience and naturalness were rated higher in 3D than in 2D when the same noise level was applied. Thus, the added value of depth is clearly demonstrated when the concepts of viewing experience and naturalness are being evaluated. The added value of 3D over 2D, expressed in noise level, was 2 dB for viewing experience and 4 dB for naturalness, indicating that naturalness appears the more sensitive evaluative concept for demonstrating the psychological impact of 3D displays.

  11. Three-dimensional imaging of nanoscale materials by using coherent x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Jianwei

    X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-raymore » diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 A resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.« less

  12. SU-D-BRA-03: Analysis of Systematic Errors with 2D/3D Image Registration for Target Localization and Treatment Delivery in Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H; Chetty, I; Wen, N

    Purpose: Determine systematic deviations between 2D/3D and 3D/3D image registrations with six degrees of freedom (6DOF) for various imaging modalities and registration algorithms on the Varian Edge Linac. Methods: The 6DOF systematic errors were assessed by comparing automated 2D/3D (kV/MV vs. CT) with 3D/3D (CBCT vs. CT) image registrations from different imaging pairs, CT slice thicknesses, couch angles, similarity measures, etc., using a Rando head and a pelvic phantom. The 2D/3D image registration accuracy was evaluated at different treatment sites (intra-cranial and extra-cranial) by statistically analyzing 2D/3D pre-treatment verification against 3D/3D localization of 192 Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy treatmentmore » fractions for 88 patients. Results: The systematic errors of 2D/3D image registration using kV-kV, MV-kV and MV-MV image pairs using 0.8 mm slice thickness CT images were within 0.3 mm and 0.3° for translations and rotations with a 95% confidence interval (CI). No significant difference between 2D/3D and 3D/3D image registrations (P>0.05) was observed for target localization at various CT slice thicknesses ranging from 0.8 to 3 mm. Couch angles (30, 45, 60 degree) did not impact the accuracy of 2D/3D image registration. Using pattern intensity with content image filtering was recommended for 2D/3D image registration to achieve the best accuracy. For the patient study, translational error was within 2 mm and rotational error was within 0.6 degrees in terms of 95% CI for 2D/3D image registration. For intra-cranial sites, means and std. deviations of translational errors were −0.2±0.7, 0.04±0.5, 0.1±0.4 mm for LNG, LAT, VRT directions, respectively. For extra-cranial sites, means and std. deviations of translational errors were - 0.04±1, 0.2±1, 0.1±1 mm for LNG, LAT, VRT directions, respectively. 2D/3D image registration uncertainties for intra-cranial and extra-cranial sites were comparable. Conclusion: The Varian Edge radiosurgery 6DOF-based system, can perform 2D/3D image registration with high accuracy for target localization in image-guided stereotactic radiosurgery. The work was supported by a Research Scholar Grant, RSG-15-137-01-CCE from the American Cancer Society.« less

  13. Biomechanical Model for Computing Deformations for Whole-Body Image Registration: A Meshless Approach

    PubMed Central

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam

    2016-01-01

    Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2-D models and computing single organ deformations. In this study, 3-D comprehensive patient-specific non-linear biomechanical models implemented using Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithms are applied to predict a 3-D deformation field for whole-body image registration. Unlike a conventional approach which requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the Fuzzy C-Means (FCM) algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. PMID:26791945

  14. Platform for Post-Processing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    2010-01-01

    Signal- and image-processing methods are commonly needed to extract information from the waves, improve resolution of, and highlight defects in an image. Since some similarity exists for all waveform-based nondestructive evaluation (NDE) methods, it would seem that a common software platform containing multiple signal- and image-processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. NDE Wave & Image Processor Version 2.0 software provides a single, integrated signal- and image-processing and analysis environment for total NDE data processing and analysis. It brings some of the most useful algorithms developed for NDE over the past 20 years into a commercial-grade product. The software can import signal/spectroscopic data, image data, and image series data. This software offers the user hundreds of basic and advanced signal- and image-processing capabilities including esoteric 1D and 2D wavelet-based de-noising, de-trending, and filtering. Batch processing is included for signal- and image-processing capability so that an optimized sequence of processing operations can be applied to entire folders of signals, spectra, and images. Additionally, an extensive interactive model-based curve-fitting facility has been included to allow fitting of spectroscopy data such as from Raman spectroscopy. An extensive joint-time frequency module is included for analysis of non-stationary or transient data such as that from acoustic emission, vibration, or earthquake data.

  15. Imaging chemical reactions - 3D velocity mapping

    NASA Astrophysics Data System (ADS)

    Chichinin, A. I.; Gericke, K.-H.; Kauczok, S.; Maul, C.

    Visualising a collision between an atom or a molecule or a photodissociation (half-collision) of a molecule on a single particle and single quantum level is like watching the collision of billiard balls on a pool table: Molecular beams or monoenergetic photodissociation products provide the colliding reactants at controlled velocity before the reaction products velocity is imaged directly with an elaborate camera system, where one should keep in mind that velocity is, in general, a three-dimensional (3D) vectorial property which combines scattering angles and speed. If the processes under study have no cylindrical symmetry, then only this 3D product velocity vector contains the full information of the elementary process under study.

  16. Evaluation of Fine Aggregate Morphology by Image Method and Its Effect on Skid-Resistance of Micro-Surfacing.

    PubMed

    Xiao, Yue; Wang, Feng; Cui, Peide; Lei, Lei; Lin, Juntao; Yi, Mingwei

    2018-05-29

    Micro-surfacing is a widely used pavement preventive maintenance technology used all over the world, due to its advantages of fast construction, low maintenance cost, good waterproofness, and skid-resistance performance. This study evaluated the fine aggregate morphology and surface texture of micro-surfacing by AIMS (aggregate image measurement system), and explored the effect of aggregate morphology on skid-resistance of single-grade micro-surfacing. Sand patch test and British pendulum test were also used to detect skid-resistance for comparison with the image-based method. Wet abrasion test was used to measure skid-resistance durability for feasibility verification of single-grade micro-surfacing. The results show that the effect of Form2D on the skid-resistance of micro-surfacing is much stronger than that of angularity. Combining the feasibility analysis of durability and skid-resistance, 1.18⁻2.36 grade micro-surfacing meets the requirements of durability and skid-resistance at the same time. This study also determined that, compared with British pendulum test, the texture result obtained by sand patch test fits better with results of image method.

  17. Functional cardiac magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Brau, Anja Christina Sophie

    2003-07-01

    The study of small animal models of human cardiovascular disease is critical to our understanding of the origin, progression, and treatment of this pervasive disease. Complete analysis of disease pathophysiology in these animal models requires measuring structural and functional changes at the level of the whole heart---a task for which an appropriate non-invasive imaging method is needed. The purpose of this work was thus to develop an imaging technique to support in vivo characterization of cardiac structure and function in rat and mouse models of cardiovascular disease. Whereas clinical cardiac magnetic resonance imaging (MRI) provides accurate assessment of the human heart, the extension of cardiac MRI from humans to rodents presents several formidable scaling challenges. Acquiring images of the mouse heart with organ definition and fluidity of contraction comparable to that achieved in humans requires an increase in spatial resolution by a factor of 3000 and an increase in temporal resolution by a factor of ten. No single technical innovation can meet the demanding imaging requirements imposed by the small animal. A functional cardiac magnetic resonance microscopy technique was developed by integrating improvements in physiological control, imaging hardware, biological synchronization of imaging, and pulse sequence design to achieve high-quality images of the murine heart with high spatial and temporal resolution. The specific methods and results from three different sets of imaging experiments are presented: (1) 2D functional imaging in the rat with spatial resolution of 175 mum2 x 1 mm and temporal resolution of 10 ms; (2) 3D functional imaging in the rat with spatial resolution of 100 mum 2 x 500 mum and temporal resolution of 30 ms; and (3) 2D functional imaging in the mouse with spatial resolution down to 100 mum2 x 1 mm and temporal resolution of 10 ms. The cardiac microscopy technique presented here represents a novel collection of technologies capable of acquiring routine high-quality images of murine cardiac structure and function with minimal artifacts and markedly higher spatial resolution compared to conventional techniques. This work is poised to serve a valuable role in the evaluation of cardiovascular disease and should find broad application in studies ranging from basic pathophysiology to drug discovery.

  18. Molecular beam epitaxy growth of PbSe on Si (211) using a ZnTe buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X. J.; Chang, Y.; Hou, Y. B.

    2011-09-15

    The authors report the results of successful growth of single crystalline PbSe on Si (211) substrates with ZnTe as a buffer layer by molecular beam epitaxy. Single crystalline PbSe with (511) orientation was achieved on ZnTe/Si (211), as evidenced by RHEED patterns indicative of 2 dimensional (2D) growth, x ray diffraction rocking curves with a full width at half maximum as low as 153 arc sec and mobility as large as 1.1x10{sup 4}cm{sup 2}V{sup -1}s{sup -1} at 77 K. Cross hatch patterns were found on the PbSe(511) surface in Nomarski filtered microscope images suggesting the presence of a surface thermalmore » strain relaxation mechanism, which was confirmed by Fourier transformed high resolution transmission electron microscope images.« less

  19. Single-shot imaging with higher-dimensional encoding using magnetic field monitoring and concomitant field correction.

    PubMed

    Testud, Frederik; Gallichan, Daniel; Layton, Kelvin J; Barmet, Christoph; Welz, Anna M; Dewdney, Andrew; Cocosco, Chris A; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim

    2015-03-01

    PatLoc (Parallel Imaging Technique using Localized Gradients) accelerates imaging and introduces a resolution variation across the field-of-view. Higher-dimensional encoding employs more spatial encoding magnetic fields (SEMs) than the corresponding image dimensionality requires, e.g. by applying two quadratic and two linear spatial encoding magnetic fields to reconstruct a 2D image. Images acquired with higher-dimensional single-shot trajectories can exhibit strong artifacts and geometric distortions. In this work, the source of these artifacts is analyzed and a reliable correction strategy is derived. A dynamic field camera was built for encoding field calibration. Concomitant fields of linear and nonlinear spatial encoding magnetic fields were analyzed. A combined basis consisting of spherical harmonics and concomitant terms was proposed and used for encoding field calibration and image reconstruction. A good agreement between the analytical solution for the concomitant fields and the magnetic field simulations of the custom-built PatLoc SEM coil was observed. Substantial image quality improvements were obtained using a dynamic field camera for encoding field calibration combined with the proposed combined basis. The importance of trajectory calibration for single-shot higher-dimensional encoding is demonstrated using the combined basis including spherical harmonics and concomitant terms, which treats the concomitant fields as an integral part of the encoding. © 2014 Wiley Periodicals, Inc.

  20. High-resolution vascular tissue characterization in mice using 55MHz ultrasound hybrid imaging.

    PubMed

    Mahmoud, Ahmed M; Sandoval, Cesar; Teng, Bunyen; Schnermann, Jurgen B; Martin, Karen H; Mustafa, S Jamal; Mukdadi, Osama M

    2013-03-01

    Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (T(IB)), time variance (T(var)), time entropy (T(E)), frequency integrated backscatter (F(IB)), wavelet root mean square value (W(rms)), and wavelet integrated backscatter (W(IB)). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A(1) adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency=55 MHz) and commercial array (center frequency=40 MHz) systems providing superior spatial resolutions of 24 μm and 40 μm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of -10.11±1.92 dB, -12.13±2.13 dB, -7.54±1.45 dB, -5.10±1.06 dB, -5.25±0.94 dB, and -10.23±2.12 dB in T(IB), T(var), T(E), F(IB), W(rms), W(IB) hybrid images (n=10, p<0.05), respectively. Control segments of normal vascular tissue showed the lowest values of -20.20±2.71 dB, -22.54±4.54 dB, -14.94±2.05 dB, -9.64±1.34 dB, -10.20±1.27 dB, and -19.36±3.24 dB in same hybrid images (n=6, p<0.05). Results from both histology and optical images showed good agreement with ultrasound findings within a maximum error of 3.6% in lesion estimation. This study demonstrated the feasibility of a high-resolution hybrid imaging technique to diagnose atherosclerosis and characterize plaque components in mouse. In the future, it can be easily implemented on commercial ultrasound systems and eventually translated into clinics as a screening tool for atherosclerosis and the assessment of vulnerable plaques. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Mini 3D for shallow gas reconnaissance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallieres, T. des; Enns, D.; Kuehn, H.

    1996-12-31

    The Mini 3D project was undertaken by TOTAL and ELF with the support of CEPM (Comite d`Etudes Petrolieres et Marines) to define an economical method of obtaining 3D seismic HR data for shallow gas assessment. An experimental 3D survey was carried out with classical site survey techniques in the North Sea. From these data 19 simulations, were produced to compare different acquisition geometries ranging from dual, 600 m long cables to a single receiver. Results show that short offset, low fold and very simple streamer positioning are sufficient to give a reliable 3D image of gas charged bodies. The 3Dmore » data allow a much more accurate risk delineation than 2D HR data. Moreover on financial grounds Mini-3D is comparable in cost to a classical HR 2D survey. In view of these results, such HR 3D should now be the standard for shallow gas surveying.« less

  2. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy

    NASA Astrophysics Data System (ADS)

    Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.

    2018-03-01

    Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.

  3. Spatial correspondence of 4D CT ventilation and SPECT pulmonary perfusion defects in patients with malignant airway stenosis

    NASA Astrophysics Data System (ADS)

    Castillo, Richard; Castillo, Edward; McCurdy, Matthew; Gomez, Daniel R.; Block, Alec M.; Bergsma, Derek; Joy, Sarah; Guerrero, Thomas

    2012-04-01

    To determine the spatial overlap agreement between four-dimensional computed tomography (4D CT) ventilation and single photon emission computed tomography (SPECT) perfusion hypo-functioning pulmonary defect regions in a patient population with malignant airway stenosis. Treatment planning 4D CT images were obtained retrospectively for ten lung cancer patients with radiographically demonstrated airway obstruction due to gross tumor volume. Each patient also received a SPECT perfusion study within one week of the planning 4D CT, and prior to the initiation of treatment. Deformable image registration was used to map corresponding lung tissue elements between the extreme component phase images, from which quantitative three-dimensional (3D) images representing the local pulmonary specific ventilation were constructed. Semi-automated segmentation of the percentile perfusion distribution was performed to identify regional defects distal to the known obstructing lesion. Semi-automated segmentation was similarly performed by multiple observers to delineate corresponding defect regions depicted on 4D CT ventilation. Normalized Dice similarity coefficient (NDSC) indices were determined for each observer between SPECT perfusion and 4D CT ventilation defect regions to assess spatial overlap agreement. Tidal volumes determined from 4D CT ventilation were evaluated versus measurements obtained from lung parenchyma segmentation. Linear regression resulted in a linear fit with slope = 1.01 (R2 = 0.99). Respective values for the average DSC, NDSC1 mm and NDSC2 mm for all cases and multiple observers were 0.78, 0.88 and 0.99, indicating that, on average, spatial overlap agreement between ventilation and perfusion defect regions was comparable to the threshold for agreement within 1-2 mm uncertainty. Corresponding coefficients of variation for all metrics were similarly in the range: 0.10%-19%. This study is the first to quantitatively assess 3D spatial overlap agreement between clinically acquired SPECT perfusion and specific ventilation from 4D CT. Results suggest high correlation between methods within the sub-population of lung cancer patients with malignant airway stenosis.

  4. Orthogonal Rings, Fiducial Markers, and Overlay Accuracy When Image Fusion is Used for EVAR Guidance.

    PubMed

    Koutouzi, G; Sandström, C; Roos, H; Henrikson, O; Leonhardt, H; Falkenberg, M

    2016-11-01

    Evaluation of orthogonal rings, fiducial markers, and overlay accuracy when image fusion is used for endovascular aortic repair (EVAR). This was a prospective single centre study. In 19 patients undergoing standard EVAR, 3D image fusion was used for intra-operative guidance. Renal arteries and targeted stent graft positions were marked with rings orthogonal to the respective centre lines from pre-operative computed tomography (CT). Radiopaque reference objects attached to the back of the patient were used as fiducial markers to detect patient movement intra-operatively. Automatic 3D-3D registration of the pre-operative CT with an intra-operative cone beam computed tomography (CBCT) as well as 3D-3D registration after manual alignment of nearby vertebrae were evaluated. Registration was defined as being sufficient for EVAR guidance if the deviation of the origin of the lower renal artery was less than 3 mm. For final overlay registration, the renal arteries were manually aligned using aortic calcification and vessel outlines. The accuracy of the overlay before stent graft deployment was evaluated using digital subtraction angiography (DSA) as direct comparison. Fiducial markers helped in detecting misalignment caused by patient movement during the procedure. Use of automatic intensity based registration alone was insufficient for EVAR guidance. Manual registration based on vertebrae L1-L2 was sufficient in 7/19 patients (37%). Using the final adjusted registration as overlay, the median alignment error of the lower renal artery marking at pre-deployment DSA was 2 mm (0-5) sideways and 2 mm (0-9) longitudinally, mostly in a caudal direction. 3D image fusion can facilitate intra-operative guidance during EVAR. Orthogonal rings and fiducial markers are useful for visualization and overlay correction. However, the accuracy of the overlaid 3D image is not always ideal and further technical development is needed. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  5. Localization-based super-resolution imaging meets high-content screening.

    PubMed

    Beghin, Anne; Kechkar, Adel; Butler, Corey; Levet, Florian; Cabillic, Marine; Rossier, Olivier; Giannone, Gregory; Galland, Rémi; Choquet, Daniel; Sibarita, Jean-Baptiste

    2017-12-01

    Single-molecule localization microscopy techniques have proven to be essential tools for quantitatively monitoring biological processes at unprecedented spatial resolution. However, these techniques are very low throughput and are not yet compatible with fully automated, multiparametric cellular assays. This shortcoming is primarily due to the huge amount of data generated during imaging and the lack of software for automation and dedicated data mining. We describe an automated quantitative single-molecule-based super-resolution methodology that operates in standard multiwell plates and uses analysis based on high-content screening and data-mining software. The workflow is compatible with fixed- and live-cell imaging and allows extraction of quantitative data like fluorophore photophysics, protein clustering or dynamic behavior of biomolecules. We demonstrate that the method is compatible with high-content screening using 3D dSTORM and DNA-PAINT based super-resolution microscopy as well as single-particle tracking.

  6. A space- and time-resolved single photon counting detector for fluorescence microscopy and spectroscopy

    PubMed Central

    Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Millaud, J.E.; Weiss, S.

    2017-01-01

    We have recently developed a wide-field photon-counting detector having high-temporal and high-spatial resolutions and capable of high-throughput (the H33D detector). Its design is based on a 25 mm diameter multi-alkali photocathode producing one photo electron per detected photon, which are then multiplied up to 107 times by a 3-microchannel plate stack. The resulting electron cloud is proximity focused on a cross delay line anode, which allows determining the incident photon position with high accuracy. The imaging and fluorescence lifetime measurement performances of the H33D detector installed on a standard epifluorescence microscope will be presented. We compare them to those of standard single-molecule detectors such as single-photon avalanche photodiode (SPAD) or electron-multiplying camera using model samples (fluorescent beads, quantum dots and live cells). Finally, we discuss the design and applications of future generation of H33D detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:29479130

  7. Optimized 3D stitching algorithm for whole body SPECT based on transition error minimization (TEM)

    NASA Astrophysics Data System (ADS)

    Cao, Xinhua; Xu, Xiaoyin; Voss, Stephan

    2017-02-01

    Standard Single Photon Emission Computed Tomography (SPECT) has a limited field of view (FOV) and cannot provide a 3D image of an entire long whole body SPECT. To produce a 3D whole body SPECT image, two to five overlapped SPECT FOVs from head to foot are acquired and assembled using image stitching. Most commercial software from medical imaging manufacturers applies a direct mid-slice stitching method to avoid blurring or ghosting from 3D image blending. Due to intensity changes across the middle slice of overlapped images, direct mid-slice stitching often produces visible seams in the coronal and sagittal views and maximal intensity projection (MIP). In this study, we proposed an optimized algorithm to reduce the visibility of stitching edges. The new algorithm computed, based on transition error minimization (TEM), a 3D stitching interface between two overlapped 3D SPECT images. To test the suggested algorithm, four studies of 2-FOV whole body SPECT were used and included two different reconstruction methods (filtered back projection (FBP) and ordered subset expectation maximization (OSEM)) as well as two different radiopharmaceuticals (Tc-99m MDP for bone metastases and I-131 MIBG for neuroblastoma tumors). Relative transition errors of stitched whole body SPECT using mid-slice stitching and the TEM-based algorithm were measured for objective evaluation. Preliminary experiments showed that the new algorithm reduced the visibility of the stitching interface in the coronal, sagittal, and MIP views. Average relative transition errors were reduced from 56.7% of mid-slice stitching to 11.7% of TEM-based stitching. The proposed algorithm also avoids blurring artifacts by preserving the noise properties of the original SPECT images.

  8. Mesoscopic in vivo 3-D tracking of sparse cell populations using angular multiplexed optical projection tomography

    PubMed Central

    Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J.; French, Paul M. W.; McGinty, James

    2015-01-01

    We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound. PMID:25909009

  9. Mesoscopic in vivo 3-D tracking of sparse cell populations using angular multiplexed optical projection tomography.

    PubMed

    Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J; French, Paul M W; McGinty, James

    2015-04-01

    We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound.

  10. Ear recognition from one sample per person.

    PubMed

    Chen, Long; Mu, Zhichun; Zhang, Baoqing; Zhang, Yi

    2015-01-01

    Biometrics has the advantages of efficiency and convenience in identity authentication. As one of the most promising biometric-based methods, ear recognition has received broad attention and research. Previous studies have achieved remarkable performance with multiple samples per person (MSPP) in the gallery. However, most conventional methods are insufficient when there is only one sample per person (OSPP) available in the gallery. To solve the OSPP problem by maximizing the use of a single sample, this paper proposes a hybrid multi-keypoint descriptor sparse representation-based classification (MKD-SRC) ear recognition approach based on 2D and 3D information. Because most 3D sensors capture 3D data accessorizing the corresponding 2D data, it is sensible to use both types of information. First, the ear region is extracted from the profile. Second, keypoints are detected and described for both the 2D texture image and 3D range image. Then, the hybrid MKD-SRC algorithm is used to complete the recognition with only OSPP in the gallery. Experimental results on a benchmark dataset have demonstrated the feasibility and effectiveness of the proposed method in resolving the OSPP problem. A Rank-one recognition rate of 96.4% is achieved for a gallery of 415 subjects, and the time involved in the computation is satisfactory compared to conventional methods.

  11. Human silhouette matching based on moment invariants

    NASA Astrophysics Data System (ADS)

    Sun, Yong-Chao; Qiu, Xian-Jie; Xia, Shi-Hong; Wang, Zhao-Qi

    2005-07-01

    This paper aims to apply the method of silhouette matching based on moment invariants to infer the human motion parameters from video sequences of single monocular uncalibrated camera. Currently, there are two ways of tracking human motion: Marker and Markerless. While a hybrid framework is introduced in this paper to recover the input video contents. A standard 3D motion database is built up by marker technique in advance. Given a video sequences, human silhouettes are extracted as well as the viewpoint information of the camera which would be utilized to project the standard 3D motion database onto the 2D one. Therefore, the video recovery problem is formulated as a matching issue of finding the most similar body pose in standard 2D library with the one in video image. The framework is applied to the special trampoline sport where we can obtain the complicated human motion parameters in the single camera video sequences, and a lot of experiments are demonstrated that this approach is feasible in the field of monocular video-based 3D motion reconstruction.

  12. Multiple comparisons permutation test for image based data mining in radiotherapy

    PubMed Central

    2013-01-01

    Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy. PMID:24365155

  13. Single Anisotropic 3-D MR Image Upsampling via Overcomplete Dictionary Trained From In-Plane High Resolution Slices.

    PubMed

    Jia, Yuanyuan; He, Zhongshi; Gholipour, Ali; Warfield, Simon K

    2016-11-01

    In magnetic resonance (MR), hardware limitation, scanning time, and patient comfort often result in the acquisition of anisotropic 3-D MR images. Enhancing image resolution is desired but has been very challenging in medical image processing. Super resolution reconstruction based on sparse representation and overcomplete dictionary has been lately employed to address this problem; however, these methods require extra training sets, which may not be always available. This paper proposes a novel single anisotropic 3-D MR image upsampling method via sparse representation and overcomplete dictionary that is trained from in-plane high resolution slices to upsample in the out-of-plane dimensions. The proposed method, therefore, does not require extra training sets. Abundant experiments, conducted on simulated and clinical brain MR images, show that the proposed method is more accurate than classical interpolation. When compared to a recent upsampling method based on the nonlocal means approach, the proposed method did not show improved results at low upsampling factors with simulated images, but generated comparable results with much better computational efficiency in clinical cases. Therefore, the proposed approach can be efficiently implemented and routinely used to upsample MR images in the out-of-planes views for radiologic assessment and postacquisition processing.

  14. Acceleration of image-based resolution modelling reconstruction using an expectation maximization nested algorithm.

    PubMed

    Angelis, G I; Reader, A J; Markiewicz, P J; Kotasidis, F A; Lionheart, W R; Matthews, J C

    2013-08-07

    Recent studies have demonstrated the benefits of a resolution model within iterative reconstruction algorithms in an attempt to account for effects that degrade the spatial resolution of the reconstructed images. However, these algorithms suffer from slower convergence rates, compared to algorithms where no resolution model is used, due to the additional need to solve an image deconvolution problem. In this paper, a recently proposed algorithm, which decouples the tomographic and image deconvolution problems within an image-based expectation maximization (EM) framework, was evaluated. This separation is convenient, because more computational effort can be placed on the image deconvolution problem and therefore accelerate convergence. Since the computational cost of solving the image deconvolution problem is relatively small, multiple image-based EM iterations do not significantly increase the overall reconstruction time. The proposed algorithm was evaluated using 2D simulations, as well as measured 3D data acquired on the high-resolution research tomograph. Results showed that bias reduction can be accelerated by interleaving multiple iterations of the image-based EM algorithm solving the resolution model problem, with a single EM iteration solving the tomographic problem. Significant improvements were observed particularly for voxels that were located on the boundaries between regions of high contrast within the object being imaged and for small regions of interest, where resolution recovery is usually more challenging. Minor differences were observed using the proposed nested algorithm, compared to the single iteration normally performed, when an optimal number of iterations are performed for each algorithm. However, using the proposed nested approach convergence is significantly accelerated enabling reconstruction using far fewer tomographic iterations (up to 70% fewer iterations for small regions). Nevertheless, the optimal number of nested image-based EM iterations is hard to be defined and it should be selected according to the given application.

  15. 7 Å Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido

    2014-06-09

    Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystalmore » diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 °A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.« less

  16. SU-D-201-03: Imaging Cellular Pharmacokinetics of 18F-FDG in Inflammatory/Stem Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaman, R; Tuerkcan, S; Mahmoudi, M

    Purpose: Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD)—the leading cause of death in the USA. Thus, understating the metabolism of inflammatory cells can be a valuable tool for investigating CAD. To the best of our knowledge, we are the first to successfully investigate the pharmacokinetics of [18F]fluoro-deoxyglucose (18F-FDG) uptake in a single macrophages and compared with induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) with a novel imaging technique, radioluminescence microscopy, initially developed for cancer imaging. Methods: Live cells were cultured sparsely on Matrigel in a glass-bottom dish and starved for 1 hourmore » before incubation with 250 microCi of 18F-FDG for 45 minutes. Excess radiotracer was removed using DMEM medium without glucose. Before imaging, DMEM (1 mL) was added to the cell culture and a 100 microm-thin CdWO4 scintillator plate was placed on top of the cells. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus) fitted with a 40x/1.3 high-NA oil objective, and an EM-CCD camera. The images were collected over 18,000 frames with 4×4 binning (1200 MHz EM Gain, 300ms exposure). Custom-written software was developed in MATLAB for image processing (Figure 1). For statistical analysis 10 different region-of-interests (ROIs) were selected for each cell type. Results: Figures 2A–2B show bright-field/fusion images for all three different cell types. The relationship between cell-to-cell comparisons was found to be linear for macrophages unlike iPSCs and MSCs, which were best fitted with moving or rolling average (Figure 2C). The average observed decay of 18F-FDG in a single cell of MSCs per second (0.067) was 20% and 36% higher compared to iPSCs (0.054) and macrophages (0.043), respectively (Figure 2D). Conclusion: MSCs was found to be 2–3x more sensitive to glucose molecule despite constant parameters for each cell type examined.« less

  17. 3D Reconstruction and Standardization of the Rat Vibrissal Cortex for Precise Registration of Single Neuron Morphology

    PubMed Central

    Egger, Robert; Narayanan, Rajeevan T.; Helmstaedter, Moritz; de Kock, Christiaan P. J.; Oberlaender, Marcel

    2012-01-01

    The three-dimensional (3D) structure of neural circuits is commonly studied by reconstructing individual or small groups of neurons in separate preparations. Investigation of structural organization principles or quantification of dendritic and axonal innervation thus requires integration of many reconstructed morphologies into a common reference frame. Here we present a standardized 3D model of the rat vibrissal cortex and introduce an automated registration tool that allows for precise placement of single neuron reconstructions. We (1) developed an automated image processing pipeline to reconstruct 3D anatomical landmarks, i.e., the barrels in Layer 4, the pia and white matter surfaces and the blood vessel pattern from high-resolution images, (2) quantified these landmarks in 12 different rats, (3) generated an average 3D model of the vibrissal cortex and (4) used rigid transformations and stepwise linear scaling to register 94 neuron morphologies, reconstructed from in vivo stainings, to the standardized cortex model. We find that anatomical landmarks vary substantially across the vibrissal cortex within an individual rat. In contrast, the 3D layout of the entire vibrissal cortex remains remarkably preserved across animals. This allows for precise registration of individual neuron reconstructions with approximately 30 µm accuracy. Our approach could be used to reconstruct and standardize other anatomically defined brain areas and may ultimately lead to a precise digital reference atlas of the rat brain. PMID:23284282

  18. TH-EF-BRA-08: A Novel Technique for Estimating Volumetric Cine MRI (VC-MRI) From Multi-Slice Sparsely Sampled Cine Images Using Motion Modeling and Free Form Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, W; Yin, F; Wang, C

    Purpose: To develop a technique to estimate on-board VC-MRI using multi-slice sparsely-sampled cine images, patient prior 4D-MRI, motion-modeling and free-form deformation for real-time 3D target verification of lung radiotherapy. Methods: A previous method has been developed to generate on-board VC-MRI by deforming prior MRI images based on a motion model(MM) extracted from prior 4D-MRI and a single-slice on-board 2D-cine image. In this study, free-form deformation(FD) was introduced to correct for errors in the MM when large anatomical changes exist. Multiple-slice sparsely-sampled on-board 2D-cine images located within the target are used to improve both the estimation accuracy and temporal resolution ofmore » VC-MRI. The on-board 2D-cine MRIs are acquired at 20–30frames/s by sampling only 10% of the k-space on Cartesian grid, with 85% of that taken at the central k-space. The method was evaluated using XCAT(computerized patient model) simulation of lung cancer patients with various anatomical and respirational changes from prior 4D-MRI to onboard volume. The accuracy was evaluated using Volume-Percent-Difference(VPD) and Center-of-Mass-Shift(COMS) of the estimated tumor volume. Effects of region-of-interest(ROI) selection, 2D-cine slice orientation, slice number and slice location on the estimation accuracy were evaluated. Results: VCMRI estimated using 10 sparsely-sampled sagittal 2D-cine MRIs achieved VPD/COMS of 9.07±3.54%/0.45±0.53mm among all scenarios based on estimation with ROI-MM-ROI-FD. The FD optimization improved estimation significantly for scenarios with anatomical changes. Using ROI-FD achieved better estimation than global-FD. Changing the multi-slice orientation to axial, coronal, and axial/sagittal orthogonal reduced the accuracy of VCMRI to VPD/COMS of 19.47±15.74%/1.57±2.54mm, 20.70±9.97%/2.34±0.92mm, and 16.02±13.79%/0.60±0.82mm, respectively. Reducing the number of cines to 8 enhanced temporal resolution of VC-MRI by 25% while maintaining the estimation accuracy. Estimation using slices sampled uniformly through the tumor achieved better accuracy than slices sampled non-uniformly. Conclusions: Preliminary studies showed that it is feasible to generate VC-MRI from multi-slice sparsely-sampled 2D-cine images for real-time 3D-target verification. This work was supported by the National Institutes of Health under Grant No. R01-CA184173 and a research grant from Varian Medical Systems.« less

  19. Pulmonary Ventilation Imaging Based on 4-Dimensional Computed Tomography: Comparison With Pulmonary Function Tests and SPECT Ventilation Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Tokihiro, E-mail: toyamamoto@ucdavis.edu; Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California; Kabus, Sven

    Purpose: 4-dimensional computed tomography (4D-CT)-based pulmonary ventilation imaging is an emerging functional imaging modality. The purpose of this study was to investigate the physiological significance of 4D-CT ventilation imaging by comparison with pulmonary function test (PFT) measurements and single-photon emission CT (SPECT) ventilation images, which are the clinical references for global and regional lung function, respectively. Methods and Materials: In an institutional review board–approved prospective clinical trial, 4D-CT imaging and PFT and/or SPECT ventilation imaging were performed in thoracic cancer patients. Regional ventilation (V{sub 4DCT}) was calculated by deformable image registration of 4D-CT images and quantitative analysis for regional volumemore » change. V{sub 4DCT} defect parameters were compared with the PFT measurements (forced expiratory volume in 1 second (FEV{sub 1}; % predicted) and FEV{sub 1}/forced vital capacity (FVC; %). V{sub 4DCT} was also compared with SPECT ventilation (V{sub SPECT}) to (1) test whether V{sub 4DCT} in V{sub SPECT} defect regions is significantly lower than in nondefect regions by using the 2-tailed t test; (2) to quantify the spatial overlap between V{sub 4DCT} and V{sub SPECT} defect regions with Dice similarity coefficient (DSC); and (3) to test ventral-to-dorsal gradients by using the 2-tailed t test. Results: Of 21 patients enrolled in the study, 18 patients for whom 4D-CT and either PFT or SPECT were acquired were included in the analysis. V{sub 4DCT} defect parameters were found to have significant, moderate correlations with PFT measurements. For example, V{sub 4DCT}{sup HU} defect volume increased significantly with decreasing FEV{sub 1}/FVC (R=−0.65, P<.01). V{sub 4DCT} in V{sub SPECT} defect regions was significantly lower than in nondefect regions (mean V{sub 4DCT}{sup HU} 0.049 vs 0.076, P<.01). The average DSCs for the spatial overlap with SPECT ventilation defect regions were only moderate (V{sub 4DCT}{sup HU}0.39 ± 0.11). Furthermore, ventral-to-dorsal gradients of V{sub 4DCT} were strong (V{sub 4DCT}{sup HU} R{sup 2} = 0.69, P=.08), which was similar to V{sub SPECT} (R{sup 2} = 0.96, P<.01). Conclusions: An 18-patient study demonstrated significant correlations between 4D-CT ventilation and PFT measurements as well as SPECT ventilation, providing evidence toward the validation of 4D-CT ventilation imaging.« less

  20. Forest representation of vessels in cone-beam computed tomographic angiography.

    PubMed

    Chen, Zikuan; Ning, Ruola

    2005-01-01

    Cone-beam computed tomographic angiography (CBCTA) provides a fast three-dimensional (3D) vascular imaging modality, aiming at digitally representing the spatial vascular structure in an angiographic volume. Due to the finite coverage of cone-beam scan, as well as the volume cropping in volumetric image processing, an angiographic volume may fail to contain a whole vascular tree, but rather consist of a multitude of vessel segments or subtrees. As such, it is convenient to represent multitudinal components by a forest. The vessel tracking issue then becomes component characterization/identification in the forest. The forest representation brings several conveniences for vessel tracking: (1) to sort and count the vessels in an angiographic volume, for example, according to spatial occupancy and skeleton pathlength; (2) to single out a vessel and perform in situ 3D measurement and 3D visualization in the support space; (3) to delineate individual vessels from the original angiographic volume; and (4) to cull the forest by getting rid of non-vessels and small vessels. A 3D skeletonization is used to generate component skeletons. For tree construction from skeletons, we suggest a pathlength-based procedure, which lifts the restrictions of unit-width skeleton and root determination. We experimentally demonstrate the forest representation of a dog's carotid arteries in a CBCTA system. In principle, the forest representation is useful for managing vessels in both 2D angiographic images and 3D angiographic volumes.

Top