Sample records for single active site

  1. Design of Single-Site Photocatalyst using Metal-Organic Framework as Matrix.

    PubMed

    Wen, Meicheng; Mori, Kohsuke; Kuwahara, Yasutaka; An, Taicheng; Yamashita, Hiromi

    2018-05-14

    Single-site photocatalyst generally displays excellent photocatalytic activtiy and considerable high stability as compared to homogeneous catalytic system. A rational structural design of single-site photocatalyst with isolated, uniform and spatially separated active sites in a given solid is of prime importance to achieve high photocatalytic activity. Intense attentions have been focused on the engineering and fabrication of single-site photocatalys by using porous materials as platform. Metal-organic frameworks (MOFs) hold great potential for the design and fabrication of single-site photocatalysts due to their remarkable porosity, ultrahigh surface area, extraordinary tailorability and significant diversity. MOFs can provide abundant number of binding sites for anchoring active sites, result in significant enhancement of photocatalytic performance. In this focus review, the development of single-site MOF photocatalysts that perform in important and challenging chemical redox reaction such as photocatalytic water splitting, photocatalytic CO₂ conversion and organic transformations is summarized thoroughly. The successful strategies applied for the construction of single-site MOF photocatalysts and major challenge toward practical application was summarized and pointed out, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis of a molecularly defined single-active site heterogeneous catalyst for selective oxidation of N-heterocycles.

    PubMed

    Zhang, Yujing; Pang, Shaofeng; Wei, Zhihong; Jiao, Haijun; Dai, Xingchao; Wang, Hongli; Shi, Feng

    2018-04-13

    Generally, a homogeneous catalyst exhibits good activity and defined active sites but it is difficult to recycle. Meanwhile, a heterogeneous catalyst can easily be reused but its active site is difficult to reveal. It is interesting to bridge the gap between homogeneous and heterogeneous catalysis via controllable construction of a heterogeneous catalyst containing defined active sites. Here, we report that a molecularly defined, single-active site heterogeneous catalyst has been designed and prepared via the oxidative polymerization of maleimide derivatives. These polymaleimide derivatives can be active catalysts for the selective oxidation of heterocyclic compounds to quinoline and indole via the recycling of -C=O and -C-OH groups, which was confirmed by tracing the reaction with GC-MS using maleimide as the catalyst and by FT-IR analysis with polymaleimide as the catalyst. These results might promote the development of heterogeneous catalysts with molecularly defined single active sites exhibiting a comparable activity to homogeneous catalysts.

  3. Discriminative structural approaches for enzyme active-site prediction.

    PubMed

    Kato, Tsuyoshi; Nagano, Nozomi

    2011-02-15

    Predicting enzyme active-sites in proteins is an important issue not only for protein sciences but also for a variety of practical applications such as drug design. Because enzyme reaction mechanisms are based on the local structures of enzyme active-sites, various template-based methods that compare local structures in proteins have been developed to date. In comparing such local sites, a simple measurement, RMSD, has been used so far. This paper introduces new machine learning algorithms that refine the similarity/deviation for comparison of local structures. The similarity/deviation is applied to two types of applications, single template analysis and multiple template analysis. In the single template analysis, a single template is used as a query to search proteins for active sites, whereas a protein structure is examined as a query to discover the possible active-sites using a set of templates in the multiple template analysis. This paper experimentally illustrates that the machine learning algorithms effectively improve the similarity/deviation measurements for both the analyses.

  4. Real-Time Visualization of Active Species in a Single-Site Metal–Organic Framework Photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Sizhuo; Pattengale, Brian; Lee, Sungsik

    In this work, we report a new single-site photocatalyst (Co-Ru-UIO- 67(bpy)) based on a metal-organic framework platform with incorporated molecular photosensitizer and catalyst. We show that this catalyst not only demonstrates exceptional activity for light-driven H2 production but also can be recycled without loss of activity. Using the combination of optical transient absorption spectroscopy and in situ X-ray absorption spectroscopy, we not only captured the key CoI intermediate species formed after ultrafast charge transfer from the incorporated photosensitizer but also identified the rate-limiting step in the catalytic cycle, providing insight into the catalysis mechanism of these single-site metal-organic framework photocatalysts.

  5. Defect Effects on TiO2 Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties.

    PubMed

    Wan, Jiawei; Chen, Wenxing; Jia, Chuanyi; Zheng, Lirong; Dong, Juncai; Zheng, Xusheng; Wang, Yu; Yan, Wensheng; Chen, Chen; Peng, Qing; Wang, Dingsheng; Li, Yadong

    2018-03-01

    Isolated single atomic site catalysts have attracted great interest due to their remarkable catalytic properties. Because of their high surface energy, single atoms are highly mobile and tend to form aggregate during synthetic and catalytic processes. Therefore, it is a significant challenge to fabricate isolated single atomic site catalysts with good stability. Herein, a gentle method to stabilize single atomic site metal by constructing defects on the surface of supports is presented. As a proof of concept, single atomic site Au supported on defective TiO 2 nanosheets is prepared and it is discovered that (1) the surface defects on TiO 2 nanosheets can effectively stabilize Au single atomic sites through forming the Ti-Au-Ti structure; and (2) the Ti-Au-Ti structure can also promote the catalytic properties through reducing the energy barrier and relieving the competitive adsorption on isolated Au atomic sites. It is believed that this work paves a way to design stable and active single atomic site catalysts on oxide supports. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 23 CFR 750.106 - Class 3 and 4 signs within informational sites.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... area, and nothing on such sign may be permitted to be legible from any place on the main-traveled way or a turning roadway. (4) Not more than one sign concerning a single activity or place may be permitted within any one informational site. (5) Signs concerning a single activity or place may be...

  7. 23 CFR 750.106 - Class 3 and 4 signs within informational sites.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... area, and nothing on such sign may be permitted to be legible from any place on the main-traveled way or a turning roadway. (4) Not more than one sign concerning a single activity or place may be permitted within any one informational site. (5) Signs concerning a single activity or place may be...

  8. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    PubMed

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Metal–organic and covalent organic frameworks as single-site catalysts

    PubMed Central

    Rogge, S. M. J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A. I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F.

    2017-01-01

    Heterogeneous single-site catalysts consist of isolated, well-defined, active sites that are spatially separated in a given solid and, ideally, structurally identical. In this review, the potential of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) as platforms for the development of heterogeneous single-site catalysts is reviewed thoroughly. In the first part of this article, synthetic strategies and progress in the implementation of such sites in these two classes of materials are discussed. Because these solids are excellent playgrounds to allow a better understanding of catalytic functions, we highlight the most important recent advances in the modelling and spectroscopic characterization of single-site catalysts based on these materials. Finally, we discuss the potential of MOFs as materials in which several single-site catalytic functions can be combined within one framework along with their potential as powerful enzyme-mimicking materials. The review is wrapped up with our personal vision on future research directions. PMID:28338128

  10. Substrate Shuttling Between Active Sites of Uroporphyrinogen Decarboxylase in Not Required to Generate Coproporphyrinogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, J.; Warby, C; Whitby, F

    2009-01-01

    Uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connectedmore » by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.« less

  11. Impact of single-site axonal GABAergic synaptic events on cerebellar interneuron activity.

    PubMed

    de San Martin, Javier Zorrilla; Jalil, Abdelali; Trigo, Federico F

    2015-12-01

    Axonal ionotropic receptors are present in a variety of neuronal types, and their function has largely been associated with the modulation of axonal activity and synaptic release. It is usually assumed that activation of axonal GABA(A)Rs comes from spillover, but in cerebellar molecular layer interneurons (MLIs) the GABA source is different: in these cells, GABA release activates presynaptic GABA(A) autoreceptors (autoRs) together with postsynaptic targets, producing an autoR-mediated synaptic event. The frequency of presynaptic, autoR-mediated miniature currents is twice that of their somatodendritic counterparts, suggesting that autoR-mediated responses have an important effect on interneuron activity. Here, we used local Ca(2+) photolysis in MLI axons of juvenile rats to evoke GABA release from individual varicosities to study the activation of axonal autoRs in single release sites. Our data show that single-site autoR conductances are similar to postsynaptic dendritic conductances. In conditions of high [Cl(-)](i), autoR-mediated conductances range from 1 to 5 nS; this corresponds to ∼30-150 GABA(A) channels per presynaptic varicosity, a value close to the number of channels in postsynaptic densities. Voltage responses produced by the activation of autoRs in single varicosities are amplified by a Na(v)-dependent mechanism and propagate along the axon with a length constant of 91 µm. Immunolabeling determination of synapse location shows that on average, one third of the synapses produce autoR-mediated signals that are large enough to reach the axon initial segment. Finally, we show that single-site activation of presynaptic GABA(A) autoRs leads to an increase in MLI excitability and thus conveys a strong feedback signal that contributes to spiking activity. © 2015 Zorrilla de San Martin et al.

  12. Impact of single-site axonal GABAergic synaptic events on cerebellar interneuron activity

    PubMed Central

    Zorrilla de San Martin, Javier; Jalil, Abdelali

    2015-01-01

    Axonal ionotropic receptors are present in a variety of neuronal types, and their function has largely been associated with the modulation of axonal activity and synaptic release. It is usually assumed that activation of axonal GABAARs comes from spillover, but in cerebellar molecular layer interneurons (MLIs) the GABA source is different: in these cells, GABA release activates presynaptic GABAA autoreceptors (autoRs) together with postsynaptic targets, producing an autoR-mediated synaptic event. The frequency of presynaptic, autoR-mediated miniature currents is twice that of their somatodendritic counterparts, suggesting that autoR-mediated responses have an important effect on interneuron activity. Here, we used local Ca2+ photolysis in MLI axons of juvenile rats to evoke GABA release from individual varicosities to study the activation of axonal autoRs in single release sites. Our data show that single-site autoR conductances are similar to postsynaptic dendritic conductances. In conditions of high [Cl−]i, autoR-mediated conductances range from 1 to 5 nS; this corresponds to ∼30–150 GABAA channels per presynaptic varicosity, a value close to the number of channels in postsynaptic densities. Voltage responses produced by the activation of autoRs in single varicosities are amplified by a Nav-dependent mechanism and propagate along the axon with a length constant of 91 µm. Immunolabeling determination of synapse location shows that on average, one third of the synapses produce autoR-mediated signals that are large enough to reach the axon initial segment. Finally, we show that single-site activation of presynaptic GABAA autoRs leads to an increase in MLI excitability and thus conveys a strong feedback signal that contributes to spiking activity. PMID:26621773

  13. Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm.

    PubMed

    Jinnouchi, Ryosuke; Asahi, Ryoji

    2017-09-07

    Catalytic activities are often dominated by a few specific surface sites, and designing active sites is the key to realize high-performance heterogeneous catalysts. The great triumphs of modern surface science lead to reproduce catalytic reaction rates by modeling the arrangement of surface atoms with well-defined single-crystal surfaces. However, this method has limitations in the case for highly inhomogeneous atomic configurations such as on alloy nanoparticles with atomic-scale defects, where the arrangement cannot be decomposed into single crystals. Here, we propose a universal machine-learning scheme using a local similarity kernel, which allows interrogation of catalytic activities based on local atomic configurations. We then apply it to direct NO decomposition on RhAu alloy nanoparticles. The proposed method can efficiently predict energetics of catalytic reactions on nanoparticles using DFT data on single crystals, and its combination with kinetic analysis can provide detailed information on structures of active sites and size- and composition-dependent catalytic activities.

  14. Activation of surface lattice oxygen in single-atom Pt/CeO 2 for low-temperature CO oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Lei; Mei, Donghai; Xiong, Haifeng

    While single-atom catalysts can provide high catalytic activity and selectivity, application in industrial catalysts demands long term performance and the ability to regenerate the catalysts. We have investigated the factors that lead to improved catalytic activity of a Pt/CeO2 catalyst for low temperature CO oxidation. Single-atom Pt/CeO2 becomes active for CO oxidation under lean condition only at elevated temperatures, because CO is strongly bound to ionic Pt sites. Reducing the catalyst, even under mild conditions, leads to onset of CO oxidation activity even at room temperature. This high activity state involves the transformation of mononuclear Pt species to sub-nanometer sizedmore » Pt particles. Under oxidizing conditions, the Pt can be restored to its stable, single-atom state. The key to facile regeneration is the ability to create mobile Pt species and suitable trapping sites on the support, making this a prototypical catalyst system for industrial application of single-atom catalysis.« less

  15. Single-Site Laparoscopic Management of a Large Adnexal Mass

    PubMed Central

    Scribner, Dennis R.; Weiss, Patrice M.

    2013-01-01

    Introduction: Single-site laparoscopy is gaining acceptance in many surgical fields including gynecology. The purpose of this report is to demonstrate the technique and outcome for removing a large adnexal mass through a single site. Case Description: A 41-y-old female was referred to gynecology oncology for increased abdominal girth for 3 mo. An ultrasound confirmed a benign-appearing, 37-cm left adnexal mass. The mass was removed through a single-site laparoscopic incision with the aid of drainage and a morcellator. The operating time was 84 min. The patient was discharged 2 h and 35 min later with full return to normal activity in 5 d. Conclusion: Large, benign-appearing adnexal masses can be managed safely with superior cosmetic results using single-site laparoscopy. PMID:23925036

  16. High-resolution physical and functional mapping of the template adjacent DNA binding site in catalytically active telomerase.

    PubMed

    Romi, Erez; Baran, Nava; Gantman, Marina; Shmoish, Michael; Min, Bosun; Collins, Kathleen; Manor, Haim

    2007-05-22

    Telomerase is a cellular reverse transcriptase, which utilizes an integral RNA template to extend single-stranded telomeric DNA. We used site-specific photocrosslinking to map interactions between DNA primers and the catalytic protein subunit (tTERT) of Tetrahymena thermophila telomerase in functional enzyme complexes. Our assays reveal contact of the single-stranded DNA adjacent to the primer-template hybrid and tTERT residue W187 at the periphery of the N-terminal domain. This contact was detected in complexes with three different registers of template in the active site, suggesting that it is maintained throughout synthesis of a complete telomeric repeat. Substitution of nearby residue Q168, but not W187, alters the K(m) for primer elongation, implying that it plays a role in the DNA recognition. These findings are the first to directly demonstrate the physical location of TERT-DNA contacts in catalytically active telomerase and to identify amino acid determinants of DNA binding affinity. Our data also suggest a movement of the TERT active site relative to the template-adjacent single-stranded DNA binding site within a cycle of repeat synthesis.

  17. Bimetallic Effect of Single Nanocatalysts Visualized by Super-Resolution Catalysis Imaging

    DOE PAGES

    Chen, Guanqun; Zou, Ningmu; Chen, Bo; ...

    2017-11-01

    Compared with their monometallic counterparts, bimetallic nanoparticles often show enhanced catalytic activity associated with the bimetallic interface. Direct quantitation of catalytic activity at the bimetallic interface is important for understanding the enhancement mechanism, but challenging experimentally. Here using single-molecule super-resolution catalysis imaging in correlation with electron microscopy, we report the first quantitative visualization of enhanced bimetallic activity within single bimetallic nanoparticles. We focus on heteronuclear bimetallic PdAu nanoparticles that present a well-defined Pd–Au bimetallic interface in catalyzing a photodriven fluorogenic disproportionation reaction. Our approach also enables a direct comparison between the bimetallic and monometallic regions within the same nanoparticle. Theoreticalmore » calculations further provide insights into the electronic nature of N–O bond activation of the reactant (resazurin) adsorbed on bimetallic sites. Subparticle activity correlation between bimetallic enhancement and monometallic activity suggests that the favorable locations to construct bimetallic sites are those monometallic sites with higher activity, leading to a strategy for making effective bimetallic nanocatalysts. Furthermore, the results highlight the power of super-resolution catalysis imaging in gaining insights that could help improve nanocatalysts.« less

  18. Probing Single Pt Atoms in Complex Intermetallic Al13Fe4.

    PubMed

    Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang

    2018-03-21

    The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

  19. Catalytically active Au-O(OH) x- species stabilized by alkali ions on zeolites and mesoporous oxides

    DOE PAGES

    Yang, Ming; Li, Sha; Wang, Yuan; ...

    2014-11-27

    Here we report that the addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH) x-(Na or K) ensembles. This single-site gold species is active for the low-temperature (<200°C) water-gas shift (WGS) reaction. Unexpectedly, gold is thus similar to platinum in creating –O linkages with more than eight alkali ions and establishing an active site on various supports. The intrinsic activity of the single-site gold species is the same on irreducible supports as on reducible ceria, iron oxide, and titania supports, apparently all sharing a common, similarly structured gold activemore » site. This finding paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel-processing reactions.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyun You; Liu, Ping

    Mixed metal oxides have attracted considerable attention in heterogeneous catalysis due to the unique stability, reactivity, and selectivity. Here, the activity and stability of the CuTiO x monolayer film supported on Cu(111), CuTiO x/Cu(111), during CO oxidation was explored using density functional theory (DFT). The unique structural frame of CuTiO x is able to stabilize and isolate a single Cu + site on the terrace, which is previously proposed active for CO oxidation. Furthermore, it is not the case, where the reaction via both the Langmuir–Hinshelwood (LH) and the Mars-van Krevelen (M-vK) mechanisms are hindered on such single Cu +more » site. Upon the formation of step-edges, the synergy among Cu δ+ sites, TiO x matrix, and Cu(111) is able to catalyze the reaction well. Depending on temperatures and partial pressure of CO and O 2, the surface structure varies, which determines the dominant mechanism. In accordance with our results, the Cu δ+ ion alone does not work well for CO oxidation in the form of single sites, while the synergy among multiple active sites is necessary to facilitate the reaction.« less

  1. Complex catalytic behaviors of CuTiO x mixed-oxide during CO oxidation

    DOE PAGES

    Kim, Hyun You; Liu, Ping

    2015-09-21

    Mixed metal oxides have attracted considerable attention in heterogeneous catalysis due to the unique stability, reactivity, and selectivity. Here, the activity and stability of the CuTiO x monolayer film supported on Cu(111), CuTiO x/Cu(111), during CO oxidation was explored using density functional theory (DFT). The unique structural frame of CuTiO x is able to stabilize and isolate a single Cu + site on the terrace, which is previously proposed active for CO oxidation. Furthermore, it is not the case, where the reaction via both the Langmuir–Hinshelwood (LH) and the Mars-van Krevelen (M-vK) mechanisms are hindered on such single Cu +more » site. Upon the formation of step-edges, the synergy among Cu δ+ sites, TiO x matrix, and Cu(111) is able to catalyze the reaction well. Depending on temperatures and partial pressure of CO and O 2, the surface structure varies, which determines the dominant mechanism. In accordance with our results, the Cu δ+ ion alone does not work well for CO oxidation in the form of single sites, while the synergy among multiple active sites is necessary to facilitate the reaction.« less

  2. Sintering-resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhanyong; Schweitzer, Neil; League, Aaron

    2016-02-17

    Developing supported single-site catalysts is an important goal in heterogeneous catalysis, since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based MOF, NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a metal–organic framework (MOF) (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to themore » organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates.« less

  3. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wei; Li, Yani; Yu, Bo

    2015-01-15

    A successive anchoring of Ti(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-sitemore » silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, {sup 13}C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated.« less

  4. Reactivity of a Carbon-Supported Single-Site Molybdenum Dioxo Catalyst for Biodiesel Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouat, Aidan R.; Lohr, Tracy L.; Wegener, Evan C.

    2016-08-23

    A single-site molybdenum dioxo catalyst, (O c) 2Mo(=O) 2@C, was prepared via direct grafting of MoO 2Cl 2(dme) (dme = 1,2-dimethoxyethane) on high-surface- area activated carbon. The physicochemical and chemical properties of this catalyst were fully characterized by N 2 physisorption, ICP-AES/OES, PXRD, STEM, XPS, XAS, temperature-programmed reduction with H 2 (TPR-H 2), and temperature-programmed NH 3 desorption (TPD-NH 3). The single-site nature of the Mo species is corroborated by XPS and TPR-H 2 data, and it exhibits the lowest reported MoO x Tmax of reduction reported to date, suggesting a highly reactive MoVI center. (O c) 2Mo(=O) 2@C catalyzesmore » the transesterification of a variety of esters and triglycerides with ethanol, exhibiting high activity at moderate temperatures (60-90 °C) and with negligible deactivation. (O c) 2Mo(=O) 2@C is resistant to water and can be recycled at least three times with no loss of activity. The transesterification reaction is determined experimentally to be first order in [ethanol] and first order in [Mo] with ΔH = 10.5(8) kcal mol -1 and ΔS = -32(2) eu. The low energy of activation is consistent with the moderate conditions needed to achieve rapid turnover. This highly active carbon-supported single-site molybdenum dioxo species is thus an efficient, robust, and lowcost catalyst with significant potential for transesterification processes.« less

  5. Single-fluorophore monitoring of DNA hybridization for investigating the effect of secondary structure on the nucleation step.

    PubMed

    Jo, Joon-Jung; Kim, Min-Ji; Son, Jung-Tae; Kim, Jandi; Shin, Jong-Shik

    2009-07-17

    Nucleic acid hybridization is one of the essential biological processes involved in storage and transmission of genetic information. Here we quantitatively determined the effect of secondary structure on the hybridization activation energy using structurally defined oligonucleotides. It turned out that activation energy is linearly proportional to the length of a single-stranded region flanking a nucleation site, generating a 0.18 kcal/mol energy barrier per nucleotide. Based on this result, we propose that the presence of single-stranded segments available for non-productive base pairing with a nucleation counterpart extends the searching process for nucleation sites to find a perfect match. This result may provide insights into rational selection of a target mRNA site for siRNA and antisense gene silencing.

  6. Modulation by K+ Plus NH4+ of microsomal (Na+, K+)-ATPase activity in selected ontogenetic stages of the diadromous river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae).

    PubMed

    Leone, Francisco A; Bezerra, Thais M S; Garçon, Daniela P; Lucena, Malson N; Pinto, Marcelo R; Fontes, Carlos F L; McNamara, John C

    2014-01-01

    We investigate the synergistic stimulation by K(+) plus NH4 (+) of (Na(+), K(+))-ATPase activity in microsomal preparations of whole zoea I and decapodid III, and in juvenile and adult river shrimp gills. Modulation of (Na(+), K(+))-ATPase activity is ontogenetic stage-specific, and particularly distinct between juveniles and adults. Although both gill enzymes exhibit two different sites for K(+) and NH4 (+) binding, in the juvenile enzyme, these two sites are equivalent: binding by both ions results in slightly stimulated activity compared to that of a single ionic species. In the adult enzyme, the sites are not equivalent: when one ion occupies its specific binding site, (Na(+), K(+))-ATPase activity is stimulated synergistically by ≈ 50% on binding of the complementary ion. Immunolocalization reveals the enzyme to be distributed predominantly throughout the intralamellar septum in the gill lamellae of juveniles and adults. Western blot analyses demonstrate a single immunoreactive band, suggesting a single (Na(+), K(+))-ATPase α-subunit isoform that is distributed into different density membrane fractions, independently of ontogenetic stage. We propose a model for the modulation by K(+) and NH4 (+) of gill (Na(+), K(+))-ATPase activity. These findings suggest that the gill enzyme may be regulated by NH4 (+) during ontogenetic development in M. amazonicum.

  7. Modulation By K+ Plus NH4 + of Microsomal (Na+, K+)-ATPase Activity in Selected Ontogenetic Stages of the Diadromous River Shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae)

    PubMed Central

    Leone, Francisco A.; Bezerra, Thais M. S.; Garçon, Daniela P.; Lucena, Malson N.; Pinto, Marcelo R.; Fontes, Carlos F. L.; McNamara, John C.

    2014-01-01

    We investigate the synergistic stimulation by K+ plus NH4 + of (Na+, K+)-ATPase activity in microsomal preparations of whole zoea I and decapodid III, and in juvenile and adult river shrimp gills. Modulation of (Na+, K+)-ATPase activity is ontogenetic stage-specific, and particularly distinct between juveniles and adults. Although both gill enzymes exhibit two different sites for K+ and NH4 + binding, in the juvenile enzyme, these two sites are equivalent: binding by both ions results in slightly stimulated activity compared to that of a single ionic species. In the adult enzyme, the sites are not equivalent: when one ion occupies its specific binding site, (Na+, K+)-ATPase activity is stimulated synergistically by ≈50% on binding of the complementary ion. Immunolocalization reveals the enzyme to be distributed predominantly throughout the intralamellar septum in the gill lamellae of juveniles and adults. Western blot analyses demonstrate a single immunoreactive band, suggesting a single (Na+, K+)-ATPase α-subunit isoform that is distributed into different density membrane fractions, independently of ontogenetic stage. We propose a model for the modulation by K+ and NH4 + of gill (Na+, K+)-ATPase activity. These findings suggest that the gill enzyme may be regulated by NH4 + during ontogenetic development in M. amazonicum. PMID:24586919

  8. Diffusional correlations among multiple active sites in a single enzyme.

    PubMed

    Echeverria, Carlos; Kapral, Raymond

    2014-04-07

    Simulations of the enzymatic dynamics of a model enzyme containing multiple substrate binding sites indicate the existence of diffusional correlations in the chemical reactivity of the active sites. A coarse-grain, particle-based, mesoscopic description of the system, comprising the enzyme, the substrate, the product and solvent, is constructed to study these effects. The reactive and non-reactive dynamics is followed using a hybrid scheme that combines molecular dynamics for the enzyme, substrate and product molecules with multiparticle collision dynamics for the solvent. It is found that the reactivity of an individual active site in the multiple-active-site enzyme is reduced substantially, and this effect is analyzed and attributed to diffusive competition for the substrate among the different active sites in the enzyme.

  9. Nevada National Security Site Industrial Sites Project Closeout - 12498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabble, Kevin; Krauss, Mark; Matthews, Pat

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office is responsible for environmental restoration (ER) at the Nevada National Security Site (NNSS). This includes remediation at Industrial Sites where past nuclear testing activities and activities that supported nuclear testing may have or are known to have resulted in the release of contaminants into the environment. Industrial Sites at the NNSS have included nuclear facilities that supported the nuclear rocket/missile development programs, gas stations, landfills, spill sites, ordnance sites, and numerous other waste disposal and release sites. The NNSS Industrial Sites activities neared completion at the endmore » of fiscal year 2011 while other activities required under the Federal Facility Agreement and Consent Order (FFACO) and part of the same NNSS ER Project are forecasted to extend to 2027 or beyond. With the majority of Industrial Sites corrective action units (CAUs) completed (more than 250 CAUs and over 1,800 corrective action sites), it was determined that an activity closeout process should be implemented to ensure that the work completed over the past 15 years is well documented in a comprehensive and concise summary. While the process used to close each individual CAU is described in approved documents, no single document describes in summary fashion the work completed to close the many individual Industrial Sites. The activity closeout process will be used to develop an Industrial Sites closeout document that describes these years of work. This document will summarize the number of Industrial Sites closed under the FFACO and provide general descriptions of projects, contaminants removed, and sites closed in place with corresponding Use Restrictions. Other pertinent information related to Industrial Sites work such as the project history, closure decisions, historical declarations, remediation strategies, and final CAU status will be included in the closeout document, along with a table listing each CAU and corresponding corrective action sites within each CAU. Using this process of conducting the activity closeout and developing a closeout document may prove useful for other ER projects within the DOE complex in describing how a long period of ER can be summarized in a single document. The NNSS Industrial Sites activities were completed over the span of 15 years and involved the investigation, cleanup or Use Restriction, and closure of more than 260 CAUs and over 1,800 sites. These activities will conclude in FY 2012 (with the exception of one CAU). In order to capture the work completed over this length of time and document decisions made during the activities, a closeout effort was initiated. The closeout will review the work conducted during the Industrial Sites activities and produce a single document that summarizes Industrial Sites activities. This closeout is being conducted at an interim stage in the overall NNSA/NSO ER Project since the Soils and UGTA activities will continue for a number of years, but the completion of the Industrial Sites project warrants conducting a closeout now while personnel are available and information is still current. The process followed by NNSA/NSO in conducing project closeout for the Industrial Sites portion of the ER program may prove useful within the DOE complex in demonstrating how a large ER project can be summarized. (authors)« less

  10. Single atom catalysts on amorphous supports: A quenched disorder perspective

    NASA Astrophysics Data System (ADS)

    Peters, Baron; Scott, Susannah L.

    2015-03-01

    Phenomenological models that invoke catalyst sites with different adsorption constants and rate constants are well-established, but computational and experimental methods are just beginning to provide atomically resolved details about amorphous surfaces and their active sites. This letter develops a statistical transformation from the quenched disorder distribution of site structures to the distribution of activation energies for sites on amorphous supports. We show that the overall kinetics are highly sensitive to the precise nature of the low energy tail in the activation energy distribution. Our analysis motivates further development of systematic methods to identify and understand the most reactive members of the active site distribution.

  11. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age

    PubMed Central

    Strath, Scott J; Kate, Rohit J; Keenan, Kevin G; Welch, Whitney A; Swartz, Ann M

    2016-01-01

    To develop and test time series single site and multi-site placement models, we used wrist, hip and ankle processed accelerometer data to estimate energy cost and type of physical activity in adults. Ninety-nine subjects in three age groups (18–39, 40–64, 65 + years) performed 11 activities while wearing three triaxial accelereometers: one each on the non-dominant wrist, hip, and ankle. During each activity net oxygen cost (METs) was assessed. The time series of accelerometer signals were represented in terms of uniformly discretized values called bins. Support Vector Machine was used for activity classification with bins and every pair of bins used as features. Bagged decision tree regression was used for net metabolic cost prediction. To evaluate model performance we employed the jackknife leave-one-out cross validation method. Single accelerometer and multi-accelerometer site model estimates across and within age group revealed similar accuracy, with a bias range of −0.03 to 0.01 METs, bias percent of −0.8 to 0.3%, and a rMSE range of 0.81–1.04 METs. Multi-site accelerometer location models improved activity type classification over single site location models from a low of 69.3% to a maximum of 92.8% accuracy. For each accelerometer site location model, or combined site location model, percent accuracy classification decreased as a function of age group, or when young age groups models were generalized to older age groups. Specific age group models on average performed better than when all age groups were combined. A time series computation show promising results for predicting energy cost and activity type. Differences in prediction across age group, a lack of generalizability across age groups, and that age group specific models perform better than when all ages are combined needs to be considered as analytic calibration procedures to detect energy cost and type are further developed. PMID:26449155

  12. Mutation at a strictly conserved, active site tyrosine in the copper amine oxidase leads to uncontrolled oxygenase activity.

    PubMed

    Chen, Zhi-Wei; Datta, Saumen; Dubois, Jennifer L; Klinman, Judith P; Mathews, F Scott

    2010-08-31

    The copper amine oxidases carry out two copper-dependent processes: production of their own redox-active cofactor (2,4,5-trihydroxyphenylalanine quinone, TPQ) and the subsequent oxidative deamination of substrate amines. Because the same active site pocket must facilitate both reactions, individual active site residues may serve multiple roles. We have examined the roles of a strictly conserved active site tyrosine Y305 in the copper amine oxidase from Hansenula polymorpha kinetically, spetroscopically (Dubois and Klinman (2006) Biochemistry 45, 3178), and, in the present work, structurally. While the Y305A enzyme is almost identical to the wild type, a novel, highly oxygenated species replaces TPQ in the Y305F active sites. This new structure not only provides the first direct detection of peroxy intermediates in cofactor biogenesis but also indicates the critical control of oxidation chemistry that can be conferred by a single active site residue.

  13. Molecular Dynamics Analysis Reveals Structural Insights into Mechanism of Nicotine N-Demethylation Catalyzed by Tobacco Cytochrome P450 Mono-Oxygenase

    PubMed Central

    Wang, Shan; Yang, Shuo; An, Baiyi; Wang, Shichen; Yin, Yuejia; Lu, Yang; Xu, Ying; Hao, Dongyun

    2011-01-01

    CYP82E4, a cytochrome P450 monooxygenase, has nicotine N-demethylase (NND) activity, which mediates the bioconversion of nicotine into nornicotine in senescing tobacco leaves. Nornicotine is a precursor of the carcinogen, tobacco-specific nitrosamine. CYP82E3 is an ortholog of CYP82E4 with 95% sequence identity, but it lacks NND activity. A recent site-directed mutagenesis study revealed that a single amino acid substitution, i.e., cysteine to tryptophan at the 330 position in the middle of protein, restores the NND activity of CYP82E3 entirely. However, the same amino acid change caused the loss of the NND activity of CYP82E4. To determine the mechanism of the functional turnover of the two molecules, four 3D structures, i.e., the two molecules and their corresponding cys–trp mutants were modeled. The resulting structures exhibited that the mutation site is far from the active site, which suggests that no direct interaction occurs between the two sites. Simulation studies in different biological scenarios revealed that the mutation introduces a conformation drift with the largest change at the F-G loop. The dynamics trajectories analysis using principal component analysis and covariance analysis suggests that the single amino acid change causes the opening and closing of the transfer channels of the substrates, products, and water by altering the motion of the F-G and B-C loops. The motion of helix I is also correlated with the motion of both the F-G loop and the B-C loop and; the single amino acid mutation resulted in the curvature of helix I. These results suggest that the single amino acid mutation outside the active site region may have indirectly mediated the flexibility of the F-G and B-C loops through helix I, causing a functional turnover of the P450 monooxygenase. PMID:21858078

  14. Asymmetric mutations in the tetrameric R67 dihydrofolate reductase reveal high tolerance to active-site substitutions.

    PubMed

    Ebert, Maximilian C C J C; Morley, Krista L; Volpato, Jordan P; Schmitzer, Andreea R; Pelletier, Joelle N

    2015-04-01

    Type II R67 dihydrofolate reductase (DHFR) is a bacterial plasmid-encoded enzyme that is intrinsically resistant to the widely-administered antibiotic trimethoprim. R67 DHFR is genetically and structurally unrelated to E. coli chromosomal DHFR and has an unusual architecture, in that four identical protomers form a single symmetrical active site tunnel that allows only one substrate binding/catalytic event at any given time. As a result, substitution of an active-site residue has as many as four distinct consequences on catalysis, constituting an atypical model of enzyme evolution. Although we previously demonstrated that no single residue of the native active site is indispensable for function, library selection here revealed a strong bias toward maintenance of two native protomers per mutated tetramer. A variety of such "half-native" tetramers were shown to procure native-like catalytic activity, with similar KM values but kcat values 5- to 33-fold lower, illustrating a high tolerance for active-site substitutions. The selected variants showed a reduced thermal stability (Tm ∼12°C lower), which appears to result from looser association of the protomers, but generally showed a marked increase in resilience to heat denaturation, recovering activity to a significantly greater extent than the variant with no active-site substitutions. Our results suggest that the presence of two native protomers in the R67 DHFR tetramer is sufficient to provide native-like catalytic rate and thus ensure cellular proliferation. © 2014 The Protein Society.

  15. Silica-Supported, Single-Site Sc and Y Alkyls for Catalytic Hydrogenation of Propylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getsoian, Andrew G. Bean; Hu, Bo; Miller, Jeffrey T.

    Single site Sc and Y on silica catalysts have been prepared by aqueous and organometallic grafting methods. The former yields Y(III) ions with 5 bonds at an average bond distance of 2.31 Å by X-ray absorption spectroscopy. Although the aqueous synthesis gave single site Y with low coordination number, these were not catalytic for alkane dehydrogenation or olefin hydrogenation. Single site Sc(III) and Y(III) species were also prepared by grafting Sc(CH 2Si(CH 3) 3) 3(THF) 2 and Y(CH 2Si(CH 3) 3) 3(THF) 2, respectively and these are catalysts for olefin hydrogenation at temperatures from about 60 to 100°C; however, theymore » were thermally unstable at higher temperatures necessary for alkane dehydrogenation. The structure of the grafted Y complex was determined by X-ray absorption spectroscopy, IR, and NMR. Grafting lead to protonolysis of 2 of the 3 CH 2Si(CH 3) 3 ligands. Additionally, there was loss of one THF ligand. The EXAFS indicated that there were 4 Y-ligand bonds in the surface species, 2 at 2.16 Å and 2 at 2.39 Å. The metal-alkyl ligand was thought to be necessary for catalytic activity and likely proceeds through a sigma bond metathesis mechanism. In the single site centers without alkyl bonds, Sc and Y ions cannot generate metal-alkyl, or metal-hydride, moieties in situ. We conclude that this is likely due to the very high M-O-Si bond strengths, which must be broken through heterolytic dissociation of C-H bonds during alkane activation for either alkane dehydrogenation or olefin hydrogenation reactions. Lastly, this study demonstrates the importance of pre-catalyst choice versus in situ formation of reactive intermediates to produce active catalysts for alkane bond activation.« less

  16. Silica-Supported, Single-Site Sc and Y Alkyls for Catalytic Hydrogenation of Propylene

    DOE PAGES

    Getsoian, Andrew G. Bean; Hu, Bo; Miller, Jeffrey T.; ...

    2017-09-27

    Single site Sc and Y on silica catalysts have been prepared by aqueous and organometallic grafting methods. The former yields Y(III) ions with 5 bonds at an average bond distance of 2.31 Å by X-ray absorption spectroscopy. Although the aqueous synthesis gave single site Y with low coordination number, these were not catalytic for alkane dehydrogenation or olefin hydrogenation. Single site Sc(III) and Y(III) species were also prepared by grafting Sc(CH 2Si(CH 3) 3) 3(THF) 2 and Y(CH 2Si(CH 3) 3) 3(THF) 2, respectively and these are catalysts for olefin hydrogenation at temperatures from about 60 to 100°C; however, theymore » were thermally unstable at higher temperatures necessary for alkane dehydrogenation. The structure of the grafted Y complex was determined by X-ray absorption spectroscopy, IR, and NMR. Grafting lead to protonolysis of 2 of the 3 CH 2Si(CH 3) 3 ligands. Additionally, there was loss of one THF ligand. The EXAFS indicated that there were 4 Y-ligand bonds in the surface species, 2 at 2.16 Å and 2 at 2.39 Å. The metal-alkyl ligand was thought to be necessary for catalytic activity and likely proceeds through a sigma bond metathesis mechanism. In the single site centers without alkyl bonds, Sc and Y ions cannot generate metal-alkyl, or metal-hydride, moieties in situ. We conclude that this is likely due to the very high M-O-Si bond strengths, which must be broken through heterolytic dissociation of C-H bonds during alkane activation for either alkane dehydrogenation or olefin hydrogenation reactions. Lastly, this study demonstrates the importance of pre-catalyst choice versus in situ formation of reactive intermediates to produce active catalysts for alkane bond activation.« less

  17. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    PubMed Central

    Wang, Yang-Gang; Mei, Donghai; Glezakou, Vassiliki-Alexandra; Li, Jun; Rousseau, Roger

    2015-01-01

    Catalysis by gold supported on reducible oxides has been extensively studied, yet issues such as the nature of the catalytic site and the role of the reducible support remain fiercely debated topics. Here we present ab initio molecular dynamics simulations of an unprecedented dynamic single-atom catalytic mechanism for the oxidation of carbon monoxide by ceria-supported gold clusters. The reported dynamic single-atom catalytic mechanism results from the ability of the gold cation to strongly couple with the redox properties of the ceria in a synergistic manner, thereby lowering the energy of redox reactions. The gold cation can break away from the gold nanoparticle to catalyse carbon monoxide oxidation, adjacent to the metal/oxide interface and subsequently reintegrate back into the nanoparticle after the reaction is completed. Our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in catalysis. PMID:25735407

  18. A Single Base Difference between Pit-1 Binding Sites at the hGH Promoter and Locus Control Region Specifies Distinct Pit-1 Conformations and Functions

    PubMed Central

    Shewchuk, Brian M.; Ho, Yugong; Liebhaber, Stephen A.; Cooke, Nancy E.

    2006-01-01

    Activation of the human growth hormone (hGH-N) gene in pituitary somatotropes is mediated by a locus control region (LCR). This LCR is composed of DNase I-hypersensitive sites (HS) located −14.5 kb to −32 kb relative to the hGH-N promoter. HSI, at −14.5 kb, is the dominant determinant of hGH-N expression and is essential for establishment of a 32-kb domain of histone acetylation that encompasses the active hGH locus. This activity is conferred by three binding sites for the POU domain transcription factor Pit-1. These Pit-1 elements are sufficient to activate hGH-N expression in the mouse pituitary. In contrast, Pit-1 sites at the hGH-N promoter are consistently unable to mediate similar activity. In the present study, we demonstrate that the functional difference between the promoter-proximal and the HSI Pit-1 binding sites can be attributed in part to a single base difference. This base affects the conformation of the Pit-1/DNA complex, and reciprocal exchange of the divergent bases between the two sets of Pit-1 elements results in a partial reversal of their transgenic activities. These data support a model in which the Pit-1 binding sites in the hGH LCR allosterically program the bound Pit-1 complex for chromatin activating functions. PMID:16914737

  19. Isolated, well-defined organovanadium(iii) on silica: Single-site catalyst for hydrogenation of alkenes and alkynes

    DOE PAGES

    Sohn, H.; Camacho-Bunquin, J.; Langeslay, R. R.; ...

    2017-05-03

    Well-defined, isolated, single-site organovanadium(III) catalyst on SiO 2 [(SiO 2)V(Mes)(THF)] were synthesized via surface organometallic chemistry, and fully characterized using a combination of analytical and spectroscopic techniques (EA, ICP, 1H NMR, TGA-MS, EPR, XPS, DR-UV/Vis, UV-Raman, DRIFTS, XAS). The catalysts exhibit unprecedented reactivity in liquid- and gas-phase alkene/alkyne hydrogenation. Catalyst poisoning experiments revealed that 100% of the V sites are active for hydrogenation.

  20. Stabilization of bacterially expressed erythropoietin by single site-specific introduction of short branched PEG chains at naturally occurring glycosylation sites.

    PubMed

    Hoffmann, E; Streichert, K; Nischan, N; Seitz, C; Brunner, T; Schwagerus, S; Hackenberger, C P R; Rubini, M

    2016-05-24

    The covalent attachment of polyethylene glycol (PEG) to therapeutic proteins can improve their physicochemical properties. In this work we utilized the non-natural amino acid p-azidophenylalanine (pAzF) in combination with the chemoselective Staudinger-phosphite reaction to install branched PEG chains to recombinant unglycosylated erythropoietin (EPO) at each single naturally occurring glycosylation site. PEGylation with two short 750 or 2000 Da PEG units at positions 24, 38, or 83 significantly decreased unspecific aggregation and proteolytic degradation while biological activity in vitro was preserved or even increased in comparison to full-glycosylated EPO. This site-specific bioconjugation approach permits to analyse the impact of PEGylation at single positions. These results represent an important step towards the engineering of site-specifically modified EPO variants from bacterial expression with increased therapeutic efficacy.

  1. Drug resistance conferred by mutations outside the active site through alterations in the dynamic and structural ensemble of HIV-1 protease.

    PubMed

    Ragland, Debra A; Nalivaika, Ellen A; Nalam, Madhavi N L; Prachanronarong, Kristina L; Cao, Hong; Bandaranayake, Rajintha M; Cai, Yufeng; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2014-08-27

    HIV-1 protease inhibitors are part of the highly active antiretroviral therapy effectively used in the treatment of HIV infection and AIDS. Darunavir (DRV) is the most potent of these inhibitors, soliciting drug resistance only when a complex combination of mutations occur both inside and outside the protease active site. With few exceptions, the role of mutations outside the active site in conferring resistance remains largely elusive. Through a series of DRV-protease complex crystal structures, inhibition assays, and molecular dynamics simulations, we find that single and double site mutations outside the active site often associated with DRV resistance alter the structure and dynamic ensemble of HIV-1 protease active site. These alterations correlate with the observed inhibitor binding affinities for the mutants, and suggest a network hypothesis on how the effect of distal mutations are propagated to pivotal residues at the active site and may contribute to conferring drug resistance.

  2. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.

    2016-03-01

    We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guanqun; Zou, Ningmu; Chen, Bo

    Compared with their monometallic counterparts, bimetallic nanoparticles often show enhanced catalytic activity associated with the bimetallic interface. Direct quantitation of catalytic activity at the bimetallic interface is important for understanding the enhancement mechanism, but challenging experimentally. Here using single-molecule super-resolution catalysis imaging in correlation with electron microscopy, we report the first quantitative visualization of enhanced bimetallic activity within single bimetallic nanoparticles. We focus on heteronuclear bimetallic PdAu nanoparticles that present a well-defined Pd–Au bimetallic interface in catalyzing a photodriven fluorogenic disproportionation reaction. Our approach also enables a direct comparison between the bimetallic and monometallic regions within the same nanoparticle. Theoreticalmore » calculations further provide insights into the electronic nature of N–O bond activation of the reactant (resazurin) adsorbed on bimetallic sites. Subparticle activity correlation between bimetallic enhancement and monometallic activity suggests that the favorable locations to construct bimetallic sites are those monometallic sites with higher activity, leading to a strategy for making effective bimetallic nanocatalysts. Furthermore, the results highlight the power of super-resolution catalysis imaging in gaining insights that could help improve nanocatalysts.« less

  4. Design and use of nanostructured single-site heterogeneous catalysts for the selective transformation of fine chemicals.

    PubMed

    Dal Santo, Vladimiro; Liguori, Francesca; Pirovano, Claudio; Guidotti, Matteo

    2010-05-26

    Nanostructured single-site heterogeneous catalysts possess the advantages of classical solid catalysts, in terms of easy recovery and recycling, together with a defined tailored chemical and steric environment around the catalytically active metal site. The use of inorganic oxide supports with selected shape and porosity at a nanometric level may have a relevant impact on the regio- and stereochemistry of the catalytic reaction. Analogously, by choosing the optimal preparation techniques to obtain spatially isolated and well-characterised active sites, it is possible to achieve performances that are comparable to (or, in the most favourable cases, better than) those obtained with homogeneous systems. Such catalysts are therefore particularly suitable for the transformation of highly-functionalised fine chemicals and some relevant examples where high chemo-, regio- and stereoselectivity are crucial will be described.

  5. Immersion freezing of supermicron mineral dust particles: freezing results, testing different schemes for describing ice nucleation, and ice nucleation active site densities.

    PubMed

    Wheeler, M J; Mason, R H; Steunenberg, K; Wagstaff, M; Chou, C; Bertram, A K

    2015-05-14

    Ice nucleation on mineral dust particles is known to be an important process in the atmosphere. To accurately implement ice nucleation on mineral dust particles in atmospheric simulations, a suitable theory or scheme is desirable to describe laboratory freezing data in atmospheric models. In the following, we investigated ice nucleation by supermicron mineral dust particles [kaolinite and Arizona Test Dust (ATD)] in the immersion mode. The median freezing temperature for ATD was measured to be approximately -30 °C compared with approximately -36 °C for kaolinite. The freezing results were then used to test four different schemes previously used to describe ice nucleation in atmospheric models. In terms of ability to fit the data (quantified by calculating the reduced chi-squared values), the following order was found for ATD (from best to worst): active site, pdf-α, deterministic, single-α. For kaolinite, the following order was found (from best to worst): active site, deterministic, pdf-α, single-α. The variation in the predicted median freezing temperature per decade change in the cooling rate for each of the schemes was also compared with experimental results from other studies. The deterministic model predicts the median freezing temperature to be independent of cooling rate, while experimental results show a weak dependence on cooling rate. The single-α, pdf-α, and active site schemes all agree with the experimental results within roughly a factor of 2. On the basis of our results and previous results where different schemes were tested, the active site scheme is recommended for describing the freezing of ATD and kaolinite particles. We also used our ice nucleation results to determine the ice nucleation active site (INAS) density for the supermicron dust particles tested. Using the data, we show that the INAS densities of supermicron kaolinite and ATD particles studied here are smaller than the INAS densities of submicron kaolinite and ATD particles previously reported in the literature.

  6. Direct Binding to Replication Protein A (RPA)-coated Single-stranded DNA Allows Recruitment of the ATR Activator TopBP1 to Sites of DNA Damage*

    PubMed Central

    Acevedo, Julyana; Yan, Shan; Michael, W. Matthew

    2016-01-01

    A critical event for the ability of cells to tolerate DNA damage and replication stress is activation of the ATR kinase. ATR activation is dependent on the BRCT (BRCA1 C terminus) repeat-containing protein TopBP1. Previous work has shown that recruitment of TopBP1 to sites of DNA damage and stalled replication forks is necessary for downstream events in ATR activation; however, the mechanism for this recruitment was not known. Here, we use protein binding assays and functional studies in Xenopus egg extracts to show that TopBP1 makes a direct interaction, via its BRCT2 domain, with RPA-coated single-stranded DNA. We identify a point mutant that abrogates this interaction and show that this mutant fails to accumulate at sites of DNA damage and that the mutant cannot activate ATR. These data thus supply a mechanism for how the critical ATR activator, TopBP1, senses DNA damage and stalled replication forks to initiate assembly of checkpoint signaling complexes. PMID:27129245

  7. Engineering Single-Atom Cobalt Catalysts toward Improved Electrocatalysis.

    PubMed

    Wan, Gang; Yu, Pengfei; Chen, Hangrong; Wen, Jianguo; Sun, Cheng-Jun; Zhou, Hua; Zhang, Nian; Li, Qianru; Zhao, Wanpeng; Xie, Bing; Li, Tao; Shi, Jianlin

    2018-04-01

    The development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition-metal sites in carbon as noble-metal-free candidates. Recently, the discovery of single-atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal-adsorbates interactions in single-atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X-ray spectroscopic and electrochemical studies. The as-designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt-based catalysts. More importantly, the illustration of the active sites in SAC indicates metal-natured catalytic sites and a media-dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single-atom catalysts design and electrocatalytic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering.

    PubMed

    Boissel, Sandrine; Jarjour, Jordan; Astrakhan, Alexander; Adey, Andrew; Gouble, Agnès; Duchateau, Philippe; Shendure, Jay; Stoddard, Barry L; Certo, Michael T; Baker, David; Scharenberg, Andrew M

    2014-02-01

    Rare-cleaving endonucleases have emerged as important tools for making targeted genome modifications. While multiple platforms are now available to generate reagents for research applications, each existing platform has significant limitations in one or more of three key properties necessary for therapeutic application: efficiency of cleavage at the desired target site, specificity of cleavage (i.e. rate of cleavage at 'off-target' sites), and efficient/facile means for delivery to desired target cells. Here, we describe the development of a single-chain rare-cleaving nuclease architecture, which we designate 'megaTAL', in which the DNA binding region of a transcription activator-like (TAL) effector is used to 'address' a site-specific meganuclease adjacent to a single desired genomic target site. This architecture allows the generation of extremely active and hyper-specific compact nucleases that are compatible with all current viral and nonviral cell delivery methods.

  9. Multiple cis-acting elements involved in up-regulation of a cytochrome P450 gene conferring resistance to deltamethrin in smal brown planthopper, Laodelphax striatellus (Fallén).

    PubMed

    Pu, Jian; Sun, Haina; Wang, Jinda; Wu, Min; Wang, Kangxu; Denholm, Ian; Han, Zhaojun

    2016-11-01

    As well as arising from single point mutations in binding sites or detoxifying enzymes, it is likely that insecticide resistance mechanisms are frequently controlled by multiple genetic factors, resulting in resistance being inherited as a quantitative trait. However, empirical evidence for this is still rare. Here we analyse the causes of up-regulation of CYP6FU1, a monoxygenase implicated in resistance to deltamethrin in the rice pest Laodelphax striatellus. The 5'-flanking region of this gene was cloned and sequenced from individuals of a susceptible and a resistant strain. A luminescent reporter assay was used to evaluate different 5'-flanking regions and their fragments for promoter activity. Mutations enhancing promoter activity in various fragments were characterized, singly and in combination, by site mutation recovery. Nucleotide diversity in flanking sequences was greatly reduced in deltamethrin-resistant insects compared to susceptible ones. Phylogenetic sequence analysis found that CYP6FU1 had five different types of 5'-flanking region. All five types were present in a susceptible strain but only a single type showing the highest promoter activity was present in a resistant strain. Four cis-acting elements were identified whose influence on up-regulation was much more pronounced in combination than when present singly. Of these, two were new transcription factor (TF) binding sites produced by mutations, another one was also a new TF binding site alternated from an existing one, and the fourth was a unique transcription start site. These results demonstrate that multiple cis-acting elements are involved in up-regulating CYP6FU1 to generate a resistance phenotype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Directed evolution to re-adapt a co-evolved network within an enzyme.

    PubMed

    Strafford, John; Payongsri, Panwajee; Hibbert, Edward G; Morris, Phattaraporn; Batth, Sukhjeet S; Steadman, David; Smith, Mark E B; Ward, John M; Hailes, Helen C; Dalby, Paul A

    2012-01-01

    We have previously used targeted active-site saturation mutagenesis to identify a number of transketolase single mutants that improved activity towards either glycolaldehyde (GA), or the non-natural substrate propionaldehyde (PA). Here, all attempts to recombine the singles into double mutants led to unexpected losses of specific activity towards both substrates. A typical trade-off occurred between soluble expression levels and specific activity for all single mutants, but many double mutants decreased both properties more severely suggesting a critical loss of protein stability or native folding. Statistical coupling analysis (SCA) of a large multiple sequence alignment revealed a network of nine co-evolved residues that affected all but one double mutant. Such networks maintain important functional properties such as activity, specificity, folding, stability, and solubility and may be rapidly disrupted by introducing one or more non-naturally occurring mutations. To identify variants of this network that would accept and improve upon our best D469 mutants for activity towards PA, we created a library of random single, double and triple mutants across seven of the co-evolved residues, combining our D469 variants with only naturally occurring mutations at the remaining sites. A triple mutant cluster at D469, E498 and R520 was found to behave synergistically for the specific activity towards PA. Protein expression was severely reduced by E498D and improved by R520Q, yet variants containing both mutations led to improved specific activity and enzyme expression, but with loss of solubility and the formation of inclusion bodies. D469S and R520Q combined synergistically to improve k(cat) 20-fold for PA, more than for any previous transketolase mutant. R520Q also doubled the specific activity of the previously identified D469T to create our most active transketolase mutant to date. Our results show that recombining active-site mutants obtained by saturation mutagenesis can rapidly destabilise critical networks of co-evolved residues, whereas beneficial single mutants can be retained and improved upon by randomly recombining them with natural variants at other positions in the network. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Ti(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands.

  12. Structural Basis for Catalytic Activation of a Serine Recombinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenholtz, Ross A.; Rowland, Sally-J.; Boocock, Martin R.

    2014-10-02

    Sin resolvase is a site-specific serine recombinase that is normally controlled by a complex regulatory mechanism. A single mutation, Q115R, allows the enzyme to bypass the entire regulatory apparatus, such that no accessory proteins or DNA sites are required. Here, we present a 1.86 {angstrom} crystal structure of the Sin Q115R catalytic domain, in a tetrameric arrangement stabilized by an interaction between Arg115 residues on neighboring subunits. The subunits have undergone significant conformational changes from the inactive dimeric state previously reported. The structure provides a new high-resolution view of a serine recombinase active site that is apparently fully assembled, suggestingmore » roles for the conserved active site residues. The structure also suggests how the dimer-tetramer transition is coupled to assembly of the active site. The tetramer is captured in a different rotational substate than that seen in previous hyperactive serine recombinase structures, and unbroken crossover site DNA can be readily modeled into its active sites.« less

  13. Computational active site analysis of molecular pathways to improve functional classification of enzymes.

    PubMed

    Ozyurt, A Sinem; Selby, Thomas L

    2008-07-01

    This study describes a method to computationally assess the function of homologous enzymes through small molecule binding interaction energy. Three experimentally determined X-ray structures and four enzyme models from ornithine cyclo-deaminase, alanine dehydrogenase, and mu-crystallin were used in combination with nine small molecules to derive a function score (FS) for each enzyme-model combination. While energy values varied for a single molecule-enzyme combination due to differences in the active sites, we observe that the binding energies for the entire pathway were proportional for each set of small molecules investigated. This proportionality of energies for a reaction pathway appears to be dependent on the amino acids in the active site and their direct interactions with the small molecules, which allows a function score (FS) to be calculated to assess the specificity of each enzyme. Potential of mean force (PMF) calculations were used to obtain the energies, and the resulting FS values demonstrate that a measurement of function may be obtained using differences between these PMF values. Additionally, limitations of this method are discussed based on: (a) larger substrates with significant conformational flexibility; (b) low homology enzymes; and (c) open active sites. This method should be useful in accurately predicting specificity for single enzymes that have multiple steps in their reactions and in high throughput computational methods to accurately annotate uncharacterized proteins based on active site interaction analysis. 2008 Wiley-Liss, Inc.

  14. A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye-Sensitized Solar Cells.

    PubMed

    Cui, Xiaoju; Xiao, Jianping; Wu, Yihui; Du, Peipei; Si, Rui; Yang, Huaixin; Tian, Huanfang; Li, Jianqi; Zhang, Wen-Hua; Deng, Dehui; Bao, Xinhe

    2016-06-01

    The design of catalysts that are both highly active and stable is always challenging. Herein, we report that the incorporation of single metal active sites attached to the nitrogen atoms in the basal plane of graphene leads to composite materials with superior activity and stability when used as counter electrodes in dye-sensitized solar cells (DSSCs). A series of composite materials based on different metals (Mn, Fe, Co, Ni, and Cu) were synthesized and characterized. Electrochemical measurements revealed that CoN4 /GN is a highly active and stable counter electrode for the interconversion of the redox couple I(-) /I3 (-) . DFT calculations revealed that the superior properties of CoN4 /GN are due to the appropriate adsorption energy of iodine on the confined Co sites, leading to a good balance between adsorption and desorption processes. Its superior electrochemical performance was further confirmed by fabricating DSSCs with CoN4  /GN electrodes, which displayed a better power conversion efficiency than the Pt counterpart. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A role for catalase-peroxidase large loop 2 revealed by deletion mutagenesis: control of active site water and ferric enzyme reactivity.

    PubMed

    Kudalkar, Shalley N; Njuma, Olive J; Li, Yongjiang; Muldowney, Michelle; Fuanta, N Rene; Goodwin, Douglas C

    2015-03-03

    Catalase-peroxidases (KatGs), the only catalase-active members of their superfamily, all possess a 35-residue interhelical loop called large loop 2 (LL2). It is essential for catalase activity, but little is known about its contribution to KatG function. LL2 shows weak sequence conservation; however, its length is nearly identical across KatGs, and its apex invariably makes contact with the KatG-unique C-terminal domain. We used site-directed and deletion mutagenesis to interrogate the role of LL2 and its interaction with the C-terminal domain in KatG structure and catalysis. Single and double substitutions of the LL2 apex had little impact on the active site heme [by magnetic circular dichroism or electron paramagnetic resonance (EPR)] and activity (catalase or peroxidase). Conversely, deletion of a single amino acid from the LL2 apex reduced catalase activity by 80%. Deletion of two or more apex amino acids or all of LL2 diminished catalase activity by 300-fold. Peroxide-dependent but not electron donor-dependent kcat/KM values for deletion variant peroxidase activity were reduced 20-200-fold, and kon for cyanide binding diminished by 3 orders of magnitude. EPR spectra for deletion variants were all consistent with an increase in the level of pentacoordinate high-spin heme at the expense of hexacoordinate high-spin states. Together, these data suggest a shift in the distribution of active site waters, altering the reactivity of the ferric state, toward, among other things, compound I formation. These results identify the importance of LL2 length conservation for maintaining an intersubunit interaction that is essential for an active site water distribution that facilitates KatG catalytic activity.

  16. Site-Specific 64Cu Labeling of the Serine Protease, Active Site Inhibited Factor Seven Azide (FVIIai-N3), Using Copper Free Click Chemistry.

    PubMed

    Jeppesen, Troels E; Kristensen, Lotte K; Nielsen, Carsten H; Petersen, Lars C; Kristensen, Jesper B; Behrens, Carsten; Madsen, Jacob; Kjaer, Andreas

    2018-01-17

    A method for site-specific radiolabeling of the serine protease active site inhibited factor seven (FVIIai) with 64 Cu has been applied using a biorthogonal click reaction. FVIIai binds to tissue factor (TF), a trans-membrane protein involved in hemostasis, angiogenesis, proliferation, cell migration, and survival of cancer cells. First a single azide moiety was introduced in the active site of this 50 kDa protease. Then a NOTA moiety was introduced via a strain promoted azide-alkyne reaction and the corresponding conjugate was labeled with 64 Cu. Binding to TF and the stability was evaluated in vitro. TF targeting capability of the radiolabeled conjugate was tested in vivo by positron emission tomography (PET) imaging in pancreatic human xenograft cancer mouse models with various TF expressions. The conjugate showed good stability (>91% at 16 h), an immunoreactivity of 93.5%, and a mean tumor uptake of 2.1 ± 0.2%ID/g at 15 h post injection. In conclusion, FVIIai was radiolabeled with 64 Cu in single well-defined position of the protein. This method can be utilized to prepare conjugates from serine proteases with the label at a specific position.

  17. Selective alkane activation with single-site atoms on amorphous support

    DOEpatents

    Hock, Adam S.; Schweitzer, Neil M.; Miller, Jeffrey T.; Hu, Bo

    2015-11-24

    The present invention relates generally to catalysts and methods for use in olefin production. More particularly, the present invention relates to novel amorphously supported single-center, Lewis acid metal ions and use of the same as catalysts.

  18. Entrapped Single Tungstate Site in Zeolite for Cooperative Catalysis of Olefin Metathesis with Brønsted Acid Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Pu; Ye, Lin; Sun, Zhenyu

    Industrial olefin metathesis catalysts generally suffer from low reaction rates and require harsh reaction conditions for moderate activities. This is due to their inability to prevent metathesis active sites (MAS) from aggregation and their intrinsic poor adsorption and activation of olefin molecules. Here, isolated tungstate species as single molecular MAS is immobilized inside zeolite pores by Bronsted acid sites (BAS) on the inner surface. It is demonstrated for the first time that unoccupied BAS in atomic proximity to MAS enhance olefin adsorption and greatly facilitate the formation of metallocycle intermediates in a stereospecific manner. Thus, effective cooperative catalysis takes placemore » over the BAS-MAS pair. In consequence, for the cross-metathesis of ethene and trans-2-butene to propene, under the same mild reaction conditions, the propene production rate over WOx/USY is ca. 7,300 times that over the industrial WO3/SiO2 based catalyst. A propene yield up to 79% (80% selectivity) without observable deactivation was obtained over WOx/USY for a wide range of reaction conditions.« less

  19. Atypical Thioredoxins in Poplar: The Glutathione-Dependent Thioredoxin-Like 2.1 Supports the Activity of Target Enzymes Possessing a Single Redox Active Cysteine1[W

    PubMed Central

    Chibani, Kamel; Tarrago, Lionel; Gualberto, José Manuel; Wingsle, Gunnar; Rey, Pascal; Jacquot, Jean-Pierre; Rouhier, Nicolas

    2012-01-01

    Plant thioredoxins (Trxs) constitute a complex family of thiol oxidoreductases generally sharing a WCGPC active site sequence. Some recently identified plant Trxs (Clot, Trx-like1 and -2, Trx-lilium1, -2, and -3) display atypical active site sequences with altered residues between the two conserved cysteines. The transcript expression patterns, subcellular localizations, and biochemical properties of some representative poplar (Populus spp.) isoforms were investigated. Measurements of transcript levels for the 10 members in poplar organs indicate that most genes are constitutively expressed. Using transient expression of green fluorescent protein fusions, Clot and Trx-like1 were found to be mainly cytosolic, whereas Trx-like2.1 was located in plastids. All soluble recombinant proteins, except Clot, exhibited insulin reductase activity, although with variable efficiencies. Whereas Trx-like2.1 and Trx-lilium2.2 were efficiently regenerated both by NADPH-Trx reductase and glutathione, none of the proteins were reduced by the ferredoxin-Trx reductase. Only Trx-like2.1 supports the activity of plastidial thiol peroxidases and methionine sulfoxide reductases employing a single cysteine residue for catalysis and using a glutathione recycling system. The second active site cysteine of Trx-like2.1 is dispensable for this reaction, indicating that the protein possesses a glutaredoxin-like activity. Interestingly, the Trx-like2.1 active site replacement, from WCRKC to WCGPC, suppresses its capacity to use glutathione as a reductant but is sufficient to allow the regeneration of target proteins employing two cysteines for catalysis, indicating that the nature of the residues composing the active site sequence is crucial for substrate selectivity/recognition. This study provides another example of the cross talk existing between the glutathione/glutaredoxin and Trx-dependent pathways. PMID:22523226

  20. Effect of the mechanical activation of a cathode on the structure of electrolytic copper single crystals

    NASA Astrophysics Data System (ADS)

    Gryzunova, N. N.; Vikarchuk, A. A.; Gryzunov, A. M.; Denisova, A. G.

    2017-10-01

    The morphology of the electrolytic copper single crystals formed under the mechanical activation of a cathode is described. Pentagonal pyramids and conical microcrystals with high growth steps are shown to form during electrocrystallization under these conditions. It is experimentally found that microcrystals grow on disclination defects, in particular, at the sites of termination of twin growth boundaries, and mechanical activation causes the formation of such defects.

  1. Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands.

    PubMed

    Salter, Jason D; Smith, Harold C

    2018-05-23

    The 11-member APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of zinc-dependent cytidine deaminases bind to RNA and single-stranded DNA (ssDNA) and, in specific contexts, modify select (deoxy)cytidines to (deoxy)uridines. In this review, we describe advances made through high-resolution co-crystal structures of APOBECs bound to mono- or oligonucleotides that reveal potential substrate-specific binding sites at the active site and non-sequence-specific nucleic acid binding sites distal to the active site. We also discuss the effect of APOBEC oligomerization on functionality. Future structural studies will need to address how ssDNA binding away from the active site may enhance catalysis and the mechanism by which RNA binding may modulate catalytic activity on ssDNA. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. A single mutation in the hepta-peptide active site of Aspergillus niger PhyA phytase leads to myriad of biochemical changes

    USDA-ARS?s Scientific Manuscript database

    The active site motif of proteins belonging to ‘Histidine Acid Phosphatase’ (HAP) contains a hepta-peptide region, RHGXRXP. A close comparison among fungal and yeast HAPs has revealed the fourth residue of the hepta-peptide to be E instead of A, which is the case with A. niger phyA phytase. However,...

  3. Numbers of presynaptic Ca2+ channel clusters match those of functionally defined vesicular docking sites in single central synapses.

    PubMed

    Miki, Takafumi; Kaufmann, Walter A; Malagon, Gerardo; Gomez, Laura; Tabuchi, Katsuhiko; Watanabe, Masahiko; Shigemoto, Ryuichi; Marty, Alain

    2017-06-27

    Many central synapses contain a single presynaptic active zone and a single postsynaptic density. Vesicular release statistics at such "simple synapses" indicate that they contain a small complement of docking sites where vesicles repetitively dock and fuse. In this work, we investigate functional and morphological aspects of docking sites at simple synapses made between cerebellar parallel fibers and molecular layer interneurons. Using immunogold labeling of SDS-treated freeze-fracture replicas, we find that Ca v 2.1 channels form several clusters per active zone with about nine channels per cluster. The mean value and range of intersynaptic variation are similar for Ca v 2.1 cluster numbers and for functional estimates of docking-site numbers obtained from the maximum numbers of released vesicles per action potential. Both numbers grow in relation with synaptic size and decrease by a similar extent with age between 2 wk and 4 wk postnatal. Thus, the mean docking-site numbers were 3.15 at 2 wk (range: 1-10) and 2.03 at 4 wk (range: 1-4), whereas the mean numbers of Ca v 2.1 clusters were 2.84 at 2 wk (range: 1-8) and 2.37 at 4 wk (range: 1-5). These changes were accompanied by decreases of miniature current amplitude (from 93 pA to 56 pA), active-zone surface area (from 0.0427 μm 2 to 0.0234 μm 2 ), and initial success rate (from 0.609 to 0.353), indicating a tightening of synaptic transmission with development. Altogether, these results suggest a close correspondence between the number of functionally defined vesicular docking sites and that of clusters of voltage-gated calcium channels.

  4. Human butyrylcholinesterase components differ in aryl acylamidase activity.

    PubMed

    Montenegro, María F; María, T Moral-Naranjo; de la Cadena, María Páez; Campoy, Francisco J; Muñoz-Delgado, Encarnación; Vidal, Cecilio J

    2008-04-01

    Apart from its esterase activity, butyrylcholinesterase (BuChE) displays aryl acylamidase (AAA) activity able to hydrolyze o-nitroacetanilide (ONA) and its trifluoro-derivative (F-ONA). We report here that, despite amidase and esterase sites residing in the same protein, in human samples depleted of acetylcholinesterase the ratio of amidase to esterase activity varied depending on the source of BuChE. The much faster degradation of ONA and F-ONA by BuChE monomers (G1) of colon and kidney than by the tetramers (G4) suggests aggregation-driven differences in the AAA site between single and polymerized subunits. The similar ratio of F-ONAto butyrylthiocholine hydrolysis by serum G1 and G4 forms support structural differences in the amidase site according to the source of BuChE. The changing ratios of amidase to esterase activities in the human sources probably arise from post-translational modifications in BuChE subunits, the specific proportion of monomers and oligomers and the variable capacity of the tetramers for degrading ONA and F-ONA. The elevated amidase activity of BuChE monomers and the scant activity of the tetramers justify the occurrence of single BuChE subunits in cells as a means to sustain the AAA activity of BuChE which otherwise could be lost by tetramerization.

  5. Cloning and sequence analysis of a cDNA clone coding for the mouse GM2 activator protein.

    PubMed Central

    Bellachioma, G; Stirling, J L; Orlacchio, A; Beccari, T

    1993-01-01

    A cDNA (1.1 kb) containing the complete coding sequence for the mouse GM2 activator protein was isolated from a mouse macrophage library using a cDNA for the human protein as a probe. There was a single ATG located 12 bp from the 5' end of the cDNA clone followed by an open reading frame of 579 bp. Northern blot analysis of mouse macrophage RNA showed that there was a single band with a mobility corresponding to a size of 2.3 kb. We deduce from this that the mouse mRNA, in common with the mRNA for the human GM2 activator protein, has a long 3' untranslated sequence of approx. 1.7 kb. Alignment of the mouse and human deduced amino acid sequences showed 68% identity overall and 75% identity for the sequence on the C-terminal side of the first 31 residues, which in the human GM2 activator protein contains the signal peptide. Hydropathicity plots showed great similarity between the mouse and human sequences even in regions of low sequence similarity. There is a single N-glycosylation site in the mouse GM2 activator protein sequence (Asn151-Phe-Thr) which differs in its location from the single site reported in the human GM2 activator protein sequence (Asn63-Val-Thr). Images Figure 1 PMID:7689829

  6. Assessing the challenges of multi-scope clinical research sites: an example from NIH HIV/AIDS clinical trials networks.

    PubMed

    Rosas, Scott R; Cope, Marie T; Villa, Christie; Motevalli, Mahnaz; Utech, Jill; Schouten, Jeffrey T

    2014-04-01

    Large-scale, multi-network clinical trials are seen as a means for efficient and effective utilization of resources with greater responsiveness to new discoveries. Formal structures instituted within the National Institutes of Health (NIH) HIV/AIDS Clinical Trials facilitate collaboration and coordination across networks and emphasize an integrated approach to HIV/AIDS vaccine, prevention and therapeutics clinical trials. This study examines the joint usage of clinical research sites as means of gaining efficiency, extending capacity, and adding scientific value to the networks. A semi-structured questionnaire covering eight clinical management domains was administered to 74 (62% of sites) clinical site coordinators at single- and multi-network sites to identify challenges and efficiencies related to clinical trials management activities and coordination with multi-network units. Overall, respondents at multi-network sites did not report more challenges than single-network sites, but did report unique challenges to overcome including in the areas of study prioritization, community engagement, staff education and training, and policies and procedures. The majority of multi-network sites reported that such affiliations do allow for the consolidation and cost-sharing of research functions. Suggestions for increasing the efficiency or performance of multi-network sites included streamlining standards and requirements, consolidating protocol activation methods, using a single cross-network coordinating centre, and creating common budget and payment mechanisms. The results of this assessment provide important information to consider in the design and management of multi-network configurations for the NIH HIV/AIDS Clinical Trials Networks, as well as others contemplating and promoting the concept of multi-network settings. © 2013 John Wiley & Sons Ltd.

  7. A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification

    PubMed Central

    Florio, Marta; Namba, Takashi; Pääbo, Svante; Hiller, Michael; Huttner, Wieland B.

    2016-01-01

    The gene ARHGAP11B promotes basal progenitor amplification and is implicated in neocortex expansion. It arose on the human evolutionary lineage by partial duplication of ARHGAP11A, which encodes a Rho guanosine triphosphatase–activating protein (RhoGAP). However, a lack of 55 nucleotides in ARHGAP11B mRNA leads to loss of RhoGAP activity by GAP domain truncation and addition of a human-specific carboxy-terminal amino acid sequence. We show that these 55 nucleotides are deleted by mRNA splicing due to a single C→G substitution that creates a novel splice donor site. We reconstructed an ancestral ARHGAP11B complementary DNA without this substitution. Ancestral ARHGAP11B exhibits RhoGAP activity but has no ability to increase basal progenitors during neocortex development. Hence, a single nucleotide substitution underlies the specific properties of ARHGAP11B that likely contributed to the evolutionary expansion of the human neocortex. PMID:27957544

  8. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    PubMed Central

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-01-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals. PMID:27574182

  9. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturatedmore » metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.« less

  10. Evaluation of operating room suite efficiency in the Veterans Health Administration system by using data-envelopment analysis.

    PubMed

    Basson, Marc D; Butler, Timothy

    2006-11-01

    Operating room (OR) activity transcends single ratios such as cases/room, but weighting multiple inputs and outputs may be arbitrary. Data-envelopment analysis (DEA) is a novel technique by which each facility is analyzed by the weightings that optimize its score. We performed DEA analysis of 23 Veterans Health Administration annual OR activity; 87,180 cases were performed, 24 publications generated, and 560 trainee-years of education delivered, in 168 ORs over 166,377 hours by 1,384 full-time equivalents of surgical and anesthesia providers and 523 nonproviders. Varying analyzed parameters produced similar efficiency rankings, with individual differences suggesting possible inefficiencies. We characterized returns to scale for efficient sites, suggesting whether patient flow might be efficiently further increased through these sites. We matched inefficient sites to similar efficient sites for comparison and suggested resource alterations to increase efficiency. Broader DEA application might characterize OR efficiency more informatively than conventional single-ratio rank ordering.

  11. The GH51 α-l-arabinofuranosidase from Paenibacillus sp. THS1 is multifunctional, hydrolyzing main-chain and side-chain glycosidic bonds in heteroxylans.

    PubMed

    Bouraoui, Hanen; Desrousseaux, Marie-Laure; Ioannou, Eleni; Alvira, Pablo; Manaï, Mohamed; Rémond, Caroline; Dumon, Claire; Fernandez-Fuentes, Narcis; O'Donohue, Michael J

    2016-01-01

    Conceptually, multi-functional enzymes are attractive because in the case of complex polymer hydrolysis having two or more activities defined by a single enzyme offers the possibility of synergy and reduced enzyme cocktail complexity. Nevertheless, multi-functional enzymes are quite rare and are generally multi-domain assemblies with each activity being defined by a separate protein module. However, a recent report described a GH51 arabinofuranosidase from Alicyclobacillus sp. A4 that displays both α-l-arabinofuranosidase and β-d-xylanase activities, which are defined by a single active site. Following on from this, we describe in detail another multi-functional GH51 arabinofuranosidase and discuss the molecular basis of multifunctionality. THSAbf is a GH51 α-l-arabinofuranosidase. Characterization revealed that THSAbf is active up to 75 °C, stable at 60 °C and active over a broad pH range (4-7). THSAbf preferentially releases para-nitrophenyl from the l-arabinofuranoside (k cat/K M = 1050 s(-1) mM(-1)) and to some extent from d-galactofuranoside and d-xyloside. THSAbf is active on 4-O-methylglucuronoxylans from birch and beechwood (10.8 and 14.4 U mg(-1), respectively) and on sugar beet branched and linear arabinans (1.1 ± 0.24 and 1.8 ± 0.1 U mg(-1)). Further investigation revealed that like the Alicyclobacillus sp. A4 α-l-arabinofuranosidase, THSAbf also displays endo-xylanase activity, cleaving β-1,4 bonds in heteroxylans. The optimum pH for THASAbf activity is substrate dependent, but ablation of the catalytic nucleophile caused a general loss of activity, indicating the involvement of a single active center. Combining the α-l-arabinofuranosidase with a GH11 endoxylanase did not procure synergy. The molecular modeling of THSAbf revealed a wide active site cleft and clues to explain multi-functionality. The discovery of single active site, multifunctional enzymes such as THSAbf opens up exciting avenues for enzyme engineering and the development of new biomass-degrading cocktails that could considerably reduce enzyme production costs.

  12. Loop L1 governs the DNA-binding specificity and order for RecA-catalyzed reactions in homologous recombination and DNA repair

    PubMed Central

    Shinohara, Takeshi; Ikawa, Shukuko; Iwasaki, Wakana; Hiraki, Toshiki; Hikima, Takaaki; Mikawa, Tsutomu; Arai, Naoto; Kamiya, Nobuo; Shibata, Takehiko

    2015-01-01

    In all organisms, RecA-family recombinases catalyze homologous joint formation in homologous genetic recombination, which is essential for genome stability and diversification. In homologous joint formation, ATP-bound RecA/Rad51-recombinases first bind single-stranded DNA at its primary site and then interact with double-stranded DNA at another site. The underlying reason and the regulatory mechanism for this conserved binding order remain unknown. A comparison of the loop L1 structures in a DNA-free RecA crystal that we originally determined and in the reported DNA-bound active RecA crystals suggested that the aspartate at position 161 in loop L1 in DNA-free RecA prevented double-stranded, but not single-stranded, DNA-binding to the primary site. This was confirmed by the effects of the Ala-replacement of Asp-161 (D161A), analyzed directly by gel-mobility shift assays and indirectly by DNA-dependent ATPase activity and SOS repressor cleavage. When RecA/Rad51-recombinases interact with double-stranded DNA before single-stranded DNA, homologous joint-formation is suppressed, likely by forming a dead-end product. We found that the D161A-replacement reduced this suppression, probably by allowing double-stranded DNA to bind preferentially and reversibly to the primary site. Thus, Asp-161 in the flexible loop L1 of wild-type RecA determines the preference for single-stranded DNA-binding to the primary site and regulates the DNA-binding order in RecA-catalyzed recombinase reactions. PMID:25561575

  13. Isospecific propylene polymerization with in situ generated bis(phenoxy-amine)zirconium and hafnium single site catalysts.

    PubMed

    Makio, Haruyuki; Prasad, Aitha Vishwa; Terao, Hiroshi; Saito, Junji; Fujita, Terunori

    2013-07-07

    Bis(phenoxy-imine) Zr and Hf complexes were activated with (i)Bu3Al or (i)Bu2AlH in conjunction with Ph3CB(C6F5)4 and tested as catalysts for propylene polymerization with emphasis on the enantioselectivity of the isospecific species and the single site polymerization characteristics. The isoselective species was identified as the in situ generated bis(phenoxy-amine) complex whose isoselectivity was sensitive to subtle changes in ligand structure. By employing specific substituents at certain key positions the isotacticity reached an extremely high level comparable to high-end commercial isotactic polypropylenes (Tm > 160 °C). Single site polymerization characteristics depended upon the efficiency and selectivity of the in situ imine reduction which is sensitive to the substituent on the imine nitrogen and the reaction conditions. By using (i)Bu2AlH as a reducing agent, quantitative imine reduction can be achieved with a stoichiometric amount of the reducing agent. This lower alkylaluminum loading is beneficial for the catalyst and significantly enhances the polymerization activity and the molecular weight of the resultant polymer.

  14. Spontaneous and evoked release are independently regulated at individual active zones.

    PubMed

    Melom, Jan E; Akbergenova, Yulia; Gavornik, Jeffrey P; Littleton, J Troy

    2013-10-30

    Neurotransmitter release from synaptic vesicle fusion is the fundamental mechanism for neuronal communication at synapses. Evoked release following an action potential has been well characterized for its function in activating the postsynaptic cell, but the significance of spontaneous release is less clear. Using transgenic tools to image single synaptic vesicle fusion events at individual release sites (active zones) in Drosophila, we characterized the spatial and temporal dynamics of exocytotic events that occur spontaneously or in response to an action potential. We also analyzed the relationship between these two modes of fusion at single release sites. A majority of active zones participate in both modes of fusion, although release probability is not correlated between the two modes of release and is highly variable across the population. A subset of active zones is specifically dedicated to spontaneous release, indicating a population of postsynaptic receptors is uniquely activated by this mode of vesicle fusion. Imaging synaptic transmission at individual release sites also revealed general rules for spontaneous and evoked release, and indicate that active zones with similar release probability can cluster spatially within individual synaptic boutons. These findings suggest neuronal connections contain two information channels that can be spatially segregated and independently regulated to transmit evoked or spontaneous fusion signals.

  15. Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.

    PubMed

    Weng, Meizhi; Deng, Xiongwei; Bao, Wei; Zhu, Li; Wu, Jieyuan; Cai, Yongjun; Jia, Yan; Zheng, Zhongliang; Zou, Guolin

    2015-09-25

    Nattokinase (NK), a bacterial serine protease from Bacillus subtilis var. natto, is a potential cardiovascular drug exhibiting strong fibrinolytic activity. To broaden its commercial and medical applications, we constructed a single-mutant (I31L) and two double-mutants (M222A/I31L and T220S/I31L) by site-directed mutagenesis. Active enzymes were expressed in Escherichia coli with periplasmic secretion and were purified to homogeneity. The kinetic parameters of enzymes were examined by spectroscopy assay and isothermal titration calorimetry (ITC), and their fibrinolytic activities were determined by fibrin plate method. The substitution of Leu(31) for Ile(31) resulted in about 2-fold enhancement of catalytic efficiency (Kcat/KM) compared with wild-type NK. The specific activities of both double-mutants (M222A/I31L and T220S/I31L) were significantly increased when compared with the single-mutants (M222A and T220S) and the oxidative stability of M222A/I31L mutant was enhanced with respect to wild-type NK. This study demonstrates the feasibility of improving activity of NK by site-directed mutagenesis and shows successful protein engineering cases to improve the activity of NK as a potent therapeutic agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosingmore » the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).« less

  17. Silica-supported isolated gallium sites as highly active, selective and stable propane dehydrogenation catalysts† †Electronic supplementary information (ESI) available: Experimental details, material characterization data, catalytic measurement details and crystallographic details. CCDC 1499756. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc05178b Click here for additional data file. Click here for additional data file.

    PubMed Central

    Searles, Keith; Siddiqi, Georges; Safonova, Olga V.

    2017-01-01

    Single-site gallium centers on the surface of silica are prepared via grafting of [Ga(OSi(OtBu)3)3(THF)] on SiO2–700 followed by a thermolysis step. The resulting surface species corresponds to well-defined tetra-coordinate gallium single-sites, [( 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 SiO)3Ga(XOSi)] (X = –H or Si) according to IR, X-ray absorption near-edge structure and extended X-ray absorption fine structure analysis. These gallium sites show high activity, selectivity and stability for propane dehydrogenation with an initial turnover frequency of 20 per h per gallium center, propylene selectivity of ≥93% and remarkable stability over 20 h. The stability of the catalyst probably results from site-isolation of the active site on a non-reducible support such as silica, diminishing facile reduction typical of Ga2O3-based catalysts. PMID:28553501

  18. Passive colloids work together to become Active

    NASA Astrophysics Data System (ADS)

    Kandula, Hima Nagamanasa; Wang, Wei; Zhang, Jie; Wu, Huanxin; Han, Ming; Luijten, Erik; Granick, Steve

    In recent years there is growing body of research to design self-propelled colloids to gain insights into non-equilibrium systems including living matter. While most active colloids developed hitherto entail prefabrication of Janus colloids and possess single fixed active site, we present one simple system where active colloids are formed in-situ naturally with multiple active sites and are reversible as well as reconfigurable. A binary mixture of Brownian colloids which have opposite polarizations when subjected to an AC electric field spontaneously assemble into clusters which are propelled by asymmetric induced charge electro osmosis. We find that tuning the relative sizes of the two species allows for the control over the number of active sites. More interestingly, the patches are dynamic enabling reconfiguration of the active cluster. Consequently, the clusters are active not only in motion but also in their structure.

  19. A comparison of single- and multi-site calibration and validation: a case study of SWAT in the Miyun Reservoir watershed, China

    NASA Astrophysics Data System (ADS)

    Bai, Jianwen; Shen, Zhenyao; Yan, Tiezhu

    2017-09-01

    An essential task in evaluating global water resource and pollution problems is to obtain the optimum set of parameters in hydrological models through calibration and validation. For a large-scale watershed, single-site calibration and validation may ignore spatial heterogeneity and may not meet the needs of the entire watershed. The goal of this study is to apply a multi-site calibration and validation of the Soil andWater Assessment Tool (SWAT), using the observed flow data at three monitoring sites within the Baihe watershed of the Miyun Reservoir watershed, China. Our results indicate that the multi-site calibration parameter values are more reasonable than those obtained from single-site calibrations. These results are mainly due to significant differences in the topographic factors over the large-scale area, human activities and climate variability. The multi-site method involves the division of the large watershed into smaller watersheds, and applying the calibrated parameters of the multi-site calibration to the entire watershed. It was anticipated that this case study could provide experience of multi-site calibration in a large-scale basin, and provide a good foundation for the simulation of other pollutants in followup work in the Miyun Reservoir watershed and other similar large areas.

  20. Chemical repair activity of free radical scavenger edaravone: reduction reactions with dGMP hydroxyl radical adducts and suppression of base lesions and AP sites on irradiated plasmid DNA

    PubMed Central

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Lin, Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu, Haiying; Katsumura, Yosuke

    2015-01-01

    Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 108 dm3 mol−1 s−1 and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10–1000 μmol dm−3) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid. PMID:25212600

  1. Housing Retention in Single-Site Housing First for Chronically Homeless Individuals With Severe Alcohol Problems

    PubMed Central

    Malone, Daniel K.; Clifasefi, Seema L.

    2013-01-01

    Objectives. We studied housing retention and its predictors in the single-site Housing First model. Methods. Participants (n = 111) were chronically homeless people with severe alcohol problems who lived in a single-site Housing First program and participated in a larger nonrandomized controlled trial (2005–2008) conducted in Seattle, Washington. At baseline, participants responded to self-report questionnaires assessing demographic, illness burden, alcohol and other drug use, and psychiatric variables. Housing status was recorded over 2 years. Results. Participants were interested in housing, although a sizable minority did not believe they would be able to maintain abstinence-based housing. Only 23% of participants returned to homelessness during the 2-year follow-up. Commonly cited risk factors—alcohol and other drug use, illness burden, psychiatric symptoms, and homelessness history—did not predict resumed homelessness. Active drinkers were more likely to stay in this housing project than nondrinkers. Conclusions. We found that single-site Housing First programming fills a gap in housing options for chronically homeless people with severe alcohol problems. PMID:24148063

  2. Towards optical control of single blood platelet activation

    NASA Astrophysics Data System (ADS)

    Spiryova, Darya V.; Karmatskih, Oleg Yu.; Vorob'ev, Alexei Yu.; Moskalensky, Alexander E.

    2018-04-01

    Blood platelets play a pivotal role in blood coagulation and in other normal and pathological processes. The understanding of fundamental mechanisms underlying their functions is very important for diagnostics and treatment. Single-cell experiments are needed for this purpose, which are complicated by insufficient spatiotemporal precision of conventional activation protocols. We present an approach to trigger single platelet activation optically, without the need of reagent mixing. This is achieved using photolabile compound, which rapidly delivers epinephrine upon UV irradiation. We demonstrated the applicability of the technique to rapidly induce platelet activation for studying dynamics of activation. The presented method may give novel fundamental knowledge about platelet functions and facilitate current research of their ability to deliver drugs to tumors or vascular injury sites.

  3. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiO x domains are titrated on TiO x–SiO 2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiO x, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H 2O 2 activation occurs. We use this method to determine the active sitemore » densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h -1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.« less

  4. Effect of single DNA lesions on in vitro replication with DNA polymerase III holoenzyme. Comparison with other polymerases.

    PubMed

    Belguise-Valladier, P; Maki, H; Sekiguchi, M; Fuchs, R P

    1994-02-11

    In the present work, we have studied in vitro replication of N-2-acetylaminofluorene (AAF) or cis-diamminedichloroplatinum II (cis-DDP) single modified DNA templates. We used the holoenzyme (pol III HE) or the alpha subunit of DNA polymerase III, which is involved in SOS mutagenesis, and other DNA polymerases in order to compare enzymes having different biological roles and properties. Single-stranded oligonucleotides (63-mer) bearing a single AAF adduct at one of the different guanine residues of the NarI sequence (-G1G2CG3CC-) have been used in primer extension assays. Site-specifically platinated 5'd(ApG) or 5'd(GpG) oligonucleotides were constructed and similarly used in primer extension assays. In all cases, irrespective of both the chemical nature of the lesion (i.e. AAF or cis-DDP) and its local sequence context (i.e. the 3 different sites for AAF adducts within the NarI site) replication by pol III HE and pol I Klenow fragment (pol I Kf) stops one base prior to the adduct site. Removal of the 3'-->5' proofreading activity alone was not sufficient to trigger bypass of DNA lesions. Indeed, when proofreading activity of pol I is inactivated by a point mutation (pol I Kf (exo-)), the major replication product corresponds to the position opposite the adduct site showing that incorporation across from the AAF adduct is possible. These results suggest that a polymerase with proofreading activity is actually found to stop one nucleotide before the adduct not because it is unable to insert a nucleotide opposite the adduct but most likely because elongation past the adduct is strongly impaired, giving thus an increased time frame for the proofreading exonuclease to remove the base inserted across from the adduct. These results are discussed in terms of their implications for error-free and error-prone bypass in vivo.

  5. A Comprehensive Study of Formic Acid Oxidation on Palladium Nanocrystals with Different Types of Facets and Twin Defects

    DOE PAGES

    Choi, Sang-Il; Herron, Jeffrey A.; Scaranto, Jessica; ...

    2015-04-13

    Palladium has been recognized as the best anodic, monometallic electrocatalyst for the formic acid oxidation (FAO) reaction in a direct formic acid fuel cell. Here we report a systematic study of FAO on a variety of Pd nanocrystals, including cubes, right bipyramids, octahedra, tetrahedra, decahedra, and icosahedra. These nanocrystals were synthesized with approximately the same size, but different types of facets and twin defects on their surfaces. Our measurements indicate that the Pd nanocrystals enclosed by {100} facets have higher specific activities than those enclosed by {111} facets, in agreement with prior observations for Pd single-crystal substrates. If comparing nanocrystalsmore » predominantly enclosed by a specific type of facet, {100} or {111}, those with twin defects displayed greatly enhanced FAO activities compared to their single-crystal counterparts. To rationalize these experimental results, we performed periodic, self-consistent DFT calculations on model single-crystal substrates of Pd, representing the active sites present in the nanocrystals used in the experiments. The calculation results suggest that the enhancement of FAO activity on defect regions, represented by Pd(211) sites, compared to the activity of both Pd(100) and Pd(111) surfaces, could be attributed to an increased flux through the HCOO-mediated pathway rather than the COOH-mediated pathway on Pd(211). Since COOH has been identified as a precursor to CO, a site-poisoning species, a lower coverage of CO at the defect regions will lead to a higher activity for the corresponding nanocrystal catalysts, containing those defect regions.« less

  6. Cobalt-Bridged Ionic Liquid Polymer on a Carbon Nanotube for Enhanced Oxygen Evolution Reaction Activity.

    PubMed

    Ding, Yuxiao; Klyushin, Alexander; Huang, Xing; Jones, Travis; Teschner, Detre; Girgsdies, Frank; Rodenas, Tania; Schlögl, Robert; Heumann, Saskia

    2018-03-19

    By taking inspiration from the catalytic properties of single-site catalysts and the enhancement of performance through ionic liquids on metal catalysts, we exploited a scalable way to place single cobalt ions on a carbon-nanotube surface bridged by polymerized ionic liquid. Single dispersed cobalt ions coordinated by ionic liquid are used as heterogeneous catalysts for the oxygen evolution reaction (OER). Performance data reveals high activity and stable operation without chemical instability. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Systematic Functional Analysis of Active-Site Residues in l-Threonine Dehydrogenase from Thermoplasma volcanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.

    Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less

  8. Systematic Functional Analysis of Active-Site Residues in l-Threonine Dehydrogenase from Thermoplasma volcanium

    DOE PAGES

    Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.; ...

    2017-07-07

    Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less

  9. Single cell visualization of transcription kinetics variance of highly mobile identical genes using 3D nanoimaging

    PubMed Central

    Annibale, Paolo; Gratton, Enrico

    2015-01-01

    Multi-cell biochemical assays and single cell fluorescence measurements revealed that the elongation rate of Polymerase II (PolII) in eukaryotes varies largely across different cell types and genes. However, there is not yet a consensus whether intrinsic factors such as the position, local mobility or the engagement by an active molecular mechanism of a genetic locus could be the determinants of the observed heterogeneity. Here by employing high-speed 3D fluorescence nanoimaging techniques we resolve and track at the single cell level multiple, distinct regions of mRNA synthesis within the model system of a large transgene array. We demonstrate that these regions are active transcription sites that release mRNA molecules in the nucleoplasm. Using fluctuation spectroscopy and the phasor analysis approach we were able to extract the local PolII elongation rate at each site as a function of time. We measured a four-fold variation in the average elongation between identical copies of the same gene measured simultaneously within the same cell, demonstrating a correlation between local transcription kinetics and the movement of the transcription site. Together these observations demonstrate that local factors, such as chromatin local mobility and the microenvironment of the transcription site, are an important source of transcription kinetics variability. PMID:25788248

  10. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    DOE PAGES

    Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; ...

    2015-03-04

    Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO 2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO 2 catalyst, which is a lower energy pathway than that of CO oxidation at the interfacemore » with the metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.« less

  11. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations.

    PubMed

    Sun, Zhizeng; Mehta, Shrenik C; Adamski, Carolyn J; Gibbs, Richard A; Palzkill, Timothy

    2016-09-12

    CphA is a Zn(2+)-dependent metallo-β-lactamase that efficiently hydrolyzes only carbapenem antibiotics. To understand the sequence requirements for CphA function, single codon random mutant libraries were constructed for residues in and near the active site and mutants were selected for E. coli growth on increasing concentrations of imipenem, a carbapenem antibiotic. At high concentrations of imipenem that select for phenotypically wild-type mutants, the active-site residues exhibit stringent sequence requirements in that nearly all residues in positions that contact zinc, the substrate, or the catalytic water do not tolerate amino acid substitutions. In addition, at high imipenem concentrations a number of residues that do not directly contact zinc or substrate are also essential and do not tolerate substitutions. Biochemical analysis confirmed that amino acid substitutions at essential positions decreased the stability or catalytic activity of the CphA enzyme. Therefore, the CphA active - site is fragile to substitutions, suggesting active-site residues are optimized for imipenem hydrolysis. These results also suggest that resistance to inhibitors targeted to the CphA active site would be slow to develop because of the strong sequence constraints on function.

  12. Heterogeneous Electrocatalyst with Molecular Cobalt Ions Serving as the Center of Active Sites.

    PubMed

    Wang, Jiong; Ge, Xiaoming; Liu, Zhaolin; Thia, Larissa; Yan, Ya; Xiao, Wei; Wang, Xin

    2017-02-08

    Molecular Co 2+ ions were grafted onto doped graphene in a coordination environment, resulting in the formation of molecularly well-defined, highly active electrocatalytic sites at a heterogeneous interface for the oxygen evolution reaction (OER). The S dopants of graphene are suggested to be one of the binding sites and to be responsible for improving the intrinsic activity of the Co sites. The turnover frequency of such Co sites is greater than that of many Co-based nanostructures and IrO 2 catalysts. Through a series of carefully designed experiments, the pathway for the evolution of the Co cation-based molecular catalyst for the OER was further demonstrated on such a single Co-ion site for the first time. The Co 2+ ions were successively oxidized to Co 3+ and Co 4+ states prior to the OER. The sequential oxidation was coupled with the transfer of different numbers of protons/hydroxides and generated an active Co 4+ ═O fragment. A side-on hydroperoxo ligand of the Co 4+ site is proposed as a key intermediate for the formation of dioxygen.

  13. Application of individual foraminifera Mg/Ca and δ18O analyses for paleoceanographic reconstructions in the Bay of Bengal and other active depositional environments

    NASA Astrophysics Data System (ADS)

    Fritz-Endres, T.; Dekens, P.; Fehrenbacher, J. S.; Spero, H. J.; Stine, A.

    2017-12-01

    Paleoceanographic research traditionally focuses on regions where sediment deposition is minimally affected by transport. However, sediment fans near tectonically active regions provide an opportunity to link oceanographic climate to terrestrial processes. Sediment cores recovered during IODP Expedition 354 in the Bay of Bengal include hemipelagic sections that record the history of tectonic uplift and the development of the Indian Monsoon through the last 10 Ma. Although these cores provide a unique opportunity to link marine and terrestrial climate, the complex depositional environment requires that the source of foraminifera is carefully considered before using these proxies to reconstruct oceanographic conditions. Foraminifera in Bengal Fan sediments may have been transported via turbidity currents from the northern Bay of Bengal, where the seasonal variability of SST and SSS is larger compared to the southern Bay of Bengal. We measured single Globigerinoides sacculifer Mg/Ca and δ18O from mudline samples of IODP Site U1454 (8.4°N, 85.5°E, 3721 m water depth) near the modern active channel and Site U1449 (8.4°N, 88.7°E, 3653 m water depth) far from channel activity. We compare these sites to single G. sacculifer from the core-top sample of Site 342KL (20.6°N, 90.1°E, 1256 m water depth) located on the continental shelf. Each foraminifera lives 2-4 weeks and the distribution of 60 to 80 data points reflects the seasonal range of SST and SSS at the location where the foraminifera calcified. Measurements in foraminifera from Site U1449 (away from active channel) are statistically different from the site in the northern Bay of Bengal and more consistent with local conditions. Conversely, foraminifera from the site near the active channel reflect a combined signal of local conditions recorded from the site far from channel activity and those recorded from the continental shelf. This suggests a portion of foraminifera from the active channel site have been transported from the northern Bay of Bengal. Our data show that foraminifera can be used to reconstruct SST and δ18O in this complex depositional environment, but caution must be taken when the down-core lithology indicates turbidites and possible sediment transport

  14. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    PubMed

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal < Pt ox . Pt iso species exhibited a 2-fold greater turnover frequency for CO oxidation than 1 nm Pt metal clusters but share an identical reaction mechanism. We propose the active catalytic sites are cationic interfacial Pt atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.

  15. Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis.

    PubMed Central

    Silverman, P M; Eoyang, L

    1987-01-01

    Acetohydroxyacid synthase I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo[2-14C]pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a sodium dodecyl sulfate-polyacrylamide gel; less than 5% coelectrophoresed with the 11.2-kilodalton IlvN subunit. The stoichiometry of incorporation at nearly complete inactivation was 1 mol of 14C per mol of IlvB polypeptide. These data indicate that bromopyruvate inactivates AHAS I by alkylating an amino acid at or near a single active site located in the IlvB subunit of the enzyme. We confirmed that this alkylation inactivated both AHAS reactions normally catalyzed by AHAS I. These results provide the first direct evidence that AHAS I catalyzes both acetohydroxybutyrate and acetolactate synthesis from the same active site. Images PMID:3294793

  16. Pulse shape discrimination for background rejection in germanium gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Feffer, P. T.; Smith, D. M.; Campbell, R. D.; Primbsch, J. H.; Lin, R. P.

    1989-01-01

    A pulse-shape discrimination (PSD) technique is developed to reject the beta-decay background resulting from activation of Ge gamma-ray detectors by cosmic-ray secondaries. These beta decays are a major source of background at 0.2-2 MeV energies in well shielded Ge detector systems. The technique exploits the difference between the detected current pulse shapes of single- and multiple-site energy depositions within the detector: beta decays are primarily single-site events, while photons at these energies typically Compton scatter before being photoelectrically absorbed to produce multiple-site events. Depending upon the amount of background due to sources other than beta decay, PSD can more than double the detector sensitivity.

  17. Mean field treatment of heterogeneous steady state kinetics

    NASA Astrophysics Data System (ADS)

    Geva, Nadav; Vaissier, Valerie; Shepherd, James; Van Voorhis, Troy

    2017-10-01

    We propose a method to quickly compute steady state populations of species undergoing a set of chemical reactions whose rate constants are heterogeneous. Using an average environment in place of an explicit nearest neighbor configuration, we obtain a set of equations describing a single fluctuating active site in the presence of an averaged bath. We apply this Mean Field Steady State (MFSS) method to a model of H2 production on a disordered surface for which the activation energy for the reaction varies from site to site. The MFSS populations quantitatively reproduce the KMC results across the range of rate parameters considered.

  18. De novo active sites for resurrected Precambrian enzymes

    NASA Astrophysics Data System (ADS)

    Risso, Valeria A.; Martinez-Rodriguez, Sergio; Candel, Adela M.; Krüger, Dennis M.; Pantoja-Uceda, David; Ortega-Muñoz, Mariano; Santoyo-Gonzalez, Francisco; Gaucher, Eric A.; Kamerlin, Shina C. L.; Bruix, Marta; Gavira, Jose A.; Sanchez-Ruiz, Jose M.

    2017-07-01

    Protein engineering studies often suggest the emergence of completely new enzyme functionalities to be highly improbable. However, enzymes likely catalysed many different reactions already in the last universal common ancestor. Mechanisms for the emergence of completely new active sites must therefore either plausibly exist or at least have existed at the primordial protein stage. Here, we use resurrected Precambrian proteins as scaffolds for protein engineering and demonstrate that a new active site can be generated through a single hydrophobic-to-ionizable amino acid replacement that generates a partially buried group with perturbed physico-chemical properties. We provide experimental and computational evidence that conformational flexibility can assist the emergence and subsequent evolution of new active sites by improving substrate and transition-state binding, through the sampling of many potentially productive conformations. Our results suggest a mechanism for the emergence of primordial enzymes and highlight the potential of ancestral reconstruction as a tool for protein engineering.

  19. C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor

    PubMed Central

    Azevedo, Anthony W; Doan, Thuy; Moaven, Hormoz; Sokal, Iza; Baameur, Faiza; Vishnivetskiy, Sergey A; Homan, Kristoff T; Tesmer, John JG; Gurevich, Vsevolod V; Chen, Jeannie; Rieke, Fred

    2015-01-01

    Rod photoreceptors generate measurable responses to single-photon activation of individual molecules of the G protein-coupled receptor (GPCR), rhodopsin. Timely rhodopsin desensitization depends on phosphorylation and arrestin binding, which quenches G protein activation. Rhodopsin phosphorylation has been measured biochemically at C-terminal serine residues, suggesting that these residues are critical for producing fast, low-noise responses. The role of native threonine residues is unclear. We compared single-photon responses from rhodopsin lacking native serine or threonine phosphorylation sites. Contrary to expectation, serine-only rhodopsin generated prolonged step-like single-photon responses that terminated abruptly and randomly, whereas threonine-only rhodopsin generated responses that were only modestly slower than normal. We show that the step-like responses of serine-only rhodopsin reflect slow and stochastic arrestin binding. Thus, threonine sites play a privileged role in promoting timely arrestin binding and rhodopsin desensitization. Similar coordination of phosphorylation and arrestin binding may more generally permit tight control of the duration of GPCR activity. DOI: http://dx.doi.org/10.7554/eLife.05981.001 PMID:25910054

  20. 78 FR 65388 - Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...: Whenever applications are made for early site permits (ESPs), standard design certifications (SDCs). 6. Who... standard NPP designs, and licenses which combine in a single license a construction permit, and an... information collected to assess the adequacy and suitability of an applicant's site, plant design...

  1. 29 CFR 825.111 - Determining whether 50 employees are employed within 75 miles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... office manager, etc., from New Jersey to the job site in Ohio, those workers sent from New Jersey... single building, such as an office building, if separate employers conduct activities within the building. For example, an office building with 50 different businesses as tenants will contain 50 sites of...

  2. 29 CFR 825.111 - Determining whether 50 employees are employed within 75 miles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... office manager, etc., from New Jersey to the job site in Ohio, those workers sent from New Jersey... single building, such as an office building, if separate employers conduct activities within the building. For example, an office building with 50 different businesses as tenants will contain 50 sites of...

  3. 29 CFR 825.111 - Determining whether 50 employees are employed within 75 miles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... office manager, etc., from New Jersey to the job site in Ohio, those workers sent from New Jersey... single building, such as an office building, if separate employers conduct activities within the building. For example, an office building with 50 different businesses as tenants will contain 50 sites of...

  4. 29 CFR 825.111 - Determining whether 50 employees are employed within 75 miles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... office manager, etc., from New Jersey to the job site in Ohio, those workers sent from New Jersey... single building, such as an office building, if separate employers conduct activities within the building. For example, an office building with 50 different businesses as tenants will contain 50 sites of...

  5. Electrochemical studies of a truncated laccase produced in Pichia pastoris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelo-Pujic, M.; Kim, H.H.; Butlin, N.G.

    1999-12-01

    The cDNA that encodes an isoform is laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms ofmore » their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon influences the rate of heterogeneous electron transfer between and electrode and the copper-containing active site. These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis.« less

  6. Diagnostic Tools for Performance Evaluation of Innovative In-Situ Remediation Technologies at Chlorinated Solvent-Contaminated Sites

    DTIC Science & Technology

    2011-07-01

    fluid resistivity , temperature logging, and flow metering at other sites that typically indicated only two or three active fractures in each hole...was consistent with results of conventional borehole fluid resistivity , temperature logging, and flow metering at other sites that typically indicated...following tests were performed in each boundary monitoring well: ■ Gamma Ray; ■ Spontaneous Potential (SP); ■ Single Point Resistance (SPR

  7. Detection of protease and protease activity using a single nanoscrescent SERS probe

    DOEpatents

    Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank

    2013-01-29

    This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.

  8. Detection of protease and protease activity using a single nanocrescent SERS probe

    DOEpatents

    Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank

    2015-09-29

    This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.

  9. In-situ coupling between kinase activities and protein dynamics within single focal adhesions

    NASA Astrophysics Data System (ADS)

    Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying

    2016-07-01

    The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells.

  10. The architecture of the spliceosomal U4/U6.U5 tri-snRNP

    PubMed Central

    Nguyen, Thi Hoang Duong; Galej, Wojciech P.; Bai, Xiao-chen; Savva, Christos G.; Newman, Andrew J.; Scheres, Sjors H. W.; Nagai, Kiyoshi

    2015-01-01

    U4/U6.U5 tri-snRNP is a 1.5 MDa pre-assembled spliceosomal complex comprising U5 snRNA, extensively base-paired U4/U6 snRNAs and >30 proteins, including the key components Prp8, Brr2 and Snu114. The tri-snRNP combines with a pre-mRNA substrate bound to U1 and U2 snRNPs and transforms into a catalytically active spliceosome following extensive compositional and conformational changes triggered by unwinding of the U4/U6 snRNAs. CryoEM single-particle reconstruction of yeast tri-snRNP at 5.9Å resolution reveals the essentially complete organization of its RNA and protein components. The single-stranded region of U4 snRNA between its 3′-stem-loop and the U4/U6 snRNA stem I is loaded into the Brr2 helicase active site ready for unwinding. Snu114 and the N-terminal domain of Prp8 position U5 snRNA to insert its Loop I, which aligns the exons for splicing, into the Prp8 active site cavity. The structure provides crucial insights into the activation process and the active site of the spliceosome. PMID:26106855

  11. Chemical repair activity of free radical scavenger edaravone: reduction reactions with dGMP hydroxyl radical adducts and suppression of base lesions and AP sites on irradiated plasmid DNA.

    PubMed

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Lin, Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu, Haiying; Katsumura, Yosuke

    2015-01-01

    Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 10(8) dm(3) mol(-1) s(-1) and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10-1000 μmol dm(-3)) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  12. Pharmacokinetics of loxoprofen and its active metabolite after dermal application of loxoprofen gel to rats.

    PubMed

    Sawamura, R; Kazui, M; Kurihara, A; Izumi, T

    2015-02-01

    This study was conducted to evaluate the pharmacokinetics of loxoprofen (LX) and its active metabolite (trans-OH form) after a single dermal application of LX gel (LX-G) to rats. In the skin at the treated site, generation of the trans-OH form was detected and both LX and the trans-OH form remained at high concentrations for 24 h after dermal application. Furthermore, both LX and the trans-OH form also remained in the skeletal muscle over 24 h after the single dermal application, while they eliminated rapidly after the single oral administration. The area under the curve up to the last measurable point (AUC(0-t)) for plasma concentrations of LX or the trans-OH form after dermal application of LX-G was less than 11% of that after oral administration of LX. In addition, C(max) and AUC(0-t) increased in a saturable manner while increasing the dose. Overall, these results demonstrated that the trans-OH form was generated at the treated site with the process of dermal absorption of LX and it remained at the target site for a long period with low systemic exposure compared to oral administration.

  13. Site-to-site interdomain communication may mediate different loss-of-function mechanisms in a cancer-associated NQO1 polymorphism

    NASA Astrophysics Data System (ADS)

    Medina-Carmona, Encarnación; Neira, Jose L.; Salido, Eduardo; Fuchs, Julian E.; Palomino-Morales, Rogelio; Timson, David J.; Pey, Angel L.

    2017-03-01

    Disease associated genetic variations often cause intracellular enzyme inactivation, dysregulation and instability. However, allosteric communication of mutational effects to distant functional sites leading to loss-of-function remains poorly understood. We characterize here interdomain site-to-site communication by which a common cancer-associated single nucleotide polymorphism (c.C609T/p.P187S) reduces the activity and stability in vivo of NAD(P)H:quinone oxidoreductase 1 (NQO1). NQO1 is a FAD-dependent, two-domain multifunctional stress protein acting as a Phase II enzyme, activating cancer pro-drugs and stabilizing p53 and p73α oncosuppressors. We show that p.P187S causes structural and dynamic changes communicated to functional sites far from the mutated site, affecting the FAD binding site located at the N-terminal domain (NTD) and accelerating proteasomal degradation through dynamic effects on the C-terminal domain (CTD). Structural protein:protein interaction studies reveal that the cancer-associated polymorphism does not abolish the interaction with p73α, indicating that oncosuppressor destabilization largely mirrors the low intracellular stability of p.P187S. In conclusion, we show how a single disease associated amino acid change may allosterically perturb several functional sites in an oligomeric and multidomain protein. These results have important implications for the understanding of loss-of-function genetic diseases and the identification of novel structural hot spots as targets for pharmacological intervention.

  14. A Comprehensive Study of Formic Acid Oxidation on Palladium Nanocrystals with Different Types of Facets and Twin Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sang; Herron, Jeffrey A.; Scaranto, Jessica

    2015-07-13

    Palladium has been recognized as the best anodic, monometallic electrocatalyst for the formic acid oxidation (FAO) reaction in a direct formic acid fuel cell. Here we report a systematic study of FAO on a variety of Pd nanocrystals, including cubes, right bipyramids, octahedra, tetrahedra, decahedra, and icosahedra. These nanocrystals were synthesized with approximately the same size, but different types of facets and twin defects on their surfaces. Our measurements indicate that the Pd nanocrystals enclosed by {1 0 0} facets have higher specific activities than those enclosed by {1 1 1} facets, in agreement with prior observations for Pd single-crystalmore » substrates. If comparing nanocrystals predominantly enclosed by a specific type of facet, {1 0 0} or {1 1 1}, those with twin defects displayed greatly enhanced FAO activities compared to their single-crystal counterparts. To rationalize these experimental results, we performed periodic, self-consistent DFT calculations on model single-crystal substrates of Pd, representing the active sites present in the nanocrystals used in the experiments. The calculation results suggest that the enhancement of FAO activity on defect regions, represented by Pd(2 1 1) sites, compared to the activity of both Pd(1 0 0) and Pd(1 1 1) surfaces, could be attributed to an increased flux through the HCOO-mediated pathway rather than the COOH-mediated pathway on Pd(2 1 1). Since COOH has been identified as a precursor to CO, a site-poisoning species, a lower coverage of CO at the defect regions will lead to a higher activity for the corresponding nanocrystal catalysts, containing those defect regions.« less

  15. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    PubMed

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  16. Catalytic site interactions in yeast OMP synthase.

    PubMed

    Hansen, Michael Riis; Barr, Eric W; Jensen, Kaj Frank; Willemoës, Martin; Grubmeyer, Charles; Winther, Jakob R

    2014-01-15

    The enigmatic kinetics, half-of-the-sites binding, and structural asymmetry of the homodimeric microbial OMP synthases (orotate phosphoribosyltransferase, EC 2.4.2.10) have been proposed to result from an alternating site mechanism in these domain-swapped enzymes [R.W. McClard et al., Biochemistry 45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal initial velocity plots. Replacement of Lys106, the postulated intersubunit communication device, produced intersecting lines in kinetic plots with a 2-fold reduction of kcat. Loop (R105G K109S H111G) and PRPP-binding motif (D131N D132N) mutant proteins, each without detectable enzymatic activity and ablated ability to bind PRPP, complemented to produce a heterodimer with a single fully functional active site showing intersecting initial velocity plots. Equilibrium binding of PRPP and orotidine 5'-monophosphate showed a single class of two binding sites per dimer in WT and K106S enzymes. Evidence here shows that the enzyme does not follow half-of-the-sites cooperativity; that interplay between catalytic sites is not an essential feature of the catalytic mechanism; and that parallel lines in steady-state kinetics probably arise from tight substrate binding. Copyright © 2013. Published by Elsevier Inc.

  17. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    PubMed

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  18. Determination of the protease cleavage site repertoire—The RNase H but not the RT domain is essential for foamy viral protease activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spannaus, Ralf; Bodem, Jochen, E-mail: Jochen.Bodem@vim.uni-wuerzburg.de

    2014-04-15

    In contrast to orthoretroviruses, the foamy virus protease is only active as a protease-reverse transcriptase fusion protein and requires viral RNA for activation. Maturation of foamy viral proteins seems to be restricted to a single cleavage site in Gag and Pol. We provide evidence that unprocessed Gag is required for optimal infectivity, which is unique among retroviruses. Analyses of the cleavage site sequences of the Gag and Pol cleavage sites revealed a high similarity compared to those of Lentiviruses. We show that positions P2' and P2 are invariant and that Gag and Pol cleavage sites are processed with similar efficiencies.more » The RNase H domain is essential for protease activity, but can functionally be substituted by RNase H domains of other retroviruses. Thus, the RNase H domain might be involved in the stabilization of the protease dimer, while the RT domain is essential for RNA dependent protease activation. - Highlights: • Unprocessed Gag is required for optimal infectivity of foamy viruses. • Positions P2 and P2' are invariant in the foamy viral cleavage sites. • The RNaseH domain is essential for protease activity. • The RNaseH domains of other retroviruses support foamy viral protease activity.« less

  19. Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal-Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems.

    PubMed

    Tylus, Urszula; Jia, Qingying; Strickland, Kara; Ramaswamy, Nagappan; Serov, Alexey; Atanassov, Plamen; Mukerjee, Sanjeev

    2014-05-01

    Detailed understanding of the nature of the active centers in non-precious-metal-based electrocatalyst, and their role in oxygen reduction reaction (ORR) mechanistic pathways will have a profound effect on successful commercialization of emission-free energy devices such as fuel cells. Recently, using pyrolyzed model structures of iron porphyrins, we have demonstrated that a covalent integration of the Fe-N x sites into π-conjugated carbon basal plane modifies electron donating/withdrawing capability of the carbonaceous ligand, consequently improving ORR activity. Here, we employ a combination of in situ X-ray spectroscopy and electrochemical methods to identify the various structural and functional forms of the active centers in non-heme Fe/N/C catalysts. Both methods corroboratively confirm the single site 2e - × 2e - mechanism in alkaline media on the primary Fe 2+ -N 4 centers and the dual-site 2e - × 2e - mechanism in acid media with the significant role of the surface bound coexisting Fe/Fe x O y nanoparticles (NPs) as the secondary active sites.

  20. Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal–Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems

    PubMed Central

    2015-01-01

    Detailed understanding of the nature of the active centers in non-precious-metal-based electrocatalyst, and their role in oxygen reduction reaction (ORR) mechanistic pathways will have a profound effect on successful commercialization of emission-free energy devices such as fuel cells. Recently, using pyrolyzed model structures of iron porphyrins, we have demonstrated that a covalent integration of the Fe–Nx sites into π-conjugated carbon basal plane modifies electron donating/withdrawing capability of the carbonaceous ligand, consequently improving ORR activity. Here, we employ a combination of in situ X-ray spectroscopy and electrochemical methods to identify the various structural and functional forms of the active centers in non-heme Fe/N/C catalysts. Both methods corroboratively confirm the single site 2e– × 2e– mechanism in alkaline media on the primary Fe2+–N4 centers and the dual-site 2e– × 2e– mechanism in acid media with the significant role of the surface bound coexisting Fe/FexOy nanoparticles (NPs) as the secondary active sites. PMID:24817921

  1. Site-directed removal of N-glycosylation sites in BST-1/CD157: effects on molecular and functional heterogeneity.

    PubMed Central

    Yamamoto-Katayama, S; Sato, A; Ariyoshi, M; Suyama, M; Ishihara, K; Hirano, T; Nakamura, H; Morikawa, K; Jingami, H

    2001-01-01

    Cyclic ADP ribose (cADPR) is a novel second messenger that releases calcium from intracellular calcium stores, but works independently of inositol 1,4,5-trisphosphate. In mammals ADP-ribosyl cyclase function is found in two membrane proteins, CD38 and bone marrow stromal cell antigen 1 (BST-1)/CD157. These enzymes are exposed extracellularly and also possess cADPR hydrolase activity, but an intracellular soluble ADP-ribosyl cyclase has been reported in human T-cells. Previously, a soluble form of BST-1/CD157 (sBST-1), which lacked the glycosylphosphatidylinositol-anchored portion, was expressed by a baculovirus-insect-cell system. In this study, we have purified the sBST-1, and it migrated as two major bands by SDS/PAGE, suggesting that it is post-translationally modified. BST-1 contains four putative N-glycosylation sites. Tunicamycin treatment reduced sBST-1 expression in the culture medium, indicating that N-glycosylation is essential for secretion. Site-directed mutagenesis was performed to generate sBST-1 mutants (N1-N4), each preserving a single N-glycosylation site. N1, N3 and N4 were well secreted into the medium, and were each detected as a single band. Although N3 and N4 retained the ADP-ribosyl cyclase activity, the cADPR-hydrolase activity was retained only in N4. We conclude that N-glycosylation of sBST-1 facilitates the folding of the nascent polypeptide chain into a conformation that is conductive for intracellular transport and enzymic activity. Furthermore a crystal has been obtained using the N4 mutant, but not the wild-type sBST-1. Thus the artificial engineering of N-glycosylation sites could be an effective method to generate homogeneous material for structural studies. PMID:11439087

  2. Oxygen activation in flavoprotein oxidases: the importance of being positive.

    PubMed

    Gadda, Giovanni

    2012-04-03

    The oxidation of flavin hydroquinones by O(2) in solution is slow, with second-order rate constants of ~250 M(-1) s(-1). This is due to the obligatory, single-electron transfer that initiates the reaction being thermodynamically unfavored and poorly catalyzed. Notwithstanding considerations of O(2) accessibility to the reaction site, its desolvation and geometry and other factors that can also contribute to further rate acceleration, flavoprotein oxidases must activate O(2) for reaction with flavin hydroquinones to be able to achieve the 100-1000-fold rate enhancements typically observed. Protein positive charges have been identified in glucose oxidase, monomeric sarcosine oxidase, N-methyltryptophan oxidase and fructosamine oxidase that electrostatically stabilize the transition state for the initial single electron transfer that generates the O(2)(-•)/flavin semiquinone radical pair. In choline oxidase despite the presence of three histidines in the active site, the trimethylammonium group of the reaction product provides such an electrostatic stabilization. A nonpolar site proximal to the flavin C(4a) atom in choline oxidase has also been identified, which contributes to the geometry and desolvation of the O(2) reaction site. The relevance of O(2) activation by product charges to other flavoprotein oxidases, such as for example those catalyzing amine oxidations, is discussed in this review. A nonpolar site close to the flavin C(4a) atom and a positive charge is identified through structural analysis in several flavoprotein oxidases. Mutagenesis has disclosed nonpolar sites in O(2)-reducing enzymes that utilize copper/TPQ or iron. It is predicted that classes of O(2)-reducing enzymes utilizing other cofactors also contain a similar catalytic motif.

  3. On the dynamical nature of the active center in a single-site photocatalyst visualized by 4D ultrafast electron microscopy

    PubMed Central

    Yoo, Byung-Kuk; Su, Zixue; Thomas, John Meurig; Zewail, Ahmed H.

    2016-01-01

    Understanding the dynamical nature of the catalytic active site embedded in complex systems at the atomic level is critical to developing efficient photocatalytic materials. Here, we report, using 4D ultrafast electron microscopy, the spatiotemporal behaviors of titanium and oxygen in a titanosilicate catalytic material. The observed changes in Bragg diffraction intensity with time at the specific lattice planes, and with a tilted geometry, provide the relaxation pathway: the Ti4+=O2− double bond transformation to a Ti3+−O1− single bond via the individual atomic displacements of the titanium and the apical oxygen. The dilation of the double bond is up to 0.8 Å and occurs on the femtosecond time scale. These findings suggest the direct catalytic involvement of the Ti3+−O1− local structure, the significance of nonthermal processes at the reactive site, and the efficient photo-induced electron transfer that plays a pivotal role in many photocatalytic reactions. PMID:26729878

  4. 23 CFR 750.107 - Class 3 and 4 signs outside informational sites.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... areas. (6) Not more than one such sign advertising activities being conducted as a single enterprise or... 23 Highways 1 2011-04-01 2011-04-01 false Class 3 and 4 signs outside informational sites. 750.107... to the Interstate System Under the 1958 Bonus Program § 750.107 Class 3 and 4 signs outside...

  5. 23 CFR 750.107 - Class 3 and 4 signs outside informational sites.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... areas. (6) Not more than one such sign advertising activities being conducted as a single enterprise or... 23 Highways 1 2010-04-01 2010-04-01 false Class 3 and 4 signs outside informational sites. 750.107... to the Interstate System Under the 1958 Bonus Program § 750.107 Class 3 and 4 signs outside...

  6. Double layer zinc-UDP coordination polymers: structure and properties.

    PubMed

    Qiu, Qi-Ming; Gu, Leilei; Ma, Hongwei; Yan, Li; Liu, Minghua; Li, Hui

    2018-05-17

    A homochiral Zn-UDP coordination polymer with an alternating parallel ABAB sequence was constructed and studied by X-ray single crystal diffraction analysis. Its crystal structure shows that there are potentially open sites in the 2D layers. The activation of the sites makes the coordination polymer a fluorescent sensor for novel heterogeneous detection of amino acids.

  7. Filopodia Conduct Target Selection in Cortical Neurons Using Differences in Signal Kinetics of a Single Kinase.

    PubMed

    Mao, Yu-Ting; Zhu, Julia X; Hanamura, Kenji; Iurilli, Giuliano; Datta, Sandeep Robert; Dalva, Matthew B

    2018-05-16

    Dendritic filopodia select synaptic partner axons by interviewing the cell surface of potential targets, but how filopodia decipher the complex pattern of adhesive and repulsive molecular cues to find appropriate contacts is unknown. Here, we demonstrate in cortical neurons that a single cue is sufficient for dendritic filopodia to reject or select specific axonal contacts for elaboration as synaptic sites. Super-resolution and live-cell imaging reveals that EphB2 is located in the tips of filopodia and at nascent synaptic sites. Surprisingly, a genetically encoded indicator of EphB kinase activity, unbiased classification, and a photoactivatable EphB2 reveal that simple differences in the kinetics of EphB kinase signaling at the tips of filopodia mediate the choice between retraction and synaptogenesis. This may enable individual filopodia to choose targets based on differences in the activation rate of a single tyrosine kinase, greatly simplifying the process of partner selection and suggesting a general principle. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Optocontrol of glutamate receptor activity by single side-chain photoisomerization

    PubMed Central

    Klippenstein, Viktoria; Hoppmann, Christian; Ye, Shixin; Wang, Lei; Paoletti, Pierre

    2017-01-01

    Engineering light-sensitivity into proteins has wide ranging applications in molecular studies and neuroscience. Commonly used tethered photoswitchable ligands, however, require solvent-accessible protein labeling, face structural constrains, and are bulky. Here, we designed a set of optocontrollable NMDA receptors by directly incorporating single photoswitchable amino acids (PSAAs) providing genetic encodability, reversibility, and site tolerance. We identified several positions within the multi-domain receptor endowing robust photomodulation. PSAA photoisomerization at the GluN1 clamshell hinge is sufficient to control glycine sensitivity and activation efficacy. Strikingly, in the pore domain, flipping of a M3 residue within a conserved transmembrane cavity impacts both gating and permeation properties. Our study demonstrates the first detection of molecular rearrangements in real-time due to the reversible light-switching of single amino acid side-chains, adding a dynamic dimension to protein site-directed mutagenesis. This novel approach to interrogate neuronal protein function has general applicability in the fast expanding field of optopharmacology. DOI: http://dx.doi.org/10.7554/eLife.25808.001 PMID:28534738

  9. Inhibition and recovery of the replication of depurinated parvovirus DNA in mouse fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vos, J.M.; Avalosse, B.; Su, Z.Z.

    Apurinic sites were introduced in the single-stranded DNA of parvovirus minute-virus-of-mice (MVM) and their effect on viral DNA synthesis was measured in mouse fibroblasts. Approximately one apurinic site per viral genome, is sufficient to block its replication in untreated cells. The exposure of host cells to a sublethal dose of UV-light 15 hours prior to virus infection, enhances their ability to support the replication of depurinated MVM. Cell preirradiation induces the apparent overcome of 10-15% of viral DNA replication blocks. These results indicate that apurinic sites prevent mammalian cells from replicating single-stranded DNA unless a recovery process is activated bymore » cell UV-irradiation.« less

  10. Modeling the heterogeneous catalytic activity of a single nanoparticle using a first passage time distribution formalism

    NASA Astrophysics Data System (ADS)

    Das, Anusheela; Chaudhury, Srabanti

    2015-11-01

    Metal nanoparticles are heterogeneous catalysts and have a multitude of non-equivalent, catalytic sites on the nanoparticle surface. The product dissociation step in such reaction schemes can follow multiple pathways. Proposed here for the first time is a completely analytical theoretical framework, based on the first passage time distribution, that incorporates the effect of heterogeneity in nanoparticle catalysis explicitly by considering multiple, non-equivalent catalytic sites on the nanoparticle surface. Our results show that in nanoparticle catalysis, the effect of dynamic disorder is manifested even at limiting substrate concentrations in contrast to an enzyme that has only one well-defined active site.

  11. Non-active site mutation (Q123A) in New Delhi metallo-β-lactamase (NDM-1) enhanced its enzyme activity.

    PubMed

    Ali, Abid; Azam, Mohd W; Khan, Asad U

    2018-06-01

    New Delhi metallo β-lactamase-1 is one of the carbapenemases, causing hydrolysis of almost all β-lactamase antibiotics. Seventeen different NDM variants have been reported so far, they varied in their sequences either by single or multiple amino acid substitutions. Hence, it is important to understand its structural and functional relation. In the earlier studies role of active site residues has been studied but non-active site residues has not studied in detail. Therefore, we have initiated to further comprehend its structure and function relation by mutating some of its non-active site residues. A laboratory mutant of NDM-1 was generated by PCR-based site-directed mutagenesis, replacing Q to A at 123 position. The MICs of imipenem and meropenem for NDM-1 Q123A were found increased by 2 fold as compare to wild type and so the hydrolytic activity was enhanced (Kcat/Km) as compared to NDM-1 wild type. GOLD fitness scores were also found in favour of kinetics data. Secondary structure for α-helical content was determined by Far-UV circular dichroism (CD), which showed significant conformational changes. We conclude a noteworthy role of non-active-site amino acid residues in the catalytic activity of NDM-1. This study also provides an insight of emergence of new variants through natural evolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Synthesis of single-site copper catalysts for methane partial oxidation

    DOE PAGES

    Grundner, S.; Luo, W.; Sanchez-Sanchez, M.; ...

    2015-12-24

    Cu-Exchanged zeolites are known as active materials for methane oxidation to methanol. However, understanding of the formation of Cu active species during synthesis, dehydration and activation is fragmented and rudimentary. We show here how a synthesis protocol guided by insight in the ion exchange elementary steps leads to highly uniform Cu species in mordenite (MOR).

  13. Sequencing of the amylopullulanase (apu) gene of Thermoanaerobacter ethanolicus 39E, and identification of the active site by site-directed mutagenesis.

    PubMed

    Mathupala, S P; Lowe, S E; Podkovyrov, S M; Zeikus, J G

    1993-08-05

    The complete nucleotide sequence of the gene encoding the dual active amylopullulanase of Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum) was determined. The structural gene (apu) contained a single open reading frame 4443 base pairs in length, corresponding to 1481 amino acids, with an estimated molecular weight of 162,780. Analysis of the deduced sequence of apu with sequences of alpha-amylases and alpha-1,6 debranching enzymes enabled the identification of four conserved regions putatively involved in substrate binding and in catalysis. The conserved regions were localized within a 2.9-kilobase pair gene fragment, which encoded a M(r) 100,000 protein that maintained the dual activities and thermostability of the native enzyme. The catalytic residues of amylopullulanase were tentatively identified by using hydrophobic cluster analysis for comparison of amino acid sequences of amylopullulanase and other amylolytic enzymes. Asp597, Glu626, and Asp703 were individually modified to their respective amide form, or the alternate acid form, and in all cases both alpha-amylase and pullulanase activities were lost, suggesting the possible involvement of 3 residues in a catalytic triad, and the presence of a putative single catalytic site within the enzyme. These findings substantiate amylopullulanase as a new type of amylosaccharidase.

  14. Increase in D-tagatose production rate by site-directed mutagenesis of L-arabinose isomerase from Geobacillus thermodenitrificans.

    PubMed

    Oh, Hyo-Jung; Kim, Hye-Jung; Oh, Deok-Kun

    2006-02-01

    Among single-site mutations of L-arabinose isomerase derived from Geobacillus thermodenitrificans, two mutants were produced having the lowest and highest activities of D-tagatose production. Site-directed mutagenesis at these sites showed that the aromatic ring at amino acid 164 and the size of amino acid 475 were important for D-tagatose production. Among double-site mutations, one mutant converted D-galactose into D-tagatose with a yield of 58% whereas the wild type gave 46% D-tagatose conversion after 300 min at 65 degrees C.

  15. Electrochemical Studies of a Truncated Laccase Produced in Pichia pastoris

    PubMed Central

    Gelo-Pujic, Mirjana; Kim, Hyug-Han; Butlin, Nathan G.; Palmore, G. Tayhas R.

    1999-01-01

    The cDNA that encodes an isoform of laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms of their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon (i.e., LCCI→LCCIa) influences the rate of heterogeneous electron transfer between an electrode and the copper-containing active site (khet for LCCIa = 1.3 × 10−4 cm s−1). These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis. PMID:10584012

  16. An active-site phenylalanine directs substrate binding and C-H cleavage in the alpha-ketoglutarate-dependent dioxygenase TauD.

    PubMed

    McCusker, Kevin P; Klinman, Judith P

    2010-04-14

    Enzymes that cleave C-H bonds are often found to depend on well-packed hydrophobic cores that influence the distance between the hydrogen donor and acceptor. Residue F159 in taurine alpha-ketoglutarate dioxygenase (TauD) is demonstrated to play an important role in the binding and orientation of its substrate, which undergoes a hydrogen atom transfer to the active site Fe(IV)=O. Mutation of F159 to smaller hydrophobic side chains (L, V, A) leads to substantially reduced rates for substrate binding and for C-H bond cleavage, as well as increased contribution of the chemical step to k(cat) under steady-state turnover conditions. The greater sensitivity of these substrate-dependent processes to mutation at position 159 than observed for the oxygen activation process supports a previous conclusion of modularity of function within the active site of TauD (McCusker, K. P.; Klinman, J. P. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 19791-19795). Extraction of intrinsic deuterium kinetic isotope effects (KIEs) using single turnover transients shows 2- to 4-fold increase in the size of the KIE for F159V in relation to wild-type and F159L. It appears that there is a break in behavior following removal of a single methylene from the side chain of F159L to generate F159V, whereby the protein active site loses its ability to restore the internuclear distance between substrate and Fe(IV)=O that supports optimal hydrogenic wave function overlap.

  17. Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction.

    PubMed

    Wang, Jing; Huang, Zhengqing; Liu, Wei; Chang, Chunran; Tang, Haolin; Li, Zhijun; Chen, Wenxing; Jia, Chunjiang; Yao, Tao; Wei, Shiqiang; Wu, Yuen; Li, Yadong

    2017-12-06

    We develop a host-guest strategy to construct an electrocatalyst with Fe-Co dual sites embedded on N-doped porous carbon and demonstrate its activity for oxygen reduction reaction in acidic electrolyte. Our catalyst exhibits superior oxygen reduction reaction performance, with comparable onset potential (E onset , 1.06 vs 1.03 V) and half-wave potential (E 1/2 , 0.863 vs 0.858 V) than commercial Pt/C. The fuel cell test reveals (Fe,Co)/N-C outperforms most reported Pt-free catalysts in H 2 /O 2 and H 2 /air. In addition, this cathode catalyst with dual metal sites is stable in a long-term operation with 50 000 cycles for electrode measurement and 100 h for H 2 /air single cell operation. Density functional theory calculations reveal the dual sites is favored for activation of O-O, crucial for four-electron oxygen reduction.

  18. An Allosteric Coagonist Model for Propofol Effects on α1β2γ2L γ-Aminobutyric Acid Type A Receptors

    PubMed Central

    Ruesch, Dirk; Neumann, Elena; Wulf, Hinnerk; Forman, Stuart A.

    2011-01-01

    Background Propofol produces its major actions via γ-aminobutyric acid type A (GABAA) receptors. At low concentrations, propofol enhances agonist-stimulated GABAA receptor activity, and high propofol concentrations directly activate receptors. Etomidate produces similar effects, and there is convincing evidence that a single class of etomidate sites mediate both agonist modulation and direct GABAA receptor activation. It is unknown if the propofol binding site(s) on GABAA receptors that modulate agonist-induced activity also mediate direct activation. Methods GABAA α1β2γ2L receptors were heterologously expressed in Xenopus oocytes and activity was quantified using voltage clamp electrophysiology. We tested whether propofol and etomidate display the same linkage between agonist modulation and direct activation of GABAA receptors by identifying equi-efficacious drug solutions for direct activation. We then determined whether these drug solutions produce equal modulation of GABA-induced receptor activity. We also measured propofol-dependent direct activation and modulation of low GABA responses. Allosteric coagonist models similar to that established for etomidate, but with variable numbers of propofol sites, were fitted to combined data. Results Solutions of 19 μM propofol and 10 μM etomidate were found to equally activate GABAA receptors. These two drug solutions also produced indistinguishable modulation of GABA-induced receptor activity. Combined electrophysiological data behaved in a manner consistent with allosteric co-agonist models with more than one propofol site. The best fit was observed when the model assumed three equivalent propofol sites. Conclusions Our results support the hypothesis that propofol, like etomidate, acts at GABAA receptor sites mediating both GABA modulation and direct activation. PMID:22104494

  19. Single-site labeling of lysine in proteins through a metal-free multicomponent approach.

    PubMed

    Chilamari, Maheshwerreddy; Kalra, Neetu; Shukla, Sanjeev; Rai, Vishal

    2018-06-15

    We report a chemoselective and site-selective approach that distinguishes one Lys from its multiple copies, N-terminus, and other competitors. The phospha-Mannich protocol works with multiple proteins and installs probes without structural and functional perturbations. It delivers an antibody-drug conjugate with selective anti-proliferative activity towards HER2 expressing SKBR3 breast cancer cells.

  20. Natural single amino acid polymorphism (F19Y) in human galectin-8: detection of structural alterations and increased growth-regulatory activity on tumor cells.

    PubMed

    Ruiz, Federico M; Scholz, Barbara A; Buzamet, Eliza; Kopitz, Jürgen; André, Sabine; Menéndez, Margarita; Romero, Antonio; Solís, Dolores; Gabius, Hans-Joachim

    2014-03-01

    Natural amino acid substitution by single-site nucleotide polymorphism can become a valuable tool for structure-activity correlations, especially if evidence for association to disease parameters exists. Focusing on the F19Y change in human galectin-8, connected clinically to rheumatoid arthritis, we here initiate the study of consequences of a single-site substitution in the carbohydrate recognition domain of this family of cellular effectors. We apply a strategically combined set of structural and cell biological techniques for comparing properties of the wild-type and variant proteins. The overall hydrodynamic behavior of the full-length protein and of the separate N-domain is not noticeably altered, but displacements in the F0 β-strand of the β-sandwich fold in the N-domain are induced, as evidenced by protein crystallography. Analysis of thermal stability by circular dichroism spectroscopy revealed perceptible differences for the full-length proteins, pointing to an impact of the substitution beyond the N-domain. In addition, small differences in thermodynamic parameters of carbohydrate binding are detected. On the level of two types of tumor cells, characteristics of binding appeared rather similar. In further comparison of the influence on proliferation, the variant proved to be more active as growth regulator in the six tested lines of neuroblastoma, erythroleukemia and colon adenocarcinoma. The seemingly subtle structural change identified here thus has functional implications in vitro, encouraging further analysis in autoimmune regulation and, in a broad context, in work with other natural single-site variants, using the documented combined strategy. The atomic coordinates and structure factors (codes 4BMB, 4BME) have been deposited in the Protein Data Bank. © 2014 FEBS.

  1. Two billion years of magmatism recorded from a single Mars meteorite ejection site

    PubMed Central

    Lapen, Thomas J.; Righter, Minako; Andreasen, Rasmus; Irving, Anthony J.; Satkoski, Aaron M.; Beard, Brian L.; Nishiizumi, Kunihiko; Jull, A. J. Timothy; Caffee, Marc W.

    2017-01-01

    The timing and nature of igneous activity recorded at a single Mars ejection site can be determined from the isotope analyses of Martian meteorites. Northwest Africa (NWA) 7635 has an Sm-Nd crystallization age of 2.403 ± 0.140 billion years, and isotope data indicate that it is derived from an incompatible trace element–depleted mantle source similar to that which produced a geochemically distinct group of 327- to 574-million-year-old “depleted” shergottites. Cosmogenic nuclide data demonstrate that NWA 7635 was ejected from Mars 1.1 million years ago (Ma), as were at least 10 other depleted shergottites. The shared ejection age is consistent with a common ejection site for these meteorites. The spatial association of 327- to 2403-Ma depleted shergottites indicates >2 billion years of magmatism from a long-lived and geochemically distinct volcanic center near the ejection site. PMID:28164153

  2. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector

    PubMed Central

    Kabadi, Ami M.; Ousterout, David G.; Hilton, Isaac B.; Gersbach, Charles A.

    2014-01-01

    Engineered DNA-binding proteins that manipulate the human genome and transcriptome have enabled rapid advances in biomedical research. In particular, the RNA-guided CRISPR/Cas9 system has recently been engineered to create site-specific double-strand breaks for genome editing or to direct targeted transcriptional regulation. A unique capability of the CRISPR/Cas9 system is multiplex genome engineering by delivering a single Cas9 enzyme and two or more single guide RNAs (sgRNAs) targeted to distinct genomic sites. This approach can be used to simultaneously create multiple DNA breaks or to target multiple transcriptional activators to a single promoter for synergistic enhancement of gene induction. To address the need for uniform and sustained delivery of multiplex CRISPR/Cas9-based genome engineering tools, we developed a single lentiviral system to express a Cas9 variant, a reporter gene and up to four sgRNAs from independent RNA polymerase III promoters that are incorporated into the vector by a convenient Golden Gate cloning method. Each sgRNA is efficiently expressed and can mediate multiplex gene editing and sustained transcriptional activation in immortalized and primary human cells. This delivery system will be significant to enabling the potential of CRISPR/Cas9-based multiplex genome engineering in diverse cell types. PMID:25122746

  3. Requirements for functional models of the iron hydrogenase active site: D2/H2O exchange activity in ((mu-SMe)(mu-pdt)[Fe(CO)2(PMe3)]2+)[BF4-].

    PubMed

    Georgakaki, Irene P; Miller, Matthew L; Darensbourg, Marcetta Y

    2003-04-21

    Hydrogen uptake in hydrogenase enzymes can be assayed by H/D exchange reactivity in H(2)/D(2)O or H(2)/D(2)/H(2)O mixtures. Diiron(I) complexes that serve as structural models for the active site of iron hydrogenase are not active in such isotope scrambling but serve as precursors to Fe(II)Fe(II) complexes that are functional models of [Fe]H(2)ase. Using the same experimental protocol as used previously for ((mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-H(+) (Zhao et al. J. Am. Chem. Soc. 2001, 123, 9710), we now report the results of studies of ((mu-SMe)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-SMe(+), toward H/D exchange. The 1-SMe(+) complex can take up H(2) and catalyze the H/D exchange reaction in D(2)/H(2)O mixtures under photolytic, CO-loss conditions. Unlike 1-H(+), it does not catalyze H(2)/D(2) scrambling under anhydrous conditions. The molecular structure of 1-SMe(+) involves an elongated Fe.Fe separation, 3.11 A, relative to 2.58 A in 1-H(+). It is proposed that the strong SMe(-) bridging ligand results in catalytic activity localized on a single Fe(II) center, a scenario that is also a prominent possibility for the enzyme active site. The single requirement is an open site on Fe(II) available for binding of D(2) (or H(2)), followed by deprotonation by the external base H(2)O (or D(2)O).

  4. Molecular Determinants of Mutant Phenotypes, Inferred from Saturation Mutagenesis Data.

    PubMed

    Tripathi, Arti; Gupta, Kritika; Khare, Shruti; Jain, Pankaj C; Patel, Siddharth; Kumar, Prasanth; Pulianmackal, Ajai J; Aghera, Nilesh; Varadarajan, Raghavan

    2016-11-01

    Understanding how mutations affect protein activity and organismal fitness is a major challenge. We used saturation mutagenesis combined with deep sequencing to determine mutational sensitivity scores for 1,664 single-site mutants of the 101 residue Escherichia coli cytotoxin, CcdB at seven different expression levels. Active-site residues could be distinguished from buried ones, based on their differential tolerance to aliphatic and charged amino acid substitutions. At nonactive-site positions, the average mutational tolerance correlated better with depth from the protein surface than with accessibility. Remarkably, similar results were observed for two other small proteins, PDZ domain (PSD95 pdz3 ) and IgG-binding domain of protein G (GB1). Mutational sensitivity data obtained with CcdB were used to derive a procedure for predicting functional effects of mutations. Results compared favorably with those of two widely used computational predictors. In vitro characterization of 80 single, nonactive-site mutants of CcdB showed that activity in vivo correlates moderately with thermal stability and solubility. The inability to refold reversibly, as well as a decreased folding rate in vitro, is associated with decreased activity in vivo. Upon probing the effect of modulating expression of various proteases and chaperones on mutant phenotypes, most deleterious mutants showed an increased in vivo activity and solubility only upon over-expression of either Trigger factor or SecB ATP-independent chaperones. Collectively, these data suggest that folding kinetics rather than protein stability is the primary determinant of activity in vivo This study enhances our understanding of how mutations affect phenotype, as well as the ability to predict fitness effects of point mutations. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Prefusion F-specific antibodies determine the magnitude of RSV neutralizing activity in human sera.

    PubMed

    Ngwuta, Joan O; Chen, Man; Modjarrad, Kayvon; Joyce, M Gordon; Kanekiyo, Masaru; Kumar, Azad; Yassine, Hadi M; Moin, Syed M; Killikelly, April M; Chuang, Gwo-Yu; Druz, Aliaksandr; Georgiev, Ivelin S; Rundlet, Emily J; Sastry, Mallika; Stewart-Jones, Guillaume B E; Yang, Yongping; Zhang, Baoshan; Nason, Martha C; Capella, Cristina; Peeples, Mark E; Ledgerwood, Julie E; McLellan, Jason S; Kwong, Peter D; Graham, Barney S

    2015-10-14

    Respiratory syncytial virus (RSV) is estimated to claim more lives among infants <1 year old than any other single pathogen, except malaria, and poses a substantial global health burden. Viral entry is mediated by a type I fusion glycoprotein (F) that transitions from a metastable prefusion (pre-F) to a stable postfusion (post-F) trimer. A highly neutralization-sensitive epitope, antigenic site Ø, is found only on pre-F. We determined what fraction of neutralizing (NT) activity in human sera is dependent on antibodies specific for antigenic site Ø or other antigenic sites on F in healthy subjects from ages 7 to 93 years. Adsorption of individual sera with stabilized pre-F protein removed >90% of NT activity and depleted binding antibodies to both F conformations. In contrast, adsorption with post-F removed ~30% of NT activity, and binding antibodies to pre-F were retained. These findings were consistent across all age groups. Protein competition neutralization assays with pre-F mutants in which sites Ø or II were altered to knock out binding of antibodies to the corresponding sites showed that these sites accounted for ~35 and <10% of NT activity, respectively. Binding competition assays with monoclonal antibodies (mAbs) indicated that the amount of site Ø-specific antibodies correlated with NT activity, whereas the magnitude of binding competed by site II mAbs did not correlate with neutralization. Our results indicate that RSV NT activity in human sera is primarily derived from pre-F-specific antibodies, and therefore, inducing or boosting NT activity by vaccination will be facilitated by using pre-F antigens that preserve site Ø. Copyright © 2015, American Association for the Advancement of Science.

  6. Heterogeneous Single-Atom Catalyst for Visible-Light-Driven High-Turnover CO2 Reduction: The Role of Electron Transfer.

    PubMed

    Gao, Chao; Chen, Shuangming; Wang, Ying; Wang, Jiawen; Zheng, Xusheng; Zhu, Junfa; Song, Li; Zhang, Wenkai; Xiong, Yujie

    2018-03-01

    Visible-light-driven conversion of CO 2 into chemical fuels is an intriguing approach to address the energy and environmental challenges. In principle, light harvesting and catalytic reactions can be both optimized by combining the merits of homogeneous and heterogeneous photocatalysts; however, the efficiency of charge transfer between light absorbers and catalytic sites is often too low to limit the overall photocatalytic performance. In this communication, it is reported that the single-atom Co sites coordinated on the partially oxidized graphene nanosheets can serve as a highly active and durable heterogeneous catalyst for CO 2 conversion, wherein the graphene bridges homogeneous light absorbers with single-atom catalytic sites for the efficient transfer of photoexcited electrons. As a result, the turnover number for CO production reaches a high value of 678 with an unprecedented turnover frequency of 3.77 min -1 , superior to those obtained with the state-of-the-art heterogeneous photocatalysts. This work provides fresh insights into the design of catalytic sites toward photocatalytic CO 2 conversion from the angle of single-atom catalysis and highlights the role of charge kinetics in bridging the gap between heterogeneous and homogeneous photocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Unique Kinase Catalytic Mechanism of AceK with a Single Magnesium Ion

    PubMed Central

    Li, Quanjie; Zheng, Jimin; Tan, Hongwei; Li, Xichen; Chen, Guangju; Jia, Zongchao

    2013-01-01

    Isocitrate dehydrogenase kinase/phosphatase (AceK) is the founding member of the protein phosphorylation system in prokaryotes. Based on the novel and unique structural characteristics of AceK recently uncovered, we sought to understand its kinase reaction mechanism, along with other features involved in the phosphotransfer process. Herein we report density functional theory QM calculations of the mechanism of the phosphotransfer reaction catalysed by AceK. The transition states located by the QM calculations indicate that the phosphorylation reaction, catalysed by AceK, follows a dissociative mechanism with Asp457 serving as the catalytic base to accept the proton delivered by the substrate. Our results also revealed that AceK prefers a single Mg2+-containing active site in the phosphotransfer reaction. The catalytic roles of conserved residues in the active site are discussed. PMID:23977203

  8. CASPASE-9 CARD:CORE DOMAIN INTERACTIONS REQUIRE A PROPERLY-FORMED ACTIVE SITE

    PubMed Central

    Huber, Kristen L.; Serrano, Banyuhay P.; Hardy, Jeanne A.

    2018-01-01

    Caspase-9 is a critical factor in the initiation of apoptosis, and as a result is tightly regulated by a number of mechanisms. Caspase-9 contains a Caspase Activation and Recruitment Domain (CARD), which enables caspase-9 to form a tight interaction with the apoptosome, a heptameric activating platform. The caspase-9 CARD has been thought to be principally involved in recruitment to the apoptosome, but its roles outside this interaction have yet to be uncovered. In this work we show that the CARD is involved in physical interactions with the catalytic core of caspase-9 in the absence of the apoptosome; this interaction requires a properly formed caspase-9 active site. The active sites of caspases are composed of four extremely mobile loops. When the active-site loops are not properly ordered, the CARD and core domains of caspase-9 do not interact and behave independently, like loosely tethered beads. When the active-site loop bundle is properly ordered, the CARD domain interacts with the catalytic core, forming a single folding unit. Together these findings provide mechanistic insight into a new level of caspase-9 regulation, prompting speculation that the CARD may also play a role in the recruitment or recognition of substrate. PMID:29500231

  9. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 Eastmore » Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.« less

  10. Identification of the prooxidant site of human ceruloplasmin: a model for oxidative damage by copper bound to protein surfaces

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Mazumder, B.; Lindley, P. F.; Fox, P. L.

    1997-01-01

    Free transition metal ions oxidize lipids and lipoproteins in vitro; however, recent evidence suggests that free metal ion-independent mechanisms are more likely in vivo. We have shown previously that human ceruloplasmin (Cp), a serum protein containing seven Cu atoms, induces low density lipoprotein oxidation in vitro and that the activity depends on the presence of a single, chelatable Cu atom. We here use biochemical and molecular approaches to determine the site responsible for Cp prooxidant activity. Experiments with the His-specific reagent diethylpyrocarbonate (DEPC) showed that one or more His residues was specifically required. Quantitative [14C]DEPC binding studies indicated the importance of a single His residue because only one was exposed upon removal of the prooxidant Cu. Plasmin digestion of [14C]DEPC-treated Cp (and N-terminal sequence analysis of the fragments) showed that the critical His was in a 17-kDa region containing four His residues in the second major sequence homology domain of Cp. A full length human Cp cDNA was modified by site-directed mutagenesis to give His-to-Ala substitutions at each of the four positions and was transfected into COS-7 cells, and low density lipoprotein oxidation was measured. The prooxidant site was localized to a region containing His426 because CpH426A almost completely lacked prooxidant activity whereas the other mutants expressed normal activity. These observations support the hypothesis that Cu bound at specific sites on protein surfaces can cause oxidative damage to macromolecules in their environment. Cp may serve as a model protein for understanding mechanisms of oxidant damage by copper-containing (or -binding) proteins such as Cu, Zn superoxide dismutase, and amyloid precursor protein.

  11. Transition State Charge Stabilization and Acid-Base Catalysis of mRNA Cleavage by the Endoribonuclease RelE

    PubMed Central

    Dunican, Brian F.; Hiller, David A.; Strobel, Scott A.

    2015-01-01

    The bacterial toxin RelE is a ribosome-dependent endoribonuclease. It is part of a type II toxin-antitoxin system that contributes to antibiotic resistance and biofilm formation. During amino acid starvation RelE cleaves mRNA in the ribosomal A-site, globally inhibiting protein translation. RelE is structurally similar to microbial RNases that employ general acid-base catalysis to facilitate RNA cleavage. The RelE active-site is atypical for acid-base catalysis, in that it is enriched for positively charged residues and lacks the prototypical histidine-glutamate catalytic pair, making the mechanism of mRNA cleavage unclear. In this study we use a single-turnover kinetic analysis to measure the effect of pH and phosphorothioate substitution on the rate constant for cleavage of mRNA by wild-type RelE and seven active-site mutants. Mutation and thio-effects indicate a major role for stabilization of increased negative change in the transition state by arginine 61. The wild-type RelE cleavage rate constant is pH-independent, but the reaction catalyzed by many of the mutants is strongly pH dependent, suggestive of general acid-base catalysis. pH-rate curves indicate that wild-type RelE operates with the pKa of at least one catalytic residue significantly downshifted by the local environment. Mutation of any single active-site residue is sufficient to disrupt this microenvironment and revert the shifted pKa back above neutrality. pH-rate curves are consistent with K54 functioning as a general base and R81 as a general acid. The capacity of RelE to effect a large pKa shift and facilitate a common catalytic mechanism by uncommon means furthers our understanding of other atypical enzymatic active sites. PMID:26535789

  12. The binding sites of inhibitory monoclonal antibodies on acetylcholinesterase. Identification of a novel regulatory site at the putative "back door".

    PubMed

    Simon, S; Le Goff, A; Frobert, Y; Grassi, J; Massoulié, J

    1999-09-24

    We investigated the target sites of three inhibitory monoclonal antibodies on Electrophorus acetylcholinesterase (AChE). Previous studies showed that Elec-403 and Elec-410 are directed to overlapping but distinct epitopes in the peripheral site, at the entrance of the catalytic gorge, whereas Elec-408 binds to a different region. Using Electrophorus/rat AChE chimeras, we identified surface residues that differed between sensitive and insensitive AChEs: the replacement of a single Electrophorus residue by its rat homolog was able to abolish binding and inhibition, for each antibody. Reciprocally, binding and inhibition by Elec-403 and by Elec-410 could be conferred to rat AChE by the reverse mutation. Elec-410 appears to bind to one side of the active gorge, whereas Elec-403 covers its opening, explaining why the AChE-Elec-410 complex reacts faster than the AChE-Elec-403 or AChE-fasciculin complexes with two active site inhibitors, m-(N,N, N-trimethyltammonio)trifluoro-acetophenone and echothiophate. Elec-408 binds to the region of the putative "back door," distant from the peripheral site, and does not interfere with the access of inhibitors to the active site. The binding of an antibody to this novel regulatory site may inhibit the enzyme by blocking the back door or by inducing a conformational distortion within the active site.

  13. Doping and vacancy effects of graphyne on SO2 adsorption.

    PubMed

    Kim, Sunkyung; Lee, Jin Yong

    2017-05-01

    The adsorption of sulfur dioxide (SO 2 ) on pristine and modified graphyne (including boron- or nitrogen- doping and introducing a single carbon atom defect) was investigated by density functional theory calculations. The structural, electronic, and magnetic properties of graphyne were changed according to the dopant atom site of doping and vacancy. SO 2 adsorption was obviously affected by modification of graphyne. SO 2 weakly interacted with pristine and nitrogen-doped graphynes. Boron doping at the sp-hybridized carbon site and introducing a single carbon atom vacancy in graphyne brought about a dramatic enhancement in SO 2 adsorption. The strongly chemisorbed SO 2 at these active sites caused deformation of the graphyne structure and electron redistribution, which induced changes in the conductivity and magnetism of graphynes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holloway, Lawrence E.; Qu, Zhihua; Mohr-Schroeder, Margaret J.

    In this study, we consider collaborative power systems education through the FEEDER consortium. To increase students' access to power engineering educational content, the consortium of seven universities was formed. A framework is presented to characterize different collaborative education activities among the universities. Three of these approaches of collaborative educational activities are presented and discussed. These include 1) cross-institutional blended courses ("MS-MD''); 2) cross-institutional distance courses ("SS-MD''); and 3) single-site special experiential courses and concentrated on-site programs available to students across consortium institutions ("MS-SD''). As a result, this paper presents the advantages and disadvantages of each approach.

  15. A qualitative study of the activities performed by people involved in clinical decision support: recommended practices for success.

    PubMed

    Wright, Adam; Ash, Joan S; Erickson, Jessica L; Wasserman, Joe; Bunce, Arwen; Stanescu, Ana; St Hilaire, Daniel; Panzenhagen, Morgan; Gebhardt, Eric; McMullen, Carmit; Middleton, Blackford; Sittig, Dean F

    2014-01-01

    To describe the activities performed by people involved in clinical decision support (CDS) at leading sites. We conducted ethnographic observations at seven diverse sites with a history of excellence in CDS using the Rapid Assessment Process and analyzed the data using a series of card sorts, informed by Linstone's Multiple Perspectives Model. We identified 18 activities and grouped them into four areas. Area 1: Fostering relationships across the organization, with activities (a) training and support, (b) visibility/presence on the floor, (c) liaising between people, (d) administration and leadership, (e) project management, (f) cheerleading/buy-in/sponsorship, (g) preparing for CDS implementation. Area 2: Assembling the system with activities (a) providing technical support, (b) CDS content development, (c) purchasing products from vendors (d) knowledge management, (e) system integration. Area 3: Using CDS to achieve the organization's goals with activities (a) reporting, (b) requirements-gathering/specifications, (c) monitoring CDS, (d) linking CDS to goals, (e) managing data. Area 4: Participation in external policy and standards activities (this area consists of only a single activity). We also identified a set of recommendations associated with these 18 activities. All 18 activities we identified were performed at all sites, although the way they were organized into roles differed substantially. We consider these activities critical to the success of a CDS program. A series of activities are performed by sites strong in CDS, and sites adopting CDS should ensure they incorporate these activities into their efforts.

  16. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites

    NASA Astrophysics Data System (ADS)

    Pothof, F.; Bonini, L.; Lanzilotto, M.; Livi, A.; Fogassi, L.; Orban, G. A.; Paul, O.; Ruther, P.

    2016-08-01

    Objective. Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localisation using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Approach. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are integrated with a minimal feature size of 5 μm. The polyimide foils are rolled into the cylindrical probe shape at a diameter of 0.8 mm. The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Main results. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. Significance. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localisation in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications.

  17. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites.

    PubMed

    Pothof, F; Bonini, L; Lanzilotto, M; Livi, A; Fogassi, L; Orban, G A; Paul, O; Ruther, P

    2016-08-01

    Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localisation using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are integrated with a minimal feature size of 5 μm. The polyimide foils are rolled into the cylindrical probe shape at a diameter of 0.8 mm. The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localisation in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications.

  18. Single-Stranded Nucleic Acids Bind to the Tetramer Interface of SAMHD1 and Prevent Formation of the Catalytic Homotetramer.

    PubMed

    Seamon, Kyle J; Bumpus, Namandjé N; Stivers, James T

    2016-11-08

    Sterile alpha motif and HD domain protein 1 (SAMHD1) is a unique enzyme that plays important roles in nucleic acid metabolism, viral restriction, and the pathogenesis of autoimmune diseases and cancer. Although much attention has been focused on its dNTP triphosphohydrolase activity in viral restriction and disease, SAMHD1 also binds to single-stranded RNA and DNA. Here we utilize a UV cross-linking method using 5-bromodeoxyuridine-substituted oligonucleotides coupled with high-resolution mass spectrometry to identify the binding site for single-stranded nucleic acids (ssNAs) on SAMHD1. Mapping cross-linked amino acids on the surface of existing crystal structures demonstrated that the ssNA binding site lies largely along the dimer-dimer interface, sterically blocking the formation of the homotetramer required for dNTPase activity. Surprisingly, the disordered C-terminus of SAMHD1 (residues 583-626) was also implicated in ssNA binding. An interaction between this region and ssNA was confirmed in binding studies using the purified SAMHD1 583-626 peptide. Despite a recent report that SAMHD1 possesses polyribonucleotide phosphorylase activity, we did not detect any such activity in the presence of inorganic phosphate, indicating that nucleic acid binding is unrelated to this proposed activity. These data suggest an antagonistic regulatory mechanism in which the mutually exclusive oligomeric state requirements for ssNA binding and dNTP hydrolase activity modulate these two functions of SAMHD1 within the cell.

  19. QUANTITATIVE STRUCTURE—PROPERTY RELATIONSHIPS FOR ENHANCING PREDICTIONS OF SYNTHETIC ORGANIC CHEMICAL REMOVAL FROM DRINKING WATER BY GRANULAR ACTIVATED CARBON

    EPA Science Inventory


    A number of mathematical models have been developed to predict activated carbon column performance using single-solute isotherm data as inputs. Many assumptions are built into these models to account for kinetics of adsorption and competition for adsorption sites. This work...

  20. Cloning and characterization of an RNase-related protein gene preferentially expressed in rice stems.

    PubMed

    Wei, Jun-Ya; Li, An-Ming; Li, Yin; Wang, Jing; Liu, Xiao-Bin; Liu, Liang-Shi; Xu, Zeng-Fu

    2006-04-01

    RNase-related proteins (RRPs) are S- and S-like RNase homologs lacking the active site required for RNase activity. Here we describe the cloning and characterization of the rice (Oryza sativa) RRP gene (OsRRP). A single copy of OsRRP occurs in the rice genome. OsRRP contains three introns and an open reading frame encoding 252 amino acids, with the replacement of two histidines involved in the active site of RNase by lysine and tyrosine respectively. OsRRP is preferentially expressed in stems of wild-type rice and is significantly down-regulated in an increased tillering dwarf mutant ext37.

  1. Cadmium mobility in sediments and soils from a coal mining area on Tibagi River watershed: environmental risk assessment.

    PubMed

    Galunin, Evgeny; Ferreti, Jeferson; Zapelini, Iago; Vieira, Isadora; Ricardo Teixeira Tarley, César; Abrão, Taufik; Santos, Maria Josefa

    2014-01-30

    The risk of cadmium contamination in the Tibagi River watershed (Parana State, Brazil) affected by past coal mining activities was assessed through sorption-desorption modeling for sediment and soil samples. The acidic character of the samples resulted in more competition between the cadmium ions and protons, thereby influencing the cadmium sorption-desorption. The sorption isotherms were fitted to the Langmuir and Freundlich single models and to the dual-site Langmuir-Freundlich (or Sips) model. The single-site models indicated a low-energy character of sorption sites on the sample sorption sites, whereas the dual-site model explained the availability of higher-affinity and lower-affinity non-specific sites. The correlation of the sorption and desorption constants with the physicochemical and mineralogical characteristics of the samples showed that the cadmium sorption behavior was significantly affected by the pH, point of zero charge, and also by the magnesium, aluminum, calcium and manganese amounts. Besides, the desorption rate and hysteresis index suggested a high risk of cadmium mobilization along the Tibagi River basin. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Binding Leverage as a Molecular Basis for Allosteric Regulation

    PubMed Central

    Mitternacht, Simon; Berezovsky, Igor N.

    2011-01-01

    Allosteric regulation involves conformational transitions or fluctuations between a few closely related states, caused by the binding of effector molecules. We introduce a quantity called binding leverage that measures the ability of a binding site to couple to the intrinsic motions of a protein. We use Monte Carlo simulations to generate potential binding sites and either normal modes or pairs of crystal structures to describe relevant motions. We analyze single catalytic domains and multimeric allosteric enzymes with complex regulation. For the majority of the analyzed proteins, we find that both catalytic and allosteric sites have high binding leverage. Furthermore, our analysis of the catabolite activator protein, which is allosteric without conformational change, shows that its regulation involves other types of motion than those modulated at sites with high binding leverage. Our results point to the importance of incorporating dynamic information when predicting functional sites. Because it is possible to calculate binding leverage from a single crystal structure it can be used for characterizing proteins of unknown function and predicting latent allosteric sites in any protein, with implications for drug design. PMID:21935347

  3. Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds.

    PubMed

    Peng, Yuhan; Geng, Zhigang; Zhao, Songtao; Wang, Liangbing; Li, Hongliang; Wang, Xu; Zheng, Xusheng; Zhu, Junfa; Li, Zhenyu; Si, Rui; Zeng, Jie

    2018-06-13

    Single-atom catalysts exhibit high selectivity in hydrogenation due to their isolated active sites, which ensure uniform adsorption configurations of substrate molecules. Compared with the achievement in catalytic selectivity, there is still a long way to go in exploiting the catalytic activity of single-atom catalysts. Herein, we developed highly active and selective catalysts in selective hydrogenation by embedding Pt single atoms in the surface of Ni nanocrystals (denoted as Pt 1 /Ni nanocrystals). During the hydrogenation of 3-nitrostyrene, the TOF numbers based on surface Pt atoms of Pt 1 /Ni nanocrystals reached ∼1800 h -1 under 3 atm of H 2 at 40 °C, much higher than that of Pt single atoms supported on active carbon, TiO 2 , SiO 2 , and ZSM-5. Mechanistic studies reveal that the remarkable activity of Pt 1 /Ni nanocrystals derived from sufficient hydrogen supply because of spontaneous dissociation of H 2 on both Pt and Ni atoms as well as facile diffusion of H atoms on Pt 1 /Ni nanocrystals. Moreover, the ensemble composed of the Pt single atom and nearby Ni atoms in Pt 1 /Ni nanocrystals leads to the adsorption configuration of 3-nitrostyrene favorable for the activation of nitro groups, accounting for the high selectivity for 3-vinylaniline.

  4. Chromatin insulation by a transcriptional activator

    PubMed Central

    Sutter, Nathan B.; Scalzo, David; Fiering, Steven; Groudine, Mark; Martin, David I. K.

    2003-01-01

    In eukaryotic genomes, transcriptionally active regions are interspersed with silent chromatin that may repress genes in its vicinity. Chromatin insulators are elements that can shield a locus from repressive effects of flanking chromatin. Few such elements have been characterized in higher eukaryotes, but transcriptional activating elements are an invariant feature of active loci and have been shown to suppress transgene silencing. Hence, we have assessed the ability of a transcriptional activator to cause chromatin insulation, i.e., to relieve position effects at transgene integration sites in cultured cells. The transgene contained a series of binding sites for the metal-inducible transcriptional activator MTF, linked to a GFP reporter. Clones carrying single integrated transgenes were derived without selection for expression, and in most clones the transgene was silent. Induction of MTF resulted in transition of the transgene from the silent to the active state, prolongation of the active state, and a marked narrowing of the range of expression levels at different genomic sites. At one genomic site, prolonged induction of MTF resulted in suppression of transgene silencing that persisted after withdrawal of the induction stimulus. These results are consistent with MTF acting as a chromatin insulator and imply that transcriptional activating elements can insulate active loci against chromatin repression. PMID:12547916

  5. Real-time detection of caspase-2 activation in a single living HeLa cell during cisplatin-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Zhang, Zhihong; Yang, Jie; Zeng, Shaoqun; Liu, Bifeng; Luo, Qingming

    2006-03-01

    Caspase-2 is important for the mitochondrial apoptotic pathway, however, the mechanism by which caspase-2 executes apoptosis remains obscure. We carry out the first measurements of the dynamics of caspase-2 activation in a single living cell by a FRET (fluorescence resonance energy transfer) probe. Two FRET probes are constructed that each encoded a CRS (caspase-2 or caspase-3 recognition site) fused with a cyan fluorescent protein (CFP) and a red fluorescent protein (DsRed) (CFP-CRS-DsRed). Using these probes, we found that during cisplatin-induced apoptosis, caspase-2 activation occurred more slowly than did activation of caspase-3; additionally, caspase-2 activation was initiated much earlier than that of caspase-3.

  6. Probing the ATP-induced conformational flexibility of the PcrA helicase protein using molecular dynamics simulation.

    PubMed

    Mhashal, Anil R; Choudhury, Chandan Kumar; Roy, Sudip

    2016-03-01

    Helicases are enzymes that unwind double-stranded DNA (dsDNA) into its single-stranded components. It is important to understand the binding and unbinding of ATP from the active sites of helicases, as this knowledge can be used to elucidate the functionality of helicases during the unwinding of dsDNA. In this work, we investigated the unbinding of ATP and its effect on the active-site residues of the helicase PcrA using molecular dynamic simulations. To mimic the unbinding process of ATP from the active site of the helicase, we simulated the application of an external force that pulls ATP from the active site and computed the free-energy change during this process. We estimated an energy cost of ~85 kJ/mol for the transformation of the helicase from the ATP-bound state (1QHH) to the ATP-free state (1PJR). Unbinding led to conformational changes in the residues of the protein at the active site. Some of the residues at the ATP-binding site were significantly reoriented when the ATP was pulled. We observed a clear competition between reorientation of the residues and energy stabilization by hydrogen bonds between the ATP and active-site residues. We also checked the flexibility of the PcrA protein using a principal component analysis of domain motion. We found that the ATP-free state of the helicase is more flexible than the ATP-bound state.

  7. The action of blocking agents applied to the inner face of Ca(2+)-activated K+ channels from human erythrocytes.

    PubMed

    Dunn, P M

    1998-09-15

    The actions of clotrimazole and cetiedil, two drugs known to inhibit the Gardos channel, have been studied on single intermediate conductance calcium-activated potassium (IKCa) channels in inside out patches from human red blood cells, and compared with those of TEA and Ba2+ applied to the cytoplasmic face of the membrane. TEA produced a fast block which was observed as a reduction in the amplitude of the single channel current. This effect was weakly voltage dependent with the fraction of the membrane potential sensed by TEA at its binding site (delta) of 0.18 and a Kd at 0 mV of 20.5 mM. Ba2+ was a very potent blocker of the channel, breaking the single channel activity up into bursts, inter-spersed with silent periods lasting several seconds. The effect of Ba2+ was very voltage sensitive, delta = 0.44, and a Kd at 0 mV of 0.15 microM. Clotrimazole applied to the inner face of the membrane at a concentration < or = 1 microM produced a slow block resulting in bursts of channel activity separated by quiescent periods lasting many seconds. The effect of clotrimazole was mimicked by a quaternary derivative UCL 1559, in keeping with an action at the cytoplasmic face of the channel. A high concentration of cetiedil (100 microM) produced only a weak block of the channel. The kinetics of this action were very slow, with burst and inter-burst intervals lasting several minutes. While inhibition of the Gardos channel by cetiedil is unlikely to involve an intracellular site of action, if clotrimazole is able to penetrate the membrane, part of its effect may result from binding to an intracellular site on the channel.

  8. Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation.

    PubMed

    Lecchi, Silvia; Nelson, Clark J; Allen, Kenneth E; Swaney, Danielle L; Thompson, Katie L; Coon, Joshua J; Sussman, Michael R; Slayman, Carolyn W

    2007-12-07

    In recent years there has been growing interest in the post-translational regulation of P-type ATPases by protein kinase-mediated phosphorylation. Pma1 H(+)-ATPase, which is responsible for H(+)-dependent nutrient uptake in yeast (Saccharomyces cerevisiae), is one such example, displaying a rapid 5-10-fold increase in activity when carbon-starved cells are exposed to glucose. Activation has been linked to Ser/Thr phosphorylation in the C-terminal tail of the ATPase, but the specific phosphorylation sites have not previously been mapped. The present study has used nanoflow high pressure liquid chromatography coupled with electrospray electron transfer dissociation tandem mass spectrometry to identify Ser-911 and Thr-912 as two major phosphorylation sites that are clearly related to glucose activation. In carbon-starved cells with low Pma1 activity, peptide 896-918, which was derived from the C terminus upon Lys-C proteolysis, was found to be singly phosphorylated at Thr-912, whereas in glucose-metabolizing cells with high ATPase activity, the same peptide was doubly phosphorylated at Ser-911 and Thr-912. Reciprocal (14)N/(15)N metabolic labeling of cells was used to measure the relative phosphorylation levels at the two sites. The addition of glucose to carbon-starved cells led to a 3-fold reduction in the singly phosphorylated form and an 11-fold increase in the doubly phosphorylated form. These results point to a mechanism in which the stepwise phosphorylation of two tandemly positioned residues near the C terminus mediates glucose-dependent activation of the H(+)-ATPase.

  9. An additional substrate binding site in a bacterial phenylalanine hydroxylase

    PubMed Central

    Ronau, Judith A.; Paul, Lake N.; Fuchs, Julian E.; Corn, Isaac R.; Wagner, Kyle T.; Liedl, Klaus R.; Abu-Omar, Mahdi M.; Das, Chittaranjan

    2014-01-01

    Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes phenylalanine oxidation to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH features a regulatory domain where binding of the substrate leads to allosteric activation of the enzyme. However, existence of PAH regulation in evolutionarily distant organisms, such as certain bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum (cPAH), a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site, 15.7Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 µM for phenylalanine. Under the same conditions, no detectable binding was observed in ITC for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) lead to impaired binding, consistent with the presence of distal site binding in solution. Kinetic analysis reveals that the distal site mutants suffer a discernible loss in their catalytic activity. However, x-ray structures of Y155A and F258A, two of the mutants showing more noticeable defect in their activity, show no discernible change in their active site structure, suggesting that the effect of distal binding may transpire through protein dynamics in solution. PMID:23860686

  10. The plastid casein kinase 2 phosphorylates Rubisco activase at the Thr-78 site but is not essential for regulation of Rubisco activation state

    USDA-ARS?s Scientific Manuscript database

    Rubisco activase (RCA) is essential for the activation of Rubisco, the carboxylating enzyme of photosynthesis. In Arabidopsis, RCA is encoded by a single gene (At2g39730) that is alternatively spliced to form a large alpha-RCA and small beta-RCA isoform. The activity of Rubisco is controlled in res...

  11. Operant conditioning of neural activity in freely behaving monkeys with intracranial reinforcement

    PubMed Central

    Eaton, Ryan W.; Libey, Tyler

    2017-01-01

    Operant conditioning of neural activity has typically been performed under controlled behavioral conditions using food reinforcement. This has limited the duration and behavioral context for neural conditioning. To reward cell activity in unconstrained primates, we sought sites in nucleus accumbens (NAc) whose stimulation reinforced operant responding. In three monkeys, NAc stimulation sustained performance of a manual target-tracking task, with response rates that increased monotonically with increasing NAc stimulation. We recorded activity of single motor cortex neurons and documented their modulation with wrist force. We conditioned increased firing rates with the monkey seated in the training booth and during free behavior in the cage using an autonomous head-fixed recording and stimulating system. Spikes occurring above baseline rates triggered single or multiple electrical pulses to the reinforcement site. Such rate-contingent, unit-triggered stimulation was made available for periods of 1–3 min separated by 3–10 min time-out periods. Feedback was presented as event-triggered clicks both in-cage and in-booth, and visual cues were provided in many in-booth sessions. In-booth conditioning produced increases in single neuron firing probability with intracranial reinforcement in 48 of 58 cells. Reinforced cell activity could rise more than five times that of non-reinforced activity. In-cage conditioning produced significant increases in 21 of 33 sessions. In-cage rate changes peaked later and lasted longer than in-booth changes, but were often comparatively smaller, between 13 and 18% above non-reinforced activity. Thus intracranial stimulation reinforced volitional increases in cortical firing rates during both free behavior and a controlled environment, although changes in the latter were more robust. NEW & NOTEWORTHY Closed-loop brain-computer interfaces (BCI) were used to operantly condition increases in muscle and neural activity in monkeys by delivering activity-dependent stimuli to an intracranial reinforcement site (nucleus accumbens). We conditioned increased firing rates with the monkeys seated in a training booth and also, for the first time, during free behavior in a cage using an autonomous head-fixed BCI. PMID:28031396

  12. Operant conditioning of neural activity in freely behaving monkeys with intracranial reinforcement.

    PubMed

    Eaton, Ryan W; Libey, Tyler; Fetz, Eberhard E

    2017-03-01

    Operant conditioning of neural activity has typically been performed under controlled behavioral conditions using food reinforcement. This has limited the duration and behavioral context for neural conditioning. To reward cell activity in unconstrained primates, we sought sites in nucleus accumbens (NAc) whose stimulation reinforced operant responding. In three monkeys, NAc stimulation sustained performance of a manual target-tracking task, with response rates that increased monotonically with increasing NAc stimulation. We recorded activity of single motor cortex neurons and documented their modulation with wrist force. We conditioned increased firing rates with the monkey seated in the training booth and during free behavior in the cage using an autonomous head-fixed recording and stimulating system. Spikes occurring above baseline rates triggered single or multiple electrical pulses to the reinforcement site. Such rate-contingent, unit-triggered stimulation was made available for periods of 1-3 min separated by 3-10 min time-out periods. Feedback was presented as event-triggered clicks both in-cage and in-booth, and visual cues were provided in many in-booth sessions. In-booth conditioning produced increases in single neuron firing probability with intracranial reinforcement in 48 of 58 cells. Reinforced cell activity could rise more than five times that of non-reinforced activity. In-cage conditioning produced significant increases in 21 of 33 sessions. In-cage rate changes peaked later and lasted longer than in-booth changes, but were often comparatively smaller, between 13 and 18% above non-reinforced activity. Thus intracranial stimulation reinforced volitional increases in cortical firing rates during both free behavior and a controlled environment, although changes in the latter were more robust. NEW & NOTEWORTHY Closed-loop brain-computer interfaces (BCI) were used to operantly condition increases in muscle and neural activity in monkeys by delivering activity-dependent stimuli to an intracranial reinforcement site (nucleus accumbens). We conditioned increased firing rates with the monkeys seated in a training booth and also, for the first time, during free behavior in a cage using an autonomous head-fixed BCI. Copyright © 2017 the American Physiological Society.

  13. Characterization of the 2′,3′ cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage λ phosphatase

    PubMed Central

    Keppetipola, Niroshika; Shuman, Stewart

    2007-01-01

    Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5′ and 3′ end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage λ phosphatase (λ-Pase). CthPnkp is a Ni2+/Mn2+-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn2+-dependent 2′,3′ cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2′,3′ cyclic phosphate to a 3′,5′ cyclic phosphate. A single H189D mutation imposes strict specificity for a 2′,3′ cyclic phosphate, which is cleaved to form a single 2′-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and kcat. We also characterize a previously unrecognized phosphodiesterase activity of λ-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. λ-Pase also has cyclic phosphodiesterase activity with nucleoside 2′,3′ cyclic phosphates, which it hydrolyzes to yield a mixture of 2′-NMP and 3′-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire. PMID:17986465

  14. Recording large-scale neuronal ensembles with silicon probes in the anesthetized rat.

    PubMed

    Schjetnan, Andrea Gomez Palacio; Luczak, Artur

    2011-10-19

    Large scale electrophysiological recordings from neuronal ensembles offer the opportunity to investigate how the brain orchestrates the wide variety of behaviors from the spiking activity of its neurons. One of the most effective methods to monitor spiking activity from a large number of neurons in multiple local neuronal circuits simultaneously is by using silicon electrode arrays. Action potentials produce large transmembrane voltage changes in the vicinity of cell somata. These output signals can be measured by placing a conductor in close proximity of a neuron. If there are many active (spiking) neurons in the vicinity of the tip, the electrode records combined signal from all of them, where contribution of a single neuron is weighted by its 'electrical distance'. Silicon probes are ideal recording electrodes to monitor multiple neurons because of a large number of recording sites (+64) and a small volume. Furthermore, multiple sites can be arranged over a distance of millimeters, thus allowing for the simultaneous recordings of neuronal activity in the various cortical layers or in multiple cortical columns (Fig. 1). Importantly, the geometrically precise distribution of the recording sites also allows for the determination of the spatial relationship of the isolated single neurons. Here, we describe an acute, large-scale neuronal recording from the left and right forelimb somatosensory cortex simultaneously in an anesthetized rat with silicon probes (Fig. 2).

  15. Recording Large-scale Neuronal Ensembles with Silicon Probes in the Anesthetized Rat

    PubMed Central

    Schjetnan, Andrea Gomez Palacio; Luczak, Artur

    2011-01-01

    Large scale electrophysiological recordings from neuronal ensembles offer the opportunity to investigate how the brain orchestrates the wide variety of behaviors from the spiking activity of its neurons. One of the most effective methods to monitor spiking activity from a large number of neurons in multiple local neuronal circuits simultaneously is by using silicon electrode arrays1-3. Action potentials produce large transmembrane voltage changes in the vicinity of cell somata. These output signals can be measured by placing a conductor in close proximity of a neuron. If there are many active (spiking) neurons in the vicinity of the tip, the electrode records combined signal from all of them, where contribution of a single neuron is weighted by its 'electrical distance'. Silicon probes are ideal recording electrodes to monitor multiple neurons because of a large number of recording sites (+64) and a small volume. Furthermore, multiple sites can be arranged over a distance of millimeters, thus allowing for the simultaneous recordings of neuronal activity in the various cortical layers or in multiple cortical columns (Fig. 1). Importantly, the geometrically precise distribution of the recording sites also allows for the determination of the spatial relationship of the isolated single neurons4. Here, we describe an acute, large-scale neuronal recording from the left and right forelimb somatosensory cortex simultaneously in an anesthetized rat with silicon probes (Fig. 2). PMID:22042361

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Jun; Yang, Dali; Wen, Jianguo

    A stable single-site Rh catalyst was formed inside individual channels of three-dimensional dendritic mesoporous silica nanospheres through aminosilane binding. The catalyst demonstrated an excellent activity, stability and recyclability in the reduction of 4-nitrophenol, high regioselectivity in the hydrosilylation of terminal alkyne.

  17. MyEnviroMapper

    EPA Pesticide Factsheets

    EnviroMapper for Envirofacts is a single point of access to select U.S. EPA environmental data. This Web site provides access to several EPA databases to provide you with information about environmental activities that may affect air, water, and l

  18. Amino acid sequence of tyrosinase from Neurospora crassa.

    PubMed Central

    Lerch, K

    1978-01-01

    The amino-acid sequence of tyrosinase from Neurospora crassa (monophenol,dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) is reported. This copper-containing oxidase consists of a single polypeptide chain of 407 amino acids. The primary structure was determined by automated and manual sequence analysis on fragments produced by cleavage with cyanogen bromide and on peptides obtained by digestion with trypsin, pepsin, thermolysin, or chymotrypsin. The amino terminus of the protein is acetylated and the single cysteinyl residue 96 is covalently linked via a thioether bridge to histidyl residue 94. The formation and the possible role of this unusual structure in Neurospora tyrosinase is discussed. Dye-sensitized photooxidation of apotyrosinase and active-site-directed inactivation of the native enzyme indicate the possible involvement of histidyl residues 188, 192, 289, and 305 or 306 as ligands to the active-site copper as well as in the catalytic mechanism of this monooxygenase. PMID:151279

  19. The first chiral diene-based metal-organic frameworks for highly enantioselective carbon-carbon bond formation reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawano, Takahiro; Ji, Pengfei; McIsaac, Alexandra R.

    2016-02-01

    We have designed the first chiral diene-based metal–organic framework (MOF), E₂-MOF, and postsynthetically metalated E₂-MOF with Rh(I) complexes to afford highly active and enantioselective single-site solid catalysts for C–C bond formation reactions. Treatment of E₂-MOF with [RhCl(C₂H₄)₂]₂ led to a highly enantioselective catalyst for 1,4-additions of arylboronic acids to α,β-unsaturated ketones, whereas treatment of E₂-MOF with Rh(acac)(C₂H₄)₂ afforded a highly efficient catalyst for the asymmetric 1,2-additions of arylboronic acids to aldimines. Interestingly, E₂-MOF·Rh(acac) showed higher activity and enantioselectivity than the homogeneous control catalyst, likely due to the formation of a true single-site catalyst in the MOF. E₂-MOF·Rh(acac) was also successfullymore » recycled and reused at least seven times without loss of yield and enantioselectivity.« less

  20. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO2 transformation

    NASA Astrophysics Data System (ADS)

    Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian

    2017-02-01

    Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.

  1. Monte Carlo modeling of single-molecule cytoplasmic dynein.

    PubMed

    Singh, Manoranjan P; Mallik, Roop; Gross, Steven P; Yu, Clare C

    2005-08-23

    Molecular motors are responsible for active transport and organization in the cell, underlying an enormous number of crucial biological processes. Dynein is more complicated in its structure and function than other motors. Recent experiments have found that, unlike other motors, dynein can take different size steps along microtubules depending on load and ATP concentration. We use Monte Carlo simulations to model the molecular motor function of cytoplasmic dynein at the single-molecule level. The theory relates dynein's enzymatic properties to its mechanical force production. Our simulations reproduce the main features of recent single-molecule experiments that found a discrete distribution of dynein step sizes, depending on load and ATP concentration. The model reproduces the large steps found experimentally under high ATP and no load by assuming that the ATP binding affinities at the secondary sites decrease as the number of ATP bound to these sites increases. Additionally, to capture the essential features of the step-size distribution at very low ATP concentration and no load, the ATP hydrolysis of the primary site must be dramatically reduced when none of the secondary sites have ATP bound to them. We make testable predictions that should guide future experiments related to dynein function.

  2. Concealed Accessory Pathways with a Single Ventricular and Two Discrete Atrial Insertion Sites.

    PubMed

    Kipp, Ryan T; Abu Sham'a, Raed; Hiroyuki, Ito; Han, Frederick T; Refaat, Marwan; Hsu, Jonathan C; Field, Michael E; Kopp, Douglas E; Marcus, Gregory M; Scheinman, Melvin M; Hoffmayer, Kurt S

    2017-03-01

    Atrioventricular reciprocating tachycardia (AVRT) utilizing a concealed accessory pathway is common. It is well appreciated that some patients may have multiple accessory pathways with separate atrial and ventricular insertion sites. We present three cases of AVRT utilizing concealed pathways with evidence that each utilizing a single ventricular insertion and two discrete atrial insertion sites. In case one, two discrete atrial insertion sites were mapped in two separate procedures, and only during the second ablation was the Kent potential identified. Ablation of the Kent potential at this site remote from the two atrial insertion sites resulted in the termination of the retrograde conduction in both pathways. Case two presented with supraventricular tachycardia (SVT) with alternating eccentric atrial activation patterns without alteration in the tachycardia cycle length. The two distinct atrial insertion sites during orthodromic AVRT and ventricular pacing were targeted and each of the two atrial insertion sites were successfully mapped and ablated. In case three, retrograde decremental conduction utilizing both atrial insertion sites was identified prior to ablation. After mapping and ablation of the first discrete atrial insertion site, tachycardia persisted utilizing the second atrial insertion site. Only after ablation of the second atrial insertion site was SVT noninducible, and VA conduction was no longer present. Concealed retrograde accessory pathways with discrete atrial insertion sites may have a common ventricular insertion site. Identification and ablation of the ventricular insertion site or the separate discrete atrial insertion sites result in successful treatment. © 2017 Wiley Periodicals, Inc.

  3. Biological role of site-specific O-glycosylation in cell adhesion activity and phosphorylation of osteopontin.

    PubMed

    Oyama, Midori; Kariya, Yoshinobu; Kariya, Yukiko; Matsumoto, Kana; Kanno, Mayumi; Yamaguchi, Yoshiki; Hashimoto, Yasuhiro

    2018-05-09

    Osteopontin (OPN) is an extracellular glycosylated phosphoprotein that promotes cell adhesion by interacting with several integrin receptors. We previously reported that an OPN mutant lacking five O-glycosylation sites (Thr 134 /Thr 138 /Thr 143 /Thr 147 /Thr 152 ) in the threonine/proline-rich region increased cell adhesion activity and phosphorylation compared with the wild type. However, the role of O-glycosylation in cell adhesion activity and phosphorylation of OPN remains to be clarified. Here, we show that site-specific O-glycosylation in the threonine/proline-rich region of OPN affects its cell adhesion activity and phosphorylation independently and/or synergistically. Using site-directed mutagenesis, we found that OPN mutants with substitution sets of Thr 134 /Thr 138 or Thr 143 /Thr 147 /Thr 152 had decreased and increased cell adhesion activity, respectively. In contrast, the introduction of a single mutation into the O-glycosylation sites had no effect on OPN cell adhesion activity. An adhesion assay using function-blocking antibodies against αvβ3 and β1 integrins, as well as αvβ3 integrin-overexpressing A549 cells, revealed that site-specific O-glycosylation affected the association of OPN with the two integrins. Phosphorylation analyses using phos-tag and LC-MS/MS indicated that phosphorylation levels and sites were influenced by the O-glycosylation status, although the number of O-glycosylation sites was not correlated with the phosphorylation level in OPN. Furthermore, a correlation analysis between phosphorylation level and cell adhesion activity in OPN mutants with the site-specific O-glycosylation showed that they were not always correlated. These results provide conclusive evidence of a novel regulatory mechanism of cell adhesion activity and phosphorylation of OPN by site-specific O-glycosylation. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Sedimentary Controls on Foraminifera Deposition in the Bay of Bengal: Implications from Single Shell Mg/Ca and δ18O

    NASA Astrophysics Data System (ADS)

    Fritz-Endres, T.; Dekens, P.; Spero, H. J.; Fehrenbacher, J. S.; Spiess, V.; France-Lanord, C.

    2016-12-01

    Sediment cores from the Bay of Bengal present an opportunity to improve our understanding of the links between terrestrial and oceanographic climate variability. Foraminifera archive key proxies for reconstructing oceanographic conditions, but in Bengal fan sediments, fossils may have been transported via turbidity currents. Given the difference in SST and SSS variability in the southern (29.0±0.8°C; 33.9 ±0.3‰) and the northern Bay of Bengal (28.0±1.4°C; 31.6±0.8‰), it is important to determine the source of foraminifera to the sediment cores before attempting paleoceanographic reconstructions. We present paired Mg/Ca and δ18O data from single Globigerinoides sacculifer in mudline samples from three locations with differing oceanographic conditions. Two sites are from IODP Expedition 354 and one site is from the continental shelf. IODP Site U1454 (8.4°N, 85.5°E, 3721 m water depth) is near the modern active channel and more likely to be influenced by transport, while IODP site U1449 (8.4°N, 88.7°E, 3653 m water depth) is 200 km from channel activity and site 342KL (20.6°N, 90°E, 1256 m water depth) is on the continental shelf. The distribution of 70 to 80 Mg/Ca and δ18O data-points reflects the seasonal signal at the location foraminifera calcified. Mg/Ca and δ18O data from site U1449 (far from channel activity) have a distribution that most closely reflects the seasonal oceanographic conditions of the overlying water column. However, the distribution of G. sacculifer Mg/Ca and δ18O from site U1454 (near the active channel) has similarities to the distribution of the G. sacculifer Mg/Ca and δ18O data from the continental shelf. Our data suggest that foraminifera near the active channel are a mixture of shells from the overlying water column and shells transported from the northern Bay of Bengal. We suggest foraminifera can be used to reconstruct SST and δ18O in this complex depositional environment, but caution must be taken when the down-core lithology indicates regional turbidite activity and other evidence of sediment redeposition.

  5. Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site

    PubMed Central

    Jonsson, Amanda; Inal, Sahika; Uguz, Ilke; Williamson, Adam J.; Kergoat, Loïg; Rivnay, Jonathan; Khodagholy, Dion; Berggren, Magnus; Bernard, Christophe; Malliaras, George G.

    2016-01-01

    Local control of neuronal activity is central to many therapeutic strategies aiming to treat neurological disorders. Arguably, the best solution would make use of endogenous highly localized and specialized regulatory mechanisms of neuronal activity, and an ideal therapeutic technology should sense activity and deliver endogenous molecules at the same site for the most efficient feedback regulation. Here, we address this challenge with an organic electronic multifunctional device that is capable of chemical stimulation and electrical sensing at the same site, at the single-cell scale. Conducting polymer electrodes recorded epileptiform discharges induced in mouse hippocampal preparation. The inhibitory neurotransmitter, γ-aminobutyric acid (GABA), was then actively delivered through the recording electrodes via organic electronic ion pump technology. GABA delivery stopped epileptiform activity, recorded simultaneously and colocally. This multifunctional “neural pixel” creates a range of opportunities, including implantable therapeutic devices with automated feedback, where locally recorded signals regulate local release of specific therapeutic agents. PMID:27506784

  6. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution.

    PubMed

    Chen, Junze; Wu, Xue-Jun; Yin, Lisha; Li, Bing; Hong, Xun; Fan, Zhanxi; Chen, Bo; Xue, Can; Zhang, Hua

    2015-01-19

    Exploration of low-cost and earth-abundant photocatalysts for highly efficient solar photocatalytic water splitting is of great importance. Although transition-metal dichalcogenides (TMDs) showed outstanding performance as co-catalysts for the hydrogen evolution reaction (HER), designing TMD-hybridized photocatalysts with abundant active sites for the HER still remains challenge. Here, a facile one-pot wet-chemical method is developed to prepare MS2-CdS (M=W or Mo) nanohybrids. Surprisedly, in the obtained nanohybrids, single-layer MS2 nanosheets with lateral size of 4-10 nm selectively grow on the Cd-rich (0001) surface of wurtzite CdS nanocrystals. These MS2-CdS nanohybrids possess a large number of edge sites in the MS2 layers, which are active sites for the HER. The photocatalytic performances of WS2-CdS and MoS2-CdS nanohybrids towards the HER under visible light irradiation (>420 nm) are about 16 and 12 times that of pure CdS, respectively. Importantly, the MS2-CdS nanohybrids showed enhanced stability after a long-time test (16 h), and 70% of catalytic activity still remained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Backbone dynamics and global effects of an activating mutation in minimized Mtu RecA inteins.

    PubMed

    Du, Zhenming; Liu, Yangzhong; Ban, David; Lopez, Maria M; Belfort, Marlene; Wang, Chunyu

    2010-07-23

    Inteins mediate protein splicing, which has found many applications in biotechnology and protein engineering. A single valine-to-leucine mutation (V67L) can globally enhance splicing and related cleavage reactions in minimized Mycobacterium tuberculosis RecA inteins. However, V67L mutation causes little change in crystal structures. To test whether protein dynamics contribute to activity enhancement in the V67L mutation, we have studied the conformations and dynamics of the minimized and engineered intein DeltaDeltaIhh-V67CM and a single V67L mutant, DeltaDeltaIhh-L67CM, by solution NMR. Chemical shift perturbations established that the V67L mutation causes global changes, including changes at the N-terminus and C-terminus of the intein, which are active sites for protein splicing. The single V67L mutation significantly slows hydrogen-exchange rates globally, indicating a shift to more stable conformations and reduction in ensemble distribution. Whereas the V67L mutation causes little change for motions on the picosecond-to-nanosecond timescale, motions on the microsecond-to-millisecond timescale affect a region involving the conserved F-block histidine and C-terminal asparagine, which are residues important for C-terminal cleavage. The V67L mutation is proposed to activate splicing by reducing the ensemble distribution of the intein structure and by modifying the active sites. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Targeting of Repeated Sequences Unique to a Gene Results in Significant Increases in Antisense Oligonucleotide Potency

    PubMed Central

    Vickers, Timothy A.; Freier, Susan M.; Bui, Huynh-Hoa; Watt, Andrew; Crooke, Stanley T.

    2014-01-01

    A new strategy for identifying potent RNase H-dependent antisense oligonucleotides (ASOs) is presented. Our analysis of the human transcriptome revealed that a significant proportion of genes contain unique repeated sequences of 16 or more nucleotides in length. Activities of ASOs targeting these repeated sites in several representative genes were compared to those of ASOs targeting unique single sites in the same transcript. Antisense activity at repeated sites was also evaluated in a highly controlled minigene system. Targeting both native and minigene repeat sites resulted in significant increases in potency as compared to targeting of non-repeated sites. The increased potency at these sites is a result of increased frequency of ASO/RNA interactions which, in turn, increases the probability of a productive interaction between the ASO/RNA heteroduplex and human RNase H1 in the cell. These results suggest a new, highly efficient strategy for rapid identification of highly potent ASOs. PMID:25334092

  9. Local anesthetics QX 572 and benzocaine act at separate sites on the batrachotoxin-activated sodium channel

    PubMed Central

    1981-01-01

    We have studied the effect of local anesthetics QX 572, which is permanently charged, and benzocaine, which is neutral, on batrachotoxin- activated sodium channels in mouse neuroblastoma N18 cells. The dose- response curves for each drug suggest that QX 752 and benzocaine each act on a single class of binding sites. The dissociation constants are 3.15 X 10(-5) M for QX 572 and 2.65 X 10(-4) M for benzocaine. Equilibrium and kinetic experiments indicate that both drugs are competitive inhibitors of batrachotoxin. When benzocaine and QX 572 are present with batrachotoxin, they are much more effective at inhibiting Na+ flux than would be predicted by a one-site model. Our results indicate that QX 572 and benzocaine bind to separate sites, each of which interacts competitively with batrachotoxin. PMID:6267160

  10. Characterization of active phosphorus surface sites at synthetic carbonate-free fluorapatite using single-pulse 1H, 31P, and 31P CP MAS NMR.

    PubMed

    Jarlbring, Mathias; Sandström, Dan E; Antzutkin, Oleg N; Forsling, Willis

    2006-05-09

    The chemically active phosphorus surface sites defined as PO(x), PO(x)H, and PO(x)H2, where x = 1, 2, or 3, and the bulk phosphorus groups of PO4(3-) at synthetic carbonate-free fluorapatite (Ca5(PO4)3F) have been studied by means of single-pulse 1H,31P, and 31P CP MAS NMR. The changes in composition and relative amounts of each surface species are evaluated as a function of pH. By combining spectra from single-pulse 1H and 31P MAS NMR and data from 31P CP MAS NMR experiments at varying contact times in the range 0.2-3.0 ms, it has been possible to distinguish between resonance lines in the NMR spectra originating from active surface sites and bulk phosphorus groups and also to assign the peaks in the NMR spectra to the specific phosphorus species. In the 31P CP MAS NMR experiments, the spinning frequency was set to 4.2 kHz; in the single-pulse 1H MAS NMR experiments, the spinning frequency was 10 kHz. The 31P CP MAS NMR spectrum of fluorapatite at pH 5.9 showed one dominating resonance line at 2.9 ppm assigned to originate from PO4(3-) groups and two weaker shoulder peaks at 5.4 and 0.8 ppm which were assigned to the unprotonated PO(x) (PO, PO2-, and PO3(2-)) and protonated PO(x)H (PO2H and PO3H-) surface sites. At pH 12.7, the intensity of the peak representing unprotonated PO(x) surface sites has increased 1.7% relative to the bulk peak, while the intensity of the peaks of the protonated species PO(x)H have decreased 1.4% relative to the bulk peak. At pH 3.5, a resonance peak at -4.5 ppm has appeared in the 31P CP MAS NMR spectrum assigned to the surface species PO(x)H2 (PO3H2). The results from the 1H MAS and 31P CP MAS NMR measurements indicated that H+, OH-, and physisorbed H2O at the surface were released during the drying process at 200 degrees C.

  11. A qualitative study of the activities performed by people involved in clinical decision support: recommended practices for success

    PubMed Central

    Wright, Adam; Ash, Joan S; Erickson, Jessica L; Wasserman, Joe; Bunce, Arwen; Stanescu, Ana; St Hilaire, Daniel; Panzenhagen, Morgan; Gebhardt, Eric; McMullen, Carmit; Middleton, Blackford; Sittig, Dean F

    2014-01-01

    Objective To describe the activities performed by people involved in clinical decision support (CDS) at leading sites. Materials and methods We conducted ethnographic observations at seven diverse sites with a history of excellence in CDS using the Rapid Assessment Process and analyzed the data using a series of card sorts, informed by Linstone's Multiple Perspectives Model. Results We identified 18 activities and grouped them into four areas. Area 1: Fostering relationships across the organization, with activities (a) training and support, (b) visibility/presence on the floor, (c) liaising between people, (d) administration and leadership, (e) project management, (f) cheerleading/buy-in/sponsorship, (g) preparing for CDS implementation. Area 2: Assembling the system with activities (a) providing technical support, (b) CDS content development, (c) purchasing products from vendors (d) knowledge management, (e) system integration. Area 3: Using CDS to achieve the organization's goals with activities (a) reporting, (b) requirements-gathering/specifications, (c) monitoring CDS, (d) linking CDS to goals, (e) managing data. Area 4: Participation in external policy and standards activities (this area consists of only a single activity). We also identified a set of recommendations associated with these 18 activities. Discussion All 18 activities we identified were performed at all sites, although the way they were organized into roles differed substantially. We consider these activities critical to the success of a CDS program. Conclusions A series of activities are performed by sites strong in CDS, and sites adopting CDS should ensure they incorporate these activities into their efforts. PMID:23999670

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohn, H.; Camacho-Bunquin, J.; Langeslay, R. R.

    Well-defined, isolated, single-site organovanadium(III) catalyst on SiO 2 [(SiO 2)V(Mes)(THF)] were synthesized via surface organometallic chemistry, and fully characterized using a combination of analytical and spectroscopic techniques (EA, ICP, 1H NMR, TGA-MS, EPR, XPS, DR-UV/Vis, UV-Raman, DRIFTS, XAS). The catalysts exhibit unprecedented reactivity in liquid- and gas-phase alkene/alkyne hydrogenation. Catalyst poisoning experiments revealed that 100% of the V sites are active for hydrogenation.

  13. The AIRE -230Y Polymorphism Affects AIRE Transcriptional Activity: Potential Influence on AIRE Function in the Thymus.

    PubMed

    Lovewell, Thomas R J; McDonagh, Andrew J; Messenger, Andrew G; Azzouz, Mimoun; Tazi-Ahnini, Rachid

    2015-01-01

    The autoimmune regulator (AIRE) is expressed in the thymus, particularly in thymic medullary epithelial cells (mTECs), and is required for the ectopic expression of a diverse range of peripheral tissue antigens by mTECs, facilitating their ability to perform negative selection of auto-reactive immature T-cells. The expression profile of peripheral tissue antigens is affected not only by AIRE deficiency but also with variation of AIRE activity in the thymus. Therefore we screened 591bp upstream of the AIRE transcription start site including AIRE minimal promoter for single nucleotide polymorphism (SNPs) and identified two SNPs -655R (rs117557896) and -230Y (rs751032) respectively. To study the effect of these variations on AIRE promoter activity we generated a Flp-In host cell line which was stably transfected with a single copy of the reporter vector. Relative promoter activity was estimated by comparing the luciferase specific activity for lysates of the different reporter AIRE promoter-reporter gene constructs including AIRE-655G AIRE-230C, AIRE-655G AIRE-230T and AIRE-655A AIRE-230C. The analysis showed that the commonest haplotype AIRE-655G AIRE-230C has the highest luciferase specific activity (p<0.001). Whereas AIRE-655G AIRE-230T has a luciferase specific activity value that approaches null. Both AIRE promoter polymorphic sites have one allele that forms a CpG methylation site which we determined can be methylated in methylation assays using the M.SssI CpG methyltransferase. AIRE-230Y is in a conserved region of the promoter and is adjacent to a predicted WT1 transcription factor binding site, suggesting that AIRE-230Y affects AIRE expression by influencing the binding of biochemical factors to this region. Our findings show that AIRE-655GAIRE-230T haplotype could dramatically alter AIRE transcription and so have an effect on the process of negative selection and affect susceptibility to autoimmune conditions.

  14. Stabilization of different types of transition states in a single enzyme active site: QM/MM analysis of enzymes in the alkaline phosphatase superfamily.

    PubMed

    Hou, Guanhua; Cui, Qiang

    2013-07-17

    The first step for the hydrolysis of a phosphate monoester (pNPP(2-)) in enzymes of the alkaline phosphatase (AP) superfamily, R166S AP and wild-type NPP, is studied using QM/MM simulations based on an approximate density functional theory (SCC-DFTBPR) and a recently introduced QM/MM interaction Hamiltonian. The calculations suggest that similar loose transition states are involved in both enzymes, despite the fact that phosphate monoesters are the cognate substrates for AP but promiscuous substrates for NPP. The computed loose transition states are clearly different from the more synchronous ones previously calculated for diester reactions in the same AP enzymes. Therefore, our results explicitly support the proposal that AP enzymes are able to recognize and stabilize different types of transition states in a single active site. Analysis of the structural features of computed transition states indicates that the plastic nature of the bimetallic site plays a minor role in accommodating multiple types of transition states and that the high degree of solvent accessibility of the AP active site also contributes to its ability to stabilize diverse transition-state structures without the need of causing large structural distortions of the bimetallic motif. The binding mode of the leaving group in the transition state highlights that vanadate may not always be an ideal transition state analog for loose phosphoryl transfer transition states.

  15. QSAR and molecular graphics analysis of N2-phenylguanines as inhibitors of herpes simplex virus thymidine kinases.

    PubMed

    Gaudio, A C; Richards, W G; Takahata, Y

    2000-02-01

    A quantitative structure-activity relationship study of N2-(substituted)-phenylguanines (PHG) as inhibitors of herpes simplex virus thymidine kinase (HSV TK) was performed. The activity of a set of PHG derivatives were analyzed against the thymidine kinase of herpes simplex virus types 1 (HSV1 TK) and 2 (HSV2 TK). Classic and calculated physicochemical parameters were included in the analysis. The results showed that there is an important difference in the activity of the meta substituted PHG derivatives against HSV1 TK and HSV2 TK. The activity of the meta derivatives against HSV2 TK is influenced by a steric effect, which is not observed against HSV1 TK. The superposition of the three-dimensional structures of the active sites of HSV1 TK (crystal structure) and HSV2 TK (homology model) revealed that the amino acid Ile97 is located near the meta position in the HSV1 TK active site, whereas the amino acid Leu97 is located near the meta position in the HSV2 TK active site. This single difference in the active sites of both enzymes can explain the source of the steric effect and serves as an indication that our previously proposed binding mode for the PHG derivatives is plausible. However, another observed mutation in the active site region, Ala168 by Ser168, suggests that an alternative binding mode, similar to that of ganciclovir, could be possible.

  16. A Strategy for Maintenance of the Long-Term Performance Assessment of Immobilized Low-Activity Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Joseph V.; Freedman, Vicky L.

    2016-09-28

    Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminantsmore » of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).« less

  17. Single-site Laparoscopic Colorectal Surgery Provides Similar Clinical Outcomes Compared to Standard Laparoscopic Surgery: An Analysis of 626 Patients

    PubMed Central

    Sangster, William; Messaris, Evangelos; Berg, Arthur S.; Stewart, David B.

    2015-01-01

    BACKGROUND Compared to standard laparoscopy, single-site laparoscopic colorectal surgerymay potentially offer advantages by creating fewer surgical incisions and providing a multi-functional trocar. Previous comparisons, however, have been limited by small sample sizes and selection bias. OBJECTIVE To compare 60-day outcomes between standard laparoscopic and single-site laparoscopic colorectal surgery patients undergoing elective and urgent surgeries. DESIGN This was an unselected retrospective cohort study comparing patients who underwent elective and unplanned standard laparoscopic or single-site laparoscopic colorectal resections for benign and malignant disease between 2008 and 2014. Outcomes were compared using univariate analyses. SETTING This study was conducted at a single institution. PATIENTS A total of 626 consecutive patients undergoing laparoscopic colorectal surgery were included. MAIN OUTCOME MEASURES Morbidity and mortality within 60 postoperative days. RESULTS 318 (51%) and 308 (49%) patients underwent standard laparoscopic and single-site laparoscopic procedures, respectively. No significant difference was noted in mean operative time (Standard laparoscopy 182.1 ± 81.3 vs. Single-site laparoscopy 177±86.5, p=0.30) and postoperative length of stay (Standard laparoscopy 4.8±3.4 vs. Single-site laparoscopy 5.5 ± 6.9, p=0.14). Conversions to laparotomy and 60-day readmissions were also similar for both cohorts across all procedures performed. A significant difference was identified in the number of patients who developed postoperative complications (Standard laparoscopy 19.2% vs. Single-site laparoscopy 10.7%, p=0.004), especially with respect to surgical-site infections (Standard laparoscopy 11.3% vs. Single-site laparoscopy 5.8%, p=0.02). LIMITATIONS This was a retrospective, single institution study. CONCLUSIONS Single-site laparoscopic colorectal surgery demonstrates similar results to standard laparoscopic colorectal surgery in regards to operative time, length of stay and readmissions. Single-site laparoscopic colorectal surgery may provide advantages in limiting the development of certain complications such as superficial surgical-site infections. PMID:26252848

  18. Protective effect of extract of Crataegus pinnatifida pollen on DNA damage response to oxidative stress.

    PubMed

    Cheng, Ni; Wang, Yuan; Gao, Hui; Yuan, Jialing; Feng, Fan; Cao, Wei; Zheng, Jianbin

    2013-09-01

    The protective effect of extract of Crataegus pinnatifida (Rosaceae) pollen (ECPP) on the DNA damage response to oxidative stress was investigated and assessed with an alkaline single-cell gel electrophoresis (SCGE) assay and pBR322 plasmid DNA breaks in site-specific and non-site-specific systems. Total phenolic content, total flavonoid content, individual phenolic compounds, antioxidant activities (1,1-diphenyl-2-picrylhydrazyl (DPPH), radical scavenging activity, FRAP, and chelating activity) were also determined. The results showed that ECPP possessed a strong ability to protect DNA from being damaged by hydroxyl radicals in both the site-specific system and the non-site-specific system. It also exhibited a cytoprotection effect in mouse lymphocytes against H₂O₂-induced DNA damage. These protective effects may be related to its high total phenolic content (17.65±0.97 mg GAE/g), total flavonoid content (8.04±0.97 mg rutin/g), strong free radical scavenging activity and considerable ferrous ion chelating ability (14.48±0.21 mg Na₂EDTA/g). Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Modal gating of muscle nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Vij, Ridhima

    Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that modes were reduced. Based on our results, we propose that WT loop C has an important role in determining resting affinity, in part by making stable interactions with the complementary surface of the alphadelta binding pocket. We suggest a possible structural basis for the fluctuations caused by loop C perturbations and propose that at the alphadelta agonist binding site, both loop C and the complementary subunit surface can adopt alternative conformations and interact with each other with respect to the aromatic core, to cause the variations in affinity.

  20. Providers' and Administrators' Perceptions of Complementary and Integrative Health Practices Across the Veterans Health Administration

    PubMed Central

    Mitchinson, Allison R.; Trumble, Erika; Hinshaw, Daniel B.; Dusek, Jeffery A.

    2017-01-01

    Abstract Objectives: Use of complementary and integrative health (CIH) therapies is being promoted by the Veterans Health Administration (VA), but promotion may not equate to adoption. The purpose of this study was to explore whether perceptions regarding CIH at one VA medical center (VAMC) were similar to perceptions from a sample of other VAMCs. Design: This article reports a subset of qualitative findings from a mixed-methods study. Setting/Participants: Sites were recruited through a VA-wide CIH listserver. On the basis of site description (e.g., therapies offered, interest in CIH), sustained site interest, and geographic location, recorded interviews of 22 persons were conducted at 6 sites across the country. Outcome measures: Interviewees were asked the same questions as the single-site VAMC study respondents. Results: Variable access to CIH services across the VA created the need for workarounds. Multiple barriers (e.g., limited space and challenging credentialing) and facilitators (e.g., strong champion and high veteran demand) were cited. Respondents described nonpharmacologic pain control, the usefulness in treating mental health and/or post-traumatic stress disorder issues, and improvement of staff morale as additional reasons to promote CIH. Findings confirmed those from the earlier single-site VAMC phase of the study. Even the highest-performing sites reported struggling to meet veterans' demands for delivery of CIH. Conclusions: Almost half of active-duty military personnel report the use of at least one type of CIH therapy. As active-duty personnel transition to veteran status, both their physical and mental healthcare needs can potentially benefit from CIH therapies. The VA must actively support local enthusiastic CIH proponents and receive congressional support if it is to actually meet its stated goal of providing personalized, proactive, patient-driven healthcare through the promotion of comprehensive CIH services to veterans. PMID:27925776

  1. Directed divergent evolution of a thermostable D-tagatose epimerase towards improved activity for two hexose substrates.

    PubMed

    Bosshart, Andreas; Hee, Chee Seng; Bechtold, Matthias; Schirmer, Tilman; Panke, Sven

    2015-03-02

    Functional promiscuity of enzymes can often be harnessed as the starting point for the directed evolution of novel biocatalysts. Here we describe the divergent morphing of an engineered thermostable variant (Var8) of a promiscuous D-tagatose epimerase (DTE) into two efficient catalysts for the C3 epimerization of D-fructose to D-psicose and of L-sorbose to L-tagatose. Iterative single-site randomization and screening of 48 residues in the first and second shells around the substrate-binding site of Var8 yielded the eight-site mutant IDF8 (ninefold improved kcat for the epimerization of D-fructose) and the six-site mutant ILS6 (14-fold improved epimerization of L-sorbose), compared to Var8. Structure analysis of IDF8 revealed a charged patch at the entrance of its active site; this presumably facilitates entry of the polar substrate. The improvement in catalytic activity of variant ILS6 is thought to relate to subtle changes in the hydration of the bound substrate. The structures can now be used to select additional sites for further directed evolution of the ketohexose epimerase. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.

    PubMed

    Rivera-Torres, Natalia; Banas, Kelly; Bialk, Pawel; Bloh, Kevin M; Kmiec, Eric B

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex.

  3. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides

    PubMed Central

    Rivera-Torres, Natalia; Bialk, Pawel; Bloh, Kevin M.; Kmiec, Eric B.

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex. PMID:28052104

  4. Assessing FPAR Source and Parameter Optimization Scheme in Application of a Diagnostic Carbon Flux Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, D P; Ritts, W D; Wharton, S

    2009-02-26

    The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors.more » FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.« less

  5. Single-cell regulome data analysis by SCRAT.

    PubMed

    Ji, Zhicheng; Zhou, Weiqiang; Ji, Hongkai

    2017-09-15

    Emerging single-cell technologies (e.g. single-cell ATAC-seq, DNase-seq or ChIP-seq) have made it possible to assay regulome of individual cells. Single-cell regulome data are highly sparse and discrete. Analyzing such data is challenging. User-friendly software tools are still lacking. We present SCRAT, a Single-Cell Regulome Analysis Toolbox with a graphical user interface, for studying cell heterogeneity using single-cell regulome data. SCRAT can be used to conveniently summarize regulatory activities according to different features (e.g. gene sets, transcription factor binding motif sites, etc.). Using these features, users can identify cell subpopulations in a heterogeneous biological sample, infer cell identities of each subpopulation, and discover distinguishing features such as gene sets and transcription factors that show different activities among subpopulations. SCRAT is freely available at https://zhiji.shinyapps.io/scrat as an online web service and at https://github.com/zji90/SCRAT as an R package. hji@jhu.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  6. Ideas for future large single dish radio telescopes

    NASA Astrophysics Data System (ADS)

    Kärcher, Hans J.; Baars, Jacob W. M.

    2014-07-01

    The existing large single dish radio telescopes of the 100m class (Effelsberg, Green Bank) were built in the 1970s and 1990s. With some active optics they work now down to 3 millimeter wavelength where the atmospheric quality of the site is also a limiting factor. Other smaller single dish telescopes (50m LMT Mexico, 30m IRAM Spain) are located higher and reach sub-millimeter quality, and the much smaller 12m antennas of the ALMA array reach at a very high site the Terahertz region. They use advanced technologies as carbon fiber structures and flexible body control. We review natural limits to telescope design and use the examples of a number of telescopes for an overview of the available state-of-the-art in design, engineering and technologies. Without considering the scientific justification we then offer suggestions to realize ultimate performance of huge single dish telescopes (up to 160m). We provide an outlook on design options, technological frontiers and cost estimates.

  7. Non-homeodomain regions of Hox proteins mediate activation versus repression of Six2 via a single enhancer site in vivo

    PubMed Central

    Yallowitz, Alisha R.; Gong, Ke-Qin; Swinehart, Ilea T.; Nelson, Lisa T.; Wellik, Deneen M.

    2009-01-01

    Summary Hox genes control many developmental events along the AP axis, but few target genes have been identified. Whether target genes are activated or repressed, what enhancer elements are required for regulation, and how different domains of the Hox proteins contribute to regulatory specificity is poorly understood. Six2 is genetically downstream of both the Hox11 paralogous genes in the developing mammalian kidney and Hoxa2 in branchial arch and facial mesenchyme. Loss-of-function of Hox11 leads to loss of Six2 expression and loss-of-function of Hoxa2 leads to expanded Six2 expression. Herein we demonstrate that a single enhancer site upstream of the Six2 coding sequence is responsible for both activation by Hox11 proteins in the kidney and repression by Hoxa2 in the branchial arch and facial mesenchyme in vivo. DNA binding activity is required for both activation and repression, but differential activity is not controlled by differences in the homeodomains. Rather, protein domains N- and C-terminal to the homeodomain confer activation versus repression activity. These data support a model in which the DNA binding specificity of Hox proteins in vivo may be similar, consistent with accumulated in vitro data, and that unique functions result mainly from differential interactions mediated by non-homeodomain regions of Hox proteins. PMID:19716816

  8. Research on Building Education & Workforce Capacity in Systems Engineering

    DTIC Science & Technology

    2011-02-07

    manufacturing or design sites where students could observe engineering processes related to their projects Mentors with the highest level of student ... engagement interacted with students in every single activity area and with frequency, while others provided only intermittent correspondence. Note

  9. The Difference a Single Atom Can Make: Synthesis and Design at the Chemistry–Biology Interface

    PubMed Central

    2017-01-01

    A Perspective of work in our laboratory on the examination of biologically active compounds, especially natural products, is presented. In the context of individual programs and along with a summary of our work, selected cases are presented that illustrate the impact single atom changes can have on the biological properties of the compounds. The examples were chosen to highlight single heavy atom changes that improve activity, rather than those that involve informative alterations that reduce or abolish activity. The examples were also chosen to illustrate that the impact of such single-atom changes can originate from steric, electronic, conformational, or H-bonding effects, from changes in functional reactivity, from fundamental intermolecular interactions with a biological target, from introduction of a new or altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the structure. PMID:28945374

  10. Hybrid Molecular Structure of the Giant Protease Tripeptidyl Peptidase II

    PubMed Central

    Chuang, Crystal K.; Rockel, Beate; Seyit, Gönül; Walian, Peter J.; Schönegge, Anne–Marie; Peters, Jürgen; Zwart, Petrus H.; Baumeister, Wolfgang; Jap, Bing K.

    2010-01-01

    Tripeptidyl peptidase II (TPP II) is the largest known eukaryotic protease (6MDa). It is believed to act downstream of the 26S proteasome cleaving tripeptides from the N– termini of longer peptides and it is implicated in numerous cellular processes. Here we report the structure of Drosophila TPP II determined by a hybrid approach: The structure of the dimer was solved by x–ray crystallography and docked into the three– dimensional map of the holocomplex obtained by single-particle cryo-electron microscopy. The resulting structure reveals the compartmentalization of the active sites inside a system of chambers and suggests the existence of a molecular ruler determining the size of the cleavage products. Furthermore, the structure suggests a model for activation of TPP II involving the relocation of a flexible loop and a repositioning of the active–site serine, coupling it to holocomplex assembly and active site sequestration. PMID:20676100

  11. Dual spectra band emissive Eu2+/Mn2+ co-activated alkaline earth phosphates for indoor plant growth novel phosphor converted-LEDs.

    PubMed

    Yun, Young Jun; Kim, Jin Kyu; Ju, Ji Young; Choi, Seul Ki; Park, Woon Ik; Suh, Jae Yong; Jung, Ha-Kyun; Kim, Yongseon; Choi, Sungho

    2017-05-10

    This paper reports designing a novel single composition blue/red color illuminating phosphor followed by fabricating "smart" agricultural/horticultural LED lighting. Color-tunable Eu 2+ /Mn 2+ co-activated alkaline earth phosphates, Na(Sr,Ba)PO 4 and Ca 3 Mg 3 (PO 4 ) 4 , are considered, and the stable doping sites for the corresponding activators are identified by using first-principle DFT calculations. We can realize the designated color purity with stable thermal quenching preserved luminescence behavior is induced by the Eu 2+ center positioned at different coordination states with intermixed Sr 2+ /Ba 2+ sites in Na(Sr,Ba)PO 4 hosts. Moreover, we demonstrate that the resultant LED lighting adopting the proposed novel phosphor composition stimulates the enhanced photosynthesis reaction for indoor hydroponics plants, such as oats and onions, which is superior to the narrow line emission band induced by the mixture of conventional red/green/blue LEDs. Thus, using the color-tunable single composition luminescent material may produce an innovative energy-efficient artificial lighting for indoor plant growth.

  12. Substrate-Induced Facilitated Dissociation of the Competitive Inhibitor from the Active Site of O-Acetyl Serine Sulfhydrylase Reveals a Competitive-Allostery Mechanism.

    PubMed

    Singh, Appu Kumar; Ekka, Mary Krishna; Kaushik, Abhishek; Pandya, Vaibhav; Singh, Ravi P; Banerjee, Shrijita; Mittal, Monica; Singh, Vijay; Kumaran, S

    2017-09-19

    By classical competitive antagonism, a substrate and competitive inhibitor must bind mutually exclusively to the active site. The competitive inhibition of O-acetyl serine sulfhydrylase (OASS) by the C-terminus of serine acetyltransferase (SAT) presents a paradox, because the C-terminus of SAT binds to the active site of OASS with an affinity that is 4-6 log-fold (10 4 -10 6 ) greater than that of the substrate. Therefore, we employed multiple approaches to understand how the substrate gains access to the OASS active site under physiological conditions. Single-molecule and ensemble approaches showed that the active site-bound high-affinity competitive inhibitor is actively dissociated by the substrate, which is not consistent with classical views of competitive antagonism. We employed fast-flow kinetic approaches to demonstrate that substrate-mediated dissociation of full length SAT-OASS (cysteine regulatory complex) follows a noncanonical "facilitated dissociation" mechanism. To understand the mechanism by which the substrate induces inhibitor dissociation, we resolved the crystal structures of enzyme·inhibitor·substrate ternary complexes. Crystal structures reveal a competitive allosteric binding mechanism in which the substrate intrudes into the inhibitor-bound active site and disengages the inhibitor before occupying the site vacated by the inhibitor. In summary, here we reveal a new type of competitive allosteric binding mechanism by which one of the competitive antagonists facilitates the dissociation of the other. Together, our results indicate that "competitive allostery" is the general feature of noncanonical "facilitated/accelerated dissociation" mechanisms. Further understanding of the mechanistic framework of "competitive allosteric" mechanism may allow us to design a new family of "competitive allosteric drugs/small molecules" that will have improved selectivity and specificity as compared to their competitive and allosteric counterparts.

  13. Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity.

    PubMed

    Leuthaeuser, Janelle B; Knutson, Stacy T; Kumar, Kiran; Babbitt, Patricia C; Fetrow, Jacquelyn S

    2015-09-01

    The development of accurate protein function annotation methods has emerged as a major unsolved biological problem. Protein similarity networks, one approach to function annotation via annotation transfer, group proteins into similarity-based clusters. An underlying assumption is that the edge metric used to identify such clusters correlates with functional information. In this contribution, this assumption is evaluated by observing topologies in similarity networks using three different edge metrics: sequence (BLAST), structure (TM-Align), and active site similarity (active site profiling, implemented in DASP). Network topologies for four well-studied protein superfamilies (enolase, peroxiredoxin (Prx), glutathione transferase (GST), and crotonase) were compared with curated functional hierarchies and structure. As expected, network topology differs, depending on edge metric; comparison of topologies provides valuable information on structure/function relationships. Subnetworks based on active site similarity correlate with known functional hierarchies at a single edge threshold more often than sequence- or structure-based networks. Sequence- and structure-based networks are useful for identifying sequence and domain similarities and differences; therefore, it is important to consider the clustering goal before deciding appropriate edge metric. Further, conserved active site residues identified in enolase and GST active site subnetworks correspond with published functionally important residues. Extension of this analysis yields predictions of functionally determinant residues for GST subgroups. These results support the hypothesis that active site similarity-based networks reveal clusters that share functional details and lay the foundation for capturing functionally relevant hierarchies using an approach that is both automatable and can deliver greater precision in function annotation than current similarity-based methods. © 2015 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  14. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction*

    PubMed Central

    Algasaier, Sana I.; Exell, Jack C.; Bennet, Ian A.; Thompson, Mark J.; Gotham, Victoria J. B.; Shaw, Steven J.; Craggs, Timothy D.; Finger, L. David; Grasby, Jane A.

    2016-01-01

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5′-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5′-termini in vivo. Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5′-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5′-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr40, Asp181, and Arg100 and a reacting duplex 5′-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5′-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage. PMID:26884332

  15. Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity

    PubMed Central

    Leuthaeuser, Janelle B; Knutson, Stacy T; Kumar, Kiran; Babbitt, Patricia C; Fetrow, Jacquelyn S

    2015-01-01

    The development of accurate protein function annotation methods has emerged as a major unsolved biological problem. Protein similarity networks, one approach to function annotation via annotation transfer, group proteins into similarity-based clusters. An underlying assumption is that the edge metric used to identify such clusters correlates with functional information. In this contribution, this assumption is evaluated by observing topologies in similarity networks using three different edge metrics: sequence (BLAST), structure (TM-Align), and active site similarity (active site profiling, implemented in DASP). Network topologies for four well-studied protein superfamilies (enolase, peroxiredoxin (Prx), glutathione transferase (GST), and crotonase) were compared with curated functional hierarchies and structure. As expected, network topology differs, depending on edge metric; comparison of topologies provides valuable information on structure/function relationships. Subnetworks based on active site similarity correlate with known functional hierarchies at a single edge threshold more often than sequence- or structure-based networks. Sequence- and structure-based networks are useful for identifying sequence and domain similarities and differences; therefore, it is important to consider the clustering goal before deciding appropriate edge metric. Further, conserved active site residues identified in enolase and GST active site subnetworks correspond with published functionally important residues. Extension of this analysis yields predictions of functionally determinant residues for GST subgroups. These results support the hypothesis that active site similarity-based networks reveal clusters that share functional details and lay the foundation for capturing functionally relevant hierarchies using an approach that is both automatable and can deliver greater precision in function annotation than current similarity-based methods. PMID:26073648

  16. Visualizing Active-Site Dynamics in Single Crystals of HePTP: Opening of the WPD Loop Involves Coordinated Movement of the E Loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D Critton; L Tautz; R Page

    2011-12-31

    Phosphotyrosine hydrolysis by protein tyrosine phosphatases (PTPs) involves substrate binding by the PTP loop and closure over the active site by the WPD loop. The E loop, located immediately adjacent to the PTP and WPD loops, is conserved among human PTPs in both sequence and structure, yet the role of this loop in substrate binding and catalysis is comparatively unexplored. Hematopoietic PTP (HePTP) is a member of the kinase interaction motif (KIM) PTP family. Compared to other PTPs, KIM-PTPs have E loops that are unique in both sequence and structure. In order to understand the role of the E loopmore » in the transition between the closed state and the open state of HePTP, we identified a novel crystal form of HePTP that allowed the closed-state-to-open-state transition to be observed within a single crystal form. These structures, which include the first structure of the HePTP open state, show that the WPD loop adopts an 'atypically open' conformation and, importantly, that ligands can be exchanged at the active site, which is critical for HePTP inhibitor development. These structures also show that tetrahedral oxyanions bind at a novel secondary site and function to coordinate the PTP, WPD, and E loops. Finally, using both structural and kinetic data, we reveal a novel role for E-loop residue Lys182 in enhancing HePTP catalytic activity through its interaction with Asp236 of the WPD loop, providing the first evidence for the coordinated dynamics of the WPD and E loops in the catalytic cycle, which, as we show, is relevant to multiple PTP families.« less

  17. Temporally-Controlled Site-Specific Recombination in Zebrafish

    PubMed Central

    Hans, Stefan; Kaslin, Jan; Freudenreich, Dorian; Brand, Michael

    2009-01-01

    Conventional use of the site-specific recombinase Cre is a powerful technology in mouse, but almost absent in other vertebrate model organisms. In zebrafish, Cre-mediated recombination efficiency was previously very low. Here we show that using transposon-mediated transgenesis, Cre is in fact highly efficient in this organism. Furthermore, temporal control of recombination can be achieved by using the ligand-inducible CreERT2. Site-specific recombination only occurs upon administration of the drug tamoxifen (TAM) or its active metabolite, 4-hydroxy-tamoxifen (4-OHT). Cre-mediated recombination is detectable already 4 or 2 hours after administration of TAM or 4-OHT, demonstrating fast recombination kinetics. In addition, low doses of TAM allow mosaic labeling of single cells. Combined, our results show that conditional Cre/lox will be a valuable tool for both, embryonic and adult zebrafish studies. Furthermore, single copy insertion transgenesis of Cre/lox constructs suggest a strategy suitable also for other organisms. PMID:19247481

  18. Synthesis of cobalt-containing mesoporous catalysts using the ultrasonic-assisted “pH-adjusting” method: Importance of cobalt species in styrene oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Baitao, E-mail: btli@scut.edu.cn; Zhu, Yanrun; Jin, Xiaojing

    2015-01-15

    Cobalt-containing SBA-15 and MCM-41 (Co-SBA-15 and Co-MCM-41) mesoporous catalysts were prepared via ultrasonic-assisted “pH-adjusting” technique in this study. Their physiochemical structures were comprehensively characterized and correlated with catalytic activity in oxidation of styrene. The nature of cobalt species depended on the type of mesoporous silica as well as pH values. The different catalytic performance between Co-SBA-15 and Co-MCM-41 catalysts originated from cobalt species. Cobalt species were homogenously incorporated into the siliceous framework of Co-SBA-15 in single-site Co(II) state, while Co{sub 3}O{sub 4} particles were loaded on Co-MCM-41 catalysts. The styrene oxidation tests showed that the single-site Co(II) state was moremore » beneficial to the catalytic oxidation of styrene. The higher styrene conversion and benzaldehyde selectivity over Co-SBA-15 catalysts were mainly attributed to single-site Co(II) state incorporated into the framework of SBA-15. The highest conversion of styrene (34.7%) with benzaldehyde selectivity of 88.2% was obtained over Co-SBA-15 catalyst prepared at pH of 7.5, at the mole ratio of 1:1 (styrene to H{sub 2}O{sub 2}) at 70 °C. - Graphical abstract: Cobalt-containing mesoporous silica catalysts were developed via ultrasonic-assisted “pH-adjusting” technique. Compared with Co{sub 3}O{sub 4} in Co-MCM-41, the single-site Co(II) state in Co-SBA-15 was more efficient for the styrene oxidation. - Highlights: • Fast and cost-effective ultrasonic technique for preparing mesoporous materials. • Incorporation of Co via ultrasonic irradiation and “pH-adjusting”. • Physicochemical comparison between Co-SBA-15 and Co-MCM-41. • Correlation of styrene oxidation activity and catalyst structural property.« less

  19. Telemetry-Determined Habitat Use Informs Multi-Species Habitat Management in an Urban Harbour

    NASA Astrophysics Data System (ADS)

    Rous, Andrew M.; Midwood, Jonathon D.; Gutowsky, Lee F. G.; Lapointe, Nicolas W. R.; Portiss, Rick; Sciscione, Thomas; Wells, Mathew G.; Doka, Susan E.; Cooke, Steven J.

    2017-01-01

    Widespread human development has led to impairment of freshwater coastal wetlands and embayments, which provide critical and unique habitat for many freshwater fish species. This is particularly evident in the Laurentian Great Lakes, where such habitats have been severely altered over the last century as a result of industrial activities, urbanization, dredging and infilling. In Toronto Harbour, extensive restoration efforts have been directed towards improving the amount and quality of aquatic habitat, especially for fishes. To evaluate the effectiveness of this restoration work, use of the restored area by both target species and the fish community as a whole must be assessed. Individuals from four species (Common Carp, Largemouth Bass, Northern Pike and Yellow Perch) were tagged and tracked continuously for 1 year using an acoustic telemetry array in Toronto Harbour area of Lake Ontario. Daily site fidelity was estimated using a mixed-effects logistic regression model. Daily site fidelity was influenced by habitat restoration and its interactions with species and body size, as well as season and its interactions with species and body size. Daily site fidelity was higher in restored sites compared to non-restored sites for Yellow Perch and Northern Pike, but lower for Largemouth Bass and Common Carp. For all species, daily site fidelity estimates were highest during the summer and lowest during autumn. The approach used here has merit for evaluating restoration success and informing future habitat management activities. Creating diverse habitats that serve multiple functions and species are more desirable than single-function-oriented or single-species-oriented designs.

  20. Telemetry-Determined Habitat Use Informs Multi-Species Habitat Management in an Urban Harbour.

    PubMed

    Rous, Andrew M; Midwood, Jonathon D; Gutowsky, Lee F G; Lapointe, Nicolas W R; Portiss, Rick; Sciscione, Thomas; Wells, Mathew G; Doka, Susan E; Cooke, Steven J

    2017-01-01

    Widespread human development has led to impairment of freshwater coastal wetlands and embayments, which provide critical and unique habitat for many freshwater fish species. This is particularly evident in the Laurentian Great Lakes, where such habitats have been severely altered over the last century as a result of industrial activities, urbanization, dredging and infilling. In Toronto Harbour, extensive restoration efforts have been directed towards improving the amount and quality of aquatic habitat, especially for fishes. To evaluate the effectiveness of this restoration work, use of the restored area by both target species and the fish community as a whole must be assessed. Individuals from four species (Common Carp, Largemouth Bass, Northern Pike and Yellow Perch) were tagged and tracked continuously for 1 year using an acoustic telemetry array in Toronto Harbour area of Lake Ontario. Daily site fidelity was estimated using a mixed-effects logistic regression model. Daily site fidelity was influenced by habitat restoration and its interactions with species and body size, as well as season and its interactions with species and body size. Daily site fidelity was higher in restored sites compared to non-restored sites for Yellow Perch and Northern Pike, but lower for Largemouth Bass and Common Carp. For all species, daily site fidelity estimates were highest during the summer and lowest during autumn. The approach used here has merit for evaluating restoration success and informing future habitat management activities. Creating diverse habitats that serve multiple functions and species are more desirable than single-function-oriented or single-species-oriented designs.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Chang; S Xiang; K Xiang

    The 5' {yields} 3' exoribonucleases (XRNs) have important functions in transcription, RNA metabolism and RNA interference. The structure of Rat1 (also known as Xrn2) showed that the two highly conserved regions of XRNs form a single, large domain that defines the active site of the enzyme. Xrn1 has a 510-residue segment after the conserved regions that is required for activity but is absent from Rat1/Xrn2. Here we report the crystal structures of Kluyveromyces lactis Xrn1 (residues 1-1,245, E178Q mutant), alone and in complex with a Mn{sup 2+} ion in the active site. The 510-residue segment contains four domains (D1-D4), locatedmore » far from the active site. Our mutagenesis and biochemical studies show that their functional importance results from their ability to stabilize the conformation of the N-terminal segment of Xrn1. These domains might also constitute a platform that interacts with protein partners of Xrn1.« less

  2. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    PubMed

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies. Copyright © 2015 John Wiley & Sons, Inc.

  3. Sliding movement of single actin filaments on one-headed myosin filaments

    NASA Astrophysics Data System (ADS)

    Harada, Yoshie; Noguchi, Akira; Kishino, Akiyoshi; Yanagida, Toshio

    1987-04-01

    The myosin molecule consists of two heads, each of which contains an enzymatic active site and an actin-binding site. The fundamental problem of whether the two heads function independently or cooperatively during muscle contraction has been studied by methods using an actomyosin thread1, superprecipitation2-4 and chemical modification of muscle fibres5. No clear conclusion has yet been reached. We have approached this question using an assay system in which sliding movements of fluorescently labelled single actin filaments along myosin filaments can be observed directly6,7. Here, we report direct measurement of the sliding of single actin filaments along one-headed myosin filaments in which the density of heads was varied over a wide range. Our results show that cooperative interaction between the two heads of myosin is not essential for inducing the sliding movement of actin filaments.

  4. 7 CFR 1924.115 - Single Family Housing site evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Single Family Housing site evaluation. 1924.115 Section 1924.115 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING... Work § 1924.115 Single Family Housing site evaluation. (a) Site review. The site approval official will...

  5. 7 CFR 1924.115 - Single Family Housing site evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Single Family Housing site evaluation. 1924.115... SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT... Work § 1924.115 Single Family Housing site evaluation. (a) Site review. The site approval official will...

  6. Single-station monitoring of volcanoes using seismic ambient noise

    NASA Astrophysics Data System (ADS)

    De Plaen, Raphael S. M.; Lecocq, Thomas; Caudron, Corentin; Ferrazzini, Valérie; Francis, Olivier

    2016-08-01

    Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-station" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multidisciplinary continuous monitoring. Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single three-component seismometer.

  7. Minute Virus of Mice Initiator Protein NS1 and a Host KDWK Family Transcription Factor Must Form a Precise Ternary Complex with Origin DNA for Nicking To Occur

    PubMed Central

    Christensen, Jesper; Cotmore, Susan F.; Tattersall, Peter

    2001-01-01

    Parvoviral rolling hairpin replication generates palindromic genomic concatemers whose junctions are resolved to give unit-length genomes by a process involving DNA replication initiated at origins derived from each viral telomere. The left-end origin of minute virus of mice (MVM), oriL, contains binding sites for the viral initiator nickase, NS1, and parvovirus initiation factor (PIF), a member of the emerging KDWK family of transcription factors. oriL is generated as an active form, oriLTC, and as an inactive form, oriLGAA, which contains a single additional nucleotide inserted between the NS1 and PIF sites. Here we examined the interactions on oriLTC which lead to activation of NS1 by PIF. The two subunits of PIF, p79 and p96, cooperatively bind two ACGT half-sites, which can be flexibly spaced. When coexpressed from recombinant baculoviruses, the PIF subunits preferentially form heterodimers which, in the presence of ATP, show cooperative binding with NS1 on oriL, but this interaction is preferentially enhanced on oriLTC compared to oriLGAA. Without ATP, NS1 is unable to bind stably to its cognate site, but PIF facilitates this interaction, rendering the NS1 binding site, but not the nick site, resistant to DNase I. Varying the spacing of the PIF half-sites shows that the distance between the NS1 binding site and the NS1-proximal half-site is critical for nickase activation, whereas the position of the distal half-site is unimportant. When expressed separately, both PIF subunits form homodimers that bind site specifically to oriL, but only complexes containing p79 activate the NS1 nickase function. PMID:11435581

  8. Structural mechanism of enoyl-CoA hydratase: three atoms from a single water are added in either an E1cb stepwise or concerted fashion.

    PubMed

    Bahnson, Brian J; Anderson, Vernon E; Petsko, Gregory A

    2002-02-26

    We have determined the crystal structure of the enzyme enoyl-CoA hydratase (ECH) from rat liver with the bound substrate 4-(N,N-dimethylamino)cinnamoyl-CoA using X-ray diffraction data to a resolution of 2.3 A. In addition to the thiolester substrate, the catalytic water, which is added in the hydration reaction, has been modeled into well-defined electron density in each of the six active sites of the physiological hexamer within the crystallographic asymmetric unit. The catalytic water bridges Glu(144) and Glu(164) of the enzyme and has a lone pair of electrons poised to react with C(3) of the enzyme-bound alpha,beta-unsaturated thiolester. The water molecule, which bridges two glutamate residues, is reminiscent of the enolase active site. However, unlike enolase, which has a lysine available to donate a proton, there are no other sources of protons available from other active site residues in ECH. Furthermore, an analysis of the hydrogen-bonding network of the active site suggests that both Glu(144) and Glu(164) are ionized and carry a negative charge with no reasonable place to have a protonated carboxylate. This lack of hydrogen-bonding acceptors that could accommodate a source of a proton, other than from the water molecule, leads to a hypothesis that the three atoms from a single water molecule are added across the double bond to form the hydrated product. The structural results are discussed in connection with details of the mechanism, which have been elucidated from kinetics, site-directed mutagenesis, and spectroscopy of enzyme-substrate species, in presenting an atomic-resolution mechanism of the reaction. Contrary to the previous interpretation, the structure of the E-S complex together with previously determined kinetic isotope effects is consistent with either a concerted mechanism or an E1cb stepwise mechanism.

  9. Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy.

    PubMed

    Buzina, Alla; Lo, Mandy Y M; Moffett, Angela; Hotta, Akitsu; Fussner, Eden; Bharadwaj, Rikki R; Pasceri, Peter; Garcia-Martinez, J Victor; Bazett-Jones, David P; Ellis, James

    2008-04-11

    The Locus Control Region (LCR) requires intronic elements within beta-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional beta-globin intron 2 elements that rescue LCR activity directed by 5'HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igmu 3'MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igmu 3'MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5'HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI) of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN) lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5'HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate correction of hemoglobinopathies using single copy vectors.

  10. Functional Analysis of a Novel Genome-Wide Association Study Signal in SMAD3 That Confers Protection From Coronary Artery Disease.

    PubMed

    Turner, Adam W; Martinuk, Amy; Silva, Anada; Lau, Paulina; Nikpay, Majid; Eriksson, Per; Folkersen, Lasse; Perisic, Ljubica; Hedin, Ulf; Soubeyrand, Sebastien; McPherson, Ruth

    2016-05-01

    A recent genome-wide association study meta-analysis identified an intronic single nucleotide polymorphism in SMAD3, rs56062135C>T, the minor allele (T) which associates with protection from coronary artery disease. Relevant to atherosclerosis, SMAD3 is a key contributor to transforming growth factor-β pathway signaling. Here, we seek to identify ≥1 causal coronary artery disease-associated single nucleotide polymorphisms at the SMAD3 locus and characterize mechanisms whereby the risk allele(s) contribute to coronary artery disease risk. By genetic and epigenetic fine mapping, we identified a candidate causal single nucleotide polymorphism rs17293632C>T (D', 0.97; r(2), 0.94 with rs56062135) in intron 1 of SMAD3 with predicted functional effects. We show that the sequence encompassing rs17293632 acts as a strong enhancer in human arterial smooth muscle cells. The common allele (C) preserves an activator protein (AP)-1 site and enhancer function, whereas the protective (T) allele disrupts the AP-1 site and significantly reduces enhancer activity (P<0.001). Pharmacological inhibition of AP-1 activity upstream demonstrates that this allele-specific enhancer effect is AP-1 dependent (P<0.001). Chromatin immunoprecipitation experiments reveal binding of several AP-1 component proteins with preferential binding to the (C) allele. We show that rs17293632 is an expression quantitative trait locus for SMAD3 in blood and atherosclerotic plaque with reduced expression of SMAD3 in carriers of the protective allele. Finally, siRNA knockdown of SMAD3 in human arterial smooth muscle cells increases cell viability, consistent with an antiproliferative role. The coronary artery disease-associated rs17293632C>T single nucleotide polymorphism represents a novel functional cis-acting element at the SMAD3 locus. The protective (T) allele of rs17293632 disrupts a consensus AP-1 binding site in a SMAD3 intron 1 enhancer, reduces enhancer activity and SMAD3 expression, altering human arterial smooth muscle cell proliferation. © 2016 American Heart Association, Inc.

  11. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals

    PubMed Central

    Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O.; Zhao, Mingrui; Daniel, Andy G. S.; Zhou, Zhiping; Bruno, Randy M.; Berwick, Jason; Schwartz, Theodore H.

    2014-01-01

    Abstract. In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required. PMID:25525611

  12. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals.

    PubMed

    Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O; Zhao, Mingrui; Daniel, Andy G S; Zhou, Zhiping; Bruno, Randy M; Berwick, Jason; Schwartz, Theodore H

    2014-07-24

    In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required.

  13. Single-channel recordings of RyR1 at microsecond resolution in CMOS-suspended membranes.

    PubMed

    Hartel, Andreas J W; Ong, Peijie; Schroeder, Indra; Giese, M Hunter; Shekar, Siddharth; Clarke, Oliver B; Zalk, Ran; Marks, Andrew R; Hendrickson, Wayne A; Shepard, Kenneth L

    2018-02-20

    Single-channel recordings are widely used to explore functional properties of ion channels. Typically, such recordings are performed at bandwidths of less than 10 kHz because of signal-to-noise considerations, limiting the temporal resolution available for studying fast gating dynamics to greater than 100 µs. Here we present experimental methods that directly integrate suspended lipid bilayers with high-bandwidth, low-noise transimpedance amplifiers based on complementary metal-oxide-semiconductor (CMOS) integrated circuits (IC) technology to achieve bandwidths in excess of 500 kHz and microsecond temporal resolution. We use this CMOS-integrated bilayer system to study the type 1 ryanodine receptor (RyR1), a Ca 2+ -activated intracellular Ca 2+ -release channel located on the sarcoplasmic reticulum. We are able to distinguish multiple closed states not evident with lower bandwidth recordings, suggesting the presence of an additional Ca 2+ binding site, distinct from the site responsible for activation. An extended beta distribution analysis of our high-bandwidth data can be used to infer closed state flicker events as fast as 35 ns. These events are in the range of single-file ion translocations.

  14. Single Active Site Mutation Causes Serious Resistance of HIV Reverse Transcriptase to Lamivudine: Insight from Multiple Molecular Dynamics Simulations.

    PubMed

    Moonsamy, Suri; Bhakat, Soumendranath; Walker, Ross C; Soliman, Mahmoud E S

    2016-03-01

    Molecular dynamics simulations, binding free energy calculations, principle component analysis (PCA), and residue interaction network analysis were employed in order to investigate the molecular mechanism of M184I single mutation which played pivotal role in making the HIV-1 reverse transcriptase (RT) totally resistant to lamivudine. Results showed that single mutations at residue 184 of RT caused (1) distortion of the orientation of lamivudine in the active site due to the steric conflict between the oxathiolane ring of lamivudine and the side chain of beta-branched amino acids Ile at position 184 which, in turn, perturbs inhibitor binding, (2) decrease in the binding affinity by (~8 kcal/mol) when compared to the wild-type, (3) variation in the overall enzyme motion as evident from the PCA for both systems, and (4) distortion of the hydrogen bonding network and atomic interactions with the inhibitor. The comprehensive analysis presented in this report can provide useful information for understanding the drug resistance mechanism against lamivudine. The results can also provide some potential clues for further design of novel inhibitors that are less susceptible to drug resistance.

  15. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    NASA Technical Reports Server (NTRS)

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  16. Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection

    PubMed Central

    Maciag, Joseph J.; Mackenzie, Sarah H.; Tucker, Matthew B.; Schipper, Joshua L.; Swartz, Paul; Clark, A. Clay

    2016-01-01

    The native ensemble of caspases is described globally by a complex energy landscape where the binding of substrate selects for the active conformation, whereas targeting an allosteric site in the dimer interface selects an inactive conformation that contains disordered active-site loops. Mutations and posttranslational modifications stabilize high-energy inactive conformations, with mostly formed, but distorted, active sites. To examine the interconversion of active and inactive states in the ensemble, we used detection of related solvent positions to analyze 4,995 waters in 15 high-resolution (<2.0 Å) structures of wild-type caspase-3, resulting in 450 clusters with the most highly conserved set containing 145 water molecules. The data show that regions of the protein that contact the conserved waters also correspond to sites of posttranslational modifications, suggesting that the conserved waters are an integral part of allosteric mechanisms. To test this hypothesis, we created a library of 19 caspase-3 variants through saturation mutagenesis in a single position of the allosteric site of the dimer interface, and we show that the enzyme activity varies by more than four orders of magnitude. Altogether, our database consists of 37 high-resolution structures of caspase-3 variants, and we demonstrate that the decrease in activity correlates with a loss of conserved water molecules. The data show that the activity of caspase-3 can be fine-tuned through globally desolvating the active conformation within the native ensemble, providing a mechanism for cells to repartition the ensemble and thus fine-tune activity through conformational selection. PMID:27681633

  17. Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection.

    PubMed

    Maciag, Joseph J; Mackenzie, Sarah H; Tucker, Matthew B; Schipper, Joshua L; Swartz, Paul; Clark, A Clay

    2016-10-11

    The native ensemble of caspases is described globally by a complex energy landscape where the binding of substrate selects for the active conformation, whereas targeting an allosteric site in the dimer interface selects an inactive conformation that contains disordered active-site loops. Mutations and posttranslational modifications stabilize high-energy inactive conformations, with mostly formed, but distorted, active sites. To examine the interconversion of active and inactive states in the ensemble, we used detection of related solvent positions to analyze 4,995 waters in 15 high-resolution (<2.0 Å) structures of wild-type caspase-3, resulting in 450 clusters with the most highly conserved set containing 145 water molecules. The data show that regions of the protein that contact the conserved waters also correspond to sites of posttranslational modifications, suggesting that the conserved waters are an integral part of allosteric mechanisms. To test this hypothesis, we created a library of 19 caspase-3 variants through saturation mutagenesis in a single position of the allosteric site of the dimer interface, and we show that the enzyme activity varies by more than four orders of magnitude. Altogether, our database consists of 37 high-resolution structures of caspase-3 variants, and we demonstrate that the decrease in activity correlates with a loss of conserved water molecules. The data show that the activity of caspase-3 can be fine-tuned through globally desolvating the active conformation within the native ensemble, providing a mechanism for cells to repartition the ensemble and thus fine-tune activity through conformational selection.

  18. Deconstructing thermodynamic parameters of a coupled system from site-specific observables.

    PubMed

    Chowdhury, Sandipan; Chanda, Baron

    2010-11-02

    Cooperative interactions mediate information transfer between structural domains of a protein molecule and are major determinants of protein function and modulation. The prevalent theories to understand the thermodynamic origins of cooperativity have been developed to reproduce the complex behavior of a global thermodynamic observable such as ligand binding or enzyme activity. However, in most cases the measurement of a single global observable cannot uniquely define all the terms that fully describe the energetics of the system. Here we establish a theoretical groundwork for analyzing protein thermodynamics using site-specific information. Our treatment involves extracting a site-specific parameter (defined as χ value) associated with a structural unit. We demonstrate that, under limiting conditions, the χ value is related to the direct interaction terms associated with the structural unit under observation and its intrinsic activation energy. We also introduce a site-specific interaction energy term (χ(diff)) that is a function of the direct interaction energy of that site with every other site in the system. When combined with site-directed mutagenesis and other molecular level perturbations, analyses of χ values of site-specific observables may provide valuable insights into protein thermodynamics and structure.

  19. Urgent and Elective Robotic Single-Site Cholecystectomy: Analysis and Learning Curve of 150 Consecutive Cases.

    PubMed

    Kubat, Eric; Hansen, Nathan; Nguyen, Huy; Wren, Sherry M; Eisenberg, Dan

    2016-03-01

    The use of robotic single-site cholecystectomy has increased exponentially. There are few reports describing the safety, efficacy, and operative learning curve of robotic single-site cholecystectomy either in the community setting or with nonelective surgery. We performed a retrospective review of a prospective database of our initial experience with robotic single-site cholecystectomy. Demographics and perioperative outcomes were evaluated for both urgent and elective cholecystectomy. Cumulative sum analysis was performed to determine the surgeon's learning curve. One hundred fifty patients underwent robotic single-site cholecystectomy. Seventy-four (49.3%) patients underwent urgent robotic single-site cholecystectomy, and 76 (50.7%) underwent elective robotic single-site cholecystectomy. Mean total operative time for robotic single-site cholecystectomy was 83.3 ± 2.7 minutes. Mean operative time for the urgent cohort was significantly longer than for the elective cohort (95.0 ± 4.4 versus 71.9 ± 2.6 minutes; P < .001). There was one conversion in the urgent cohort and none in the elective cohort. There was one bile duct injury (0.7%) in the urgent cohort. Perioperative complications occurred in 8.7% of patients, and most consisted of superficial surgical-site infections. There were no incisional hernias detected. The surgeon's learning curve, inclusive of urgent and elective cases, was 48 operations. Robotic single-site cholecystectomy can be performed safely and effectively in both elective and urgent cholecystectomy with a reasonable learning curve and acceptable perioperative outcomes.

  20. Leaving Group Ability Observably Affects Transition State Structure in a Single Enzyme Active Site.

    PubMed

    Roston, Daniel; Demapan, Darren; Cui, Qiang

    2016-06-15

    A reaction's transition state (TS) structure plays a critical role in determining reactivity and has important implications for the design of catalysts, drugs, and other applications. Here, we explore TS structure in the enzyme alkaline phosphatase using hybrid Quantum Mechanics/Molecular Mechanics simulations. We find that minor perturbations to the substrate have major effects on TS structure and the way the enzyme stabilizes the TS. Substrates with good leaving groups (LGs) have little cleavage of the phosphorus-LG bond at the TS, while substrates with poor LGs have substantial cleavage of that bond. The results predict nonlinear free energy relationships for a single rate-determining step, and substantial differences in kinetic isotope effects for different substrates; both trends were observed in previous experimental studies, although the original interpretations differed from the present model. Moreover, due to different degrees of phosphorus-LG bond cleavage at the TS for different substrates, the LG is stabilized by different interactions at the TS: while a poor LG is directly stabilized by an active site zinc ion, a good LG is mainly stabilized by active site water molecules. Our results demonstrate the considerable plasticity of TS structure and stabilization in enzymes. Furthermore, perturbations to reactivity that probe TS structure experimentally (i.e., substituent effects) may substantially perturb the TS they aim to probe, and thus classical experimental approaches such as free energy relations should be interpreted with care.

  1. Insights into seven and single transmembrane-spanning domain receptors and their signaling pathways in human natural killer cells.

    PubMed

    Maghazachi, Azzam A

    2005-09-01

    Human natural killer (NK) cells are important cells of the innate immune system. These cells perform two prominent functions: the first is recognizing and destroying virally infected cells and transformed cells; the second is secreting various cytokines that shape up the innate and adaptive immune re-sponses. For these cells to perform these activities, they express different sets of receptors. The receptors used by NK cells to extravasate into sites of injury belong to the seven transmembrane (7TM) family of receptors, which characteristically bind heterotrimeric G proteins. These receptors allow NK cells to sense the chemotactic gradients and activate second messengers, which aid NK cells in polarizing and migrating toward the sites of injured tissues. In addition, these receptors determine how and why human resting NK cells are mainly found in the bloodstream, whereas activated NK cells extravasate into inflammatory sites. Receptors for chemokines and lysophospholipids belong to the 7TM family. On the other hand, NK cells recognize invading or transformed cells through another set of receptors that belong to the single transmembrane-spanning domain family. These receptors are either inhibitory or activating. Inhibitory receptors contain the immune receptor tyrosine-based inhibitory motif, and activating receptors belong to either those that associate with adaptor molecules containing the immune receptor tyrosine-based activating motif (ITAM) or those that associate with adaptor molecules containing motifs other than ITAM. This article will describe the nature of these receptors and examine the intracellular signaling pathways induced in NK cells after ligating both types of receptors. These pathways are crucial for NK cell biology, development, and functions.

  2. Characterization of the rat RALDH1 promoter. A functional CCAAT and octamer motif are critical for basal promoter activity.

    PubMed

    Guimond, Julie; Devost, Dominic; Brodeur, Helene; Mader, Sylvie; Bhat, Pangala V

    2002-12-12

    Retinal dehydrogenase type 1 (RALDH1) catalyzes the oxidation of retinal to retinoic acid (RA), a metabolite of vitamin A important for embryogenesis and tissue differentiation. Rat RALDH1 is expressed to high levels in developing kidney, and in stomach, intestine epithelia. To understand the mechanisms of the transcriptional regulation of rat RALDH1, we cloned a 1360-base pair (bp) 5'-flanking region of RALDH1 gene. Using luciferase reporter constructs transfected into HEK 293 and LLCPK (kidney-derived) cells, basal promoter activity was associated with sequences between -80 and +43. In this minimal promoter region, TATA and CCAAT cis-acting elements as well as SP1, AP1 and octamer (Oct)-binding sites were present. The CCAAT box and Oct-binding site, located between positions -72 and -68 and -56 and -49, respectively, were shown by deletion analysis and site-directed mutation to be critical for promoter activity. Nuclear extracts from kidney cells contain proteins specifically binding the Oct and CCAAT sequences, resulting in the formation of six complexes, while different patterns of complexes were observed with non-kidney cell extracts. Gel shift assays using either single or double mutations of the Oct and CCAAT sequences as well as super shift assays demonstrated single and double occupancy of these two sites by Oct-1 and CBF-A. In addition, unidentified proteins also bound the Oct motif specifically in the absence of CBF-A binding. These results demonstrate specific involvement of Oct and CCAAT-binding proteins in the regulation of RALDH1 gene.

  3. A multi-institutional approach to delivering shared curricula for developing a next-generation energy workforce

    DOE PAGES

    Holloway, Lawrence E.; Qu, Zhihua; Mohr-Schroeder, Margaret J.; ...

    2017-02-06

    In this study, we consider collaborative power systems education through the FEEDER consortium. To increase students' access to power engineering educational content, the consortium of seven universities was formed. A framework is presented to characterize different collaborative education activities among the universities. Three of these approaches of collaborative educational activities are presented and discussed. These include 1) cross-institutional blended courses ("MS-MD''); 2) cross-institutional distance courses ("SS-MD''); and 3) single-site special experiential courses and concentrated on-site programs available to students across consortium institutions ("MS-SD''). As a result, this paper presents the advantages and disadvantages of each approach.

  4. Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii.

    PubMed

    Jiang, Wenzhi; Brueggeman, Andrew J; Horken, Kempton M; Plucinak, Thomas M; Weeks, Donald P

    2014-11-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has become a powerful and precise tool for targeted gene modification (e.g., gene knockout and gene replacement) in numerous eukaryotic organisms. Initial attempts to apply this technology to a model, the single-cell alga, Chlamydomonas reinhardtii, failed to yield cells containing edited genes. To determine if the Cas9 and single guide RNA (sgRNA) genes were functional in C. reinhardtii, we tested the ability of a codon-optimized Cas9 gene along with one of four different sgRNAs to cause targeted gene disruption during a 24-h period immediately following transformation. All three exogenously supplied gene targets as well as the endogenous FKB12 (rapamycin sensitivity) gene of C. reinhardtii displayed distinct Cas9/sgRNA-mediated target site modifications as determined by DNA sequencing of cloned PCR amplicons of the target site region. Success in transient expression of Cas9 and sgRNA genes contrasted with the recovery of only a single rapamycin-resistant colony bearing an appropriately modified FKB12 target site in 16 independent transformation experiments involving >10(9) cells. Failure to recover transformants with intact or expressed Cas9 genes following transformation with the Cas9 gene alone (or even with a gene encoding a Cas9 lacking nuclease activity) provided strong suggestive evidence for Cas9 toxicity when Cas9 is produced constitutively in C. reinhardtii. The present results provide compelling evidence that Cas9 and sgRNA genes function properly in C. reinhardtii to cause targeted gene modifications and point to the need for a focus on development of methods to properly stem Cas9 production and/or activity following gene editing. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase activemore » site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.« less

  6. 77 FR 64320 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... where they give birth to a single pup approximately 4- 5 days after arrival and will nurse pups for... intentional flushing if pups are present at the sampling site; and (8) rescheduling sampling if Steller sea...

  7. 77 FR 50990 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... to a single pup approximately 4- 5 days after arrival and will nurse pups for about a week before... pinnipeds before close approach to avoid being seen by animals; and (7) rescheduling work at sites where...

  8. An atypical CNG channel activated by a single cGMP molecule controls sperm chemotaxis.

    PubMed

    Bönigk, Wolfgang; Loogen, Astrid; Seifert, Reinhard; Kashikar, Nachiket; Klemm, Clementine; Krause, Eberhard; Hagen, Volker; Kremmer, Elisabeth; Strünker, Timo; Kaupp, U Benjamin

    2009-10-27

    Sperm of the sea urchin Arbacia punctulata can respond to a single molecule of chemoattractant released by an egg. The mechanism underlying this extreme sensitivity is unknown. Crucial signaling events in the response of A. punctulata sperm to chemoattractant include the rapid synthesis of the intracellular messenger guanosine 3',5'-monophosphate (cGMP) and the ensuing membrane hyperpolarization that results from the opening of potassium-selective cyclic nucleotide-gated (CNGK) channels. Here, we use calibrated photolysis of caged cGMP to show that approximately 45 cGMP molecules are generated during the response to a single molecule of chemoattractant. The CNGK channel can respond to such small cGMP changes because it is exquisitely sensitive to cGMP and activated in a noncooperative fashion. Like voltage-activated Ca(v) and Na(v) channels, the CNGK polypeptide consists of four homologous repeat sequences. Disabling each of the four cyclic nucleotide-binding sites through mutagenesis revealed that binding of a single cGMP molecule to repeat 3 is necessary and sufficient to activate the CNGK channel. Thus, CNGK has developed a mechanism of activation that is different from the activation of other CNG channels, which requires the cooperative binding of several ligands and operates in the micromolar rather than the nanomolar range.

  9. O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling

    DOE PAGES

    Shaffer, David W.; Xie, Yan; Concepcion, Javier J.

    2017-09-01

    In this review we discuss at the mechanistic level the different steps involved in water oxidation catalysis with ruthenium-based molecular catalysts. We have chosen to focus on ruthenium-based catalysts to provide a more coherent discussion and because of the availability of detailed mechanistic studies for these systems but many of the aspects presented in this review are applicable to other systems as well. The water oxidation cycle has been divided in four major steps: water oxidative activation, O–O bond formation, oxidative activation of peroxide intermediates, and O 2 evolution. A significant portion of the review is dedicated to the O–Omore » bond formation step as the key step in water oxidation catalysis. As a result, the two main pathways to accomplish this step, single-site water nucleophilic attack and O–O radical coupling, are discussed in detail and compared in terms of their potential use in photoelectrochemical cells for solar fuels generation.« less

  10. O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, David W.; Xie, Yan; Concepcion, Javier J.

    In this review we discuss at the mechanistic level the different steps involved in water oxidation catalysis with ruthenium-based molecular catalysts. We have chosen to focus on ruthenium-based catalysts to provide a more coherent discussion and because of the availability of detailed mechanistic studies for these systems but many of the aspects presented in this review are applicable to other systems as well. The water oxidation cycle has been divided in four major steps: water oxidative activation, O–O bond formation, oxidative activation of peroxide intermediates, and O 2 evolution. A significant portion of the review is dedicated to the O–Omore » bond formation step as the key step in water oxidation catalysis. As a result, the two main pathways to accomplish this step, single-site water nucleophilic attack and O–O radical coupling, are discussed in detail and compared in terms of their potential use in photoelectrochemical cells for solar fuels generation.« less

  11. O-O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O-O radical coupling.

    PubMed

    Shaffer, David W; Xie, Yan; Concepcion, Javier J

    2017-10-16

    In this review we discuss at the mechanistic level the different steps involved in water oxidation catalysis with ruthenium-based molecular catalysts. We have chosen to focus on ruthenium-based catalysts to provide a more coherent discussion and because of the availability of detailed mechanistic studies for these systems but many of the aspects presented in this review are applicable to other systems as well. The water oxidation cycle has been divided in four major steps: water oxidative activation, O-O bond formation, oxidative activation of peroxide intermediates, and O 2 evolution. A significant portion of the review is dedicated to the O-O bond formation step as the key step in water oxidation catalysis. The two main pathways to accomplish this step, single-site water nucleophilic attack and O-O radical coupling, are discussed in detail and compared in terms of their potential use in photoelectrochemical cells for solar fuels generation.

  12. Decreases in activation energy and substrate affinity in cold-adapted A4-lactate dehydrogenase: evidence from the Antarctic notothenioid fish Chaenocephalus aceratus.

    PubMed

    Fields, Peter A; Houseman, Daniel E

    2004-12-01

    Enzyme function is strongly affected by temperature, and orthologs from species adapted to different thermal environments often show temperature compensation in kinetic properties. Antarctic notothenioid fishes live in a habitat of constant, extreme cold (-1.86 +/- 2 degrees C), and orthologs of the enzyme A4-lactate dehydrogenase (A4-LDH) in these species have adapted to this environment through higher catalytic rates, lower Arrhenius activation energies (Ea), and increases in the apparent Michaelis constant for the substrate pyruvate (Km(PYR)). Here, site-directed mutagenesis was used to determine which amino acid substitutions found in A4-LDH of the notothenioid Chaenocephalus aceratus, with respect to orthologs from warm-adapted teleosts, are responsible for these adaptive changes in enzyme function. Km(PYR) was measured in eight single and two double mutants, and Ea was tested in five single and two double mutants in the temperature range 0 degrees C-20 degrees C. Of the four mutants that had an effect on these parameters, two increased Ea but did not affect Km(PYR) (Gly224Ser, Ala310Pro), and two increased both Ea and Km(PYR) (Glu233Met, Gln317Val). The double mutants Glu233Met/Ala310Pro and Glu233Met/Gln317Val increased Km(PYR) and Ea to levels not significantly different from the A4-LDH of a warm temperate fish (Gillichthys mirabilis, habitat temperature 10 degrees C-35 degrees C). The four single mutants are associated with two alpha-helices that move during the catalytic cycle; those that affect Ea but not Km(PYR) are further from the active site than those that affect both parameters. These results provide evidence that (1) cold adaptation in A4-LDH involves changes in mobility of catalytically important molecular structures; (2) these changes may alter activation energy alone or activation energy and substrate affinity together; and (3) the extent to which these parameters are affected may depend on the location of the substitutions within the mobile alpha-helices, perhaps due to differences in proximity to the active site.

  13. The Escherichia coli cAMP receptor protein bound at a single target can activate transcription initiation at divergent promoters: a systematic study that exploits new promoter probe plasmids.

    PubMed Central

    El-Robh, Mohamed Samir; Busby, Stephen J W

    2002-01-01

    We report the first detailed quantitative study of divergent promoters dependent on the Escherichia coli cAMP receptor protein (CRP), a factor known to activate transcription initiation at target promoters by making direct interactions with the RNA polymerase holoenzyme. In this work, we show that CRP bound at a single target site is able to activate transcription at two divergently organized promoters. Experiments using promoter probe plasmids, designed to study divergent promoters in vivo and in vitro, show that the divergent promoters function independently. Further in vitro experiments show that two holo RNA polymerase molecules cannot be accommodated simultaneously at the divergent promoters. PMID:12350222

  14. Purification and Kinetics of Higher Plant NADH:Nitrate Reductase.

    PubMed

    Campbell, W H; Smarrelli, J

    1978-04-01

    Squash cotyledon (Cucurbita pepo L.) NADH:nitrate reductase (NR) was purified 150-fold with 50% recovery by a single step procedure based on the affinity of the NR for blue-Sepharose. Blue-Sepharose, which is prepared by direct coupling of Cibacron blue to Sepharose, appears to bind squash NR at the NADH site. The NR can be purified in 2 to 3 hours to a specific activity of 2 mumol of NADH oxidized/minute * milligram of protein. Corn (Zea mays L.) leaf NR was also purified to a specific activity of 6.9 mumol of NADH oxidized/minute * milligram of protein using a blue-Sepharose affinity step. The blue-Sepharose method offers the advantages of a rapid purification of plant NR to a high specific activity with reasonable recovery of total activity.The kinetic mechanism of higher plant NR was investigated using these highly purified squash and corn NR preparations. Based on initial velocity and product inhibition studies utilizing both enzymes, a two-site ping-pong mechanism is proposed for NR. This kinetic mechanism incorporates the concept of the reduced NR transferring electrons from the NADH site to a physically separated nitrate site.

  15. Modulating the activity of protein conjugated to gold nanoparticles by site-directed orientation and surface density of bound protein.

    PubMed

    Liu, Feng; Wang, Lei; Wang, Hongwei; Yuan, Lin; Li, Jingwen; Brash, John Law; Chen, Hong

    2015-02-18

    The key property of protein-nanoparticle conjugates is the bioactivity of the protein. The ability to accurately modulate the activity of protein on the nanoparticles at the interfaces is important in many applications. In the work reported here, modulation of the activity of protein-gold nanoparticle (AuNP) conjugates by specifically orienting the protein and by varying the surface density of the protein was investigated. Different orientations were achieved by introducing cysteine (Cys) residues at specific sites for binding to gold. We chose Escherichia coli inorganic pyrophosphatase (PPase) as a model protein and used site-directed mutagenesis to generate two mutant types (MTs) with a single Cys residue on the surface: MT1 with Cys near the active center and MT2 with Cys far from the active center. The relative activities of AuNP conjugates with wild type (WT), MT1, and MT2 were found to be 44.8%, 68.8%, and 91.2% of native PPase in aqueous solution. Site-directed orientation with the binding site far from the active center thus allowed almost complete preservation of the protein activity. The relative activity of WT and MT2 conjugates did not change with the surface density of the protein, while that of MT1 increased significantly with increasing surface density. These results demonstrate that site-directed orientation and surface density can both modulate the activity of proteins conjugated to AuNP and that orientation has a greater effect than density. Furthermore, increasing the surface density of the specifically oriented protein MT2, while having no significant effect on the specific activity of the protein, still allowed increased protein loading on the AuNP and thus increased the total protein activity. This is of great importance in the study on the interface of protein and nanoparticle and the applications for enzyme immobilization, drug delivery, and biocatalysis.

  16. Novel biphenyl ester derivatives as tyrosinase inhibitors: Synthesis, crystallographic, spectral analysis and molecular docking studies.

    PubMed

    Kwong, Huey Chong; Chidan Kumar, C S; Mah, Siau Hui; Chia, Tze Shyang; Quah, Ching Kheng; Loh, Zi Han; Chandraju, Siddegowda; Lim, Gin Keat

    2017-01-01

    Biphenyl-based compounds are clinically important for the treatments of hypertension and inflammatory, while many more are under development for pharmaceutical uses. In the present study, a series of 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl benzoates, 2(a-q), and 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl pyridinecarboxylate, 2(r-s) were synthesized by reacting 1-([1,1'-biphenyl]-4-yl)-2-bromoethan-1-one with various carboxylic acids using potassium carbonate in dimethylformamide at ambient temperature. Single-crystal X-ray diffraction studies revealed a more closely packed crystal structure can be produced by introduction of biphenyl moiety. Five of the compounds among the reported series exhibited significant anti-tyrosinase activities, in which 2p, 2r and 2s displayed good inhibitions which are comparable to standard inhibitor kojic acid at concentrations of 100 and 250 μg/mL. The inhibitory effects of these active compounds were further confirmed by computational molecular docking studies and the results revealed the primary binding site is active-site entrance instead of inner copper binding site which acted as the secondary binding site.

  17. Direct Measurement of the Nanomechanical Stability of a Redox Protein Active Site and Its Dependence upon Metal Binding.

    PubMed

    Giannotti, Marina I; Cabeza de Vaca, Israel; Artés, Juan M; Sanz, Fausto; Guallar, Victor; Gorostiza, Pau

    2015-09-10

    The structural basis of the low reorganization energy of cupredoxins has long been debated. These proteins reconcile a conformationally heterogeneous and exposed metal-chelating site with the highly rigid copper center required for efficient electron transfer. Here we combine single-molecule mechanical unfolding experiments with statistical analysis and computer simulations to show that the metal-binding region of apo-azurin is mechanically flexible and that high mechanical stability is imparted by copper binding. The unfolding pathway of the metal site depends on the pulling residue and suggests that partial unfolding of the metal-binding site could be facilitated by the physical interaction with certain regions of the redox protein.

  18. The ability of multi-site, multi-depth sacral lateral branch blocks to anesthetize the sacroiliac joint complex.

    PubMed

    Dreyfuss, Paul; Henning, Troy; Malladi, Niriksha; Goldstein, Barry; Bogduk, Nikolai

    2009-01-01

    To determine the physiologic effectiveness of multi-site, multi-depth sacral lateral branch injections. Double-blind, randomized, placebo-controlled study. Outpatient pain management center. Twenty asymptomatic volunteers. The dorsal innervation to the sacroiliac joint (SIJ) is from the L5 dorsal ramus and the S1-3 lateral branches. Multi-site, multi-depth lateral branch blocks were developed to compensate for the complex regional anatomy that limited the effectiveness of single-site, single-depth lateral branch injections. Bilateral multi-site, multi-depth lateral branch green dye injections and subsequent dissection on two cadavers revealed a 91% accuracy with this technique. Session 1: 20 asymptomatic subjects had a 25-g spinal needle probe their interosseous (IO) and dorsal sacroiliac (DSI) ligaments. The inferior dorsal SIJ was entered and capsular distension with contrast medium was performed. Discomfort had to occur with each provocation maneuver and a contained arthrogram was necessary to continue in the study. Session 2: 1 week later; computer randomized, double-blind multi-site, multi-depth lateral branch blocks injections were performed. Ten subjects received active (bupivicaine 0.75%) and 10 subjects received sham (normal saline) multi-site, multi-depth lateral branch injections. Thirty minutes later, provocation testing was repeated with identical methodology used in session 1. Presence or absence of pain for ligamentous probing and SIJ capsular distension. Seventy percent of the active group had an insensate IO and DSI ligaments, and inferior dorsal SIJ vs 0-10% of the sham group. Twenty percent of the active vs 10% of the sham group did not feel repeat capsular distension. Six of seven subjects (86%) retained the ability to feel repeat capsular distension despite an insensate dorsal SIJ complex. Multi-site, multi-depth lateral branch blocks are physiologically effective at a rate of 70%. Multi-site, multi-depth lateral branch blocks do not effectively block the intra-articular portion of the SIJ. There is physiological evidence that the intra-articular portion of the SIJ is innervated from both ventral and dorsal sources. Comparative multi-site, multi-depth lateral branch blocks should be considered a potentially valuable tool to diagnose extra-articular SIJ pain and determine if lateral branch radiofrequency neurotomy may assist one with SIJ pain.

  19. Conformational coupling between the active site and residues within the K(C)-channel of the Vibrio cholerae cbb3-type (C-family) oxygen reductase.

    PubMed

    Ahn, Young O; Mahinthichaichan, Paween; Lee, Hyun Ju; Ouyang, Hanlin; Kaluka, Daniel; Yeh, Syun-Ru; Arjona, Davinia; Rousseau, Denis L; Tajkhorshid, Emad; Adelroth, Pia; Gennis, Robert B

    2014-10-21

    The respiratory chains of nearly all aerobic organisms are terminated by proton-pumping heme-copper oxygen reductases (HCOs). Previous studies have established that C-family HCOs contain a single channel for uptake from the bacterial cytoplasm of all chemical and pumped protons, and that the entrance of the K(C)-channel is a conserved glutamate in subunit III. However, the majority of the K(C)-channel is within subunit I, and the pathway from this conserved glutamate to subunit I is not evident. In the present study, molecular dynamics simulations were used to characterize a chain of water molecules leading from the cytoplasmic solution, passing the conserved glutamate in subunit III and extending into subunit I. Formation of the water chain, which controls the delivery of protons to the K(C)-channel, was found to depend on the conformation of Y241(Vc), located in subunit I at the interface with subunit III. Mutations of Y241(Vc) (to A/F/H/S) in the Vibrio cholerae cbb3 eliminate catalytic activity, but also cause perturbations that propagate over a 28-Å distance to the active site heme b3. The data suggest a linkage between residues lining the K(C)-channel and the active site of the enzyme, possibly mediated by transmembrane helix α7, which contains both Y241(Vc) and the active site cross-linked Y255(Vc), as well as two CuB histidine ligands. Other mutations of residues within or near helix α7 also perturb the active site, indicating that this helix is involved in modulation of the active site of the enzyme.

  20. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations.

    PubMed

    Schweikardt, Thorsten; Olivares, Concepción; Solano, Francisco; Jaenicke, Elmar; García-Borrón, José Carlos; Decker, Heinz

    2007-10-01

    Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations. According to the model, the copper-binding histidines are located in a helix bundle comprising four densely packed helices. A loop containing residues M374, S375 and V377 connects the CuA and CuB centres, with the peptide oxygens of M374 and V377 serving as hydrogen acceptors for the NH-groups of the imidazole rings of the copper-binding His367 and His180. Therefore, this loop is essential for the stability of the active site architecture. A double substitution (374)MS(375) --> (374)GG(375) or a single M374G mutation lead to a local perturbation of the protein matrix at the active site affecting the orientation of the H367 side chain, that may be unable to bind CuB reliably, resulting in loss of activity. The model also accounts for loss of function in two naturally occurring albino mutations, S380P and V393F. The hydroxyl group in S380 contributes to the correct orientation of M374, and the substitution of V393 for a bulkier phenylalanine sterically impedes correct side chain packing at the active site. Therefore, our model explains the mechanistic necessity for conservation of not only active site histidines but also adjacent amino acids in tyrosinase.

  1. Dynamic ion-ion and water-ion interactions in ion channels.

    PubMed Central

    Wu, J V

    1992-01-01

    The dynamic interactions among ions and water molecules in ion channels are treated based on an assumption that ions at binding sites can be knocked off by both transient entering ions and local water molecules. The theory, when applied to a single-site model K+ channel, provides solutions for super- and subsaturations, flux-ratio exponent (n') greater than 1, osmotic streaming current, activity-dependent reversal potentials, and anomalous mole-fraction behavior. The analysis predicts that: (a) the saturation may but, in general, does not follow the Michaelis-Menten relation; (b) streaming current results from imbalanced water-ion knock-off interactions; (c) n' greater than 1 even for single-site channels, but it is unlikely to exceed 1.4 unless the pore is occupied by one or more ion(s); (d) in the calculation involving two permeant ion species with similar radii, the heavier ions show higher affinity; the ion-ion knock-off dissociation from the site is more effective when two interacting ions are identical. Therefore, the "multi-ion behaviors" found in most ion channels are the consequences of dynamic ion-ion and water-ion interactions. The presence of these interactions does not require two or more binding sites in channels. PMID:1376158

  2. The level of aryl acylamidase activity displayed by human butyrylcholinesterase depends on its molecular distribution.

    PubMed

    Montenegro, M F; Moral-Naranjo, M T; Páez de la Cadena, M; Campoy, F J; Muñoz-Delgado, E; Vidal, C J

    2008-09-25

    Butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) display both esterase and aryl acylamidase (AAA) activities. Their AAA activity can be measured using o-nitroacetanilide (ONA). In human samples depleted of acetylcholinesterase, we noticed that the ratio of amidase to esterase activities varied depending on the source, despite both activities being due to BuChE. Searching for an explanation, we compared the activities of BuChE molecular forms in samples of human colon, kidney and serum, and observed that BuChE monomers (G(1)) hydrolyzed o-nitroacetanilide much faster than tetramers (G(4)). This fact suggested that association might cause differences in the AAA site between single and polymerized subunits. This and other post-translational modifications in BuChE subunits probably determine their level of AAA activity. The higher amidase activity of monomers could justify the presence of single BuChE subunits in cells as a way to preserve the AAA activity of BuChE, which could be lost by oligomerization.

  3. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides.

    PubMed

    Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl

    2015-12-15

    The main aim of this study was to investigate the single, competitive, and dynamic adsorption of phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two activated carbons with different chemical natures and similar textural characteristics. The adsorption mechanism was also elucidated by analyzing the influence of solution pH and ionic strength. The activated carbons demonstrated high adsorption capacity to remove all micropollutants due to the presence of active sites on their surfaces, which increase dispersive interactions between the activated carbon graphene layers and the aromatic ring of pollutants. The adsorption capacity of the activated carbons increased in the order: DPA

  4. Organization of the BcgI restriction-modification protein for the cleavage of eight phosphodiester bonds in DNA

    PubMed Central

    Smith, Rachel M.; Marshall, Jacqueline J. T.; Jacklin, Alistair J.; Retter, Susan E.; Halford, Stephen E.; Sobott, Frank

    2013-01-01

    Type IIB restriction-modification systems, such as BcgI, feature a single protein with both endonuclease and methyltransferase activities. Type IIB nucleases require two recognition sites and cut both strands on both sides of their unmodified sites. BcgI cuts all eight target phosphodiester bonds before dissociation. The BcgI protein contains A and B polypeptides in a 2:1 ratio: A has one catalytic centre for each activity; B recognizes the DNA. We show here that BcgI is organized as A2B protomers, with B at its centre, but that these protomers self-associate to assemblies containing several A2B units. Moreover, like the well known FokI nuclease, BcgI bound to its site has to recruit additional protomers before it can cut DNA. DNA-bound BcgI can alternatively be activated by excess A subunits, much like the activation of FokI by its catalytic domain. Eight A subunits, each with one centre for nuclease activity, are presumably needed to cut the eight bonds cleaved by BcgI. Its nuclease reaction may thus involve two A2B units, each bound to a recognition site, with two more A2B units bridging the complexes by protein–protein interactions between the nuclease domains. PMID:23147005

  5. Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the rabbit heart.

    PubMed

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin

    2011-01-01

    Ventricular arrhythmias represent one of leading causes for sudden cardiac death, a significant problem in public health. Noninvasive imaging of cardiac electric activities associated with ventricular arrhythmias plays an important role in better our understanding of the mechanisms and optimizing the treatment options. The present study aims to rigorously validate a novel three-dimensional (3-D) cardiac electrical imaging (3-DCEI) technique with the aid of 3-D intra-cardiac mapping during paced rhythm and ventricular tachycardia (VT) in the rabbit heart. Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in thirteen healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous norepinephrine (NE). The non-invasively imaged activation sequence correlated well with invasively measured counterparts, with a correlation coefficient of 0.72 and a relative error of 0.30 averaged over all paced beats and NE-induced PVCs and VT beats. The averaged distance from imaged site of initial activation to measured site determined from intra-cardiac mapping was ∼5mm. These promising results suggest that 3-DCEI is feasible to non-invasively localize the origins and image activation sequence of focal ventricular arrhythmias.

  6. The energy landscape of adenylate kinase during catalysis

    PubMed Central

    Kerns, S. Jordan; Agafonov, Roman V.; Cho, Young-Jin; Pontiggia, Francesco; Otten, Renee; Pachov, Dimitar V.; Kutter, Steffen; Phung, Lien A.; Murphy, Padraig N.; Thai, Vu; Alber, Tom; Hagan, Michael F.; Kern, Dorothee

    2014-01-01

    Kinases perform phosphoryl-transfer reactions in milliseconds; without enzymes, these reactions would take about 8000 years under physiological conditions. Despite extensive studies, a comprehensive understanding of kinase energy landscapes, including both chemical and conformational steps, is lacking. Here we scrutinize the microscopic steps in the catalytic cycle of adenylate kinase, through a combination of NMR measurements during catalysis, pre-steady-state kinetics, MD simulations, and crystallography of active complexes. We find that the Mg2+ cofactor activates two distinct molecular events, phosphoryl transfer (>105-fold) and lid-opening (103-fold). In contrast, mutation of an essential active-site arginine decelerates phosphoryl transfer 103-fold without substantially affecting lid-opening. Our results highlight the importance of the entire energy landscape in catalysis and suggest that adenylate kinases have evolved to activate key processes simultaneously by precise placement of a single, charged and very abundant cofactor in a pre-organized active site. PMID:25580578

  7. Mechanistic Insight from Calorimetric Measurements of the Assembly of the Binuclear Metal Active Site of Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes.

    PubMed

    Pedroso, Marcelo M; Ely, Fernanda; Carpenter, Margaret C; Mitić, Nataša; Gahan, Lawrence R; Ollis, David L; Wilcox, Dean E; Schenk, Gerhard

    2017-07-05

    Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a binuclear metallohydrolase with a high affinity for metal ions at its α site but a lower affinity at its β site in the absence of a substrate. Isothermal titration calorimetry (ITC) has been used to quantify the Co(II) and Mn(II) binding affinities and thermodynamics of the two sites in wild-type GpdQ and two mutants, both in the absence and in the presence of phosphate. Metal ions bind to the six-coordinate α site in an entropically driven process with loss of a proton, while binding at the β site is not detected by ITC. Phosphate enhances the metal affinity of the α site by increasing the binding entropy and the metal affinity of the β site by enthalpic (Co) or entropic (Mn) contributions, but no additional loss of protons. Mutations of first- and second-coordination sphere residues at the β site increase the metal affinity of both sites by enhancing the binding enthalpy. In particular, loss of the hydrogen bond from second-sphere Ser127 to the metal-coordinating Asn80 has a significant effect on the metal binding thermodynamics that result in a resting binuclear active site with high catalytic activity. While structural and spectroscopic data with excess metal ions have indicated a bridging hydroxide in the binuclear GpdQ site, analysis of ITC data here reveals the loss of a single proton in the assembly of this site, indicating that the metal-bound hydroxide nucleophile is formed in the resting inactive mononuclear form, which becomes catalytically competent upon binding the second metal ion.

  8. The Enzymatic and Structural Basis for Inhibition of Echinococcus granulosus Thioredoxin Glutathione Reductase by Gold(I).

    PubMed

    Salinas, Gustavo; Gao, Wei; Wang, Yang; Bonilla, Mariana; Yu, Long; Novikov, Andrey; Virginio, Veridiana G; Ferreira, Henrique B; Vieites, Marisol; Gladyshev, Vadim N; Gambino, Dinorah; Dai, Shaodong

    2017-12-20

    New drugs are needed to treat flatworm infections that cause severe human diseases such as schistosomiasis. The unique flatworm enzyme thioredoxin glutathione reductase (TGR), structurally different from the human enzyme, is a key drug target. Structural studies of the flatworm Echinococcus granulosus TGR, free and complexed with Au I -MPO, a novel gold inhibitor, together with inhibition assays were performed. Au I -MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: (i) unique monomer-monomer interactions, (ii) distinct binding sites for thioredoxin and the glutaredoxin (Grx) domain, (iii) a single glutathione disulfide reduction site in the Grx domain, (iv) rotation of the Grx domain toward the Sec-containing redox active site, and (v) a single gold atom bound to Cys 519 and Cys 573 in the Au I -TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site. The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments. The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center but also by rotation of the Grx domain and distinct binding sites for Grx domain and thioredoxin. The conserved Cys 519 and Cys 573 residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. Antioxid. Redox Signal. 27, 1491-1504.

  9. The Enzymatic and Structural Basis for Inhibition of Echinococcus granulosus Thioredoxin Glutathione Reductase by Gold(I)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salinas, Gustavo; Gao, Wei; Wang, Yang

    Aims: New drugs are needed to treat flatworm infections that cause severe human diseases such as schistosomiasis. The unique flatworm enzyme thioredoxin glutathione reductase (TGR), structurally different from the human enzyme, is a key drug target. Structural studies of the flatworm Echinococcus granulosus TGR, free and complexed with AuI-MPO, a novel gold inhibitor, together with inhibition assays were performed. Results: AuI-MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: (i) unique monomer–monomer interactions, (ii) distinct binding sites for thioredoxin and the glutaredoxinmore » (Grx) domain, (iii) a single glutathione disulfide reduction site in the Grx domain, (iv) rotation of the Grx domain toward the Sec-containing redox active site, and (v) a single gold atom bound to Cys519 and Cys573 in the AuI-TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site. Innovation: The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments. Conclusions: The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center but also by rotation of the Grx domain and distinct binding sites for Grx domain and thioredoxin. The conserved Cys519 and Cys573 residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. Antioxid. Redox Signal. 27, 1491–1504.« less

  10. Final Technical Report: Metal—Organic Surface Catalyst for Low-temperature Methane Oxidation: Bi-functional Union of Metal—Organic Complex and Chemically Complementary Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tait, Steven L.

    Stabilization and chemical control of transition metal centers is a critical problem in the advancement of heterogeneous catalysts to next-generation catalysts that exhibit high levels of selectivity, while maintaining strong activity and facile catalyst recycling. Supported metal nanoparticle catalysts typically suffer from having a wide range of metal sites with different coordination numbers and varying chemistry. This project is exploring new possibilities in catalysis by combining features of homogeneous catalysts with those of heterogeneous catalysts to develop new, bi-functional systems. The systems are more complex than traditional heterogeneous catalysts in that they utilize sequential active sites to accomplish the desiredmore » overall reaction. The interaction of metal—organic catalysts with surface supports and their interactions with reactants to enable the catalysis of critical reactions at lower temperatures are at the focus of this study. Our work targets key fundamental chemistry problems. How do the metal—organic complexes interact with the surface? Can those metal center sites be tuned for selectivity and activity as they are in the homogeneous system by ligand design? What steps are necessary to enable a cooperative chemistry to occur and open opportunities for bi-functional catalyst systems? Study of these systems will develop the concept of bringing together the advantages of heterogeneous catalysis with those of homogeneous catalysis, and take this a step further by pursuing the objective of a bi-functional system. The use of metal-organic complexes in surface catalysts is therefore of interest to create well-defined and highly regular single-site centers. While these are not likely to be stable in the high temperature environments (> 300 °C) typical of industrial heterogeneous catalysts, they could be applied in moderate temperature reactions (100-300 °C), made feasible by lowering reaction temperatures by better catalyst control. They also serve as easily tuned model systems for exploring the chemistry of single-site transition metals and tandem catalysts that could then be developed into a zeolite or other stable support structures. In this final technical report, three major advances our described that further these goals. The first is a study demonstrating the ability to tune the oxidation state of V single-site centers on a surface by design of the surrounding ligand field. The synthesis of the single-site centers was developed in a previous reporting period of this project and this new advance shows a distinct new ability of the systems to have a designed oxidation state of the metal center. Second, we demonstrate metal complexation at surfaces using vibrational spectroscopy and also show a metal replacement reaction on Ag surfaces. Third, we demonstrate a surface-catalyzed dehydrocyclization reaction important for metal-organic catalyst design at surfaces.« less

  11. The AIRE -230Y Polymorphism Affects AIRE Transcriptional Activity: Potential Influence on AIRE Function in the Thymus

    PubMed Central

    Lovewell, Thomas R. J.; McDonagh, Andrew J.; Messenger, Andrew G.; Azzouz, Mimoun; Tazi-Ahnini, Rachid

    2015-01-01

    Background The autoimmune regulator (AIRE) is expressed in the thymus, particularly in thymic medullary epithelial cells (mTECs), and is required for the ectopic expression of a diverse range of peripheral tissue antigens by mTECs, facilitating their ability to perform negative selection of auto-reactive immature T-cells. The expression profile of peripheral tissue antigens is affected not only by AIRE deficiency but also with variation of AIRE activity in the thymus. Method and Results Therefore we screened 591bp upstream of the AIRE transcription start site including AIRE minimal promoter for single nucleotide polymorphism (SNPs) and identified two SNPs -655R (rs117557896) and -230Y (rs751032) respectively. To study the effect of these variations on AIRE promoter activity we generated a Flp-In host cell line which was stably transfected with a single copy of the reporter vector. Relative promoter activity was estimated by comparing the luciferase specific activity for lysates of the different reporter AIRE promoter-reporter gene constructs including AIRE-655G AIRE-230C, AIRE-655G AIRE-230T and AIRE-655A AIRE-230C. The analysis showed that the commonest haplotype AIRE-655G AIRE-230C has the highest luciferase specific activity (p<0.001). Whereas AIRE-655G AIRE-230T has a luciferase specific activity value that approaches null. Both AIRE promoter polymorphic sites have one allele that forms a CpG methylation site which we determined can be methylated in methylation assays using the M.SssI CpG methyltransferase. Conclusion AIRE-230Y is in a conserved region of the promoter and is adjacent to a predicted WT1 transcription factor binding site, suggesting that AIRE-230Y affects AIRE expression by influencing the binding of biochemical factors to this region. Our findings show that AIRE-655GAIRE-230T haplotype could dramatically alter AIRE transcription and so have an effect on the process of negative selection and affect susceptibility to autoimmune conditions. PMID:25978041

  12. Tips on robotic single-site surgery suture technique: Screwing and clockwise direction suture technique for Robotic single-site surgery.

    PubMed

    Moon, Hye-Sung

    2018-06-01

    Using the da Vinci single-site platform, surgeons can perform more minimally invasive surgery. However, surgical challenges exist due to the limitations of single-site instrumental movements. To aid in the performance of successful robotic single-site hysterectomy, a new suturing technique using the current set of limited instruments is introduced in this study. New vaginal cuff suturing techniques have been used in 55 robotic single-site hysterectomies in our institute over the past 2 years. A needle driver approach utilizing screwing and advancing the needle driver in the correct direction at an increasing angle from the transverse cuff margin with dragging and formation of an adequate loop of thread was used when suturing the vaginal cuff. Using the new vaginal suturing techniques, easy and firm vaginal cuff closure with reduced operative time relative to previous hysterectomies was achieved. The new vaginal cuff suturing techniques may convince more surgeons to perform robotic single-site hysterectomies more frequently and with greater ease. Copyright © 2018. Published by Elsevier B.V.

  13. National Facilities Study. Volume 1: Facilities Inventory

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The inventory activity was initiated to solve the critical need for a single source of site specific descriptive and parametric data on major public and privately held aeronautics and aerospace related facilities. This a challenging undertaking due to the scope of the effort and the short lead time in which to assemble the inventory and have it available to support the task group study needs. The inventory remains dynamic as sites are being added and the data is accessed and refined as the study progresses. The inventory activity also included the design and implementation of a computer database and analytical tools to simplify access to the data. This volume describes the steps which were taken to define the data requirements, select sites, and solicit and acquire data from them. A discussion of the inventory structure and analytical tools is also provided.

  14. Engineering the meso-Diaminopimelate Dehydrogenase from Symbiobacterium thermophilum by Site Saturation Mutagenesis for d-Phenylalanine Synthesis

    PubMed Central

    Gao, Xiuzhen; Huang, Fang; Feng, Jinhui; Chen, Xi; Zhang, Hailing; Wang, Zhixiang; Wu, Qiaqing

    2013-01-01

    In order to enlarge the substrate binding pocket of the meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum to accommodate larger 2-keto acids, four amino acid residues (Phe146, Thr171, Arg181, and His227) were targeted for site saturation mutagenesis. Among all mutants, the single mutant H227V had a specific activity of 2.39 ± 0.06 U · mg−1, which was 35.1-fold enhancement over the wild-type enzyme. PMID:23728814

  15. Engineering the meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum by site saturation mutagenesis for D-phenylalanine synthesis.

    PubMed

    Gao, Xiuzhen; Huang, Fang; Feng, Jinhui; Chen, Xi; Zhang, Hailing; Wang, Zhixiang; Wu, Qiaqing; Zhu, Dunming

    2013-08-01

    In order to enlarge the substrate binding pocket of the meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum to accommodate larger 2-keto acids, four amino acid residues (Phe146, Thr171, Arg181, and His227) were targeted for site saturation mutagenesis. Among all mutants, the single mutant H227V had a specific activity of 2.39 ± 0.06 U · mg(-1), which was 35.1-fold enhancement over the wild-type enzyme.

  16. Insights into Substrate Specificity and Metal Activation of Mammalian Tetrahedral Aspartyl Aminopeptidase*

    PubMed Central

    Chen, Yuanyuan; Farquhar, Erik R.; Chance, Mark R.; Palczewski, Krzysztof; Kiser, Philip D.

    2012-01-01

    Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases. PMID:22356908

  17. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tingting; Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Chen, Man

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a singlemore » site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination. Black-Right-Pointing-Pointer Single CpG methylation located at Pax6 binding motif regulates StAR expression.« less

  18. Biochemical and thermodynamic characteristics of thermo-alkali-stable xylanase from a novel polyextremophilic Bacillus halodurans TSEV1.

    PubMed

    Kumar, Vikash; Satyanarayana, T

    2013-09-01

    The purified extracellular xylanase of polyextremophilic Bacillus halodurans TSEV1 has been visualized as a single band on SDS-PAGE and eluted as single peak by gel filtration, with a molecular mass of 40 kDa. The peptide finger print and cloned xylanase gene sequence analyses indicate that this enzyme belongs to GH family 10. The active site carboxyl residues are mainly involved in catalysis, while tryptophan residues are involved in substrate binding. The enzyme is optimally active at 80 °C and pH 9.0, and stable in the pH range of 7.0-12.0 with T 1/2 of 35 min at 80 °C (pH 9.0). Activation energy for birch wood xylan hydrolysis is 30.51 kJ mol(-1). The K m, V max and k cat (birchwood xylan) are 2.05 mg ml(-1), 333.33 μmol mg(-1 )min(-1) and 3.33 × 10(4) min(-1), respectively. The pKa1 and pKa2 of ionizable groups of the active site that influence V max are 8.51 and 11.0. The analysis of thermodynamic parameters for xylan hydrolysis suggests this as a spontaneous process. The enzyme is resistant to chemical denaturants like urea and guanidinium-HCl. The site-directed mutagenesis of catalytic glutamic acid residues (E196 and E301) resulted in a complete loss of activity. The birch wood xylan hydrolyzate contained xylobiose and xylotriose as the main products without any trace of xylose, and the enzyme hydrolyzes xylotetraose and xylopentaose rapidly to xylobiose. Thermo-alkali-stability, resistance to various chemical denaturants and mode of action make it a useful biocatalyst for generating xylo-oligosaccharides from agro-residues and bleaching of pulp in paper industries.

  19. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manna, Kuntal; Zhang, Teng; Greene, Francis X.

    2015-02-16

    We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal–organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)] 2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as wellmore » as C–H borylation of arenes using B₂pin₂. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17000 for C–H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations.« less

  20. The Dynamic Mu Transpososome: MuB activation prevents disintegration

    PubMed Central

    Lemberg, Kathryn M.; Schweidenback, Caterina T. H.; Baker, Tania A.

    2007-01-01

    Summary DNA transposases use a single active center to sequentially cleave the transposable element DNA and join this DNA to a target site. Recombination requires controlled conformational changes within the transposase to ensure that these chemically distinct steps occur at the right time and place, and that the reaction proceeds in the net forward direction. Mu transposition is catalyzed by a stable complex of MuA transposase bound to paired Mu DNA ends (a transpososome). We find that Mu transpososomes efficiently catalyze disintegration when recombination on one end of the Mu DNA is blocked. The MuB activator protein controls the integration vs. disintegration equilibrium. When MuB is present, disintegration occurs slowly and transpososomes that have disintegrated catalyze subsequent rounds of recombination. In the absence of MuB, disintegration goes to completion. These results together with experiments mapping the MuA-MuB contacts during DNA joining suggest that MuB controls progression of recombination by specifically stabilizing a concerted transition to the ‘joining’ configuration of MuA. Thus, we propose that MuB's interaction with the transpososome actively promotes coupled joining of both ends of the element DNA into the same target site and thus may provide a mechanism to antagonize formation of single-end transposition products. PMID:17988683

  1. Modulation of HIV Protease Flexibility by the T80N Mutation

    PubMed Central

    Zhou, Hao; Li, Shangyang; Badger, John; Nalivaika, Ellen; Cai, Yufeng; Foulkes-Murzycki, Jennifer; Schiffer, Celia; Makowski, Lee

    2015-01-01

    The flexibility of HIV protease plays a critical role in enabling enzymatic activity and is required for substrate access to the active site. While the importance of flexibility in the flaps that cover the active site is well known, flexibility in other parts of the enzyme is also critical for function. One key region is a loop containing Thr 80 which forms the walls of the active site. Although not situated within the active site, amino acid Thr80 is absolutely conserved. The mutation T80N preserves the structure of the enzyme but catalytic activity is completely lost. To investigate the potential influence of the T80N mutation on HIVp flexibility, wide-angle scattering (WAXS) data was measured for a series of HIV protease variants. Starting with a calculated WAXS pattern from a rigid atomic model, the modulations in the intensity distribution caused by structural fluctuations in the protein were predicted by simple analytic methods and compared to the experimental data. An analysis of T80N WAXS data shows that this variant is significantly more rigid than the WT across all length scales. The effects of this single point mutation extend throughout the protein, so as to alter the mobility of amino acids in the enzymatic core. These results support the contentions that significant protein flexibility extends throughout HIV protease and is critical to catalytic function. PMID:25488402

  2. Electric currents and coronal heating in NOAA active region 6952

    NASA Technical Reports Server (NTRS)

    Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.

    1994-01-01

    We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.

  3. Primary structural variation in anaplasma marginale Msp2 efficiently generates immune escape variants

    USDA-ARS?s Scientific Manuscript database

    Antigenic variation allows microbial pathogens to evade immune clearance and establish persistent infection. Anaplasma marginale utilizes gene conversion of a repertoire of silent msp2 alleles into a single active expression site to encode unique Msp2 variants. As the genomic complement of msp2 alle...

  4. Binding of the 3' terminus of tRNA to 23S rRNA in the ribosomal exit site actively promotes translocation.

    PubMed Central

    Lill, R; Robertson, J M; Wintermeyer, W

    1989-01-01

    A key event in ribosomal protein synthesis is the translocation of deacylated tRNA, peptidyl tRNA and mRNA, which is catalyzed by elongation factor G (EF-G) and requires GTP. To address the molecular mechanism of the reaction we have studied the functional role of a tRNA exit site (E site) for tRNA release during translocation. We show that modifications of the 3' end of tRNAPhe, which considerably decrease the affinity of E-site binding, lower the translocation rate up to 40-fold. Furthermore, 3'-end modifications lower or abolish the stimulation by P site-bound tRNA of the GTPase activity of EF-G on the ribosome. The results suggest that a hydrogen-bonding interaction of the 3'-terminal adenine of the leaving tRNA in the E site, most likely base-pairing with 23S rRNA, is essential for the translocation reaction. Furthermore, this interaction stimulates the GTP hydrolyzing activity of EF-G on the ribosome. We propose the following molecular model of translocation: after the binding of EF-G.GTP, the P site-bound tRNA, by a movement of the 3'-terminal single-stranded ACCA tail, establishes an interaction with 23S rRNA in the adjacent E site, thereby initiating the tRNA transfer from the P site to the E site and promoting GTP hydrolysis. The co-operative interaction between the E site and the EF-G binding site, which are distantly located on the 50S ribosomal subunit, is probably mediated by a conformational change of 23S rRNA. PMID:2583120

  5. The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estrada, Paola; Manandhar, Miglena; Dong, Shi-Hui

    Reactions that activate carboxylates through acyl-adenylate intermediates are found throughout biology and include acyl- and aryl-CoA synthetases and tRNA synthetases. Here we describe the characterization of Aquifex aeolicus BioW, which represents a new protein fold within the superfamily of adenylating enzymes. Substrate-bound structures identified the enzyme active site and elucidated the mechanistic strategy for conjugating CoA to the seven-carbon α,ω-dicarboxylate pimelate, a biotin precursor. Proper position of reactive groups for the two half-reactions is achieved solely through movements of active site residues, as confirmed by site-directed mutational analysis. The ability of BioW to hydrolyze adenylates of noncognate substrates is reminiscentmore » of pre-transfer proofreading observed in some tRNA synthetases, and we show that this activity can be abolished by mutation of a single residue. These studies illustrate how BioW can carry out three different biologically prevalent chemical reactions (adenylation, thioesterification, and proofreading) in the context of a new protein fold.« less

  6. Electron transport in ethanol & methanol absorbed defected graphene

    NASA Astrophysics Data System (ADS)

    Dandeliya, Sushmita; Srivastava, Anurag

    2018-05-01

    In the present paper, the sensitivity of ethanol and methanol molecules on surface of single vacancy defected graphene has been investigated using density functional theory (DFT). The changes in structural and electronic properties before and after adsorption of ethanol and methanol were analyzed and the obtained results show high adsorption energy and charge transfer. High adsorption happens at the active site with monovacancy defect on graphene surface. Present work confirms that the defected graphene increases the surface reactivity towards ethanol and methanol molecules. The presence of molecules near the active site affects the electronic and transport properties of defected graphene which makes it a promising choice for designing methanol and ethanol sensor.

  7. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol.

    PubMed

    Grundner, Sebastian; Markovits, Monica A C; Li, Guanna; Tromp, Moniek; Pidko, Evgeny A; Hensen, Emiel J M; Jentys, Andreas; Sanchez-Sanchez, Maricruz; Lercher, Johannes A

    2015-06-25

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon-hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite.

  8. High-resolution crystal structures of Drosophila melanogaster angiotensin-converting enzyme in complex with novel inhibitors and antihypertensive drugs.

    PubMed

    Akif, Mohd; Georgiadis, Dimitris; Mahajan, Aman; Dive, Vincent; Sturrock, Edward D; Isaac, R Elwyn; Acharya, K Ravi

    2010-07-16

    Angiotensin I-converting enzyme (ACE), one of the central components of the renin-angiotensin system, is a key therapeutic target for the treatment of hypertension and cardiovascular disorders. Human somatic ACE (sACE) has two homologous domains (N and C). The N- and C-domain catalytic sites have different activities toward various substrates. Moreover, some of the undesirable side effects of the currently available and widely used ACE inhibitors may arise from their targeting both domains leading to defects in other pathways. In addition, structural studies have shown that although both these domains have much in common at the inhibitor binding site, there are significant differences and these are greater at the peptide binding sites than regions distal to the active site. As a model system, we have used an ACE homologue from Drosophila melanogaster (AnCE, a single domain protein with ACE activity) to study ACE inhibitor binding. In an extensive study, we present high-resolution structures for native AnCE and in complex with six known antihypertensive drugs, a novel C-domain sACE specific inhibitor, lisW-S, and two sACE domain-specific phosphinic peptidyl inhibitors, RXPA380 and RXP407 (i.e., nine structures). These structures show detailed binding features of the inhibitors and highlight subtle changes in the orientation of side chains at different binding pockets in the active site in comparison with the active site of N- and C-domains of sACE. This study provides information about the structure-activity relationships that could be utilized for designing new inhibitors with improved domain selectivity for sACE. 2010 Elsevier Ltd. All rights reserved.

  9. Reliability of an fMRI Paradigm for Emotional Processing in a Multisite Longitudinal Study

    PubMed Central

    Gee, Dylan G.; McEwen, Sarah C.; Forsyth, Jennifer K.; Haut, Kristen M.; Bearden, Carrie E.; Addington, Jean; Goodyear, Bradley; Cadenhead, Kristin S.; Mirzakhanian, Heline; Cornblatt, Barbara A.; Olvet, Doreen; Mathalon, Daniel H.; McGlashan, Thomas H.; Perkins, Diana O.; Belger, Aysenil; Seidman, Larry J.; Thermenos, Heidi; Tsuang, Ming T.; van Erp, Theo G.M.; Walker, Elaine F.; Hamann, Stephan; Woods, Scott W.; Constable, Todd; Cannon, Tyrone D.

    2015-01-01

    Multisite neuroimaging studies can facilitate the investigation of brain-related changes in many contexts, including patient groups that are relatively rare in the general population. Though multisite studies have characterized the reliability of brain activation during working memory and motor functional magnetic resonance imaging tasks, emotion processing tasks, pertinent to many clinical populations, remain less explored. A traveling participants study was conducted with eight healthy volunteers scanned twice on consecutive days at each of the eight North American Longitudinal Prodrome Study sites. Tests derived from generalizability theory showed excellent reliability in the amygdala (Eρ2=0.82), inferior frontal gyrus (IFG;Eρ2=0.83), anterior cingulate cortex (ACC;Eρ2=0.76), insula (Eρ2=0.85), and fusiform gyrus (Eρ2=0.91) for maximum activation and fair to excellent reliability in the amygdala (Eρ2=0.44), IFG (Eρ2=0.48), ACC (Eρ2=0.55), insula (Eρ2=0.42), and fusiform gyrus (Eρ2=0.83) for mean activation across sites and test days. For the amygdala, habituation (Eρ2=0.71) was more stable than mean activation. In a second investigation, data from 111 healthy individuals across sites were aggregated in a voxelwise, quantitative meta-analysis. When compared with a mixed effects model controlling for site, both approaches identified robust activation in regions consistent with expected results based on prior single-site research. Overall, regions central to emotion processing showed strong reliability in the traveling participants study and robust activation in the aggregation study. These results support the reliability of blood oxygen level-dependent signal in emotion processing areas across different sites and scanners and may inform future efforts to increase efficiency and enhance knowledge of rare conditions in the population through multisite neuroimaging paradigms. PMID:25821147

  10. Reprogramming the Chemodiversity of Terpenoid Cyclization by Remolding the Active Site Contour of epi-Isozizaene Synthase

    PubMed Central

    2015-01-01

    The class I terpenoid cyclase epi-isozizaene synthase (EIZS) utilizes the universal achiral isoprenoid substrate, farnesyl diphosphate, to generate epi-isozizaene as the predominant sesquiterpene cyclization product and at least five minor sesquiterpene products, making EIZS an ideal platform for the exploration of fidelity and promiscuity in a terpenoid cyclization reaction. The hydrophobic active site contour of EIZS serves as a template that enforces a single substrate conformation, and chaperones subsequently formed carbocation intermediates through a well-defined mechanistic sequence. Here, we have used the crystal structure of EIZS as a guide to systematically remold the hydrophobic active site contour in a library of 26 site-specific mutants. Remolded cyclization templates reprogram the reaction cascade not only by reproportioning products generated by the wild-type enzyme but also by generating completely new products of diverse structure. Specifically, we have tripled the overall number of characterized products generated by EIZS. Moreover, we have converted EIZS into six different sesquiterpene synthases: F96A EIZS is an (E)-β-farnesene synthase, F96W EIZS is a zizaene synthase, F95H EIZS is a β-curcumene synthase, F95M EIZS is a β-acoradiene synthase, F198L EIZS is a β-cedrene synthase, and F96V EIZS and W203F EIZS are (Z)-γ-bisabolene synthases. Active site aromatic residues appear to be hot spots for reprogramming the cyclization cascade by manipulating the stability and conformation of critical carbocation intermediates. A majority of mutant enzymes exhibit only relatively modest 2–100-fold losses of catalytic activity, suggesting that residues responsible for triggering substrate ionization readily tolerate mutations deeper in the active site cavity. PMID:24517311

  11. Can multidetector CT detect the site of gastrointestinal tract injury in trauma? – A retrospective study

    PubMed Central

    Panda, Ananya; Kumar, Atin; Gamanagatti, Shivanand; Das, Ranjita; Paliwal, Swati; Gupta, Amit; Kumar, Subodh

    2017-01-01

    PURPOSE We aimed to assess the performance of computed tomography (CT) in localizing site of traumatic gastrointestinal tract (GIT) injury and determine the diagnostic value of CT signs in site localization. METHODS CT scans of 97 patients with surgically proven GIT or mesenteric injuries were retrospectively reviewed by radiologists blinded to surgical findings. Diagnosis of either GIT or mesenteric injuries was made. In patients with GIT injuries, site of injury and presence of CT signs such as focal bowel wall hyperenhancement, hypoenhancement, wall discontinuity, wall thickening, extramural air, intramural air, perivisceral infiltration, and active vascular contrast leak were evaluated. RESULTS Out of 97 patients, 90 had GIT injuries (70 single site injuries and 20 multiple site injuries) and seven had isolated mesenteric injury. The overall concordance between CT and operative findings for exact site localization was 67.8% (61/90), partial concordance rate was 11.1% (10/90), and discordance rate was 21.1% (19/90). For single site localization, concordance rate was 77.1% (54/70), discordance rate was 21.4% (15/70), and partial concordance rate was 1.4% (1/70). In multiple site injury, concordance rate for all sites of injury was 35% (7/20), partial concordance rate was 45% (9/20), and discordance rate was 20% (4/20). For upper GIT injuries, wall discontinuity was the most accurate sign for localization. For small bowel injury, intramural air and hyperenhancement were the most specific signs for site localization, while for large bowel injury, wall discontinuity and hypoenhancement were the most specific signs. CONCLUSION CT performs better in diagnosing small bowel injury compared with large bowel injury. CT can well predict the presence of multiple site injury but has limited performance in exact localization of all injury sites. PMID:27924777

  12. Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao Xia; Cullen, David A.; Pan, Yung-Tin

    Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). In this paper, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN 4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, anmore » atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm -2). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. Finally, the remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN 4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.« less

  13. Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells

    DOE PAGES

    Wang, Xiao Xia; Cullen, David A.; Pan, Yung-Tin; ...

    2018-01-24

    Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). In this paper, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN 4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, anmore » atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm -2). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. Finally, the remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN 4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.« less

  14. Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells.

    PubMed

    Wang, Xiao Xia; Cullen, David A; Pan, Yung-Tin; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; Wang, Jingyun; Engelhard, Mark H; Zhang, Hanguang; He, Yanghua; Shao, Yuyan; Su, Dong; More, Karren L; Spendelow, Jacob S; Wu, Gang

    2018-03-01

    Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN 4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm -2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN 4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Experimental warming differentially affects microbial structure and activity in two contrasted moisture sites in a Sphagnum-dominated peatland.

    PubMed

    Delarue, Frédéric; Buttler, Alexandre; Bragazza, Luca; Grasset, Laurent; Jassey, Vincent E J; Gogo, Sébastien; Laggoun-Défarge, Fatima

    2015-04-01

    Several studies on the impact of climate warming have indicated that peat decomposition/mineralization will be enhanced. Most of these studies deal with the impact of experimental warming during summer when prevalent abiotic conditions are favorable to decomposition. Here, we investigated the effect of experimental air warming by open-top chambers (OTCs) on water-extractable organic matter (WEOM), microbial biomasses and enzymatic activities in two contrasted moisture sites named Bog and Fen sites, the latter considered as the wetter ones. While no or few changes in peat temperature and water content appeared under the overall effect of OTCs, we observed that air warming smoothed water content differences and led to a decrease in mean peat temperature at the warmed Bog sites. This thermal discrepancy between the two sites led to contrasting changes in microbial structure and activities: a rise in hydrolytic activity at the warmed Bog sites and a relative enhancement of bacterial biomass at the warmed Fen sites. These features were not associated with any change in WEOM properties namely carbon and sugar contents and aromaticity, suggesting that air warming did not trigger any shift in OM decomposition. Using various tools, we show that the use of single indicators of OM decomposition can lead to fallacious conclusions. Lastly, these patterns may change seasonally as a consequence of complex interactions between groundwater level and air warming, suggesting the need to improve our knowledge using a high time-resolution approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ticks and Borrelia in urban and peri-urban green space habitats in a city in southern England.

    PubMed

    Hansford, Kayleigh M; Fonville, Manoj; Gillingham, Emma L; Coipan, Elena Claudia; Pietzsch, Maaike E; Krawczyk, Aleksandra I; Vaux, Alexander G C; Cull, Benjamin; Sprong, Hein; Medlock, Jolyon M

    2017-03-01

    Ticks are becoming increasingly recognised as important vectors of pathogens in urban and peri-urban areas, including green space used for recreational activities. In the UK, the risk posed by ticks in such areas is largely unknown. In order to begin to assess the risk of ticks in urban/peri-urban areas in southern England, questing ticks were collected from five different habitat types (grassland, hedge, park, woodland and woodland edge) in a city during the spring, summer and autumn of 2013/2014 and screened for Borrelia burgdorferi sensu lato. In addition, seasonal differences in B. burgdorferi s.l. prevalence were also investigated at a single site during 2015. Ixodes ricinus presence and activity were significantly higher in woodland edge habitat and during spring surveys. DNA of Borrelia burgdorferi s.l. was detected in 18.1% of nymphs collected across the 25 sites during 2013 and 2014 and two nymphs also tested positive for the newly emerging tick-borne pathogen B. miyamotoi. Borrelia burgdorferi s.l. prevalence at a single site surveyed in 2015 were found to be significantly higher during spring and summer than in autumn, with B. garinii and B. valaisiana most commonly detected. These data indicate that a range of habitats within an urban area in southern England support ticks and that urban Borrelia transmission cycles may exist in some of the urban green spaces included in this study. Sites surveyed were frequently used by humans for recreational activities, providing opportunity for exposure to Borrelia infected ticks in an urban/peri-urban space that might not be typically associated with tick-borne disease transmission. Crown Copyright © 2017. Published by Elsevier GmbH. All rights reserved.

  17. Functional cooperation between exonucleases and endonucleases—basis for the evolution of restriction enzymes

    PubMed Central

    Raghavendra, Nidhanapathi K.; Rao, Desirazu N.

    2003-01-01

    Many types of restriction enzymes cleave DNA away from their recognition site. Using the type III restriction enzyme, EcoP15I, which cleaves DNA 25–27 bp away from its recognition site, we provide evidence to show that an intact recognition site on the cleaved DNA sequesters the restriction enzyme and decreases the effective concentration of the enzyme. EcoP15I restriction enzyme is shown here to perform only a single round of DNA cleavage. Significantly, we show that an exonuclease activity is essential for EcoP15I restriction enzyme to perform multiple rounds of DNA cleavage. This observation may hold true for all restriction enzymes cleaving DNA sufficiently far away from their recognition site. Our results highlight the importance of functional cooperation in the modulation of enzyme activity. Based on results presented here and other data on well-characterised restriction enzymes, a functional evolutionary hierarchy of restriction enzymes is discussed. PMID:12655005

  18. Tuning a Protein-Labeling Reaction to Achieve Highly Site Selective Lysine Conjugation.

    PubMed

    Pham, Grace H; Ou, Weijia; Bursulaya, Badry; DiDonato, Michael; Herath, Ananda; Jin, Yunho; Hao, Xueshi; Loren, Jon; Spraggon, Glen; Brock, Ansgar; Uno, Tetsuo; Geierstanger, Bernhard H; Cellitti, Susan E

    2018-04-16

    Activated esters are widely used to label proteins at lysine side chains and N termini. These reagents are useful for labeling virtually any protein, but robust reactivity toward primary amines generally precludes site-selective modification. In a unique case, fluorophenyl esters are shown to preferentially label human kappa antibodies at a single lysine (Lys188) within the light-chain constant domain. Neighboring residues His189 and Asp151 contribute to the accelerated rate of labeling at Lys188 relative to the ≈40 other lysine sites. Enriched Lys188 labeling can be enhanced from 50-70 % to >95 % by any of these approaches: lowering reaction temperature, applying flow chemistry, or mutagenesis of specific residues in the surrounding protein environment. Our results demonstrated that activated esters with fluoro-substituted aromatic leaving groups, including a fluoronaphthyl ester, can be generally useful reagents for site-selective lysine labeling of antibodies and other immunoglobulin-type proteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Water oxidation by Ruthenium complexes incorporating multifunctional biipyridyl diphosphonate ligands

    DOE PAGES

    Xie, Yan; Shaffer, David W.; Lewandowska-Andralojc, Anna; ...

    2016-05-11

    Here, we describe herein the synthesis and characterization of ruthenium complexes with multifunctional bipyridyl diphosphonate ligands as well as initial water oxidation studies. In these complexes, the phosphonate groups provide redox-potential leveling through charge compensation and σ donation to allow facile access to high oxidation states. These complexes display unique pH-dependent electrochemistry associated with deprotonation of the phosphonic acid groups. The position of these groups allows them to shuttle protons in and out of the catalytic site and reduce activation barriers. A mechanism for water oxidation by these catalysts is proposed on the basis of experimental results and DFT calculations.more » The unprecedented attack of water at a neutral six-coordinate [Ru IV] center to yield an anionic seven-coordinate [Ru IV–OH] – intermediate is one of the key steps of a single-site mechanism in which all species are anionic or neutral. These complexes are among the fastest single-site catalysts reported to date.« less

  20. Cortical modulation of the nucleus of the optic tract in the rabbit.

    PubMed

    Pettorossi, V E; Troiani, D

    1983-09-01

    We analyzed in rabbits the relationships between the temporooccipital nystagmogenic cortex (NGC)--the region sited at the border between cortical areas 17, 21, and 22--and the nucleus of the optic tract (NOT). Two experimental approaches were used: (a) eye movement analysis before and after electrolytic lesion of the NOT region provided an indication of the importance of the NOT for the interaction between the ocular nystagmus elicited by natural optokinetic stimulation (OKN) and the nystagmus evoked by electrical stimulation of the nystagmogenic area; (b) NOT direction-selective and velocity-sensitive units were tested with single shock or repetitive electrical stimulation of the nystagmogenic region. Single-shock stimulation evoked single or multiple spikes in 50% of NOT units analyzed and repetitive stimuli induced prolonged facilitation and inhibitory rebounds in 70% of the units tested. Comparison of orthodromic activation latencies of the NOT cells (3.2 and 6.1 ms) after cortical stimulation and of antidromic activation latencies of cortical nystagmogenic units (2.6 ms) after NOT shocks, suggested monosynaptic as well as polysynaptic connections between the temporooccipital cortex and the NOT. The existence of such cortical-NOT linkage indicates that the NOT is intercalated between the cortex and the oculomotor centers and represents the most probable site of interaction of the cortical nystagmus pathway with the optokinetic reflex arc.

  1. Functional asymmetry in the lysyl-tRNA synthetase explored by molecular dynamics, free energy calculations and experiment

    PubMed Central

    Hughes, Samantha J; Tanner, Julian A; Hindley, Alison D; Miller, Andrew D; Gould, Ian R

    2003-01-01

    Background Charging of transfer-RNA with cognate amino acid is accomplished by the aminoacyl-tRNA synthetases, and proceeds through an aminoacyl adenylate intermediate. The lysyl-tRNA synthetase has evolved an active site that specifically binds lysine and ATP. Previous molecular dynamics simulations of the heat-inducible Escherichia coli lysyl-tRNA synthetase, LysU, have revealed differences in the binding of ATP and aspects of asymmetry between the nominally equivalent active sites of this dimeric enzyme. The possibility that this asymmetry results in different binding affinities for the ligands is addressed here by a parallel computational and biochemical study. Results Biochemical experiments employing isothermal calorimetry, steady-state fluorescence and circular dichroism are used to determine the order and stoichiometries of the lysine and nucleotide binding events, and the associated thermodynamic parameters. An ordered mechanism of substrate addition is found, with lysine having to bind prior to the nucleotide in a magnesium dependent process. Two lysines are found to bind per dimer, and trigger a large conformational change. Subsequent nucleotide binding causes little structural rearrangement and crucially only occurs at a single catalytic site, in accord with the simulations. Molecular dynamics based free energy calculations of the ATP binding process are used to determine the binding affinities of each site. Significant differences in ATP binding affinities are observed, with only one active site capable of realizing the experimental binding free energy. Half-of-the-sites models in which the nucleotide is only present at one active site achieve their full binding potential irrespective of the subunit choice. This strongly suggests the involvement of an anti-cooperative mechanism. Pathways for relaying information between the two active sites are proposed. Conclusions The asymmetry uncovered here appears to be a common feature of oligomeric aminoacyl-tRNA synthetases, and may play an important functional role. We suggest a manner in which catalytic efficiency could be improved by LysU operating in an alternating sites mechanism. PMID:12787471

  2. Silver-coated nylon dressing plus active DC microcurrent for healing of autogenous skin donor sites.

    PubMed

    Malin, Edward W; Galin, Chaya M; Lairet, Kimberley F; Huzar, Todd F; Williams, James F; Renz, Evan M; Wolf, Steven E; Cancio, Leopoldo C

    2013-11-01

    Burn wounds are a significant cause of morbidity and mortality, and improved outcomes are demonstrated with early closure of both primary burn wounds and skin donor sites. Thus, technology that decreases the healing time of burns and donor sites would be potentially lifesaving. We present the results of a single-center, prospective, double-blinded, randomized controlled trial to evaluate the efficacy of silver-coated dressing with active microcurrent in comparison to silver-coated dressing with sham microcurrent on wound-closure time for autogenous skin donor sites. Four hundred five patients were screened for treatment of their donor sites using a silver-coated nylon dressing with either sham or active microcurrent stimulation. Thirty patients were enrolled in the study and then randomized. Of these, 5 patients were removed from analysis due to protocol deviations. Differences in time-to-closure were analyzed using Kaplan-Meier analysis and the proportional hazard regression model. Subjective verbal pain rating scores (0-10; 0, no pain; 10, worst pain) were also recorded. All devices were blinded and programmed at an outside facility, so that every patient had either an active or sham device. The study was unblinded only after the final patient's donor site had healed. All patients achieved donor-site healing before postoperative day 20. The 14 patients in the active microcurrent group [mean, 10.8 (2.9) days; range, 7-15 days] experienced no difference in time to wound healing as compared to the remaining patients in the sham microcurrent group [mean, 11.1 (2.0) days; range, 8-14 days; P = 0.75]. There were no differences in pain from one group compared to the other. None of the donor sites exhibited clinical signs of infection. In a sample size of 25 burn patients, the addition of direct microcurrent to silver-nylon dressings did not decrease time to wound closure of skin donor sites, and it did not show a difference in reported pain levels.

  3. Cooperative communication within and between single nanocatalysts

    NASA Astrophysics Data System (ADS)

    Zou, Ningmu; Zhou, Xiaochun; Chen, Guanqun; Andoy, Nesha May; Jung, Won; Liu, Guokun; Chen, Peng

    2018-06-01

    Enzymes often show catalytic allostery in which reactions occurring at different sites communicate cooperatively over distances of up to a few nanometres. Whether such effects can occur with non-biological nanocatalysts remains unclear, even though these nanocatalysts can undergo restructuring and molecules can diffuse over catalyst surfaces. Here we report that phenomenologically similar, but mechanistically distinct, cooperative effects indeed exist for nanocatalysts. Using spatiotemporally resolved single-molecule catalysis imaging, we find that catalytic reactions on a single Pd or Au nanocatalyst can communicate with each other, probably via hopping of positively charged holes on the catalyst surface, over 102 nanometres and with a temporal memory of 101 to 102 seconds, giving rise to positive cooperativity among its surface active sites. Similar communication is also observed between individual nanocatalysts, however it operates via a molecular diffusion mechanism involving negatively charged product molecules, and its communication distance is many micrometres. Generalization of these long-range intra- and interparticle catalytic communication mechanisms may introduce a novel conceptual framework for understanding nanoscale catalysis.

  4. Transcription initiation from the dihydrofolate reductase promoter is positioned by HIP1 binding at the initiation site.

    PubMed

    Means, A L; Farnham, P J

    1990-02-01

    We have identified a sequence element that specifies the position of transcription initiation for the dihydrofolate reductase gene. Unlike the functionally analogous TATA box that directs RNA polymerase II to initiate transcription 30 nucleotides downstream, the positioning element of the dihydrofolate reductase promoter is located directly at the site of transcription initiation. By using DNase I footprint analysis, we have shown that a protein binds to this initiator element. Transcription initiated at the dihydrofolate reductase initiator element when 28 nucleotides were inserted between it and all other upstream sequences, or when it was placed on either side of the DNA helix, suggesting that there is no strict spatial requirement between the initiator and an upstream element. Although neither a single Sp1-binding site nor a single initiator element was sufficient for transcriptional activity, the combination of one Sp1-binding site and the dihydrofolate reductase initiator element cloned into a plasmid vector resulted in transcription starting at the initiator element. We have also shown that the simian virus 40 late major initiation site has striking sequence homology to the dihydrofolate reductase initiation site and that the same, or a similar, protein binds to both sites. Examination of the sequences at other RNA polymerase II initiation sites suggests that we have identified an element that is important in the transcription of other housekeeping genes. We have thus named the protein that binds to the initiator element HIP1 (Housekeeping Initiator Protein 1).

  5. KH2PO4 single crystals activated with the Ti4+ ions in the form of TiO2-x × nH2O nanoparticles: Structural peculiarities, point defects, and dielectric properties

    NASA Astrophysics Data System (ADS)

    Kuz'micheva, Galina M.; Timaeva, Olesya I.; Kaurova, Irina A.; Svetogorov, Roman D.; Mühlbauer, Martin J.

    2018-03-01

    Potassium dihydrogen phosphate KH2PO4 (KDP) single crystals activated with Ti4+ ions in the form of TiO2-x × nH2O nanoparticles in the η-phase, synthesized by the sulfate method using TiOSO4 × xH2SO4 × yH2O, have been first grown by the temperature lowering method and cut from pyramidal (P) and prismatic (Pr) growth sectors. The first-performed neutron powder diffraction investigation of P and Pr samples cut from the KDP:Ti4+ crystal allowed us to reveal vacancies in the K and H sites for both samples, their number being larger in the Pr structure compared to the P one. Taking into account the deficiency of the K and H sites, full occupation of the O site, presence of Ti4+ ions in the structure, and the electroneutrality condition, a partial substitution of (PO4)3- anion by the (SO4)2- one, larger for the Pr sample, was observed. The real compositions of P and Pr samples, correlated with the cation-anion internuclear distances, were refined. The dielectric permittivity of the Pr sample was significantly lower than that of the P one; it decreases with decreasing K-O, P-O, and O...H distances and increasing deficiency of the K and H sites.

  6. The position of DNA cleavage by TALENs and cell synchronization influences the frequency of gene editing directed by single-stranded oligonucleotides.

    PubMed

    Rivera-Torres, Natalia; Strouse, Bryan; Bialk, Pawel; Niamat, Rohina A; Kmiec, Eric B

    2014-01-01

    With recent technological advances that enable DNA cleavage at specific sites in the human genome, it may now be possible to reverse inborn errors, thereby correcting a mutation, at levels that could have an impact in a clinical setting. We have been developing gene editing, using single-stranded DNA oligonucleotides (ssODNs), as a tool to direct site specific single base changes. Successful application of this technique has been demonstrated in many systems ranging from bacteria to human (ES and somatic) cells. While the frequency of gene editing can vary widely, it is often at a level that does not enable clinical application. As such, a number of stimulatory factors such as double-stranded breaks are known to elevate the frequency significantly. The majority of these results have been discovered using a validated HCT116 mammalian cell model system where credible genetic and biochemical readouts are available. Here, we couple TAL-Effector Nucleases (TALENs) that execute specific ds DNA breaks with ssODNs, designed specifically to repair a missense mutation, in an integrated single copy eGFP gene. We find that proximal cleavage, relative to the mutant base, is key for enabling high frequencies of editing. A directionality of correction is also observed with TALEN activity upstream from the target base being more effective in promoting gene editing than activity downstream. We also find that cells progressing through S phase are more amenable to combinatorial gene editing activity. Thus, we identify novel aspects of gene editing that will help in the design of more effective protocols for genome modification and gene therapy in natural genes.

  7. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction

    NASA Astrophysics Data System (ADS)

    Yang, Hong Bin; Hung, Sung-Fu; Liu, Song; Yuan, Kaidi; Miao, Shu; Zhang, Liping; Huang, Xiang; Wang, Hsin-Yi; Cai, Weizheng; Chen, Rong; Gao, Jiajian; Yang, Xiaofeng; Chen, Wei; Huang, Yanqiang; Chen, Hao Ming; Li, Chang Ming; Zhang, Tao; Liu, Bin

    2018-02-01

    Electrochemical reduction of CO2 to chemical fuel offers a promising strategy for managing the global carbon balance, but presents challenges for chemistry due to the lack of effective electrocatalyst. Here we report atomically dispersed nickel on nitrogenated graphene as an efficient and durable electrocatalyst for CO2 reduction. Based on operando X-ray absorption and photoelectron spectroscopy measurements, the monovalent Ni(i) atomic center with a d9 electronic configuration was identified as the catalytically active site. The single-Ni-atom catalyst exhibits high intrinsic CO2 reduction activity, reaching a specific current of 350 A gcatalyst-1 and turnover frequency of 14,800 h-1 at a mild overpotential of 0.61 V for CO conversion with 97% Faradaic efficiency. The catalyst maintained 98% of its initial activity after 100 h of continuous reaction at CO formation current densities as high as 22 mA cm-2.

  8. Na[superscript +] binding to meizothrombin desF1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papaconstantinou, M.E.; Gandhi, P.S.; Chen, Z.

    2009-06-10

    Meizothrombin is the physiologically active intermediate generated by a single cleavage of prothrombin at R320 to separate the A and B chains. Recent evidence has suggested that meizothrombin, like thrombin, is a Na{sup +}-activated enzyme. In this study we present the first X-ray crystal structure of human meizothrombin desF1 solved in the presence of the active site inhibitor PPACK at 2.1 {angstrom} resolution. The structure reveals a Na{sup +} binding site whose architecture is practically identical to that of human thrombin. Stopped-flow measurements of Na{sup +} binding to meizothrombin desF1 document a slow phase of fluorescence change with a kmore » obs decreasing hyperbolically with increasing [Na{sup +}], consistent with the existence of three conformations in equilibrium, E*, E and E:Na{sup +}, as for human thrombin. Evidence that meizothrombin exists in multiple conformations provides valuable new information for studies of the mechanism of prothrombin activation.« less

  9. Dialing in single-site reactivity of a supported calixarene-protected tetrairidium cluster catalyst† †Electronic supplementary information (ESI) available: Detailed characterization of Ir4 clusters, raw kinetic data, time scale analysis, experimental methods, and sample preparation. See DOI: 10.1039/c7sc00686a Click here for additional data file.

    PubMed Central

    Palermo, Andrew; Solovyov, Andrew; Ertler, Daniel

    2017-01-01

    A closed Ir4 carbonyl cluster, 1, comprising a tetrahedral metal frame and three sterically bulky tert-butyl-calix[4]arene(OPr)3(OCH2PPh2) (Ph = phenyl; Pr = propyl) ligands at the basal plane, was characterized with variable-temperature 13C NMR spectroscopy, which show the absence of scrambling of the CO ligands at temperatures up to 313 K. This demonstration of distinct sites for the CO ligands was found to extend to the reactivity and catalytic properties, as shown by selective decarbonylation in a reaction with trimethylamine N-oxide (TMAO) as an oxidant, which, reacting in the presence of ethylene, leads to the selective bonding of an ethyl ligand at the apical Ir site. These clusters were supported intact on porous silica and found to catalyze ethylene hydrogenation, and a comparison of the kinetics of the single-hydrogenation reaction and steady-state hydrogenation catalysis demonstrates a unique single-site catalyst—with each site having the same catalytic activity. Reaction orders in the catalytic ethylene hydrogenation reaction of approximately 1/2 and 0 for H2 and C2H4, respectively, nearly match those for conventional noble-metal catalysts. In contrast to oxidative decarbonylation, thermal desorption of CO from silica-supported cluster 1 occurred exclusively at the basal plane, giving rise to sites that do not react with ethylene and are catalytically inactive for ethylene hydrogenation. The evidence of distinctive sites on the cluster catalyst leads to a model that links to hydrogen-transfer catalysis on metals—involving some surface sites that bond to both hydrocarbon and hydrogen and are catalytically engaged (so-called “*” sites) and others, at the basal plane, which bond hydrogen and CO but not hydrocarbon and are reservoir sites (so-called “S” sites). PMID:28959418

  10. Structure and substrate recruitment of the human spindle checkpoint kinase Bub1.

    PubMed

    Kang, Jungseog; Yang, Maojun; Li, Bing; Qi, Wei; Zhang, Chao; Shokat, Kevan M; Tomchick, Diana R; Machius, Mischa; Yu, Hongtao

    2008-11-07

    In mitosis, the spindle checkpoint detects a single unattached kinetochore, inhibits the anaphase-promoting complex or cyclosome (APC/C), and prevents premature sister chromatid separation. The checkpoint kinase Bub1 contributes to checkpoint sensitivity through phosphorylating the APC/C activator, Cdc20, and inhibiting APC/C catalytically. We report here the crystal structure of the kinase domain of Bub1, revealing the requirement of an N-terminal extension for its kinase activity. Though the activation segment of Bub1 is ordered and has structural features indicative of active kinases, the C-terminal portion of this segment sterically restricts substrate access to the active site. Bub1 uses docking motifs, so-called KEN boxes, outside its kinase domain to recruit Cdc20, one of two known KEN box receptors. The KEN boxes of Bub1 are required for the spindle checkpoint in human cells. Therefore, its unusual active-site conformation and mode of substrate recruitment suggest that Bub1 has an exquisitely tuned specificity for Cdc20.

  11. A TNF receptor loop peptide mimic blocks RANK ligand–induced signaling, bone resorption, and bone loss

    PubMed Central

    Aoki, Kazuhiro; Saito, Hiroaki; Itzstein, Cecile; Ishiguro, Masaji; Shibata, Tatsuya; Blanque, Roland; Mian, Anower Hussain; Takahashi, Mariko; Suzuki, Yoshifumi; Yoshimatsu, Masako; Yamaguchi, Akira; Deprez, Pierre; Mollat, Patrick; Murali, Ramachandran; Ohya, Keiichi; Horne, William C.; Baron, Roland

    2006-01-01

    Activating receptor activator of NF-κB (RANK) and TNF receptor (TNFR) promote osteoclast differentiation. A critical ligand contact site on the TNFR is partly conserved in RANK. Surface plasmon resonance studies showed that a peptide (WP9QY) that mimics this TNFR contact site and inhibits TNF-α–induced activity bound to RANK ligand (RANKL). Changing a single residue predicted to play an important role in the interaction reduced the binding significantly. WP9QY, but not the altered control peptide, inhibited the RANKL-induced activation of RANK-dependent signaling in RAW 264.7 cells but had no effect on M-CSF–induced activation of some of the same signaling events. WP9QY but not the control peptide also prevented RANKL-induced bone resorption and osteoclastogenesis, even when TNFRs were absent or blocked. In vivo, where both RANKL and TNF-α promote osteoclastogenesis, osteoclast activity, and bone loss, WP9QY prevented the increased osteoclastogenesis and bone loss induced in mice by ovariectomy or low dietary calcium, in the latter case in both wild-type and TNFR double-knockout mice. These results suggest that a peptide that mimics a TNFR ligand contact site blocks bone resorption by interfering with recruitment and activation of osteoclasts by both RANKL and TNF. PMID:16680194

  12. Selective aliphatic carbon-hydrogen bond activation of protected alcohol substrates by cytochrome P450 enzymes.

    PubMed

    Bell, Stephen G; Spence, Justin T J; Liu, Shenglan; George, Jonathan H; Wong, Luet-Lok

    2014-04-21

    Protected cyclohexanol and cyclohex-2-enol substrates, containing benzyl ether and benzoate ester moieties, were designed to fit into the active site of the Tyr96Ala mutant of cytochrome P450cam. The protected cyclohexanol substrates were efficiently and selectively hydroxylated by the mutant enzyme at the trans C-H bond of C-4 on the cyclohexyl ring. The selectivity of oxidation of the benzoate ester protected cyclohexanol could be altered by making alternative amino acid substitutions in the P450cam active site. The addition of the double bond in the cyclohexyl ring of the benzoate ester protected cyclohex-2-enol has a debilitative effect on the activity of the Tyr96Ala mutant with this substrate. However, the Phe87Ala/Tyr96Phe double mutant, which introduces space at a different location in the active site than the Tyr96Ala mutant, was able to efficiently hydroxylate the C-H bonds of 1-cyclohex-2-enyl benzoate at the allylic C-4 position. Mutations at Phe87 improved the selectivity of the oxidation of 1-phenyl-1-cyclohexylethylene to trans-4-phenyl-ethenylcyclohexanol (92%) when compared to single mutants at Tyr96 of P450cam.

  13. A full-potential approach to the relativistic single-site Green's function

    DOE PAGES

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus; ...

    2016-07-07

    One major purpose of studying the single-site scattering problem is to obtain the scattering matrices and differential equation solutions indispensable to multiple scattering theory (MST) calculations. On the other hand, the single-site scattering itself is also appealing because it reveals the physical environment experienced by electrons around the scattering center. In this study, we demonstrate a new formalism to calculate the relativistic full-potential single-site Green's function. We implement this method to calculate the single-site density of states and electron charge densities. Lastly, the code is rigorously tested and with the help of Krein's theorem, the relativistic effects and full potentialmore » effects in group V elements and noble metals are thoroughly investigated.« less

  14. Enhanced Oxidative Bioremediation of cis-Dichloroethene (cis-DCE) and Vinyl Chloride (VC) using Electron Shuttles

    DTIC Science & Technology

    2010-02-01

    Analyses on a single grain of soil or a single crystal of a precipitate were accomplished using an EMP. Not only can analyses be made on particles as small...24Fe+32 (OH)12[ CO3 ] 54.5% Fe, 41.6% O, 2.0% C 6Fe+2 + CO3 -2 + 12H2O → [Fe+24Fe+32 (OH)12][ CO3 ] (s) + 12H+ + 2e- Mixed ferrous/ferric iron...400 mV DCE: 2,000 Sulfate: ញ mg/L VC: 63 µg/L Seneca Army Depot Activity (Ash Landfill site), New York October-06 Single Double- Wide

  15. Recognition and Detoxification of the Insecticide DDT by Drosophila melanogaster Glutathione S-Transferase D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, Wai Yee; Feil, Susanne C.; Ng, Hooi Ling

    2010-06-14

    GSTD1 is one of several insect glutathione S-transferases capable of metabolizing the insecticide DDT. Here we use crystallography and NMR to elucidate the binding of DDT and glutathione to GSTD1. The crystal structure of Drosophila melanogaster GSTD1 has been determined to 1.1 {angstrom} resolution, which reveals that the enzyme adopts the canonical GST fold but with a partially occluded active site caused by the packing of a C-terminal helix against one wall of the binding site for substrates. This helix would need to unwind or be displaced to enable catalysis. When the C-terminal helix is removed from the model ofmore » the crystal structure, DDT can be computationally docked into the active site in an orientation favoring catalysis. Two-dimensional {sup 1}H,{sup 15}N heteronuclear single-quantum coherence NMR experiments of GSTD1 indicate that conformational changes occur upon glutathione and DDT binding and the residues that broaden upon DDT binding support the predicted binding site. We also show that the ancestral GSTD1 is likely to have possessed DDT dehydrochlorinase activity because both GSTD1 from D. melanogaster and its sibling species, Drosophila simulans, have this activity.« less

  16. Microtubule-stabilizing properties of the avocado-derived toxins (+)-(R)-persin and (+)-(R)-tetrahydropersin in cancer cells and activity of related synthetic analogs.

    PubMed

    Field, Jessica J; Kanakkanthara, Arun; Brooke, Darby G; Sinha, Saptarshi; Pillai, Sushila D; Denny, William A; Butt, Alison J; Miller, John H

    2016-06-01

    The avocado toxin (+)-R-persin (persin) is active at low micromolar concentrations against breast cancer cells and synergizes with the estrogen receptor modulator 4-hydroxytamoxifen. Previous studies in the estrogen receptor-positive breast cancer cell line MCF-7 indicate that persin acts as a microtubule-stabilizing agent. In the present study, we further characterize the properties of persin and several new synthetic analogues in human ovarian cancer cells. Persin and tetrahydropersin cause G2M cell cycle arrest and increase intracellular microtubule polymerization. One analog (4-nitrophenyl)-deshydroxypersin prevents cell proliferation and blocks cells in G1 of the cell cycle rather than G2M, suggesting an additional mode of action of these compounds independent of microtubules. Persin can synergize with other microtubule-stabilizing agents, and is active against cancer cells that overexpress the P-glycoprotein drug efflux pump. Evidence from Flutax-1 competition experiments suggests that while the persin binding site on β-tubulin overlaps the classical taxoid site where paclitaxel and epothilone bind, persin retains activity in cell lines with single amino acid mutations that affect these other taxoid site ligands. This implies the existence of a unique binding location for persin at the taxoid site.

  17. A contact photo-cross-linking investigation of the active site of the 8-17 deoxyribozyme.

    PubMed

    Liu, Yong; Sen, Dipankar

    2008-09-12

    The small RNA-cleaving 8-17 deoxyribozyme (DNAzyme) has been the subject of extensive mechanistic and structural investigation, including a number of recent single-molecule studies of its global folding. Little detailed insight exists, however, into this DNAzyme's active site; for instance, the identity of specific nucleotides that are proximal to or in contact with the scissile site in the substrate. Here, we report a systematic replacement of a number of bases within the magnesium-folded DNAzyme-substrate complex with thio- and halogen-substituted base analogues, which were then photochemically activated to generate contact cross-links within the complex. Mapping of the cross-links revealed a striking pattern of DNAzyme-substrate cross-links but an absence of significant intra-DNAzyme cross-links. Notably, the two nucleotides directly flanking the scissile phosphodiester cross-linked strongly with functionally important elements within the DNAzyme, the thymine of a G.T wobble base pair, a WCGR bulge loop, and a terminal AGC loop. Mutation of the wobble base pair to a G-C pair led to a significant folding instability of the DNAzyme-substrate complex. The cross-linking patterns obtained were used to generate a model for the DNAzyme's active site that had the substrate's scissile phosphodiester sandwiched between the DNAzyme's wobble thymine and its AGC and WCGR loops.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changela, Anita; DiGate, Russell J.; Mondragon, Alfonso

    Escherichia coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5{prime} phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an eight-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is boundmore » along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding.« less

  19. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Cheng, Niancai; Stambula, Samantha; Wang, Da; Banis, Mohammad Norouzi; Liu, Jian; Riese, Adam; Xiao, Biwei; Li, Ruying; Sham, Tsun-Kong; Liu, Li-Min; Botton, Gianluigi A.; Sun, Xueliang

    2016-11-01

    Platinum-based catalysts have been considered the most effective electrocatalysts for the hydrogen evolution reaction in water splitting. However, platinum utilization in these electrocatalysts is extremely low, as the active sites are only located on the surface of the catalyst particles. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their efficiency by utilizing nearly all platinum atoms. Here we report on a practical synthesis method to produce isolated single platinum atoms and clusters using the atomic layer deposition technique. The single platinum atom catalysts are investigated for the hydrogen evolution reaction, where they exhibit significantly enhanced catalytic activity (up to 37 times) and high stability in comparison with the state-of-the-art commercial platinum/carbon catalysts. The X-ray absorption fine structure and density functional theory analyses indicate that the partially unoccupied density of states of the platinum atoms' 5d orbitals on the nitrogen-doped graphene are responsible for the excellent performance.

  20. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction

    PubMed Central

    Cheng, Niancai; Stambula, Samantha; Wang, Da; Banis, Mohammad Norouzi; Liu, Jian; Riese, Adam; Xiao, Biwei; Li, Ruying; Sham, Tsun-Kong; Liu, Li-Min; Botton, Gianluigi A.; Sun, Xueliang

    2016-01-01

    Platinum-based catalysts have been considered the most effective electrocatalysts for the hydrogen evolution reaction in water splitting. However, platinum utilization in these electrocatalysts is extremely low, as the active sites are only located on the surface of the catalyst particles. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their efficiency by utilizing nearly all platinum atoms. Here we report on a practical synthesis method to produce isolated single platinum atoms and clusters using the atomic layer deposition technique. The single platinum atom catalysts are investigated for the hydrogen evolution reaction, where they exhibit significantly enhanced catalytic activity (up to 37 times) and high stability in comparison with the state-of-the-art commercial platinum/carbon catalysts. The X-ray absorption fine structure and density functional theory analyses indicate that the partially unoccupied density of states of the platinum atoms' 5d orbitals on the nitrogen-doped graphene are responsible for the excellent performance. PMID:27901129

  1. Different enzyme kinetic models.

    PubMed

    Seibert, Eleanore; Tracy, Timothy S

    2014-01-01

    As described in Chapter 2 , a large number of enzymatic reactions can be adequately described by Michaelis-Menten kinetics. The Michaelis-Menten equation represents a rectangular hyperbola, with a y-asymptote at the V max value. In many cases, more complex kinetic models are required to explain the observed data. Atypical kinetic profiles are believed to arise from the simultaneous binding of multiple molecules within the active site of the enzyme (Tracy and Hummel, Drug Metab Rev 36:231-242, 2004). Several cytochromes P450 have large active sites that enable binding of multiple molecules (Wester et al. J Biol Chem 279:35630-35637, 2004; Yano et al. J Biol Chem 279:38091-38094, 2004). Thus, atypical kinetics are not uncommon in in vitro drug metabolism studies. This chapter covers enzyme kinetic reactions in which a single enzyme has multiple binding sites for substrates and/or inhibitors as well as reactions catalyzed by multiple enzymes.

  2. A DNA enzyme with N-glycosylase activity

    NASA Technical Reports Server (NTRS)

    Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.

    2000-01-01

    In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.

  3. Robotic single-site pelvic lymphadenectomy.

    PubMed

    Tateo, Saverio; Nozza, Arrigo; Del Pezzo, Chiara; Mereu, Liliana

    2014-09-01

    To examine the feasibility of performing pelvic lymphadenectomy with robotic single site approach. Recent papers described the feasibility of robotic-single site hysterectomy [1-3] for benign and malign pathologies but only with the development of new single site 5mm instruments as the bipolar forceps, robotic single site platform can be safely utilized also for lymphadenectomy. A 65 year-old, multiparous patient with a body mass index of 22.5 and diagnosed with well differentiated adenocarcinoma of the endometrium underwent a robotic single-site peritoneal washing, total hysterectomy, bilateral adnexectomy and pelvic lymphadenectomy. The procedure was performed using the da Vinci Si Surgical System (Intuitive Surgical, Sunnyvale, CA) through a single 2,5 cm umbilical incision, with a multi-channel system and two single site robotic 5mm instruments. A 3-dimensional, HD 8.5mm endoscope and a 5mm accessory instrument were also utilized. Type I lymphonodes dissection for external iliac and obturator regions was performed [4]. Total operative time was 210 min; incision, trocar placement and docking time occurring in 12 min. Total console time was 183 min, estimated blood loss was 50 ml, no intra-operative or post-operative complications occurred. Hospital discharge occurred on post operative day 2 and total number of lymphnodes removed was 33. Difficulties in term of instrument's clashing and awkward motions have been encountered. Robotic single-site pelvic lymphadenectomy using bipolar forceps and monopolar hook is feasible. New developments are needed to improve surgical ergonomics and additional studies should be performed to explore possible benefits of this procedure. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Heptyl prodigiosin, a bacterial metabolite, is antimalarial in vivo and non-mutagenic in vitro.

    PubMed

    Lazaro, J Enrico H; Nitcheu, Josiane; Predicala, Rey Z; Mangalindan, Gina C; Nesslany, Fabrice; Marzin, Daniel; Concepcion, Gisela P; Diquet, Bertrand

    2002-12-01

    Heptyl prodigiosin was purified from a culture of alpha-proteobacteria isolated from a marine tunicate collected in Zamboanga, Philippines, as part of a program to screen natural products for antiparasitic activity. An in vitro antimalarial activity similar to that of quinine was found against the chloroquine-sensitive strain Plasmodium falciparum 3D7. The in vitro antimalarial activity was about 20 times the in vitro cytotoxic activity against L5178Y mouse lymphocytes. A single subcutaneous administration of 5 and 20 mg/kg significantly extended survival of P. berghei ANKA strain-infected mice but also caused sclerotic lesions at the site of injection. A single administration by gavage of 50 mg/kg did not increase survival time. The compound was not found to be mutagenic using in vitro micromethods for the Ames Salmonella typhimurium assay and the micronucleus assay using L5178Y mouse lymphoma cells.

  5. Atomically Dispersed Pd–O Species on CeO 2(111) as Highly Active Sites for Low-Temperature CO Oxidation

    DOE PAGES

    Spezzati, Giulia; Su, Yaqiong; Hofmann, Jan P.; ...

    2017-09-07

    Ceria-supported Pd is a promising heterogeneous catalyst for CO oxidation relevant to environmental cleanup reactions. Pd loaded onto a nanorod form of ceria exposing predominantly (111) facets is already active at 50 °C. Here we report a combination of CO-FTIR spectroscopy and theoretical calculations that allows assigning different forms of Pd on the CeO 2(111) surface during reaction conditions. Single Pd atoms stabilized in the form of PdO and PdO 2 in a CO/O 2 atmosphere participate in a catalytic cycle involving very low activation barriers for CO oxidation. In conclusion, the presence of single Pd atoms on the Pd/CeOmore » 2-nanorod, corroborated by aberration-corrected TEM and CO-FTIR spectroscopy, is considered pivotal to its high CO oxidation activity.« less

  6. Atomically Dispersed Pd–O Species on CeO 2(111) as Highly Active Sites for Low-Temperature CO Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spezzati, Giulia; Su, Yaqiong; Hofmann, Jan P.

    Ceria-supported Pd is a promising heterogeneous catalyst for CO oxidation relevant to environmental cleanup reactions. Pd loaded onto a nanorod form of ceria exposing predominantly (111) facets is already active at 50 °C. Here we report a combination of CO-FTIR spectroscopy and theoretical calculations that allows assigning different forms of Pd on the CeO 2(111) surface during reaction conditions. Single Pd atoms stabilized in the form of PdO and PdO 2 in a CO/O 2 atmosphere participate in a catalytic cycle involving very low activation barriers for CO oxidation. In conclusion, the presence of single Pd atoms on the Pd/CeOmore » 2-nanorod, corroborated by aberration-corrected TEM and CO-FTIR spectroscopy, is considered pivotal to its high CO oxidation activity.« less

  7. Artificial Metalloproteins Containing Co 4O 4Cubane Active Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olshansky, Lisa; Huerta-Lavorie, Raul; Nguyen, Andy I.

    Artificial metalloproteins (ArMs) containing Co 4O 4 cubane active sites were constructed via biotin-streptavidin technology. Stabilized by hydrogen bonds (H-bonds), terminal and cofacial Co III-OH 2 moieties are observed crystallographically in a series of immobilized cubane sites. Solution electrochemistry provided correlations of oxidation potential and pH. For variants containing Ser and Phe adjacent to the metallocofactor, 1e -/1H + chemistry predominates until pH 8, above which the oxidation becomes pH-independent. Installation of Tyr proximal to the Co 4O 4 active site provided a single H-bond to one of a set of cofacial Co III-OH 2 groups. With this variant, multi-emore » - /multi-H + chemistry is observed, along with a change in mechanism at pH 9.5 that is consistent with Tyr deprotonation. Finally, with structural similarities to both the oxygen-evolving complex of photosystem II (H-bonded Tyr) and to thin film water oxidation catalysts (Co 4O 4 core), these findings bridge synthetic and biological systems for water oxidation, highlighting the importance of secondary sphere interactions in mediating multi-e - /multi-H + reactivity.« less

  8. Mutational analysis of the antigenomic trans-acting delta ribozyme: the alterations of the middle nucleotides located on the P1 stem.

    PubMed Central

    Ananvoranich, S; Lafontaine, D A; Perreault, J P

    1999-01-01

    Our previous report on delta ribozyme cleavage using a trans -acting antigenomic delta ribozyme and a collection of short substrates showed that the middle nucleotides of the P1 stem, the substrate binding site, are essential for the cleavage activity. Here we have further investigated the effect of alterations in the P1 stem on the kinetic and thermodynamic parameters of delta ribozyme cleavage using various ribozyme variants carrying single base mutations at putative positions reported. The kinetic and thermodynamic values obtained in mutational studies of the two middle nucleotides of the P1 stem suggest that the binding and active sites of the delta ribozyme are uniquely formed. Firstly, the substrate and the ribozyme are engaged in the formation of a helix, known as the P1 stem, which may contain a weak hydrogen bond(s) or a bulge. Secondly, a tertiary interaction involving the base moieties in the middle of the P1 stem likely plays a role in defining the chemical environment. As a con-sequence, the active site might form simultaneously or subsequently to the binding site during later steps of the pathway. PMID:10037808

  9. Modeling Ca2+ Feedback on a Single Inositol 1,4,5-Trisphosphate Receptor and Its Modulation by Ca2+ Buffers

    PubMed Central

    Shuai, Jianwei; Pearson, John E.; Parker, Ian

    2008-01-01

    The inositol 1,4,5-trisphosphate receptor/channel (IP3R) is a major regulator of intracellular Ca2+ signaling, and liberates Ca2+ ions from the endoplasmic reticulum in response to binding at cytosolic sites for both IP3 and Ca2+. Although the steady-state gating properties of the IP3R have been extensively studied and modeled under conditions of fixed [IP3] and [Ca2+], little is known about how Ca2+ flux through a channel may modulate the gating of that same channel by feedback onto activating and inhibitory Ca2+ binding sites. We thus simulated the dynamics of Ca2+ self-feedback on monomeric and tetrameric IP3R models. A major conclusion is that self-activation depends crucially on stationary cytosolic Ca2+ buffers that slow the collapse of the local [Ca2+] microdomain after closure. This promotes burst-like reopenings by the rebinding of Ca2+ to the activating site; whereas inhibitory actions are substantially independent of stationary buffers but are strongly dependent on the location of the inhibitory Ca2+ binding site on the IP3R in relation to the channel pore. PMID:18641077

  10. Artificial Metalloproteins Containing Co 4O 4Cubane Active Sites

    DOE PAGES

    Olshansky, Lisa; Huerta-Lavorie, Raul; Nguyen, Andy I.; ...

    2018-02-05

    Artificial metalloproteins (ArMs) containing Co 4O 4 cubane active sites were constructed via biotin-streptavidin technology. Stabilized by hydrogen bonds (H-bonds), terminal and cofacial Co III-OH 2 moieties are observed crystallographically in a series of immobilized cubane sites. Solution electrochemistry provided correlations of oxidation potential and pH. For variants containing Ser and Phe adjacent to the metallocofactor, 1e -/1H + chemistry predominates until pH 8, above which the oxidation becomes pH-independent. Installation of Tyr proximal to the Co 4O 4 active site provided a single H-bond to one of a set of cofacial Co III-OH 2 groups. With this variant, multi-emore » - /multi-H + chemistry is observed, along with a change in mechanism at pH 9.5 that is consistent with Tyr deprotonation. Finally, with structural similarities to both the oxygen-evolving complex of photosystem II (H-bonded Tyr) and to thin film water oxidation catalysts (Co 4O 4 core), these findings bridge synthetic and biological systems for water oxidation, highlighting the importance of secondary sphere interactions in mediating multi-e - /multi-H + reactivity.« less

  11. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu

    To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that ismore » determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.« less

  12. Schedules, technical status, and program activities in the development of a single family solar space heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of three quarterly reports are given covering the development of two prototype solar heating systems consisting of the following subsystems: collector, storage, control, transport, and site data acquisition. The two systems are being installed at York, Pennsylvania, and Manchester, New Hampshire.

  13. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes

    PubMed Central

    Ma, Enbo; Harrington, Lucas B.; O’Connell, Mitchell R.; Zhou, Kaihong; Doudna, Jennifer A.

    2015-01-01

    Summary Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide-RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. PMID:26545076

  14. Active RNAP pre-initiation sites are highly mutated by cytidine deaminases in yeast, with AID targeting small RNA genes

    PubMed Central

    Taylor, Benjamin JM; Wu, Yee Ling; Rada, Cristina

    2014-01-01

    Cytidine deaminases are single stranded DNA mutators diversifying antibodies and restricting viral infection. Improper access to the genome leads to translocations and mutations in B cells and contributes to the mutation landscape in cancer, such as kataegis. It remains unclear how deaminases access double stranded genomes and whether off-target mutations favor certain loci, although transcription and opportunistic access during DNA repair are thought to play a role. In yeast, AID and the catalytic domain of APOBEC3G preferentially mutate transcriptionally active genes within narrow regions, 110 base pairs in width, fixed at RNA polymerase initiation sites. Unlike APOBEC3G, AID shows enhanced mutational preference for small RNA genes (tRNAs, snoRNAs and snRNAs) suggesting a putative role for RNA in its recruitment. We uncover the high affinity of the deaminases for the single stranded DNA exposed by initiating RNA polymerases (a DNA configuration reproduced at stalled polymerases) without a requirement for specific cofactors. DOI: http://dx.doi.org/10.7554/eLife.03553.001 PMID:25237741

  15. RNA polymerases react differently at d(ApG) and d(GpG) adducts in DNA modified by cis-diamminedichloroplatinum(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corda, Y.; Job, D.; Anin, M.F.

    1992-02-25

    Two duplexes (20-mers) were constructed containing either a single cis-(Pt(NH{sub 3}){sub 2}(d(GpG))) or cis-(Pt(NH{sub 3}){sub 2}(d(ApG))) intrastrand cross-link, the major DNA adducts of the antitumor drug cis-diamminedichloroplatinum(II). These synthetic duplexes were multimerized and the resultant polymers used as templates in single-step addition reactions of condensation of a single nucleoside triphosphate substrate to a dinucleotide primer (abortive elongation reaction) catalyzed by prokaryotic or eukaryotic RNA polymerases. Primer-substrate combinations were selected so as to direct trinucleotide product formation within the platinated bases of the templates. Transcription experiments established that cis-DDP-DNA adducts formed at d(ApG) or d(GpG) sites are not an absolute blockmore » to formation of a single phosphodiester bond by either Escherichia coli RNA polymerase or wheat germ RNA polymerase II. Furthermore, the kinetic data indicate that single-step addition reactions are much more impeded at the platinated d(GpG) than at the platinated d(ApG) site and that the mechanisms of inhibition of RNA polymerase activity are different at the two platinated sites. In particular, binding affinity between E. coli RNA polymerase and the d(GpG)-containing platinated template is lowered, as the apparent K{sub m} of enzyme for the platinated polymer is increased by a factor of 4-5. These results are discussed in reaction to the distortions induced in DNA by the two adducts.« less

  16. Computational design of variants for cephalosporin C acylase from Pseudomonas strain N176 with improved stability and activity.

    PubMed

    Tian, Ye; Huang, Xiaoqiang; Li, Qing; Zhu, Yushan

    2017-01-01

    In this report, redesigning cephalosporin C acylase from the Pseudomonas strain N176 revealed that the loss of stability owing to the introduced mutations at the active site can be recovered by repacking the nearby hydrophobic core regions. Starting from a quadruple mutant M31βF/H57βS/V68βA/H70βS, whose decrease in stability is largely owing to the mutation V68βA at the active site, we employed a computational enzyme design strategy that integrated design both at hydrophobic core regions for stability enhancement and at the active site for activity improvement. Single-point mutations L154βF, Y167βF, L180βF and their combinations L154βF/L180βF and L154βF/Y167βF/L180βF were found to display improved stability and activity. The two-point mutant L154βF/L180βF increased the protein melting temperature (T m ) by 11.7 °C and the catalytic efficiency V max /K m by 57 % compared with the values of the starting quadruple mutant. The catalytic efficiency of the resulting sixfold mutant M31βF/H57βS/V68βA/H70βS/L154βF/L180βF is recovered to become comparable to that of the triple mutant M31βF/H57βS/H70βS, but with a higher T m . Further experiments showed that single-point mutations L154βF, L180βF, and their combination contribute no stability enhancement to the triple mutant M31βF/H57βS/H70βS. These results verify that the lost stability because of mutation V68βA at the active site was recovered by introducing mutations L154βF and L180βF at hydrophobic core regions. Importantly, mutation V68βA in the six-residue mutant provides more space to accommodate the bulky side chain of cephalosporin C, which could help in designing cephalosporin C acylase mutants with higher activities and the practical one-step enzymatic route to prepare 7-aminocephalosporanic acid at industrial-scale levels.

  17. Robotic single-access splenectomy using the Da Vinci Single-Site® platform: a case report.

    PubMed

    Corcione, Francesco; Bracale, Umberto; Pirozzi, Felice; Cuccurullo, Diego; Angelini, Pier Luigi

    2014-03-01

    Single-access laparoscopic splenectomy can offer patients some advantages. It has many difficulties, such as instrument clashing, lack of triangulation, odd angles and lack of space. The Da Vinci Single-Site® robotic surgery platform could decrease these difficulties. We present a case of single-access robotic splenectomy using this device. A 37 year-old female with idiopathic thrombocytopenic purpura was operated on with a single-site approach, using the Da Vinci Single-Site robotic surgery device. The procedure was successfully completed in 140 min. No intraoperative and postoperative complications occurred. The patient was discharged from hospital on day 3. Single-access robotic splenectomy seems to be feasible and safe using the new robotic single-access platform, which seems to overcome certain limits of previous robotic or conventional single-access laparoscopy. We think that additional studies should also be performed to explore the real cost-effectiveness of the platform. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Single-Site Laparoscopic Surgery for Inflammatory Bowel Disease

    PubMed Central

    Bedros, Nicole; Hakiman, Hekmat; Araghizadeh, Farshid Y.

    2014-01-01

    Background and Objectives: Single-site laparoscopic colorectal surgery has been firmly established; however, few reports addressing this technique in the inflammatory bowel disease population exist. Methods: We conducted a case-matched retrospective review of 20 patients who underwent single-site laparoscopic procedures for inflammatory bowel disease compared with 20 matched patients undergoing multiport laparoscopic procedures. Data regarding these patients were tabulated in the following categories: demographic characteristics, operative parameters, and perioperative outcomes. Results: A wide range of cases were completed: 9 ileocolic resections, 7 cases of proctocolectomy with end ileostomy or ileal pouch anal anastomosis, 2 cases of proctectomy with ileal pouch anal anastomosis, and 2 total abdominal colectomies with end ileostomy were all matched to equivalent multiport laparoscopic cases. No single-incision cases were converted to multiport laparoscopy, and 2 single-incision cases (10%) were converted to an open approach. For single-incision cases, the mean length of stay was 7.7 days, the mean time to oral intake was 3.3 days, and the mean period of intravenous analgesic use was 5.0 days. There were no statistically significant differences between single-site and multiport cases. Conclusions: Single-site laparoscopic surgery is technically feasible in inflammatory bowel disease. The length of stay and period of intravenous analgesic use (in days) appear to be higher than those in comparable series examining outcomes of single-site laparoscopic colorectal surgery, and the outcomes are comparable with those of multiport laparoscopy. This may be because of the nature of inflammatory bowel disease, limiting the benefits of a single-site approach in this population. PMID:24960490

  19. What regulates the catalytic activities in AGE catalysis? An answer from quantum mechanics/molecular mechanics simulations.

    PubMed

    Zhang, Yulai; Zhang, Hongxing; Zheng, Qingchuan

    2017-12-06

    The AGE superfamily (AGEs) is made up of kinds of isomerase which are very important both physiologically and industrially. One of the most intriguing aspects of AGEs has to do with the mechanism that regulates their activities in single conserved active pocket. In order to clarify the relationship among single conserved active pocket and two activities in AGEs, results for the epimerization activity catalyzed by RaCE and the isomerization activity catalyzed by SeYihS were obtained by using QM/MM umbrella sampling simulations and 2D-FES calculations. Our results show that both of them have similar enzyme-substrate combination mode for inner pyranose ring in single conserved active pocket even though they have different substrate specificity. This means that the pathways of ring opening catalyzed by them are similar. However, one non-conserved residue (Leu183 in RaCE, Met175 in SeYihS) in the active site, which has different steric hindrance, causes a small but effective change in the direction of ring opening in stage 1. And then this change will induce a fundamentally different catalytic activity for RaCE and SeYihS in stage 2. Our results give a novel viewpoint about the regulatory mechanism between CE and YihS in AGEs, and may be helpful for further experiments of rational enzyme design based on the (α/α) 6 -barrel basic scaffold.

  20. Robotic Single-Site Surgery for Female-to-Male Transsexuals: Preliminary Experience

    PubMed Central

    Bogliolo, Stefano; Cassani, Chiara; Babilonti, Luciana; Gardella, Barbara; Zanellini, Francesca; Santamaria, Valentina; Nappi, Rossella Elena; Spinillo, Arsenio

    2014-01-01

    Hysterectomy with bilateral salpingo-oophorectomy is a part of gender reassignment surgery for the treatment of female-to-male transsexualism. Over the last years many efforts were made in order to reduce invasiveness of laparoscopic and robotic surgery such as the introduction of single-site approach. We report our preliminary experience on single-site robotic hysterectomy for cross-sex reassignment surgery. Our data suggest that single-site robotic hysterectomy is feasible and safe in female-to-male transsexualism with some benefits in terms of postoperative pain and aesthetic results. PMID:24982976

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, C.A., Westinghouse Hanford

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  2. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    PubMed Central

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D.

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1–2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855

  3. Characterization of the active site properties of CYP4F12.

    PubMed

    Eksterowicz, John; Rock, Dan A; Rock, Brooke M; Wienkers, Larry C; Foti, Robert S

    2014-10-01

    Cytochrome P450 4F12 is a drug-metabolizing enzyme that is primarily expressed in the liver, kidney, colon, small intestine, and heart. The properties of CYP4F12 that may impart an increased catalytic selectivity (decreased promiscuity) were explored through in vitro metabolite elucidation, kinetic isotope effect experiments, and computational modeling of the CYP4F12 active site. By using astemizole as a probe substrate for CYP4F12 and CYP3A4, it was observed that although CYP4F12 favored astemizole O-demethylation as the primary route of metabolism, CYP3A4 was capable of metabolizing astemizole at multiple sites on the molecule. Deuteration of astemizole at the site of O-demethylation resulted in an isotope effect of 7.1 as well as an 8.3-fold decrease in the rate of clearance for astemizole by CYP4F12. Conversely, although an isotope effect of 3.8 was observed for the formation of the O-desmethyl metabolite when deuterated astemizole was metabolized by CYP3A4, there was no decrease in the clearance of astemizole. Development of a homology model of CYP4F12 based on the crystal structure of cytochrome P450 BM3 predicted an active site volume for CYP4F12 that was approximately 76% of the active site volume of CYP3A4. As predicted, multiple favorable binding orientations were available for astemizole docked into the active site of CYP3A4, but only a single binding orientation with the site of O-demethylation oriented toward the heme was identified for CYP4F12. Overall, it appears that although CYP4F12 may be capable of binding similar ligands to other cytochrome P450 enzymes such as CYP3A4, the ability to achieve catalytically favorable orientations may be inherently more difficult because of the increased steric constraints of the CYP4F12 active site. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hata, Kuniki; Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195; Urushibara, Ayumi

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield ofmore » DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.« less

  5. Experimental and theoretical study using DFT method for the competitive adsorption of two cationic dyes from wastewaters

    NASA Astrophysics Data System (ADS)

    Regti, Abdelmajid; Ayouchia, Hicham Ben El; Laamari, My Rachid; Stiriba, Salah Eddine; Anane, Hafid; Haddad, Mohammadine El

    2016-12-01

    The adsorption of cationic dyes, Basic Yellow (BY28) and Methylene Blue (MB) on a new activated carbon from medlar species were studied in both single and binary system. Some experimental parameters, namely, pH, amount of adsorbent and contact time are studied. Quantum chemical results indicate that the adsorption efficiency was directly related to the dye electrophilicity power. Some theorical parameters were calculated and proved that MB is more electrophilic than BY28, than greatest interaction with surface sites. Kinetic study showed that the adsorption follows the pseudo-second-order model and Freundlich was the best model to describe the phenomenon in the single and binary system. According to the local reactivity results using Parr functions, the sulphur and nitrogen atoms will be the main adsorption sites.

  6. The ribosome uses two active mechanisms to unwind messenger RNA during translation.

    PubMed

    Qu, Xiaohui; Wen, Jin-Der; Lancaster, Laura; Noller, Harry F; Bustamante, Carlos; Tinoco, Ignacio

    2011-07-06

    The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs. ©2011 Macmillan Publishers Limited. All rights reserved

  7. O-GlcNAc transferase regulates transcriptional activity of human Oct4.

    PubMed

    Constable, Sandii; Lim, Jae-Min; Vaidyanathan, Krithika; Wells, Lance

    2017-10-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a single sugar modification found on many different classes of nuclear and cytoplasmic proteins. Addition of this modification, by the enzyme O-linked N-acetylglucosamine transferase (OGT), is dynamic and inducible. One major class of proteins modified by O-GlcNAc is transcription factors. O-GlcNAc regulates transcription factor properties through a variety of different mechanisms including localization, stability and transcriptional activation. Maintenance of embryonic stem (ES) cell pluripotency requires tight regulation of several key transcription factors, many of which are modified by O-GlcNAc. Octamer-binding protein 4 (Oct4) is one of the key transcription factors required for pluripotency of ES cells and more recently, the generation of induced pluripotent stem (iPS) cells. The action of Oct4 is modulated by the addition of several post-translational modifications, including O-GlcNAc. Previous studies in mice found a single site of O-GlcNAc addition responsible for transcriptional regulation. This study was designed to determine if this mechanism is conserved in humans. We mapped 10 novel sites of O-GlcNAc attachment on human Oct4, and confirmed a role for OGT in transcriptional activation of Oct4 at a site distinct from that found in mouse that allows distinction between different Oct4 target promoters. Additionally, we uncovered a potential new role for OGT that does not include its catalytic function. These results confirm that human Oct4 activity is being regulated by OGT by a mechanism that is distinct from mouse Oct4. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Site-Selection in Single-Molecule Junction for Highly Reproducible Molecular Electronics.

    PubMed

    Kaneko, Satoshi; Murai, Daigo; Marqués-González, Santiago; Nakamura, Hisao; Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Ikeda, Katsuyoshi; Tsukagoshi, Kazuhito; Kiguchi, Manabu

    2016-02-03

    Adsorption sites of molecules critically determine the electric/photonic properties and the stability of heterogeneous molecule-metal interfaces. Then, selectivity of adsorption site is essential for development of the fields including organic electronics, catalysis, and biology. However, due to current technical limitations, site-selectivity, i.e., precise determination of the molecular adsorption site, remains a major challenge because of difficulty in precise selection of meaningful one among the sites. We have succeeded the single site-selection at a single-molecule junction by performing newly developed hybrid technique: simultaneous characterization of surface enhanced Raman scattering (SERS) and current-voltage (I-V) measurements. The I-V response of 1,4-benzenedithiol junctions reveals the existence of three metastable states arising from different adsorption sites. Notably, correlated SERS measurements show selectivity toward one of the adsorption sites: "bridge sites". This site-selectivity represents an essential step toward the reliable integration of individual molecules on metallic surfaces. Furthermore, the hybrid spectro-electric technique reveals the dependence of the SERS intensity on the strength of the molecule-metal interaction, showing the interdependence between the optical and electronic properties in single-molecule junctions.

  9. Multifaceted catalytic hydrogenation of amides via diverse activation of a sterically confined bipyridine-ruthenium framework.

    PubMed

    Miura, Takashi; Naruto, Masayuki; Toda, Katsuaki; Shimomura, Taiki; Saito, Susumu

    2017-05-16

    Amides are ubiquitous and abundant in nature and our society, but are very stable and reluctant to salt-free, catalytic chemical transformations. Through the activation of a "sterically confined bipyridine-ruthenium (Ru) framework (molecularly well-designed site to confine adsorbed H 2 in)" of a precatalyst, catalytic hydrogenation of formamides through polyamide is achieved under a wide range of reaction conditions. Both C=O bond and C-N bond cleavage of a lactam became also possible using a single precatalyst. That is, catalyst diversity is induced by activation and stepwise multiple hydrogenation of a single precatalyst when the conditions are varied. The versatile catalysts have different structures and different resting states for multifaceted amide hydrogenation, but the common structure produced upon reaction with H 2 , which catalyzes hydrogenation, seems to be "H-Ru-N-H."

  10. Structure-function study on a de novo synthetic hydrophobic ion channel.

    PubMed Central

    Qi, Z; Sokabe, M; Donowaki, K; Ishida, H

    1999-01-01

    Ion conduction properties of a de novo synthesized channel, formed from cyclic octa-peptides consisting of four alternate L-alanine (Ala) and N'-acylated 3-aminobenzoic acid (Aba) moieties, were studied in bilayer membranes. The single-channel conductance was 9 pS in symmetrical 500 mM KCl. The channel favored permeation of cations over anions with a permeability ratio (PCl-/PK+) of 0.15. The selectivity sequence among monovalent cations based on permeability ratio (PX+/PK+) fell into an order: NH4+(1.4) > Cs+(1. 1) >/= K+(1.0) > Na+(0.4) >> Li+(0). The conductance-activity relationship of the channel in K+ solutions followed simple Michaelis-Menten kinetics with a half-maximal saturating activity of 8 mM and a maximal conductance of 9 pS. The permeability ratio PNa+/PK+ remained constant ( approximately 0.40) under biionic concentrations from 10 to 500 mM. These results suggests that the channel is a one-ion channel. The pore diameter probed by a set of organic cations was approximately 6 A. The single-channel current was blocked by Ca2+ in a dose-dependent manner that followed a single-site titration curve with a voltage-dependent dissociation constant of 0.6 mM at 100 mV. The electric distance of the binding site for Ca2+ was 0.07 from both entrances of the channel, indicating the presence of two symmetrical binding sites in each vicinity of the channel entrance. Correlations between conduction properties and structural aspects of the channel are discussed in terms of a three-barrier and two-binding-site (3B2S) model of Eyring rate theory. All available structural information supported an idea that the channel was formed from a tail-to-tail associated dimer of the molecule, the pore of which was lined with hydrophobic acyl chains. This is the first report to have made a systematic analysis of ion permeation through a hydrophobic pore. PMID:9929469

  11. F429 Regulation of Tunnels in Cytochrome P450 2B4: A Top Down Study of Multiple Molecular Dynamics Simulations

    PubMed Central

    Mancini, Giordano; Zazza, Costantino

    2015-01-01

    The root causes of the outcomes of the single-site mutation in enzymes remain by and large not well understood. This is the case of the F429H mutant of the cytochrome P450 (CYP) 2B4 enzyme where the substitution, on the proximal surface of the active site, of a conserved phenylalanine 429 residue with histidine seems to hamper the formation of the active species, Compound I (porphyrin cation radical-Fe(IV) = O, Cpd I) from the ferric hydroperoxo (Fe(III)OOH-, Cpd 0) precursor. Here we report a study based on extensive molecular dynamic (MD) simulations of 4 CYP-2B4 point mutations compared to the WT enzyme, having the goal of better clarifying the importance of the proximal Phe429 residue on CYP 2B4 catalytic properties. To consolidate the huge amount of data coming from five simulations and extract the most distinct structural features of the five species studied we made an extensive use of cluster analysis. The results show that all studied single polymorphisms of F429, with different side chain properties: i) drastically alter the reservoir of conformations accessible by the protein, perturbing global dynamics ii) expose the thiolate group of residue Cys436 to the solvent, altering the electronic properties of Cpd0 and iii) affect the various ingress and egress channels connecting the distal sites with the bulk environment, altering the reversibility of these channels. In particular, it was observed that the wild type enzyme exhibits unique structural features as compared to all mutant species in terms of weak interactions (hydrogen bonds) that generate a completely different dynamical behavior of the complete system. Albeit not conclusive, the current computational investigation sheds some light on the subtle and critical effects that proximal single-site mutations can exert on the functional mechanisms of human microsomal CYPs which should go rather far beyond local structure characterization. PMID:26415031

  12. F429 Regulation of Tunnels in Cytochrome P450 2B4: A Top Down Study of Multiple Molecular Dynamics Simulations.

    PubMed

    Mancini, Giordano; Zazza, Costantino

    2015-01-01

    The root causes of the outcomes of the single-site mutation in enzymes remain by and large not well understood. This is the case of the F429H mutant of the cytochrome P450 (CYP) 2B4 enzyme where the substitution, on the proximal surface of the active site, of a conserved phenylalanine 429 residue with histidine seems to hamper the formation of the active species, Compound I (porphyrin cation radical-Fe(IV) = O, Cpd I) from the ferric hydroperoxo (Fe(III)OOH-, Cpd 0) precursor. Here we report a study based on extensive molecular dynamic (MD) simulations of 4 CYP-2B4 point mutations compared to the WT enzyme, having the goal of better clarifying the importance of the proximal Phe429 residue on CYP 2B4 catalytic properties. To consolidate the huge amount of data coming from five simulations and extract the most distinct structural features of the five species studied we made an extensive use of cluster analysis. The results show that all studied single polymorphisms of F429, with different side chain properties: i) drastically alter the reservoir of conformations accessible by the protein, perturbing global dynamics ii) expose the thiolate group of residue Cys436 to the solvent, altering the electronic properties of Cpd0 and iii) affect the various ingress and egress channels connecting the distal sites with the bulk environment, altering the reversibility of these channels. In particular, it was observed that the wild type enzyme exhibits unique structural features as compared to all mutant species in terms of weak interactions (hydrogen bonds) that generate a completely different dynamical behavior of the complete system. Albeit not conclusive, the current computational investigation sheds some light on the subtle and critical effects that proximal single-site mutations can exert on the functional mechanisms of human microsomal CYPs which should go rather far beyond local structure characterization.

  13. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol

    DOE PAGES

    Grundner, Sebastian; Markovits, Monica A. C.; Li, Guanna; ...

    2015-06-25

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon–hydrogen bonds in methane and its subsequent transformation to methanol. In conclusion, the similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towardsmore » methanol, in both the enzyme system and copper-exchanged mordenite.« less

  14. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol

    PubMed Central

    Grundner, Sebastian; Markovits, Monica A.C.; Li, Guanna; Tromp, Moniek; Pidko, Evgeny A.; Hensen, Emiel J.M.; Jentys, Andreas; Sanchez-Sanchez, Maricruz; Lercher, Johannes A.

    2015-01-01

    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon–hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite. PMID:26109507

  15. Simulation analysis of formycin 5?-monophosphate analog substrates in the ricin A-chain active site

    NASA Astrophysics Data System (ADS)

    Olson, Mark A.; Scovill, John P.; Hack, Dallas C.

    1995-06-01

    Ricin is an RNA N-glycosidase that hydrolyzes a single adenine base from a conserved loop of 28S ribosomal RNA, thus inactivating protein synthesis. Molecular-dynamics simulation methods are used to analyze the structural interactions and thermodynamics that govern the binding of formycin 5'-monophosphate (FMP) and several of its analogs to the active site of ricin A-chain. Simulations are carried out initiated from the X-ray crystal structure of the ricin-FMP complex with the ligand modeled as a dianion, monoanion and zwitterion. Relative changes in binding free energies are estimated for FMP analogs constructed from amino substitutions at the 2- and 2'-positions, and from hydroxyl substitution at the 2'-position.

  16. Simulation analysis of formycin 5'-monophosphate analog substrates in the ricin A-chain active site.

    PubMed

    Olson, M A; Scovill, J P; Hack, D C

    1995-06-01

    Ricin is an RNA N-glycosidase that hydrolyzes a single adenine base from a conserved loop of 28S ribosomal RNA, thus inactivating protein synthesis. Molecular-dynamics simulation methods are used to analyze the structural interactions and thermodynamics that govern the binding of formycin 5'-monophosphate (FMP) and several of its analogs to the active site of ricin A-chain. Simulations are carried out initiated from the X-ray crystal structure of the ricin-FMP complex with the ligand modeled as a dianion, monoanion and zwitterion. Relative changes in binding free energies are estimated for FMP analogs constructed from amino substitutions at the 2- and 2'-positions, and from hydroxyl substitution at the 2'-position.

  17. Ablation of Persistent Atrial Fibrillation Targeting Low-Voltage Areas With Selective Activation Characteristics.

    PubMed

    Jadidi, Amir S; Lehrmann, Heiko; Keyl, Cornelius; Sorrel, Jérémie; Markstein, Viktor; Minners, Jan; Park, Chan-Il; Denis, Arnaud; Jaïs, Pierre; Hocini, Mélèze; Potocnik, Clemens; Allgeier, Juergen; Hochholzer, Willibald; Herrera-Sidloky, Claudia; Kim, Steve; Omri, Youssef El; Neumann, Franz-Josef; Weber, Reinhold; Haïssaguerre, Michel; Arentz, Thomas

    2016-03-01

    Complex-fractionated atrial electrograms and atrial fibrosis are associated with maintenance of persistent atrial fibrillation (AF). We hypothesized that pulmonary vein isolation (PVI) plus ablation of selective atrial low-voltage sites may be more successful than PVI only. A total of 85 consecutive patients with persistent AF underwent high-density atrial voltage mapping, PVI, and ablation at low-voltage areas (LVA < 0.5 mV in AF) associated with electric activity lasting > 70% of AF cycle length on a single electrode (fractionated activity) or multiple electrodes around the circumferential mapping catheter (rotational activity) or discrete rapid local activity (group I). The procedural end point was AF termination. Arrhythmia freedom was compared with a control group (66 patients) undergoing PVI only (group II). PVI alone was performed in 23 of 85 (27%) patients of group I with low amount (< 10% of left atrial surface area) of atrial low voltage. Selective atrial ablation in addition to PVI was performed in 62 patients with termination of AF in 45 (73%) after 11 ± 9 minutes radiofrequency delivery. AF-termination sites colocalized within LVA in 80% and at border zones in 20%. Single-procedural arrhythmia freedom at 13 months median follow-up was achieved in 59 of 85 (69%) patients in group I, which was significantly higher than the matched control group (31/66 [47%], P < 0.001). There was no significant difference in the success rate of patients in group I with a low amount of low voltage undergoing PVI only and patients requiring PVI+selective low-voltage ablation (P = 0.42). Ablation of sites with distinct activation characteristics within/at borderzones of LVA in addition to PVI is more effective than conventional PVI-only strategy for persistent AF. PVI only seems to be sufficient to treat patients with left atrial low voltage < 10%. © 2016 American Heart Association, Inc.

  18. Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): {sm_bullet} CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536more » Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure« less

  19. Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia.

    PubMed

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin

    2011-08-01

    Imaging cardiac excitation within ventricular myocardium is important in the treatment of cardiac arrhythmias and might help improve our understanding of arrhythmia mechanisms. This study sought to rigorously assess the imaging performance of a 3-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of 3D intracardiac mapping from up to 216 intramural sites during paced rhythm and norepinephrine (NE)-induced ventricular tachycardia (VT) in the rabbit heart. Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in 13 healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous NE. Computed tomography images were obtained to construct geometry models. The noninvasively imaged activation sequence correlated well with invasively measured counterpart, with a correlation coefficient of 0.72 ± 0.04, and a relative error of 0.30 ± 0.02 averaged over 520 paced beats as well as 73 NE-induced PVCs and VT beats. All PVCs and VT beats initiated in the subendocardium by a nonreentrant mechanism. The averaged distance from the imaged site of initial activation to the pacing site or site of arrhythmias determined from intracardiac mapping was ∼5 mm. For dual-site pacing, the double origins were identified when they were located at contralateral sides of ventricles or at the lateral wall and the apex. 3DCEI can noninvasively delineate important features of focal or multifocal ventricular excitation. It offers the potential to aid in localizing the origins and imaging activation sequences of ventricular arrhythmias, and to provide noninvasive assessment of the underlying arrhythmia mechanisms. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  20. Noninvasive Imaging of Three-dimensional Cardiac Activation Sequence during Pacing and Ventricular Tachycardia

    PubMed Central

    Han, Chengzong; Pogwizd, Steven M.; Killingsworth, Cheryl R.; He, Bin

    2011-01-01

    Background Imaging cardiac excitation within ventricular myocardium is important in the treatment of cardiac arrhythmias and might help improve our understanding of arrhythmia mechanisms. Objective This study aims to rigorously assess the imaging performance of a three-dimensional (3-D) cardiac electrical imaging (3-DCEI) technique with the aid of 3-D intra-cardiac mapping from up to 216 intramural sites during paced rhythm and norepinephrine (NE) induced ventricular tachycardia (VT) in the rabbit heart. Methods Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in thirteen healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous NE. Computer tomography images were obtained to construct geometry model. Results The non-invasively imaged activation sequence correlated well with invasively measured counterparts, with a correlation coefficient of 0.72±0.04, and a relative error of 0.30±0.02 averaged over 520 paced beats as well as 73 NE-induced PVCs and VT beats. All PVCs and VT beats initiated in the subendocardium by a nonreentrant mechanism. The averaged distance from imaged site of initial activation to pacing site or site of arrhythmias determined from intra-cardiac mapping was ~5mm. For dual-site pacing, the double origins were identified when they were located at contralateral sides of ventricles or at the lateral wall and the apex. Conclusion 3-DCEI can non-invasively delineate important features of focal or multi-focal ventricular excitation. It offers the potential to aid in localizing the origins and imaging activation sequence of ventricular arrhythmias, and to provide noninvasive assessment of the underlying arrhythmia mechanisms. PMID:21397046

  1. Dynamic asymmetry and the role of the conserved active-site thiol in rabbit muscle creatine kinase.

    PubMed

    Londergan, Casey H; Baskin, Rachel; Bischak, Connor G; Hoffman, Kevin W; Snead, David M; Reynoso, Christopher

    2015-01-13

    Symmetric and asymmetric crystal structures of the apo and transition state analogue forms, respectively, of the dimeric rabbit muscle creatine kinase have invoked an "induced fit" explanation for asymmetry between the two subunits and their active sites. However, previously reported thiol reactivity studies at the dual active-site cysteine 283 residues suggest a more latent asymmetry between the two subunits. The role of that highly conserved active-site cysteine has also not been clearly determined. In this work, the S-H vibrations of Cys283 were observed in the unmodified MM isoform enzyme via Raman scattering, and then one and both Cys283 residues in the same dimeric enzyme were modified to covalently attach a cyano group that reports on the active-site environment via its infrared CN stretching absorption band while maintaining the catalytic activity of the enzyme. Unmodified and Cys283-modified enzymes were investigated in the apo and transition state analogue forms of the enzyme. The narrow and invariant S-H vibrational bands report a homogeneous environment for the unmodified active-site cysteines, indicating that their thiols are hydrogen bonded to the same H-bond acceptor in the presence and absence of the substrate. The S-H peak persists at all physiologically relevant pH's, indicating that Cys283 is protonated at all pH's relevant to enzymatic activity. Molecular dynamics simulations identify the S-H hydrogen bond acceptor as a single, long-resident water molecule and suggest that the role of the conserved yet catalytically unnecessary thiol may be to dynamically rigidify that part of the active site through specific H-bonding to water. The asymmetric and broad CN stretching bands from the CN-modified Cys283 suggest an asymmetric structure in the apo form of the enzyme in which there is a dynamic exchange between spectral subpopulations associated with water-exposed and water-excluded probe environments. Molecular dynamics simulations indicate a homogeneous orientation of the SCN probe group in the active site and thus rule out a local conformational explanation at the residue level for the multipopulation CN stretching bands. The homogeneous simulated SCN orientation suggests strongly that a more global asymmetry between the two subunits is the cause of the CN probe's broad and asymmetric infrared line shape. Together, these spectral observations localized at the active-site cysteines indicate an intrinsic, dynamic asymmetry between the two subunits that exists already in the apo form of the dimeric creatine kinase enzyme, rather than being induced by the substrate. Biochemical and methodological consequences of these conclusions are considered.

  2. Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3).

    PubMed

    Mulepati, Sabin; Bailey, Scott

    2011-09-09

    RNA transcribed from clustered regularly interspaced short palindromic repeats (CRISPRs) protects many prokaryotes from invasion by foreign DNA such as viruses, conjugative plasmids, and transposable elements. Cas3 (CRISPR-associated protein 3) is essential for this CRISPR protection and is thought to mediate cleavage of the foreign DNA through its N-terminal histidine-aspartate (HD) domain. We report here the 1.8 Å crystal structure of the HD domain of Cas3 from Thermus thermophilus HB8. Structural and biochemical studies predict that this enzyme binds two metal ions at its active site. We also demonstrate that the single-stranded DNA endonuclease activity of this T. thermophilus domain is activated not by magnesium but by transition metal ions such as manganese and nickel. Structure-guided mutagenesis confirms the importance of the metal-binding residues for the nuclease activity and identifies other active site residues. Overall, these results provide a framework for understanding the role of Cas3 in the CRISPR system.

  3. The energy landscape of adenylate kinase during catalysis

    DOE PAGES

    Kerns, S. Jordan; Agafonov, Roman V.; Cho, Young-Jin; ...

    2015-01-12

    Kinases perform phosphoryl-transfer reactions in milliseconds; without enzymes, these reactions would take about 8,000 years under physiological conditions. Despite extensive studies, a comprehensive understanding of kinase energy landscapes, including both chemical and conformational steps, is lacking. In this paper, we scrutinize the microscopic steps in the catalytic cycle of adenylate kinase, through a combination of NMR measurements during catalysis, pre-steady-state kinetics, molecular-dynamics simulations and crystallography of active complexes. We find that the Mg 2+ cofactor activates two distinct molecular events: phosphoryl transfer (>10 5-fold) and lid opening (10 3-fold). In contrast, mutation of an essential active site arginine decelerates phosphorylmore » transfer 10 3-fold without substantially affecting lid opening. Finally, our results highlight the importance of the entire energy landscape in catalysis and suggest that adenylate kinases have evolved to activate key processes simultaneously by precise placement of a single, charged and very abundant cofactor in a preorganized active site.« less

  4. Fully integrated silicon probes for high-density recording of neural activity.

    PubMed

    Jun, James J; Steinmetz, Nicholas A; Siegle, Joshua H; Denman, Daniel J; Bauza, Marius; Barbarits, Brian; Lee, Albert K; Anastassiou, Costas A; Andrei, Alexandru; Aydın, Çağatay; Barbic, Mladen; Blanche, Timothy J; Bonin, Vincent; Couto, João; Dutta, Barundeb; Gratiy, Sergey L; Gutnisky, Diego A; Häusser, Michael; Karsh, Bill; Ledochowitsch, Peter; Lopez, Carolina Mora; Mitelut, Catalin; Musa, Silke; Okun, Michael; Pachitariu, Marius; Putzeys, Jan; Rich, P Dylan; Rossant, Cyrille; Sun, Wei-Lung; Svoboda, Karel; Carandini, Matteo; Harris, Kenneth D; Koch, Christof; O'Keefe, John; Harris, Timothy D

    2017-11-08

    Sensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca 2+ imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials. Until now, no technology compatible with use in unrestrained animals has combined high spatiotemporal resolution with large volume coverage. Here we design, fabricate and test a new silicon probe known as Neuropixels to meet this need. Each probe has 384 recording channels that can programmably address 960 complementary metal-oxide-semiconductor (CMOS) processing-compatible low-impedance TiN sites that tile a single 10-mm long, 70 × 20-μm cross-section shank. The 6 × 9-mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed and digitized on the base, allowing the direct transmission of noise-free digital data from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were recorded simultaneously from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed large populations of neurons from several brain structures to be recorded in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens a path towards recording of brain-wide neural activity during behaviour.

  5. Fully Integrated Silicon Probes for High-Density Recording of Neural Activity

    PubMed Central

    Jun, James J.; Steinmetz, Nicholas A.; Siegle, Joshua H.; Denman, Daniel J.; Bauza, Marius; Barbarits, Brian; Lee, Albert K.; Anastassiou, Costas A.; Andrei, Alexandru; Aydın, Çağatay; Barbic, Mladen; Blanche, Timothy J.; Bonin, Vincent; Couto, João; Dutta, Barundeb; Gratiy, Sergey L.; Gutnisky, Diego A.; Häusser, Michael; Karsh, Bill; Ledochowitsch, Peter; Lopez, Carolina Mora; Mitelut, Catalin; Musa, Silke; Okun, Michael; Pachitariu, Marius; Putzeys, Jan; Rich, P. Dylan; Rossant, Cyrille; Sun, Wei-lung; Svoboda, Karel; Carandini, Matteo; Harris, Kenneth D.; Koch, Christof; O'Keefe, John; Harris, Timothy D.

    2018-01-01

    Summary Paragraph Sensory, motor, and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures1,2. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution but from only a few dozen neurons per shank. Optical Ca2+ imaging3–5 offers more coverage but lacks the temporal resolution to reliably distinguish individual spikes and does not measure local field potentials. To date, no technology compatible with unrestrained animals has combined high spatiotemporal resolution with large volume coverage. To satisfy this need, we designed, fabricated, and tested a new silicon probe called Neuropixels. Each probe has 384 recording channels that can programmably address 960 CMOS processing-compatible low-impedance TiN6 sites that tile a single 10 mm long, 70x20 µm cross section shank. The 6x9 mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed, and digitized on the base, allowing noise-free digital data transmission directly from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were simultaneously recorded from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed recording large populations of neurons from multiple brain structures in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens the path to record brain-wide neural activity during behavior. PMID:29120427

  6. Synthesis and photodynamic activities of modified corrole derivatives on nasopharyngeal carcinoma cells

    NASA Astrophysics Data System (ADS)

    Chang, Chi K.; Kong, Pak-Wing; Liu, Hai-Yang; Yeung, Lam-Lung; Koon, Ho-Kee; Mak, Nai-Ki

    2006-02-01

    Ten trans-A2B and A3-type corrole photosensitizers carrying functional groups were synthesized and screened for PDT activities. Photocytotoxicity was measured by the MTT cell reduction assay on a cultured human nasopharyngeal carcinoma (NPC) cell line (HONE-1). Experimental results indicated that corroles containing a single hydroxyphenyl substituent (3, 4 and 5) exhibit the highest activity among the corrole derivatives investigated. Confocal microscopy revealed that the site of cellular localization of the photosensitizers is predominantly at mitochondria. Also, nuclear staining detected apoptotic cell death.

  7. The adenovirus L4-22K protein regulates transcription and RNA splicing via a sequence-specific single-stranded RNA binding.

    PubMed

    Lan, Susan; Kamel, Wael; Punga, Tanel; Akusjärvi, Göran

    2017-02-28

    The adenovirus L4-22K protein both activates and suppresses transcription from the adenovirus major late promoter (MLP) by binding to DNA elements located downstream of the MLP transcriptional start site: the so-called DE element (positive) and the R1 region (negative). Here we show that L4-22K preferentially binds to the RNA form of the R1 region, both to the double-stranded RNA and the single-stranded RNA of the same polarity as the nascent MLP transcript. Further, L4-22K binds to a 5΄-CAAA-3΄ motif in the single-stranded RNA, which is identical to the sequence motif characterized for L4-22K DNA binding. L4-22K binding to single-stranded RNA results in an enhancement of U1 snRNA recruitment to the major late first leader 5΄ splice site. This increase in U1 snRNA binding results in a suppression of MLP transcription and a concurrent stimulation of major late first intron splicing. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Insights into structure and activity of natural compound inhibitors of pneumolysin

    PubMed Central

    Li, Hongen; Zhao, Xiaoran; Deng, Xuming; Wang, Jianfeng; Song, Meng; Niu, Xiaodi; Peng, Liping

    2017-01-01

    Pneumolysin is the one of the major virulence factor of the bacterium Streptococcus pneumoniae. In previous report, it is shown that β-sitosterol, a natural compound without antimicrobial activity, is a potent antagonist of pneumolysin. Here, two new pneumolysin natural compound inhibitors, with differential activity, were discovered via haemolysis assay. To explore the key factor of the conformation for the inhibition activity, the interactions between five natural compound inhibitors with differential activity and pneumolysin were reported using molecular modelling, the potential of mean force profiles. Interestingly, it is found that incorporation of the single bond (C22-C23-C24-C25) to replace the double bond (hydrocarbon sidechain) improved the anti-haemolytic activity. In view of the molecular modelling, binding of the five inhibitors to the conserved loop region (Val372, Leu460, and Tyr461) of the cholesterol binding sites led to stable complex systems, which was consistent with the result of β-sitosterol. Owing to the single bond (C22-C23-C24-C25), campesterol and brassicasterol could form strong interactions with Val372 and show higher anti-haemolytic activity, which indicated that the single bond (C22-C23-C24-C25) in inhibitors was required for the anti-haemolytic activity. Overall, the current molecular modelling work provides a starting point for the development of rational design and higher activity pneumolysin inhibitors. PMID:28165051

  9. On the activation of molecular hydrogen by gold: a theoretical approximation to the nature of potential active sites.

    PubMed

    Corma, Avelino; Boronat, Mercedes; González, Silvia; Illas, Francesc

    2007-08-28

    The study of adsorption and dissociation of molecular hydrogen on single crystal Au(111) and Au(001) surfaces, monoatomic rows in an extended line defect and different Au nanoparticles by means of DF calculations allows us to firmly conclude that the necessary and sufficient condition for H2 dissociation is the existence of low coordinated Au atoms, regardless if they are in nanoparticles or at extended line defects.

  10. Solution structures and backbone dynamics of Escherichia coli rhodanese PspE in its sulfur-free and persulfide-intermediate forms: implications for the catalytic mechanism of rhodanese.

    PubMed

    Li, Hongwei; Yang, Fan; Kang, Xue; Xia, Bin; Jin, Changwen

    2008-04-15

    Rhodanese catalyzes the sulfur-transfer reaction that transfers sulfur from thiosulfate to cyanide by a double-displacement mechanism, in which an active cysteine residue plays a central role. Previous studies indicated that the phage-shock protein E (PspE) from Escherichia coli is a rhodanese composed of a single active domain and is the only accessible rhodanese among the three single-domain rhodaneses in E. coli. To understand the catalytic mechanism of rhodanese at the molecular level, we determined the solution structures of the sulfur-free and persulfide-intermediate forms of PspE by nuclear magnetic resonance (NMR) spectroscopy and identified the active site by NMR titration experiments. To obtain further insights into the catalytic mechanism, we studied backbone dynamics by NMR relaxation experiments. Our results demonstrated that the overall structures in both sulfur-free and persulfide-intermediate forms are highly similar, suggesting that no significant conformational changes occurred during the catalytic reaction. However, the backbone dynamics revealed that the motional properties of PspE in its sulfur-free form are different from the persulfide-intermediate state. The conformational exchanges are largely enhanced in the persulfide-intermediate form of PspE, especially around the active site. The present structural and biochemical studies in combination with backbone dynamics provide further insights in understanding the catalytic mechanism of rhodanese.

  11. Neighboring base damage induced by permanganate oxidation of 8-oxoguanine in DNA.

    PubMed Central

    Koizume, S; Inoue, H; Kamiya, H; Ohtsuka, E

    1998-01-01

    We found that single-stranded DNA oligomers containing a 7, 8-dihydro-8-oxoguanine (8-oxo-G) residue have high reactivity toward KMnO4; the oxidation of 8-oxo-G induces damage to the neighboring nucleotide residues. This paper describes the novel reaction in detail, including experiments that demonstrate the mechanism involved in the induction of DNA damage. The results using DNAs of various base compositions indicated that damaged G, T and C (but not A) sites caused strand scissions after hot piperidine treatment and that the damage around the 8-oxo-G occurred at G sites in both single and double strands with high frequency. The latter substrates were less sensitive to damage. Further, kinetic studies of the KMnO4reaction of single-stranded oligomers suggested that thereactivity of the DNA bases at the site 5'-adjacent to the 8-oxo-G was in the order G >A >T, C. This preference correlates with the electron donating abilities of the bases. In addition, we found that the DNA damage at the G site, which was connected with the 8-oxo-G by a long abasic chain, was inhibited in the above order by the addition of dG, dA or dC. On the other hand, the damage reactions proceeded even after the addition of scavengers for active oxygen species. This study suggests the involvement of a redox process in the unique DNA damage initiated by the oxidation of the 8-oxo-G. PMID:9671825

  12. Workplace health and safety regulations: Impact of enforcement and consultation on workers' compensation claims rates in Washington State.

    PubMed

    Baggs, James; Silverstein, Barbara; Foley, Michael

    2003-05-01

    There has been considerable debate in the public policy arena about the appropriate mix of regulatory enforcement and consultation in achieving desired health and safety behavior across industries. Recently there has been a shift in federal policy toward voluntary approaches and constraining the scope of enforcement programs, although there is little evidence that this might improve health and safety outcomes. To address this, we examined changes in lost time workers compensation claims rates for Washington State employers who had (1) no OSHA State Plan (WISHA) activity, (2) enforcement, (3) consultation, and (4) both types of visits. Compensable claims rates, hours, and WISHA activity were determined for each employer account with a single business location that had payroll hours reported for every quarter from 1997-2000 and more than 10 employees. We used a generalized estimating equations (GEE) approach to Poisson regression to model the association between WISHA activity and claims rate controlling for other external factors. Controlling for previous claims rate and average size, claims rates for employers with WISHA enforcement activity declined 22.5% in fixed site industry SIC codes compared to 7% among employers with no WISHA activity (P < 0.05), and in non-fixed site SICs (e.g., construction) claims rates declined 12.8% for employers with enforcement activity compared to a 7.4% decline for those with no WISHA activity (P > 0.10). WISHA consultation activity was not associated with a greater decline in compensable claims rates (-2.3% for fixed sites and +3.5% for non-fixed sites). WISHA activity did not adversely affect worksite survivability through the study period. Enforcement inspections are significantly associated with decreasing compensable workers compensation claims rates especially for fixed site employers. We were unable to identify an association between consultation activities and decreasing claims rates. Copyright 2003 Wiley-Liss, Inc.

  13. Effect of substrate RNA sequence on the cleavage reaction by a short ribozyme.

    PubMed Central

    Ohmichi, T; Okumoto, Y; Sugimoto, N

    1998-01-01

    Leadzyme is a ribozyme that requires Pb2+. The catalytic sequence, CUGGGAGUCC, binds to an RNA substrate, GGACC downward arrowGAGCCAG, cleaving the RNA substrate at one site. We have investigated the effect of the substrate sequence on the cleavage activity of leadzyme using mutant substrates in order to structurally understand the RNA catalysis. The results showed that leadzyme acted as a catalyst for single site cleavage of a C5 deletion mutant substrate, GGAC downward arrowGAGCCAG, as well as the wild-type substrate. However, a mutant substrate GGACCGACCAG, which had G8 deleted from the wild-type substrate, was not cleaved. Kinetic studies by surface plasmon resonance indicated that the difference between active and inactive structures reflected the slow association and dissociation rate constants of complex formation induced by Pb2+rather than differences in complex stability. CD spectra showed that the active form of the substrate-leadzyme complex was rearranged by Pb2+binding. The G8 of the wild-type substrate, which was absent in the inactive complex, is not near the cleavage site. Thus, these results show that the active substrate-leadzyme complex has a Pb2+binding site at the junction between the unpaired region (asymmetric internal loop) and the stem region, which is distal to the cleavage site. Pb2+may play a role in rearranging the bases in the asymmetric internal loop to the correct position for catalysis. PMID:9837996

  14. Requirement of histidine 217 for ubiquinone reductase activity (Qi site) in the cytochrome bc1 complex.

    PubMed

    Gray, K A; Dutton, P L; Daldal, F

    1994-01-25

    Folding models suggest that the highly conserved histidine 217 of the cytochrome b subunit from the cytochrome bc1 complex is close to the quinone reductase (Qi) site. This histidine (bH217) in the cytochrome b polypeptide of the photosynthetic bacterium Rhodobacter capsulatus has been replaced with three other residues, aspartate (D), arginine (R), and leucine (L). bH217D and bH217R are able to grow photoheterotrophically and contain active cytochrome bc1 complexes (60% of wild-type activity), whereas the bH217L mutant is photosynthetically incompetent and contains a cytochrome bc1 complex that has only 10% of the wild-type activity. Single-turnover flash-activated electron transfer experiments show that cytochrome bH is reduced via the Qo site with near native rates in the mutant strains but that electron transfer between cytochrome bH and quinone bound at the Qi site is greatly slowed. These results are consistent with redox midpoint potential (Em) measurements of the cytochrome b subunit hemes and the Qi site quinone. The Em values of cyt bL and bH are approximately the same in the mutants and wild type, although the mutant strains have a larger relative concentration of what may be the high-potential form of cytochrome bH, called cytochrome b150. However, the redox properties of the semiquinone at the Qi site are altered significantly. The Qi site semiquinone stability constant of bH217R is 10 times higher than in the wild type, while in the other two strains (bH217D and bH217L) the stability constant is much lower than in the wild type. Thus H217 appears to have major effects on the redox properties of the quinone bound at the Qi site. These data are incorporated into a suggestion that H217 forms part of the binding pocket of the Qi site in a manner reminiscent of the interaction between quinone bound at the Qb site and H190 of the L subunit of the bacterial photosynthetic reaction center.

  15. Site term from single-station sigma analysis of S-waves in western Turkey

    NASA Astrophysics Data System (ADS)

    Akyol, Nihal

    2018-05-01

    The main aim of this study is to obtain site terms from single-station sigma analysis and to compare them with the site functions resulting from different techniques. The dataset consists of 1764 records from 322 micro- and moderate-size local earthquakes recorded by 29 stations in western Turkey. Median models were derived from S-wave Fourier amplitude spectra for selected 22 frequencies, by utilizing the MLR procedure which performs the maximum likelihood (ML) estimation of mixed models where the fixed effects are treated as random (R) effects with infinite variance. At this stage, b (geometrical spreading coefficient) and Q (quality factor) values were decomposed, simultaneously. The residuals of the median models were examined by utilizing the single-station sigma analysis to obtain the site terms of 29 stations. Sigma for the median models is about 0.422 log10 units and decreases to about 0.308, when the site terms from the single-station sigma analysis were considered (27% reduction). The event-corrected within-event standard deviations for each frequency are rather stable, in the range 0.19-0.23 log10 units with an average value of 0.20 (± 0.01). The site terms from single-station sigma analysis were compared with the site function estimates from the horizontal-to-vertical-spectral-ratio (HVSR) and generalized inversion (INV) techniques by Akyol et al. (2013) and Kurtulmuş and Akyol (2015), respectively. Consistency was observed between the single-station sigma site terms and the INV site transfer functions. The results imply that the single-station sigma analysis could separate the site terms with respect to the median models.

  16. Changes in RNA polymerase II progression influence somatic hypermutation of Ig-related genes by AID

    PubMed Central

    Kodgire, Prashant; Mukkawar, Priyanka; Ratnam, Sarayu; Martin, Terence E.

    2013-01-01

    Somatic hypermutation (SHM) of Ig genes is initiated by the activation-induced cytidine deaminase (AID), and requires target gene transcription. We previously proposed that AID may associate with the RNA polymerase II (Pol). Here, to determine aspects of the transcription process required for SHM, we knocked-in a transcription terminator into an Ig gene variable region in DT40 chicken B cell line. We found that the human β-globin terminator was an efficient inhibitor of downstream transcription in these cells. The terminator reduced mutations downstream of the poly(A) signal, suggesting that the process of transcription is essential for efficient SHM and that AID has better access to its target when Pol is in the elongating rather than terminating mode. Mutations upstream of the poly(A) site were almost doubled in the active terminator clones compared with an inactivated terminator, and this region showed more single-stranded DNA, indicating that Pol pausing assists SHM. Moreover, the nontranscribed DNA strand was the preferred SHM target upstream of the active terminator. Pol pausing during poly(A) site recognition may facilitate persistence of negative supercoils, exposing the coding single strand and possibly allowing the nascent RNA intermittent reannealing with the template strand, for prolonged access of AID. PMID:23752228

  17. Structural Basis of Mec1-Ddc2-RPA Assembly and Activation on Single-Stranded DNA at Sites of Damage.

    PubMed

    Deshpande, Ishan; Seeber, Andrew; Shimada, Kenji; Keusch, Jeremy J; Gut, Heinz; Gasser, Susan M

    2017-10-19

    Mec1-Ddc2 (ATR-ATRIP) is a key DNA-damage-sensing kinase that is recruited through the single-stranded (ss) DNA-binding replication protein A (RPA) to initiate the DNA damage checkpoint response. Activation of ATR-ATRIP in the absence of DNA damage is lethal. Therefore, it is important that damage-specific recruitment precedes kinase activation, which is achieved at least in part by Mec1-Ddc2 homodimerization. Here, we report a structural, biochemical, and functional characterization of the yeast Mec1-Ddc2-RPA assembly. High-resolution co-crystal structures of Ddc2-Rfa1 and Ddc2-Rfa1-t11 (K45E mutant) N termini and of the Ddc2 coiled-coil domain (CCD) provide insight into Mec1-Ddc2 homodimerization and damage-site targeting. Based on our structural and functional findings, we present a Mec1-Ddc2-RPA-ssDNA composite structural model. By way of validation, we show that RPA-dependent recruitment of Mec1-Ddc2 is crucial for maintaining its homodimeric state at ssDNA and that Ddc2's recruitment domain and CCD are important for Mec1-dependent survival of UV-light-induced DNA damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Plasticity of orientation preference maps in the visual cortex of adult cats.

    PubMed

    Godde, Ben; Leonhardt, Ralph; Cords, Sven M; Dinse, Hubert R

    2002-04-30

    In contrast to the high degree of experience-dependent plasticity usually exhibited by cortical representational maps, a number of experiments performed in visual cortex suggest that the basic layout of orientation preference maps is only barely susceptible to activity-dependent modifications. In fact, most of what we know about activity-dependent plasticity in adults comes from experiments in somatosensory, auditory, or motor cortex. Applying a stimulation protocol that has been proven highly effective in other cortical areas, we demonstrate here that enforced synchronous cortical activity induces major changes of orientation preference maps (OPMs) in adult cats. Combining optical imaging of intrinsic signals and electrophysiological single-cell recordings, we show that a few hours of intracortical microstimulation (ICMS) lead to an enlargement of the cortical representational zone at the ICMS site and an extensive restructuring of the entire OPM layout up to several millimeters away, paralleled by dramatic changes of pinwheel numbers and locations. At the single-cell level, we found that the preferred orientation was shifted toward the orientation of the ICMS site over a region of up to 4 mm. Our results show that manipulating the synchronicity of cortical activity locally without invoking training, attention, or reinforcement, OPMs undergo large-scale reorganization reminiscent of plastic changes observed for nonvisual cortical maps. However, changes were much more widespread and enduring. Such large-scale restructuring of the visual cortical networks indicates a substantial capability for activity-dependent plasticity of adult visual cortex and may provide the basis for cognitive learning processes.

  19. Isolation of amino acid activating subunit-pantetheine protein complexes: Their role in chain elongation in tyrocidine synthesis

    PubMed Central

    Lee, Sung G.; Lipmann, Fritz

    1977-01-01

    Dissociation of the multienzymes of tyrocidine synthesis by prolonged incubation of crude extracts of Bacillus brevis (Dubos strain, ATCC 8185) has yielded, on Sephadex G-100 chromatography, two fractions of amino acid activating subunits, a larger one of 70,000 daltons and a smaller one of 90,000 daltons; the latter was a complex consisting of the 70,000 dalton subunit and the pantetheine-carrying protein of about 20,000 daltons. When it dissociated, the intermediate enzyme, which activates three amino acids, contained two-thirds of the subunits in the 70,000 dalton and one-third in the 90,000 dalton fraction; the heavy enzyme, which activates six amino acids, contained five-sixths of the subunits in the former fraction and one-sixth in the latter. Both fractions showed ATP-PPi exchange with all amino acids that are activated by the respective polyenzymes. With proline as an example, the 70,000 dalton subunit exhibited a single low-affinity binding site, which should correspond to the peripheral thiol acceptor site, whereas the 90,000 dalton subunit showed both a low-affinity binding site and an additional high-affinity site for proline; the high-affinity site is attributed to the pantetheine present on the pantetheine-carrying protein, and suggests that amino acids are translocated from the peripheral SH to the pantetheine-carrying moiety during chain elongation. This was confirmed by the observation that the 90,000 dalton complex, when incubated with the light enzyme in the presence of phenylalanine and proline, produced DPhe-Pro dipeptide that cyclized into DPhe-Pro diketopiperazine, but the 70,000 dalton activating subunit, when similarly incubated, did not. After subunit dissociation, however, no further elongation occurred after the transfer from phenylalanine to proline. Images PMID:196286

  20. Field site selection: getting it right first time around

    PubMed Central

    Malcolm, Colin A; El Sayed, Badria; Babiker, Ahmed; Girod, Romain; Fontenille, Didier; Knols, Bart GJ; Nugud, Abdel Hameed; Benedict, Mark Q

    2009-01-01

    The selection of suitable field sites for integrated control of Anopheles mosquitoes using the sterile insect technique (SIT) requires consideration of the full gamut of factors facing most proposed control strategies, but four criteria identify an ideal site: 1) a single malaria vector, 2) an unstructured, relatively low density target population, 3) isolation of the target population and 4) actual or potential malaria incidence. Such a site can exist in a diverse range of situations or can be created. Two contrasting SIT field sites are examined here: the desert-flanked Dongola Reach of the Nile River in Northern State, Sudan, where malaria is endemic, and the island of La Reunion, where autochthonous malaria is rare but risk is persistent. The single malaria-transmitting vector at both sites is Anopheles arabiensis. In Sudan, the target area is a narrow 500 km corridor stretching from the rocky terrain at the Fourth Cataract - just above the new Merowe Dam, to the northernmost edge of the species range, close to Egypt. Vector distribution and temporal changes in density depend on the Nile level, ambient temperature and human activities. On La Reunion, the An. arabiensis population is coastal, limited and divided into three areas by altitude and exposure to the trade winds on the east coast. Mosquito vectors for other diseases are an issue at both sites, but of primary importance on La Reunion due to the recent chikungunya epidemic. The similarities and differences between these two sites in terms of suitability are discussed in the context of area-wide integrated vector management incorporating the SIT. PMID:19917079

  1. Analysis of Polygenic Mutants Suggests a Role for Mediator in Regulating Transcriptional Activation Distance in Saccharomyces cerevisiae.

    PubMed

    Reavey, Caitlin T; Hickman, Mark J; Dobi, Krista C; Botstein, David; Winston, Fred

    2015-10-01

    Studies of natural populations of many organisms have shown that traits are often complex, caused by contributions of mutations in multiple genes. In contrast, genetic studies in the laboratory primarily focus on studying the phenotypes caused by mutations in a single gene. However, the single mutation approach may be limited with respect to the breadth and degree of new phenotypes that can be found. We have taken the approach of isolating complex, or polygenic mutants in the lab to study the regulation of transcriptional activation distance in yeast. While most aspects of eukaryotic transcription are conserved from yeast to human, transcriptional activation distance is not. In Saccharomyces cerevisiae, the upstream activating sequence (UAS) is generally found within 450 base pairs of the transcription start site (TSS) and when the UAS is moved too far away, activation no longer occurs. In contrast, metazoan enhancers can activate from as far as several hundred kilobases from the TSS. Previously, we identified single mutations that allow transcription activation to occur at a greater-than-normal distance from the GAL1 UAS. As the single mutant phenotypes were weak, we have now isolated polygenic mutants that possess strong long-distance phenotypes. By identification of the causative mutations we have accounted for most of the heritability of the phenotype in each strain and have provided evidence that the Mediator coactivator complex plays both positive and negative roles in the regulation of transcription activation distance. Copyright © 2015 by the Genetics Society of America.

  2. Increasing the Thermostable Sugar-1-Phosphate Nucleotidylyltransferase Activities of the Archaeal ST0452 Protein through Site Saturation Mutagenesis of the 97th Amino Acid Position.

    PubMed

    Honda, Yuki; Zang, Qian; Shimizu, Yasuhiro; Dadashipour, Mohammad; Zhang, Zilian; Kawarabayasi, Yutaka

    2017-02-01

    The ST0452 protein is a bifunctional protein exhibiting sugar-1-phosphate nucleotidylyltransferase (sugar-1-P NTase) and amino-sugar-1-phosphate acetyltransferase activities and was isolated from the thermophilic archaeon Sulfolobus tokodaii Based on the previous observation that five single mutations increased ST0452 sugar-1-P NTase activity, nine double-mutant ST0452 proteins were generated with the intent of obtaining enzymes exhibiting a further increase in catalysis, but all showed less than 15% of the wild-type N-acetyl-d-glucosamine-1-phosphate uridyltransferase (GlcNAc-1-P UTase) activity. The Y97A mutant exhibited the highest activity of the single-mutant proteins, and thus site saturation mutagenesis of the 97th position (Tyr) was conducted. Six mutants showed both increased GlcNAc-1-P UTase and glucose-1-phosphate uridyltransferase activities, eight mutants showed only enhanced GlcNAc-1-P UTase activity, and six exhibited higher GlcNAc-1-P UTase activity than that of the Y97A mutant. Kinetic analyses of three typical mutants indicated that the increase in sugar-1-P NTase activity was mainly due to an increase in the apparent k cat value. We hypothesized that changing the 97th position (Tyr) to a smaller amino acid with similar electronic properties would increase activity, and thus the Tyr at the corresponding 103rd position of the Escherichia coli GlmU (EcGlmU) enzyme was replaced with the same residues. The Y103N mutant EcGlmU showed increased GlcNAc-1-P UTase activity, revealing that the Tyr at the 97th position of the ST0452 protein (103rd position in EcGlmU) plays an important role in catalysis. The present results provide useful information regarding how to improve the activity of natural enzymes and how to generate powerful enzymes for the industrial production of sugar nucleotides. It is typically difficult to increase enzymatic activity by introducing substitutions into a natural enzyme. However, it was previously found that the ST0452 protein, a thermostable enzyme from the thermophilic archaeon Sulfolobus tokodaii, exhibited increased activity following single amino acid substitutions of Ala. In this study, ST0452 proteins exhibiting a further increase in activity were created using a site saturation mutagenesis strategy at the 97th position. Kinetic analyses showed that the increased activities of the mutant proteins were principally due to increased apparent k cat values. These mutant proteins might suggest clues regarding the mechanism underlying the reaction process and provide very important information for the design of synthetic improved enzymes, and they can be used as powerful biocatalysts for the production of sugar nucleotide molecules. Moreover, this work generated useful proteins for three-dimensional structural analysis clarifying the processes underlying the regulation and mechanism of enzymatic activity. Copyright © 2017 American Society for Microbiology.

  3. Insights into regioselective metabolism of mefenamic acid by cytochrome P450 BM3 mutants through crystallography, docking, molecular dynamics, and free energy calculations.

    PubMed

    Capoferri, Luigi; Leth, Rasmus; ter Haar, Ernst; Mohanty, Arun K; Grootenhuis, Peter D J; Vottero, Eduardo; Commandeur, Jan N M; Vermeulen, Nico P E; Jørgensen, Flemming Steen; Olsen, Lars; Geerke, Daan P

    2016-03-01

    Cytochrome P450 BM3 (CYP102A1) mutant M11 is able to metabolize a wide range of drugs and drug-like compounds. Among these, M11 was recently found to be able to catalyze formation of human metabolites of mefenamic acid and other nonsteroidal anti-inflammatory drugs (NSAIDs). Interestingly, single active-site mutations such as V87I were reported to invert regioselectivity in NSAID hydroxylation. In this work, we combine crystallography and molecular simulation to study the effect of single mutations on binding and regioselective metabolism of mefenamic acid by M11 mutants. The heme domain of the protein mutant M11 was expressed, purified, and crystallized, and its X-ray structure was used as template for modeling. A multistep approach was used that combines molecular docking, molecular dynamics (MD) simulation, and binding free-energy calculations to address protein flexibility. In this way, preferred binding modes that are consistent with oxidation at the experimentally observed sites of metabolism (SOMs) were identified. Whereas docking could not be used to retrospectively predict experimental trends in regioselectivity, we were able to rank binding modes in line with the preferred SOMs of mefenamic acid by M11 and its mutants by including protein flexibility and dynamics in free-energy computation. In addition, we could obtain structural insights into the change in regioselectivity of mefenamic acid hydroxylation due to single active-site mutations. Our findings confirm that use of MD and binding free-energy calculation is useful for studying biocatalysis in those cases in which enzyme binding is a critical event in determining the selective metabolism of a substrate. © 2016 Wiley Periodicals, Inc.

  4. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells.

    PubMed

    Kramm, Ulrike I; Herranz, Juan; Larouche, Nicholas; Arruda, Thomas M; Lefèvre, Michel; Jaouen, Frédéric; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Mukerjee, Sanjeev; Dodelet, Jean-Pol

    2012-09-07

    Fe-based catalytic sites for the reduction of oxygen in acidic medium have been identified by (57)Fe Mössbauer spectroscopy of Fe/N/C catalysts containing 0.03 to 1.55 wt% Fe, which were prepared by impregnation of iron acetate on carbon black followed by heat-treatment in NH(3) at 950 °C. Four different Fe-species were detected at all iron concentrations: three doublets assigned to molecular FeN(4)-like sites with their ferrous ions in a low (D1), intermediate (D2) or high (D3) spin state, and two other doublets assigned to a single Fe-species (D4 and D5) consisting of surface oxidized nitride nanoparticles (Fe(x)N, with x≤ 2.1). A fifth Fe-species appears only in those catalysts with Fe-contents ≥0.27 wt%. It is characterized by a very broad singlet, which has been assigned to incomplete FeN(4)-like sites that quickly dissolve in contact with an acid. Among the five Fe-species identified in these catalysts, only D1 and D3 display catalytic activity for the oxygen reduction reaction (ORR) in the acid medium, with D3 featuring a composite structure with a protonated neighbour basic nitrogen and being by far the most active species, with an estimated turn over frequency for the ORR of 11.4 e(-) per site per s at 0.8 V vs. RHE. Moreover, all D1 sites and between 1/2 and 2/3 of the D3 sites are acid-resistant. A scheme for the mechanism of site formation upon heat-treatment is also proposed. This identification of the ORR-active sites in these catalysts is of crucial importance to design strategies to improve the catalytic activity and stability of these materials.

  5. Crystal Structure of Cockroach Allergen Bla g 2, an Unusual Zinc Binding Aspartic Protease with a Novel Mode of Self-inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustchina, Alla; Li, Mi; Wunschmann, Sabina

    2010-07-19

    The crystal structure of Bla g 2 was solved in order to investigate the structural basis for the allergenic properties of this unusual protein. This is the first structure of an aspartic protease in which conserved glycine residues, in two canonical DTG triads, are substituted by different amino acid residues. Another unprecedented feature revealed by the structure is the single phenylalanine residue insertion on the tip of the flap, with the side-chain occupying the S1 binding pocket. This and other important amino acid substitutions in the active site region of Bla g 2 modify the interactions in the vicinity ofmore » the catalytic aspartate residues, increasing the distance between them to {approx}4 {angstrom} and establishing unique direct contacts between the flap and the catalytic residues. We attribute the absence of substantial catalytic activity in Bla g 2 to these unusual features of the active site. Five disulfide bridges and a Zn-binding site confer stability to the protein, which may contribute to sensitization at lower levels of exposure than other allergens.« less

  6. Radon soil gas measurements in a geological versatile region as basis to improve the prediction of areas with a high radon potential.

    PubMed

    Kabrt, Franz; Seidel, Claudia; Baumgartner, Andreas; Friedmann, Harry; Rechberger, Fabian; Schuff, Michael; Maringer, Franz Josef

    2014-07-01

    With the aim to predict the radon potential by geological data, radon soil gas measurements were made in a selected region in Styria, Austria. This region is characterised by mean indoor radon potentials of 130-280 Bq m(-3) and a high geological diversity. The distribution of the individual measuring sites was selected on the basis of geological aspects and the distribution of area settlements. In this work, the radon soil gas activity concentration and the soil permeability were measured at 100 sites, each with three single measurements. Furthermore, the local dose rate was determined and soil samples were taken at each site to determine the activity concentration of natural radionuclides. During two investigation periods, long-term soil gas radon measurements were made to study the time dependency of the radon activity concentration. All the results will be compared and investigated for correlation among each other to improve the prediction of areas with high radon potential. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Toxin MqsR Cleaves Single-Stranded mRNA with Various 5 Ends

    DTIC Science & Technology

    2016-08-24

    either protein ORIGINAL RESEARCH Toxin MqsR cleaves single- stranded mRNA with various 5’ ends Nityananda Chowdhury1,*, Brian W. Kwan1,*, Louise C...in which a single 5′- GCU site was predicted to be single- stranded (ssRNA), double- stranded (dsRNA), in the loop of a stem - loop (slRNA), or in a...single- stranded 5′- GCU sites since cleavage was approximately 20- fold higher than cleavage seen with the 5′- GCU site in the stem - loop and

  8. Robotic right colectomy using the Da Vinci Single-Site® platform: case report.

    PubMed

    Morelli, Luca; Guadagni, Simone; Caprili, Giovanni; Di Candio, Giulio; Boggi, Ugo; Mosca, Franco

    2013-09-01

    While single-port laparoscopy for abdominal surgery is technically challenging, the Da Vinci Single-Site® robotic surgery platform may help to overcome some of the difficulties of this rapidly evolving technique. The authors of this article present a case of single-incision, robotic right colectomy using this device. A 74-year-old female with malignant polyp of caecum was operated on with a single-site approach using the Da Vinci Single-Site® robotic surgery device. Resection and anastomosis were performed extra-corporeally after undocking the robot. The procedure was successfully completed in 200 min. No surgical complications occurred during the intervention and the post-operative stay and no conversion to laparotomy or additional trocars were required. To the best of our knowledge, this is the first case of right colectomy using the Da Vinci Single-Site® robotic surgery platform to be reported. The procedure is feasible and safe and its main advantages are restoration of triangulation and reduced instrument clashes. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Intra- and Interdimeric Caspase-8 Self-Cleavage Controls Strength and Timing of CD95-Induced Apoptosis

    PubMed Central

    Kallenberger, Stefan M.; Beaudouin, Joël; Claus, Juliane; Fischer, Carmen; Sorger, Peter K.; Legewie, Stefan; Eils, Roland

    2014-01-01

    Apoptosis in response to the ligand CD95L (also known as Fas ligand) is initiated by caspase-8, which is activated by dimerization and self-cleavage at death-inducing signaling complexes (DISCs). Previous work indicated that the degree of substrate cleavage by caspase-8 determines whether a cell dies or survives in response to a death stimulus. To determine how a death ligand stimulus is effectively translated into caspase-8 activity, we assessed this activity over time in single cells with compartmentalized probes that are cleaved by caspase-8, and used multiscale modeling to simultaneously describe single-cell and population data with an ensemble of single-cell models. We derived and experimentally validated a minimal model in which cleavage of caspase-8 in the enzymatic domain occurs in an interdimeric manner through interaction between DISCs, whereas prodomain cleavage sites are cleaved in an intradimeric manner within DISCs. Modeling indicated that sustained membrane-bound caspase-8 activity is followed by transient cytosolic activity, which can be interpreted as a molecular timer mechanism reflected by a limited lifetime of active caspase-8. The activation of caspase-8 by combined intra- and interdimeric cleavage ensures weak signaling at low concentrations of CD95L and strongly accelerated activation at higher ligand concentrations, thereby contributing to precise control of apoptosis. PMID:24619646

  10. Novel Chemoresistive CH4 Sensor with 10 ppm Sensitivity Based on Multi-Walled Carbon Nanotubes (MWCNTs) Functionalized with SnO2nanocrystals

    EPA Science Inventory

    Chemoresistive sensors based on multi-walled carbon nanotubes (MWCNTs)functionalized with SnO2 nanocrystals have great potential for detecting trace gases at low concentrations (single ppm levels) at room temperature, because the SnO2 nanocrystals act as active sites for the chem...

  11. Point mutations abolishing the mannose-binding capability of boar spermadhesin AQN-1.

    PubMed

    Ekhlasi-Hundrieser, Mahnaz; Calvete, Juan J; Von Rad, Bettina; Hettel, Christiane; Nimtz, Manfred; Töpfer-Petersen, Edda

    2008-05-01

    The mannose-binding capability of recombinant wild-type boar spermadhesin AQN-1 and of its site-directed mutants in the highly-conserved region around of the single glycosylation site (asparagine 50) of some spermadhesins, where the carbohydrate binding site has been proposed to be located, was checked using a solid-phase assay and a biotinylated mannose ligand. Substitution of glycine 54 by amino acids bearing an unipolar side chain did not cause significant decrease in the mannose-binding activity. However, amino acids with uncharged polar side chains or having a charged polar side chain abolished the binding of biotinylated mannose to the corresponding AQN-1 mutants. The results suggest that the higher surface accessibility of amino acids possessing polar side chains compared to those bearing nonpolar groups may sterically interfere with monosaccharide binding. The location of the mannose-binding site in AQN-1 appears to be topologically conserved in other heparin-binding boar spermadhesins, i.e., AQN-3 and AWN, but departs from the location of the mannose-6-phosphate-recognition site of PSP-II. This indicates that different spermadhesin molecules have evolved non-equivalent carbohydrate-binding capabilities, which may underlie their distinct patterns of biological activities.

  12. Identification of Critical Residues for the Tight Binding of Both Correct and Incorrect Nucleotides to Human DNA Polymerase λ

    PubMed Central

    Brown, Jessica A.; Pack, Lindsey R.; Sherrer, Shanen M.; Kshetry, Ajay K.; Newmister, Sean A.; Fowler, Jason D.; Taylor, John-Stephen; Suo, Zucai

    2010-01-01

    DNA polymerase λ (Pol λ) is a novel X-family DNA polymerase that shares 34% sequence identity with DNA polymerase β (Pol β). Pre-steady state kinetic studies have shown that the Pol λ•DNA complex binds both correct and incorrect nucleotides 130-fold tighter on average than the Pol β•DNA complex, although, the base substitution fidelity of both polymerases is 10−4 to 10−5. To better understand Pol λ’s tight nucleotide binding affinity, we created single- and double-substitution mutants of Pol λ to disrupt interactions between active site residues and an incoming nucleotide or a template base. Single-turnover kinetic assays showed that Pol λ binds to an incoming nucleotide via cooperative interactions with active site residues (R386, R420, K422, Y505, F506, A510, and R514). Disrupting protein interactions with an incoming correct or incorrect nucleotide impacted binding with each of the common structural moieties in the following order: triphosphate ≫ base > ribose. In addition, the loss of Watson-Crick hydrogen bonding between the nucleotide and template base led to a moderate increase in the Kd. The fidelity of Pol λ was maintained predominantly by a single residue, R517, which has minor groove interactions with the DNA template. PMID:20851705

  13. Role of allosteric switch residue histidine 195 in maintaining active-site asymmetry in presynaptic filaments of bacteriophage T4 UvsX recombinase.

    PubMed

    Farb, Joshua N; Morrical, Scott W

    2009-01-16

    Recombinases of the highly conserved RecA/Rad51 family play central roles in homologous recombination and DNA double-stranded break repair. RecA/Rad51 enzymes form presynaptic filaments on single-stranded DNA (ssDNA) that are allosterically activated to catalyze ATPase and DNA strand-exchange reactions. Information is conveyed between DNA- and ATP-binding sites, in part, by a highly conserved glutamine residue (Gln194 in Escherichia coli RecA) that acts as an allosteric switch. The T4 UvsX protein is a divergent RecA ortholog and contains histidine (His195) in place of glutamine at the allosteric switch position. UvsX and RecA catalyze similar strand-exchange reactions, but differ in other properties. UvsX produces both ADP and AMP as products of its ssDNA-dependent ATPase activity--a property that is unique among characterized recombinases. Details of the kinetics of ssDNA-dependent ATP hydrolysis reactions indicate that UvsX-ssDNA presynaptic filaments are asymmetric and contain two classes of ATPase active sites: one that generates ADP, and another that generates AMP. Active-site asymmetry is reduced by mutations at the His195 position, since UvsX-H195Q and UvsX-H195A mutants both exhibit stronger ssDNA-dependent ATPase activity, with lower cooperativity and markedly higher ADP/AMP product ratios, than wild-type UvsX. Reduced active-site asymmetry correlates strongly with reduced ssDNA-binding affinity and DNA strand-exchange activity in both H195Q and H195A mutants. These and other results support a model in which allosteric switch residue His195 controls the formation of an asymmetric conformation of UvsX-ssDNA filaments that is active in DNA strand exchange. The implications of our findings for UvsX recombination functions, and for RecA functions in general, are discussed.

  14. AmeriFlux US-Wrc Wind River Crane Site

    DOE Data Explorer

    Bible, Ken [University of Washington; Wharton, Sonia [Lawrence Livermore National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wrc Wind River Crane Site. Site Description - Wind River Field Station flux tower site is located in the T.T. Munger Research Area of the Wind River Ranger District in the Gifford Pinchot National Forest. Protected since 1926, the T.T. Munger Research Natural Area (RNA) is administered by the USDA Forest Service Pacific Northwest Research Station and Gifford Pinchot National Forest. The Douglas-fir/western hemlock dominant stand is approximately 500 years old and represents end points of several ecological gradients including age, biomass, structural complexity, and density of the dominant overstory species. A complete stand replacement fire, approximately 450-500 years ago, resulted in the initial establishment. No significant disturbances have occurred since the fire aside from those confined to small groups of single trees, such as overturn from high wind activity and mechanical damage from winter precipitation.

  15. Orientation independence of single-vacancy and single-ion permeability ratios.

    PubMed Central

    McGill, P; Schumaker, M F

    1995-01-01

    Single-vacancy models have been proposed as open channel permeation mechanisms for K+ channels. Single-ion models have been used to describe permeation through Na+ channels. This paper demonstrates that these models have a distinctive symmetry property. Their permeability ratios, measured under biionic conditions, are independent of channel orientation when the reversal potential is zero. This symmetry is a property of general m-site single-vacancy channels, m-site shaking-stack channels, as well as m-site single-ion channels. An experimental finding that the permeability ratios of a channel did not have this symmetry would provide evidence that a single-vacancy or single-ion model is an incorrect or incomplete description of permeation. Images FIGURE 1 PMID:7669913

  16. New Surface-Enhanced Raman Sensing Chip Designed for On-Site Detection of Active Ricin in Complex Matrices Based on Specific Depurination.

    PubMed

    Tang, Ji-Jun; Sun, Jie-Fang; Lui, Rui; Zhang, Zong-Mian; Liu, Jing-Fu; Xie, Jian-Wei

    2016-01-27

    Quick and accurate on-site detection of active ricin has very important realistic significance in view of national security and defense. In this paper, optimized single-stranded oligodeoxynucleotides named poly(21dA), which function as a depurination substrate of active ricin, were screened and chemically attached on gold nanoparticles (AuNPs, ∼100 nm) via the Au-S bond [poly(21dA)-AuNPs]. Subsequently, poly(21dA)-AuNPs were assembled on a dihydrogen lipoic-acid-modified Si wafer (SH-Si), thus forming the specific surface-enhanced Raman spectroscopy (SERS) chip [poly(21dA)-AuNPs@SH-Si] for depurination of active ricin. Under optimized conditions, active ricin could specifically hydrolyze multiple adenines from poly(21dA) on the chip. This depurination-induced composition change could be conveniently monitored by measuring the distinct attenuation of the SERS signature corresponding to adenine. To improve sensitivity of this method, a silver nanoshell was deposited on post-reacted poly(21dA)-AuNPs, which lowered the limit of detection to 8.9 ng mL(-1). The utility of this well-controlled SERS chip was successfully demonstrated in food and biological matrices spiked with different concentrations of active ricin, thus showing to be very promising assay for reliable and rapid on-site detection of active ricin.

  17. Femtosecond near-infrared laser microirradiation reveals a crucial role for PARP signaling on factor assemblies at DNA damage sites

    PubMed Central

    Saquilabon Cruz, Gladys Mae; Kong, Xiangduo; Silva, Bárbara Alcaraz; Khatibzadeh, Nima; Thai, Ryan; Berns, Michael W.; Yokomori, Kyoko

    2016-01-01

    Laser microirradiation is a powerful tool for real-time single-cell analysis of the DNA damage response (DDR). It is often found, however, that factor recruitment or modification profiles vary depending on the laser system employed. This is likely due to an incomplete understanding of how laser conditions/dosages affect the amounts and types of damage and the DDR. We compared different irradiation conditions using a femtosecond near-infrared laser and found distinct damage site recruitment thresholds for 53BP1 and TRF2 correlating with the dose-dependent increase of strand breaks and damage complexity. Low input-power microirradiation that induces relatively simple strand breaks led to robust recruitment of 53BP1 but not TRF2. In contrast, increased strand breaks with complex damage including crosslinking and base damage generated by high input-power microirradiation resulted in TRF2 recruitment to damage sites with no 53BP1 clustering. We found that poly(ADP-ribose) polymerase (PARP) activation distinguishes between the two damage states and that PARP activation is essential for rapid TRF2 recruitment while suppressing 53BP1 accumulation at damage sites. Thus, our results reveal that careful titration of laser irradiation conditions allows induction of varying amounts and complexities of DNA damage that are gauged by differential PARP activation regulating protein assembly at the damage site. PMID:26424850

  18. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-07-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency.

  19. Morphological, biochemical, and histopathological indices and contaminant burdens of cotton rats (Sigmodon hispidus) at three hazardous waste sites near Houston, Texas, USA

    USGS Publications Warehouse

    Rattner, B.A.; Flickinger, Edward L.; Hoffman, D.J.

    1993-01-01

    Male cotton rats (Sigmodon hispidus) were studied at three industrial waste sites near Houston, Texas, to determine whether various morphological, biochemical, and histopathological indices provided evidence of contaminant exposure and toxic insult. Only modest changes were detected in cotton rats residing at waste sites compared with reference sites. No single parameter was consistently altered, except hepatic cytochrome P-450 concentration which was lower ( [Formula: see text] ) at two waste sites, and tended to be lower ( [Formula: see text] ) at a third waste site. Elevated petroleum hydrocarbon concentrations were detected in rats at one waste site, but contaminant burdens of rats from the other sites were unremarkable. Unlike rats captured in summer, those trapped in winter exhibited hepatocellular hypertrophy and up to a 65% increase in liver: body weight ratio, cytochrome P-450 concentration, and activities of aniline hydroxylase, aryl hydrocarbon hydroxylase, and glutathione S-transferase. Although genotoxicity has been previously documented in cotton rats residing at two of the waste sites, biomarkers in the present study provided little evidence of exposure and damage

  20. Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides and CRISPR/Cas9 Systems

    PubMed Central

    Bialk, Pawel; Rivera-Torres, Natalia; Strouse, Bryan; Kmiec, Eric B.

    2015-01-01

    Single-stranded DNA oligonucleotides (ssODNs) can direct the repair of a single base mutation in human genes. While the regulation of this gene editing reaction has been partially elucidated, the low frequency with which repair occurs has hampered development toward clinical application. In this work a CRISPR/Cas9 complex is employed to induce double strand DNA breakage at specific sites surrounding the nucleotide designated for exchange. The result is a significant elevation in ssODN-directed gene repair, validated by a phenotypic readout. By analysing reaction parameters, we have uncovered restrictions on gene editing activity involving CRISPR/Cas9 complexes. First, ssODNs that hybridize to the non-transcribed strand direct a higher level of gene repair than those that hybridize to the transcribed strand. Second, cleavage must be proximal to the targeted mutant base to enable higher levels of gene editing. Third, DNA cleavage enables a higher level of gene editing activity as compared to single-stranded DNA nicks, created by modified Cas9 (Nickases). Fourth, we calculated the hybridization potential and free energy levels of ssODNs that are complementary to the guide RNA sequences of CRISPRs used in this study. We find a correlation between free energy potential and the capacity of single-stranded oligonucleotides to inhibit specific DNA cleavage activity, thereby indirectly reducing gene editing activity. Our data provide novel information that might be taken into consideration in the design and usage of CRISPR/Cas9 systems with ssODNs for gene editing. PMID:26053390

  1. Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides and CRISPR/Cas9 Systems.

    PubMed

    Bialk, Pawel; Rivera-Torres, Natalia; Strouse, Bryan; Kmiec, Eric B

    2015-01-01

    Single-stranded DNA oligonucleotides (ssODNs) can direct the repair of a single base mutation in human genes. While the regulation of this gene editing reaction has been partially elucidated, the low frequency with which repair occurs has hampered development toward clinical application. In this work a CRISPR/Cas9 complex is employed to induce double strand DNA breakage at specific sites surrounding the nucleotide designated for exchange. The result is a significant elevation in ssODN-directed gene repair, validated by a phenotypic readout. By analysing reaction parameters, we have uncovered restrictions on gene editing activity involving CRISPR/Cas9 complexes. First, ssODNs that hybridize to the non-transcribed strand direct a higher level of gene repair than those that hybridize to the transcribed strand. Second, cleavage must be proximal to the targeted mutant base to enable higher levels of gene editing. Third, DNA cleavage enables a higher level of gene editing activity as compared to single-stranded DNA nicks, created by modified Cas9 (Nickases). Fourth, we calculated the hybridization potential and free energy levels of ssODNs that are complementary to the guide RNA sequences of CRISPRs used in this study. We find a correlation between free energy potential and the capacity of single-stranded oligonucleotides to inhibit specific DNA cleavage activity, thereby indirectly reducing gene editing activity. Our data provide novel information that might be taken into consideration in the design and usage of CRISPR/Cas9 systems with ssODNs for gene editing.

  2. Nicotine Induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    PubMed Central

    Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui

    2011-01-01

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt −377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. PMID:21971485

  3. Influence of acylation sites of influenza B virus hemagglutinin on fusion pore formation and dilation.

    PubMed

    Ujike, Makoto; Nakajima, Katsuhisa; Nobusawa, Eri

    2004-11-01

    The cytoplasmic tail (CT) of hemagglutinin (HA) of influenza B virus (BHA) contains at positions 578 and 581 two highly conserved cysteine residues (Cys578 and Cys581) that are modified with palmitic acid (PA) through a thioester linkage. To investigate the role of PA in the fusion activity of BHA, site-specific mutagenesis was performed with influenza B virus B/Kanagawa/73 HA cDNA. All of the HA mutants were expressed on Cos cells by an expression vector. The membrane fusion ability of the HA mutants at a low pH was quantitatively examined with lipid (octadecyl rhodamine B chloride) and aqueous (calcein) dye transfer assays and with the syncytium formation assay. Two deacylation mutants lacking a CT or carrying serine residues substituting for Cys578 and Cys581 promoted full fusion. However, one of the single-acylation-site mutants, C6, in which Cys581 is replaced with serine, promoted hemifusion but not pore formation. In contrast, four other single-acylation-site mutants that have a sole cysteine residue in the CT at position 575, 577, 579, or 581 promoted full fusion. The impaired pore-forming ability of C6 was improved by amino acid substitution between residues 578 and 582 or by deletion of the carboxy-terminal leucine at position 582. Syncytium-forming ability, however, was not adequately restored by these mutations. These facts indicated that the acylation was not significant in membrane fusion by BHA but that pore formation and pore dilation were appreciably affected by the particular amino acid sequence of the CT and the existence of a single acylation site in CT residue 578.

  4. The concept, reality and utility of single-site heterogeneous catalysts (SSHCs).

    PubMed

    Thomas, John Meurig

    2014-05-07

    Very substantial advances have recently been made in the design and construction of solid catalysts and in elucidating both their mode of operation and the factors that determine their selectivity and longevity. This Perspective explains how and why such progress has been made. One important factor, the deployment of single-site heterogeneous and enzymatic catalysts, used either alone or in conjunction with other strategies, including metabolic engineering, enables a multitude of new products (for example, environmentally clean jet fuel) to be readily manufactured. In a practical sense SSHCs enable the advantages of homogeneous and to a lesser degree enzymatic catalysts to be united with those of heterogeneous ones. With the aid of the vastly increasing families of nanoporous solids, desired catalytically active sites may be engineered in atomic detail on their inner, accessible surfaces, thereby opening up new possibilities in synthetic organic chemistry - as in the smooth formation of C-C and C[double bond, length as m-dash]N bonds in a number of intermolecular reactions - as well as in photocatalysts and in fluidized catalytic cracking of hydrocarbons.

  5. Probing the dynamics of restriction endonuclease NgoMIV-DNA interaction by single-molecule FRET.

    PubMed

    Tutkus, Marijonas; Sasnauskas, Giedrius; Rutkauskas, Danielis

    2017-12-01

    Many type II restriction endonucleases require two copies of their recognition sequence for optimal activity. Concomitant binding of two DNA sites by such an enzyme produces a DNA loop. Here we exploit single-molecule Förster resonance energy transfer (smFRET) of surface-immobilized DNA fragments to study the dynamics of DNA looping induced by tetrameric endonuclease NgoMIV. We have employed a DNA fragment with two NgoMIV recognition sites and a FRET dye pair such that upon protein-induced DNA looping the dyes are brought to close proximity resulting in a FRET signal. The dynamics of DNA-NgoMIV interactions proved to be heterogeneous, with individual smFRET trajectories exhibiting broadly different average looped state durations. Distinct types of the dynamics were attributed to different types of DNA-protein complexes, mediated either by one NgoMIV tetramer simultaneously bound to two specific sites ("slow" trajectories) or by semi-specific interactions of two DNA-bound NgoMIV tetramers ("fast" trajectories), as well as to conformational heterogeneity of individual NgoMIV molecules. © 2017 Wiley Periodicals, Inc.

  6. Direct activation of the olfactory cyclic nucleotide-gated channel through modification of sulfhydryl groups by NO compounds.

    PubMed

    Broillet, M C; Firestein, S

    1996-02-01

    The activation of a cyclic nucleotide-gated channel is the final step in sensory transduction in olfaction. Normally, this channel is opened by the intracellular cyclic nucleotide second messenger cAMP or cGMP. However, in single channel recordings we found that donors of nitric oxide, a putative intercellular messenger, could directly activate the native olfactory neuron channel. Its action was independent of the presence of the normal ligand and did not involve the cyclic nucleotide binding site, suggesting an alternate site on the molecule that is critical in channel gating. The biochemical pathway appears to utilize nitric oxide in one of its alternate redox states, the nitrosonium ion, transnitrosylating a free sulfhydryl group belonging to a cysteine residue tentatively identified as being in the region linking the S6 transmembrane domain to the ligand binding domain.

  7. ActiveDriverDB: human disease mutations and genome variation in post-translational modification sites of proteins

    PubMed Central

    Krassowski, Michal; Paczkowska, Marta; Cullion, Kim; Huang, Tina; Dzneladze, Irakli; Ouellette, B F Francis; Yamada, Joseph T; Fradet-Turcotte, Amelie

    2018-01-01

    Abstract Interpretation of genetic variation is needed for deciphering genotype-phenotype associations, mechanisms of inherited disease, and cancer driver mutations. Millions of single nucleotide variants (SNVs) in human genomes are known and thousands are associated with disease. An estimated 21% of disease-associated amino acid substitutions corresponding to missense SNVs are located in protein sites of post-translational modifications (PTMs), chemical modifications of amino acids that extend protein function. ActiveDriverDB is a comprehensive human proteo-genomics database that annotates disease mutations and population variants through the lens of PTMs. We integrated >385,000 published PTM sites with ∼3.6 million substitutions from The Cancer Genome Atlas (TCGA), the ClinVar database of disease genes, and human genome sequencing projects. The database includes site-specific interaction networks of proteins, upstream enzymes such as kinases, and drugs targeting these enzymes. We also predicted network-rewiring impact of mutations by analyzing gains and losses of kinase-bound sequence motifs. ActiveDriverDB provides detailed visualization, filtering, browsing and searching options for studying PTM-associated mutations. Users can upload mutation datasets interactively and use our application programming interface in pipelines. Integrative analysis of mutations and PTMs may help decipher molecular mechanisms of phenotypes and disease, as exemplified by case studies of TP53, BRCA2 and VHL. The open-source database is available at https://www.ActiveDriverDB.org. PMID:29126202

  8. Structural Studies of E. coli Topoisomerase III-DNA Complexes Reveal A Novel Type IA Topoisomerase-DNA Conformational Intermediate

    PubMed Central

    Changela, Anita; DiGate, Russell J.; Mondragón, Alfonso

    2007-01-01

    Summary E. coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5′ phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an 8-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is bound along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding. PMID:17331537

  9. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolutionmore » crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.« less

  10. Two variants of the major serine protease inhibitor from the sea anemone Stichodactyla helianthus, expressed in Pichia pastoris.

    PubMed

    García-Fernández, Rossana; Ziegelmüller, Patrick; González, Lidice; Mansur, Manuel; Machado, Yoan; Redecke, Lars; Hahn, Ulrich; Betzel, Christian; Chávez, María de Los Ángeles

    2016-07-01

    The major protease inhibitor from the sea anemone Stichodactyla helianthus (ShPI-1) is a non-specific inhibitor that binds trypsin and other trypsin-like enzymes, as well as chymotrypsin, and human neutrophil elastase. We performed site-directed mutagenesis of ShPI-1 to produce two variants (rShPI-1/K13L and rShPI/Y15S) that were expressed in Pichia pastoris, purified, and characterized. After a single purification step, 65 mg and 15 mg of protein per liter of culture supernatant were obtained for rShPI-1/K13L and rShPI/Y15S, respectively. Functional studies demonstrated a 100-fold decreased trypsin inhibitory activity as result of the K13L substitution at the reactive (P1) site. This protein variant has a novel tight-binding inhibitor activity of pancreatic elastase and increased activity toward neutrophil elastase in comparison to rShPI-1A. In contrast, the substitution Y15S at P2' site did not affect the Ki value against trypsin, but did reduce activity 10-fold against chymotrypsin and neutrophil elastase. Our results provide two new ShPI-1 variants with modified inhibitory activities, one of them with increased biomedical potential. This study also offers new insight into the functional impact of the P1 and P2' sites on ShPI-1 specificity. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Ensemble-Based Computational Approach Discriminates Functional Activity of p53 Cancer and Rescue Mutants

    PubMed Central

    Demir, Özlem; Baronio, Roberta; Salehi, Faezeh; Wassman, Christopher D.; Hall, Linda; Hatfield, G. Wesley; Chamberlin, Richard; Kaiser, Peter; Lathrop, Richard H.; Amaro, Rommie E.

    2011-01-01

    The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain (“cancer mutants”). Activity can be restored by second-site suppressor mutations (“rescue mutants”). This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD), without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC) metric was strongly correlated (r2 = 0.77) with reported values of experimentally measured ΔΔG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i) p53 cancer mutants were more flexible than wild-type protein, (ii) second-site rescue mutations decreased the flexibility of cancer mutants, and (iii) negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants. PMID:22028641

  12. N2O + CO reaction over single Ga or Ge atom embedded graphene: A DFT study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Vessally, Esmail

    2018-01-01

    The possibility of using a single Ga or Ge atom embedded graphene as an efficient catalyst for the reduction of N2O molecule by CO is examined. We perform density functional theory calculations to calculate adsorption energies as well as analysis of the structural and electronic properties of different species involved in the N2O + CO reaction. The large activation energy for the diffusion of the single Ga or Ge atom on the C vacancy site of graphene shows the high stability of both Ga- and Ge-embedded graphene sheets in the N2O reduction. The activation energy needed for the decomposition of N2O is calculated to be 18.4 and 14.1 kcal/mol over Ga- and Ge-embedded graphene, respectively. The results indicate that the Ge-embedded graphene may serve as an effective catalyst for the N2O reduction. Moreover, the activation energy for the disproportionation of N2O molecules that generates N2 and O2 is relatively high; so, the generation of these side products may be hindered by decreasing the temperature.

  13. Site-specific PEGylation of an anti-CEA/CD3 bispecific antibody improves its antitumor efficacy

    PubMed Central

    Pan, Haitao; Liu, Jiayu; Deng, Wentong; Xing, Jieyu; Li, Qing; Wang, Zhong

    2018-01-01

    Introduction Bispecific antibodies that engage immune cells to kill cancer cells are actively pursued in cancer immunotherapy. Different types of bispecific antibodies, including single-chain fragments, Fab fragments, nanobodies, and immunoglobulin Gs (IgGs), have been studied. However, the low molecular weight of bispecific antibodies with single-chain or Fab fragments generally leads to their rapid clearance in vivo, which limits the therapeutic potential of these bispecific antibodies. Materials and methods In this study, we used a site-specific PEGylation strategy to modify the bispecific single-domain antibody-linked Fab (S-Fab), which was designed by linking an anticarcinoembryonic antigen (anti-CEA) nanobody with an anti-CD3 Fab. Results The half-life (t1/2) of PEGylated S-Fab (polyethylene glycol-S-Fab) was increased 12-fold in vivo with a slightly decreased tumor cell cytotoxicity in vitro as well as more potent tumor growth inhibition in vivo compared to S-Fab. Conclusion This study demonstrated that PEGylation is an effective approach to enhance the antitumor efficacy of bispecific antibodies. PMID:29881272

  14. Thermally induced alkylation of diamond.

    PubMed

    Hoeb, Marco; Auernhammer, Marianne; Schoell, Sebastian J; Brandt, Martin S; Garrido, Jose A; Stutzmann, Martin; Sharp, Ian D

    2010-12-21

    We present an approach for the thermally activated formation of alkene-derived self-assembled monolayers on oxygen-terminated single and polycrystalline diamond surfaces. Chemical modification of the oxygen and hydrogen plasma-treated samples was achieved by heating in 1-octadecene. The resulting layers were characterized using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. This investigation reveals that alkenes selectively attach to the oxygen-terminated sites via covalent C-O-C bonds. The hydrophilic oxygen-terminated diamond is rendered strongly hydrophobic following this reaction. The nature of the process limits the organic layer growth to a single monolayer, and FTIR measurements reveal that such monolayers are dense and well ordered. In contrast, hydrogen-terminated diamond sites remain unaffected by this process. This method is thus complementary to the UV-initiated reaction of alkenes with diamond, which exhibits the opposite reactivity contrast. Thermal alkylation increases the range of available diamond functionalization strategies and provides a means of straightforwardly forming single organic layers in order to engineer the surface properties of diamond.

  15. Vibrational Dynamics of Biological Molecules: Multi-quantum Contributions

    PubMed Central

    Leu, Bogdan M.; Timothy Sage, J.; Zgierski, Marek Z.; Wyllie, Graeme R. A.; Ellison, Mary K.; Robert Scheidt, W.; Sturhahn, Wolfgang; Ercan Alp, E.; Durbin, Stephen M.

    2006-01-01

    High-resolution X-ray measurements near a nuclear resonance reveal the complete vibrational spectrum of the probe nucleus. Because of this, nuclear resonance vibrational spectroscopy (NRVS) is a uniquely quantitative probe of the vibrational dynamics of reactive iron sites in proteins and other complex molecules. Our measurements of vibrational fundamentals have revealed both frequencies and amplitudes of 57Fe vibrations in proteins and model compounds. Information on the direction of Fe motion has also been obtained from measurements on oriented single crystals, and provides an essential test of normal mode predictions. Here, we report the observation of weaker two-quantum vibrational excitations (overtones and combinations) for compounds that mimic the active site of heme proteins. The predicted intensities depend strongly on the direction of Fe motion. We compare the observed features with predictions based on the observed fundamentals, using information on the direction of Fe motion obtained either from DFT predictions or from single crystal measurements. Two-quantum excitations may become a useful tool to identify the directions of the Fe oscillations when single crystals are not available. PMID:16894397

  16. Mutated form (G52E) of inactive diphtheria toxin CRM197: molecular simulations clearly display effect of the mutation to NAD binding.

    PubMed

    Salmas, Ramin Ekhteiari; Mestanoglu, Mert; Unlu, Ayhan; Yurtsever, Mine; Durdagi, Serdar

    2016-11-01

    Mutated form (G52E) of diphtheria toxin (DT) CRM197 is an inactive and nontoxic enzyme. Here, we provided a molecular insight using comparative molecular dynamics (MD) simulations to clarify the influence of a single point mutation on overall protein and active-site loop. Post-processing MD analysis (i.e. stability, principal component analysis, hydrogen-bond occupancy, etc.) is carried out on both wild and mutated targets to investigate and to better understand the mechanistic differences of structural and dynamical properties on an atomic scale especially at nicotinamide adenine dinucleotide (NAD) binding site when a single mutation (G52E) happens at the DT. In addition, a docking simulation is performed for wild and mutated forms. The docking scoring analysis and docking poses results revealed that mutant form is not able to properly accommodate the NAD molecule.

  17. Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Qingying; Ramaswamy, Nagappan; Tylus, Urszula

    Developing efficient and inexpensive catalysts for the sluggish oxygen reduction reaction (ORR) constitutes one of the grand challenges in the fabrication of commercially viable fuel cell devices and metal–air batteries for future energy applications. Despite recent achievements in designing advanced Pt-based and Pt-free catalysts, current progress primarily involves an empirical approach of trial-and-error combination of precursors and synthesis conditions, which limits further progress. Rational design of catalyst materials requires proper understanding of the mechanistic origin of the ORR and the underlying surface properties under operating conditions that govern catalytic activity. Herein, several different groups of iron-based catalysts synthesized via differentmore » methods and/or precursors were systematically studied by combining multiple spectroscopic techniques under ex situ and in situ conditions in an effort to obtain a comprehensive understanding of the synthesis-products correlations, nature of active sites, and the reaction mechanisms. These catalysts include original macrocycles, macrocycle-pyrolyzed catalysts, and Fe-N–C catalysts synthesized from individual Fe, N, and C precursors including polymer-based catalysts, metal organic framework (MOF)-based catalysts, and sacrificial support method (SSM)-based catalysts. The latter group of catalysts is most promising as not only they exhibit exceptional ORR activity and/or durability, but also the final products are controllable. We show that the high activity observed for most pyrolyzed Fe-based catalysts can mainly be attributed to a single active site: non-planar Fe–N 4 moiety embedded in distorted carbon matrix characterized by a high potential for the Fe 2+/3+ redox transition in acidic electrolyte/environment. The high intrinsic ORR activity, or turnover frequency (TOF), of this site is shown to be accounted for by redox catalysis mechanism that highlights the dominant role of the site-blocking effect. Moreover, a highly active MOF-based catalyst without Fe–N moieties was developed, and the active sites were identified as nitrogen-doped carbon fibers with embedded iron particles that are not directly involved in the oxygen reduction pathway. The high ORR activity and durability of catalysts involving this second site, as demonstrated in fuel cell, are attributed to the high density of active sites and the elimination or reduction of Fenton-type processes. The latter are initiated by hydrogen peroxide but are known to be accelerated by iron ions exposed to the surface, resulting in the formation of damaging free-radicals.« less

  18. A structurally based analytic model of growth and biomass dynamics in single species stands of conifers

    Treesearch

    Robin J. Tausch

    2015-01-01

    A theoretically based analytic model of plant growth in single species conifer communities based on the species fully occupying a site and fully using the site resources is introduced. Model derivations result in a single equation simultaneously describes changes over both, different site conditions (or resources available), and over time for each variable for each...

  19. The pure anti-oestrogen ICI 182,780 (Faslodex™) activates large conductance Ca2+-activated K+ channels in smooth muscle

    PubMed Central

    Dick, Gregory M

    2002-01-01

    Oestrogen and tamoxifen activate large conductance Ca2+-activated K+ (BKCa) channels in smooth muscle through a non-genomic mechanism that depends on the regulatory β1 subunit and an extracellular binding site. It is unknown whether a ‘pure' anti-oestrogen such as ICI 182,780 (Faslodex™), that has no known oestrogenic properties, would have any effect on BKCa channels. Using single channel patch clamp techniques on canine colonic myocytes, the hypothesis that ICI 182,780 would activate BKCa channels was tested. ICI 182,780 increased the open probability of BKCa channels in inside-out patches with an EC50 of 1 μM. These data suggest that molecules with the ability to bind nuclear oestrogen receptors, regardless of oestrogenic or anti-oestrogenic nature, activate BKCa channels through this nongenomic, membrane-delimited mechanism. The identity and characteristics of this putative binding site remain unclear; however, it has pharmacological similarity to oestrogen receptors α and β, as ICI 182,780 interacts with it. PMID:12145095

  20. Efficient activation of transcription in yeast by the BPV1 E2 protein.

    PubMed Central

    Stanway, C A; Sowden, M P; Wilson, L E; Kingsman, A J; Kingsman, S M

    1989-01-01

    The full-length gene product encoded by the E2 open reading frame (ORF) of bovine papillomavirus type 1 (BPV1) is a transcriptional transactivator. It is believed to mediate its effect on the BPV1 long control region (LCR) by binding to motifs with the consensus sequence ACCN6GGT. The minimal functional cis active site, called the E2 response element (E2RE), in mammalian cells comprises two copies of this motif. Here we have shown that E2 can function in Saccharomyces cerevisiae by placing an E2RE upstream of a synthetic yeast assay promoter which consists of a TATA motif and an mRNA initiation site, spaced correctly. This E2RE-minimal promoter is only transcriptionally active in the presence of E2 protein and the resulting mRNA is initiated at the authentic start site. This is the first report of a mammalian viral transactivator functioning in yeast. The level of activation by E2 via the E2RE was the same as observed with the highly efficient authentic PGK promoter where the upstream activation sequence is composed of three distinct elements. Furthermore a single E2 motif which is insufficient in mammalian cells as an activation site was as efficiently utilized in yeast as the E2RE (2 motifs). Previous studies have shown that mammalian cellular activators can function in yeast and our data now extend this to viral-specific activators. Our data indicate however that while the mechanism of transactivation is broadly conserved there may be significant differences at the detailed level. Images PMID:2539584

  1. An Iron Reservoir to the Catalytic Metal

    PubMed Central

    Liu, Fange; Geng, Jiafeng; Gumpper, Ryan H.; Barman, Arghya; Davis, Ian; Ozarowski, Andrew; Hamelberg, Donald; Liu, Aimin

    2015-01-01

    The rubredoxin motif is present in over 74,000 protein sequences and 2,000 structures, but few have known functions. A secondary, non-catalytic, rubredoxin-like iron site is conserved in 3-hydroxyanthranilate 3,4-dioxygenase (HAO), from single cellular sources but not multicellular sources. Through the population of the two metal binding sites with various metals in bacterial HAO, the structural and functional relationship of the rubredoxin-like site was investigated using kinetic, spectroscopic, crystallographic, and computational approaches. It is shown that the first metal presented preferentially binds to the catalytic site rather than the rubredoxin-like site, which selectively binds iron when the catalytic site is occupied. Furthermore, an iron ion bound to the rubredoxin-like site is readily delivered to an empty catalytic site of metal-free HAO via an intermolecular transfer mechanism. Through the use of metal analysis and catalytic activity measurements, we show that a downstream metabolic intermediate can selectively remove the catalytic iron. As the prokaryotic HAO is often crucial for cell survival, there is a need for ensuring its activity. These results suggest that the rubredoxin-like site is a possible auxiliary iron source to the catalytic center when it is lost during catalysis in a pathway with metabolic intermediates of metal-chelating properties. A spare tire concept is proposed based on this biochemical study, and this concept opens up a potentially new functional paradigm for iron-sulfur centers in iron-dependent enzymes as transient iron binding and shuttling sites to ensure full metal loading of the catalytic site. PMID:25918158

  2. Assigning Quantitative Function to Post-Translational Modifications Reveals Multiple Sites of Phosphorylation That Tune Yeast Pheromone Signaling Output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pincus, David; Ryan, Christopher J.; Smith, Richard D.

    2013-03-12

    Cell signaling systems transmit information by post-­translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-­protein coupled receptor (GPCR). We used mass spectrometry-based proteomics to identify sitesmore » whose phosphorylation changed when the system was active, and evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of regulated phosphorylation events that contribute to adjust the input-­output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results further suggest that relatively small quantitative influences from individual regulatory phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes.« less

  3. ß-Adrenergic Stimulation Increases RyR2 Activity via Intracellular Ca2+ and Mg2+ Regulation

    PubMed Central

    Li, Jiao; Imtiaz, Mohammad S.; Beard, Nicole A.; Dulhunty, Angela F.; Thorne, Rick; vanHelden, Dirk F.; Laver, Derek R.

    2013-01-01

    Here we investigate how ß-adrenergic stimulation of the heart alters regulation of ryanodine receptors (RyRs) by intracellular Ca2+ and Mg2+ and the role of these changes in SR Ca2+ release. RyRs were isolated from rat hearts, perfused in a Langendorff apparatus for 5 min and subject to 1 min perfusion with 1 µM isoproterenol or without (control) and snap frozen in liquid N2 to capture their phosphorylation state. Western Blots show that RyR2 phosphorylation was increased by isoproterenol, confirming that RyR2 were subject to normal ß-adrenergic signaling. Under basal conditions, S2808 and S2814 had phosphorylation levels of 69% and 15%, respectively. These levels were increased to 83% and 60%, respectively, after 60 s of ß-adrenergic stimulation consistent with other reports that ß-adrenergic stimulation of the heart can phosphorylate RyRs at specific residues including S2808 and S2814 causing an increase in RyR activity. At cytoplasmic [Ca2+] <1 µM, ß-adrenergic stimulation increased luminal Ca2+ activation of single RyR channels, decreased luminal Mg2+ inhibition and decreased inhibition of RyRs by mM cytoplasmic Mg2+. At cytoplasmic [Ca2+] >1 µM, ß-adrenergic stimulation only decreased cytoplasmic Mg2+ and Ca2+ inhibition of RyRs. The Ka and maximum levels of cytoplasmic Ca2+ activation site were not affected by ß-adrenergic stimulation. Our RyR2 gating model was fitted to the single channel data. It predicted that in diastole, ß-adrenergic stimulation is mediated by 1) increasing the activating potency of Ca2+ binding to the luminal Ca2+ site and decreasing its affinity for luminal Mg2+ and 2) decreasing affinity of the low-affinity Ca2+/Mg2+ cytoplasmic inhibition site. However in systole, ß-adrenergic stimulation is mediated mainly by the latter. PMID:23533585

  4. Intracortical microstimulation induced changes in spectral and temporal response properties in cat auditory cortex.

    PubMed

    Valentine, Pamela A; Eggermont, Jos J

    2003-09-01

    Intracortical microstimulation (ICMS), consisting of a 40 ms burst (rate 300 Hz) of 10 microA pulses, repetitively administered once per second, for a total duration of 1 h, induced cortical reorganization in the primary auditory cortical field of the anesthetized cat. Multiple single-unit activity was simultaneously recorded from three to nine microelectrodes. Spiking activity was recorded from the same units prior to and following the application of ICMS in conjunction with tone pips at the characteristic frequency (CF) of the stimulus electrode. ICMS produced a significant increase in the mean firing rate, and in the occurrence of burst activity. There was an increase in the cross-correlation coefficient (R) for unit pairs recorded from sites distant from the ICMS site, and a decrease in R for unit pairs that were recorded at the stimulation site. ICMS induced a shift in the CF, dependent on the difference between the baseline CF and the ICMS-paired tone pip frequency. ICMS also resulted in broader tuning curves, increased driven peak firing rate and reduced response latency. This suggests a lasting reduction in inhibition in a small region surrounding the ICMS site that allows expansion of the frequency range normally represented in the vicinity of the stimulation electrode.

  5. Ligand uptake in Mycobacterium tuberculosis truncated hemoglobins is controlled by both internal tunnels and active site water molecules.

    PubMed

    Boron, Ignacio; Bustamante, Juan Pablo; Davidge, Kelly S; Singh, Sandip; Bowman, Lesley Ah; Tinajero-Trejo, Mariana; Carballal, Sebastián; Radi, Rafael; Poole, Robert K; Dikshit, Kanak; Estrin, Dario A; Marti, Marcelo A; Boechi, Leonardo

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of human tuberculosis, has two proteins belonging to the truncated hemoglobin (trHb) family. Mt-trHbN presents well-defined internal hydrophobic tunnels that allow O 2 and • NO to migrate easily from the solvent to the active site, whereas Mt-trHbO possesses tunnels interrupted by a few bulky residues, particularly a tryptophan at position G8. Differential ligand migration rates allow Mt-trHbN to detoxify • NO, a crucial step for pathogen survival once under attack by the immune system, much more efficiently than Mt-trHbO. In order to investigate the differences between these proteins, we performed experimental kinetic measurements, • NO decomposition, as well as molecular dynamics simulations of the wild type Mt-trHbN and two mutants, VG8F and VG8W. These mutations affect both the tunnels accessibility as well as the affinity of distal site water molecules, thus modifying the ligand access to the iron. We found that a single mutation allows Mt-trHbN to acquire ligand migration rates comparable to those observed for Mt-trHbO, confirming that ligand migration is regulated by the internal tunnel architecture as well as by water molecules stabilized in the active site.

  6. Structural Insights into the Role of the Cyclic Backbone in a Squash Trypsin Inhibitor*

    PubMed Central

    Daly, Norelle L.; Thorstholm, Louise; Greenwood, Kathryn P.; King, Gordon J.; Rosengren, K. Johan; Heras, Begoña; Martin, Jennifer L.; Craik, David J.

    2013-01-01

    MCoTI-II is a head-to-tail cyclic peptide with potent trypsin inhibitory activity and, on the basis of its exceptional proteolytic stability, is a valuable template for the design of novel drug leads. Insights into inhibitor dynamics and interactions with biological targets are critical for drug design studies, particularly for protease targets. Here, we show that the cyclization and active site loops of MCoTI-II are flexible in solution, but when bound to trypsin, the active site loop converges to a single well defined conformation. This finding of reduced flexibility on binding is in contrast to a recent study on the homologous peptide MCoTI-I, which suggested that regions of the peptide are more flexible upon binding to trypsin. We provide a possible explanation for this discrepancy based on degradation of the complex over time. Our study also unexpectedly shows that the cyclization loop, not present in acyclic homologues, facilitates potent trypsin inhibitory activity by engaging in direct binding interactions with trypsin. PMID:24169696

  7. Molecular Active Sites in Heterogeneous Ir-La/C-Catalyzed Carbonylation of Methanol to Acetates.

    PubMed

    Kwak, Ja Hun; Dagle, Robert; Tustin, Gerald C; Zoeller, Joseph R; Allard, Lawrence F; Wang, Yong

    2014-02-06

    We report that when Ir and La halides are deposited on carbon, exposure to CO spontaneously generates a discrete molecular heterobimetallic structure, containing an Ir-La covalent bond that acts as a highly active, selective, and stable heterogeneous catalyst for the carbonylation of methanol to produce acetic acid. This catalyst exhibits a very high productivity of ∼1.5 mol acetyl/mol Ir·s with >99% selectivity to acetyl (acetic acid and methyl acetate) without detectable loss in activity or selectivity for more than 1 month of continuous operation. The enhanced activity can be mechanistically rationalized by the presence of La within the ligand sphere of the discrete molecular Ir-La heterobimetallic structure, which acts as a Lewis acid to accelerate the normally rate-limiting CO insertion in Ir-catalyzed carbonylation. Similar approaches may provide opportunities for attaining molecular (single site) behavior similar to homogeneous catalysis on heterogeneous surfaces for other industrial applications.

  8. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niles, L.P.; Hashemi, F.

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax =more » 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.« less

  9. Simple-Cubic Carbon Frameworks with Atomically Dispersed Iron Dopants toward High-Efficiency Oxygen Reduction.

    PubMed

    Wang, Biwei; Wang, Xinxia; Zou, Jinxiang; Yan, Yancui; Xie, Songhai; Hu, Guangzhi; Li, Yanguang; Dong, Angang

    2017-03-08

    Iron and nitrogen codoped carbons (Fe-N-C) have attracted increasingly greater attention as electrocatalysts for oxygen reduction reaction (ORR). Although challenging, the synthesis of Fe-N-C catalysts with highly dispersed and fully exposed active sites is of critical importance for improving the ORR activity. Here, we report a new type of graphitic Fe-N-C catalysts featuring numerous Fe single atoms anchored on a three-dimensional simple-cubic carbon framework. The Fe-N-C catalyst, derived from self-assembled Fe 3 O 4 nanocube superlattices, was prepared by in situ ligand carbonization followed by acid etching and ammonia activation. Benefiting from its homogeneously dispersed and fully accessible active sites, highly graphitic nature, and enhanced mass transport, our Fe-N-C catalyst outperformed Pt/C and many previously reported Fe-N-C catalysts for ORR. Furthermore, when used for constructing the cathode for zinc-air batteries, our Fe-N-C catalyst exhibited current and power densities comparable to those of the state-of-the-art Pt/C catalyst.

  10. Three-dimensional analysis of flow-chemical interaction within a single square channel of a lean NO x trap catalyst.

    PubMed

    Fornarelli, Francesco; Dadduzio, Ruggiero; Torresi, Marco; Camporeale, Sergio Mario; Fortunato, Bernardo

    2018-02-01

    A fully 3D unsteady Computational Fluid Dynamics (CFD) approach coupled with heterogeneous reaction chemistry is presented in order to study the behavior of a single square channel as part of a Lean [Formula: see text] Traps. The reliability of the numerical tool has been validated against literature data considering only active BaO site. Even though the input/output performance of such catalyst has been well known, here the spatial distribution within a single channel is investigated in details. The square channel geometry influences the flow field and the catalyst performance being the flow velocity distribution on the cross section non homogeneous. The mutual interaction between the flow and the active catalyst walls influences the spatial distribution of the volumetric species. Low velocity regions near the square corners and transversal secondary flows are shown in several cross-sections along the streamwise direction at different instants. The results shed light on the three-dimensional characteristic of both the flow field and species distribution within a single square channel of the catalyst with respect to 0-1D approaches.

  11. Robotic-assisted single-port donor nephrectomy using the da Vinci single-site platform.

    PubMed

    LaMattina, John C; Alvarez-Casas, Josue; Lu, Irene; Powell, Jessica M; Sultan, Samuel; Phelan, Michael W; Barth, Rolf N

    2018-02-01

    Although single-port donor nephrectomy offers improved cosmetic outcomes, technical challenges have limited its application to selected centers. Our center has performed over 400 single-port donor nephrectomies. The da Vinci single-site robotic platform was utilized in an effort to overcome the steric, visualization, ergonomic, and other technical limitations associated with the single-port approach. Food and Drug Administration device exemption was obtained. Selection criteria for kidney donation included body mass index <35, left kidney donors, and ≤2 renal arteries. After colonic mobilization using standard single-port techniques, the robotic approach was utilized for ureteral complex and hilar dissection. Three cases were performed using the robotic single-site platform. Average total operative time was 262 ± 42 min including 82 ± 16 min of robotic use. Docking time took 20 ± 10 min. Blood loss averaged 77 ± 64 mL. No intraoperative complications occurred, and all procedures were completed with our standard laparoscopic single-port approach. This is the first clinical experience of robotic-assisted donor nephrectomy utilizing the da Vinci single-site platform. Our experience supported the safety of this approach but found that the technology added cost and complexity without tangible benefit. Development of articulating instruments, energy, and stapling devices will be necessary for increased application of robotic single-site surgery for donor nephrectomy. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Catalytic efficiency and thermostability improvement of Suc2 invertase through rational site-directed mutagenesis.

    PubMed

    Mohandesi, Nooshin; Haghbeen, Kamahldin; Ranaei, Omid; Arab, Seyed Shahriar; Hassani, Sorour

    2017-01-01

    Engineering of invertases has come to attention because of increasing demand for possible applications of invertases in various industrial processes. Due to the known physicochemical properties, invertases from micro-organisms such as Saccharomyces cerevisiae carrying SUC2 gene are considered as primary models. To improve thermostability and catalytic efficiency of SUC2 invertase (SInv), six influential residues with Relative Solvent Accessibility<5% were selected through multiple-sequence alignments, molecular modelling, structural and computational analyses. Consequently, SInv and 5 mutants including three mutants with single point substitution [Mut1=P152V, Mut2=S85V and Mut3=K153F)], one mutant with two points [Mut4=S305V-N463V] and one mutant with three points [Mut5=S85V-K153F-T271V] were developed via site-directed mutagenesis and produced using Pichia pastoris as the host. Physicochemical studies on these enzymes indicated that the selected amino acids which were located in the active site region mainly influenced catalytic efficiency. The best improvement belonged to Mut1 (54% increase in K cat /K m ) and Mut3 exhibited the worst effect (90% increase in K m ). These results suggest that Pro152 and Lys153 play key role in preparation of the right substrate lodging in the active site of SInv. The best thermostability improvement (16%) was observed for Mut4 in which two hydrophilic residues located on the loops, far from the active site, were replaced by Valines. These results suggest that tactful simultaneous substitution of influential hydrophilic residues in both active site region and peripheral loops with hydrophobic amino acids could result in more thermostable invertases with enhanced catalytic efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom.

    PubMed

    Kitchen, Sheila A; Bourdelais, Andrea J; Taylor, Alison R

    2018-01-01

    The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC) in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na + ) and calcium (Ca 2+ ) permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na + VGCs. We examined the interaction of brevetoxin-3 (PbTx-3), a K. brevis neurotoxin, with the Na + /Ca 2+ VGC of the non-toxic diatom Odontella sinensi s using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin's effect on voltage gated Na + /Ca 2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na + /Ca 2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na + VGCs, previously identified as the PbTx binding site in animals. Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na + /Ca 2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na + /Ca 2+ VGCs than the 4-domain eukaryote channels. Although membrane excitability and the kinetics of action potential currents were unaffected, the permeation of the channels underlying the diatom action potential was significantly altered in the presence of PbTx-3. However, at environmentally relevant concentrations the effects of PbTx- on diatom voltage activated currents and interference of cell signaling through this pathway may be limited. The relative insensitivity of phytoplankton VGCs may be due to divergence of site-5 (the putative PbTx binding site), and in some cases, such as O. sinensis , resistance to toxin effects may be because of evolutionary loss of the 4-domain eukaryote channel, while retaining a single domain bacterial-like VGC that can substitute in the generation of fast action potentials.

  14. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells

    PubMed Central

    Kramm, Ulrike I.; Herranz, Juan; Larouche, Nicholas; Arruda, Thomas M.; Lefèvre, Michel; Jaouen, Frédéric; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Mukerjee, Sanjeev; Dodelet, Jean-Pol

    2012-01-01

    Fe-based catalytic sites for the reduction of oxygen in acidic medium have been identified by 57Fe Mössbauer spectroscopy of Fe/N/C catalysts containing 0.03 to 1.55 wt% Fe, which were prepared by impregnation of iron acetate on carbon black followed by heat-treatment in NH3 at 950°C. Four different Fe-species were detected at all iron concentrations: three doublets assigned to molecular FeN4-like sites with their ferrous ion in low (D1), medium (D2) or high spin state (D3), and two other doublets assigned to a single Fe-species (D4 and D5) consisting of surface oxidized nitride nanoparticles (FexN, with x≤2.1). A fifth Fe-species appears only in those catalysts with Fe-contents ≥ 0.27 wt%. It is characterized by a very broad singlet, which has been assigned to incomplete FeN4-like sites that quickly dissolve in contact with an acid. Among the five Fe-species identified in these catalysts, only D1 and D3 display catalytic activity for the oxygen reduction reaction (ORR) in the acid medium, with D3 featuring a composite structure with a protonated neighbour basic nitrogen and being by far the most active species, with an estimated turn over frequency for the ORR of 11.4 e− site−1 s−1 at 0.8V vs RHE. Moreover, all D1 sites and between 1/2 to 2/3 of the D3 sites are acid-resistant. A scheme for the mechanism of site formation upon heat-treatment is also proposed. This identification of the ORR-active sites in these catalysts is of crucial importance to design strategies to improve the catalytic activity and stability of these materials. PMID:22824866

  15. Modification of a single tryptophan residue in human Cu,Zn-superoxide dismutase by peroxynitrite in the presence of bicarbonate.

    PubMed

    Yamakura, F; Matsumoto, T; Fujimura, T; Taka, H; Murayama, K; Imai, T; Uchida, K

    2001-07-09

    Human recombinant Cu,Zn-SOD was reacted with peroxynitrite in a reaction mixture containing 150 mM potassium phosphate buffer (pH 7.4) 25 mM sodium bicarbonate, and 0.1 mM diethylenetriamine pentaacetic acid. Disappearance of fluorescence emission at 350 nm, which could be attributed to modification of a single tryptophan residue, was observed in the modified enzyme with a pH optimum of around 8.4. A fluorescence decrease with the same pH optimum was also observed without sodium bicarbonate, but with less efficiency. Amino acid contents of the modified enzyme showed no significant difference in all amino acids except the loss of a single tryptophan residue of the enzyme. The peroxynitrite-modified enzyme showed an increase in optical absorption around 350 nm and 30% reduced enzyme activity based on the copper contents. The modified enzyme showed the same electron paramagnetic resonance spectrum as that of the control enzyme. The modified Cu,Zn-SOD showed a single protein band in sodium dodecyl sulfate--polyacrylamide gel electrophoresis (SDS--PAGE) and five protein bands in non-denaturing PAGE. From this evidence, we conclude that nitration and/or oxidation of the single tryptophan 32 and partial inactivation of the enzyme activity of Cu,Zn-SOD is caused by a peroxynitrite-carbon dioxide adduct without perturbation of the active site copper integrity.

  16. Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Charlotte; Chen, Leanne D.; Siahrostami, Samira

    Single transition metal atoms embedded at single vacancies of graphene provide a unique paradigm for catalytic reactions. We present a density functional theory study of such systems for the electrochemical reduction of CO. Theoretical investigations of CO electrochemical reduction are particularly challenging in that electrochemical activation energies are a necessary descriptor of activity. We determined the electrochemical barriers for key proton–electron transfer steps using a state-of-the-art, fully explicit solvent model of the electrochemical interface. The accuracy of GGA-level functionals in describing these systems was also benchmarked against hybrid methods. We find the first proton transfer to form CHO from COmore » to be a critical step in C 1 product formation. On these single atom sites, the corresponding barrier scales more favorably with the CO binding energy than for 211 and 111 transition metal surfaces, in the direction of improved activity. Intermediates and transition states for the hydrogen evolution reaction were found to be less stable than those on transition metals, suggesting a higher selectivity for CO reduction. We present a rate volcano for the production of methane from CO. We identify promising candidates with high activity, stability, and selectivity for the reduction of CO. As a result, this work highlights the potential of these systems as improved electrocatalysts over pure transition metals for CO reduction.« less

  17. Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene

    DOE PAGES

    Kirk, Charlotte; Chen, Leanne D.; Siahrostami, Samira; ...

    2017-12-18

    Single transition metal atoms embedded at single vacancies of graphene provide a unique paradigm for catalytic reactions. We present a density functional theory study of such systems for the electrochemical reduction of CO. Theoretical investigations of CO electrochemical reduction are particularly challenging in that electrochemical activation energies are a necessary descriptor of activity. We determined the electrochemical barriers for key proton–electron transfer steps using a state-of-the-art, fully explicit solvent model of the electrochemical interface. The accuracy of GGA-level functionals in describing these systems was also benchmarked against hybrid methods. We find the first proton transfer to form CHO from COmore » to be a critical step in C 1 product formation. On these single atom sites, the corresponding barrier scales more favorably with the CO binding energy than for 211 and 111 transition metal surfaces, in the direction of improved activity. Intermediates and transition states for the hydrogen evolution reaction were found to be less stable than those on transition metals, suggesting a higher selectivity for CO reduction. We present a rate volcano for the production of methane from CO. We identify promising candidates with high activity, stability, and selectivity for the reduction of CO. As a result, this work highlights the potential of these systems as improved electrocatalysts over pure transition metals for CO reduction.« less

  18. Investigation of the Origin of Catalytic Activity in Oxide-Supported Nanoparticle Gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Ian

    Since Haruta’s discovery in 1987 of the surprising catalytic activity of supported Au nanoparticles, we have seen a very large number of experimental and theoretical efforts to explain this activity and to fully understand the nature of the behavior of the responsible active sites. In 2011, we discovered that a dual catalytic site at the perimeter of ~3nm diameter Au particles supported on TiO 2 is responsible for oxidative catalytic activity. O 2 molecules bind with Au atoms and Ti4+ ions in the TiO 2 support and the weakened O-O bond dissociates at low temperatures, proceeding to produce O atomsmore » which act as oxidizing agents for the test molecule, CO. The papers supported by DOE have built on this finding and have been concerned with two aspects of the behavior of Au/TiO 2 catalysts: (1). Mechanistic behavior of dual catalytic sites in the oxidation of organic molecules such as ethylene and acetic acid; (2). Studies of the electronic properties of the TiO 2 (110) single crystal in relation to its participation in charge transfer at the occupied dual catalytic site. A total of 20 papers have been produced through DOE support of this work. The papers combine IR spectroscopic investigations of Au/TiO 2 catalysts with surface science on the TiO 2(110) and TiO 2 nanoparticle surfaces with modern density functional modeling. The primary goals of the work were to investigate the behavior of the dual Au/Ti 4+ site for the partial oxidation of alcohols to acids, the hydrogenation of aldehydes and ketones to alcohols, and the condensation of oxygenate intermediates- all processes related to the utilization of biomass in the production of useful chemical energy sources.« less

  19. Conformational Dynamics Modulate Activation of the Ubiquitin Conjugating Enzyme Ube2g2

    PubMed Central

    2017-01-01

    The ubiquitin conjugating enzyme Ube2g2 together with its cognate E3 ligase gp78 catalyzes the synthesis of lysine-48 polyubiquitin chains constituting signals for the proteasomal degradation of misfolded proteins in the endoplasmic reticulum. Here, we employ NMR spectroscopy in combination with single-turnover diubiquitin formation assays to examine the role of the RING domain from gp78 in the catalytic activation of Ube2g2∼Ub conjugates. We find that approximately 60% of the Ube2g2∼Ub conjugates occupy a closed conformation in the absence of gp78-RING, with the population increasing to 82% upon gp78-RING binding. As expected, strong mutations in the hydrophobic patch residues of the ∼Ub moiety result in Ube2g2∼Ub populating only open states with corresponding loss of the ubiquitin conjugation activity. Less disruptive mutations introduced into the hydrophobic patch of the ∼Ub moiety also destabilize the closed conformational state, yet the corresponding effect on the ubiquitin conjugation activity ranges from complete loss to an enhancement of the catalytic activity. These results present a picture in which Ube2g2’s active site is in a state of continual dynamic flux with the organization of the active site into a catalytically viable conformation constituting the rate-limiting step for a single ubiquitin ligation event. Ube2g2’s function as a highly specific K48-polyubiquitin chain elongator leads us to speculate that this may be a strategy by which Ube2g2 reduces the probability of nonproductive catalytic outcomes in the absence of available substrate. PMID:28884161

  20. Ground Motion Uncertainty and Variability (single-station sigma): Insights from Euroseistest, Greece

    NASA Astrophysics Data System (ADS)

    Ktenidou, O. J.; Roumelioti, Z.; Abrahamson, N. A.; Cotton, F.; Pitilakis, K.

    2014-12-01

    Despite recent improvements in networks and data, the global aleatory uncertainty (sigma) in GMPEs is still large. One reason is the ergodic approach, where we combine data in space to make up for lack of data in time. By estimating the systematic site response, we can make site-specific GMPEs and use a lower, site-specific uncertainty: single-station sigma. In this study we use the EUROSEISTEST database (http://euroseisdb.civil.auth.gr), which has two distinct advantages: good existing knowledge of site conditions at all stations, and careful relocation of the recorded events. Constraining the site and source parameters as best we can, we minimise the within- and between-events components of the global, ergodic sigma. Following that, knowledge of the site response from empirical and theoretical approaches permits us to move on to single-station sigma. The variability per site is not clearly correlated to the site class. We show that in some cases knowledge of Vs30 is not sufficient, and that site-specific data are needed to capture the response, possibly due to 2D/3D effects from complex geometry. Our values of single-station sigma are low compared to the literature. This may be due to the good ray coverage we have in all directions for small, nearby records. Indeed, our single-station sigma values are similar to published single-path values, which means that they may correspond to a fully -rather than partially- non-ergodic approach. We find larger ground motion variability for short distances and small magnitudes. This may be related to the uncertainty in the depth affecting nearby records more, or to stress drop and causing trade-offs between the source and site terms for small magnitudes.

  1. Ion-binding properties of the ClC chloride selectivity filter

    PubMed Central

    Lobet, Séverine; Dutzler, Raimund

    2006-01-01

    The ClC channels are members of a large protein family of chloride (Cl−) channels and secondary active Cl− transporters. Despite their diverse functions, the transmembrane architecture within the family is conserved. Here we present a crystallographic study on the ion-binding properties of the ClC selectivity filter in the close homolog from Escherichia coli (EcClC). The ClC selectivity filter contains three ion-binding sites that bridge the extra- and intracellular solutions. The sites bind Cl− ions with mM affinity. Despite their close proximity within the filter, the three sites can be occupied simultaneously. The ion-binding properties are found conserved from the bacterial transporter EcClC to the human Cl− channel ClC-1, suggesting a close functional link between ion permeation in the channels and active transport in the transporters. In resemblance to K+ channels, ions permeate the ClC channel in a single file, with mutual repulsion between the ions fostering rapid conduction. PMID:16341087

  2. Unusual binding of ursodeoxycholic acid to ileal bile acid binding protein: role in activation of FXRα.

    PubMed

    Fang, Changming; Filipp, Fabian V; Smith, Jeffrey W

    2012-04-01

    Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA.

  3. Active site-directed double mutants of dihydrofolate reductase.

    PubMed

    Ercikan-Abali, E A; Mineishi, S; Tong, Y; Nakahara, S; Waltham, M C; Banerjee, D; Chen, W; Sadelain, M; Bertino, J R

    1996-09-15

    Variants of dihydrofolate reductase (DHFR), which confer resistance to antifolates, are used as dominant selectable markers in vitro and in vivo and may be useful in the context of gene therapy. To identify improved mutant human DHFRs with increased catalytic efficiency and decreased binding to methotrexate, we constructed by site-directed mutagenesis four variants with substitutions at both Leu22 and Phe31 (i.e., Phe22-Ser31, Tyr22-Ser31, Phe22-Gly31, and Tyr22-Gly31). Antifolate resistance has been observed previously when individual changes are made at these active-site residues. Substrate and antifolate binding properties of these "double" mutants revealed that each have greatly diminished affinity for antifolates (> 10,000-fold) yet only slightly reduced substrate affinity. Comparison of in vitro measured properties with those of single-residue variants indicates that double mutants are indeed significantly superior. This was verified for one of the double mutants that provided high-level methotrexate resistance following retrovirus-mediated gene transfer in NIH3T3 cells.

  4. Unusual binding of ursodeoxycholic acid to ileal bile acid binding protein: role in activation of FXRα[S

    PubMed Central

    Fang, Changming; Filipp, Fabian V.; Smith, Jeffrey W.

    2012-01-01

    Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA. PMID:22223860

  5. Leakage and slow allostery limit performance of single drug-sensing aptazyme molecules based on the hammerhead ribozyme

    PubMed Central

    de Silva, Chamaree; Walter, Nils G.

    2009-01-01

    Engineered “aptazymes” fuse in vitro selected aptamers with ribozymes to create allosteric enzymes as biosensing components and artificial gene regulatory switches through ligand-induced conformational rearrangement and activation. By contrast, activating ligand is employed as an enzymatic cofactor in the only known natural aptazyme, the glmS ribozyme, which is devoid of any detectable conformational rearrangements. To better understand this difference in biosensing strategy, we monitored by single molecule fluorescence resonance energy transfer (FRET) and 2-aminopurine (AP) fluorescence the global conformational dynamics and local base (un)stacking, respectively, of a prototypical drug-sensing aptazyme, built from a theophylline aptamer and the hammerhead ribozyme. Single molecule FRET reveals that a catalytically active state with distal Stems I and III of the hammerhead ribozyme is accessed both in the theophylline-bound and, if less frequently, in the ligand-free state. The resultant residual activity (leakage) in the absence of theophylline contributes to a limited dynamic range of the aptazyme. In addition, site-specific AP labeling shows that rapid local theophylline binding to the aptamer domain leads to only slow allosteric signal transduction into the ribozyme core. Our findings allow us to rationalize the suboptimal biosensing performance of the engineered compared to the natural aptazyme and to suggest improvement strategies. Our single molecule FRET approach also monitors in real time the previously elusive equilibrium docking dynamics of the hammerhead ribozyme between several inactive conformations and the active, long-lived, Y-shaped conformer. PMID:19029309

  6. Potential Activities of Freshwater Exo- and Endo-Acting Extracellular Peptidases in East Tennessee and the Pocono Mountains.

    PubMed

    Mullen, Lauren; Boerrigter, Kim; Ferriero, Nicholas; Rosalsky, Jeff; Barrett, Abigail van Buren; Murray, Patrick J; Steen, Andrew D

    2018-01-01

    Proteins constitute a particularly bioavailable subset of organic carbon and nitrogen in aquatic environments but must be hydrolyzed by extracellular enzymes prior to being metabolized by microorganisms. Activities of extracellular peptidases (protein-degrading enzymes) have frequently been assayed in freshwater systems, but such studies have been limited to substrates for a single enzyme [leucyl aminopeptidase (Leu-AP)] out of more than 300 biochemically recognized peptidases. Here, we report kinetic measurements of extracellular hydrolysis of five substrates in 28 freshwater bodies in the Delaware Water Gap National Recreation Area in the Pocono Mountains (PA, United States) and near Knoxville (TN, United States), between 2013 and 2016. The assays putatively test for four aminopeptidases (arginyl aminopeptidase, glyclyl aminopeptidase, Leu-AP, and pyroglutamyl aminopeptidase), which cleave N -terminal amino acids from proteins, and trypsin, an endopeptidase, which cleaves proteins mid-chain. Aminopeptidase and the trypsin-like activity were observed in all water bodies, indicating that a diverse set of peptidases is typical in freshwater. However, ratios of peptidase activities were variable among sites: aminopeptidases dominated at some sites and trypsin-like activity at others. At a given site, the ratios remained fairly consistent over time, indicating that they are driven by ecological factors. Studies in which only Leu-AP activity is measured may underestimate the total peptidolytic capacity of an environment, due to the variable contribution of endopeptidases.

  7. Potential Activities of Freshwater Exo- and Endo-Acting Extracellular Peptidases in East Tennessee and the Pocono Mountains

    PubMed Central

    Mullen, Lauren; Boerrigter, Kim; Ferriero, Nicholas; Rosalsky, Jeff; Barrett, Abigail van Buren; Murray, Patrick J.; Steen, Andrew D.

    2018-01-01

    Proteins constitute a particularly bioavailable subset of organic carbon and nitrogen in aquatic environments but must be hydrolyzed by extracellular enzymes prior to being metabolized by microorganisms. Activities of extracellular peptidases (protein-degrading enzymes) have frequently been assayed in freshwater systems, but such studies have been limited to substrates for a single enzyme [leucyl aminopeptidase (Leu-AP)] out of more than 300 biochemically recognized peptidases. Here, we report kinetic measurements of extracellular hydrolysis of five substrates in 28 freshwater bodies in the Delaware Water Gap National Recreation Area in the Pocono Mountains (PA, United States) and near Knoxville (TN, United States), between 2013 and 2016. The assays putatively test for four aminopeptidases (arginyl aminopeptidase, glyclyl aminopeptidase, Leu-AP, and pyroglutamyl aminopeptidase), which cleave N-terminal amino acids from proteins, and trypsin, an endopeptidase, which cleaves proteins mid-chain. Aminopeptidase and the trypsin-like activity were observed in all water bodies, indicating that a diverse set of peptidases is typical in freshwater. However, ratios of peptidase activities were variable among sites: aminopeptidases dominated at some sites and trypsin-like activity at others. At a given site, the ratios remained fairly consistent over time, indicating that they are driven by ecological factors. Studies in which only Leu-AP activity is measured may underestimate the total peptidolytic capacity of an environment, due to the variable contribution of endopeptidases. PMID:29559961

  8. Redefinition of rubisco carboxylase reaction reveals origin of water for hydration and new roles for active-site residues.

    PubMed

    Kannappan, Babu; Gready, Jill E

    2008-11-12

    Crystallographic, mutagenesis, kinetic, and computational studies on Rubisco over three decades have revealed much about its catalytic mechanism and the role played by several active-site residues. However, key questions remain unanswered. Specific details of the carboxylase and oxygenase mechanisms, required to underpin the rational re-engineering of Rubisco, are still speculative. Here we address critical gaps in knowledge with a definitive comprehensive computational investigation of the mechanism of carboxylase activity at the Rubisco active site. Density functional theory calculations (B3LYP/6-31G(d,p)) were performed on active-site fragment models of a size up to 77 atoms, not previously possible computationally. All amino acid residues suspected to play roles in the acid-base chemistry in the multistep reaction, and interacting directly with the central Mg (2+) atom and the reactive moiety of substrate and intermediates, were included. The results provide a firm basis for us to propose a novel mechanism for the entire sequence of reactions in the carboxylase catalysis and to define precise roles for the active-site residues, singly and in concert. In this mechanism, the carbamylated LYS201 plays a more limited role than previously proposed but is crucial for initiating the reaction by acting as a base in the enolization. We suggest a wider role for HIS294, with involvement in the carboxylation, hydration, and C2-C3 bond-scission steps, consistent with the suggestion of Harpel et al. (1998) but contrary to the consensus view of Cleland et al. (1998). In contrast to the common assumption that the water molecule for the hydration step comes from within the active site, we propose that the Mg-coordinated water is not dissociated at the start of the gas-addition reaction but rather remains coordinated and is used for the hydration of the C3 carbon atom. New roles are also proposed for LYS175, GLU204, and HIS294. The mechanism suggests roles in the gas-addition step for residues in three spatially distinct regions of the active site, HIS294 and LYS334 in the C-terminal domain of the large subunit (LSU), but also hitherto unsuspected roles for a cluster of three residues (ASN123, GLU60, and TYR20) in the N-terminal domain of the partner LSU of the dimer containing the active site. Our new mechanism is supported by existing experimental data, provides new convincing interpretations of previously puzzling data, and allows new insights into mutational strategies for improving Rubisco activity.

  9. Dopant activation in Sn-doped Ga2O3 investigated by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Siah, S. C.; Brandt, R. E.; Lim, K.; Schelhas, L. T.; Jaramillo, R.; Heinemann, M. D.; Chua, D.; Wright, J.; Perkins, J. D.; Segre, C. U.; Gordon, R. G.; Toney, M. F.; Buonassisi, T.

    2015-12-01

    Doping activity in both beta-phase (β-) and amorphous (a-) Sn-doped gallium oxide (Ga2O3:Sn) is investigated by X-ray absorption spectroscopy (XAS). A single crystal of β-Ga2O3:Sn grown using edge-defined film-fed growth at 1725 °C is compared with amorphous Ga2O3:Sn films deposited at low temperature (<300 °C). Our XAS analyses indicate that activated Sn dopant atoms in conductive single crystal β-Ga2O3:Sn are present as Sn4+, preferentially substituting for Ga at the octahedral site, as predicted by theoretical calculations. In contrast, inactive Sn atoms in resistive a-Ga2O3:Sn are present in either +2 or +4 charge states depending on growth conditions. These observations suggest the importance of growing Ga2O3:Sn at high temperature to obtain a crystalline phase and controlling the oxidation state of Sn during growth to achieve dopant activation.

  10. Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity

    Treesearch

    E. Oksanen; E. Häikiö; J. Sober; D.F. Karnosky

    2003-01-01

    Saplings of three aspen (Populus tremuloides) genotypes and seedlings of paper birch (Betula papyrifera) were exposed to elevated ozone (1.5x ambient) and 560 p.p.m. CO2, singly and in combination, from 1998 at the Aspen-FACE (free-air CO2 enrichment) site (Rhinelander, USA).

  11. Da Vinci single site© surgical platform in clinical practice: a systematic review.

    PubMed

    Morelli, Luca; Guadagni, Simone; Di Franco, Gregorio; Palmeri, Matteo; Di Candio, Giulio; Mosca, Franco

    2016-12-01

    The Da Vinci single-site© surgical platform (DVSSP) is a set of single-site instruments and accessories specifically dedicated to robot-assisted single-site surgery. The PubMed database from inception to June 2015 was searched for English literature on the clinical use of DVSSP in general surgery, urology and gynecology. Twenty-nine articles involving the clinical application of DVSSP were identified; 15 articles on general surgery (561 procedures), four articles on urology (48 procedures) and 10 articles on gynecology (212 procedures). All studies have proven the safety and feasibility of the use of DVSSP. The principal reported advantage is the restoration of intra-abdominal triangulation, while the main reported limitation is the lack of the endowrist. Da Vinci systems have proven to be valuable assets in single-site surgery, owing to the combination of robot use with the dedicated single-incision platform. However, case-control or prospective trials are warranted to draw more definitive conc lusions. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Maintenance of ventricular fibrillation in heterogeneous ventricle.

    PubMed

    Arevalo, Hamenegild J; Trayanova, Natalia A

    2006-01-01

    Although ventricular fibrillation (VF) is the prevalent cause of sudden cardiac death, the mechanisms that underlie VF remain elusive. One possible explanation is that VF is driven by a single robust rotor that is the source of wavefronts that break-up due to functional heterogeneities. Previous 2D computer simulations have proposed that a heterogeneity in background potassium current (IK1) can serve as the substrate for the formation of mother rotor activity. This study incorporates IK1 heterogeneity between the left and right ventricle in a realistic 3D rabbit ventricle model to examine its effects on the organization of VF. Computer simulations show that the IK1 heterogeneity contributes to the initiation and maintenance of VF by providing regions of different refractoriness which serves as sites of wave break and rotor formation. A single rotor that drives the fibrillatory activity in the ventricle is not found in this study. Instead, multiple sites of reentry are recorded throughout the ventricle. Calculation of dominant frequencies for each myocardial node yields no significant difference between the dominant frequency of the LV and the RV. The 3D computer simulations suggest that IK1 spatial heterogeneity alone can not lead to the formation of a stable rotor.

  13. Illuminating the Mechanistic Roles of Enzyme Conformational Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Jeffrey A.; Dunderstadt, Karl; Watkins, Lucas P.

    2007-11-13

    Many enzymes mold their structures to enclose substrates in their active sites such that conformational remodeling may be required during each catalytic cycle. In adenylate kinase (AK), this involves a large-amplitude rearrangement of the enzyme’s lid domain. Using our method of high-resolution single-molecule FRET, we directly followed AK’s domain movements on its catalytic time scale. To quantitatively measure the enzyme’s entire conformational distribution, we have applied maximum entropy-based methods to remove photon-counting noise from single-molecule data. This analysis shows unambiguously that AK is capable of dynamically sampling two distinct states, which correlate well with those observed by x-ray crystallography. Unexpectedly,more » the equilibrium favors the closed, active-site-forming configurations even in the absence of substrates. Our experiments further showed that interaction with substrates, rather than locking the enzyme into a compact state, restricts the spatial extent of conformational fluctuations and shifts the enzyme’s conformational equilibrium toward the closed form by increasing the closing rate of the lid. Integrating these microscopic dynamics into macroscopic kinetics allows us to model lid opening-coupled product release as the enzyme’s rate-limiting step.« less

  14. The C-terminal domain of Tetrahymena thermophila telomerase holoenzyme protein p65 induces multiple structural changes in telomerase RNA

    PubMed Central

    Akiyama, Benjamin M.; Loper, John; Najarro, Kevin; Stone, Michael D.

    2012-01-01

    The unique cellular activity of the telomerase reverse transcriptase ribonucleoprotein (RNP) requires proper assembly of protein and RNA components into a functional complex. In the ciliate model organism Tetrahymena thermophila, the La-domain protein p65 is required for in vivo assembly of telomerase. Single-molecule and biochemical studies have shown that p65 promotes efficient RNA assembly with the telomerase reverse transcriptase (TERT) protein, in part by inducing a bend in the conserved stem IV region of telomerase RNA (TER). The domain architecture of p65 consists of an N-terminal domain, a La-RRM motif, and a C-terminal domain (CTD). Using single-molecule Förster resonance energy transfer (smFRET), we demonstrate the p65CTD is necessary for the RNA remodeling activity of the protein and is sufficient to induce a substantial conformational change in stem IV of TER. Moreover, nuclease protection assays directly map the site of p65CTD interaction to stem IV and reveal that, in addition to bending stem IV, p65 binding reorganizes nucleotides that comprise the low-affinity TERT binding site within stem–loop IV. PMID:22315458

  15. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs.

    PubMed

    Gagnon, James A; Valen, Eivind; Thyme, Summer B; Huang, Peng; Akhmetova, Laila; Ahkmetova, Laila; Pauli, Andrea; Montague, Tessa G; Zimmerman, Steven; Richter, Constance; Schier, Alexander F

    2014-01-01

    The CRISPR/Cas9 system has been implemented in a variety of model organisms to mediate site-directed mutagenesis. A wide range of mutation rates has been reported, but at a limited number of genomic target sites. To uncover the rules that govern effective Cas9-mediated mutagenesis in zebrafish, we targeted over a hundred genomic loci for mutagenesis using a streamlined and cloning-free method. We generated mutations in 85% of target genes with mutation rates varying across several orders of magnitude, and identified sequence composition rules that influence mutagenesis. We increased rates of mutagenesis by implementing several novel approaches. The activities of poor or unsuccessful single-guide RNAs (sgRNAs) initiating with a 5' adenine were improved by rescuing 5' end homogeneity of the sgRNA. In some cases, direct injection of Cas9 protein/sgRNA complex further increased mutagenic activity. We also observed that low diversity of mutant alleles led to repeated failure to obtain frame-shift mutations. This limitation was overcome by knock-in of a stop codon cassette that ensured coding frame truncation. Our improved methods and detailed protocols make Cas9-mediated mutagenesis an attractive approach for labs of all sizes.

  16. mTORC1 promotes T-bet phosphorylation to regulate Th1 differentiation

    PubMed Central

    Chornoguz, Olesya; Hagan, Robert S.; Haile, Azeb; Arwood, Matthew L.; Gamper, Christopher J.; Banerjee, Arnob; Powell, Jonathan D.

    2017-01-01

    CD4+ T cells lacking the mTORC1 activator Rheb fail to secrete IFNγ under Th1 polarizing conditions. We hypothesized that this phenotype is due to defects in regulation of the canonical Th1 transcription factor T-bet at the level of protein phosphorylation downstream of mTORC1. To test this hypothesis, we employed targeted mass-spectrometry proteomic analysis – multiple reaction monitoring mass spectrometry (MRM-MS). We used MRM-MS to detect and quantify predicted phospho-peptides derived from T-bet. By analyzing activated murine WT and Rheb deficient CD4+ T cells, as well as murine CD4+ T cells activated in the presence of rapamycin, a pharmacologic inhibitor of mTORC1, we were able to identify 6 T-bet phosphorylation sites. Five of these are novel, and 4 sites are consistently dephosphorylated in both Rheb deficient CD4+ T-cells and T-cells treated with rapamycin, suggesting mTORC1 signaling controls their phosphorylation. Alanine mutagenesis of each of the 6 phosphorylation sites was tested for the ability to impair IFNγ expression. Single phosphorylation site mutants still support induction of IFNγ expression, however simultaneous mutation of 3 of the mTORC1-dependent sites results in significantly reduced IFNγ expression. The reduced activity of the triple mutant T-bet is associated with its failure to recruit chromatin remodeling complexes to the Ifng gene promoter. These results establish a novel mechanism by which mTORC1 regulates Th1 differentiation, through control of T-bet phosphorylation. PMID:28424242

  17. A single amino acid substitution makes ERK2 susceptible to pyridinyl imidazole inhibitors of p38 MAP kinase.

    PubMed Central

    Fox, T.; Coll, J. T.; Xie, X.; Ford, P. J.; Germann, U. A.; Porter, M. D.; Pazhanisamy, S.; Fleming, M. A.; Galullo, V.; Su, M. S.; Wilson, K. P.

    1998-01-01

    Mitogen-activated protein (MAP) kinases are serine/threonine kinases that mediate intracellular signal transduction pathways. Pyridinyl imidazole compounds block pro-inflammatory cytokine production and are specific p38 kinase inhibitors. ERK2 is related to p38 in sequence and structure, but is not inhibited by pyridinyl imidazole inhibitors. Crystal structures of two pyridinyl imidazoles complexed with p38 revealed these compounds bind in the ATP site. Mutagenesis data suggested a single residue difference at threonine 106 between p38 and other MAP kinases is sufficient to confer selectivity of pyridinyl imidazoles. We have changed the equivalent residue in human ERK2, Q105, into threonine and alanine, and substituted four additional ATP binding site residues. The single residue change Q105A in ERK2 enhances the binding of SB202190 at least 25,000-fold compared to wild-type ERK2. We report enzymatic analyses of wild-type ERK2 and the mutant proteins, and the crystal structure of a pyridinyl imidazole, SB203580, bound to an ERK2 pentamutant, I103L, Q105T, D106H, E109G. T110A. These ATP binding site substitutions induce low nanomolar sensitivity to pyridinyl imidazoles. Furthermore, we identified 5-iodotubercidin as a potent ERK2 inhibitor, which may help reveal the role of ERK2 in cell proliferation. PMID:9827991

  18. Genome-wide mapping of DNase I hypersensitive sites in rare cell populations using single-cell DNase sequencing.

    PubMed

    Cooper, James; Ding, Yi; Song, Jiuzhou; Zhao, Keji

    2017-11-01

    Increased chromatin accessibility is a feature of cell-type-specific cis-regulatory elements; therefore, mapping of DNase I hypersensitive sites (DHSs) enables the detection of active regulatory elements of transcription, including promoters, enhancers, insulators and locus-control regions. Single-cell DNase sequencing (scDNase-seq) is a method of detecting genome-wide DHSs when starting with either single cells or <1,000 cells from primary cell sources. This technique enables genome-wide mapping of hypersensitive sites in a wide range of cell populations that cannot be analyzed using conventional DNase I sequencing because of the requirement for millions of starting cells. Fresh cells, formaldehyde-cross-linked cells or cells recovered from formalin-fixed paraffin-embedded (FFPE) tissue slides are suitable for scDNase-seq assays. To generate scDNase-seq libraries, cells are lysed and then digested with DNase I. Circular carrier plasmid DNA is included during subsequent DNA purification and library preparation steps to prevent loss of the small quantity of DHS DNA. Libraries are generated for high-throughput sequencing on the Illumina platform using standard methods. Preparation of scDNase-seq libraries requires only 2 d. The materials and molecular biology techniques described in this protocol should be accessible to any general molecular biology laboratory. Processing of high-throughput sequencing data requires basic bioinformatics skills and uses publicly available bioinformatics software.

  19. Mechanistic Insights into Glucan Phosphatase Activity against Polyglucan Substrates*

    PubMed Central

    Meekins, David A.; Raththagala, Madushi; Auger, Kyle D.; Turner, Benjamin D.; Santelia, Diana; Kötting, Oliver; Gentry, Matthew S.; Vander Kooi, Craig W.

    2015-01-01

    Glucan phosphatases are central to the regulation of starch and glycogen metabolism. Plants contain two known glucan phosphatases, Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), which dephosphorylate starch. Starch is water-insoluble and reversible phosphorylation solubilizes its outer surface allowing processive degradation. Vertebrates contain a single known glucan phosphatase, laforin, that dephosphorylates glycogen. In the absence of laforin, water-soluble glycogen becomes insoluble, leading to the neurodegenerative disorder Lafora Disease. Because of their essential role in starch and glycogen metabolism glucan phosphatases are of significant interest, yet a comparative analysis of their activities against diverse glucan substrates has not been established. We identify active site residues required for specific glucan dephosphorylation, defining a glucan phosphatase signature motif (CζAGΨGR) in the active site loop. We further explore the basis for phosphate position-specific activity of these enzymes and determine that their diverse phosphate position-specific activity is governed by the phosphatase domain. In addition, we find key differences in glucan phosphatase activity toward soluble and insoluble polyglucan substrates, resulting from the participation of ancillary glucan-binding domains. Together, these data provide fundamental insights into the specific activity of glucan phosphatases against diverse polyglucan substrates. PMID:26231210

  20. Visualization of Synchronous or Asynchronous Release of Single Synaptic Vesicle in Active-Zone-Like Membrane Formed on Neuroligin-Coated Glass Surface.

    PubMed

    Funahashi, Junichiro; Tanaka, Hiromitsu; Hirano, Tomoo

    2018-01-01

    Fast repetitive synaptic transmission depends on efficient exocytosis and retrieval of synaptic vesicles around a presynaptic active zone. However, the functional organization of an active zone and regulatory mechanisms of exocytosis, endocytosis and reconstruction of release-competent synaptic vesicles have not been fully elucidated. By developing a novel visualization method, we attempted to identify the location of exocytosis of a single synaptic vesicle within an active zone and examined movement of synaptic vesicle protein synaptophysin (Syp) after exocytosis. Using cultured hippocampal neurons, we induced formation of active-zone-like membranes (AZLMs) directly adjacent and parallel to a glass surface coated with neuroligin, and imaged Syp fused to super-ecliptic pHluorin (Syp-SEP) after its translocation to the plasma membrane from a synaptic vesicle using total internal reflection fluorescence microscopy (TIRFM). An AZLM showed characteristic molecular and functional properties of a presynaptic active zone. It contained active zone proteins, cytomatrix at the active zone-associated structural protein (CAST), Bassoon, Piccolo, Munc13 and RIM, and showed an increase in intracellular Ca 2+ concentration upon electrical stimulation. In addition, single-pulse stimulation sometimes induced a transient increase of Syp-SEP signal followed by lateral spread in an AZLM, which was considered to reflect an exocytosis event of a single synaptic vesicle. The diffusion coefficient of Syp-SEP on the presynaptic plasma membrane after the membrane fusion was estimated to be 0.17-0.19 μm 2 /s, suggesting that Syp-SEP diffused without significant obstruction. Synchronous exocytosis just after the electrical stimulation tended to occur at multiple restricted sites within an AZLM, whereas locations of asynchronous release occurring later after the stimulation tended to be more scattered.

  1. Asymmetry of the three catalytic sites on beta subunits of TF1 from a thermophilic Bacillus strain PS3.

    PubMed

    Hisabori, T; Kobayashi, H; Kaibara, C; Yoshida, M

    1994-03-01

    F1-ATPase isolated from plasma membrane of a thermophilic Bacillus strain PS3 (TF1) has very little or no endogenously bound adenine nucleotides. However, it can bind one ADP per mol of the enzyme on one of three beta subunits to form a stable TF1.ADP complex when incubated with a high concentration of ADP [Yoshida, M. & Allison, W.S. (1986) J. Biol. Chem. 261, 5714-5721]. The same TF1.ADP complex was recovered after filling all ADP binding sites with [3H]ADP and repeated gel filtration. Direct binding assay revealed that the TF1.ADP complex had lost the highest affinity site for TNP-ADP. When a substoichiometric amount of TNP-ATP was added, the complex hydrolyzed TNP-ATP slowly (single site hydrolysis), like native TF1. However, this hydrolysis was not promoted by chase-addition of excess ATP. The optimal pH of the ATPase activity of TF1 or the TF1.ADP complex measured with a short reaction period, 6.5, was lower than the reported value, 9.0, under the steady-state condition. Although the bound ADP was released from the complex only when the enzyme underwent multiple catalytic turnover, the rate of this release was much slower than the turnover. These results suggest that when one ADP binds to a site on one of the beta subunits and stays there for a long time, the enzyme will change form and the bound ADP will become a special species which is not able to be directly involved in the enzyme catalysis. This binding site for ADP appears to be the first site responsible for the single-site catalysis reaction observed for native TF1.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xianglin; Wang, Yang; Eisenbach, Markus

    One major purpose of studying the single-site scattering problem is to obtain the scattering matrices and differential equation solutions indispensable to multiple scattering theory (MST) calculations. On the other hand, the single-site scattering itself is also appealing because it reveals the physical environment experienced by electrons around the scattering center. In this study, we demonstrate a new formalism to calculate the relativistic full-potential single-site Green's function. We implement this method to calculate the single-site density of states and electron charge densities. Lastly, the code is rigorously tested and with the help of Krein's theorem, the relativistic effects and full potentialmore » effects in group V elements and noble metals are thoroughly investigated.« less

  3. Towards ALD thin film stabilized single-atom Pd 1 catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piernavieja-Hermida, Mar; Lu, Zheng; White, Anderson

    Supported precious metal single-atom catalysts have shown interesting activity and selectivity in recent studies. However, agglomeration of these highly mobile mononuclear surface species can eliminate their unique catalytic properties. In this paper, we study a strategy for synthesizing thin film stabilized single-atom Pd 1 catalysts using atomic layer deposition (ALD). The thermal stability of the Pd 1 catalysts is significantly enhanced by creating a nanocavity thin film structure. In situ infrared spectroscopy and Pd K-edge X-ray absorption spectroscopy (XAS) revealed that the Pd 1 was anchored on the surface through chlorine sites. The thin film stabilized Pd 1 catalysts weremore » thermally stable under both oxidation and reduction conditions. The catalytic performance in the methanol decomposition reaction is found to depend on the thickness of protecting layers. While Pd 1 catalysts showed promising activity at low temperature in a methanol decomposition reaction, 14 cycle TiO 2 protected Pd 1 was less active at high temperature. Pd L 3 edge XAS indicated that the low reactivity compared with Pd nanoparticles is due to the strong adsorption of carbon monoxide even at 250 °C. Lastly, these results clearly show that the ALD nanocavities provide a basis for future design of single-atom catalysts that are highly efficient and stable.« less

  4. Towards ALD thin film stabilized single-atom Pd 1 catalysts

    DOE PAGES

    Piernavieja-Hermida, Mar; Lu, Zheng; White, Anderson; ...

    2016-07-27

    Supported precious metal single-atom catalysts have shown interesting activity and selectivity in recent studies. However, agglomeration of these highly mobile mononuclear surface species can eliminate their unique catalytic properties. In this paper, we study a strategy for synthesizing thin film stabilized single-atom Pd 1 catalysts using atomic layer deposition (ALD). The thermal stability of the Pd 1 catalysts is significantly enhanced by creating a nanocavity thin film structure. In situ infrared spectroscopy and Pd K-edge X-ray absorption spectroscopy (XAS) revealed that the Pd 1 was anchored on the surface through chlorine sites. The thin film stabilized Pd 1 catalysts weremore » thermally stable under both oxidation and reduction conditions. The catalytic performance in the methanol decomposition reaction is found to depend on the thickness of protecting layers. While Pd 1 catalysts showed promising activity at low temperature in a methanol decomposition reaction, 14 cycle TiO 2 protected Pd 1 was less active at high temperature. Pd L 3 edge XAS indicated that the low reactivity compared with Pd nanoparticles is due to the strong adsorption of carbon monoxide even at 250 °C. Lastly, these results clearly show that the ALD nanocavities provide a basis for future design of single-atom catalysts that are highly efficient and stable.« less

  5. Regulation of the alpha-glucuronidase-encoding gene ( aguA) from Aspergillus niger.

    PubMed

    de Vries, R P; van de Vondervoort, P J I; Hendriks, L; van de Belt, M; Visser, J

    2002-09-01

    The alpha-glucuronidase gene aguA from Aspergillus niger was cloned and characterised. Analysis of the promoter region of aguA revealed the presence of four putative binding sites for the major carbon catabolite repressor protein CREA and one putative binding site for the transcriptional activator XLNR. In addition, a sequence motif was detected which differed only in the last nucleotide from the XLNR consensus site. A construct in which part of the aguA coding region was deleted still resulted in production of a stable mRNA upon transformation of A. niger. The putative XLNR binding sites and two of the putative CREA binding sites were mutated individually in this construct and the effects on expression were examined in A. niger transformants. Northern analysis of the transformants revealed that the consensus XLNR site is not actually functional in the aguA promoter, whereas the sequence that diverges from the consensus at a single position is functional. This indicates that XLNR is also able to bind to the sequence GGCTAG, and the XLNR binding site consensus should therefore be changed to GGCTAR. Both CREA sites are functional, indicating that CREA has a strong influence on aguA expression. A detailed expression analysis of aguA in four genetic backgrounds revealed a second regulatory system involved in activation of aguA gene expression. This system responds to the presence of glucuronic and galacturonic acids, and is not dependent on XLNR.

  6. Domain alternation and active site remodeling are conserved structural features of ubiquitin E1.

    PubMed

    Lv, Zongyang; Yuan, Lingmin; Atkison, James H; Aldana-Masangkay, Grace; Chen, Yuan; Olsen, Shaun K

    2017-07-21

    E1 enzymes for ubiquitin (Ub) and Ub-like modifiers (Ubls) harbor two catalytic activities that are required for Ub/Ubl activation: adenylation and thioester bond formation. Structural studies of the E1 for the Ubl s mall u biquitin-like mo difier (SUMO) revealed a single active site that is transformed by a conformational switch that toggles its competency for catalysis of these two distinct chemical reactions. Although the mechanisms of adenylation and thioester bond formation revealed by SUMO E1 structures are thought to be conserved in Ub E1, there is currently a lack of structural data supporting this hypothesis. Here, we present a structure of Schizosaccharomyces pombe Uba1 in which the second catalytic cysteine half-domain (SCCH domain) harboring the catalytic cysteine has undergone a 106° rotation that results in a completely different network of intramolecular interactions between the SCCH and adenylation domains and translocation of the catalytic cysteine 12 Å closer to the Ub C terminus compared with previous Uba1 structures. SCCH domain alternation is accompanied by conformational changes within the Uba1 adenylation domains that effectively disassemble the adenylation active site. Importantly, the structural and biochemical data suggest that domain alternation and remodeling of the adenylation active site are interconnected and are intrinsic structural features of Uba1 and that the overall structural basis for adenylation and thioester bond formation exhibited by SUMO E1 is indeed conserved in Ub E1. Finally, the mechanistic insights provided by the novel conformational snapshot of Uba1 presented in this study may guide efforts to develop small molecule inhibitors of this critically important enzyme that is an active target for anticancer therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. 40Ar 39Ar age constraints on neogene sedimentary beds, Upper Ramparts, half-way Pillar and Canyon village sites, Porcupine river, east-central Alaska

    USGS Publications Warehouse

    Kunk, Michael J.; Rieck, H.; Fouch, T.D.; Carter, L.D.

    1994-01-01

    40Ar 39Ar ages of volcanic rocks are used to provide numerical constraints on the age of middle and upper Miocene sedimentary strata collected along the Porcupine River. Intercalated sedimentary rocks north of latitude 67??10???N in the Porcupine terrane of east-central Alaska contain a rich record of plant fossils. The fossils are valuable indicators of this interior region's paleoclimate during the time of their deposition. Integration of the 40Ar 39Ar results with paleomagnetic and sedimentological data allows for refinements in estimating the timing of deposition and duration of selected sedimentary intervals. 40Ar 39Ar plateau age spectra, from whole rock basalt samples, collected along the Upper Ramparts and near Half-way Pillar on the Porcupine River, range from 15.7 ?? 0.1 Ma at site 90-6 to 14.4 ?? 0.1 Ma at site 90-2. With exception of the youngest basalt flow at site 90-2, all of the samples are of reversed magnetic polarity, and all 40Ar 39Ar age spectrum results are consistent with the deposition of the entire stratigraphic section during a single interval of reversed magnetic polarity. The youngest flow at site 90-2 was emplaced during an interval of normal polarity. With age, paleomagnetic and sedimentological data, the ages of the Middle Miocene sedimentary rocks between the basalt flows at sites 90-1 and 90-2 can be assigned to an interval within the limits of analytical precision of 15.2 ?? 0.1 Ma; thus, the sediments were deposited during the peak of the Middle Miocene thermal maximum. Sediments in the upper parts of sites 90-1 and 90-2 were probably deposited during cooling from the Middle Miocene thermal maximum. 40Ar 39Ar results of plagioclase and biotite from a single tephra, collected at sites 90-7 and 90-8 along the Canyon Village section of the Porcupine River, indicate an age of 6.57 ?? 0.02 Ma for its time of eruption and deposition. These results, together with sedimentological and paleomagnetic data, suggest that all of the Upper Miocene lacustrine sedimentary rocks at these sites were deposited during a single interval of reversed magnetic polarity and may represent a duration of only about 40,000 years. The age of this tephra corresponds with a late late Miocene warm climatic interval. The results from the Upper Ramparts and Half-way Pillar sites are used to estimate a minimum interval of continental flood basalt activity of 1.1-1.5 million years, and to set limits for the timing and duration of Tertiary extensional tectonic activity in the Porcupine terrane. Our data indicate that the oroclinal flexure that formed before the deposition of the basalts at the eastern end of the Brooks Range was created prior to 15.7 ?? 0.1 Ma. ?? 1994.

  8. Uncovering the determinants of a highly perturbed tyrosine pKa in the active site of ketosteroid isomerase.

    PubMed

    Schwans, Jason P; Sunden, Fanny; Gonzalez, Ana; Tsai, Yingssu; Herschlag, Daniel

    2013-11-05

    Within the idiosyncratic enzyme active-site environment, side chain and ligand pKa values can be profoundly perturbed relative to their values in aqueous solution. Whereas structural inspection of systems has often attributed perturbed pKa values to dominant contributions from placement near charged groups or within hydrophobic pockets, Tyr57 of a Pseudomonas putida ketosteroid isomerase (KSI) mutant, suggested to have a pKa perturbed by nearly 4 units to 6.3, is situated within a solvent-exposed active site devoid of cationic side chains, metal ions, or cofactors. Extensive comparisons among 45 variants with mutations in and around the KSI active site, along with protein semisynthesis, (13)C NMR spectroscopy, absorbance spectroscopy, and X-ray crystallography, was used to unravel the basis for this perturbed Tyr pKa. The results suggest that the origin of large energetic perturbations are more complex than suggested by visual inspection. For example, the introduction of positively charged residues near Tyr57 raises its pKa rather than lowers it; this effect, and part of the increase in the Tyr pKa from the introduction of nearby anionic groups, arises from accompanying active-site structural rearrangements. Other mutations with large effects also cause structural perturbations or appear to displace a structured water molecule that is part of a stabilizing hydrogen-bond network. Our results lead to a model in which three hydrogen bonds are donated to the stabilized ionized Tyr, with these hydrogen-bond donors, two Tyr side chains, and a water molecule positioned by other side chains and by a water-mediated hydrogen-bond network. These results support the notion that large energetic effects are often the consequence of multiple stabilizing interactions rather than a single dominant interaction. Most generally, this work provides a case study for how extensive and comprehensive comparisons via site-directed mutagenesis in a tight feedback loop with structural analysis can greatly facilitate our understanding of enzyme active-site energetics. The extensive data set provided may also be a valuable resource for those wishing to extensively test computational approaches for determining enzymatic pKa values and energetic effects.

  9. Uncovering the Determinants of a Highly Perturbed Tyrosine pKa in the Active Site of Ketosteroid Isomerase†

    PubMed Central

    Schwans, Jason P.; Sunden, Fanny; Gonzalez, Ana; Tsai, Yingssu; Herschlag, Daniel

    2013-01-01

    Within the idiosyncratic enzyme active site environment, side chain and ligand pKa values can be profoundly perturbed relative to their values in aqueous solution. Whereas structural inspection of systems has often attributed perturbed pKa values to dominant contributions from placement near to charged groups or within hydrophobic pockets, Tyr57 of a P. putida ketosteroid isomerase (KSI) mutant, suggested to have a pKa perturbed by nearly 4 units to 6.3, is situated within a solvent-exposed active site devoid of cationic side chains, metal ions, or cofactors. Extensive comparisons among 45 variants with mutations in and around the KSI active site, along with protein semi-synthesis, 13C NMR spectroscopy, absorbance spectroscopy, and x-ray crystallography, was used to unravel the basis for this perturbed Tyr pKa. The results suggest that the origin of large energetic perturbations are more complex than suggested by visual inspection. For example, the introduction of positively charged residues near Tyr57 raises its pKa rather than lowers it; this effect, and part of the increase in the Tyr pKa from introduction of nearby anionic groups arise from accompanying active site structural rearrangements. Other mutations with large effects also cause structural perturbations or appear to displace a structured water molecule that is part of a stabilizing hydrogen bond network. Our results lead to a model in which three hydrogen bonds are donated to the stabilized ionized Tyr, with these hydrogen bond donors, two Tyr side chains and a water molecule, positioned by other side chains and by a water-mediated hydrogen bond network. These results support the notion that large energetic effects are often the consequence of multiple stabilizing interactions, rather than a single dominant interaction. Most generally, this work provides a case study for how extensive and comprehensive comparisons via site-directed mutagenesis in a tight feedback loop with structural analysis can greatly facilitate our understanding of enzyme active site energetics. The extensive dataset provided may also be a valuable resource for those wishing to extensively test computational approaches for determining enzymatic pKa values and energetic effects. PMID:24151972

  10. Proflavine acts as a Rev inhibitor by targeting the high-affinity Rev binding site of the Rev responsive element of HIV-1.

    PubMed

    DeJong, Eric S; Chang, Chia-en; Gilson, Michael K; Marino, John P

    2003-07-08

    Rev is an essential regulatory HIV-1 protein that binds the Rev responsive element (RRE) within the env gene of the HIV-1 RNA genome, activating the switch between viral latency and active viral replication. Previously, we have shown that selective incorporation of the fluorescent probe 2-aminopurine (2-AP) into a truncated form of the RRE sequence (RRE-IIB) allowed the binding of an arginine-rich peptide derived from Rev and aminoglycosides to be characterized directly by fluorescence methods. Using these fluorescence and nuclear magnetic resonance (NMR) methods, proflavine has been identified, through a limited screen of selected small heterocyclic compounds, as a specific and high-affinity RRE-IIB binder which inhibits the interaction of the Rev peptide with RRE-IIB. Direct and competitive 2-AP fluorescence binding assays reveal that there are at least two classes of proflavine binding sites on RRE-IIB: a high-affinity site that competes with the Rev peptide for binding to RRE-IIB (K(D) approximately 0.1 +/- 0.05 microM) and a weaker binding site(s) (K(D) approximately 1.1 +/- 0.05 microM). Titrations of RRE-IIB with proflavine, monitored using (1)H NMR, demonstrate that the high-affinity proflavine binding interaction occurs with a 2:1 (proflavine:RRE-IIB) stoichiometry, and NOEs observed in the NOESY spectrum of the 2:1 proflavine.RRE-IIB complex indicate that the two proflavine molecules bind specifically and close to each other within a single binding site. NOESY data further indicate that formation of the 2:1 proflavine.RRE-IIB complex stabilizes base pairing and stacking within the internal purine-rich bulge of RRE-IIB in a manner analogous to what has been observed in the Rev peptide.RRE-IIB complex. The observation that proflavine competes with Rev for binding to RRE-IIB by binding as a dimer to a single high-affinity site opens the possibility for rational drug design based on linking and modifying it and related compounds.

  11. Binding and Translocation of Termination Factor Rho Studied at the Single-Molecule Level

    PubMed Central

    Koslover, Daniel J.; Fazal, Furqan M.; Mooney, Rachel A.; Landick, Robert; Block, Steven M.

    2012-01-01

    Rho termination factor is an essential hexameric helicase responsible for terminating 20–50% of all mRNA synthesis in E. coli. We used single- molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho- utilization (rut) site of the ? tR1 terminator. Our results are consistent with Rho complexes adopting two states, one that binds 57 ±2 nucleotides of RNA across all six of the Rho primary binding sites, and another that binds 85 ±2 nucleotides at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′-to-3′ towards RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the rut site and RNAP. These findings lead to a general model for Rho binding and translocation, and establish a novel experimental approach that should facilitate additional single- molecule studies of RNA-binding proteins. PMID:22885804

  12. Transcutaneous Electrical Nerve Stimulation (TENS) reduces pain, fatigue, and hyperalgesia while restoring central inhibition in primary fibromyalgia

    PubMed Central

    Dailey, Dana L; Rakel, Barbara A; Vance, Carol GT; Liebano, Richard E; Anand, Amrit S; Bush, Heather M; Lee, Kyoung S; Lee, Jennifer E; Sluka, Kathleen A

    2014-01-01

    Because TENS works by reducing central excitability and activating central inhibition pathways, we tested the hypothesis that TENS would reduce pain and fatigue and improve function and hyperalgesia in people with fibromyalgia who have enhanced central excitability and reduced inhibition. The current study used a double-blinded randomized, placebo controlled cross-over design to test effects of a single treatment of TENS in people with fibromyalgia. Three treatments were assessed in random order: active TENS, placebo TENS, no TENS. The following measures were assessed before and after each TENS treatment: pain and fatigue at rest and movement, pressure pain thresholds (PPTs), 6 minute walk test (6MWT), range of motion (ROM), five time sit to stand test (FTSTS), and single leg stance (SLS). Conditioned pain modulation (CPM) was completed at end of testing. There was a significant decrease in pain and fatigue with movement for active TENS compared to placebo and no TENS. PPTs increased at site of TENS (spine) and outside site of TENS (leg) when compared to placebo TENS or no TENS. During Active TENS CPM was significantly stronger compared to placebo TENS and no TENS. No changes in functional tasks were observed with TENS. Thus, the current study suggests TENS has short-term efficacy in relieving symptoms of fibromyalgia while the stimulator is active. Future clinical trials should examine the effects of repeated daily delivery of TENS, similar to how TENS is used clinically, on pain, fatigue, function and quality of life in individuals with fibromyalgia. PMID:23900134

  13. A single-chain TALEN architecture for genome engineering.

    PubMed

    Sun, Ning; Zhao, Huimin

    2014-03-04

    Transcription-activator like effector nucleases (TALENs) are tailor-made DNA endonucleases and serve as a powerful tool for genome engineering. Site-specific DNA cleavage can be made by the dimerization of FokI nuclease domains at custom-targeted genomic loci, where a pair of TALENs must be positioned in close proximity with an appropriate orientation. However, the simultaneous delivery and coordinated expression of two bulky TALEN monomers (>100 kDa) in cells may be problematic to implement for certain applications. Here, we report the development of a single-chain TALEN (scTALEN) architecture, in which two FokI nuclease domains are fused on a single polypeptide. The scTALEN was created by connecting two FokI nuclease domains with a 95 amino acid polypeptide linker, which was isolated from a linker library by high-throughput screening. We demonstrated that scTALENs were catalytically active as monomers in yeast and human cells. The use of this novel scTALEN architecture should reduce protein payload, simplify design and decrease production cost.

  14. Efficient Nitrogen Fixation via a Redox-Flexible Single-Iron Site with Reverse-Dative Iron → Boron σ Bonding.

    PubMed

    Lu, Jun-Bo; Ma, Xue-Lu; Wang, Jia-Qi; Liu, Jin-Cheng; Xiao, Hai; Li, Jun

    2018-05-10

    Model systems of the FeMo cofactor of nitrogenase have been explored extensively in catalysis to gain insights into their ability for nitrogen fixation that is of vital importance to the human society. Here we investigate the trigonal pyramidal borane-ligand Fe complex by first-principles calculations, and find that the variation of oxidation state of Fe along the reaction path correlates with that of the reverse-dative Fe → B bonding. The redox-flexibility of the reverse-dative Fe → B bonding helps to provide an electron reservoir that buffers and stabilizes the evolution of Fe oxidation state, which is essential for forming the key intermediates of N 2 activation. Our work provides insights for understanding and optimizing homogeneous and surface single-atom catalysts with reverse-dative donating ligands for efficient dinitrogen fixation. The extension of this kind of molecular catalytic active center to heterogeneous catalysts with surface single-clusters is also discussed.

  15. High-resolution single-molecule fluorescence imaging of zeolite aggregates within real-life fluid catalytic cracking particles.

    PubMed

    Ristanović, Zoran; Kerssens, Marleen M; Kubarev, Alexey V; Hendriks, Frank C; Dedecker, Peter; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M

    2015-02-02

    Fluid catalytic cracking (FCC) is a major process in oil refineries to produce gasoline and base chemicals from crude oil fractions. The spatial distribution and acidity of zeolite aggregates embedded within the 50-150 μm-sized FCC spheres heavily influence their catalytic performance. Single-molecule fluorescence-based imaging methods, namely nanometer accuracy by stochastic chemical reactions (NASCA) and super-resolution optical fluctuation imaging (SOFI) were used to study the catalytic activity of sub-micrometer zeolite ZSM-5 domains within real-life FCC catalyst particles. The formation of fluorescent product molecules taking place at Brønsted acid sites was monitored with single turnover sensitivity and high spatiotemporal resolution, providing detailed insight in dispersion and catalytic activity of zeolite ZSM-5 aggregates. The results point towards substantial differences in turnover frequencies between the zeolite aggregates, revealing significant intraparticle heterogeneities in Brønsted reactivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mössbauer properties of the diferric cluster and the differential iron(II)-binding affinity of the iron sites in protein R2 of class Ia Escherichia coli ribonucleotide reductase: a DFT/electrostatics study.

    PubMed

    Han, Wen-Ge; Sandala, Gregory M; Giammona, Debra Ann; Bashford, Donald; Noodleman, Louis

    2011-11-14

    The R2 subunit of class-Ia ribonucleotide reductase (RNR) from Escherichia coli (E. coli) contains a diiron active site. Starting from the apo-protein and Fe(II) in solution at low Fe(II)/apoR2 ratios, mononuclear Fe(II) binding is observed indicating possible different Fe(II) binding affinities for the two alternative sites. Further, based on their Mössbauer spectroscopy and two-iron-isotope reaction experiments, Bollinger et al. (J. Am. Chem. Soc., 1997, 119, 5976-5977) proposed that the site Fe1, which bonds to Asp84, should be associated with the higher observed (57)Fe Mössbauer quadrupole splitting (2.41 mm s(-1)) and lower isomer shift (0.45 mm s(-1)) in the Fe(III)Fe(III) state, site Fe2, which is further from Tyr122, should have a greater affinity for Fe(II) binding than site Fe1, and Fe(IV) in the intermediate X state should reside at site Fe2. In this paper, using density functional theory (DFT) incorporated with the conductor-like screening (COSMO) solvation model and with the finite-difference Poisson-Boltzmann self-consistent reaction field (PB-SCRF) methodologies, we have demonstrated that the observed large quadrupole splitting for the diferric state R2 does come from site Fe1(III) and it is mainly caused by the binding position of the carboxylate group of the Asp84 sidechain. Further, a series of active site clusters with mononuclear Fe(II) binding at either site Fe1 or Fe2 have been studied, which show that with a single dielectric medium outside the active site quantum region, there is no energetic preference for Fe(II) binding at one site over another. However, when including the explicit extended protein environment in the PB-SCRF model, the reaction field favors the Fe(II) binding at site Fe2 rather than at site Fe1 by ~9 kcal mol(-1). Therefore our calculations support the proposal of the previous Mössbauer spectroscopy and two-iron-isotope reaction experiments by Bollinger et al.

  17. Cytidine deaminases from B. subtilis and E. coli: compensating effects of changing zinc coordination and quaternary structure.

    PubMed

    Carlow, D C; Carter, C W; Mejlhede, N; Neuhard, J; Wolfenden, R

    1999-09-21

    Cytidine deaminase from E. coli is a dimer of identical subunits (M(r) = 31 540), each containing a single zinc atom. Cytidine deaminase from B. subtilis is a tetramer of identical subunits (M(r) = 14 800). After purification from an overexpressing strain, the enzyme from B. subtilis is found to contain a single atom of zinc per enzyme subunit by flame atomic absorption spectroscopy. Fluorescence titration indicates that each of the four subunits contains a binding site for the transition state analogue inhibitor 5-fluoro-3,4-dihydrouridine. A region of amino acid sequence homology, containing residues that are involved in zinc coordination in the enzyme from E. coli, strongly suggests that in the enzyme from B. subtilis, zinc is coordinated by the thiolate side chains of three cysteine residues (Cys-53, Cys-86, and Cys-89) [Song, B. H., and Neuhard, J. (1989) Mol. Gen. Genet. 216, 462-468]. This pattern of zinc coordination appears to be novel for a hydrolytic enzyme, and might be expected to reduce the reactivity of the active site substantially compared with that of the enzyme from E. coli (His-102, Cys-129, and Cys-132). Instead, the B. subtilis and E. coli enzymes are found to be similar in their activities, and also in their relative binding affinities for a series of structurally related inhibitors with binding affinities that span a range of 6 orders of magnitude. In addition, the apparent pK(a) value of the active site is shifted upward by less than 1 unit. Sequence alignments, together with model building, suggest one possible mechanism of compensation.

  18. Single-site multiport combined splenectomy and cholecystectomy with conventional laparoscopic instruments: Case series and review of literature

    PubMed Central

    Ozemir, Ibrahim Ali; Bayraktar, Baris; Bayraktar, Onur; Tosun, Salih; Bilgic, Cagri; Demiral, Gokhan; Ozturk, Erman; Yigitbasi, Rafet; Alimoglu, Orhan

    2015-01-01

    Introduction Conventional laparoscopic procedures have been used for splenic diseases and concomitant gallbladder stones, frequently in patients with hereditary spherocytosis since 1990’s. The aim of this study is to evaluate the feasibility of single-site surgery with conventional instruments in combined procedures. Presentation of case series Six consecutive patients who scheduled for combined cholecystectomy and splenectomy because of hereditary spherocytosis or autoimmune hemolytic anemia were included this study. Both procedures were performed via trans-umbilical single-site multiport approach using conventional instruments. All procedures completed successfully without conversion to open surgery or conventional laparoscopic surgery. An additional trocar was required for only one patient. The mean operation time was 190 min (150–275 min). The mean blood loss was 185 ml (70–300 ml). Median postoperative hospital stay was two days. No perioperative mortality or major complications occurred in our series. Recurrent anemia, hernia formation or wound infection was not observed during the follow-up period. Discussion Nowadays, publications are arising about laparoscopic or single site surgery for combined diseases. Surgery for combined diseases has some difficulties owing to the placement of organs and position of the patient during laparoscopic surgery. Single site laparoscopic surgery has been proposed to have better cosmetic outcome, less postoperative pain, greater patient satisfaction and faster recovery compared to standard laparoscopy. Conclusion We consider that single-site multiport laparoscopic approach for combined splenectomy and cholecystectomy is a safe and feasible technique, after gaining enough experience on single site surgery. PMID:26708949

  19. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  20. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    PubMed Central

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-01-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm−2 at 80 °C with a low platinum loading of 0.09 mgPt cm−2, corresponding to a platinum utilization of 0.13 gPt kW−1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction. PMID:28737170

  1. Structural changes at the metal ion binding site during the phosphoglucomutase reaction.

    PubMed

    Ray, W J; Post, C B; Liu, Y; Rhyu, G I

    1993-01-12

    An electron density map of the reactive, Cd2+ form of crystalline phosphoglucomutase from X-ray diffraction studies shows that the enzymic phosphate donates a nonbridging oxygen to the ligand sphere of the bound metal ion, which appears to be tetracoordinate. 31P and 113Cd NMR spectroscopy are used to assess changes in the properties of bound Cd2+ produced by substrate/product and by substrate/product analog inhibitors. The approximately 50 ppm downfield shift of the 113Cd resonance on formation of the complex of dephosphoenzyme and glucose 1,6-bisphosphate is associated with the initial sugar-phosphate binding step and likely involves a change in the geometry of the coordinating ligands. This interpretation is supported by spectral studies involving various complexes of the active Co2+ and Ni(2+)-enzyme. In addition, there is a loss of the 31P-113Cd J coupling that characterizes the monophosphate complexes of the Cd2+ enzyme either during or immediately after the PO3- transfer step that produces the bisphosphate complex, indicating a further change at the metal binding site. The implications of these observations with respect to the PO3- transfer process in the phosphoglucomutase reaction are considered. The apparent plasticity of the ligand sphere of the active site metal ion in this system may allow a single metal ion to act as a chaperone for a nonbridging oxygen during PO3- transfer or to allow a change in metal ion coordination during catalysis. A general NMR line shape/chemical-exchange analysis for evaluating binding in protein-ligand systems when exchange is intermediate to fast on the NMR time scale is described. Its application to the present system involves multiple exchange sites that depend on a single binding rate, thereby adding further constraints to the analysis.

  2. Engineering a horseradish peroxidase C stable to radical attacks by mutating multiple radical coupling sites.

    PubMed

    Kim, Su Jin; Joo, Jeong Chan; Song, Bong Keun; Yoo, Young Je; Kim, Yong Hwan

    2015-04-01

    Peroxidases have great potential as industrial biocatalysts. In particular, the oxidative polymerization of phenolic compounds catalyzed by peroxidases has been extensively examined because of the advantage of this method over other conventional chemical methods. However, the industrial application of peroxidases is often limited because of their rapid inactivation by phenoxyl radicals during oxidative polymerization. In this work, we report a novel protein engineering approach to improve the radical stability of horseradish peroxidase isozyme C (HRPC). Phenylalanine residues that are vulnerable to modification by the phenoxyl radicals were identified using mass spectrometry analysis. UV-Vis and CD spectra showed that radical coupling did not change the secondary structure or the active site of HRPC. Four phenylalanine (Phe) residues (F68, F142, F143, and F179) were each mutated to alanine residues to generate single mutants to examine the role of these sites in radical coupling. Despite marginal improvement of radical stability, each single mutant still exhibited rapid radical inactivation. To further reduce inactivation by radical coupling, the four substitution mutations were combined in F68A/F142A/F143A/F179A. This mutant demonstrated dramatic enhancement of radical stability by retaining 41% of its initial activity compared to the wild-type, which was completely inactivated. Structure and sequence alignment revealed that radical-vulnerable Phe residues of HPRC are conserved in homologous peroxidases, which showed the same rapid inactivation tendency as HRPC. Based on our site-directed mutagenesis and biochemical characterization, we have shown that engineering radical-vulnerable residues to eliminate multiple radical coupling can be a good strategy to improve the stability of peroxidases against radical attack. © 2014 Wiley Periodicals, Inc.

  3. Face, content, and construct validity of four, inanimate training exercises using the da Vinci ® Si surgical system configured with Single-Site ™ instrumentation.

    PubMed

    Jarc, Anthony M; Curet, Myriam

    2015-08-01

    Validated training exercises are essential tools for surgeons as they develop technical skills to use robot-assisted minimally invasive surgical systems. The purpose of this study was to show face, content, and construct validity of four, inanimate training exercises using the da Vinci (®) Si surgical system configured with Single-Site (™) instrumentation. New (N = 21) and experienced (N = 6) surgeons participated in the study. New surgeons (11 Gynecology [GYN] and 10 General Surgery [GEN]) had not completed any da Vinci Single-Site cases but may have completed multiport cases using the da Vinci system. They participated in this study prior to attending a certification course focused on da Vinci Single-Site instrumentation. Experienced surgeons (5 GYN and 1 GEN) had completed at least 25 da Vinci Single-Site cases. The surgeons completed four inanimate training exercises and then rated them with a questionnaire. Raw metrics and overall normalized scores were computed using both video recordings and kinematic data collected from the surgical system. The experienced surgeons significantly outperformed new surgeons for many raw metrics and the overall normalized scores derived from video review (p < 0.05). Only one exercise did not achieve a significant difference between new and experienced surgeons (p = 0.08) when calculating an overall normalized score using both video and advanced metrics derived from kinematic data. Both new and experienced surgeons rated the training exercises as appearing, to train and measure technical skills used during da Vinci Single-Site surgery and actually testing the technical skills used during da Vinci Single-Site surgery. In summary, the four training exercises showed face, content, and construct validity. Improved overall scores could be developed using additional metrics not included in this study. The results suggest that the training exercises could be used in an overall training curriculum aimed at developing proficiency in technical skills for surgeons new to da Vinci Single-Site instrumentation.

  4. Effects of location and timing of co-activated neurons in the auditory midbrain on cortical activity: implications for a new central auditory prosthesis

    NASA Astrophysics Data System (ADS)

    Straka, Małgorzata M.; McMahon, Melissa; Markovitz, Craig D.; Lim, Hubert H.

    2014-08-01

    Objective. An increasing number of deaf individuals are being implanted with central auditory prostheses, but their performance has generally been poorer than for cochlear implant users. The goal of this study is to investigate stimulation strategies for improving hearing performance with a new auditory midbrain implant (AMI). Previous studies have shown that repeated electrical stimulation of a single site in each isofrequency lamina of the central nucleus of the inferior colliculus (ICC) causes strong suppressive effects in elicited responses within the primary auditory cortex (A1). Here we investigate if improved cortical activity can be achieved by co-activating neurons with different timing and locations across an ICC lamina and if this cortical activity varies across A1. Approach. We electrically stimulated two sites at different locations across an isofrequency ICC lamina using varying delays in ketamine-anesthetized guinea pigs. We recorded and analyzed spike activity and local field potentials across different layers and locations of A1. Results. Co-activating two sites within an isofrequency lamina with short inter-pulse intervals (<5 ms) could elicit cortical activity that is enhanced beyond a linear summation of activity elicited by the individual sites. A significantly greater extent of normalized cortical activity was observed for stimulation of the rostral-lateral region of an ICC lamina compared to the caudal-medial region. We did not identify any location trends across A1, but the most cortical enhancement was observed in supragranular layers, suggesting further integration of the stimuli through the cortical layers. Significance. The topographic organization identified by this study provides further evidence for the presence of functional zones across an ICC lamina with locations consistent with those identified by previous studies. Clinically, these results suggest that co-activating different neural populations in the rostral-lateral ICC rather than the caudal-medial ICC using the AMI may improve or elicit different types of hearing capabilities.

  5. Conserved Arginines at the P-Protein Stalk Binding Site and the Active Site Are Critical for Ribosome Interactions of Shiga Toxins but Do Not Contribute to Differences in the Affinity of the A1 Subunits for the Ribosome.

    PubMed

    Basu, Debaleena; Kahn, Jennifer N; Li, Xiao-Ping; Tumer, Nilgun E

    2016-12-01

    The A1 subunits of Shiga toxin 1 (Stx1A1) and Shiga toxin 2 (Stx2A1) interact with the conserved C termini of ribosomal-stalk P-proteins to remove a specific adenine from the sarcin/ricin loop. We previously showed that Stx2A1 has higher affinity for the ribosome and higher catalytic activity than Stx1A1. To determine if conserved arginines at the distal face of the active site contribute to the higher affinity of Stx2A1 for the ribosome, we mutated Arg172, Arg176, and Arg179 in both toxins. We show that Arg172 and Arg176 are more important than Arg179 for the depurination activity and toxicity of Stx1A1 and Stx2A1. Mutation of a single arginine reduced the depurination activity of Stx1A1 more than that of Stx2A1. In contrast, mutation of at least two arginines was necessary to reduce depurination by Stx2A1 to a level similar to that of Stx1A1. R176A and R172A/R176A mutations eliminated interaction of Stx1A1 and Stx2A1 with ribosomes and with the stalk, while mutation of Arg170 at the active site reduced the binding affinity of Stx1A1 and Stx2A1 for the ribosome, but not for the stalk. These results demonstrate that conserved arginines at the distal face of the active site are critical for interactions of Stx1A1 and Stx2A1 with the stalk, while a conserved arginine at the active site is critical for non-stalk-specific interactions with the ribosome. Arginine mutations at either site reduced ribosome interactions of Stx1A1 and Stx2A1 similarly, indicating that conserved arginines are critical for ribosome interactions but do not contribute to the higher affinity of Stx2A1 for the ribosome. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Binding intensity and metal partitioning in soils affected by mining and smelting activities in Minas Gerais, Brazil.

    PubMed

    Lopes, G; Costa, E T S; Penido, E S; Sparks, D L; Guilherme, L R G

    2015-09-01

    Mining and smelting activities are potential sources of heavy metal contamination, which pose a threat to human health and ecological systems. This study investigated single and sequential extractions of Zn, Pb, and Cd in Brazilian soils affected by mining and smelting activities. Soils from a Zn mining area (soils A, B, C, D, E, and the control soil) and a tailing from a smelting area were collected in Minas Gerais state, Brazil. The samples were subjected to single (using Mehlich I solution) and sequential extractions. The risk assessment code (RAC), the redistribution index (U ts ), and the reduced partition index (I R ) have been applied to the sequential extraction data. Zinc and Cd, in soil samples from the mining area, were found mainly associated with carbonate forms. This same pattern did not occur for Pb. Moreover, the Fe-Mn oxides and residual fractions had important contributions for Zn and Pb in those soils. For the tailing, more than 70 % of Zn and Cd were released in the exchangeable fraction, showing a much higher mobility and availability of these metals at this site, which was also supported by results of RAC and I R . These differences in terms of mobility might be due to different chemical forms of the metals in the two sites, which are attributable to natural occurrence as well as ore processing.

  7. Structure and Biochemical Activities of Escherichia coli MgsA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Asher N.; George, Nicholas P.; Marceau, Aimee H.

    2012-02-27

    Bacterial 'maintenance of genome stability protein A' (MgsA) and related eukaryotic enzymes play important roles in cellular responses to stalled DNA replication processes. Sequence information identifies MgsA enzymes as members of the clamp loader clade of AAA{sup +} proteins, but structural information defining the family has been limited. Here, the x-ray crystal structure of Escherichia coli MgsA is described, revealing a homotetrameric arrangement for the protein that distinguishes it from other clamp loader clade AAA{sup +} proteins. Each MgsA protomer is composed of three elements as follows: ATP-binding and helical lid domains (conserved among AAA{sup +} proteins) and a tetramerizationmore » domain. Although the tetramerization domains bury the greatest amount of surface area in the MgsA oligomer, each of the domains participates in oligomerization to form a highly intertwined quaternary structure. Phosphate is bound at each AAA{sup +} ATP-binding site, but the active sites do not appear to be in a catalytically competent conformation due to displacement of Arg finger residues. E. coli MgsA is also shown to form a complex with the single-stranded DNA-binding protein through co-purification and biochemical studies. MgsA DNA-dependent ATPase activity is inhibited by single-stranded DNA-binding protein. Together, these structural and biochemical observations provide insights into the mechanisms of MgsA family AAA{sup +} proteins.« less

  8. Structure and Biochemical Activities of Escherichia coli MgsA*♦

    PubMed Central

    Page, Asher N.; George, Nicholas P.; Marceau, Aimee H.; Cox, Michael M.; Keck, James L.

    2011-01-01

    Bacterial “maintenance of genome stability protein A” (MgsA) and related eukaryotic enzymes play important roles in cellular responses to stalled DNA replication processes. Sequence information identifies MgsA enzymes as members of the clamp loader clade of AAA+ proteins, but structural information defining the family has been limited. Here, the x-ray crystal structure of Escherichia coli MgsA is described, revealing a homotetrameric arrangement for the protein that distinguishes it from other clamp loader clade AAA+ proteins. Each MgsA protomer is composed of three elements as follows: ATP-binding and helical lid domains (conserved among AAA+ proteins) and a tetramerization domain. Although the tetramerization domains bury the greatest amount of surface area in the MgsA oligomer, each of the domains participates in oligomerization to form a highly intertwined quaternary structure. Phosphate is bound at each AAA+ ATP-binding site, but the active sites do not appear to be in a catalytically competent conformation due to displacement of Arg finger residues. E. coli MgsA is also shown to form a complex with the single-stranded DNA-binding protein through co-purification and biochemical studies. MgsA DNA-dependent ATPase activity is inhibited by single-stranded DNA-binding protein. Together, these structural and biochemical observations provide insights into the mechanisms of MgsA family AAA+ proteins. PMID:21297161

  9. Geochemical investigation of UMTRAP designated site at Durango, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markos, G.; Bush, K.J.

    1983-09-01

    This report is the result of a geochemical investigation of the former uranium mill and tailings site at Durango, Colorado. This is one in a series of site specific geochemical investigations performed on the inactive uranium mill tailings included in the UMTRA Project. The objectives of the investigation are to characterize the geochemistry, to determine the contaminant distribution resulting from the former milling activities and tailings, and to infer chemical pathways and transport mechanisms from the contaminant distribution. The results will be used to model contaminant migration and to develop criteria for long-term containment media such as a cover systemmore » which is impermeable to contaminant migration. This report assumes a familiarity with the hydrologic conditions of the site and the geochemical concepts underlying the investigation. The results reported are based on a one-time sampling of waters and solid material from the background, the area adjacent to the site, and the site. The solid samples are water extracted remove easily soluble salts and acids extracted to remove cabonates and hydroxides. The water extracts and solid samples were analyzed for the major and trace elements. A limited number of samples were analyzed for radiological components. The report includes the methods of sampling, sample processing, analysis, and data interpretation. Three major conclusions are: (1) carbonate salts and low TDS characterize the tailings; (2) the adjacent area and raffinate ponds contain contaminants deposited by a single event of fluid permeation of the soils; and (3) the Animas River adjacent to the site has elevated gross alpha activity attributed to /sup 226/Ra in the sediments derived from the tailings or milling activities.« less

  10. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests.

    PubMed

    Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

  11. Cells in the monkey ponto-medullary reticular formation modulate their activity with slow finger movements

    PubMed Central

    Soteropoulos, Demetris S; Williams, Elizabeth R; Baker, Stuart N

    2012-01-01

    Recent work has shown that the primate reticulospinal tract can influence spinal interneurons and motoneurons involved in control of the hand. However, demonstrating connectivity does not reveal whether reticular outputs are modulated during the control of different types of hand movement. Here, we investigated how single unit discharge in the pontomedullary reticular formation (PMRF) modulated during performance of a slow finger movement task in macaque monkeys. Two animals performed an index finger flexion–extension task to track a target presented on a computer screen; single units were recorded both from ipsilateral PMRF (115 cells) and contralateral primary motor cortex (M1, 210 cells). Cells in both areas modulated their activity with the task (M1: 87%, PMRF: 86%). Some cells (18/115 in PMRF; 96/210 in M1) received sensory input from the hand, showing a short-latency modulation in their discharge following a rapid passive extension movement of the index finger. Effects in ipsilateral electromyogram to trains of stimuli were recorded at 45 sites in the PMRF. These responses involved muscles controlling the digits in 13/45 sites (including intrinsic hand muscles, 5/45 sites). We conclude that PMRF may contribute to the control of fine finger movements, in addition to its established role in control of more proximal limb and trunk movements. This finding may be especially important in understanding functional recovery after brain lesions such as stroke. PMID:22641776

  12. Urban forms, physical activity and body mass index: a cross-city examination using ISS Earth Observation photographs

    NASA Technical Reports Server (NTRS)

    Lin, Ge

    2005-01-01

    Johnson Space Center has archived thousands of astronauts acquired Earth images. Some spectacular images have been widely used in news media and in k-12 class room, but their potential utilizations in health promotion and disease prevention have relatively untapped. The project uses daytime ISS photographs to define city forms and links them to city or metropolitan level health data in a multicity context. Road connectivity, landuse mix and Shannon's information indices were used in the classification of photographs. In contrast to previous remote-sensing studies, which tend to focus on a single city or a portion of a city, this project utilized photographs of 39 U.S. cities. And in contrast to previous health-promotion studies on the built environment, which tend to rely on survey respondents' responses to evaluate road connectivity or mixed land use for a single study site, the project examined the built environments of multiple cities based on ISS photos. It was found that road connectivity and landuse mix were not statistically significant by themselves, but the composite measure of the Shannon index was significantly associated with physical activity, but not BMI. Consequently, leisure-time physical activity seems to be positively associated with the urban complexity scale. It was also concluded that unless they are planned or designed in advance, photographs taken by astronauts generally are not appropriate for a study of a single-site built environment nor are they appropriate for a study of infectious diseases at a local scale. To link urban built environment with city-wide health indicators, both the traditional nadir view and oblique views should be emphasized in future astronauts' earth observation photographs.

  13. Probing electrostatic interactions and ligand binding in aspartyl-tRNA synthetase through site-directed mutagenesis and computer simulations.

    PubMed

    Thompson, Damien; Lazennec, Christine; Plateau, Pierre; Simonson, Thomas

    2008-05-15

    Faithful genetic code translation requires that each aminoacyl-tRNA synthetase recognise its cognate amino acid ligand specifically. Aspartyl-tRNA synthetase (AspRS) distinguishes between its negatively-charged Asp substrate and two competitors, neutral Asn and di-negative succinate, using a complex network of electrostatic interactions. Here, we used molecular dynamics simulations and site-directed mutagenesis experiments to probe these interactions further. We attempt to decrease the Asp/Asn binding free energy difference via single, double and triple mutations that reduce the net positive charge in the active site of Escherichia coli AspRS. Earlier, Glutamine 199 was changed to a negatively-charged glutamate, giving a computed reduction in Asp affinity in good agreement with experiment. Here, Lysine 198 was changed to a neutral leucine; then, Lys198 and Gln199 were mutated simultaneously. Both mutants are predicted to have reduced Asp binding and improved Asn binding, but the changes are insufficient to overcome the initial, high specificity of the native enzyme, which retains a preference for Asp. Probing the aminoacyl-adenylation reaction through pyrophosphate exchange experiments, we found no detectable activity for the mutant enzymes, indicating weaker Asp binding and/or poorer transition state stabilization. The simulations show that the mutations' effect is partly offset by proton uptake by a nearby histidine. Therefore, we performed additional simulations where the nearby Histidines 448 and 449 were mutated to neutral or negative residues: (Lys198Leu, His448Gln, His449Gln), and (Lys198Leu, His448Glu, His449Gln). This led to unexpected conformational changes and loss of active site preorganization, suggesting that the AspRS active site has a limited structural tolerance for electrostatic modifications. The data give insights into the complex electrostatic network in the AspRS active site and illustrate the difficulty in engineering charged-to-neutral changes of the preferred ligand. 2007 Wiley-Liss, Inc.

  14. Identification and characterization of a receptor for tissue ferritin on activated rat lipocytes.

    PubMed Central

    Ramm, G A; Britton, R S; O'Neill, R; Bacon, B R

    1994-01-01

    Hepatic iron overload causes lipocyte activation with resultant fibrogenesis. This study examines whether rat lipocytes express ferritin receptors, which could be involved in paracellular iron movement and in cellular regulation. Lipocytes from normal rat liver were cultured on plastic and incubated with 125I-labeled rat liver ferritin (RLF) +/- a 100-fold excess of either unlabeled RLF or human heart ferritin, human liver ferritin, human recombinant H-ferritin, a mutant human recombinant L-ferritin, or a variety of nonspecific proteins. Specific binding sites for ferritin were demonstrated by displacement of 125I-RLF by RLF (64.5 +/- 4.3%) and by other ferritins (55-60%), but not by recombinant L-ferritin. Scatchard analysis demonstrated a single class of binding sites with a Kd of 5.1 +/- 2.9 x 10(-10) M, maximum binding capacity of 4.7 +/- 1.3 x 10(-12) M, and 5,000-10,000 receptor sites/cell. Ferritin receptor expression was observed only in activated lipocytes. Internalization of RLF was observed within 15 min using FITC-RLF and confocal microscopy. This study demonstrates that (a) activated lipocytes express a specific high affinity ferritin receptor; (b) the binding appears to be dependent on the H-ferritin subunit; and (c) lipocytes internalize ferritin. Expression of ferritin receptors in activated lipocytes suggests that the receptor may either be involved in the activation cascade or may be a marker of activation. Images PMID:8040296

  15. Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network

    PubMed Central

    Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di-Jia

    2015-01-01

    Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A⋅cm−3 at 0.9 V or 450 A⋅cm−3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed. PMID:26261338

  16. Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network

    DOE PAGES

    Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; ...

    2015-08-25

    Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report heremore » a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A∙cm -3 at 0.9 V or 450 A∙cm -3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.« less

  17. Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network.

    PubMed

    Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di-Jia

    2015-08-25

    Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A ⋅ cm(-3) at 0.9 V or 450 A ⋅ cm(-3) extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.

  18. (100) facets of γ-Al2O3: the active surfaces for alcohol dehydration reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Ja Hun; Mei, Donghai; Peden, Charles HF

    2011-05-01

    Temperature programmed desorption (TPD) of ethanol, and methanol dehydration reaction were studied on γ-Al2O3 in order to identify the catalytic active sites for alcohol dehydration reactions. Two high temperature (> 473 K) desorption features were observed following ethanol adsorption. Samples calcined at T≤473 K displayed a desorption feature in the 523-533 K temperature range, while those calcined at T ≥ 673 K showed a single desorption feature at 498 K. The switch from the high to low temperature ethanol desorption correlated well with the dehydroxylation of the (100) facets of γ-Al2O3 that was predicted at 550 K DFT calculations. Theoreticalmore » DFT simulations of the mechanism of dehydration. on clean and hydroxylated γ-Al2O3(100) surfaces, find that a concerted elimination of ethylene from an ethanol molecule chemisorbed at an Al3+ pentacoordinated site is the rate limiting step for catalytic cycle on both surfaces. Furthermore, titration of the pentacoordinate Al3+ sites on the (100) facets of γ-Al2O3 by BaO completely turned off the methanol dehydration reaction activity. These results unambiguously demonstrate that only the (100) facets on γ-Al2O3 are the catalytic active surfaces for alcohol dehydration.« less

  19. Activation of muscle nicotinic acetylcholine receptor channels by nicotinic and muscarinic agonists

    PubMed Central

    Akk, Gustav; Auerbach, Anthony

    1999-01-01

    The dose-response parameters of recombinant mouse adult neuromuscular acetylcholine receptor channels (nAChR) activated by carbamylcholine, nicotine, muscarine and oxotremorine were measured. Rate constants for agonist association and dissociation, and channel opening and closing, were estimated from single-channel kinetic analysis.The dissociation equilibrium constants were (mM): ACh (0.16)carbamylcholine (5.1)>oxotremorine M (0.6)>nicotine (0.5)>muscarine (0.15).Rat neuronal α4β2 nAChR can be activated by all of the agonists. However, detailed kinetic analysis was impossible because the recordings lacked clusters representing the activity of a single receptor complex. Thus, the number of channels in the patch was unknown and the activation rate constants could not be determined.Considering both receptor affinity and agonist efficacy, muscarine and oxotremorine are significant agonists of muscle-type nAChR. The results are discussed in terms of structure-function relationships at the nAChR transmitter binding site. PMID:10602325

  20. Characterization of (/sup 3/H)forskolin binding sites in the iris-ciliary body of the albino rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, M.E.; Mallorga, P.; Pettibone, D.J.

    1988-01-01

    (/sup 3/H)forskolin binding sites were identified using membranes prepared from the iris-ciliary body of adult, albino rabbits. Scatchard analysis of saturation binding experiments demonstrated that (/sup 3/H)forskolin bound to a single population of high affinity sites. The K/sub d/ and B/sub max/ values were 8.7 +- 0.9 nM and 119.0 +- 30.9 fmolmg prot. using membranes prepared from frozen tissue and 17.0 +- 6.2 nM and 184.4 +- 47.2 fmolmg prot. using fresh tissue. The binding of (/sup 3/H)forskolin was magnesium-dependent. The B/sub max/ was enhanced by sodium fluoride and Gpp(NH)p, a nonhydrolyzable guanine nucleotide analog. Forskolin was the mostmore » potent inhibitor of (/sup 3/H)forskolin binding; two commercially-available analogs were weaker inhibitors. In an adenylate cyclase assay, there was the same rank order of potency to enhance enzyme activity. Based upon binding affinities, magnesium-dependence, sensitivity to sodium fluoride and Gpp(NH)p, rank order of potencies of analogs and correlation of binding with adenylate cyclase activity, these studies suggest that the (/sup 3/H)forskolin binding site in the iris-ciliary body is similar to the binding site in other tissues« less

Top