Testing the assumption of annual shell ring deposition in freshwater mussels
Wendell R. Haag; Amy M. Commens-Carson
2008-01-01
We tested the assumption of annual shell ring deposition by freshwater mussels in three rivers using 17 species. In 2000, we notched shell margins, returned animals to the water, and retrieved them in 2001. In 2003, we measured shells, affixed numbered tags, returned animals, and retrieved them in 2004 and 2005. We validated deposition of a single internal annulus per...
Hegewald, Aldemar A; Knecht, Sven; Baumgartner, Daniel; Gerber, Hans; Endres, Michaela; Kaps, Christian; Stüssi, Edgar; Thomé, Claudius
2009-01-01
Background Surgery for disc herniations can be complicated by two major problems: painful degeneration of the spinal segment and re-herniation. Therefore, we examined an absorbable poly-glycolic acid (PGA) biomaterial, which was lyophilized with hyaluronic acid (HA), for its utility to (a) re-establish spinal stability and to (b) seal annulus fibrosus defects. The biomechanical properties range of motion (ROM), neutral zone (NZ) and a potential annulus sealing capacity were investigated. Methods Seven bovine, lumbar spinal units were tested in vitro for ROM and NZ in three consecutive stages: (a) intact, (b) following nucleotomy and (c) after insertion of a PGA/HA nucleus-implant. For biomechanical testing, spinal units were mounted on a loading-simulator for spines. In three cycles, axial loading was applied in an excentric mode with 0.5 Nm steps until an applied moment of ± 7.5 Nm was achieved in flexion/extension. ROM and NZ were assessed. These tests were performed without and with annulus sealing by sewing a PGA/HA annulus-implant into the annulus defect. Results Spinal stability was significantly impaired after nucleotomy (p < 0.001). Intradiscal implantation of a PGA-HA nucleus-implant, however, restored spinal stability (p < 0.003). There was no statistical difference between the stability provided by the nucleus-implant and the intact stage regarding flexion/extension movements (p = 0.209). During the testing sequences, herniation of biomaterial through the annulus defect into the spinal canal regularly occurred, resulting in compression of neural elements. Sewing a PGA/HA annulus-implant into the annulus defect, however, effectively prevented herniation. Conclusion PGA/HA biomaterial seems to be well suited for cell-free and cell-based regenerative treatment strategies in spinal surgery. Its abilities to restore spinal stability and potentially close annulus defects open up new vistas for regenerative approaches to treat intervertebral disc degeneration and for preventing implant herniation. PMID:19604373
Duct flow nonuniformities: Effect of struts in SSME HGM II(+)
NASA Technical Reports Server (NTRS)
Burke, Roger
1988-01-01
A numerical study, using the INS3D flow solver, of laminar and turbulent flow around a two dimensional strut, and three dimensional flow around a strut in an annulus is presented. A multi-block procedure was used to calculate two dimensional laminar flow around two struts in parallel, with each strut represented by one computational block. Single block calculations were performed for turbulent flow around a two dimensional strut, using a Baldwin-Lomax turbulence model to parameterize the turbulent shear stresses. A modified Baldwin-Lomax model was applied to the case of a three dimensional strut in an annulus. The results displayed the essential features of wing-body flows, including the presence of a horseshoe vortex system at the junction of the strut and the lower annulus surface. A similar system was observed at the upper annulus surface. The test geometries discussed were useful in developing the capability to perform multiblock calculations, and to simulate turbulent flow around obstructions located between curved walls. Both of these skills will be necessary to model the three dimensional flow in the strut assembly of the SSME. Work is now in progress on performing a three dimensional two block turbulent calculation of the flow in the turnaround duct (TAD) and strut/fuel bowl juncture region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringgenberg, P.D.; Burris, W.J.
1988-06-28
A method is described of flow testing a formation in a wellbore, comprising: providing a testing string including at least one annulus pressure responsive tool bore closure valve; providing a packer and setting the packer in the wellbore to seal thereacross; running the testing string into the wellbore with the tool bore closure valve in an open position; stinging into the set packer with the bottom of the testing string; increasing pressure a first time in the wellbore annulus around the testing string and above the set packer without cycling the tool bore closure valve; reducing pressure in the wellboremore » annulus; closing the tool bore closure valve responsive to the pressure reduction; increasing pressure a second time in the wellbore annulus; reopening the tool bore closure valve responsive to the second increase; and flowing fluids from the formation through the reopened tool bore closure valve.« less
DDD versus VVIR pacing in patients, ages 70 and over, with complete heart block.
Ouali, Sana; Neffeti, Elyes; Ghoul, Karima; Hammas, Sami; Kacem, Slim; Gribaa, Rim; Remedi, Fahmi; Boughzela, Essia
2010-05-01
Dual-chamber pacing is believed to have an advantage over single-chamber ventricular pacing. The aim of the study was to determine whether elderly patients with implanted pacemaker for complete atrioventricular block gain significant benefit from dual-chamber (DDD) compared with single-chamber ventricular demand (VVIR). The study was designed as a double-blind randomized two-period crossover study-each pacing mode was maintained for 3 months. Thirty patients (eight men, mean age 76.5 +/- 4.3 years) with implanted PM were submitted to a standard protocol, which included an interview, functional class assessment, quality of life (QoL) questionnaires, 6-minute walk test, and transthoracic echocardiographic examinations. QoL was measured by the SF-36. All these parameters were obtained on DDD mode pacing and VVIR mode pacing. Paired data were compared. QoL was significantly different between the two groups and showed the best values in DDD. Overall, no patient preferred VVIR mode, 18 preferred DDD mode, and 12 expressed no preference. No differences in mean walking distances were observed between patients with single-chamber and dual-chamber pacing. VVI pacing elicited marked decrease in left ventricle ejection fraction and significant enlargement of the left atrium. DDD pacing resulted in significant increase of the peak systolic velocities in lateral mitral annulus and septal mitral annulus. Early diastolic velocities on both sides of mitral annulus did not change. In active elderly patients with complete heart block, DDD pacing is associated with improved quality of life and systolic ventricular function compared with VVI pacing.
Kang, Ran; Li, Haisheng; Lysdahl, Helle; Quang Svend Le, Dang; Chen, Menglin; Xie, Lin; Bünger, Cody
2017-01-01
In an attempt to find an ideal closure method during annulus defect repair, we evaluate the use of medical glue by mechanical and biocompatible test. Cyanoacrylate medical glue was applied together with a multilayer microfiber/nanofiber polycaprolactone scaffold and suture in annulus repair. Continuous axial loading and fatigue mechanical test was performed. Furthermore, the in vitro response of mesenchymal stem cell (MSC) to the glue was evaluated by cell viability assay. The in vivo response of annulus tissue to the glue and scaffold was also studied in porcine lumbar spine; histological sections were evaluated after 3 months. Cyanoacrylate glue significantly improved the closure effect in the experimental group with failure load 2825.7 ± 941.6 N, compared to 774.1 ± 281.3 N in the control group without glue application (p < 0.01). The experimental group also withstood the fatigue test. No toxic effect was observed by in vitro cell culture and in vivo implantation. On the basis of this initial evaluation, the use of cyanoacrylate medical glue improves closure effect with no toxicity in annulus defect repair. This method of annulus repair merits further effectiveness study in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 14-20, 2017. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Tae-Soon; Yun, Byong-Jo; Euh, Dong-Jin
Multidimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor (PWR) vessel with a direct vessel injection mode is presented based on the experimental observation in the MIDAS (multidimensional investigation in downcomer annulus simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a large-break loss-of-coolant accident (LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled down to a 1400-MW(electric) PWR type of a nuclear reactor, focusedmore » on understanding multidimensional thermal-hydraulic phenomena in a downcomer annulus with various types of safety injection during the refill or reflood phase of an LBLOCA. The initial and the boundary conditions are scaled from the pretest analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer.« less
Numerical investigation of heat transfer in annulus laminar flow of multi tubes-in-tube helical coil
NASA Astrophysics Data System (ADS)
Nada, S. A.; Elattar, H. F.; Fouda, A.; Refaey, H. A.
2018-03-01
In the present study, a CFD analysis using ANSYS-FLUENT 14.5 CFD package is used to investigate the characteristics of heat transfer of laminar flow in annulus formed by multi tubes in tube helically coiled heat exchanger. The numerical results are validated by comparison with previous experimental data and fair agreements were existed. The influences of the design and operation parameters such as heat flux, Reynolds numbers and annulus geometry on the heat transfer characteristics are investigated. Different annulus of different numbers of inner tubes, specifically 1, 2, 3, 4 and 5 tubes, are tested. The Results showed that for all the studied annulus, the heat flux has no effect on the Nusselt number and compactness parameter. The annulus formed by using five inner tubes showed the best heat transfer performance and compactness parameter. Correlation of predicting Nusselt number in terms of Reynolds number and number of inner tubes are presented.
NASA Astrophysics Data System (ADS)
Espinal, Daniel
The objective of this research is to investigate and confirm the periodicity of the Non-Synchronous Vibration (NSV) mechanism of a GE axial compressor with a full-annulus simulation. A second objective is to develop a high fidelity single-passage tool with time-accurate unsteady capabilities able to capture rotor-stator interactions and NSV excitation response. A high fidelity methodology for axial turbomachinery simulation is developed using the low diffusion shock-capturing Riemann solver with high order schemes, the Spalart-Allmaras turbulence closure model, the fully conservative unsteady sliding BC for rotor-stator interaction with extension to full-annulus and single-passage configurations, and the phase lag boundary conditions applied to rotor-stator interface and circumferential BC. A URANS solver is used and captures the NSV flow excitation frequency of 2439 Hz, which agrees reasonably well with the measured NSV frequency of 2600 Hz from strain gage test data. It is observed that the circumferentially traveling vortex formed in the vicinity of the rotor tip propagates at the speed of a non-engine order frequency and causes the NSV. The vortex travels along the suction surface of the blade and crosses the passage outlet near blade trailing edge. Such a vortex motion trajectory repeats in each blade passage and generates two low pressure regions due to the vortex core positions, one at the leading edge and one at the trailing edge, both are oscillating due to the vortex coming and leaving. These two low pressure regions create a pair of coupling forces that generates a torsion moment causing NSV. The full-annulus simulation shows that the circumferentially traveling vortex has fairly periodical behavior and is a full annulus structure. Also, frequencies below the NSV excitation frequency of 2439 Hz with large amplitudes in response to flow-separation related phenomena are present. This behavior is consistent with experimental measurements. For circumferentially averaged parameters like total pressure ratio, NSV is observed to have an effect, particularly at radial locations above 70% span. Therefore, to achieve similar or better total pressure ratio a design with a smaller loading of the upper blade span and a higher loading of the mid blade spans should be considered. A fully-conservative sliding interface boundary condition (BC) is implemented with phase-lag capabilities using the Direct Store method for single-passage simulations. Also Direct Store phase-lag was applied to the circumferential BCs to enforce longer disturbance wavelengths. The unsteady simulation using single-blade-passage with periodic BC for an inlet guide vane (IGV)-rotor configuration captures a 2291 Hz NSV excitation frequency and an IGV-rotor-stator configuration predicts a 2365 Hz NSV excitation frequency with a significantly higher amplitude above 90% span. This correlates closely to the predicted NSV excitation frequency of 2439 Hz for the full-annulus configuration. The two-blade-row configuration exhibits the same vortex structures captured in the full-annulus study. The three-blade-row configuration only captures a tip vortex shedding at the leading edge, which can be attributed to the reflective nature of the BCs causing IGV-rotor-stator interactions to be augmented, becoming dominant and shifting NSV excitation response to engine order regime. Phase-lag simulations with a Nodal Diameter (ND) of 5 is enforced for the circumferential BCs for the three-blade-row configuration, and the results exactly matched the frequency response and flow structures of the periodic simulation, illustrating the small effect that phase-lag has on strongly periodic flow disturbances. A ND of 7 is enforced at the sliding interface, however the NSV excitation completely disappears and only the wake propagation from IGV-Rotor-Stator interactions are captured. Rotor blade passage exhibits a circumferentially travelling vortex similar to those observed in the full-annulus and two-blade-row simulations. This can occur when the rotating instability responsible for the NSV no longer maintains a pressure variation with a characteristic frequency signature as it rotates relative to the rotor rotation, and now has become the beginning of a spike-type stall cell. In this scenario the travelling vortex has become evidence of part-stall of the upper spans of the rotor blade, but stalling is contained maintaining stable operation. In conclusion, an efficient method of capturing NSV excitation has been proposed in a high-fidelity manner, where only 2% of the computational resources used in a full-annulus simulation are required for an accurate single-blade-passage multi-stage simulation.
30 CFR 250.522 - When do I have to repeat casing diagnostic testing?
Code of Federal Regulations, 2011 CFR
2011-07-01
... term has expired, immediately. (b) your well, previously on gas lift, has been shut-in or returned to flowing status without gas lift for more than 180 days, immediately on the production casing (A annulus). The production casing (A annulus) of wells on active gas lift are exempt from diagnostic testing. (c...
Force Required to Cinch the Tricuspid Annulus: An Ex-Vivo Study
Adkins, Amy; Aleman, Jesus; Boies, Lori; Sako, Edward; Bhattacharya, Shamik
2016-01-01
Background and aim of the study Tricuspid annuloplasty is the most preferred technique for the treatment of functional tricuspid regurgitation (FTR). However, high incidences of recurrent regurgitation and risky reoperation demands a deeper insight into the technique. The cinching force required to bring a dilated annulus back to the original size is unknown. The study aim was to quantify the cinching force in the tricuspid annulus which can contribute to the long-term durability of tricuspid annuloplasty and percutaneous device design. Methods In ten ovine hearts, a suture was anchored around the free wall of the tricuspid annulus with the free end attached to a force transducer. The force transducer was mounted on a slider system which pulled the suture at regular intervals. Closure of the tricuspid valve was achieved by pressurizing the right ventricle at 30 mmHg through the pulmonary valve. The suture was pulled to cinch the tricuspid annulus. The tricuspid annulus area was measured from images taken at each increment, and the corresponding force was recorded. The hearts were tested for three conditions: (i) non-pressurized (NP); (ii) pressurized (P; normal), and (iii) dilated-pressurized (DP; diseased). Leakage data were also collected for pressurized and dilated pressurized conditions. Annulus dilation was created by injecting phenol into the annulus. Results The maximum annulus dilation obtained was 8.82%, and the maximum cinching force was 0.38 ± 0.09 N. Leakage was increased by 81.73% from the pressurized to dilated condition. Conclusion The minimal force required to cinch a tricuspid annulus with severe FTR (23.98% dilation) can be approximated to 0.25 N. The required cinching force can play a major role in the long-term durability of the tricuspid annuloplasty. PMID:26897846
Albes, Johannes M
2017-12-01
Interrupted pledget-armed braided sutures are widely used for valve implantation. In a 74-year-old woman with aortic valve endocarditis and shallow annular abscess, annulus dehiscence resulted after resection. As resistance was too high for sufficient primary approximation, a snug fit of the valve by means of circumferential application of curbed tourniquets resembling Medusa's head after suture placement was achieved. Closest possible approximation of the upper and lower part of the annulus with the prosthesis prior to final fixation was thus possible, so that application of too much tension on a single suture could be avoided. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.
Karakolis, Thomas; Callaghan, Jack P
2015-01-01
Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates.
Kobielarz, Magdalena; Szotek, Sylwia; Głowacki, Maciej; Dawidowicz, Joanna; Pezowicz, Celina
2016-09-01
The biophysical properties of the annulus fibrosus of the intervertebral disc are determined by collagen and elastin fibres. The progression of scoliosis is accompanied by a number of pathological changes concerning these structural proteins. This is a major cause of dysfunction of the intervertebral disc. The object of the study were annulus fibrosus samples excised from intervertebral discs of healthy subjects and patients treated surgically for scoliosis in the thoracolumbar or lumbar spine. The research material was subjected to structural analysis by light microscopy and quantitative analysis of the content of collagen types I, II, III and IV as well as elastin by immunoenzymatic test (ELISA). A statistical analysis was conducted to assess the impact of the sampling site (Mann-Whitney test, α=0.05) and scoliosis (Wilcoxon matched pairs test, α=0.05) on the obtained results. The microscopic studies conducted on scoliotic annulus fibrosus showed a significant architectural distortion of collagen and elastin fibres. Quantitative biochemical assays demonstrated region-dependent distribution of only collagen types I and II in the case of healthy intervertebral discs whereas in the case of scoliotic discs region-dependent distribution concerned all examined proteins of the extracellular matrix. Comparison of scoliotic and healthy annulus fibrosus revealed a significant decrease in the content of collagen type I and elastin as well as a slight increase in the proportion of collagen types III and IV. The content of collagen type II did not differ significantly between both groups. The observed anomalies are a manifestation of degenerative changes affecting annulus fibrosus of the intervertebral disc in patients suffering from scoliosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Noise suppression due to annulus shaping of conventional coaxial nozzle
NASA Technical Reports Server (NTRS)
Vonglahn, U.; Goodykoontz, J.
1980-01-01
A method which shows that increasing the annulus width of a conventional coaxial nozzle with constant bypass velocity will lower the noise level is described. The method entails modifying a concentric coaxial nozzle to provide an eccentric outer stream annulus while maintaining approximately the same through flow as that for the original concentric bypass nozzle. Acoustical tests to determine the noise generating characteristics of the nozzle over a range of flow conditions are described. The tests involved sequentially analyzing the noise signals and digitally recording the 1/3 octave band sound pressure levels. The measurements were made in a plane passing through the minimum and maximum annulus width points, as well as at 90 degrees in this plane, by rotating the outer nozzle about its axis. Representative measured spectral data in the flyover plane for the concentric nozzle obtained at model scale are discussed. Representative spectra for several engine cycles are presented for both the eccentric and concentric nozzles at engine size.
40 CFR 147.3107 - Mechanical integrity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Oklahoma Indian Tribes § 147.3107 Mechanical integrity. (a) Monitoring of annulus pressure conducted pursuant to § 146.8(b)(1) shall be preceded by an initial pressure test. A positive gauge pressure on the casing/tubing annulus (filled with liquid) shall be maintained continuously. The pressure shall be...
40 CFR 147.3107 - Mechanical integrity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Oklahoma Indian Tribes § 147.3107 Mechanical integrity. (a) Monitoring of annulus pressure conducted pursuant to § 146.8(b)(1) shall be preceded by an initial pressure test. A positive gauge pressure on the casing/tubing annulus (filled with liquid) shall be maintained continuously. The pressure shall be...
40 CFR 147.3107 - Mechanical integrity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Oklahoma Indian Tribes § 147.3107 Mechanical integrity. (a) Monitoring of annulus pressure conducted pursuant to § 146.8(b)(1) shall be preceded by an initial pressure test. A positive gauge pressure on the casing/tubing annulus (filled with liquid) shall be maintained continuously. The pressure shall be...
40 CFR 147.3107 - Mechanical integrity.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Oklahoma Indian Tribes § 147.3107 Mechanical integrity. (a) Monitoring of annulus pressure conducted pursuant to § 146.8(b)(1) shall be preceded by an initial pressure test. A positive gauge pressure on the casing/tubing annulus (filled with liquid) shall be maintained continuously. The pressure shall be...
NASA Astrophysics Data System (ADS)
Guo, Z. Y.; Peng, X. Q.; Moran, B.
2006-09-01
This paper presents a composites-based hyperelastic constitutive model for soft tissue. Well organized soft tissue is treated as a composite in which the matrix material is embedded with a single family of aligned fibers. The fiber is modeled as a generalized neo-Hookean material in which the stiffness depends on fiber stretch. The deformation gradient is decomposed multiplicatively into two parts: a uniaxial deformation along the fiber direction and a subsequent shear deformation. This permits the fiber-matrix interaction caused by inhomogeneous deformation to be estimated by using effective properties from conventional composites theory based on small strain linear elasticity and suitably generalized to the present large deformation case. A transversely isotropic hyperelastic model is proposed to describe the mechanical behavior of fiber-reinforced soft tissue. This model is then applied to the human annulus fibrosus. Because of the layered anatomical structure of the annulus fibrosus, an orthotropic hyperelastic model of the annulus fibrosus is developed. Simulations show that the model reproduces the stress-strain response of the human annulus fibrosus accurately. We also show that the expression for the fiber-matrix shear interaction energy used in a previous phenomenological model is compatible with that derived in the present paper.
ERIC Educational Resources Information Center
Gok Colak, Feride; Tugluk, Mehmet Nur
2017-01-01
This study aimed to investigate the cognitive structures of prospective preschool teachers and to identify their misconceptions about the concepts of circle, disk and annulus. In the study, the Word Association Test was used as the data collection instrument. The study was conducted in the fall semester of the 2014-2015 academic year with the…
Importance of Air Absorption During Mechanical Integrity Testing
NASA Astrophysics Data System (ADS)
Arnold, Fredric C.
1990-11-01
Wells used for injection of liquid industrial waste into deep saline aquifers are required to be periodically tested for mechanical integrity. A generally accepted method to demonstrate mechanical integrity is to pressurize the casing-tubing annulus and monitor any decline in pressure. If air is used to pressurize the annulus, uncertainty may exist in differentiating between absorption of air into water in the annulus and loss of pressure due to the absence of mechanical integrity. An analytical model of air absorbance has been derived and used to quantify the pressure decline due to dissolving and diffusion of the air in annular water. A parameteric study was made to determine when annular pressure decline due to absorption of air is significant.
Thermal analysis of the FSP-1 fuel pin irradiation test. [for SP-100 space power reactor
NASA Technical Reports Server (NTRS)
Lyon, William F., III
1991-01-01
Thermal analysis of a pin from the FSP-1 fuels irradiation test has been completed. The purpose of the analysis was to provide predictions of fuel pin temperatures, determine the flow regime within the lithium annulus of the test assembly, and provide a standardized model for a consistent basis of comparison between pins within the test assembly. The calculations have predicted that the pin is operating at slightly above the test design temperatures and that the flow regime within the lithium annulus is a laminar buoyancy driven flow.
Discovery of the First Leaking Double-Shell Tank - Hanford Tank 241-AY-102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, Stephanie J.; Sams, Terry L.
Full text - Long Abstract. A routine video inspection of the annulus region of double-shell tank 241-A Y-102 in August of 2012 indicated the presence material in the annulus space between the primary and secondary liners. A comparison was made to previous inspections performed in 2006 and 2007. which indicated that a change had occurred. The material was observed at two locations on the floor of the annulus and one location at the top of the annulus region where the primary and secondary top knuckles meet (RPP-ASMT-53793). Subsequent inspections were performed. leading to additional material observed on the floor ofmore » the annulus space in a region that had not previously been inspected (WRPS-PER-2012-1363). The annulus Continuous Air Monitor (CAM) was still operational and was not indicating elevated radiation levels in the annulus region. When the camera from the inspections was recovered. it also did not indicate increased radiation above minimum contamination levels (WRPS-PER-2012-1363). A formal leak assessment team was established August 10, 2012 to review tank 241-AY-102 construction and operating histories and to determine whether the material observed in the annulus had resulted from a leak in the primary tank. The team consisted of individuals from Engineering. Base Operations and Environmental Protection. As this was a first-of-its-kind task. a method for obtaining a sample of the material in the annulus was needed. The consistency of the material was unknown.and the location of a majority of the material was not conducive to using the sampling devices that were currently available at Hanford. A subcontractor was tasked with the development fabrication.and testing of a sampling device that would be able to obtain multiple samples from the material on the annulus floor. as well as the material originating from a refractory air-slot near the floor of the annulus space. This sampler would need to be able to collect and dispense the material it collected into a sample jar retrieval device for transportation of the material to the 222-S laboratory on the Hanford site for analysis. The subcontractor agency fabricated a remote underground sampler by modifying off-the-shelf robotics and parts. Limited testing of the sampler was conducted using a mock-up of the tank annulus and one simulated material type -a salt block. The mock-up testing indicated that the sampler would be able to maneuver within the confined space and that the device worked with full functionality. A total of six weeks had passed from initiation to implementation of the new sampler in the 241-AY-102 tank annulus. Initial sample material was obtained from the annulus floor using the Off-Riser Sampler System that has been used at Hanford tor years to obtain material from the primary tanks. This could be used at the location near Riser 83 since the material was collected directly from the annulus floor and not from a location on the wall or behind a pipe, as was needed from the two locations near Riser 90. After obtaining a small sample of the material on the annulus floor.this sampler sustained terminal damage due to conduit pipes it had to transverse in order to collect and recover material from this location. Several issues were also encountered during deployment of the new sampler into the annulus near Riser 90. These included: Difficulty fitting the sampler down the 12-inch riser into the annulus due to a small tolerance in the size of the sampler; Failure of sampler components and functions during deployment including the camera. pneumatics.and bearing seals; Delays in the field due to supporting equipment issues including cables. cameras. and scaffolding; and, Low recovery of sample material obtained for analysis. The complications that occurred during deployment and use of the new sampler during the sampling event ultimately resulted in lower recovery of material from these locations in the annulus than was obtained using the Off-Riser Sampler System and limited the analyses that could be performed for determining the origin of the material. Following completion of the sample analyses and the assessment of its construction history and use. there was a consensus among the leak assessment team members that two of the three materials sampled from the annulus floor region were the result of waste leaking from a breach in the primary tank. The probable leak cause was identified as corrosion at high temperatures in a tank whose containment margins had been reduced due to construction difficulties (RPP-ASMT-53793). A formal Lessons Learned was created concerning designing equipment tor unique purposes under time constraints. This document was published in OPEXShare on May 20. 2013. It highlighted some of the issues that arose with the subcontractor sampler development and provided recommendations to prevent a recurrence should this task need to be performed again in the future. The document can be found at http://msa.hanford.gov/opex/lesson.cfm/2013/5/20/3481/AY-102-Annulus-Sampler-Designing-Equipment-for-Unique-Purposes-under-Time-Constraints/.« less
Quality of motion considerations in numerical analysis of motion restoring implants of the spine.
Bowden, Anton E; Guerin, Heather L; Villarraga, Marta L; Patwardhan, Avinash G; Ochoa, Jorge A
2008-06-01
Motion restoring implants function in a dynamic environment that encompasses the full range of spinal kinematics. Accurate assessment of the in situ performance of these devices using numerical techniques requires model verification and validation against the well-established nonlinear quality of motion of the spine, as opposed to the previous norm of matching kinematic endpoint metrics such as range of motion and intervertebral disc pressure measurements at a single kinematic reference point. Experimental data was obtained during cadaveric testing of nine three-functional spinal unit (L3-S1) lumbar spine segments. Each specimen was tested from 8 Nm of applied flexion moment to 6 Nm of applied extension moment with an applied 400 N compressive follower preload. A nonlinear kinematic curve representing the spinal quality of motion (applied moment versus angular rotation) for the index finite element model was constructed and compared to the kinematic responses of the experimental specimens. The effect of spinal soft tissue structure mechanical behaviors on the fidelity of the model's quality of motion to experimental data was assessed by iteratively modifying the material representations of annulus fibrosus, nucleus pulposus, and ligaments. The present work demonstrated that for this model, the annulus fibrosus played a small role in the nonlinear quality of motion of the model, whereas changes in ligament representations had a large effect, as validated against the full kinematic range of motion. An anisotropic continuum representation of the annulus fibrosus was used, along with nonlinear fabric representations of the ligaments and a hyperelastic representation of the nucleus pulposus. Our results suggest that improvements in current methodologies broadly used in numerical simulations of the lumbar spine are needed to fully describe the highly nonlinear motion of the spine.
CHARACTERIZATION OF TANK 16H ANNULUS SAMPLES PART II: LEACHING RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Reboul, S.
2012-06-19
The closure of Tank 16H will require removal of material from the annulus of the tank. Samples from Tank 16H annulus were characterized and tested to provide information to evaluate various alternatives for removing the annulus waste. The analysis found all four annulus samples to be composed mainly of Si, Na, and Al and lesser amounts of other elements. The XRD data indicate quartz (SiO{sub 2}) and sodium aluminum nitrate silicate hydrate (Na{sub 8}(Al{sub 6}Si{sub 6}O{sub 24})(NO{sub 3}){sub 2}.4H{sub 2}O) as the predominant crystalline mineral phases in the samples. The XRD data also indicate the presence of crystalline sodium nitratemore » (NaNO{sub 3}), sodium nitrite (NaNO{sub 2}), gibbsite (Al(OH){sub 3}), hydrated sodium bicarbonate (Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O), and muscovite (KAl{sub 2}(AlSi{sub 3}O{sub 10})(OH){sub 2}). Based on the weight of solids remaining at the end of the test, the water leaching test results indicate 20-35% of the solids dissolved after three contacts with an approximately 3:1 volume of water at 45 C. The chemical analysis of the leachates and the XRD results of the remaining solids indicate sodium salts of nitrate, nitrite, sulfate, and possibly carbonate/bicarbonate make up the majority of the dissolved material. The majority of these salts were dissolved in the first water contact and simply diluted with each subsequent water contact. The water leaching removed large amounts of the uranium in two of the samples and approximately 1/3 of the {sup 99}Tc from all four samples. Most of the other radionuclides analyzed showed low solubility in the water leaching test. The oxalic acid leaching test result indicate approximately 34-47% of the solids in the four annulus samples will dissolve after three contacts with an approximately 3:1 volume of acid to solids at 45 C. The same sodium salts found in the water leaching test comprise the majority of dissolved material in the oxalic acid leaching test. However, the oxalic acid was somewhat more effective in dissolving radionuclides than the water leach. In contrast to the water leaching results, most constituents continued to dissolve during subsequent cycles of oxalic acid leaching. The somewhat higher dissolution found in the oxalic acid leaching test versus the water leaching test might be offset by the tendency of the oxalic acid solutions to take on a gel-like consistency. The filtered solids left behind after three oxalic acid contacts were sticky and formed large clumps after drying. These two observations could indicate potential processing difficulties with solutions and solids from oxalic acid leaching. The gel formation might be avoided by using larger volumes of the acid. Further testing would be recommended before using oxalic acid to dissolve the Tank 16H annulus waste to ensure no processing difficulties are encountered in the full scale process.« less
Long-Term Heating to Improve Receiver Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc
The buildup of hydrogen in the heat transfer fluid (HTF) that circulates through components of parabolic trough power plants decreases receiver thermal efficiency, and ultimately, it decreases plant performance and electricity output. The generation and occurrence of hydrogen in the HTF provides the driving force for hydrogen to permeate from the HTF through the absorber tube wall and into the receiver annulus. Getters adsorb hydrogen from the annulus volume until they saturate and are no longer able to maintain low hydrogen pressure. The increase in hydrogen pressure within the annulus significantly degrades thermal performance of the receiver and decreases overallmore » power-plant efficiency. NREL and Acciona Energy North America (Acciona) are developing a method to control the levels of dissolved hydrogen in the circulating HTF. The basic approach is to remove hydrogen from the expansion tanks of the HTF subsystem at a rate that maintains hydrogen in the circulating HTF to a target level. Full-plant steady-state models developed by the National Renewable Energy Laboratory (NREL) predict that if hydrogen is removed from the HTF within the expansion tanks, the HTF that circulates through the collector field remains essentially free of hydrogen until the HTF returns to the power block in the hot headers. One of the key findings of our modeling is the prediction that hydrogen will reverse-permeate out of the receiver annulus if dissolved hydrogen in the HTF is kept sufficiently low. To test this prediction, we performed extended heating of an in-service receiver that initially had high levels of hydrogen in its annulus. The heating was performed using NREL's receiver test stand. Results of our testing showed that receiver heat loss steadily decreased with daily heating, resulting in a corresponding improvement in receiver thermal efficiency.« less
Air-clad fibres for astronomical instrumentation: focal-ratio degradation
NASA Astrophysics Data System (ADS)
Åslund, Mattias L.; Canning, John
2009-05-01
Focal-ratio degradation (FRD) of light launched into high-numerical aperture (NA) single-annulus all-silica undoped air-clad fibres at an NA of 0.54 is reported. The measured annular light distribution remained Gaussian after 30 m of propagation, but the angular FWHM of the output annulus doubled from 4° after 1 m propagation to 8.5° after 30 m, which is significantly larger than that reported of standard doped-silica fibres (NA < 0.22). No significant diffractive effects were observed. The design of air-clad fibres for broad-band, high-NA astrophotonics applications is discussed.
Long-term culture of bovine nucleus pulposus explants in a native environment.
van Dijk, Bart G M; Potier, Esther; Ito, Keita
2013-04-01
Chronic low back pain is a disease with tremendous financial and social implications, and it is often caused by intervertebral disc degeneration. Regenerative therapies for disc repair are promising treatments, but they need to be tested in physiological models. To develop a physiological in vitro explant model that incorporates the native environment of the intervertebral disc, for example, hypoxia, low glucose, and high tissue osmolarity. Bovine nucleus pulposus (NP) explants were cultured for 42 days in conditions mimicking the native physiological environment. Two different approaches were used to balance the swelling pressure of the NP: raised medium osmolarity or an artificial annulus. Bovine NP explants were either cultured in media with osmolarity balanced at isotonic and hypertonic levels compared with the native tissue or cultured inside a fiber jacket used as an artificial annulus. Oxygen and glucose levels were set at either standard (21% O2 and 4.5 g/L glucose) or physiological (5% O2 and 1 g/L glucose) levels. Samples were analyzed at Day 0, 3, and 42 for tissue composition (water, sulfated glycosaminoglycans, DNA, and hydroxyproline contents and fixed charge density), tissue histology, cell viability, and cellular behavior with messenger RNA (mRNA) expression. Both the hypertonic culture and the artificial annulus approach maintained the tissue matrix composition for 42 days. At Day 3, mRNA expressions of aggrecan, collagen Type I, and collagen Type II in both hypertonic and artificial annulus cultures were not different from Day 0; however, at Day 42, the artificial annulus preserved the mRNA expression closer to Day 0. Gene expressions of matrix metalloprotease 13, tissue inhibitor of matrix metalloprotease 1, and tissue inhibitor of matrix metalloprotease 2 were downregulated under physiological O2 and glucose levels, whereas the other parameters analyzed were not affected. Although the hypertonic culture and the artificial annulus approach are both promising models to test regenerative therapies, the artificial annulus was better able to maintain a cellular behavior closer to the native tissue in longer term cultures. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shahzadi, Iqra; Nadeem, S.; Rabiei, Faranak
The current article deals with the combine effects of single wall carbon nanotubes and effective viscosity for the peristaltic flow of nanofluid through annulus. The nature of the walls is assumed to be permeable. The present theoretical model can be considered as mathematical representation to the motion of conductive physiological fluids in the existence of the endoscope tube which has many biomedical applications such as drug delivery system. The outer tube has a wave of sinusoidal nature that is travelling along its walls while the inner tube is rigid and uniform. Lubrication approach is used for the considered analysis. An empirical relation for the effective variable viscosity of nanofluid is proposed here interestingly. The viscosity of nanofluid is the function of radial distance and the concentration of nanoparticles. Exact solution for the resulting system of equations is displayed for various quantities of interest. The outcomes show that the maximum velocity of SWCNT-blood nanofluid enhances for larger values of viscosity parameter. The pressure gradient in the more extensive part of the annulus is likewise found to increase as a function of variable viscosity parameter. The size of the trapped bolus is also influenced by variable viscosity parameter. The present examination also revealed that the carbon nanotubes have many applications related to biomedicine.
NASA Astrophysics Data System (ADS)
Patrick, William P.; Bryant, Rebecca S.; Greenwald, Larry E.
2002-05-01
A unique low-pressure-drop muffler is described which has been designed to attenuate low frequency tonal noise in ducts. Flow through the muffler is divided into two noncommunicating paths in the cylindrical configuration which was designed, built, and tested. Half of the flow is ducted through a straight central annulus and the other half is ducted through a partitioned outer annulus which directs the flow in a spiral flow pattern around the inner annulus. Thus the outer flow has a longer path length and the sound within the outer annulus is phase-delayed relative to the inner flow causing destructive interference between the inner and outer waves with resulting strong attenuation at the tuned frequencies. A procedure will be described for designing a muffler (with flow) to produce high attenuation at the fundamental noise tone and all harmonics (up to the first cross mode). Results will be presented which show that the muffler achieved over 20 dB attenuation for the first five harmonics of the incident noise in a flowing duct.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, T.K.; Anderson, J.L.; Condie, K.G.
Experiments designed to investigate surface dryout in a heated, ribbed annulus test section simulating one of the annular coolant channels of a Savannah River Plant production reactor Mark 22 fuel assembly have been conducted at the Idaho National Engineering Laboratory. The inner surface of the annulus was constructed of aluminum and was electrically heated to provide an axial cosine power profile and a flat azimuthal power shape. Data presented in this report are from the ECS-2, WSR, and ECS-2cE series of tests. These experiments were conducted to examine the onset of wall thermal excursion for a range of flow, inletmore » fluid temperature, and annulus outlet pressure. Hydraulic boundary conditions on the test section represent flowrates (0.1--1.4 1/s), inlet fluid temperatures (293--345 K), and outlet pressures (-18--139.7 cm of water relative to the bottom of the heated length (61--200 cm of water relative to the bottom of the lower plenum)) expected to occur during the Emergency Coolant System (ECS) phase of postulated Loss-of-Coolant Accident in a production reactor. The onset of thermal excursion based on the present data is consistent with data gathered in test rigs with flat axial power profiles. The data indicate that wall dryout is primarily a function of liquid superficial velocity. Air entrainment rate was observed to be a strong function of the boundary conditions (primarily flowrate and liquid temperature), but had a minor effect on the power at the onset of thermal excursion for the range of conditions examined. 14 refs., 33 figs., 13 tabs.« less
Variations on Debris Disks. IV. An Improved Analytical Model for Collisional Cascades
NASA Astrophysics Data System (ADS)
Kenyon, Scott J.; Bromley, Benjamin C.
2017-04-01
We derive a new analytical model for the evolution of a collisional cascade in a thin annulus around a single central star. In this model, r max the size of the largest object changes with time, {r}\\max \\propto {t}-γ , with γ ≈ 0.1-0.2. Compared to standard models where r max is constant in time, this evolution results in a more rapid decline of M d , the total mass of solids in the annulus, and L d , the luminosity of small particles in the annulus: {M}d\\propto {t}-(γ +1) and {L}d\\propto {t}-(γ /2+1). We demonstrate that the analytical model provides an excellent match to a comprehensive suite of numerical coagulation simulations for annuli at 1 au and at 25 au. If the evolution of real debris disks follows the predictions of the analytical or numerical models, the observed luminosities for evolved stars require up to a factor of two more mass than predicted by previous analytical models.
Lamellar and fibre bundle mechanics of the annulus fibrosus in bovine intervertebral disc.
Vergari, Claudio; Mansfield, Jessica; Meakin, Judith R; Winlove, Peter C
2016-06-01
The intervertebral disc is a multicomposite structure, with an outer fibrous ring, the annulus fibrosus, retaining a gel-like core, the nucleus pulposus. The disc presents complex mechanical behaviour, and it is of high importance for spine biomechanics. Advances in multiscale modelling and disc repair raised a need for new quantitative data on the finest details of annulus fibrosus mechanics. In this work we explored inter-lamella and inter-bundle behaviour of the outer annulus using micromechanical testing and second harmonic generation microscopy. Twenty-one intervertebral discs were dissected from cow tails; the nucleus and inner annulus were excised to leave a ring of outer annulus, which was tested in circumferential loading while imaging the tissue's collagen fibres network with sub-micron resolution. Custom software was developed to determine local tissue strains through image analysis. Inter-bundle linear and shear strains were 5.5 and 2.8 times higher than intra-bundle strains. Bundles tended to remain parallel while rotating under loading, with large slipping between them. Inter-lamella linear strain was almost 3 times the intra-lamella one, but no slipping was observed at the junction between lamellae. This study confirms that outer annulus straining is mainly due to bundles slipping and rotating. Further development of disc multiscale modelling and repair techniques should take into account this modular behaviour of the lamella, rather than considering it as a homogeneous fibre-reinforced matrix. The intervertebral disc is an organ tucked between each couple of vertebrae in the spine. It is composed by an outer fibrous layer retaining a gel-like core. This organ undergoes severe and repeated loading during everyday life activities, since it is the compliant component that gives the spine its flexibility. Its properties are affected by pathologies such as disc degeneration, a major cause of back pain. In this article we explored the micromechanical behaviour of the disc's outer layer using second harmonic generation, a technique which allowed us to visualize, with unprecedented detail, how bundles of collagen fibres slide relative to each other when loaded. Our results will help further the development of new multiscale numerical models and repairing techniques. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. L. Winston
2007-09-01
The air cooling annulus of the Ventilated Storage Cask (VSC)-17 spent fuel storage cask was inspected using a Toshiba 7 mm (1/4”) CCD video camera. The dose rates observed in the annular space were measured to provide a reference for the activity to which the camera(s) being tested were being exposed. No gross degradation, pitting, or general corrosion was observed.
The Development of a Gas–Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus
Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming
2016-01-01
The measurement of wellbore annulus gas–liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas–liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work. PMID:27869708
The Development of a Gas-Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus.
Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming
2016-11-18
The measurement of wellbore annulus gas-liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas-liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work.
Characterization of interfacial waves in horizontal core-annular flow
NASA Astrophysics Data System (ADS)
Tripathi, Sumit; Bhattacharya, Amitabh; Singh, Ramesh; Tabor, Rico F.
2016-11-01
In this work, we characterize interfacial waves in horizontal core annular flow (CAF) of fuel-oil and water. Experimental studies on CAF were performed in an acrylic pipe of 15.5mm internal diameter, and the time evolution of the oil-water interface shape was recorded with a high speed camera for a range of different flow-rates of oil (Qo) and water (Qw). The power spectrum of the interface shape shows a range of notable features. First, there is negligible energy in wavenumbers larger than 2 π / a , where a is the thickness of the annulus. Second, for high Qo /Qw , there is no single dominant wavelength, as the flow in the confined annulus does not allow formation of a preferred mode. Third, for lower Qo /Qw , a dominant mode arises at a wavenumber of 2 π / a . We also observe that the power spectrum of the interface shape depends weakly on Qw, and strongly on Qo, perhaps because the net shear rate in the annulus appears to depend weakly on Qw as well. We also attempt to build a general empirical model for CAF by relating the interfacial stress (calculated via the mean pressure gradient) to the flow rate in the annulus, the annular thickness and the core velocity. Authors are thankful to Orica Mining Services (Australia) for the financial support.
Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering.
Nerurkar, Nandan L; Elliott, Dawn M; Mauck, Robert L
2007-08-01
Engineering a functional replacement for the annulus fibrosus (AF) of the intervertebral disc is contingent upon recapitulation of AF structure, composition, and mechanical properties. In this study, we propose a new paradigm for AF tissue engineering that focuses on the reconstitution of anatomic fiber architecture and uses constitutive modeling to evaluate construct function. A modified electrospinning technique was utilized to generate aligned nanofibrous polymer scaffolds for engineering the basic functional unit of the AF, a single lamella. Scaffolds were tested in uniaxial tension at multiple fiber orientations, demonstrating a nonlinear dependence of modulus on fiber angle that mimicked the nonlinearity and anisotropy of native AF. A homogenization model previously applied to native AF successfully described scaffold mechanical response, and parametric studies demonstrated that nonfibrillar matrix, along with fiber connectivity, are key contributors to tensile mechanics for engineered AF. We demonstrated that AF cells orient themselves along the aligned scaffolds and deposit matrix that contributes to construct mechanics under loading conditions relevant to the in vivo environment. The homogenization model was applied to cell-seeded constructs and provided quantitative measures for the evolution of matrix and interfibrillar interactions. Finally, the model demonstrated that at fiber angles of the AF (28 degrees -44 degrees ), engineered material behaved much like native tissue, suggesting that engineered constructs replicate the physiologic behavior of the single AF lamella. Constitutive modeling provides a powerful tool for analysis of engineered AF neo-tissue and native AF tissue alike, highlighting key mechanical design criteria for functional AF tissue engineering.
Staged fuel and air injection in combustion systems of gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; Berry, Jonathan Dwight
A gas turbine including a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus, and a third radial wall formed about the outer radial wall that forms an outer flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section corresponding to the aftward annulus section and a forward intake section correspondingmore » to the forward annulus section. The air directing structure may include a switchback coolant flowpath to direct air from the compressor discharge cavity to the staged injector. The switchback coolant flowpath may include an upstream section through the flow annulus, and a downstream section through the outer flow annulus.« less
Faletti, Riccardo; Gatti, Marco; Cosentino, Aurelio; Bergamasco, Laura; Cura Stura, Erik; Garabello, Domenica; Pennisi, Giovanni; Salizzoni, Stefano; Veglia, Simona; Ottavio, Davini; Rinaldi, Mauro; Fonio, Paolo
2018-05-26
to determine reliability and reproducibility of measurements of aortic annulus in 3D models printed from cardiovascular computed tomography (CCT) images. Retrospective study on the records of 20 patients who underwent aortic valve replacement (AVR) with pre-surgery annulus assessment by CCT and intra-operative sizing by Hegar dilators (IOS). 3D models were fabricated by fused deposition modelling of thermoplastic polyurethane filaments. For each patient, two 3D models were independently segmented, modelled and printed by two blinded "manufacturers": a radiologist and a radiology technician. Two blinded cardiac surgeons performed the annulus diameter measurements by Hegar dilators on the two sets of models. Matched data from different measurements were analyzed with Wilcoxon test, Bland-Altmann plot and within-subject ANOVA. No significant differences were found among the measurements made by each cardiac surgeon on the same 3D model (p = 0.48) or on the 3D models printed by different manufacturers (p = 0.25); also, no intraobserver variability (p = 0.46). The annulus diameter measured on 3D models showed good agreement with the reference CCT measurement (p = 0.68) and IOH sizing (p = 0.11). Time and cost per model were: model creation ∼10-15 min; printing time ∼60 min; post-processing ∼5min; material cost ∼1€. CONCLUSION: 3D printing of aortic annulus can offer reliable, not expensive patient-specific information to be used in the pre-operative planning of AVR or transcatheter aortic valve implantation (TAVI). Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Direct injury to right coronary artery in patients undergoing tricuspid annuloplasty.
Díez-Villanueva, Pablo; Gutiérrez-Ibañes, Enrique; Cuerpo-Caballero, Gregorio P; Sanz-Ruiz, Ricardo; Abeytua, Manuel; Soriano, Javier; Sarnago, Fernando; Elízaga, Jaime; González-Pinto, Angel; Fernández-Avilés, Francisco
2014-04-01
Direct injury to the right coronary artery as a result of reparative operation on the tricuspid valve is a rare, probably underdiagnosed, but serious complication, which often involves dramatic clinical consequences. So far, only five cases have been described in the literature. We describe our single-center experience of this complication, and review and analyze relevant clinical and anatomic considerations related to this entity. Cases previously reported in the literature were also reviewed. We describe four cases of direct injury to the right coronary artery in patients undergoing tricuspid annuloplasty (DeVega annuloplasty, 3; ring annuloplasty, 1) in our institution since 2005. All patients had right ventricular dilatation and severely dilated tricuspid annulus. Right coronary artery occlusion always occurred between the right marginal artery and the crux of the heart. Patients presented with hemodynamic or electrical instability. Coronary flow could be restored in 2 patients (percutaneously 1; surgically 1), both of whom finally survived, while it was not technically possible in the other 2 (1 died). Occlusion of the right coronary artery in patients undergoing tricuspid annuloplasty is a rare complication that may occur if great annulus dilatation is present, thus altering both normal annular geometry and the relationship between the right coronary artery and the tricuspid annulus, particularly when DeVega annuloplasty is performed. Such an entity should be considered in the immediate postoperative period in an unstable patient, especially when complementary tests support this diagnosis. Prompt recognition and treatment can positively affect the patient's outcome, most often by means of an emergency revascularization strategy. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Galbusera, Fabio; Jonas, René; Schlager, Benedikt; Wilke, Hans-Joachim; Villa, Tomaso
2017-01-01
The Ovine spine is an accepted model to investigate the biomechanical behaviour of the human lumbar one. Indeed, the use of animal models for in vitro studies is necessary to investigate the mechanical behaviour of biological tissue, but needs to be reduced for ethical and social reasons. The aim of this study was to create a finite element model of the lumbar intervertebral disc of the sheep that may help to refine the understanding of parallel in vitro experiments and that can be used to predict when mechanical failure occurs. Anisotropic hyperelastic material properties were assigned to the annulus fibrosus and factorial optimization analyses were performed to find out the optimal parameters of the ground substance and of the collagen fibers. For the ground substance of the annulus fibrosus the investigation was based on experimental data taken from the literature, while for the collagen fibers tensile tests on annulus specimens were conducted. Flexibility analysis in flexion-extension, lateral bending and axial rotation were conducted. Different material properties for the anterior, lateral and posterior regions of the annulus were found. The posterior part resulted the stiffest region in compression whereas the anterior one the stiffest region in tension. Since the flexibility outcomes were in a good agreement with the literature data, we considered this model suitable to be used in conjunction with in vitro and in vivo tests to investigate the mechanical behaviour of the ovine lumbar disc. PMID:28472100
Rodrigues, Samantha A; Thambyah, Ashvin; Broom, Neil D
2015-03-01
The annulus-endplate anchorage system performs a critical role in the disc, creating a strong structural link between the compliant annulus and the rigid vertebrae. Endplate failure is thought to be associated with disc herniation, a recent study indicating that this failure mode occurs more frequently than annular rupture. The aim was to investigate the structural principles governing annulus-endplate anchorage and the basis of its strength and mechanisms of failure. Loading experiments were performed on ovine lumbar motion segments designed to induce annulus-endplate failure, followed by macro- to micro- to fibril-level structural analyses. The study was funded by a doctoral scholarship from our institution. Samples were loaded to failure in three modes: torsion using intact motion segments, in-plane tension of the anterior annulus-endplate along one of the oblique fiber angles, and axial tension of the anterior annulus-endplate. The anterior region was chosen for its ease of access. Decalcification was used to investigate the mechanical influence of the mineralized component. Structural analysis was conducted on both the intact and failed samples using differential interference contrast optical microscopy and scanning electron microscopy. Two main modes of anchorage failure were observed--failure at the tidemark or at the cement line. Samples subjected to axial tension contained more tidemark failures compared with those subjected to torsion and in-plane tension. Samples decalcified before testing frequently contained damage at the cement line, this being more extensive than in fresh samples. Analysis of the intact samples at their anchorage sites revealed that annular subbundle fibrils penetrate beyond the cement line to a limited depth and appear to merge with those in the vertebral and cartilaginous endplates. Annulus-endplate anchorage is more vulnerable to failure in axial tension compared with both torsion and in-plane tension and is probably due to acute fiber bending at the soft-hard interface of the tidemark. This finding is consistent with evidence showing that flexion, which induces a similar pattern of axial tension, increases the risk of herniation involving endplate failure. The study also highlights the important strengthening role of calcification at this junction and provides new evidence of a fibril-based form of structural integration across the cement line. Copyright © 2015 Elsevier Inc. All rights reserved.
The geometrical effect of different annuloplasty rings on mitral valve annulus.
Al-Maisary, Sameer; Graser, Bastian; Engelhardt, Sandy; Wolf, Ivo; Karck, Matthias; DE Simone, Raffaele
2017-06-01
Different types of mitral annuloplasty rings are commercially available. The aim of this study was to investigate the effect of implantation of six types of annuloplasty rings on the geometry and dynamics of the mitral valve. Three-dimensional echocardiography images of 42 patients were acquired to visualize the mitral valve annulus. Virtual representations of six commercially available annuloplasty rings were matched to anatomical mitral annuli of each patient according to anterolateral-posteromedial diameter. The virtual displacement of each annuloplasty ring after the implantation was measured and compared with the other rings. Patients with severe mitral regurgitation had significantly dilated annuli according to anterolateral-posteromedial diameter, anterior-posterior diameter and to annulus circumference. Anterior and posterior heights of the mitral annuli and non-planarity angle showed no significant differences among different patients with different degree of mitral regurgitation. The ratio of anterior-posterior to anterolateral-posteromedial diameter was almost identical in all groups with identical annular shapes. The implantation of the Carpentier-Edwards Classic Annuloplasty Ring™ led to maximal displacement of mitral annulus, followed by the IM-Ring™, without a statistical significance. In contrary, the implantation of a MyxoETlogix Ring™ was associated with minimal displacement of mitral annulus throughout the groups, but without statistical significance. The implantation of different ring types in patients with different annuli shapes and dimensions did not lead to any significant change in the configuration of mitral annuli after the virtual implantation of the tested annuloplasty rings.
NASA Astrophysics Data System (ADS)
Joshi, Abhijeet Bhaskar
The origin of the lower back pain is often the degenerated lumbar intervertebral disc (IVD). We are proposing replacement of the degenerated nucleus by a PVA/PVP polymeric hydrogel implant. We hypothesize that a polymeric hydrogel nucleus implant can restore the normal biomechanics of the denucleated IVD by mimicking the natural load transfer phenomenon as in case of the intact IVD. Lumbar IVDs (n = 15) were harvested from human cadavers. In the first part, specimens were tested in four different conditions for compression: Intact, bone in plug, denucleated and Implanted. Hydrogel nucleus implants were chosen to have line-to-line fit in the created nuclear cavity. In the second part, nucleus implant material (modulus) and geometric (height and diameter) parameters were varied and specimens (n = 9) were tested. Nucleus implants with line-to-line fit significantly restored (88%) the compressive stiffness of the denucleated IVD. The synergistic effect between the implant and the intact annulus resulted in the nonlinear increase in implanted IVD stiffness, where Poisson effect of the hydrogel played major role. Nucleus implant parameters were observed to have a significant effect on the compressive stiffness. All implants with modulus in the tested range restored the compressive stiffness. The undersize implants resulted in incomplete restoration while oversize implants resulted in complete restoration compared to the BI condition. Finite element models (FEM) were developed to simulate the actual test conditions and validated against the experimental results for all conditions. The annulus (defined as hyperelastic, isotropic) mainly determined the nonlinear response of the IVD. Validated FEMs predicted 120--3000 kPa as a feasible range for nucleus implant modulus. FEMs also predicted that overdiameter implant would be more effective than overheight implant in terms of stiffness restoration. Underdiameter implants, initially allowed inward deformation of the annulus and hence were less effective compared to underheight implants. This research successfully proved the feasibility of PVA/PVP polymeric hydrogel as a replacement for degenerated nucleus. This approach may reduce the abnormal stresses on the annulus and thus, prevent/postpone the degeneration of the annulus. A validated FEM can be used as a design tool for optimization of hydrogel nucleus implants design and related feasibility studies.
Cues used by the black fly, Simulium annulus, for attraction to the common loon (Gavia immer).
Weinandt, Meggin L; Meyer, Michael; Strand, Mac; Lindsay, Alec R
2012-12-01
The parasitic relationship between a black fly, Simulium annulus, and the common loon (Gavia immer) has been considered one of the most exclusive relationships between any host species and a black fly species. To test the host specificity of this blood-feeding insect, we made a series of bird decoy presentations to black flies on loon-inhabited lakes in northern Wisconsin, U.S.A. To examine the importance of chemical and visual cues for black fly detection of and attraction to hosts, we made decoy presentations with and without chemical cues. Flies attracted to the decoys were collected, identified to species, and quantified. Results showed that S. annulus had a strong preference for common loon visual and chemical cues, although visual cues from Canada geese (Branta canadensis) and mallards (Anas platyrynchos) did attract some flies in significantly smaller numbers. © 2012 The Society for Vector Ecology.
40 CFR 147.3010 - Mechanical integrity tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring of annulus pressure listed in § 146.8(b)(1) of this chapter will only be acceptable if preceded by a pressure test, using liquid or gas that clearly demonstrates that mechanical integrity exists at the time of the pressure test. ...
40 CFR 147.3010 - Mechanical integrity tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... monitoring of annulus pressure listed in § 146.8(b)(1) of this chapter will only be acceptable if preceded by a pressure test, using liquid or gas that clearly demonstrates that mechanical integrity exists at the time of the pressure test. ...
40 CFR 147.3010 - Mechanical integrity tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitoring of annulus pressure listed in § 146.8(b)(1) of this chapter will only be acceptable if preceded by a pressure test, using liquid or gas that clearly demonstrates that mechanical integrity exists at the time of the pressure test. ...
40 CFR 147.3010 - Mechanical integrity tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... monitoring of annulus pressure listed in § 146.8(b)(1) of this chapter will only be acceptable if preceded by a pressure test, using liquid or gas that clearly demonstrates that mechanical integrity exists at the time of the pressure test. ...
Efficacy of identifying stocked crappies in a Tennessee reservoir through oxytetracycline marking
Isermann, D.A.; Bettoli, P.W.; Sammons, S.M.
1999-01-01
Oxytetracycline (OTC) immersion was used to identify black-nosed crappies, a morphological variation of black crappie Pomoxis nigromaculatus, stocked into Normandy Reservoir, Tennessee, during fall 1997. The technique effectively marked 97% of the treated fish. Analysis of one otolith per fish by one reader successfully identified 98% of marked and unmarked fish in a blind test. Marks were formed before annulus formation and were not obscured by annulus-related autofluorescence, suggesting that OTC can be effectively used late in the year (October and November) in Tennessee.
Staged fuel and air injection in combustion systems of gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; Berry, Jonathan Dwight
A gas turbine that includes a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section that corresponds to the aftward annulus section and a forward intake section that corresponds to the forward annulus section. The air directing structure may be configured to: directmore » air entering through the aftward intake section through the aftward annulus section in a forward direction to the staged injector; and direct air entering through the forward intake section through the forward annulus section in a forward direction to the forward injector.« less
Staged fuel and air injection in combustion systems of gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; Berry, Jonathan Dwight
A gas turbine that includes a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section that corresponds to the aftward annulus section and a forward intake section that corresponds to the forward annulus section. The air directing structure may be configured to: directmore » air entering through the aftward intake section through the aftward annulus section in a forward direction to the staged injector; and direct air entering through the forward intake section through the forward annulus section in an aftward direction to the staged injector.« less
NASA Technical Reports Server (NTRS)
Hathaway, D. H.; Fowlis, W. W.
1986-01-01
Experimental flow regime diagrams are determined for a new rotating cylindrical annulus configuration which permits a measure of control over the internal vertical temperature gradient. The new annulus has radial temperature gradients imposed on plane horizontal thermally conducting endwalls (with the cylindrical sidewalls as insulators) and is considered to be more relevant to atmospheric dynamics studies than the classical cylindrical annulus. Observations have revealed that, in addition to the axisymmetric flow and nonaxisymmetric baroclinic wave flow which occur in the classical annulus, two additional nonaxisymmetric flow types occur in the new annulus: boundary-layer thermal convection and deep thermal convection. Flow regime diagrams for three different values of the imposed vertical temperature difference are presented, and explanations for the flow transitions are offered. The new annulus provides scientific backup for the proposed Atmospheric General Circulation Experiment for Spacelab. The apparatus diagram is included.
Menciotti, G; Borgarelli, M; Aherne, M; Wesselowski, S; Häggström, J; Ljungvall, I; Lahmers, S M; Abbott, J A
2017-04-01
To assess differences in morphology of the mitral valve (MV) between healthy dogs and dogs affected by myxomatous mitral valve disease (MMVD) using real-time transthoracic three-dimensional echocardiography (RT3DE). Thirty-four were normal dogs and 79 dogs were affected by MMVD. Real-time transthoracic three-dimensional echocardiography mitral datasets were digitally recorded and analyzed using dedicated software. The following variables were obtained and compared between healthy dogs and dogs with MMVD at different stages: antero-posterior annulus diameter, anterolateral-posteromedial annulus diameter, commissural diameter, annulus height, annulus circumference, annulus area, anterior leaflet length, anterior leaflet area, posterior leaflet length, posterior leaflet area, non-planar angle, annulus sphericity index, tenting height, tenting area, tenting volume, the ratio of annulus height and commissural diameter. Dogs with MMVD had a more circular MV annulus compared to healthy dogs as demonstrated by an increased annulus sphericity index (p=0.0179). Affected dogs had a less saddle-shaped MV manifest as a decreased annulus height to commissural width ratio (p=0.0004). Tenting height (p<0.0001), area (p<0.0001), and volume (p<0.0001) were less in affected dogs. Real-time transthoracic three-dimensional echocardiography analysis demonstrated that dogs affected by MMVD had a more circular and less saddle-shaped MV annulus, as well as reduced tenting height area and volume, compared to healthy dogs. Multiple variables differed between dogs at different stages of MMVD. Diagnostic and prognostic utility of these variables, and the significance of these changes in the pathogenesis and natural history of MMVD, require further attention. Copyright © 2017 Elsevier B.V. All rights reserved.
Radiation and viscous dissipation effect on square porous annulus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badruddin, Irfan Anjum; Quadir, G. A.
The present study is carried out to investigate the effect of radiation and viscous dissipation in a square porous annulus subjected to outside hot T{sub h} and inside cold T{sub c} temperature. The square annulus has a hollow section of dimension D×D at the interior of annulus. The flow is assumed to obey Darcy law. The governing equations are non-dimensionalised and solved with the help of finite element method. Results are discussed with respect to viscous dissipation parameter, radiation parameter and size of the hollow section of annulus.
NASA Technical Reports Server (NTRS)
1975-01-01
The main tasks described involved an interferometric evaluation of several cubes, a prediction of their dihedral angles, a comparison of these predictions with independent measurements, a prediction and comparison of far field performance, recommendations as to revised dihedral angles and a subsequent analysis of cubes which were reworked to confirm the recommendations. A tolerance study and theoretical evaluation of several cubes was also performed to aid in understanding the results. The far field characteristics evaluated included polarization effects and treated both intensity distribution and encircled energy data. The energy in the 13.2 - 16.9 arc-sec annular region was tabulated as an indicator of performance sensitivity. The results are provided in viewgraph form, and show the average dihedral angle of an original set of test cubes to have been 1.8 arc-sec with an average far field annulus diameter of 18 arc-sec. Since the peak energy in the 13.2 - 16.9 arc-sec annulus was found to occur for a 1.35 arc-sec cube, and since cube tolerances were shown to increase the annulus diameter slightly, a nominal dihedral angle of 1.25 arc-sec was recommended.
Choy, Andrew Tsz Hang; Chan, Barbara Pui
2015-01-01
Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD) degeneration. Whereas scaffolds of the disc nucleus and annulus have been extensively studied, a truly biomimetic and mechanically functional biphasic scaffold using naturally occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabricated with collagen and glycosaminoglycans (GAGs), two of the most abundant extracellular matrix components in the IVD. Following fabrication, the scaffold was characterized and benchmarked against native disc. The biphasic scaffold was composed of a collagen-GAG co-precipitate making up the nucleus pulposus-like core, and this was encapsulated in multiple lamellae of photochemically crosslinked collagen membranes comprising the annulus fibrosus-like lamellae. On mechanical testing, the height of our engineered disc recovered by ~82-89% in an annulus-independent manner, when compared with the 99% recovery exhibited by native disc. The annulus-independent nature of disc height recovery suggests that the fluid replacement function of the engineered nucleus pulposus core might mimic this hitherto unique feature of native disc. Biphasic scaffolds comprised of 10 annulus fibrosus-like lamellae had the best overall mechanical performance among the various designs owing to their similarity to native disc in most aspects, including elastic compliance during creep and recovery, and viscous compliance during recovery. However, the dynamic mechanical performance (including dynamic stiffness and damping factor) of all the biphasic scaffolds was similar to that of the native discs. This study contributes to the rationalized design and development of a biomimetic and mechanically viable biphasic scaffold for IVD tissue engineering. PMID:26115332
Axisymmetric single shear element combustion instability experiment
NASA Technical Reports Server (NTRS)
Breisacher, Kevin J.
1993-01-01
The combustion stability characteristics of a combustor consisting of a single shear element and a cylindrical chamber utilizing LOX and gaseous hydrogen as propellants are presented. The combustor geometry and the resulting longitudinal mode instability are axisymmetric. Hydrogen injection temperature and pyrotechnic pulsing were used to determine stability boundaries. Mixture ratio, fuel annulus gap, and LOX post configuration were varied. Performance and stability data were obtained for chamber pressures of 300 and 1000 psia.
Axisymmetric single shear element combustion instability experiment
NASA Technical Reports Server (NTRS)
Breisacher, Kevin J.
1993-01-01
The combustion stability characteristics of a combustor consisting of a single shear element and a cylindrical chamber utilizing LOX and gaseous hydrogen as propellants are presented. The combustor geometry and the resulting longitudinal mode instability are axisymmetric. Hydrogen injection temperature and pyrotechnic pulsing were used to determine stability boundaries. Mixture ratio, fuel annulus gap, and LOX post configuration were varied. Performance and stability data are presented for chamber pressures of 300 and 1000 psia.
Mitral annulus size links ventricular dilatation to functional mitral regurgitation.
Popović, Zoran B; Martin, Maureen; Fukamachi, Kiyotaka; Inoue, Masahiro; Kwan, Jun; Doi, Kazuyoshi; Qin, Jian Xin; Shiota, Takahiro; Garcia, Mario J; McCarthy, Patrick M; Thomas, James D
2005-09-01
We compared the impact of annulus size and valve deformation (tethering) on mitral regurgitation in the animal dilated cardiomyopathy model, and assessed if acute left ventricular volume changes affect mitral annulus dimensions. We performed 3-dimensional echocardiography in 30 open-chest dogs with pacing-induced cardiomyopathy. Mitral annulus area was calculated from its two orthogonal diameters, whereas valve tethering was quantified by valve tenting area measurement. Mitral valve regurgitant volume showed the highest correlation with annulus area (r = 0.64, P < .001), left atrial volume (r = 0.40, P < .01), and left ventricular end-diastolic volume (r = 0.37, P < .01). Regurgitant volume showed poorer correlation with valve tethering in both septolateral and intercommissural planes (r = 0.35 and r = 0.31, P < .05 for both). Annulus dimensions correlated with acute changes of left ventricular end-diastolic volume (r = 0.68, P = .002). Mitral annulus dilation is the strongest predictor of functional mitral regurgitation in this animal dilated cardiomyopathy model.
Multiple pure tone noise prediction
NASA Astrophysics Data System (ADS)
Han, Fei; Sharma, Anupam; Paliath, Umesh; Shieh, Chingwei
2014-12-01
This paper presents a fully numerical method for predicting multiple pure tones, also known as “Buzzsaw” noise. It consists of three steps that account for noise source generation, nonlinear acoustic propagation with hard as well as lined walls inside the nacelle, and linear acoustic propagation outside the engine. Noise generation is modeled by steady, part-annulus computational fluid dynamics (CFD) simulations. A linear superposition algorithm is used to construct full-annulus shock/pressure pattern just upstream of the fan from part-annulus CFD results. Nonlinear wave propagation is carried out inside the duct using a pseudo-two-dimensional solution of Burgers' equation. Scattering from nacelle lip as well as radiation to farfield is performed using the commercial solver ACTRAN/TM. The proposed prediction process is verified by comparing against full-annulus CFD simulations as well as against static engine test data for a typical high bypass ratio aircraft engine with hardwall as well as lined inlets. Comparisons are drawn against nacelle unsteady pressure transducer measurements at two axial locations as well as against near- and far-field microphone array measurements outside the duct. This is the first fully numerical approach (no experimental or empirical input is required) to predict multiple pure tone noise generation, in-duct propagation and far-field radiation. It uses measured blade coordinates to calculate MPT noise.
Salvatierra, Jessica Czamanski; Yuan, Tai Yi; Fernando, Hanan; Castillo, Andre; Gu, Wei Yong; Cheung, Herman S.; Huant, C.-Y. Charles
2011-01-01
Low back pain is associated with intervertebral disc degeneration. One of the main signs of degeneration is the inability to maintain extracellular matrix integrity. Extracellular matrix synthesis is closely related to production of adenosine triphosphate (i.e. energy) of the cells. The intervertebral disc is composed of two major anatomical regions: annulus fibrosus and nucleus pulposus, which are structurally and compositionally different, indicating that their cellular metabolisms may also be distinct. The objective of this study was to investigate energy metabolism of annulus fibrosus and nucleus pulposus cells with and without dynamic compression, and examine differences between the two cell types. Porcine annulus and nucleus tissues were harvested and enzymatically digested. Cells were isolated and embedded into agarose constructs. Dynamically loaded samples were subjected to a sinusoidal displacement at 2 Hz and 15% strain for 4 h. Energy metabolism of cells was analyzed by measuring adenosine triphosphate content and release, glucose consumption, and lactate/nitric oxide production. A comparison of those measurements between annulus and nucleus cells was conducted. Annulus and nucleus cells exhibited different metabolic pathways. Nucleus cells had higher adenosine triphosphate content with and without dynamic loading, while annulus cells had higher lactate production and glucose consumption. Compression increased adenosine triphosphate release from both cell types and increased energy production of annulus cells. Dynamic loading affected energy metabolism of intervertebral disc cells, with the effect being greater in annulus cells. PMID:21625336
NASA Technical Reports Server (NTRS)
Tabata, Tomotsugu; Cardon, Lisa A.; Armstrong, Guy P.; Fukamach, Kiyotaka; Takagaki, Masami; Ochiai, Yoshie; McCarthy, Patrick M.; Thomas, James D.
2003-01-01
BACKGROUND: Doppler tissue echocardiography and color M-mode Doppler flow propagation velocity have proven useful in evaluating cross-sections of patients with left ventricular (LV) dysfunction, but experience with serial changes is limited. Purpose and methods: We tested their use by evaluating the temporal changes of LV function in a pacing-induced congestive heart failure model. Rapid ventricular pacing was initiated and maintained in 20 dogs for 4 weeks. Echocardiography was performed at baseline and weekly during brief pacing cessation. RESULTS: With rapid pacing, LV volume significantly increased and ejection fraction (57%-28%), stroke volume (37-18 mL), and mitral annulus systolic velocity (16.1-6.6 cm/s) by Doppler tissue echocardiography significantly decreased, with ejection fraction and mitral annulus systolic velocity closely correlated (r = 0.706, P <.0001). In contrast to the mitral inflow velocities, mitral annulus early diastolic velocity decreased steadily (12.3-7.3 cm/s) resulting in a dramatic decrease in mitral annulus early/late (1.22-0.57) diastolic velocity with no tendency toward pseudonormalization. The color M-mode Doppler flow propagation velocity also showed significant steady decrease (57-24 cm/s) throughout the pacing period. Multiple regression analysis chose mitral annulus systolic velocity (r = 0.895, P <.0001) and propagation velocity (r = 0.782, P <.0001) for the most important factor predicting LV systolic and diastolic function, respectively. CONCLUSIONS: Doppler tissue echocardiography and color M-mode Doppler flow could evaluate the serial deterioration in LV dysfunction throughout the pacing period. These were more useful in quantifying progressive LV dysfunction than conventional ehocardiographic techniques, and were probably relatively independent of preload. These techniques could be suitable for longitudinal evaluation in addition to the cross-sectional study.
Mediratta, Anuj; Addetia, Karima; Medvedofsky, Diego; Schneider, Robert J; Kruse, Eric; Shah, Atman P; Nathan, Sandeep; Paul, Jonathan D; Blair, John E; Ota, Takeyoshi; Balkhy, Husam H; Patel, Amit R; Mor-Avi, Victor; Lang, Roberto M
2017-05-01
With the increasing use of transcatheter aortic valve replacement (TAVR) in patients with aortic stenosis (AS), computed tomography (CT) remains the standard for annulus sizing. However, 3D transesophageal echocardiography (TEE) has been an alternative in patients with contraindications to CT. We sought to (1) test the feasibility, accuracy, and reproducibility of prototype 3DTEE analysis software (Philips) for aortic annular measurements and (2) compare the new approach to the existing echocardiographic techniques. We prospectively studied 52 patients who underwent gated contrast CT, procedural 3DTEE, and TAVR. 3DTEE images were analyzed using novel semi-automated software designed for 3D measurements of the aortic root, which uses multiplanar reconstruction, similar to CT analysis. Aortic annulus measurements included area, perimeter, and diameter calculations from these measurements. The results were compared to CT-derived values. Additionally, 3D echocardiographic measurements (3D planimetry and mitral valve analysis software adapted for the aortic valve) were also compared to the CT reference values. 3DTEE image quality was sufficient in 90% of patients for aortic annulus measurements using the new software, which were in good agreement with CT (r-values: .89-.91) and small (<4%) inter-modality nonsignificant biases. Repeated measurements showed <10% measurements variability. The new 3D analysis was the more accurate and reproducible of the existing echocardiographic techniques. Novel semi-automated 3DTEE analysis software can accurately measure aortic annulus in patients with severe AS undergoing TAVR, in better agreement with CT than the existing methodology. Accordingly, intra-procedural TEE could potentially replace CT in patients where CT carries significant risk. © 2017, Wiley Periodicals, Inc.
Measurements of gas temperatures at 100 kHz within the annulus of a rotating detonation engine
NASA Astrophysics Data System (ADS)
Rein, Keith D.; Roy, Sukesh; Sanders, Scott T.; Caswell, Andrew W.; Schauer, Frederick R.; Gord, James R.
2017-03-01
Cycle-resolved measurements of H2O temperatures and number densities taken within the detonation channel of a hydrogen—air rotating detonation engine (RDE) at a 100 kHz repetition rate using laser absorption spectroscopy are presented. The laser source used is an MEMS-tunable Vertical-Cavity Surface Emitting laser which scans from 1330 to 1360 nm. Optical access into and out of the RDE is achieved using a dual-core fiber optic. Light is pitched into the RDE through a sapphire window via a single-mode core, retroreflected off the mirror-polished inner radius of the RDE annulus, and collected with the multi-mode fiber core. The resulting absorption spectra are used to determine gas temperatures as a function of time. These measurements allow characterization of the transient-temperature response of the RDE.
Stelzeneder, David; Messner, Alina; Vlychou, Marianna; Welsch, Goetz H; Scheurecker, Georg; Goed, Sabine; Pieber, Karin; Pflueger, Verena; Friedrich, Klaus M; Trattnig, Siegfried
2011-11-01
To assess the feasibility of T2 mapping of lumbar facet joints and intervertebral discs in a single imaging slab and to compare the findings with morphological grading. Sixty lumbar spine segments from 10 low back pain patients and 5 healthy volunteers were examined by axial T2 mapping and morphological MRI at 3.0 Tesla. Regions of interest were drawn on a single slice for the facet joints and the intervertebral discs (nucleus pulposus, anterior and posterior annulus fibrosus). The Weishaupt grading was used for facet joints and the Pfirrmann score was used for morphological disc grading ("normal" vs. "abnormal" discs). The inter-rater agreement was excellent for the facet joint T2 evaluation (r = 0.85), but poor for the morphological Weishaupt grading (kappa = 0.15). The preliminary results show similar facet joint T2 values in segments with normal and abnormal Pfirrmann scores. There was no difference in mean T2 values between facet joints in different Weishaupt grading groups. Facet joint T2 values showed a weak correlation with T2 values of the posterior annulus (r = 0.32) This study demonstrates the feasibility of a combined T2 mapping approach for the facet joints and intervertebral discs using a single axial slab.
Monaco, Lauren A; DeWitte-Orr, Stephanie J; Gregory, Diane E
2016-02-01
This project aimed to compare gross anatomical measures and biomechanical properties of single lamellae from the annulus fibrosus of ovine and porcine lumbar vertebrae, and bovine tail vertebrae. The morphology of the vertebrae of these species differ significantly both from each other and from human, yet how these differences alter biomechanical properties is unknown. Geometric parameters measured in this study included: 1) absolute and relative intervertebral (IVD) and vertebral body height and 2) absolute and relative intervertebral disc (IVD) anterior-posterior (AP) and medial-lateral (ML) widths. Single lamella tensile properties included toe-region stress and stretch ratio, stiffness, and tensile strength. As expected, the bovine tail IVD revealed a more circular shape compared with both the ovine and porcine lumbar IVD. The bovine tail also had the largest IVD to vertebral body height ratio (due to having the highest absolute IVD height). Bovine tail lamellae were also found to be strongest and stiffest (in tension) while ovine lumbar lamellae were weakest and most compliant. Histological analysis revealed the greatest proportion of collagen in the bovine corroborating findings of increased strength and stiffness. The observed differences in anatomical shape, connective tissue composition, and tensile properties need to be considered when choosing an appropriate model for IVD research. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Ziwei; Jiang, Xiong; Chen, Ti; Hao, Yan; Qiu, Min
2018-05-01
Simulating the unsteady flow of compressor under circumferential inlet distortion and rotor/stator interference would need full-annulus grid with a dual time method. This process is time consuming and needs a large amount of computational resources. Harmonic balance method simulates the unsteady flow in compressor on single passage grid with a series of steady simulations. This will largely increase the computational efficiency in comparison with the dual time method. However, most simulations with harmonic balance method are conducted on the flow under either circumferential inlet distortion or rotor/stator interference. Based on an in-house CFD code, the harmonic balance method is applied in the simulation of flow in the NASA Stage 35 under both circumferential inlet distortion and rotor/stator interference. As the unsteady flow is influenced by two different unsteady disturbances, it leads to the computational instability. The instability can be avoided by coupling the harmonic balance method with an optimizing algorithm. The computational result of harmonic balance method is compared with the result of full-annulus simulation. It denotes that, the harmonic balance method simulates the flow under circumferential inlet distortion and rotor/stator interference as precise as the full-annulus simulation with a speed-up of about 8 times.
SHIELDS, VONNIE D.C.; HILDEBRAND, JOHN G.
2008-01-01
The antennal flagellum of female Manduca sexta bears eight sensillum types: two trichoid, two basiconic, one auriculate, two coeloconic, and one styliform complex sensilla. The first type of trichoid sensillum averages 34 μm in length and is innervated by two sensory cells. The second type averages 26 μm in length and is innervated by either one or three sensory cells. The first type of basiconic sensillum averages 22 μm in length, while the second type averages 15 μm in length. Both types are innervated by three bipolar sensory cells. The auriculate sensillum averages 4 μm in length and is innervated by two bipolar sensory cells. The coeloconic type-A and type-B both average 2 μm in length. The former type is innervated by five bipolar sensory cells, while the latter type, by three bipolar sensory cells. The styliform complex sensillum occurs singly on each annulus and averages 38-40 μm in length. It is formed by several contiguous sensilla. Each unit is innervated by three bipolar sensory cells. A total of 2,216 sensilla were found on a single annulus (annulus 21) of the flagellum. Electrophysiological responses from type-A trichoid sensilla to a large panel of volatile odorants revealed three different subsets of olfactory receptor cells (ORCs). Two subsets responded strongly to only a narrow range of odorants, while the third responded strongly to a broad range of odorants. Anterograde labeling of ORCs from type-A trichoid sensilla revealed that their axons projected mainly to two large female glomeruli of the antennal lobe. PMID:11754510
Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.
2013-11-14
As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances ofmore » the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.« less
Veres, Samuel P; Robertson, Peter A; Broom, Neil D
2008-12-01
Mechanically induced annular disruption of lumbar intervertebral discs followed by microstructural investigation. To investigate the role that elevated nuclear pressures play in disrupting the lumbar intervertebral disc's annulus fibrosus. Compound mechanical loadings have been used to recreate clinically relevant annular disruptions in vitro. However, the role that individual loading parameters play in disrupting the lumbar disc's annulus remains unclear. The nuclei of ovine lumbar intervertebral discs were gradually pressurized by injecting a viscous radio-opaque gel via their inferior vertebrae. Pressurization was conducted until catastrophic failure of the disc occurred. Investigation of the resulting annular disruption was carried out using microcomputed tomography and differential interference contrast microscopy. Gel extrusion from the posterior annulus was the most common mode of disc failure. Unlike other aspects of the annular wall, the posterior region was unable to distribute hydrostatic pressures circumferentially. In each extrusion case, severe disruption of the posterior annulus occurred. Although intralamellar disruption occurred in the mid annulus, interlamellar disruption occurred in the outer posterior annulus. Radial ruptures between lamellae always occurred in the mid-axial plane. With respect to the annular wall, the posterior region is most susceptible to failure in the presence of high nuclear pressure, even when loaded in the neutral position. Weak interlamellar cohesion of the outer posterior lamellae may explain why the majority of herniations remain contained as protrusions within the outer annular wall.
Zhou, Qiongjie; Ren, Yunyun; Yan, Yingliu; Chu, Chen; Gui, Yonghao; Li, Xiaotian
2012-11-01
This study's aim was to evaluate the effect of preeclampsia and intrauterine growth restriction (IUGR) on fetal cardiac function, and the relationship of the latter with adverse pregnancy outcomes. We did a cross-sectional study of 132 women with uncomplicated singleton pregnancies, 34 with preeclampsia without IUGR, and 12 with preeclampsia and IUGR. Fetal cardiac structure and function were evaluated using fetal two-dimension ultrasound, pulsed wave Doppler and tissue Doppler imaging (TDI). Data were analyzed by t-tests, ANOVA, Chi-square tests, or Wilcoxon rank-sum test. Compared with the normal pregnancy group, mitral/tricuspid early systolic peak velocity of annulus/late diastolic peak velocity of annulus (Sa) and left ventricular (LV)/right ventricular (RV) early diastolic peak velocity at the annulus (Ea) in TDI decreased in preeclampsia with or without IUGR (P < 0.05). LV/RV Ea underwent a gestational decrease in preeclampsia with or without IUGR (P < 0.05). The changes in mitral/tricuspid Sa and LV Sa associated with preeclampsia were even more pronounced with preterm delivery at less than 34 gestational weeks and stillbirth (P < 0.05). Intrauterine growth restriction influences fetal cardiac function in the presence of preeclampsia, and TDI may be a sensitive and preferable method to detect such changes. Fetal LV/RV Ea is a potential marker for early fetal cardiac diastolic impairment, and mitral/tricuspid Sa and LV Sa may be predictors for adverse pregnancy outcomes. © 2012 John Wiley & Sons, Ltd.
Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks
NASA Astrophysics Data System (ADS)
Sass, J. P.; Cyr, W. W. St.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.
2010-04-01
A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years.
Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks
NASA Technical Reports Server (NTRS)
Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.
2009-01-01
A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.
Pleated and Creased Structures
NASA Astrophysics Data System (ADS)
Dudte, Levi; Wei, Zhiyan; Mahadevan, L.
2012-02-01
The strategic placement of curved folds on a paper annulus produces saddle-shaped origami. These exotic geometries resulting from simple design processes motivate our development of a computational tool to simulate the stretching, bending and folding of thin sheets of material. We seek to understand the shape of the curved origami figure by applying the computational tool to simulate a thin annulus with single or multiple folds. We aim to quantify the static geometry of this simplified model in order to delineate methods for actuation and control of similar developable structures with curved folds. Miura-ori pattern is a periodic pleated structure defined in terms of 2 angles and 2 lengths. The unit cell embodies the basic element in all non-trivial pleated structures - the mountain or valley folds, wherein four folds come together at a single vertex. The ability of this structure to pack and unpack with a few degrees of freedom leads to their use in deployable structures such as solar sails and maps, just as this feature is useful in insect wings, plant leaves and flowers. We probe the qualitative and quantitative aspects of the mechanical behavior of these structures with a view to optimizing material performance.
241-AZ Farm Annulus Extent of Condition Baseline Inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engeman, Jason K.; Girardot, Crystal L.; Vazquez, Brandon J.
2013-05-15
This report provides the results of the comprehensive annulus visual inspection for tanks 241- AZ-101 and 241-AZ-102 performed in fiscal year 2013. The inspection established a baseline covering about 95 percent of the annulus floor for comparison with future inspections. Any changes in the condition are also included in this document.
Nerurkar, Nandan L.; Mauck, Robert L.
2012-01-01
Mechanical function of the annulus fibrosus of the intervertebral disc is dictated by the composition and microstructure of its highly ordered extracellular matrix. Recent work on engineered angle-ply laminates formed from mesenchymal stem cell (MSC)-seeded nanofibrous scaffolds indicates that the organization of collagen fibers into planes of alternating alignment may play an important role in annulus fibrosus tissue function. Specifically, these engineered tissues can resist tensile deformation through shearing of the interlamellar matrix as layers of collagen differentially reorient under load. In the present work, a hyperelastic constitutive model was developed to describe the role of interlamellar shearing in reinforcing the tensile response of biologic laminates, and was applied to experimental results from engineered annulus constructs formed from MSC-seeded nanofibrous scaffolds. By applying the constitutive model to uniaxial tensile stress–strain data for bilayers with three different fiber orientations, material parameters were generated that characterize the contributions of extrafibrillar matrix, fibers, and interlamellar shearing interactions. By 10 weeks of in vitro culture, interlamellar shearing accounted for nearly 50% of the total stress associated with uniaxial extension in the anatomic range of ply angle. The model successfully captured changes in function with extracellular matrix deposition through variations in the magnitude of model parameters with culture duration. This work illustrates the value of engineered tissues as tools to further our understanding of structure–function relations in native tissues and as a test-bed for the development of constitutive models to describe them. PMID:21287395
Nerurkar, Nandan L; Mauck, Robert L; Elliott, Dawn M
2011-12-01
Mechanical function of the annulus fibrosus of the intervertebral disc is dictated by the composition and microstructure of its highly ordered extracellular matrix. Recent work on engineered angle-ply laminates formed from mesenchymal stem cell (MSC)-seeded nanofibrous scaffolds indicates that the organization of collagen fibers into planes of alternating alignment may play an important role in annulus fibrosus tissue function. Specifically, these engineered tissues can resist tensile deformation through shearing of the interlamellar matrix as layers of collagen differentially reorient under load. In the present work, a hyperelastic constitutive model was developed to describe the role of interlamellar shearing in reinforcing the tensile response of biologic laminates, and was applied to experimental results from engineered annulus constructs formed from MSC-seeded nanofibrous scaffolds. By applying the constitutive model to uniaxial tensile stress-strain data for bilayers with three different fiber orientations, material parameters were generated that characterize the contributions of extrafibrillar matrix, fibers, and interlamellar shearing interactions. By 10 weeks of in vitro culture, interlamellar shearing accounted for nearly 50% of the total stress associated with uniaxial extension in the anatomic range of ply angle. The model successfully captured changes in function with extracellular matrix deposition through variations in the magnitude of model parameters with culture duration. This work illustrates the value of engineered tissues as tools to further our understanding of structure-function relations in native tissues and as a test-bed for the development of constitutive models to describe them.
Production of Hydrogen from Underground Coal Gasification
Upadhye, Ravindra S.
2008-10-07
A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.
ANNULUS CLOSURE TECHNOLOGY DEVELOPMENT INSPECTION/SALT DEPOSIT CLEANING MAGNETIC WALL CRAWLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minichan, R; Russell Eibling, R; James Elder, J
2008-06-01
The Liquid Waste Technology Development organization is investigating technologies to support closure of radioactive waste tanks at the Savannah River Site (SRS). Tank closure includes removal of the wastes that have propagated to the tank annulus. Although amounts and types of residual waste materials in the annuli of SRS tanks vary, simple salt deposits are predominant on tanks with known leak sites. This task focused on developing and demonstrating a technology to inspect and spot clean salt deposits from the outer primary tank wall located in the annulus of an SRS Type I tank. The Robotics, Remote and Specialty Equipmentmore » (RRSE) and Materials Science and Technology (MS&T) Sections of the Savannah River National Laboratory (SRNL) collaborated to modify and equip a Force Institute magnetic wall crawler with the tools necessary to demonstrate the inspection and spot cleaning in a mock-up of a Type I tank annulus. A remote control camera arm and cleaning head were developed, fabricated and mounted on the crawler. The crawler was then tested and demonstrated on a salt simulant also developed in this task. The demonstration showed that the camera is capable of being deployed in all specified locations and provided the views needed for the planned inspection. It also showed that the salt simulant readily dissolves with water. The crawler features two different techniques for delivering water to dissolve the salt deposits. Both water spay nozzles were able to dissolve the simulated salt, one is more controllable and the other delivers a larger water volume. The cleaning head also includes a rotary brush to mechanically remove the simulated salt nodules in the event insoluble material is encountered. The rotary brush proved to be effective in removing the salt nodules, although some fine tuning may be required to achieve the best results. This report describes the design process for developing technology to add features to a commercial wall crawler and the results of the demonstration testing performed on the integrated system. The crawler was modified to address the two primary objectives of the task (inspection and spot cleaning). SRNL recommends this technology as a viable option for annulus inspection and salt removal in tanks with minimal salt deposits (such as Tanks 5 and 6.) This report further recommends that the technology be prepared for field deployment by: (1) developing an improved mounting system for the magnetic idler wheel, (2) improving the robustness of the cleaning tool mounting, (3) resolving the nozzle selection valve connections, (4) determining alternatives for the brush and bristle assembly, and (5) adding a protective housing around the motors to shield them from water splash. In addition, SRNL suggests further technology development to address annulus cleaning issues that are apparent on other tanks that will also require salt removal in the future such as: (1) Developing a duct drilling device to facilitate dissolving salt inside ventilation ducts and draining the solution out the bottom of the ducts. (2) Investigating technologies to inspect inside the vertical annulus ventilation duct.« less
A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herer, C.; Souyri, A.; Garnier, J.
1995-09-01
Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to themore » annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mildrum, C.M.
1987-08-18
A fuel rod is described for a nuclear reactor fuel assembly, comprising: (a) a hollow cladding tube; (b) a pair of end plugs connected to and sealing the cladding tube at opposite ends thereof; (c) a plurality of fuel pellets contained on the tube and being composed of fissile material having a single enrichment the value of which is at the level of the maximum enrichment loading of the rod, the pellets having provided in a stack having one end disposed adjacent to one of the end plugs and an opposite end disposed remote from the other of the endmore » plugs; and (d) a plenum spring disposed in the tube between the other end plug and the opposite end of the pellet stack for retaining the pellets in a stack form; (e) at least some of the fuel pellets having an annular configuration and at least other of the fuel pellets having a solid configuration; (f) each of some of the annular fuel pellets having an annulus of a first size; (e) each of other of the annual fuel pellets having an annulus of a second size different from the first size, whereby graduation of axial enrichment loading is provided between the annual fuel pellets of the fuel rod.« less
Closure head for a nuclear reactor
Wade, Elman E.
1980-01-01
A closure head for a nuclear reactor includes a stationary outer ring integral with the reactor vessel with a first rotatable plug disposed within the stationary outer ring and supported from the stationary outer ring by a bearing assembly. A sealing system is associated with the bearing assembly to seal the annulus defined between the first rotatable plug and the stationary outer ring. The sealing system comprises tubular seal elements disposed in the annulus with load springs contacting the tubular seal elements so as to force the tubular seal elements against the annulus in a manner to seal the annulus. The sealing system also comprises a sealing fluid which is pumped through the annulus and over the tubular seal elements causing the load springs to compress thereby reducing the friction between the tubular seal elements and the rotatable components while maintaining a gas-tight seal therebetween.
Duncan, D.B.
1992-12-29
The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.
Duncan, David B.
1992-01-01
The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.
Core disruptive accident margin seal
Golden, Martin P.
1979-01-01
Apparatus for sealing the annulus defined within a substantially cylindrical rotatable riser assembly and plug combination of a nuclear reactor closure head. The apparatus comprises an inflatable sealing mechanism disposed in one portion of the riser assembly near the annulus such that upon inflation the sealing mechanism is radially actuated against the other portion of the riser assembly thereby sealing the annulus. The apparatus further comprises a connecting mechanism which places one end of the sealing mechanism in fluid communication with the reactor cover gas so that overpressurization of the reactor cover gas will increase the radial actuation of the sealing mechanism thus enhancing sealing of the annulus.
The shape and motion of gas bubbles in a liquid flowing through a thin annulus
NASA Astrophysics Data System (ADS)
Lei, Qinghua; Xie, Zhihua; Pavlidis, Dimitrios; Salinas, Pablo; Veltin, Jeremy; Muggeridge, Ann; Pain, Christopher C.; Matar, Omar K.; Jackson, Matthew; Arland, Kristine; Gyllensten, Atle
2017-11-01
We study the shape and motion of gas bubbles in a liquid flowing through a horizontal or slightly-inclined thin annulus. Experimental data show that in the horizontal annulus, bubbles develop a unique ``tadpole'' shape with an elliptical cap and a highly-stretched tail, due to the confinement between the closely-spaced channel walls. As the annulus is inclined, the bubble tail tends to decrease in length, while the geometry of the cap remains almost invariant. To model the bubble evolution, the thin annulus is conceptualised as a ``Hele-Shaw'' cell in a curvilinear space. The three-dimensional flow within the cell is represented by a gap-averaged, two-dimensional model constrained by the same dimensionless quantities. The complex bubble dynamics are solved using a mixed control-volume finite-element method combined with interface-capturing and mesh adaptation techniques. A close match to the experimental data is achieved, both qualitatively and quantitatively, by the numerical simulations. The mechanism for the elliptical cap formation is interpreted based on an analogous irrotational flow field around a circular cylinder. The shape regimes of bubbles flowing through the thin annulus are further explored based on the simulation results. Funding from STATOIL gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Lobato, Lucas; Paul, Stephan; Cordioli, Júlio
2018-05-01
The tympanic annulus is a fibrocartilage ligament that supports the tympanic membrane in a sulcus at the end of the outer ear canal. Among many FE models of the middle ear found in literature, the effect of different boundary conditions at tympanic annulus on middle ear mechanics was not found. In order to investigate the influence of different representations of this detail in FE models, three different ways to connect the tympanic annulus to the outer ear canal were modelled in a reduced middle ear system. This reduced system includes tympanic membrane, tympanic annulus, manubrium, malleus and anterior ligament of malleus. The numerical frequency response function Humbo (umbo velocity vs sound pressure at tympanic membrane) was analyzed through the different boundary conditions and compared to numerical and experimental data from the literature. Also a numerical modal analysis was performed to improve the analysis. It was found that the boundary conditions used to represent the connection between Tympanic Annulus and Outer Ear Canal can change the global stiffness of the system and its natural frequencies as well as change the modal shape of high order modes.
Biomechanical Characterization of an Annulus Sparing Spinal Disc Prosthesis
Buttermann, Glenn R.; Beaubien, Brian P.
2009-01-01
Background Context Current spine arthroplasty devices, require disruption of the annulus fibrosus for implantation. Preliminary studies of a unique annulus sparing intervertebral prosthetic disc (IPD), found that preservation of the annulus resulted in load sharing of the annulus with the prosthesis. Purpose Determine flexibility of the IPD versus fusion constructs in normal and degenerated human spines. Study design/Setting Biomechanical comparison of motion segments in the intact, fusion and mechanical nucleus replacement states for normal and degenerated states. Patient setting Thirty lumbar motion segments. Outcomes Measures Intervertebral height; motion segment range-of-motion (ROM), neutral zone (NZ), stiffness. Methods Motion segments had multi-directional flexibility testing to 7.5 Nm for intact discs, discs reconstructed using the IPD (n=12), or after anterior/posterior fusions (n=18). Interbody height and axial compression stiffness changes were determined for the reconstructed discs by applying axial compression to 1500 N. Analysis included stratifying results to normal mobile vs. rigid degenerated intact motion segments. Results The mean interbody height increase was 1.5 mm for IPD reconstructed discs. vs 3.0 mm for fused segments. Axial compression stiffness was 3.0 ± 0.9 kN/mm for intact compared to 1.2 ± 0.4 kN/mm for IPD reconstructed segments. Reconstructed disc ROM was 9.0° ± 3.7° in flexion-extension, 10.6° ± 3.4° in lateral bending and 2.8° ± 1.4° in axial torsion which was similar to intact values and significantly greater than respective fusion values (p<0.001). Mobile intact segments exhibited significantly greater rotation after fusion vs. their more rigid counterparts (p<0.05), however, intact motion was not related to motion after IPD reconstruction. The NZ and rotational stiffness followed similar trends. Differences in NZ between mobile and rigid intact specimens tended to decrease in the IPD reconstructed state. Conclusion The annulus sparing IPD generally reproduced the intact segment biomechanics in terms of ROM, NZ, and stiffness. Furthermore, the IPD reconstructed discs imparted stability by maintaining a small neutral zone. The IPD reconstructed discs were significantly less rigid than the fusion constructs and may be an attractive alternative for the treatment of DDD. PMID:19540816
Measurement of interstage fluid-annulus dynamical properties
NASA Technical Reports Server (NTRS)
Adams, M. L.; Makay, E.; Diaz-Tous, I. A.
1982-01-01
The work described in this paper is part of an Electric Power Research Institute sponsored effort to improve rotor vibrational performance on power plant feed water pumps. A major objective of this effort is to reduce vibration levels by devising inter-stage sealing configurations with optimized damping capacity, realizing that the typical multi-stage centrifugal pump has several ore inter-stage fluid annuli than it has journal bearings. Also, the fluid annuli are distributed between the journal bearings where vibration levels are highest and can therefore be 'exercised' more as dampers than can the bearings. Described in this paper is a test apparatus which has been built to experimentally determine fluid-annulus dynamical coefficients for various configurations of inter-stage sealing geometry.
Xu, Xiang; Hu, Jianzhong; Lu, Hongbin
2017-01-01
Objective To research the histological characteristics of a gelatin sponge transplant loaded with goat BMSCs (bone marrow-derived mesenchymal stem cells) combined with PRP (platelet-rich plasma) in repairing an annulus defect. Method BMSCs were separated from the iliac crest of goats, sub-cultured and identified after the third generation. Then, PRP was obtained using blood from the jugular vein of goats via two degrees of centrifugation. In the animal experiments, the goats were divided into the following three groups: a sham group, an injury group and a therapeutic group. In the sham group, we decompressed the lamina and exposed the annulus fibrosus. In the injury group, we exposed the annulus fibrosus after decompression of the lamina and created a 1 × 1 cm defect in the annulus using surgical instruments. In the therapeutic group, after decompression of the lamina, we exposed the annulus, created a 1 × 1 cm defect using surgical instruments, and placed a gelatin sponge combined with BMSCs and PRP into the defect for a combined method of repair. Three, six and twelve weeks after the surgery, the previously damaged or undamaged annulus tissue was removed from the three groups. Then, the above tissue was assayed using HE (hematoxylin-eosin) staining, Masson trichrome staining, AB-PAS (Alcian blue-periodic acid Schiff) staining, and type II collagen staining and observed by microscopy. Results From the HE staining, we observed that the number of repair cells gradually increased. Compared to the injury group, the cell density and gross morphology of cells in the therapeutic group were closer to those of the sham group. As observed by Masson trichrome gelatin staining, many of the fibroblast cells or tissues were under repair, and as time progressed, the number of fibroblast cells and amount of tissue gradually increased. The results of the AB-PAS staining suggest that chondrocytes participated in the repair of the annulus. The level of type II collagen gradually increased, as determined by immunohistochemical staining. Conclusion Our results demonstrate that a gelatin sponge transplant loaded with BMSCs and PRP can effectively repair annulus defects. PMID:28178294
Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues.
Römgens, Anne M; van Donkelaar, Corrinus C; Ito, Keita
2013-11-01
Cartilaginous tissues such as the intervertebral disk are predominantly loaded under compression. Yet, they contain abundant collagen fibers, which are generally assumed to contribute to tensile loading only. Fiber tension is thought to originate from swelling of the proteoglycan-rich nucleus. However, in aged or degenerate disk, proteoglycans are depleted, whereas collagen content changes little. The question then rises to which extend the collagen may contribute to the compressive stiffness of the tissue. We hypothesized that this contribution is significant at high strain magnitudes and that the effect depends on fiber orientation. In addition, we aimed to determine the compression of the matrix. Bovine inner and outer annulus fibrosus specimens were subjected to incremental confined compression tests up to 60 % strain in radial and circumferential direction. The compressive aggregate modulus was determined per 10 % strain increment. The biochemical composition of the compressed specimens and uncompressed adjacent tissue was determined to compute solid matrix compression. The stiffness of all specimens increased nonlinearly with strain. The collagen-rich outer annulus was significantly stiffer than the inner annulus above 20 % compressive strain. Orientation influenced the modulus in the collagen-rich outer annulus. Finally, it was shown that the solid matrix was significantly compressed above 30 % strain. Therefore, we concluded that collagen fibers significantly contribute to the compressive stiffness of the intervertebral disk at high strains. This is valuable for understanding the compressive behavior of collagen-reinforced tissues in general, and may be particularly relevant for aging or degenerate disks, which become more fibrous and less hydrated.
Postpneumonectomy Compression of the Mitral Annulus: Rare Vascular Complication in Sportive Patient.
Debeaumont, David; Bota, Susana; Baste, Jean-Marc; Bellefleur, Marie; Stepowski, Dimitri; Vincent, Florence; Bonnevie, Tristan; Gravier, Francis-Edouard; Netchitailo, Marie; Tardif, Catherine; Boutry, Alain; Muir, Jean-François; Coquart, Jérémy
2016-01-01
Numerous postpneumonectomy complications exist. We present a rare clinical case of postpneumonectomy exertional dyspnea revealing compression of the mitral annulus by the descending aorta. The patient was 42-year-old former smoker with pulmonary emphysema. He has been operated on, in 2012 (i.e., right pneumonectomy). Before the surgery, the patient was a recreational runner. However, after some months, it was difficult for the patient to resume running. Cardiopulmonary exercise testing indicated moderate exercise intolerance with important oxygen desaturation. More interestingly, a decrease of low oxygen pulse was noticed from the first ventilatory threshold with no electrical modification on the electrocardiogram. This decrease was indicative of a decline in stroke volume. The thoracic scan revealed a right pneumonectomy pocket with a liquid abnormal content. Moreover, the mediastinum had shifted toward the pneumonectomy space and the left lung was distended and emphysematous. Echocardiography revealed a major change in the mediastinal anatomy. The mitral annulus was observed to be compressed by the rear wall of the descending aorta. The diagnosis of postpneumonectomy syndrome or platypnea-orthodeoxia syndrome was ruled out in this patient. Mitral annular compression by the descending aorta is rare complication, which must be researched in patients with postpneumonectomy exertional dyspnea.
Postpneumonectomy Compression of the Mitral Annulus: Rare Vascular Complication in Sportive Patient
Debeaumont, David; Bota, Susana; Baste, Jean-Marc; Bellefleur, Marie; Stepowski, Dimitri; Vincent, Florence; Bonnevie, Tristan; Gravier, Francis-Edouard; Netchitailo, Marie; Tardif, Catherine; Boutry, Alain; Muir, Jean-François
2016-01-01
Numerous postpneumonectomy complications exist. We present a rare clinical case of postpneumonectomy exertional dyspnea revealing compression of the mitral annulus by the descending aorta. The patient was 42-year-old former smoker with pulmonary emphysema. He has been operated on, in 2012 (i.e., right pneumonectomy). Before the surgery, the patient was a recreational runner. However, after some months, it was difficult for the patient to resume running. Cardiopulmonary exercise testing indicated moderate exercise intolerance with important oxygen desaturation. More interestingly, a decrease of low oxygen pulse was noticed from the first ventilatory threshold with no electrical modification on the electrocardiogram. This decrease was indicative of a decline in stroke volume. The thoracic scan revealed a right pneumonectomy pocket with a liquid abnormal content. Moreover, the mediastinum had shifted toward the pneumonectomy space and the left lung was distended and emphysematous. Echocardiography revealed a major change in the mediastinal anatomy. The mitral annulus was observed to be compressed by the rear wall of the descending aorta. The diagnosis of postpneumonectomy syndrome or platypnea-orthodeoxia syndrome was ruled out in this patient. Mitral annular compression by the descending aorta is rare complication, which must be researched in patients with postpneumonectomy exertional dyspnea. PMID:28116204
Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter
1985-01-01
A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.
Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter
1983-01-01
A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.
Gruber, H E; Marrero, E; Ingram, J A; Hoelscher, G L; Hanley, E N
2017-01-01
Chemokines are an important group of soluble molecules with specialized functions in inflammation. The roles of many specialized chemokines and their receptors remain poorly understood in the human intervertebral disc. We investigated CXCL16 and its receptor, CXCR6, to determine their immunolocalization in disc tissue and their presence following exposure of cultured human annulus fibrosus cells to proinflammatory cytokines. CXCL16 is a marker for inflammation; it also can induce hypoxia-inducible factor 1α (HIF-1α), which is a phenotypic marker of heathy nucleus pulposus tissue. We found CXCL16 and CXCR6 immunostaining in many cells of the annulus portion of the disc. Molecular studies showed that annulus fibrosus cells exposed to IL-1ß, but not TNF-α, exhibited significant up-regulation of CXCL16 expression vs. control cells. There was no significant difference in the percentage of annulus cells that exhibited immunolocalization of CXCL16 in grade I/II, grade III or grade IV/V specimens. The presence of CXCL16 and its receptor, CXCR6, in the annulus in vivo suggests the need for future research concerning the role of this chemokine in proinflammatory functions, HIF-1α expression and disc vascularization.
Fracture characterization in a deep geothermal reservoir
NASA Astrophysics Data System (ADS)
Rühaak, Wolfram; Hehn, Vera; Hassanzadegan, Alireza; Tischner, Torsten
2017-04-01
At the geothermal research drilling Horstberg in North West Germany studies for the characterization of a vertical fracture are performed. The fracture was created by a massive hydraulic stimulation in 2003 in approx. 3700 m depth within rocks of the middle Buntsandstein. The fracture surface is in the order of 100,000 m2, depending on the flow rate at which water is injected. Besides hydraulic characterization, multiple tracer tests are planned. At the depth of interest the reservoir temperature is around 150 °C, pressure is around 600 bar (60 MPa) and due to salinity the water density is around 1200 kg/m3. Knowledge of tracer stability and behavior at these reservoir conditions is limited. Additionally, the planned tracer tests will be performed within one single borehole. In a closed cycle water is injected into the inner pipe of the well (tubing), which is separated by a permanent packer from the outer pipe (annulus). The water is produced back from the annulus approximately 150 m above the injection point. Thus, the circulation of thermal water between two sandstone layers via an artificial fracture can be achieved. Tests will be carried out with different flow rates and accordingly with different pressures, resulting in different fracture areas. Due to this test setup tracer signals will be stacked and will remain for a longer time in the fracture - which is the reason why different tracers are required. For an optimal characterization both conservative and reactive tracers will be used and different injection methods (continuous, instantaneous and pulsed) will be applied. For a proper setup of the tracer test numerical modelling studies are performed in advance. The relevant thermal, hydraulic and chemical processes (mainly adsorption and degredation) are coupled, resulting in a THC model; additionally the dependence of fracture aperture and area on fluid pressure has to be considered. Instead of applying a mechanically coupled model (THMC) a simplified approach is applied which takes the pressure dependence of the fracture permeability into account by using constitutive relations. Results of this modeling study will be presented together with details of the planned field study.
Exact sum rules for inhomogeneous drums
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amore, Paolo, E-mail: paolo.amore@gmail.com
2013-09-15
We derive general expressions for the sum rules of the eigenvalues of drums of arbitrary shape and arbitrary density, obeying different boundary conditions. The formulas that we present are a generalization of the analogous formulas for one dimensional inhomogeneous systems that we have obtained in a previous paper. We also discuss the extension of these formulas to higher dimensions. We show that in the special case of a density depending only on one variable the sum rules of any integer order can be expressed in terms of a single series. As an application of our result we derive exact summore » rules for the homogeneous circular annulus with different boundary conditions, for a homogeneous circular sector and for a radially inhomogeneous circular annulus with Dirichlet boundary conditions. -- Highlights: •We derive an explicit expression for the sum rules of inhomogeneous drums. •We discuss the extension to higher dimensions. •We discuss the special case of an inhomogeneity only along one direction.« less
Anderst, William; Donaldson, William; Lee, Joon; Kang, James
2016-01-01
The aim of this study was to characterize cervical disc deformation in asymptomatic subjects and single-level arthrodesis patients during in vivo functional motion. A validated model-based tracking technique determined vertebral motion from biplane radiographs collected during dynamic flexion–extension. Level-dependent differences in disc compression–distraction and shear deformation were identified within the anterior and posterior annulus (PA) and the nucleus of 20 asymptomatic subjects and 15 arthrodesis patients using a mixed-model statistical analysis. In asymptomatic subjects, disc compression and shear deformation per degree of flexion–extension progressively decreased from C23 to C67. The anterior and PA experienced compression–distraction deformation of up to 20%, while the nucleus region was compressed between 0% (C67) and 12% (C23). Peak shear deformation ranged from 16% (at C67) to 33% (at C45). In the C5–C6 arthrodesis group, C45 discs were significantly less compressed than in the control group in all disc regions (all p ≤ 0.026). In the C6–C7 arthrodesis group, C56 discs were significantly less compressed than the control group in the nucleus (p = 0.023) and PA (p = 0.014), but not the anterior annulus (AA; p = 0.137). These results indicate in vivo disc deformation is level-dependent, and single-level anterior arthrodesis alters the compression–distraction deformation in the disc immediately superior to the arthrodesis. PMID:23861160
A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.
Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang
2018-01-01
The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, James J.; Wall, Donald; Wittman, Richard S.
Target assemblies are provided that can include a uranium-comprising annulus. The assemblies can include target material consisting essentially of non-uranium material within the volume of the annulus. Reactors are disclosed that can include one or more discrete zones configured to receive target material. At least one uranium-comprising annulus can be within one or more of the zones. Methods for producing isotopes within target material are also disclosed, with the methods including providing neutrons to target material within a uranium-comprising annulus. Methods for modifying materials within target material are disclosed as well as are methods for characterizing material within a targetmore » material.« less
Labyrinth seal forces on a whirling rotor
NASA Technical Reports Server (NTRS)
Wright, D. V.
1983-01-01
An experimental investigation of air labyrinth seal forces on a subsynchronously whirling model rotor is described and test results are given for diverging, converging, and straight two-strip seals. The effects of pressure drop, provide basic experimental data needed in the development of design methods for predicting and preventing self-excited whirl of turbine rotors and other machines having labyrinth seals. The total dynamic seal forces on the whirling model rotor are measured accurately by means of an active damping and stiffness system that is adjusted to obtain neutral whirl stability of the model rotor system. In addition, the whirling pressure pattern in the seal annulus is measured for a few test conditions and the corresponding pressure forces on the rotor are compared with the total measured forces. This comparison shows that either radial and axial pressure gradients in the seal annulus or drag forces on the rotor are significant. Comparisons made between the measured seal forces and theoretical results show that present theory is inadequate.
Podlesnikar, Tomaz; Prihadi, Edgard A; van Rosendael, Philippe J; Vollema, E Mara; van der Kley, Frank; de Weger, Arend; Ajmone Marsan, Nina; Naji, Franjo; Fras, Zlatko; Bax, Jeroen J; Delgado, Victoria
2018-01-01
Accurate aortic annulus sizing is key for selection of appropriate transcatheter aortic valve implantation (TAVI) prosthesis size. The present study compared novel automated 3-dimensional (3D) transesophageal echocardiography (TEE) software and multidetector row computed tomography (MDCT) for aortic annulus sizing and investigated the influence of the quantity of aortic valve calcium (AVC) on the selection of TAVI prosthesis size. A total of 83 patients with severe aortic stenosis undergoing TAVI were evaluated. Maximal and minimal aortic annulus diameter, perimeter, and area were measured. AVC was assessed with computed tomography. The low and high AVC burden groups were defined according to the median AVC score. Overall, 3D TEE measurements slightly underestimated the aortic annulus dimensions as compared with MDCT (mean differences between maximum, minimum diameter, perimeter, and area: -1.7 mm, 0.5 mm, -2.7 mm, and -13 mm 2 , respectively). The agreement between 3D TEE and MDCT on aortic annulus dimensions was superior among patients with low AVC burden (<3,025 arbitrary units) compared with patients with high AVC burden (≥3,025 arbitrary units). The interobserver variability was excellent for both methods. 3D TEE and MDCT led to the same prosthesis size selection in 88%, 95%, and 81% of patients in the total population, the low, and the high AVC burden group, respectively. In conclusion, the novel automated 3D TEE imaging software allows accurate and highly reproducible measurements of the aortic annulus dimensions and shows excellent agreement with MDCT to determine the TAVI prosthesis size, particularly in patients with low AVC burden. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
An annulus fibrosus closure device based on a biodegradable shape-memory polymer network.
Sharifi, Shahriar; van Kooten, Theo G; Kranenburg, Hendrik-Jan C; Meij, Björn P; Behl, Marc; Lendlein, Andreas; Grijpma, Dirk W
2013-11-01
Injuries to the intervertebral disc caused by degeneration or trauma often lead to tearing of the annulus fibrosus (AF) and extrusion of the nucleus pulposus (NP). This can compress nerves and cause lower back pain. In this study, the characteristics of poly(D,L-lactide-co-trimethylene carbonate) networks with shape-memory properties have been evaluated in order to prepare biodegradable AF closure devices that can be implanted minimally invasively. Four different macromers with (D,L-lactide) to trimethylene carbonate (DLLA:TMC) molar ratios of 80:20, 70:30, 60:40 and 40:60 with terminal methacrylate groups and molecular weights of approximately 30 kg mol(-1) were used to prepare the networks by photo-crosslinking. The mechanical properties of the samples and their shape-memory properties were determined at temperatures of 0 °C and 40 °C by tensile tests- and cyclic, thermo-mechanical measurements. At 40 °C all networks showed rubber-like behavior and were flexible with elastic modulus values of 1.7-2.5 MPa, which is in the range of the modulus values of human annulus fibrosus tissue. The shape-memory characteristics of the networks were excellent with values of the shape-fixity and the shape-recovery ratio higher than 98 and 95%, respectively. The switching temperatures were between 10 and 39 °C. In vitro culture and qualitative immunocytochemistry of human annulus fibrosus cells on shape-memory films with DLLA:TMC molar ratios of 60:40 showed very good ability of the networks to support the adhesion and growth of human AF cells. When the polymer network films were coated by adsorption of fibronectin, cell attachment, cell spreading, and extracellular matrix production was further improved. Annulus fibrosus closure devices were prepared from these AF cell-compatible materials by photo-polymerizing the reactive precursors in a mold. Insertion of the multifunctional implant in the disc of a cadaveric canine spine showed that these shape-memory devices could be implanted through a small slit and to some extent deploy self-sufficiently within the disc cavity. © 2013 Elsevier Ltd. All rights reserved.
Ferumoxytol MRA for transcatheter aortic valve replacement planning with renal insufficiency.
Kallianos, Kimberly; Henry, Travis S; Yeghiazarians, Yerem; Zimmet, Jeffrey; Shunk, Kendrick A; Tseng, Elaine E; Mahadevan, Vaikom; Hope, Michael D
2017-03-15
Computed tomography angiography (CTA) is the test of choice for pre-procedure imaging of transcatheter aortic valve replacement (TAVR) candidates. The iodinated contrast required, however, increases the risk of renal dysfunction in patients with pre-existing renal failure. Ferumoxytol is a magnetic resonance imaging (MRI) contrast agent that can be used with renal failure. Its long vascular resonance time allows gated MRA sequences that approach CTA in image quality. We present respiratory and cardiac gated MRA enabled by ferumoxytol that can be post-processed in an analogous fashion to CTA. Seven patients with renal failure presenting for TAVR were imaged with respiratory and cardiac gated MRA at 3T using ferumoxtyol for contrast. Aortic annulus, root and peripheral access dimensions were calculated in a fashion identical to that used for CTA. Of these, 6 patients underwent a TAVR procedure and 5 had intraoperative valve assessment with transesophageal echocardiograph (TEE) using standard clinical protocols that employed both two- and three-dimensional techniques. Good correlation between MRA aortic annulus measurements and those from TEE were shown in 5 patients with mean annulus area of 392.4mm 2 (290-470 range) versus 374.1mm 2 (285-440 range), with a pairwise correlation coefficient of 0.92, p=0.029. All patients received Sapien valve implants (one 20mm, three 23mm, and two 26mm valves). Access decisions were guided by MRA with no complications. Annulus sizing resulted in no greater than trace/mild aortic regurgitation in all patients. Ferumoxytol MRA is a safe alternative to CTA in patients with renal failure for pre-TAVR analysis of the aortic root and peripheral access. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The wavefield of acoustic logging in a cased-hole with a single casing - Part I: a monopole tool
NASA Astrophysics Data System (ADS)
Wang, Hua; Fehler, Michael
2018-01-01
The bonding quality of the seal formed by the cement or collapse material between casing and formation rock is critical for the hydraulic isolation of reservoir layers with shallow aquifers, production and environmental safety, and plug and abandonment issues. Acoustic logging is a very good tool for evaluating the condition of the bond between different interfaces. The understanding of the acoustic logging wavefields in wells with single casing is still incomplete. We use a 3-D finite difference method to simulate wireline monopole wavefields in a single cased borehole with different bonding conditions at two locations: (1) between the cement and casing and (2) between the cement and formation. Pressure snapshots and waveforms for different models are shown, which allow us to better understand the wave propagation. Modal dispersion curves and data processing methods such as velocity-time semblance and dispersion analysis facilitate the identification of propagation modes in the different models. We find that the P wave is submerged in the casing modes and the S wave has poor coherency when the cement is replaced with fluid. The casing modes are strong when cement next to the casing is partially or fully replaced with fluid. The amplitude of these casing modes can be used to determine the bonding condition of the interface between casing and cement. However, the limited variation of the amplitude with fluid thickness means that amplitude measurements may lead to an ambiguous interpretation. When the cement next to the formation is partially replaced with fluid, the modes propagate in the combination of steel casing and cement and the velocities are highly dependent on the cement thickness. However, if the cement thickness is large (more than 2/3 of the annulus between casing and rock), the arrival time of the first arrival approximates that of the formation compressional wave when cement is good. It would highly likely that an analyst could misjudge cement quality because the amplitudes of these modes are very small and their arrival times are very near to the formation P arrival time. It is possible to use the amplitude to estimate the thickness of the cement sheath because the variation of amplitude with thickness is strong. While the Stoneley mode (ST1) propagates in the borehole fluid, a slow Stoneley mode (ST2) appears when there is a fluid column in the annulus between the casing and formation rock. The velocity of ST2 is sensitive to the total thickness of the fluid column in the annulus independent of the location of the fluid in the casing annulus. We propose a full waveform method, which includes the utilization of the amplitude of the first arrival and also the velocity of the ST2 wave, to estimate the bonding condition of multiple interfaces. These two measurements provide more information than the current method that uses only the first arrival to evaluate the bonding interfa next to the casing.
Zeng, Zhi-Li; Cheng, Li-Ming; Zhu, Rui; Wang, Jian-Jie; Yu, Yan
2011-08-23
To build an effective nonlinear three-dimensional finite-element (FE) model of T(11)-L(3) segments for a further biomechanical study of thoracolumbar spine. The CT (computed tomography) scan images of healthy adult T(11)-L(3) segments were imported into software Simpleware 2.0 to generate a triangular mesh model. Using software Geomagic 8 for model repair and optimization, a solid model was generated into the finite element software Abaqus 6.9. The reasonable element C3D8 was selected for bone structures. Created between bony endplates, the intervertebral disc was subdivided into nucleus pulposus and annulus fibrosus (44% nucleus, 56% annulus). The nucleus was filled with 5 layers of 8-node solid elements and annulus reinforced by 8 crisscross collagenous fiber layers. The nucleus and annulus were meshed by C3D8RH while the collagen fibers meshed by two node-truss elements. The anterior (ALL) and posterior (PLL) longitudinal ligaments, flavum (FL), supraspinous (SSL), interspinous (ISL) and intertransverse (ITL) ligaments were modeled with S4R shell elements while capsular ligament (CL) was modeled with 3-node shell element. All surrounding ligaments were represented by envelope of 1 mm uniform thickness. The discs and bone structures were modeled with hyper-elastic and elasto-plastic material laws respectively while the ligaments governed by visco-elastic material law. The nonlinear three-dimensional finite-element model of T(11)-L(3) segments was generated and its efficacy verified through validating the geometric similarity and disc load-displacement and stress distribution under the impact of violence. Using ABAQUS/ EXPLICIT 6.9 the explicit dynamic finite element solver, the impact test was simulated in vitro. In this study, a 3-dimensional, nonlinear FE model including 5 vertebrae, 4 intervertebral discs and 7 ligaments consisted of 78 887 elements and 71 939 nodes. The model had good geometric similarity under the same conditions. The results of FEM intervertebral disc load-displacement curve were similar to those of in vitro test. The stress distribution results of vertebral cortical bone, posterior complex and cancellous bone were similar to those of other static experiments in a dynamic impact test under the observation of stress cloud. With the advantages of high geometric and mechanical similarity and complete thoracolumbar, hexahedral meshes, nonlinear finite element model may facilitate the impact loading test for a further dynamic analysis of injury mechanism for thoracolumbar burst fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg-Sitton, S.M.; Propulsion Research Center, NASA Marshall Space Flight Center, Huntsville, AL 35812; Kapernick, R.
2004-02-04
Experiments have been designed to characterize the coolant gas flow in two space reactor concepts that are currently under investigation by NASA Marshall Space Flight Center and Los Alamos National Laboratory: the direct-drive gas-cooled reactor (DDG) and the SAFE-100 heatpipe-cooled reactor (HPR). For the DDG concept, initial tests have been completed to measure pressure drop versus flow rate for a prototypic core flow channel, with gas exiting to atmospheric pressure conditions. The experimental results of the completed DDG tests presented in this paper validate the predicted results to within a reasonable margin of error. These tests have resulted in amore » re-design of the flow annulus to reduce the pressure drop. Subsequent tests will be conducted with the re-designed flow channel and with the outlet pressure held at 150 psi (1 MPa). Design of a similar test for a nominal flow channel in the HPR heat exchanger (HPR-HX) has been completed and hardware is currently being assembled for testing this channel at 150 psi. When completed, these test programs will provide the data necessary to validate calculated flow performance for these reactor concepts (pressure drop and film temperature rise)« less
Fluidized bed injection assembly for coal gasification
Cherish, Peter; Salvador, Louis A.
1981-01-01
A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.
Variable flow control for a nuclear reactor control rod
Carleton, Richard D.; Bhattacharyya, Ajay
1978-01-01
A variable flow control for a control rod assembly of a nuclear reactor that depends on turbulent friction though an annulus. The annulus is formed by a piston attached to the control rod drive shaft and a housing or sleeve fitted to the enclosure housing the control rod. As the nuclear fuel is burned up and the need exists for increased reactivity, the control rods are withdrawn, which increases the length of the annulus and decreases the rate of coolant flow through the control rod assembly.
Saturation of SERCA's lipid annulus may protect against its thermal inactivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fajardo, Val Andrew; Center for Bone and Muscle Health, Brock University, St. Catharines, ON; Department of Health Sciences, Brock University, St. Catharines, ON
The sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase (SERCA) pumps are integral membrane proteins that catalyze the active transport of Ca{sup 2+} into the sarcoplasmic reticulum, thereby eliciting muscle relaxation. SERCA pumps are highly susceptible to oxidative damage, and cytoprotection of SERCA dampens thermal inactivation and is a viable therapeutic strategy in combating diseases where SERCA activity is impaired, such as muscular dystrophy. Here, we sought to determine whether increasing the percent of saturated fatty acids (SFA) within SERCA's lipid annulus through diet could protect SERCA pumps from thermal inactivation. Female Wistar rats were fed either a semi-purified control diet (AIN93G, 7% soybeanmore » oil by weight) or a modified AIN93G diet containing high SFA (20% lard by weight) for 17 weeks. Soleus muscles were extracted and SERCA lipid annulus and activity under thermal stress were analyzed. Our results show that SERCA's lipid annulus is abundant with short-chain (12–14 carbon) fatty acids, which corresponds well with SERCA's predicted bilayer thickness of 21 Å. Under control-fed conditions, SERCA's lipid annulus was already highly saturated (79%), and high-fat feeding did not increase this any further. High-fat feeding did not mitigate the reductions in SERCA activity seen with thermal stress; however, correlational analyses revealed significant and strong associations between % SFA and thermal stability of SERCA activity with greater %SFA being associated with lower thermal inactivation and greater % polyunsaturation and unsaturation index being associated with increased thermal inactivation. Altogether, these findings show that SERCA's lipid annulus may influence its susceptibility to oxidative damage, which could have implications in muscular dystrophy and age-related muscle wasting. - Highlights: • SERCA's lipid annulus in rat soleus was measured after immunoconcentration. • Short fatty acid chains surround SERCA and may ensure optimal hydrophobic matching. • SERCA's annulus is highly saturated in control-fed and high-fat fed rats. • Greater saturation associates with small levels of thermal inactivation. • Greater unsaturation associates with large levels of thermal inactivation.« less
Improved xenon lamp for solar simulators: A concept
NASA Technical Reports Server (NTRS)
Schmidt, L. F.
1974-01-01
Short-arc xenon lamp proposes to produce more uniform solar output. With this lamp, both axes of sensors can be tested with same setup. Lamp includes cathode with conical tip and annular anode. Annulus is supported by angled projection to avoid interference with passage of light generated by arc.
Lou, Junyang; Obuchowski, Nancy A; Krishnaswamy, Amar; Popovic, Zoran; Flamm, Scott D; Kapadia, Samir R; Svensson, Lars G; Bolen, Michael A; Desai, Milind Y; Halliburton, Sandra S; Tuzcu, E Murat; Schoenhagen, Paul
2015-01-01
Preprocedural 3-dimensional CT imaging of the aortic annular plane plays a critical role for transcatheter aortic valve replacement (TAVR) planning; however, manual reconstructions are complex. Automated analysis software may improve reproducibility and agreement between readers but is incompletely validated. In 110 TAVR patients (mean age, 81 years; 37% female) undergoing preprocedural multidetector CT, automated reconstruction of the aortic annular plane and planimetry of the annulus was performed with a prototype of now commercially available software (syngo.CT Cardiac Function-Valve Pilot; Siemens Healthcare, Erlangen, Germany). Fully automated, semiautomated, and manual annulus measurements were compared. Intrareader and inter-reader agreement, intermodality agreement, and interchangeability were analyzed. Finally, the impact of these measurements on recommended valve size was evaluated. Semiautomated analysis required major correction in 5 patients (4.5%). In the remaining 95.5%, only minor correction was performed. Mean manual annulus area was significantly smaller than fully automated results (P < .001 for both readers) but similar to semiautomated measurements (5.0 vs 5.4 vs 4.9 cm(2), respectively). The frequency of concordant recommendations for valve size increased if manual analysis was replaced with the semiautomated method (60% agreement was improved to 82.4%; 95% confidence interval for the difference [69.1%-83.4%]). Semiautomated aortic annulus analysis, with minor correction by the user, provides reliable results in the context of TAVR annulus evaluation. Copyright © 2015 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Annulus fibrosus of the mitral valve: reality or myth.
Berdajs, Denis; Zünd, Gregor; Camenisch, Colette; Schurr, Ulrich; Turina, Marko I; Genoni, Michele
2007-01-01
Surgical repair of the mitral valve is in most cases limited to the posterior leaflet of the mitral valve and to the annulus fibrosus. The term annulus fibrosus is still used in anatomical and clinical terminology and is described as a cord like structure providing the attachment of the mitral vale. However, to date no evidence exists of a ring-or cord-like structure at this area. Herein, we describe the attachment of the mitral valve by using the macroscopical and microscopical techniques. The ventricular attachment of the posterior mitral valve leaflet was investigated in 10 human hearts. In dry dissected specimens, the intraventricular illumination was used to identify the attachment of the mitral valve to the left ventricular muscle. Using the histological techniques, we verified the position of the annulus fibrosus. The attachment of the posterior mitral valve leaflet is a band-like structure positioned between the left ventricular muscle and the left atrium. This fibrous band illustrates the morphological attachment of the mitral valve and, as thus, was interpreted as the annulus fibrosus of the mitral valve. Based on our data, no ring-like structure was found corresponding to the anatomical description of the annulus fibrosus, instead the band-like fibrous tissue was identified positioned between the mitral valve and the left ventricle. Histologicaly, we detected that this structure is part of the greater structural system that is directly connected to the membranous septum, to the left and right fibrous trigone and the attachment aortic root to the left ventricular muscle.
Thin plastic foil X-ray optics with spiral geometry
NASA Astrophysics Data System (ADS)
Barbera, Marco; Mineo, Teresa; Perinati, Emanuele; Schnopper, Herbert W.; Taibi, Angelo
2007-09-01
Winding a plastic foil ribbon into spiral cylinder or spiral cones we can design and build single or multiple reflection X-ray grazing incidence focusing optics with potential applications in Astronomy as well as experimental physics. The use of thin plastic foils from common industrial applications and of a mounting technique which does not require the construction of mandrels make these optics very cost effective. A spiral geometry focusing optic produces an annular image of a point source with the angular size of the annulus depending mainly on the pitch of the winding and the focal length. We use a ray-tracing code to evaluate the performances of cylindrical, and double conical spiral geometry as a function of the design parameters e.g. focal length, diameter, optic length. Some preliminary results are presented on X-ray imaging tests performed on spiral cylindrical optics.
NASA Technical Reports Server (NTRS)
Greenberg, N. L.; Castro, P. L.; Drinko, J.; Garcia, M. J.; Thomas, J. D.
2000-01-01
Color M-mode echocardiography has recently been utilized to describe diastolic flow propagation velocity (Vp) in the left ventricle. While increasing temporal resolution from 15 to 200 Hz, this M-mode technique requires the user to select a single scanline, potentially limiting quantification of Vp due to the complex three-dimensional inflow pattern. We previously performed computational fluid dynamics simulations to demonstrate the insignificance of the scanline orientation, however geometric complexity was limited. The purpose of this study was to utilize high frame-rate 2D color Doppler images to investigate the importance of scanline selection in patients for the quantification of Vp. 2D color Doppler images were digitally acquired at 50 frames/s in 6 subjects from the apical 4-chamber window (System 5, GE/Vingmed, Milwaukee, WI). Vp was determined for a set of scanlines positioned through 5 locations across the mitral annulus (from the anterior to posterior mitral annulus). An analysis of variance was performed to examine the differences in Vp as a function of scanline position. Vp was not effected by scanline position in sampled locations from the center of the mitral valve towards the posterior annulus. Although not statistically significant, there was a trend to slower propagation velocities on the anterior side of the valve (60.8 +/- 16.7 vs. 54.4 +/- 13.6 cm/s). This study clinically validates our previous numerical experiment showing that Vp is insensitive to small perturbations of the scanline through the mitral valve. However, further investigation is necessary to examine the impact of ventricular geometry in pathologies including dilated cardiomyopathy.
Kurkluoglu, Mustafa; John, Anitha S; Cross, Russell; Chung, David; Yerebakan, Can; Zurakowski, David; Jonas, Richard A; Sinha, Pranava
2015-01-01
Indications for prophylactic tricuspid annuloplasty in patients with pulmonary regurgitation (PR) after tetralogy of Fallot (TOF) repair are unclear and often extrapolated from acquired functional tricuspid regurgitation (TR) data in adults, where despite correction of primary left heart pathology, progressive tricuspid annular dilation is noted beyond a threshold diameter >4 cm (21 mm/m(2)). We hypothesized that unlike in adult functional TR, in pure volume-overload conditions such as patients with PR after TOF, the tricuspid valve size is likely to regress after pulmonary valve replacement (PVR). A total of 43 consecutive patients who underwent PVR from 2005 until 2012 at a single institution were retrospectively reviewed. Absolute and indexed tricuspid annulus diameters (TADs), tricuspid annulus Z-scores, grade of TR along with right ventricular size, and function indices were recorded before and after PVR. Preoperative and postoperative echocardiographic data were available in all patients. A higher tricuspid valve Z-score correlated with greater TR both preoperatively (P = 0.005) and postoperatively (P = 0.02). Overall reductions in the absolute and indexed TAD and tricuspid valve Z-scores were seen postoperatively, with greater absolute as well as percentage reduction seen with larger preoperative TAD index (P = 0.007) and higher tricuspid annulus Z-scores (P = 0.06). In pure volume-overload conditions such as patients with PR after TOF, reduction in the tricuspid valve size is seen after PVR. Concomitant tricuspid annuloplasty should not be considered based on tricuspid annular dilation alone. Copyright © 2015 Elsevier Inc. All rights reserved.
Rotating-fluid experiments with an atmospheric general circulation model
NASA Technical Reports Server (NTRS)
Geisler, J. E.; Pitcher, E. J.; Malone, R. C.
1983-01-01
In order to determine features of rotating fluid flow that are dependent on the geometry, rotating annulus-type experiments are carried out with a numerical model in spherical coordinates. Rather than constructing and testing a model expressly for this purpose, it is found expedient to modify an existing general circulation model of the atmosphere by removing the model physics and replacing the lower boundary with a uniform surface. A regime diagram derived from these model experiments is presented; its major features are interpreted and contrasted with the major features of rotating annulus regime diagrams. Within the wave regime, a narrow region is found where one or two zonal wave numbers are dominant. The results reveal no upper symmetric regime; wave activity at low rotation rates is thought to be maintained by barotropic rather than baroclinic processes.
On the Use of Biaxial Properties in Modeling Annulus as a Holzapfel–Gasser–Ogden Material
Momeni Shahraki, Narjes; Fatemi, Ali; Goel, Vijay K.; Agarwal, Anand
2015-01-01
Besides the biology, stresses and strains within the tissue greatly influence the location of damage initiation and mode of failure in an intervertebral disk. Finite element models of a functional spinal unit (FSU) that incorporate reasonably accurate geometry and appropriate material properties are suitable to investigate such issues. Different material models and techniques have been used to model the anisotropic annulus fibrosus, but the abilities of these models to predict damage initiation in the annulus and to explain clinically observed phenomena are unclear. In this study, a hyperelastic anisotropic material model for the annulus with two different sets of material constants, experimentally determined using uniaxial and biaxial loading conditions, were incorporated in a 3D finite element model of a ligamentous FSU. The purpose of the study was to highlight the biomechanical differences (e.g., intradiscal pressure, motion, forces, stresses, strains, etc.) due to the dissimilarity between the two sets of material properties (uniaxial and biaxial). Based on the analyses, the biaxial constants simulations resulted in better agreements with the in vitro and in vivo data, and thus are more suitable for future damage analysis and failure prediction of the annulus under complex multiaxial loading conditions. PMID:26090359
Damping of a fluid-conveying pipe surrounded by a viscous annulus fluid
NASA Astrophysics Data System (ADS)
Kjolsing, Eric J.; Todd, Michael D.
2017-04-01
To further the development of a downhole vibration based energy harvester, this study explores how fluid velocity affects damping in a fluid-conveying pipe stemming from a viscous annulus fluid. A linearized equation of motion is formed which employs a hydrodynamic forcing function to model the annulus fluid. The system is solved in the frequency domain through the use of the spectral element method. The three independent variables investigated are the conveyed fluid velocity, the rotational stiffness of the boundary (using elastic springs), and the annulus fluid viscosity. It was found that, due to the hydrodynamic functions frequency-dependence, increasing the conveyed fluid velocity increases the systems damping ratio. It was also noted that stiffer systems saw the damping ratio increase at a slower rate when compared to flexible systems as the conveyed fluid velocity was increased. The results indicate that overestimating the stiffness of a system can lead to underestimated damping ratios and that this error is made worse if the produced fluid velocity or annulus fluid viscosity is underestimated. A numeric example was provided to graphically illustrate these errors. Approved for publication, LA-UR-15-28006.
Li, Yinfeng; Liu, Silin; Datta, Dibakar; Li, Zhonghua
2015-11-12
Wrinkles as intrinsic topological feature have been expected to affect the electrical and mechanical properties of atomically thin graphene. Molecular dynamics simulations are adopted to investigate the wrinkling characteristics in hydrogenated graphene annulus under circular shearing at the inner edge. The amplitude of wrinkles induced by in-plane rotation around the inner edge is sensitive to hydrogenation, and increases quadratically with hydrogen coverage. The effect of hydrogenation on mechanical properties is investigated by calculating the torque capability of annular graphene with varying hydrogen coverage and inner radius. Hydrogenation-enhanced wrinkles cause the aggregation of carbon atoms towards the inner edge and contribute to the critical torque strength of annulus. Based on detailed stress distribution contours, a shear-to-tension conversion mechanism is proposed for the contribution of wrinkles on torque capacity. As a result, the graphane annulus anomalously has similar torque capacity to pristine graphene annulus. The competition between hydrogenation caused bond strength deterioration and wrinkling induced local stress state conversion leads to a U-shaped evolution of torque strength relative to the increase of hydrogen coverage from 0 to 100%. Such hydrogenation tailored topological and mechanical characteristics provides an innovative mean to develop novel graphene-based devices.
NASA Astrophysics Data System (ADS)
Ragui, Karim; Boutra, Abdelkader; Bennacer, Rachid; Labsi, Nabila; Benkahla, Youb Khaled
2018-07-01
The main purpose of our investigation is to show the impact of pertinent parameters; such Lewis and porous thermal Rayleigh numbers as well as the buoyancy and the aspect ratios; on the double-diffusive convection phenomena which occur within a porous annulus; found between a cold (and less concentric) outer circular cylinder and a hot (and concentric) inner one, to come out with global correlations which predict the mean transfer rates in such annulus. To do so, the physical model for the momentum conservation equation is made using the Brinkman extension of the classical Darcy equation. The set of coupled equations is solved using the finite volume method and the SIMPLER algorithm. Summarizing the numerical predictions, global correlations of overall transfer within the porous annulus as a function of the governing studied parameters are set forth which predict within ±2% the numerical results. These correlations may count as a complement to previous researches done in the case a Newtonian-fluid annulus. It is to note that the validity of the computing code used was ascertained by comparing our results with the experimental data and numerical ones already available in the literature.
NASA Astrophysics Data System (ADS)
Ragui, Karim; Boutra, Abdelkader; Bennacer, Rachid; Labsi, Nabila; Benkahla, Youb Khaled
2018-02-01
The main purpose of our investigation is to show the impact of pertinent parameters; such Lewis and porous thermal Rayleigh numbers as well as the buoyancy and the aspect ratios; on the double-diffusive convection phenomena which occur within a porous annulus; found between a cold (and less concentric) outer circular cylinder and a hot (and concentric) inner one, to come out with global correlations which predict the mean transfer rates in such annulus. To do so, the physical model for the momentum conservation equation is made using the Brinkman extension of the classical Darcy equation. The set of coupled equations is solved using the finite volume method and the SIMPLER algorithm. Summarizing the numerical predictions, global correlations of overall transfer within the porous annulus as a function of the governing studied parameters are set forth which predict within ±2% the numerical results. These correlations may count as a complement to previous researches done in the case a Newtonian-fluid annulus. It is to note that the validity of the computing code used was ascertained by comparing our results with the experimental data and numerical ones already available in the literature.
Wu, Chuan; Ding, Huafeng; Han, Lei
2018-02-14
Coalbed methane (CBM) is one kind of clean-burning gas and has been valued as a new form of energy that will be used widely in the near future. When producing CBM, the working level within a CBM wellbore annulus needs to be monitored to dynamically adjust the gas drainage and extraction processes. However, the existing method of measuring the working level does not meet the needs of accurate adjustment, so we designed a new sensor for this purpose. The principle of our sensor is a liquid pressure formula, i.e., the sensor monitors the two-phase flow patterns and obtains the mean density of the two-phase flow according to the pattern recognition result in the first step, and then combines the pressure data of the working level to calculate the working level using the liquid pressure formula. The sensor was tested in both the lab and on site, and the tests showed that the sensor's error was ±8% and that the sensor could function well in practical conditions and remain stable in the long term.
Wu, Chuan; Ding, Huafeng; Han, Lei
2018-01-01
Coalbed methane (CBM) is one kind of clean-burning gas and has been valued as a new form of energy that will be used widely in the near future. When producing CBM, the working level within a CBM wellbore annulus needs to be monitored to dynamically adjust the gas drainage and extraction processes. However, the existing method of measuring the working level does not meet the needs of accurate adjustment, so we designed a new sensor for this purpose. The principle of our sensor is a liquid pressure formula, i.e., the sensor monitors the two-phase flow patterns and obtains the mean density of the two-phase flow according to the pattern recognition result in the first step, and then combines the pressure data of the working level to calculate the working level using the liquid pressure formula. The sensor was tested in both the lab and on site, and the tests showed that the sensor’s error was ±8% and that the sensor could function well in practical conditions and remain stable in the long term. PMID:29443871
NASA Astrophysics Data System (ADS)
Egbers, Christoph; Futterer, Birgit; Zaussinger, Florian; Harlander, Uwe
2014-05-01
Baroclinic waves are responsible for the transport of heat and momentum in the oceans, in the Earth's atmosphere as well as in other planetary atmospheres. The talk will give an overview on possibilities to simulate such large scale as well as co-existing small scale structures with the help of well defined laboratory experiments like the baroclinic wave tank (annulus experiment). The analogy between the Earth's atmosphere and the rotating cylindrical annulus experiment only driven by rotation and differential heating between polar and equatorial regions is obvious. From the Gulf stream single vortices seperate from time to time. The same dynamics and the co-existence of small and large scale structures and their separation can be also observed in laboratory experiments as in the rotating cylindrical annulus experiment. This experiment represents the mid latitude dynamics quite well and is part as a central reference experiment in the German-wide DFG priority research programme ("METSTRÖM", SPP 1276) yielding as a benchmark for lot of different numerical methods. On the other hand, those laboratory experiments in cylindrical geometry are limited due to the fact, that the surface and real interaction between polar and equatorial region and their different dynamics can not be really studied. Therefore, I demonstrate how to use the very successful Geoflow I and Geoflow II space experiment hardware on ISS with future modifications for simulations of small and large scale planetary atmospheric motion in spherical geometry with differential heating between inner and outer spheres as well as between the polar and equatorial regions. References: Harlander, U., Wenzel, J., Wang, Y., Alexandrov, K. & Egbers, Ch., 2012, Simultaneous PIV- and thermography measurements of partially blocked flow in a heated rotating annulus, Exp. in Fluids, 52 (4), 1077-1087 Futterer, B., Krebs, A., Plesa, A.-C., Zaussinger, F., Hollerbach, R., Breuer, D. & Egbers, Ch., 2013, Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity, J. Fluid Mech., vol. 75, p 647-683
The papillary muscles as shock absorbers of the mitral valve complex. An experimental study.
Joudinaud, Thomas M; Kegel, Corrine L; Flecher, Erwan M; Weber, Patricia A; Lansac, Emmanuel; Hvass, Ulrich; Duran, Carlos M G
2007-07-01
Although it is known that the papillary muscles ensure the continuity between the left ventricle (LV) and the mitral apparatus, their precise mechanism needs further study. We hypothesize that the papillary muscles function as shock absorbers to maintain a constant distance between their tips and the mitral annulus during the entire cardiac cycle. Sonomicrometry crystals were implanted in five sheep in the mitral annulus at the trigones (T1 and T2), mid anterior annulus (AA) mid posterior annulus (PA), base of the posterior lateral scallops (P1 and P2), tips of papillary muscles (M1 and M2), and LV apex. LV and aortic pressures were simultaneously recorded and used to define the different phases of the cardiac cycle. No significant distance changes were found during the cardiac cycle between each papillary muscle tip and their corresponding mitral hemi-annulus: M1-T1, (3.5+/-2%); M1-P1 (5+/-2%); M1-PA (5+/-3%); M2-T2 (2.7+/-2%); M2-P2 (6.1+/-3%); and M2-AA (4.2+/-3%); (p>0.05, ANOVA). Significant changes were observed in distances between each papillary muscle tip and the contralateral hemi-mitral annulus: M1-T2 (1.7+/-3%); M1-P2 (23+/-6%); M1-AA (6+/-3%); M2-T1 (8+/-3%); M2-P1 (10.5+/-6%); and M2-PA (12.6+/-8%); (p<0.05 ANOVA). The distance changes between LV apex and each papillary muscle tip were significantly different: apex-M1 (12.9+/-1%) and apex-M2 (10.5+/-1%) and different from the averaged distance change between the LV apex and each annulus crystal (8.3+/-1%) with p<0.05. The papillary muscles seem to be independent mechanisms designed to work as shock absorbers to maintain the basic mitral valve geometry constant during the cardiac cycle.
NASA Technical Reports Server (NTRS)
Goodykoontz, J.; Vonglahn, U.
1980-01-01
An inverted velocity profile coaxial nozzle for use with supersonic cruise aircraft produces less jet noise than an equivalent conical nozzle. Furthermore, decreasing the annulus height (increasing radius ratio with constant flow) results in further noise reduction benefits. The annulus shape (height) was varied by an eccentric mounting of the annular nozzle with respect to a conical core nozzle. Acoustic measurements were made in the flyover plane below the narrowest portion of the annulus and at 90 deg and 180 deg from this point. The model-scale spectra are scaled up to engine size (1.07 m diameter) and the perceived noise levels for the eccentric and baseline concentric inverted velocity profile coaxial nozzles are compared over a range of operating conditions. The implications of the acoustic benefits derived with the eccentric nozzle to practical applications are discussed.
VanOsdol, John G.
2013-06-25
The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.
Mahmood, Feroze; Warraich, Haider J.; Gorman, Joseph H.; Gorman, Robert C.; Chen, Tzong-Huei; Panzica, Peter; Maslow, Andrew; Khabbaz, Kamal
2014-01-01
Background and aim of the study Intraoperative real-time three-dimensional transesophageal echocardiography (RT-3D TEE) was used to examine the geometric changes that occur in the mitral annulus immediately after aortic valve replacement (AVR). Methods A total of 35 patients undergoing elective surgical AVR under cardiopulmonary bypass was enrolled in the study. Intraoperative RT-3D TEE was used prospectively to acquire volumetric echocardiographic datasets immediately before and after AVR. The 3D echocardiographic data were analyzed offline using TomTec® Mitral Valve Assessment software to assess changes in specific mitral annular geometric parameters. Results Datasets were successfully acquired and analyzed for all patients. A significant reduction was noted in the mitral annular area (-16.3%, p <0.001), circumference (-8.9% p <0.001) and the anteroposterior (-6.3%, p = 0.019) and anterolateral-posteromedial (-10.5%, p <0.001) diameters. A greater reduction was noted in the anterior annulus length compared to the posterior annulus length (10.5% versus 62%, p <0.05) after AVR. No significant change was seen in the non-planarity angle, coaptation depth, and closure line length. During the period of data acquisition before and after AVR, no significant change was noted in the central venous pressure or left ventricular end-diastolic diameter. Conclusion The mitral annulus undergoes significant geometric changes immediately after AVR Notably, a 16.3% reduction was observed in the mitral annular area. The anterior annulus underwent a greater reduction in length compared to the posterior annulus, which suggested the existence of a mechanical compression by the prosthetic valve. PMID:23409347
The Lawn Hill annulus: An Ordovician meteorite impact into water-saturated dolomite
NASA Astrophysics Data System (ADS)
Darlington, Vicki; Blenkinsop, Tom; Dirks, Paul; Salisbury, Jess; Tomkins, Andrew
2016-12-01
The Lawn Hill Impact Structure (LHIS) is located 250 km N of Mt Isa in NW Queensland, Australia, and is marked by a highly deformed dolomite annulus with an outer diameter of 18 km, overlying low metamorphic grade siltstone, sandstone, and shale, along the NE margin of the Georgina Basin. This study provides detailed field observations from sections of the Lawn Hill annulus and adjacent areas that demonstrate a clear link between the deformation of the dolomite and the Lawn Hill impact. 40Ar-39Ar dating of impact-related melt particles provides a time of impact in the Ordovician (472 ± 8 Ma) when the Georgina Basin was an active depocenter. The timing and stratigraphic thickness of the dolomite sequence in the annulus suggest that there was possibly up to 300 m of additional sedimentary rocks on top of the currently exposed Thorntonia Limestone at the time of impact. The exposed annulus is remarkably well preserved, with preservation attributed to postimpact sedimentation. The LHIS has an atypical crater morphology with no central uplift. The heterogeneous target materials at Lawn Hill were probably low-strength, porous, and water-saturated, with all three properties affecting the crater morphology. The water-saturated nature of the carbonate unit at the time of impact is thought to have influenced the highly brecciated nature of the annulus, and restricted melt production. The impact timing raises the possibility that the Lawn Hill structure may be a member of a group of impacts resulting from an asteroid breakup that occurred in the mid-Ordovician (470 ± 6 Ma).
Long, Rose G; Bürki, Alexander; Zysset, Philippe; Eglin, David; Grijpma, Dirk W.; Blanquer, Sebastien BG; Hecht, Andrew C; Iatridis, James C
2015-01-01
Unrepaired defects in the annulus fibrosus of intervertebral discs are associated with degeneration and persistent back pain. A clinical need exists for a disc repair strategy that can seal annular defects, be easily delivered during surgical procedures, and restore biomechanics with low risk of herniation. Multiple annulus repair strategies were developed using poly(trimethylene carbonate) scaffolds optimized for cell delivery, polyurethane membranes designed to prevent herniation, and fibrin-genipin adhesive tuned to annulus fibrosus shear properties. This three-part study evaluated repair strategies for biomechanical restoration, herniation risk and failure mode in torsion, bending and compression at physiological and hyper-physiological loads using a bovine injury model. Fibrin-genipin hydrogel restored some torsional stiffness, bending ROM and disc height loss, with negligible herniation risk and failure was observed histologically at the fibrin-genipin mid-substance following rigorous loading. Scaffold-based repairs partially restored biomechanics, but had high herniation risk even when stabilized with sutured membranes and failure was observed histologically at the interface between scaffold and fibrin-genipin adhesive. Fibrin-genipin was the simplest annulus fibrosus repair solution evaluated that involved an easily deliverable adhesive that filled irregularly-shaped annular defects and partially restored disc biomechanics with low herniation risk, suggesting further evaluation for disc repair may be warranted. PMID:26577987
Meakin, J R
2001-03-01
An axisymmetric finite element model of a human lumbar disk was developed to investigate the properties required of an implant to replace the nucleus pulposus. In the intact disk, the nucleus was modeled as a fluid, and the annulus as an elastic solid. The Young's modulus of the annulus was determined empirically by matching model predictions to experimental results. The model was checked for sensitivity to the input parameter values and found to give reasonable behavior. The model predicted that removal of the nucleus would change the response of the annulus to compression. This prediction was consistent with experimental results, thus validating the model. Implants to fill the cavity produced by nucleus removal were modeled as elastic solids. The Poisson's ratio was fixed at 0.49, and the Young's modulus was varied from 0.5 to 100 MPa. Two sizes of implant were considered: full size (filling the cavity) and small size (smaller than the cavity). The model predicted that a full size implant would reverse the changes to annulus behavior, but a smaller implant would not. By comparing the stress distribution in the annulus, the ideal Young's modulus was predicted to be approximately 3 MPa. These predictions have implications for current nucleus implant designs. Copyright 2001 Kluwer Academic Publishers
NASA Technical Reports Server (NTRS)
Om, Deepak; Childs, Morris E.
1987-01-01
An experimental study is described in which detailed wall pressure measurements have been obtained for compressible three-dimensional unseparated boundary layer flow in annular diffusers with and without normal shock waves. Detailed mean flow-field data were also obtained for the diffuser flow without a shock wave. Two diffuser flows with shock waves were investigated. In one case, the normal shock existed over the complete annulus whereas in the second case, the shock existed over a part of the annulus. The data obtained can be used to validate computational codes for predicting such flow fields. The details of the flow field without the shock wave show flow reversal in the circumferential direction on both inner and outer surfaces. However, there is a lag in the flow reversal between the inner nad the outer surfaces. This is an interesting feature of this flow and should be a good test for the computational codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael S. Bruno
This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptualmore » drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.« less
Lequin, Michiel B; Barth, Martin; Thomė, Claudius; Bouma, Gerrit J
2012-12-01
Discectomy as a treatment for herniated lumbar discs results in outcomes after surgery that are not uniformly positive. Surgeons face the dilemma between limited nucleus removal which is associated with a higher risk of recurrence, or more aggressive nucleus removal which may lead to disc height loss and persistent back-pain. annulus closure devices may allow for the benefits of limited nucleus removal without the increased risk of recurrence. This is an interim report of an ongoing 24-month post-marketing study of the Barricaid® annulus closure device, consisting of a flexible polymer mesh that blocks the defect, held in place by a titanium bone anchor. We prospectively enrolled 45 patients at four hospitals, and implanted the Barricaid® after a limited discectomy. annulus defect size and volume of removed nucleus were recorded. Reherniations were reported, pain and function were monitored and imaging was performed at regular intervals during 24 months of follow-up. At 12 months postsurgery, pain and function were significantly improved, comparing favorably to reported results from limited discectomy. Disc height has been well maintained. One reherniation has occurred (2.4%), which was associated with a misplaced device. No device fracture, subsidence or migration has been observed. The use of an annulus closure device may provide a reduction in reherniation rate for lumbar discectomy patients with large annulus defects who are at the greatest risk of recurrence. Using such a device should provide the surgeon increased confidence in minimizing nucleus removal, which, in turn, may preserve disc height and biomechanics, reducing degeneration and associated poor clinical outcomes in the long-term. A randomized multicenter study evaluating limited discectomy with and without the Barricaid® is currently underway, and will provide a higher level of evidence.
Guo, Li-Xin; Fan, Wei
2017-09-01
The objective of this study was to investigate the effect of single-level disc degeneration on dynamic response of the whole lumbar spine to vertical whole body vibration that is typically present when driving vehicles. Ligamentous finite element models of the lumbar L1-S1 motion segment in different grades of degeneration (healthy, mild, and moderate) at the L4-L5 level were developed with consideration of changing disc height and material properties of the nucleus pulpous. All models were loaded with a compressive follower preload of 400 N and a sinusoidal vertical vibration load of ±40 N. After transient dynamic analyses, computational results for the 3 models in terms of disc bulge, von-Mises stress in annulus ground substance, and nucleus pressure were plotted as a function of time and compared. All the predicted results showed a cyclic response with time. At the degenerated L4-L5 disc level, as degeneration progressed, maximum value of the predicted response showed a decrease in disc bulge and von-Mises stress in annulus ground substance but a slight increase in nucleus pressure, and their vibration amplitudes were all decreased. At the adjacent levels of the degenerated disc, there was a slight decrease in maximum value and vibration amplitude of these predicted responses with the degeneration. The results indicated that single-level disc degeneration can alter vibration characteristics of the whole lumbar spine especially for the degenerated disc level, and increasing the degeneration did not deteriorate the effect of vertical vibration on the spine. Copyright © 2017 Elsevier Inc. All rights reserved.
Dandl, R.A.
1961-10-24
An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)
Automatic detection of cardiac cycle and measurement of the mitral annulus diameter in 4D TEE images
NASA Astrophysics Data System (ADS)
Graser, Bastian; Hien, Maximilian; Rauch, Helmut; Meinzer, Hans-Peter; Heimann, Tobias
2012-02-01
Mitral regurgitation is a wide spread problem. For successful surgical treatment quantification of the mitral annulus, especially its diameter, is essential. Time resolved 3D transesophageal echocardiography (TEE) is suitable for this task. Yet, manual measurement in four dimensions is extremely time consuming, which confirms the need for automatic quantification methods. The method we propose is capable of automatically detecting the cardiac cycle (systole or diastole) for each time step and measuring the mitral annulus diameter. This is done using total variation noise filtering, the graph cut segmentation algorithm and morphological operators. An evaluation took place using expert measurements on 4D TEE data of 13 patients. The cardiac cycle was detected correctly on 78% of all images and the mitral annulus diameter was measured with an average error of 3.08 mm. Its full automatic processing makes the method easy to use in the clinical workflow and it provides the surgeon with helpful information.
CFD modelling of liquid-solid transport in the horizontal eccentric annuli
NASA Astrophysics Data System (ADS)
Sayindla, Sneha; Challabotla, Niranjan Reddy
2017-11-01
In oil and gas drilling operations, different types of drilling fluids are used to transport the solid cuttings in an annulus between drill pipe and well casing. The inner pipe is often eccentric and flow inside the annulus can be laminar or turbulent regime. In the present work, Eulerian-Eulerian granular multiphase CFD model is developed to systematically investigate the effect of the rheology of the drilling fluid type (Newtonian and non-Newtonian), drill pipe eccentricity and inner pipe rotation on the efficiency of cuttings transport. Both laminar and turbulent flow regimes were considered. Frictional pressure drop is computed and compared with the flow loop experimental results reported in the literature. The results confirm that the annular frictional pressure loss in a fully eccentric annulus are significantly lesser than the concentric annulus. Inner pipe rotation improve the efficiency of the cuttings transport in laminar flow regime. Cuttings transport velocity and concentration distribution were analysed to predict the different flow patterns such as stationary bed, moving bed, heterogeneous and homogeneous bed formation.
Scattering of circumferential waves in a cracked annulus
NASA Astrophysics Data System (ADS)
Valle, Christine; Qu, Jianmin; Jacobs, Laurence J.
2000-05-01
This paper considers guided waves propagating in the circumferential direction of an annulus with a radial crack, with the objective of developing an ultrasonic technique that can detect and characterize these cracks. Specifically, the finite element method is used to simulate the propagation and scattering of guided circumferential waves in a cracked annulus. This method fosters a better understanding of the wave fields, so that a transducer configuration used in the field can be optimized for crack detection/characterization. Both a point source (simulating laser generated ultrasound) and a distributed source (simulating a PZT transducer) are modeled and compared to corresponding experimental results. Animations (snapshots at different instants in time) of the strain energy field in the annulus are given for various combinations of load profiles, incident angles, and incident frequencies. Results of this paper provide the necessary design guidelines for developing nondestructive ultrasonic techniques for the detection/characterization of radial cracks in cylindrical pressure vessels, gas/oil pipes, and shaft/bearing systems.
Arısoy, Arif; Topçu, Selim; Demirelli, Selami; Altunkaş, Fatih; Karayakalı, Metin; Çelik, Ataç; Tanboğa, İbrahim Halil; Aksakal, Enbiya; Sevimli, Serdar; Gürlertop, Hanefi Yekta
2015-11-25
The aim of this study was to evaluate right ventricle (RV) functions using echocardiography in healthy subjects who migrated from the sea level to moderate altitude (1890 m). The prospective observational in this study population consisted of 33 healthy subjects (23 men; mean age 20.4±3.2 years) who migrated from the sea level to a moderate altitude (Erzurum city centre, 1890 m above sea level) for long-term stay. Subjects underwent echocardiographic evaluation within the first 48 h of exposure to the moderate altitude and at the sixth month of arrival. Conventional echocardiographic parameters such as RV sizes and areas, systolic, and diastolic functional indices [fractional area change (FAC), tricuspid flow velocities, myocardial performance index (MPI), and tricuspid annular plane systolic excursion (TAPSE)] were obtained. Systolic (S) and diastolic (E', A') velocities were acquired from the apical fourchamber view using tissue Doppler imaging. Kolmogorov-Smirnov test, student's t-test, Wilcoxon test, and chi-square test were used in this study. There were no significant changes in RV size, FAC, MPI, TAPSE, inferior inspiratory vena cava collapse, tricuspid E velocity, and tricuspid annulus E' velocity. Compared with the baseline, there was a significant increase in mean pulmonary artery pressure (p=0.001); RV end systolic area (p=0.014); right atrial end diastolic area (p=0.021); tricuspid A velocity (p=0.013); tricuspid annulus S and A' velocity (p=0.031 and p=0.006, respectively); and RV free wall S, E', and A' velocity (p=0.007, p<0.001, and p=0.007 respectively) at the sixth month. Also, there was a significant decrease in tricuspid E/A ratio (1.61±0.3 vs. 1.45±0.2, p=0.038) and tricuspid annulus E'/A' ratio (1.52±0.5 vs. 1.23±0.4, p=0.002) at the sixth month. Our study revealed that right ventricular diastolic function was altered while the systolic function was preserved in healthy subjects who migrated from the sea level to a moderate altitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Yong; Liu, Shu-sen; Yuan, Shou-qi, E-mail: Shouqiy@ujs.edu.cn
We report an extraordinary acoustic transmission through two layer annuluses made of metal cylinders in air both numerically and experimentally. The effect arises from the enhancement and reconstruction of the incident source induced by different Mie-resonance modes of the annuluses. The proposed system takes advantages of the consistency in the waveform between the input and output waves, the high amplitude amplification of output waves, and the easy adjustment of structure. More interestingly, we investigate the applications of the extraordinary acoustic transmission in the acoustic beam splitter and acoustic concentrator. Our finding should have an impact on ultrasonic applications.
FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS
Loeb, E.; Nicklas, J.H.
1959-02-01
A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.
Feature-based US to CT registration of the aortic root
NASA Astrophysics Data System (ADS)
Lang, Pencilla; Chen, Elvis C. S.; Guiraudon, Gerard M.; Jones, Doug L.; Bainbridge, Daniel; Chu, Michael W.; Drangova, Maria; Hata, Noby; Jain, Ameet; Peters, Terry M.
2011-03-01
A feature-based registration was developed to align biplane and tracked ultrasound images of the aortic root with a preoperative CT volume. In transcatheter aortic valve replacement, a prosthetic valve is inserted into the aortic annulus via a catheter. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to significant morbidity and mortality. Registration of pre-operative CT to transesophageal ultrasound and fluoroscopy images is a major step towards providing augmented image guidance for this procedure. The proposed registration approach uses an iterative closest point algorithm to register a surface mesh generated from CT to 3D US points reconstructed from a single biplane US acquisition, or multiple tracked US images. The use of a single simultaneous acquisition biplane image eliminates reconstruction error introduced by cardiac gating and TEE probe tracking, creating potential for real-time intra-operative registration. A simple initialization procedure is used to minimize changes to operating room workflow. The algorithm is tested on images acquired from excised porcine hearts. Results demonstrate a clinically acceptable accuracy of 2.6mm and 5mm for tracked US to CT and biplane US to CT registration respectively.
Smíd, Michal; Ferda, Jirí; Baxa, Jan; Cech, Jakub; Hájek, Tomás; Kreuzberg, Boris; Rokyta, Richard
2010-04-01
Precise determination of the aortic annulus size constitutes an integral part of the preoperative evaluation prior to aortic valve replacement. It enables the estimation of the size of prosthesis to be implanted. Knowledge of the size of the ascending aorta is required in the preoperative analysis and monitoring of its dilation enables the precise timing of the operation. Our goal was to compare the precision of measurement of the aortic annulus and ascending aorta using magnetic resonance (MR), multidetector-row computed tomography (MDCT), transthoracic echocardiography (TTE), and transoesophageal echocardiography (TEE) in patients with degenerative aortic stenosis. A total of 15 patients scheduled to have aortic valve replacement were enrolled into this prospective study. TTE was performed in all patients and was supplemented with TEE, CT and MR in the majority of patients. The values obtained were compared with perioperative measurements. For the measurement of aortic annulus, MR was found to be the most precise technique, followed by MDCT, TTE, and TEE. For the measurement of ascending aorta, MR again was found to be the most precise technique, followed by MDCT, TEE, and TTE. In our study, magnetic resonance was found to be the most precise technique for the measurement of aortic annulus and ascending aorta in patients with severe degenerative aortic stenosis. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Zahari, Siti Nurfaezah; Rahim, Nor Raihanah Abdull; Kamarul, Tunku
2017-01-01
The present study was conducted to examine the effects of body weight on intradiscal pressure (IDP) and annulus stress of intervertebral discs at lumbar spine. Three-dimensional finite element model of osseoligamentous lumbar spine was developed subjected to follower load of 500 N, 800 N, and 1200 N which represent the loads for individuals who are normal and overweight with the pure moments at 7.5 Nm in flexion and extension motions. It was observed that the maximum IDP was 1.26 MPa at L1-L2 vertebral segment. However, the highest increment of IDP was found at L4-L5 segment where the IDP was increased to 30% in flexion and it was more severe at extension motion reaching to 80%. Furthermore, the maximum annulus stress also occurred at the L1-L2 segment with 3.9 MPa in extension motion. However, the highest increment was also found at L4-L5 where the annulus stress increased to 17% in extension motion. Based on these results, the increase of physiological loading could be an important factor to the increment of intradiscal pressure and annulus fibrosis stress at all intervertebral discs at the lumbar spine which may lead to early intervertebral disc damage. PMID:29065672
Zahari, Siti Nurfaezah; Latif, Mohd Juzaila Abd; Rahim, Nor Raihanah Abdull; Kadir, Mohammed Rafiq Abdul; Kamarul, Tunku
2017-01-01
The present study was conducted to examine the effects of body weight on intradiscal pressure (IDP) and annulus stress of intervertebral discs at lumbar spine. Three-dimensional finite element model of osseoligamentous lumbar spine was developed subjected to follower load of 500 N, 800 N, and 1200 N which represent the loads for individuals who are normal and overweight with the pure moments at 7.5 Nm in flexion and extension motions. It was observed that the maximum IDP was 1.26 MPa at L1-L2 vertebral segment. However, the highest increment of IDP was found at L4-L5 segment where the IDP was increased to 30% in flexion and it was more severe at extension motion reaching to 80%. Furthermore, the maximum annulus stress also occurred at the L1-L2 segment with 3.9 MPa in extension motion. However, the highest increment was also found at L4-L5 where the annulus stress increased to 17% in extension motion. Based on these results, the increase of physiological loading could be an important factor to the increment of intradiscal pressure and annulus fibrosis stress at all intervertebral discs at the lumbar spine which may lead to early intervertebral disc damage.
Echocardiographic measurements of the aorta in normal children and young adults.
Kaldararova, M; Balazova, E; Tittel, P; Stankovicova, I; Brucknerova, I; Masura, J
2007-01-01
To be able to determine aortic valve and ascending aorta pathology, especially aortic root dilatation, it is important to establish normal aortic dimensions. The aim of the study was to measure the dimensions of the aorta in normal healthy children and young adults in Slovakia. 702 healthy subjects, from newborns to 20 years of age, were examined at our institution. The study was carried out prospectively, by a single observer, using digitized two-dimensional (2D), Doppler and M-mode echocardiography. The aorta was measured at 3 sites: 1. aortic valve annulus, 2. sinuses of Valsalva, 3. sinotubular junction. Patients were divided into 28 groups according to their body surface area (BSA)--from 0.15 to 2.0 m2. All data were statistically evaluated (mean value, 5th and 95th percentile for all BSA groups) and regression equations were calculated for each parameter. All 3 measured aortic parameters correlated closely. Measures of correlation (R-squared) for aortic parameters with the square root of BSA were high: 0.89 for aortic valve annulus, 0.86 for sinuses of Valsalva and 0.86 for sinotubular junction (Tab. 3, Fig. 7, Ref 13). Full Text (Free, PDF) www.bmj.sk
NASA Technical Reports Server (NTRS)
Morris, A. L.; Halle, J. E.; Kennedy, E. E.
1972-01-01
A single stage fan with a tip speed of 1800 ft/sec (548.6m/sec) and hub/tip ratio of 0.5 was designed to produce a pressure ratio of 2.285:1 with an adiabatic efficiency of 84.0%. The design flow per inlet annulus area is 38.7 lbm/sq ft-sec (188.9KG/sqm-sec). Rotor blades have modified multiple-circular-arc and precompression airfoil sections. The stator vanes have multiple-circular-arc airfoil sections.
Liquid-metal dip seal with pneumatic spring
Poindexter, Allan M.
1977-01-01
An improved liquid-metal dip seal for sealing the annulus between rotating plugs in the reactor vessel head of a liquid-metal fast-breeder nuclear reactor has two legs of differing widths communicating under a seal blade; the wide leg is also in communication with cover gas of the reactor and the narrow leg is also in communication with an isolated plug annulus above the seal. The annulus contains inert gas which acts as a pneumatic spring. Upon increasing cover gas pressure which depresses the level in the wide leg and greatly increases the level in the narrow leg, the pneumatic spring is compressed, and resists further level changes, thus preventing radioactive cover gas from bubbling through the seal.
Mengoni, Marlène; Kayode, Oluwasegun; Sikora, Sebastien N F; Zapata-Cornelio, Fernando Y; Gregory, Diane E; Wilcox, Ruth K
2017-08-01
The development of current surgical treatments for intervertebral disc damage could benefit from virtual environment accounting for population variations. For such models to be reliable, a relevant description of the mechanical properties of the different tissues and their role in the functional mechanics of the disc is of major importance. The aims of this work were first to assess the physiological hoop strain in the annulus fibrosus in fresh conditions ( n = 5) in order to extract a functional behaviour of the extrafibrillar matrix; then to reverse-engineer the annulus fibrosus fibrillar behaviour ( n = 6). This was achieved by performing both direct and global controlled calibration of material parameters, accounting for the whole process of experimental design and in silico model methodology. Direct-controlled models are specimen-specific models representing controlled experimental conditions that can be replicated and directly comparing measurements. Validation was performed on another six specimens and a sensitivity study was performed. Hoop strains were measured as 17 ± 3% after 10 min relaxation and 21 ± 4% after 20-25 min relaxation, with no significant difference between the two measurements. The extrafibrillar matrix functional moduli were measured as 1.5 ± 0.7 MPa. Fibre-related material parameters showed large variability, with a variance above 0.28. Direct-controlled calibration and validation provides confidence that the model development methodology can capture the measurable variation within the population of tested specimens.
Smith, Lachlan J; Martin, John T; Szczesny, Spencer E; Ponder, Katherine P; Haskins, Mark E; Elliott, Dawn M
2010-01-01
Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disorder characterized by a deficiency in β-glucuronidase activity, leading to systemic accumulation of poorly degraded glycosaminoglycans (GAG). Along with other morbidities, MPS VII is associated with paediatric spinal deformity. The objective of this study was to examine potential associations between abnormal lumbar spine matrix structure and composition in MPS VII, and spine segment and tissue-level mechanical properties, using a naturally occurring canine model with a similar clinical phenotype to the human form of the disorder. Segments from juvenile MPS VII and unaffected dogs were allocated to: radiography, gross morphology, histology, biochemistry, and mechanical testing. MPS VII spines had radiolucent lesions in the vertebral body epiphyses. Histologically, this corresponded to a GAG-rich cartilaginous region in place of bone, and elevated GAG staining was seen in the annulus fibrosus. Biochemically, MPS VII samples had elevated GAG in the outer annulus fibrosus and epiphyses, low calcium in the epiphyses, and high water content in all regions except the nucleus pulposus. MPS VII spine segments had higher range of motion and lower stiffness than controls. Endplate indentation stiffness and failure loads were significantly lower in MPS VII samples, while annulus fibrosus tensile mechanical properties were normal. Vertebral body lesions in MPS VII spines suggest a failure to convert cartilage to bone during development. Low stiffness in these regions likely contributes to mechanical weakness in motion segments and is a potential factor in the progression of spinal deformity. PMID:19918911
Kayode, Oluwasegun; Sikora, Sebastien N. F.; Zapata-Cornelio, Fernando Y.; Gregory, Diane E.; Wilcox, Ruth K.
2017-01-01
The development of current surgical treatments for intervertebral disc damage could benefit from virtual environment accounting for population variations. For such models to be reliable, a relevant description of the mechanical properties of the different tissues and their role in the functional mechanics of the disc is of major importance. The aims of this work were first to assess the physiological hoop strain in the annulus fibrosus in fresh conditions (n = 5) in order to extract a functional behaviour of the extrafibrillar matrix; then to reverse-engineer the annulus fibrosus fibrillar behaviour (n = 6). This was achieved by performing both direct and global controlled calibration of material parameters, accounting for the whole process of experimental design and in silico model methodology. Direct-controlled models are specimen-specific models representing controlled experimental conditions that can be replicated and directly comparing measurements. Validation was performed on another six specimens and a sensitivity study was performed. Hoop strains were measured as 17 ± 3% after 10 min relaxation and 21 ± 4% after 20–25 min relaxation, with no significant difference between the two measurements. The extrafibrillar matrix functional moduli were measured as 1.5 ± 0.7 MPa. Fibre-related material parameters showed large variability, with a variance above 0.28. Direct-controlled calibration and validation provides confidence that the model development methodology can capture the measurable variation within the population of tested specimens. PMID:28879014
GEOSIM: A numerical model for geophysical fluid flow simulation
NASA Technical Reports Server (NTRS)
Butler, Karen A.; Miller, Timothy L.; Lu, Huei-Iin
1991-01-01
A numerical model which simulates geophysical fluid flow in a wide range of problems is described in detail, and comparisons of some of the model's results are made with previous experimental and numerical studies. The model is based upon the Boussinesq Navier-Stokes equations in spherical coordinates, which can be reduced to a cylindrical system when latitudinal walls are used near the pole and the ratio of latitudinal length to the radius of the sphere is small. The equations are approximated by finite differences in the meridional plane and spectral decomposition in the azimuthal direction. The user can specify a variety of boundary and initial conditions, and there are five different spectral truncation options. The results of five validation cases are presented: (1) the transition between axisymmetric flow and baroclinic wave flow in the side heated annulus; (2) the steady baroclinic wave of the side heated annulus; (3) the wave amplitude vacillation of the side heated annulus; (4) transition to baroclinic wave flow in a bottom heated annulus; and (5) the Spacelab Geophysical Fluid Flow Cell (spherical) experiment.
Annular inhomogeneities with eigenstrain and interphase modeling
NASA Astrophysics Data System (ADS)
Markenscoff, Xanthippi; Dundurs, John
2014-03-01
Two and three-dimensional analytical solutions for an inhomogeneity annulus/ring (of arbitrary thickness) with eigenstrain are presented. The stresses in the core may become tensile (for dilatational eigenstrain in the annulus) depending on the relative shear moduli. For shear eigenstrain, an “interface rotation” and rotation jumps at the interphase also occur, consistent with the Frank-Bilby interface model. A Taylor series expansion for small thickness of the annulus is obtained to the second-order as to model thin interphases, with the limit agreeing with the Gurtin-Murdoch surface membrane, but also accounting for curvature effects.. The Eshelby “driving forces” on a boundary with eigenstrain are calculated, and for small, but finite, interphase thicknesses they account for the interaction of the two interfaces of the layer, and the next order term may induce instabilities, for some bimaterial combinations, if it becomes large enough to render the driving force zero. It is also proven that for 2-D inhomogeneities with eigenstrain the stresses have reduced material dependence for any geometry of the inhomogeneity. The case when the outer boundary of the inhomogeneity annulus with eigenstrain is a free surface is also analyzed and agrees with classical surface tension results in the limit, but, moreover, the thick free surface terms (next order in the expansion depending on the radius) are also obtained and may induce instabilities depending on the bimaterial combinations. Applications of inhomogeneity annuluses with eigenstrain are wide and include interphases in thermal barrier coatings and coated particles in electrically/thermally conductive adhesives.
Aortic annulus sizing using watershed transform and morphological approach for CT images
NASA Astrophysics Data System (ADS)
Mohammad, Norhasmira; Omar, Zaid; Sahrim, Mus'ab
2018-02-01
Aortic valve disease occurs due to calcification deposits on the area of leaflets within the human heart. It is progressive over time where it can affect the mechanism of the heart valve. To avoid the risk of surgery for vulnerable patients especially senior citizens, a new method has been introduced: Transcatheter Aortic Valve Implantation (TAVI), which places a synthetic catheter within the patient's valve. This entails a procedure of aortic annulus sizing, which requires manual measurement of the scanned images acquired from Computed Tomographic (CT) by experts. The step requires intensive efforts, though human error may still eventually lead to false measurement. In this research, image processing techniques are implemented onto cardiac CT images to achieve an automated and accurate measurement of the heart annulus. The image is first put through pre-processing for noise filtration and image enhancement. Then, a marker image is computed using the combination of opening and closing operations where the foreground image is marked as a feature while the background image is set to zero. Marker image is used to control the watershed transformation and also to prevent oversegmentation. This transformation has the advantage of fast computational and oversegmentation problems, which usually appear with the watershed transform can be solved with the introduction of marker image. Finally, the measurement of aortic annulus from the image data is obtained through morphological operations. Results affirm the approach's ability to achieve accurate annulus measurements compared to conventional techniques.
Atrial and ventricular function after cardioversion of atrial fibrillation.
Xiong, C.; Sonnhag, C.; Nylander, E.; Wranne, B.
1995-01-01
OBJECTIVE--Previous studies on atrial recovery after cardioversion of atrial fibrillation have not taken into account new knowledge about the pathophysiology of transmitral and transtricuspid flow velocity patterns. It is possible to shed further light on this problem if atrioventricular inflow velocity, venous filling pattern, and atrioventricular annulus motion are recorded and interpreted together. DESIGN--Prospective examinations of mitral and tricuspid transvalvar flow velocities, superior caval and pulmonary venous filling, and mitral and tricuspid annulus motion were recorded using Doppler echocardiography. Examinations were performed before and 24 hours, 1 month, and 20 months after cardioversion. SETTING--Tertiary referral centre for cardiac disease with facilities for invasive and non-invasive investigation. PATIENTS--16 patients undergoing cardioversion of atrial fibrillation in whom sinus rhythm had persisted for 24 hours or more. RESULTS--Before conversion there was no identifiable A wave in transvalvar flow recordings. The total motion of the tricuspid and mitral annulus was subnormal and there was no identifiable atrial component. Venous flow patterns in general showed a low systolic velocity. After conversion, A waves and atrial components were seen in all patients and increased significantly (P < 0.01) with time. There was a similar time course for the amplitude of annulus atrial components, an increased systolic component of venous inflow, an increased A wave velocity, and a decreased E/A ratio of the transvalvar velocity curves. The ventricular component of annulus motion was unchanged. Changes in general occurred earlier on the right side than the left. CONCLUSIONS--This study indicates that, in addition to the previously known electromechanical dissociation of atrial recovery that exists after cardioversion of atrial fibrillation, there may also be a transient deterioration of ventricular function modulating the transvalvar inflow velocity recordings. Function on the right side generally becomes normal earlier than on the left. Integration of information from transvalvar inflow curves, annulus motion, and venous filling patterns gives additional insight into cardiac function. PMID:7547019
Sündermann, Simon H.; Gessat, Michael; Cesarovic, Nikola; Frauenfelder, Thomas; Biaggi, Patric; Bettex, Dominique; Falk, Volkmar; Jacobs, Stephan
2013-01-01
OBJECTIVES Implantation of an annuloplasty ring is an essential component of a durable mitral valve repair. Currently available off-the-shelf rings still do not cover all the variations in mitral annulus anatomy and pathology from subject to subject. Computed tomography (CT) and echo imaging allow for 3-D segmentation of the mitral valve and mitral annulus. The concept of tailored annuloplasty rings has been proposed although, to date, no surgically applicable implementation of patient-specific annuloplasty rings has been seen. The objective of this trial was to prove the concept of surgical implantation of a model-guided, personalized mitral annuloplasty ring, manufactured based on individual CT-scan models. METHODS ECG-gated CT angiography was performed in six healthy pigs under general anaesthesia. Based on the individual shape of the mitral annulus in systole, a customized solid ring with integrated suturing holes was designed and manufactured from a biocompatible titanium alloy by a rapid process using laser melting. The ring was implanted three days later and valve function was assessed by intraoperative echocardiography. The macroscopic annulus–annuloplasty match was assessed after heart explantation. RESULTS CT angiography provided good enough image quality in all animals to allow for segmentation of the mitral annulus. The individually tailored mitral rings were manufactured and successfully implanted in all pigs. In 50%, a perfect matching of the implanted ring and the mitral annulus was achieved. In one animal, a slight deviation of the ring shape from the circumference was seen postoperatively. The rings implanted in the first two animals were significantly oversized but the deviation did not affect valve competence. CONCLUSIONS CT image quality and accuracy of the dimensions of the mitral annulus were sufficient for digital modelling and rapid manufacturing of mitral rings. Implantation of individually tailored annuloplasty rings is feasible. PMID:23287589
Philip, Femi; Faza, Nadine Nadar; Schoenhagen, Paul; Desai, Milind Y; Tuzcu, E Murat; Svensson, Lars G; Kapadia, Samir R
2015-08-01
Patients with severe aortic stenosis due to BAV are excluded from transcatheter aortic valve replacement (TAVR) due to concern for asymmetric expansion and valve dysfunction. We sought to characterize the aortic root and annulus in bicuspid aortic valve (BAV) and tricuspid aortic valves (TAV). We identified patients with severe AS who underwent multi-detector computed tomographic (MDCT) imaging prior to surgical aortic valve replacement (SAVR, n = 200) for BAV and TAVR (n = 200) for TAV from 2010 to 2013. The presence of a BAV was confirmed on surgical and pathological review. Annulus measurements of the basal ring (short- and long-axis, area-derived diameter), coronary ostia height, sinus area (SA), sino-tubular junction area (STJ), calcification and eccentricity index (EI, 1-short axis/long axis) were made. Patients with TAV were older (78.8 years vs. 57.8 years, P = 0.04) than those with BAV. The aortic annulus area (5.21 ± 2.1 cm(2) vs. 4.63 ± 2.0 cm(2) , P = 0.0001), sinus of Valsalva diameter (3.7 ± 0.9 cm vs. 3.1 ± 0.1 cm, P = 0.001) and ascending aorta diameter (3.5 ± 0.7 cm vs. 2.97 ± 0.6 cm, P = 0.001) were significantly larger with BAV. Bicuspid aortic annuli were significantly less elliptical (EI, 1.24 ± 0.1 vs. 1.29 ± 0.1, P = 0.006) and more circular (39% vs. 4%, P < 0.001) compared to the TAV annulus. There was more eccentric annular calcification in BAV vs. TAV (68% vs. 32%, P < 0.001). The mean distance from the aortic annulus to the left main coronary ostium was less than the right coronary ostium. Less than 10% of the BAV annuli would not fit a currently available valved stents. Bicuspid aortic valves have a larger annulus size, sinus of Valsalva and ascending aorta dimensions. In addition, the BAV aortic annuli appear circular and most will fit currently available commercial valved stents. © 2015 Wiley Periodicals, Inc.
Bekeredjian, Raffi; Bodingbauer, Dorothea; Hofmann, Nina P; Greiner, Sebastian; Schuetz, Moritz; Geis, Nicolas A; Kauczor, Hans U; Bryant, Mark; Chorianopoulos, Emmanuel; Pleger, Sven T; Mereles, Derliz; Katus, Hugo A; Korosoglou, Grigorios
2015-03-01
To investigate if the extent of aortic valve calcification is associated with postprocedural prosthesis eccentricity and paravalvular regurgitation (PAR) in patients undergoing transcatheter aortic valve implantation (TAVI). Cardiac computed tomography angiography (CCTA) was performed before and 3 months after TAVI in 46 patients who received the self-expanding CoreValve and in 22 patients who underwent balloon-expandable Edwards Sapien XT implantation. Aortic annulus calcification was measured with CCTA prior to TAVI and prosthesis eccentricity was assessed with post-TAVI CCTA. Standard echocardiography was also performed in all patients at 3-month follow-up exam. Annulus eccentricity was reduced during TAVI using both implantation systems (from 0.23 ± 0.06 to 0.18 ± 0.07 using CoreValve and from 0.20 ± 0.07 to 0.05 ± 0.03 using Edwards Sapien XT; P<.001 for both). With Edwards Sapien XT, eccentricity reduction at the level of the aortic annulus was significantly higher compared with CoreValve (P<.001). Annulus eccentricity after CoreValve use was significantly related to absolute valve calcification and to valve calcification indexed to body surface area (BSA) (r = 0.48 and 0.50, respectively; P<.001 for both). Furthermore, a significant association was observed between aortic valve calcification and PAR (P<.01 by ANOVA) in patients who received CoreValve. Using ROC analysis, a cut-off value over 913 mm² aortic valve calcification predicted the occurrence of moderate or severe PAR with a sensitivity of 92% and a specificity of 63% (area under the curve = 0.75). Furthermore, multivariable analysis showed that aortic valve calcification was a robust predictor of postprocedural eccentricity and PAR, independent of the aortic annulus size and native valve eccentricity and of CoreValve prosthesis size (adjusted r = 0.46 and 0.50, respectively; P<.01 for both). Such associations were not present with the Edwards Sapien XT system. The extent of native aortic annulus calcification is predictive for postprocedural prosthesis eccentricity and PAR, which is an important marker for long-term mortality in patients undergoing TAVI. This observation applies for the CoreValve, but not for the Edwards Sapien XT valve.
Siminiak, Tomasz; Dankowski, Rafał; Baszko, Artur; Lee, Christopher; Firek, Ludwik; Kałmucki, Piotr; Szyszka, Andrzej; Groothuis, Adam
2013-01-01
Functional mitral regurgitation (FMR) is known to contribute to a poor prognosis in patients with heart failure (HF). Current guidelines do not recommend cardiac surgery in patients with FMR and impaired ejection fraction due to the high procedural risk. Percutaneous techniques aimed at mitral valve repair may constitute an alternative to currently used routine medical treatment. To provide a description of a novel percutaneous suture-based technique of direct mitral annuloplasty using the Mitralign Bident system, as well as report our first case successfully treated with this method. A deflectable guiding catheter is advanced via the femoral route across the aortic valve to the posterior wall of the ventricle. A nested deflectable catheter is advanced through the guide toward the mitral annulus that allows the advancement of an insulated radiofrequency wire to cross the annulus. The wire is directed across the annulus in a target area that is 2-5 mm from the base of the leaflet into the annulus, as assessed by real-time 3D transoesophageal echocardiography. After placement of the first wire, another wire is positioned using a duel lumen bident delivery catheter, which provides a predetermined separation between wires (i.e. 14, 17 or 21 mm). Each wire provides a guide rail for implantation of sutured pledget implants within the annulus. Two pairs of pledgets are implanted, one pair in each of the P1 and P3 scallop regions of the posterior mitral annulus. A dedicated plication lock device is used to provide a means for plication of the annulus within each pair of the pledgets, and to retain the plication by delivering a suture locking implant. The plications result in improved leaflet coaptation and a reduction of the regurgitant orifice area. A 60-year-old female with diagnosed dilated cardiomyopathy, concomitant FMR class III and congestive HF was successfully treated with the Mitralign Bident system. Two pairs of pledgets were implanted resulting in an improvement of transoesophageal echocardiographic parameters, including proximal isovelocity surface area radius (0.7 cm to 0.4 cm), effective regurgitant orfice area (0.3 cm² to 0.1 cm²) and mitral regurgitant volume (49 mL to 10 mL). Percutaneous mitral annuloplasty with the Mitralign Bident system is feasible. Future clinical trials are needed to assess its safety and efficacy.
Pereira, Diana R; Silva-Correia, Joana; Oliveira, Joaquim M; Reis, Rui L; Pandit, Abhay; Biggs, Manus J
2018-04-01
Intervertebral disc (IVD) degeneration is associated with both structural damage and aging related degeneration. Annulus fibrosus (AF) defects such as annular tears, herniation and discectomy require novel tissue engineering strategies to functionally repair AF tissue. An ideal construct will repair the AF by providing physical and biological support, facilitating regeneration. The presented strategy herein proposes a gellan gum-based construct reinforced with cellulose nanocrystals (nCell) as a biological self-gelling AF substitute. Nanocomposite hydrogels were fabricated and characterized with respect to hydrogel swelling capacity, degradation rate in vitro and mechanical properties. Rheological evaluation on the nanocomposites demonstrated the GGMA reinforcement with nCell promoted matrix entanglement with higher scaffold stiffness observed upon ionic crosslinking. Compressive mechanical tests demonstrated compressive modulus values close to those of the human AF tissue. Furthermore, cell culture studies with encapsulated bovine AF cells indicated that nanocomposite constructs promoted cell viability and a physiologically relevant cell morphology for up to fourteen days in vitro. Copyright © 2017 Elsevier Inc. All rights reserved.
A sign-reversing pathway from rods to double and single cones in the retina of the tiger salamander.
Attwell, D; Werblin, F S; Wilson, M; Wu, S M
1983-03-01
Signal transmission between rods and cones was studied by passing current into a rod and recording the voltage response in a nearby double or single cone and vice versa. Two types of rod-cone interaction were found. Between immediately adjacent rods and cones, passage of current into either receptor elicited in the other receptor a sustained voltage response of the same sign as the injected current. These signals were still seen in the presence of Co2+, and are probably mediated by the electrical synapses which have been seen anatomically between adjacent rods and cones. In addition to this short-range sign-preserving interaction, passing current into a rod elicited a transient sign-inverted signal in cones up to at least 80 micron from the injected rod. No such response was seen in rods for current injection into cones. This signal was greatly reduced by Co2+ ions. Hyperpolarization of the cone to about -65 mV, with about 0.1 nA current, reversed this signal, which is presumed to be mediated by a chemical synaptic input to cones. Light flashes suppressed the sign-inverted signal for a period which was longer for brighter flashes. The time of reappearance of the signal was correlated with the return of the rod and horizontal cell potentials to their dark levels. This suppression could also be produced by an annulus of light which produced no light response in the receptors at the centre of the annulus, but which did polarize horizontal cells under the centre of the annulus. The wave form of the sign-inverted signal was similar to that produced in horizontal cells by current injection into rods, but of opposite sign. If an electrode was left in a cone for some time, the normal hyperpolarizing light response diminished, leaving a depolarizing response produced, presumably, by feed-back from horizontal cells. This signal was reversed when the cone was hyperpolarized with about 0.1 nA current. These data suggest that the sign-inverted response is mediated by feed-back from horizontal cells and, assuming that depolarization increases the rate of release of horizontal cell synaptic transmitter, then the feed-back transmitter opens channels in the cone membrane whose currents have a reversal potential around -65 mV.
Dynamics of circular arrangements of vorticity in two dimensions
NASA Astrophysics Data System (ADS)
Swaminathan, Rohith V.; Ravichandran, S.; Perlekar, Prasad; Govindarajan, Rama
2016-07-01
The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical corotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger process, absent in the merger of two vortices, where an annular vortical structure is formed and is long lived. Vortex merger is slowed down significantly due to this. Such annular vortices are known at far higher Reynolds numbers in studies of tropical cyclones, which have been noticed to a break down into individual vortices. In the preannular stage, vortical structures in a viscous flow are found here to tilt and realign in a manner similar to the inviscid case, but the pronounced filaments visible in the latter are practically absent in the former. Five or fewer vortices initially elongate radially, and then reorient their long axis closer to the azimuthal direction so as to form an annulus. With six or more vortices, the initial alignment is already azimuthal. Interestingly at higher Reynolds numbers, the merger of an odd number of vortices is found to proceed very differently from that of an even number. The former process is rapid and chaotic whereas the latter proceeds more slowly via pairing events. The annular vortex takes the form of a generalized Lamb-Oseen vortex (GLO), and diffuses inward until it forms a standard Lamb-Oseen vortex. For lower Reynolds number, the numerical (fully nonlinear) evolution of the GLO vortex follows exactly the analytical evolution until merger. At higher Reynolds numbers, the annulus goes through instabilities whose nonlinear stages show a pronounced difference between even and odd mode disturbances. Here again, the odd mode causes an early collapse of the annulus via decaying turbulence into a single central vortex, whereas the even mode disturbance causes a more orderly progression into a single vortex. Results from linear stability analysis agree with the nonlinear simulations, and predict the frequencies of the most unstable modes better than they predict the growth rates. It is hoped that the present findings, that multiple vortex merger is qualitatively different from the merger of two vortices, will motivate studies on how multiple vortex interactions affect the inverse cascade in two-dimensional turbulence.
Jorna, Siebe; Siebert, Larry D.; Brueckner, Keith A.
1976-11-09
An aperture attenuator for use with high power lasers which includes glass windows shaped and assembled to form an annulus chamber which is filled with a dye solution. The annulus chamber is shaped such that the section in alignment with the axis of the incident beam follows a curve which is represented by the equation y = (r - r.sub.o).sup.n.
Core disruptive accident margin seal
Garin, John; Belsick, James C.
1978-01-01
An apparatus for sealing the annulus defined between a substantially cylindrical rotatable first riser assembly and plug combination disposed in a substantially cylindrical second riser assembly and plug combination of a nuclear reactor system. The apparatus comprises a flexible member disposed between the first and second riser components and attached to a metal member which is attached to an actuating mechanism. When the actuating mechanism is not actuated, the flexible member does not contact the riser components thus allowing the free rotation of the riser components. When desired, the actuating mechanism causes the flexible member to contact the first and second riser components in a manner to block the annulus defined between the riser components, thereby sealing the annulus between the riser components.
Combined natural convection and non-gray radiation heat transfer in a horizontal annulus
NASA Astrophysics Data System (ADS)
Sun, Yujia; Zhang, Xiaobing; Howell, John R.
2018-02-01
Natural convection and non-gray radiation in an annulus containing a radiative participating gas is investigated. To determine the effect of non-gray radiation, the spectral line based weighted sum of gray gas is adopted to model the gas radiative properties. Case with only surface radiation (transparent medium) is also considered to see the relative contributions of surface radiation and gas radiation. The finite volume method is used to solve the mass, momentum, energy and radiative transfer equations. Comparisons between pure convection, case considering only surface radiation and case considering both gas radiation and surface radiation are made and the results show that radiation is not negligible and gas radiation becomes more important with increasing Rayleigh number (and the annulus size).
Design, development, and testing of the DCT Cassegrain instrument support assembly
NASA Astrophysics Data System (ADS)
Bida, Thomas A.; Dunham, Edward W.; Nye, Ralph A.; Chylek, Tomas; Oliver, Richard C.
2012-09-01
The 4.3m Discovery Channel Telescope delivers an f/6.1 unvignetted 0.5° field to its RC focal plane. In order to support guiding, wavefront sensing, and instrument installations, a Cassegrain instrument support assembly has been developed which includes a facility guider and wavefront sensor package (GWAVES) and multiple interfaces for instrumentation. A 2-element, all-spherical, fused-silica corrector compensates for field curvature and astigmatism over the 0.5° FOV, while reducing ghost pupil reflections to minimal levels. Dual roving GWAVES camera probes pick off stars in the outer annulus of the corrected field, providing simultaneous guiding and wavefront sensing for telescope operations. The instrument cube supports 5 co-mounted instruments with rapid feed selection via deployable fold mirrors. The corrected beam passes through a dual filter wheel before imaging with the 6K x 6K single CCD of the Large Monolithic Imager (LMI). We describe key development strategies for the DCT Cassegrain instrument assembly and GWAVES, including construction of a prime focus test assembly with wavefront sensor utilized in fall 2011 to begin characterization of the DCT primary mirror support. We also report on 2012 on-sky test results of wavefront sensing, guiding, and imaging with the integrated Cassegrain cube.
Spectral mechanisms of spatially induced blackness: data and quantitative model.
Shinomori, K; Schefrin, B E; Werner, J S
1997-02-01
Spectral efficiency functions and tests of additivity were obtained with three observers to identify possible chromatic contributions to spatially induced blackness. Stimuli consisted of a series of monochromatic (400-700 nm; 10-nm steps), 52-arcmin circular test lights surrounded by broadband (x = 0.31, y = 0.37), 63-138-arcmin annuli of fixed retinal illuminance. The stimuli were imaged on the fovea in Maxwellian view as 500-ms flashes with 10-s interstimulus intervals. Observers decreased the intensity of the test center until it was first perceived as completely black. Action spectra determined for two surround levels [2.5 and 3.5 log trolands] had three sensitivity peaks (at approximately 440, 540, and 600 nm), However, when monochromatic surrounds were adjusted to induce blackness in a broadband center, action spectra were unimodal and identical to functions obtained by heterochromatic flicker photometry. Tests of additivity revealed that when blackness is induced by broadband surround into a bichromatic center, there is an additivity failure of the cancellation type. This additivity failure indicates that blackness induction is influenced, in part, by signals from opponent-chromatic pathways. A quantitative model is presented to account for these data. This model assumes that blackness induction is determined by the ratio of responses to the stimulus center and the annulus, and while signals form the annulus are based only on achromatic information, responses from the center are based on both chromatic and achromatic properties of the stimulus.
Peloquin, John M; Elliott, Dawn M
2016-04-01
Cracks in fibrous soft tissue, such as intervertebral disc annulus fibrosus and knee meniscus, cause pain and compromise joint mechanics. A crack concentrates stress at its tip, making further failure and crack extension (fracture) more likely. Ex vivo mechanical testing is an important tool for studying the loading conditions required for crack extension, but prior work has shown that it is difficult to reproduce crack extension. Most prior work used edge crack specimens in uniaxial tension, with the crack 90° to the edge of the specimen. This configuration does not necessarily represent the loading conditions that cause in vivo crack extension. To find a potentially better choice for experiments aiming to reproduce crack extension, we used finite element analysis to compare, in factorial combination, (1) center crack vs. edge crack location, (2) biaxial vs. uniaxial loading, and (3) crack-fiber angles ranging from 0° to 90°. The simulated material was annulus fibrosus fibrocartilage with a single fiber family. We hypothesized that one of the simulated test cases would produce a stronger stress concentration than the commonly used uniaxially loaded 90° crack-fiber angle edge crack case. Stress concentrations were compared between cases in terms of fiber-parallel stress (representing risk of fiber rupture), fiber-perpendicular stress (representing risk of matrix rupture), and fiber shear stress (representing risk of fiber sliding). Fiber-perpendicular stress and fiber shear stress concentrations were greatest in edge crack specimens (of any crack-fiber angle) and center crack specimens with a 90° crack-fiber angle. However, unless the crack is parallel to the fiber direction, these stress components alone are insufficient to cause crack opening and extension. Fiber-parallel stress concentrations were greatest in center crack specimens with a 45° crack-fiber angle, either biaxially or uniaxially loaded. We therefore recommend that the 45° center crack case be tried in future experiments intended to study crack extension by fiber rupture. Copyright © 2015 Elsevier Ltd. All rights reserved.
Le Couteulx, S; Caudron, J; Dubourg, B; Cauchois, G; Dupré, M; Michelin, P; Durand, E; Eltchaninoff, H; Dacher, J-N
2018-05-01
To evaluate intra- and inter-observer variability of multidetector computed tomography (MDCT) sizing of the aortic annulus before transcatheter aortic valve replacement (TAVR) and the effect of observer experience, aortic valve calcification and image quality. MDCT examinations of 52 consecutive patients with tricuspid aortic valve (30 women, 22 men) with a mean age of 83±7 (SD) years (range: 64-93 years) were evaluated retrospectively. The maximum and minimum diameters, area and circumference of the aortic annulus were measured twice at diastole and systole with a standardized approach by three independent observers with different levels of experience (expert [observer 1]; resident with intensive 6 months practice [observer 2]; trained resident with starting experience [observer 3]). Observers were requested to recommend the valve prosthesis size. Calcification volume of the aortic valve and signal to noise ratio were evaluated. Intra- and inter-observer reproducibility was excellent for all aortic annulus dimensions, with an intraclass correlation coefficient ranging respectively from 0.84 to 0.98 and from 0.82 to 0.97. Agreement for selection of prosthesis size was almost perfect between the two most experienced observers (k=0.82) and substantial with the inexperienced observer (k=0.67). Aortic valve calcification did not influence intra-observer reproducibility. Image quality influenced reproducibility of the inexperienced observer. Intra- and inter-observer variability of aortic annulus sizing by MDCT is low. Nevertheless, the less experienced observer showed lower reliability suggesting a learning curve. Copyright © 2017. Published by Elsevier Masson SAS.
Why do some intervertebral discs degenerate, when others (in the same spine) do not?
Adams, Michael A; Lama, Polly; Zehra, Uruj; Dolan, Patricia
2015-03-01
This review suggests why some discs degenerate rather than age normally. Intervertebral discs are avascular pads of fibrocartilage that allow movement between vertebral bodies. Human discs have a low cell density and a limited ability to adapt to mechanical demands. With increasing age, the matrix becomes yellowed, fibrous, and brittle, but if disc structure remains intact, there is little impairment in function, and minimal ingrowth of blood vessels or nerves. Approximately half of old lumbar discs degenerate in the sense of becoming physically disrupted. The posterior annulus and lower lumbar discs are most affected, presumably because they are most heavily loaded. Age and genetic inheritance can weaken discs to such an extent that they are physically disrupted during everyday activities. Damage to the endplate or annulus typically decompresses the nucleus, concentrates stress within the annulus, and allows ingrowth of nerves and blood vessels. Matrix disruption progresses by mechanical and biological means. The site of initial damage leads to two disc degeneration "phenotypes": endplate-driven degeneration is common in the upper lumbar and thoracic spine, and annulus-driven degeneration is common at L4-S1. Discogenic back pain can be initiated by tissue disruption, and amplified by inflammation and infection. Healing is possible in the outer annulus only, where cell density is highest. We conclude that some discs degenerate because they are disrupted by excessive mechanical loading. This can occur without trauma if tissues are weakened by age and genetic inheritance. Moderate mechanical loading, in contrast, strengthens all spinal tissues, including discs. © 2014 Wiley Periodicals, Inc.
A technique of snaring method for fitting a prosthetic valve into the annulus.
Nagasaka, Shigeo; Kawata, Tetsuji; Matsuta, Masahiro; Taniguchi, Shigeki
2005-01-01
Tourniquetting technique to fit a prosthetic valve (PV) into the annulus in valve replacement surgery has been previously reported. We modified the previously reported method and designed a simpler tying technique. We performed 11 aortic (AVR: including four cases for calcified aortic stenosis (AS) with a small annulus and one cases for infective endocarditis with intramuscular abscess cavity), eight mitral valve replacements (MVR), and one tricuspid valve replacement (TVR: for corrected transposition of the great arteries). A PV was implanted using 2-0 polyester mattress sutures with a pledget. Each of the two tourniquets held a suture at the bottom of the annulus and at the opposite position to fit a PV. The sutures between each snare were tied down from the bottom to the top. In MVR, after seating of a PV with two tourniquets, we could make sure that no native tissue of any preserved mitral apparatus disturbed PV leaflet motion. In calcific AS, a PV had a good fitting into the annulus because of tourniquets applied to unseated part during tying sutures. In AVR for infective endocarditis, mattress sutures supported by a Teflon pledget were placed to close the abscess cavity. After snaring on one of these sutures, we tied down the sutures, ensuring that they did not cut through the friable tissues. In TVR, we found that native leaflets interfered with PV motion after seating down the prosthesis and those leaflets were resected before tying down the sutures. Postoperative transesophageal echocardiography showed no paravalvular leakage in any patients and excellent PV functions.
Thompson, Jamie N.; Beauchamp, David A.
2014-01-01
We evaluated freshwater growth and survival from juvenile (ages 0–3) to smolt (ages 1–5) and adult stages in wild steelhead Oncorhynchus mykiss sampled in different precipitation zones of the Skagit River basin, Washington. Our objectives were to determine whether significant size-selective mortality (SSM) in steelhead could be detected between early and later freshwater stages and between each of these freshwater stages and returning adults and, if so, how SSM varied between these life stages and mixed and snow precipitation zones. Scale-based size-at-annulus comparisons indicated that steelhead in the snow zone were significantly larger at annulus 1 than those in the mixed rain–snow zone. Size at annuli 2 and 3 did not differ between precipitation zones, and we found no precipitation zone × life stage interaction effect on size at annulus. Significant freshwater and marine SSM was evident between the juvenile and adult samples at annulus 1 and between each life stage at annuli 2 and 3. Rapid growth between the final freshwater annulus and the smolt migration did not improve survival to adulthood; rather, it appears that survival in the marine environment may be driven by an overall higher growth rate set earlier in life, which results in a larger size at smolt migration. Efforts for recovery of threatened Puget Sound steelhead could benefit by considering that SSM between freshwater and marine life stages can be partially attributed to growth attained in freshwater habitats and by identifying those factors that limit growth during early life stages.
Scala tympani cochleostomy II: topography and histology.
Adunka, Oliver F; Radeloff, Andreas; Gstoettner, Wolfgang K; Pillsbury, Harold C; Buchman, Craig A
2007-12-01
To assess intracochlear trauma using two different round window-related cochleostomy techniques in human temporal bones. Twenty-eight human temporal bones were included in this study. In 21 specimens, cochleostomies were initiated inferior to the round window (RW) annulus. In seven bones, cochleostomies were drilled anterior-inferior to the RW annulus. Limited cochlear implant electrode insertions were performed in 19 bones. In each specimen, promontory anatomy and cochleostomy drilling were photographically documented. Basal cochlear damage was assessed histologically and electrode insertion properties were documented in implanted bones. All implanted specimens showed clear scala tympani electrode placements regardless of cochleostomy technique. All 21 inferior cochleostomies were atraumatic. Anterior-inferior cochleostomies resulted in various degrees of intracochlear trauma in all seven bones. For atraumatic opening of the scala tympani using a cochleostomy approach, initiation of drilling should proceed from inferior to the round window annulus, with gradual progression toward the undersurface of the lumen. While cochleostomies initiated anterior-inferior to the round window annulus resulted in scala tympani opening, many of these bones displayed varying degrees of intracochlear trauma that may result in hearing loss. When intracochlear drilling is avoided, the anterior bony margin of the cochleostomy remains a significant intracochlear impediment to in-line electrode insertion.
NASA Technical Reports Server (NTRS)
Wear, J. D.; Schultz, D. F.
1972-01-01
Tests of various fuel nozzles were conducted with natural gas fuel in a full-annulus combustor. The nozzles were designed to provide either axial, angled, or radial fuel injection. Each fuel nozzle was evaluated by measuring combustion efficiency at relatively severe combustor operating conditions. Combustor blowout and altitude ignition tests were also used to evaluate nozzle designs. Results indicate that angled injection gave higher combustion efficiency, less tendency toward combustion instability, and altitude relight characteristics equal to or superior to those of the other fuel nozzles that were tested.
Pathophysiology, diagnosis, and treatment of discogenic low back pain
Peng, Bao-Gan
2013-01-01
Discogenic low back pain is a serious medical and social problem, and accounts for 26%-42% of the patients with chronic low back pain. Recent studies found that the pathologic features of discs obtained from the patients with discogenic low back pain were the formation of the zones of vascularized granulation tissue, with extensive innervation in fissures extending from the outer part of the annulus into the nucleus pulposus. Studies suggested that the degeneration of the painful disc might originate from the injury and subsequent repair of annulus fibrosus. Growth factors such as basic fibroblast growth factor, transforming growth factor β1, and connective tissue growth factor, macrophages and mast cells might play a key role in the repair of the injured annulus fibrosus and subsequent disc degeneration. Although there exist controversies about the role of discography as a diagnostic test, provocation discography still is the only available means by which to identify a painful disc. A recent study has classified discogenic low back pain into two types that were annular disruption-induced low back pain and internal endplate disruption-induced low back pain, which have been fully supported by clinical and theoretical bases. Current treatment options for discogenic back pain range from medicinal anti-inflammation strategy to invasive procedures including spine fusion and recently spinal arthroplasty. However, these treatments are limited to relieving symptoms, with no attempt to restore the disc’s structure. Recently, there has been a growing interest in developing strategies that aim to repair or regenerate the degenerated disc biologically. PMID:23610750
Sakamoto, Kosuke; Totsugawa, Toshinori; Hiraoka, Arudo; Tamura, Kentaro; Yoshitaka, Hidenori; Sakaguchi, Taichi
2018-05-30
An 88-year-old woman was diagnosed with aortic stenosis and an aortic annulus that was too narrow to perform transcatheter aortic valve implantation. Surgery was performed through a 7-cm right mini-thoracotomy at the fourth intercostal space. A 19-mm aortic valve bioprosthesis was implanted after root enlargement. The fourth intercostal space was a suitable site for aortic root enlargement because of the shorter skin-to-root distance and the detailed exposure of the aortic valve after cutting the aortic wall. This study concluded that minimally-invasive aortic valve replacement following root enlargement can be an option for the treatment of elderly patients with aortic stenosis accompanied by an annulus that is too small to perform transcatheter aortic valve implantation.
HVEPS Scramjet-Driven MHD Power Demonstration Test Results (Preprint)
2007-06-01
an outer annulus which provides the flow passage for the liquid NaK. Final fabrication and assembly of the seeding system was completed at UTRC as...ABSTRACT The Air Force sponsored Hypersonic Vehicle Electric Power System (HVEPS) program was a research program to develop scramjet driven...magnetohydrodynamic (MHD) power for an advanced high power, airborne electric power system . This program has been active for the past five years with various
Performance and Pollution Measurements of Two-Row Swirl-Can Combustor Having 72 Modules
NASA Technical Reports Server (NTRS)
Biaglow, James A.; Trout, Arthur M.
1975-01-01
A test program was conducted to evaluate the performance and gaseous-pollutant levels of an experimental full-annulus 72-module swirl-can combustor. A comparison of data with those for a 120-module swirl-can combustor showed no significant difference in performance or levels of gaseous pollutants. Oxides of nitrogen were correlated for the 72- and 120-swirl-can combustors by using a previously developed parameter.
An experimental investigation of gas fuel injection with X-ray radiography
Swantek, Andrew B.; Duke, D. J.; Kastengren, A. L.; ...
2017-04-21
In this paper, an outward-opening compressed natural gas, direct injection fuel injector has been studied with single-shot x-ray radiography. Three dimensional simulations have also been performed to compliment the x-ray data. Argon was used as a surrogate gas for experimental and safety reasons. This technique allows the acquisition of a quantitative mapping of the ensemble-average and standard deviation of the projected density throughout the injection event. Two dimensional, ensemble average and standard deviation data are presented to investigate the quasi-steady-state behavior of the jet. Upstream of the stagnation zone, minimal shot-to-shot variation is observed. Downstream of the stagnation zone, bulkmore » mixing is observed as the jet transitions to a subsonic turbulent jet. From the time averaged data, individual slices at all downstream locations are extracted and an Abel inversion was performed to compute the radial density distribution, which was interpolated to create three dimensional visualizations. The Abel reconstructions reveal that upstream of the stagnation zone, the gas forms an annulus with high argon density and large density gradients. Inside this annulus, a recirculation region with low argon density exists. Downstream, the jet transitions to a fully turbulent jet with Gaussian argon density distributions. This experimental data is intended to serve as a quantitative benchmark for simulations.« less
An experimental investigation of gas fuel injection with X-ray radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swantek, Andrew B.; Duke, D. J.; Kastengren, A. L.
In this paper, an outward-opening compressed natural gas, direct injection fuel injector has been studied with single-shot x-ray radiography. Three dimensional simulations have also been performed to compliment the x-ray data. Argon was used as a surrogate gas for experimental and safety reasons. This technique allows the acquisition of a quantitative mapping of the ensemble-average and standard deviation of the projected density throughout the injection event. Two dimensional, ensemble average and standard deviation data are presented to investigate the quasi-steady-state behavior of the jet. Upstream of the stagnation zone, minimal shot-to-shot variation is observed. Downstream of the stagnation zone, bulkmore » mixing is observed as the jet transitions to a subsonic turbulent jet. From the time averaged data, individual slices at all downstream locations are extracted and an Abel inversion was performed to compute the radial density distribution, which was interpolated to create three dimensional visualizations. The Abel reconstructions reveal that upstream of the stagnation zone, the gas forms an annulus with high argon density and large density gradients. Inside this annulus, a recirculation region with low argon density exists. Downstream, the jet transitions to a fully turbulent jet with Gaussian argon density distributions. This experimental data is intended to serve as a quantitative benchmark for simulations.« less
Theoretical flow regime diagrams for the AGCE
NASA Technical Reports Server (NTRS)
Fowlis, W. W.; Miller, T. L.; Roberts, G. O.; Kopecky, K. J.
1984-01-01
The major criterion for the design of the Atmospheric General Circulation Experiment is that it be possible to realize strong baroclinic instability in the apparatus. A spherical annulus configuration which allows only steady basic state flows was chosen for the first set of stability analyses. Baroclinic instability was found for this configuration and few results suggest a regime diagram very different from the cylindrical annulus regime diagram.
Totaro, Pasquale; Adragna, Nicola; Argano, Vincenzo
2008-03-01
Today, the 'gold standard' treatment of functional mitral regurgitation (MR) is the subject of much discussion. Although restrictive annuloplasty is currently considered the most reproducible technique, the means by which the degree of annular restriction is optimized remains problematic. The study was designed in order to identify whether the degree of restriction of the mitral annulus could influence early and midterm results following the treatment of functional MR using restrictive annuloplasty. A total of 32 consecutive patients with functional MR grade > or = 3+ was enrolled, among whom the mean anterior-posterior (AP) mitral annulus diameter was 39 +/- 3 mm. Restrictive mitral annuloplasty (combined with coronary artery bypass grafting) was performed in all patients using a Carpentier-Edwards Classic or Physio ring (size 26 or 28). The degree of AP annular restriction was calculated for each patient, and correlated with early and mid-term residual MR and left ventricular (LV) reverse remodeling (in terms of LV end-diastolic diameter (LVEDD) and LV end-diastolic volume (LVEDV) reduction). All surviving patients were examined at a one-year follow up. The mean AP mitral annulus restriction achieved was 48 +/- 4%. Intraoperatively, transesophageal echocardiography showed no residual MR in any patient. Before discharge from hospital, transthoracic echocardiography confirmed an absence of residual MR and showed significant LV reverse remodeling (LVEDV from 121 +/- 25 ml to 97 +/- 26 ml; LVEDD from 55 +/- 6 mm to 47 +/- 8 mm). A significant correlation (r = 0.57, p < 0.001) was identified between the degree of AP annulus restriction and LVEDV reduction. A cut-off of annular restriction of 40% (based on AP annulus measurement) correlated with a more significant reverse remodeling. The early postoperative data, with no recurrence of significant MR, was confirmed at a one-year follow up examination. A marked restriction of the AP mitral annulus diameter (> 40% of preoperative) appears to have a favorable influence on early postoperative LV reverse remodeling, and also allows for complete resolution of functional MR. In addition, 'no tolerance' of early residual MR seems to have a favorable influence on mid-term results, leading to a reduction in the one-year recurrence of significant MR.
Long, Rose G; Rotman, Stijn G; Hom, Warren W; Assael, Dylan J; Illien-Jünger, Svenja; Grijpma, Dirk W; Iatridis, James C
2018-02-01
Herniated intervertebral discs (IVDs) are a common cause of back and neck pain. There is an unmet clinical need to seal annulus fibrosus (AF) defects, as discectomy surgeries address acute pain but are complicated by reherniation and recurrent pain. Copolymers of polyethylene glycol with trimethylene carbonate (TMC) and hexamethylene diisocyanate (HDI) end-groups were formulated as AF sealants as the HDI form covalent bonds with native AF tissue. TMC adhesives were evaluated and optimized using the design criteria: stable size, strong adherence to AF tissue, high cytocompatibility, restoration of IVD biomechanics to intact levels following in situ repair, and low extrusion risk. TMC adhesives had high adhesion strength as assessed with a pushout test (150 kPa), and low degradation rates over 3 weeks in vitro. Both TMC adhesives had shear moduli (220 and 490 kPa) similar to, but somewhat higher than, AF tissue. The adhesive with three TMC moieties per branch (TMC3) was selected for additional in situ testing because it best matched AF shear properties. TMC3 restored torsional stiffness, torsional hysteresis area and axial range of motion to intact states. However, in a failure test of compressive deformation under fixed 5 ° flexion, some herniation risk was observed with failure strength of 5.9 MPa compared with 13.5 MPa for intact samples; TMC3 herniated under cyclic organ culture testing. These TMC adhesives performed well during in vitro and in situ testing, but additional optimization to enhance failure strength is required to further this material to advanced screening tests, such as long-term degradation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Nishi, Hiroyuki; Toda, Koichi; Miyagawa, Shigeru; Yoshikawa, Yasushi; Fukushima, Satsuki; Kawamura, Masashi; Yoshioka, Daisuke; Saito, Tetsuya; Ueno, Takayoshi; Kuratani, Toru; Sawa, Yoshiki
2016-09-01
We assessed the effects of different types of prosthetic rings on mitral annular dynamics using real-time three-dimensional echocardiography (RT3DE). RT3DE was performed in 44 patients, including patients undergoing mitral annuloplasty using the Cosgrove-Edwards flexible band (Group A, n = 10), the semi-rigid Sorin Memo 3D ring (Group B, n = 17), the semi-rigid Edwards Physio II ring (Group C, n = 7) and ten control subjects. Various annular diameters were measured throughout the cardiac cycle. We observed flexible anterior annulus motion in all of the groups except Group C. A flexible posterior annulus was only observed in Group B and the Control group. The mitral annular area changed during the cardiac cycle by 8.4 ± 3.2, 6.3 ± 2.0, 3.2 ± 1.3, and 11.6 ± 5.0 % in Group A, Group B, Group C, and the Control group, respectively. The dynamic diastolic to systolic change in mitral annular diameters was lost in Group C, while it was maintained in Group A, and to a good degree in Group B. In comparison to the Control group, the mitral annulus shape was more ellipsoid in Group B and Group C, and more circular in Group A. Although mitral regurgitation was well controlled by all of the types of rings that were utilized in the present study, we demonstrated that the annulus motion and annulus shape differed according to the type of prosthetic ring that was used, which might provide important information for the selection of an appropriate prosthetic ring.
Khoueir, Ziad; Jassim, Firas; Poon, Linda Yi-Chieh; Tsikata, Edem; Ben-David, Geulah S; Liu, Yingna; Shieh, Eric; Lee, Ramon; Guo, Rong; Papadogeorgou, Georgia; Braaf, Boy; Simavli, Huseyin; Que, Christian; Vakoc, Benjamin J; Bouma, Brett E; de Boer, Johannes F; Chen, Teresa C
2017-10-01
To determine the diagnostic capability of peripapillary 3-dimensional (3D) retinal nerve fiber layer (RNFL) volume measurements from spectral-domain optical coherence tomography (OCT) volume scans for open-angle glaucoma (OAG). Assessment of diagnostic accuracy. Setting: Academic clinical setting. Total of 180 patients (113 OAG and 67 normal subjects). One eye per subject was included. Peripapillary 3D RNFL volumes were calculated for global, quadrant, and sector regions, using 4 different-size annuli. Peripapillary 2D RNFL thickness circle scans were also obtained. Area under the receiver operating characteristic curve (AUROC) values, sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios. Among all 2D and 3D RNFL parameters, best diagnostic capability was associated with inferior quadrant 3D RNFL volume of the smallest annulus (AUROC value 0.977). Otherwise, global 3D RNFL volume AUROC values were comparable to global 2D RNFL thickness AUROC values for all 4 annulus sizes (P values: .0593 to .6866). When comparing the 4 annulus sizes for global RNFL volume, the smallest annulus had the best AUROC values (P values: .0317 to .0380). The smallest-size annulus may have the best diagnostic potential, partly owing to having no areas excluded for being larger than the 6 × 6 mm 2 scanned region. Peripapillary 3D RNFL volume showed excellent diagnostic performance for detecting glaucoma. Peripapillary 3D RNFL volume parameters have the same or better diagnostic capability compared to peripapillary 2D RNFL thickness measurements, although differences were not statistically significant. Copyright © 2017 Elsevier Inc. All rights reserved.
Pirat, Bahar; Yildirir, Aylin; Simşek, Vahide; Ozin, Bülent; Müderrisoğlu, Haldun
2008-03-01
We investigated the effect of increased preload through postural changes (leg lifting) on tissue Doppler parameters in patients with and without coronary artery disease (CAD). The study included 42 patients who were scheduled for coronary angiography. All the patients underwent standard two-dimensional, color Doppler and tissue Doppler echocardiography before coronary angiography. Tissue Doppler imaging was performed from septal and lateral mitral annuluses at baseline and during 45 degrees leg lifting followed by two-minute stabilization. Patients were grouped based on coronary angiography findings: those having stenosis greater than 70% were considered to have CAD and those with normal coronary arteries comprised the control group. Echocardiography measurements were compared between the two groups. Angiography showed normal coronary arteries or border irregularities in 22 patients and CAD in 20 patients. The two groups were similar with regard to demographic data and ejection fractions, except for male preponderance in the CAD group. Compared with the control group, patients with CAD exhibited a significantly lower isovolumic acceleration rate (IVA) at the lateral (p=0.007) and septal (p=0.03) mitral annuluses. In the control group, leg lifting resulted in increased systolic velocity (S) compared with baseline at the lateral (p=0.009) and septal (p=0.01) annuluses, whereas S wave augmentation was only significant at the septal annulus (p=0.009) in patients with CAD. No significant change was observed in IVA following leg lifting in both groups. Preload alteration induced by leg lifting resulted in similar changes in tissue Doppler parameters in patients with and without CAD, except for blunted augmentation of S wave at the lateral annulus in CAD. Detection of decreased IVA at baseline may be a useful finding for CAD.
In vitro and in silico investigations of disc nucleus replacement
Reitmaier, Sandra; Shirazi-Adl, Aboulfazl; Bashkuev, Maxim; Wilke, Hans-Joachim; Gloria, Antonio; Schmidt, Hendrik
2012-01-01
Currently, numerous hydrogels are under examination as potential nucleus replacements. The clinical success, however, depends on how well the mechanical function of the host structure is restored. This study aimed to evaluate the extent to and mechanisms by which surgery for nucleus replacements influence the mechanical behaviour of the disc. The effects of an annulus defect with and without nucleus replacement on disc height and nucleus pressure were measured using 24 ovine motion segments. The following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue repaired by suture and glue or plug. To identify the likely mechanisms observed in vitro, a finite-element model of a human disc (L4–L5) was employed. Both studies were subjected to physiological cycles of compression and recovery. A repaired annulus defect did not influence the disc behaviour in vitro, whereas additional nucleus removal and replacement substantially decreased disc stiffness and nucleus pressure. Model predictions demonstrated the substantial effects of reductions in replaced nucleus water content, bulk modulus and osmotic potential on disc height loss and pressure, similar to measurements. In these events, the compression load transfer in the disc markedly altered by substantially increasing the load on the annulus when compared with the nucleus. The success of hydrogels for nucleus replacements is not only dependent on the implant material itself but also on the restoration of the environment perturbed during surgery. The substantial effects on the disc response of disruptions owing to nucleus replacements can be simulated by reduced nucleus water content, elastic modulus and osmotic potential. PMID:22337630
A novel collinear optical system with annulus mirrors for holographic disc driver
NASA Astrophysics Data System (ADS)
Wang, Ye
2008-12-01
This paper focus on a novel collinear lens system with annulus mirrors for holographic disc driver, both information beam and reference beam are use same laser beam. The expanded and parallel laser beam, center part of it as the information beam then through Fourier transform lens, the beam around center part as a reference beam. On this axis, the ring reference beam reflected by two annulus shaped mirrors, then became a convergent beam, together with the information beam which through the first Fourier transform lens then produce holographic pattern to be write into the holographic disc behind of them, this lens system with two mirrors made the angle between information beam and reference beam more wide, can improved the multiplex level of holographic storage. Pair of Fourier transform lens with advance performance is designed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karami, K.; Bahari, K., E-mail: KKarami@uok.ac.ir, E-mail: K.Bahari@razi.ac.ir
2012-10-01
We consider nonaxisymmetric magnetohydrodynamic (MHD) modes in a zero-beta cylindrical compressible thin magnetic flux tube modeled as a twisted core surrounded by a magnetically twisted annulus, with both embedded in a straight ambient external field. The dispersion relation is derived and solved analytically and numerically to obtain the frequencies of the nonaxisymmetric MHD waves. The main result is that the twisted magnetic annulus does affect the period ratio P{sub 1}/P{sub 2} of the kink modes. For the kink modes, the magnetic twist in the annulus region can achieve deviations from P{sub 1}/P{sub 2} = 2 of the same order ofmore » magnitude as in the observations. Furthermore, the effect of the internal twist on the fluting modes is investigated.« less
Application of a transient heat transfer model for bundled, multiphase pipelines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, T.S.; Clapham, J.; Danielson, T.J.
1996-12-31
A computer model has been developed which accurately describes transient heat transfer in pipeline bundles. An arbitrary number of internal pipelines containing different fluids, flowing in either direction along with the input of heat to one or more of the fluids can be accommodated. The model is coupled to the transient, multiphase flow simulator OLGA. The lines containing the multiphase production fluids are modeled by OLGA, and the heat transfer between the internal lines, carrier pipe, and surroundings is handled by the bundle model. The model has been applied extensively to the design of a subsea, heated bundle system formore » the Britannia gas condensate field in the North Sea. The 15-km bundle system contains a 14{double_prime} production line, an 8{double_prime} test line, a 3{double_prime} methanol line, and a 12{double_prime} internal heating medium line within a 37.25{double_prime} carrier. The heating medium (water) flows in the internal heating medium line and in the annulus at 82,500 BPD. The primary purpose of the bundle system is to avoid the formation of hydrates. A secondary purpose is to avoid the deposition of paraffin. The bundle model was used to (1) compare the merits of two coaxial lines vs. a single bundle; (2) optimize the insulation levels on the carrier and internal lines; (3) determine the minimum time required to heat up the bundle; (4) determine heat input requirements to avoid hydrates throughout the field life, (5) determine temperature profiles along the lines for a range of production rates; (6) study ruptures of the production line into the bundle annulus; (7) determine minimum temperatures during depressurization; and (8) determine cool-down times. The results of these studies were used to size lines, select insulation levels, assess erosion potential, design for thermal expansion-induced stresses, and to select materials of construction.« less
NASA Astrophysics Data System (ADS)
Afrand, Masoud; Toghraie, Davood; Karimipour, Arash; Wongwises, Somchai
2017-05-01
Presets work aims to investigate the natural convection inside a cylindrical annulus mold containing molten gallium under a horizontal magnetic field in three-dimensional coordinates. The modeling system is a vertical cylindrical annulus which is made by two co-axial cylinders of internal and external radii. The internal and external walls are maintained isothermal but in different temperatures. The upper and lower sides of annulus are also considered adiabatic while it is filled by an electrical conducting fluid. Three dimensional cylindrical coordinates as (r , θ , z) are used to respond the velocity components as (u , v , w) . The governing equations are steady, laminar and Newtonian using the Boussinesq approximation. Equations are nonlinear and they must be corresponded by applying the finite volume approach; so that the hybrid-scheme is applied to discretize equations. The results imply that magnetic field existence leads to generate the Lorentz force in opposite direction of the buoyancy forces. Moreover the Lorentz force and its corresponded electric field are more significant in both Hartmann layer and Roberts layer, respectively. The strong magnetic field is required to achieve better quality products in the casting process of a liquid metal with a higher Prandtl number.
Radaeski, Jefferson N.; Bauermann, Soraia G.; Pereira, Antonio B.
2016-01-01
This aim of this study was to distinguish grasslands from forests in southern Brazil by analyzing Poaceae pollen grains. Through light microscopy analysis, we measured the size of the pollen grain, pore, and annulus from 68 species of Rio Grande do Sul. Measurements were recorded of 10 forest species and 58 grassland species, representing all tribes of the Poaceae in Rio Grande do Sul. We measured the polar, equatorial, pore, and annulus diameter. Results of statistical tests showed that arboreous forest species have larger pollen grain sizes than grassland and herbaceous forest species, and in particular there are strongly significant differences between arboreous and grassland species. Discriminant analysis identified three distinct groups representing each vegetation type. Through the pollen measurements we established three pollen types: larger grains (>46 μm), from the Bambuseae pollen type, medium-sized grains (46–22 μm), from herbaceous pollen type, and small grains (<22 μm), from grassland pollen type. The results of our compiled Poaceae pollen dataset may be applied to the fossil pollen of Quaternary sediments. PMID:27999585
Kim, Young Kook; Yoo, Byeong Wook; Jeoung, Jin Wook; Kim, Hee Chan; Kim, Hae Jin; Park, Ki Ho
2016-11-01
To evaluate the glaucoma-diagnostic ability of the ganglion cell-inner plexiform layer (GCIPL) thickness difference across the temporal raphe in highly myopic eyes. We consecutively enrolled a total of 195 highly myopic eyes (axial length [AL] >26.5 mm) of 195 subjects: 93 glaucoma patients along with and 102 nonglaucomatous subjects. Cirrus high-definition optical coherence tomography (OCT) was employed to scan all of the subjects' macular and optic discs. Using a MATLAB-based customized program (the GCIPL hemifield test), a positive test result was automatically declared if the following two conditions were met: (1) the horizontal line is detected for longer than one-half of the distance from the temporal inner elliptical annulus to the outer elliptical annulus, and (2) the average GCIPL thickness difference within 10 pixels of the reference line, both above and below, is 5 μm or more. The glaucoma-diagnostic ability was computed using the area under the receiver operating characteristic curve (AUC). Among the glaucomatous eyes, GCIPL hemifield test positivity was shown in 92.5% (86 of 93), significantly higher than that for the nonglaucomatous eyes (4.90%, 5 of 102; P <0.001). The value of AUC for the GCIPL hemifield test was excellent (0.938; sensitivity 92.50%, specificity 95.10%) and was the best compared with those for any of OCT parameters. In highly myopic eyes, determination of the presence or absence of GCIPL thickness difference across the temporal raphe via OCT macula scan can be a useful means of distinguishing the glaucomatous damage.
Michael W. Klunzinger; Stephen J. Beatty; David L. Morgan; Alan J. Lymbery; Wendell R. Haag
2014-01-01
Growth and longevity of freshwater mussels (Unionida) are important for defining life-history strategies and assessing vulnerability to human impacts. We used markârecapture and analysis of shell rings to investigate age and growth of the hyriid, Westralunio carteri, at 5 sites in southwestern Australia. We tested the utility of the in situ marker...
Saddle-shaped mitral valve annuloplasty rings experience lower forces compared with flat rings.
Jensen, Morten O; Jensen, Henrik; Smerup, Morten; Levine, Robert A; Yoganathan, Ajit P; Nygaard, Hans; Hasenkam, J Michael; Nielsen, Sten L
2008-09-30
New insight into the 3D dynamic behavior of the mitral valve has prompted a reevaluation of annuloplasty ring designs. Force balance analysis indicates correlation between annulus forces and stresses in leaflets and chords. Improving this stress distribution can intuitively enhance the durability of mitral valve repair. We tested the hypothesis that saddle-shaped annuloplasty rings have superior uniform systolic force distribution compared with a nonuniform force distribution in flat annuloplasty rings. Sixteen 80-kg pigs had a flat (n=8) or saddle-shaped (n=8) mitral annuloplasty ring implanted. Mitral annulus 3D dynamic geometry was obtained with sonomicrometry before ring insertion. Strain gauges mounted on dedicated D-shaped rigid flat and saddle-shaped annuloplasty rings provided the intraoperative force distribution perpendicular to the annular plane. Average systolic annular height to commissural width ratio before ring implantation was 14.0%+/-1.6%. After flat and saddle shaped ring implantation, the annulus was fixed in the diastolic (9.0%+/-1.0%) and systolic (14.3%+/-1.3%) configuration, respectively (P<0.01). Force accumulation was seen from the anterior (0.72N+/-0.14N) and commissural annular segments (average 1.38N+/-0.27N) of the flat rings. In these segments, the difference between the 2 types of rings was statistically significant (P<0.05). The saddle-shaped annuloplasty rings did not experience forces statistically significantly larger than zero in any annular segments. Saddle-shaped annuloplasty rings provide superior uniform annular force distribution compared to flat rings and appear to represent a configuration that minimizes out-of-plane forces that could potentially be transmitted to leaflets and chords. This may have important implications for annuloplasty ring selections.
Langer, Nathaniel B; Hamid, Nadira B; Nazif, Tamim M; Khalique, Omar K; Vahl, Torsten P; White, Jonathon; Terre, Juan; Hastings, Ramin; Leung, Diana; Hahn, Rebecca T; Leon, Martin; Kodali, Susheel; George, Isaac
2017-01-01
The experience with transcatheter aortic valve replacement is increasing worldwide; however, the incidence of potentially catastrophic cardiac or aortic complications has not decreased. In most cases, significant injuries to the aorta, aortic valve annulus, and left ventricle require open surgical repair. However, the transcatheter aortic valve replacement patient presents a unique challenge as many patients are at high or prohibitive surgical risk and, therefore, an open surgical procedure may not be feasible or appropriate. Consequently, prevention of these potentially catastrophic injuries is vital, and practitioners need to understand when open surgical repair is required and when alternative management strategies can be used. The goal of this article is to provide an overview of current management and prevention strategies for major complications involving the aorta, aortic valve annulus, and left ventricle. © 2016 American Heart Association, Inc.
Unsteady Full Annulus Simulations of a Transonic Axial Compressor Stage
NASA Technical Reports Server (NTRS)
Herrick, Gregory P.; Hathaway, Michael D.; Chen, Jen-Ping
2009-01-01
Two recent research endeavors in turbomachinery at NASA Glenn Research Center have focused on compression system stall inception and compression system aerothermodynamic performance. Physical experiment and computational research are ongoing in support of these research objectives. TURBO, an unsteady, three-dimensional, Navier-Stokes computational fluid dynamics code commissioned and developed by NASA, has been utilized, enhanced, and validated in support of these endeavors. In the research which follows, TURBO is shown to accurately capture compression system flow range-from choke to stall inception-and also to accurately calculate fundamental aerothermodynamic performance parameters. Rigorous full-annulus calculations are performed to validate TURBO s ability to simulate the unstable, unsteady, chaotic stall inception process; as part of these efforts, full-annulus calculations are also performed at a condition approaching choke to further document TURBO s capabilities to compute aerothermodynamic performance data and support a NASA code assessment effort.
Project Turnover Deliverables for the SY Farm Enraf Annulus Leak Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
SCAIEF, C.C.
2000-09-19
This document identifies the deliverables that ensure the end user of the SY Farm Enraf Annulus Leak Detectors (ALD) has all the documentation and training required for operating and maintaining the new system. All deliverable items checked on the Acceptance For Beneficial Use (ABU) form have been completed and are available to the end user. This document was written as required by HNF-IP-0842, Volume IV section 3.12 Acceptance of Structures, Systems, and Components for Beneficial Use. This document applies to the deliverable documentation required to operate and maintain the SY Farm Enraf ALD System. Appendix A provides a copy ofmore » the ABU form as listed in the appendix of TWR-4092, Engineering Task Plan for the New SY Farm Annulus Leak Detectors. This document attests that all required deliverable items checked on the ABU have been completed and are available to the end user.« less
Should the annular tendon of the eye be named 'annulus of Zinn' or 'of Valsalva'?
Zampieri, Fabio; Marrone, Daniela; Zanatta, Alberto
2015-02-01
The annular tendon is commonly named 'annulus of Zinn', from the German anatomist and botanist Johann Gottfried Zinn (1727-1759) who described this structure in his Descriptio anatomica oculi humani (Anatomical Description of the Human Eye, 1755). This structure, however, had been previously discovered not by Zinn, but by Antonio Maria Valsalva (1666-1723) some decades before the publication of Zinn, in his Dissertatio anatomica prima and Dissertatio anatomica altera (First and Second Anatomical Dissertations), inside Valsalva's Opera omnia published in 1740. We advance that this structure could be re-named such as 'annulus of Valsalva-Zinn' because Valsalva, even making a mistake in its functional interpretation, first described this anatomical structure. Likewise, Valsalva, with his discovery, advanced a revolutionary idea for that time on the usefulness of anatomy for clinic and pathology. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Clifford K.; Sims, Cianan
TIM is a real-time interactive concentrating solar field simulation. TIM models a concentrating tower (receiver), heliostat field, and potential reflected glare based on user-specified parameters such as field capacity, tower height and location. TIM provides a navigable 3D interface, allowing the user to “fly” around the field to determine the potential glare hazard from off-target heliostats. Various heliostat aiming strategies are available for specifying how heliostats behave when in standby mode. Strategies include annulus, point-per-group, up-aiming and single-point-focus. Additionally, TIM includes an avian path feature for approximating the irradiance and feather temperature of a bird flying through the field airspace.
Ishii, K; Koga, Y; Maeda, M; Nakamura, K; Sekiya, R; Yonezawa, T; Onitsuka, T; Shibata, K
1988-01-01
A 70-year-old male with tricuspid regurgitation due to a blunt chest trauma inflicted 16 years previously underwent prosthetic valve replacement. At surgery, a tear, which produced tricuspid regurgitation, was found around the annulus of the anterior leaflet of the tricuspid valve. Since this area has not been reported as a location for heart trauma-producing tricuspid regurgitation, a possible mechanism of tricuspid regurgitation is discussed in this patient.
Annular dynamics of memo3D annuloplasty ring evaluated by 3D transesophageal echocardiography.
Nishi, Hiroyuki; Toda, Koichi; Miyagawa, Shigeru; Yoshikawa, Yasushi; Fukushima, Satsuki; Yoshioka, Daisuke; Sawa, Yoshiki
2018-04-01
We assessed the mitral annular motion after mitral valve repair with the Sorin Memo 3D® (Sorin Group Italia S.r.L., Saluggia, Italy), which is a unique complete semirigid annuloplasty ring intended to restore the systolic profile of the mitral annulus while adapting to the physiologic dynamism of the annulus, using transesophageal real-time three-dimensional echocardiography. 17 patients (12 male; mean age 60.4 ± 14.9 years) who underwent mitral annuloplasty using the Memo 3D ring were investigated. Mitral annular motion was assessed using QLAB®version8 allowing for a full evaluation of the mitral annulus dynamics. The mitral annular dimensions were measured throughout the cardiac cycle using 4D MV assessment2® while saddle shape was assessed through sequential measurements by RealView®. Saddle shape configuration of the mitral annulus and posterior and anterior leaflet motion could be observed during systole and diastole. The mitral annular area changed during the cardiac cycle by 5.7 ± 1.8%.The circumference length and diameter also changed throughout the cardiac cycle. The annular height was significantly higher in mid-systole than in mid-diastole (p < 0.05). The Memo 3D ring maintained a physiological saddle-shape configuration throughout the cardiac cycle. Real-time three-dimensional echocardiography analysis confirmed the motion and flexibility of the Memo 3D ring upon implantation.
Williams, Jamie R.; Natarajan, Raghu N.; Andersson, Gunnar B.J.
2009-01-01
Understanding the relationship between repetitive lifting and the breakdown of disc tissue over several years of exposure is difficult to study in vivo and in vitro. The aim of this investigation was to develop a three-dimensional poroelastic finite element model of a lumbar motion segment that reflects the biological properties and behaviors of in vivo disc tissues including swelling pressure due to the proteoglycans and strain dependent permeability and porosity. It was hypothesized that when modeling the annulus, prescribing tissue specific material properties will not be adequate for studying the in vivo loading and unloading behavior of the disc. Rather, regional variations of these properties, which are known to exist within the annulus, must also be included. Finite element predictions were compared to in vivo measurements published by Tyrrell et al., (Tyrrell et al., 1985) of percent change in total stature for two loading protocols, short-term creep loading and standing recovery and short-term cyclic loading with standing recovery. The model in which the regional variations of material properties in the annulus had been included provided an overall better prediction of the in vivo behavior as compared to the model in which the annulus properties were assumed to be homogenous. This model will now be used to study the relationship between repetitive lifting and disc degeneration. PMID:17156786
Wang, Yan-Li; Wang, Qing-Ling; Wang, Liang; Wu, Ying-Biao; Wang, Zhi-Bin; Cameron, James; Liang, Yu-Lu
2013-02-01
The associations between the aortic dimensions (of the aortic sinus, aortic annulus and aortic arch) and physiological variables have not been established in the Chinese population. The present study examined the associations among physiological variables to determine the aortic root and arch dimensions echocardiographically. The diameters of the aortic sinus, annulus and arch were measured in 1,010 subjects via 2-D echocardiography with a 3.5-MHz transducer in a trans-thoracic position. The images of the aortic sinus and aortic annulus were obtained from a standard parasternal long-axis view. The maximum diameter of the valve orifice was measured at the end of systole. The aortic arch dimension was visualized in the long-axis using a suprasternal notch window and the maximum transverse diameter was measured. Epidata 3.0, Excel 2007 and SPSS version 17.0 were used to collect and analyze the data. A total of 1,010 subjects were enrolled. The mean age was 55.0±17.0 years (range of 18 to 90 years). The body surface area (BSA) was the best predictor of all the studied physiological variables and may be used to predict aortic sinus, annulus and arch dimensions independently (r=0.54, 0.37 and 0.39, respectively). Gender, blood pressure, age and BSA are significant predictors of the aortic dimensions. Of these, BSA was the best predictor.
High Resolution N-Body Simulations of Terrestrial Planet Growth
NASA Astrophysics Data System (ADS)
Clark Wallace, Spencer; Quinn, Thomas R.
2018-04-01
We investigate planetesimal accretion with a direct N-body simulation of an annulus at 1 AU around a 1 M_sun star. The planetesimal ring, which initially contains N = 106 bodies is evolved through the runaway growth stage into the phase of oligarchic growth. We find that the mass distribution of planetesimals develops a bump around 1022 g shortly after the oligarchs form. This feature is absent in previous lower resolution studies. We find that this bump marks a boundary between growth modes. Below the bump mass, planetesimals are packed tightly enough together to populate first order mean motion resonances with the oligarchs. These resonances act to heat the tightly packed, low mass planetesimals, inhibiting their growth. We examine the eccentricity evolution of a dynamically hot planetary embryo embedded in an annulus of planetesimals and find that dynamical friction acts more strongly on the embryo when the planetesimals are finely resolved. This effect disappears when the annulus is made narrow enough to exclude most of the mean motion resonances. Additionally, we find that the 1022 g bump is significantly less prominent when we follow planetesimal growth with a skinny annulus.This feature, which is reminiscent of the power law break seen in the size distribution of asteroid belt objects may be an important clue for constraining the initial size of planetesimals in planet formation models.
Schuhbaeck, Annika; Weingartner, Christina; Arnold, Martin; Schmid, Jasmin; Pflederer, Tobias; Marwan, Mohamed; Rixe, Johannes; Nef, Holger; Schneider, Christian; Lell, Michael; Uder, Michael; Ensminger, Stephan; Feyrer, Richard; Weyand, Michael; Achenbach, Stephan
2015-07-01
The geometry of the aortic annulus and implanted transcatheter aortic valve prosthesis might influence valve function. We investigated the influence of valve type and aortic valve calcification on post-implant geometry of catheter-based aortic valve prostheses. Eighty consecutive patients with severe aortic valve stenosis (mean age 82 ± 6 years) underwent computed tomography before and after TAVI. Aortic annulus diameters were determined. Influence of prosthesis type and degree of aortic valve calcification on post-implant eccentricity were analysed. Aortic annulus eccentricity was reduced in patients after TAVI (0.21 ± 0.06 vs. 0.08 ± 0.06, p<0.0001). Post-TAVI eccentricity was significantly lower in 65 patients following implantation of a balloon-expandable prosthesis as compared to 15 patients who received a self-expanding prosthesis (0.06 ± 0.05 vs. 0.15 ± 0.07, p<0.0001), even though the extent of aortic valve calcification was not different. After TAVI, patients with a higher calcium amount retained a significantly higher eccentricity compared to patients with lower amounts of calcium. Patients undergoing TAVI with a balloon-expandable prosthesis show a more circular shape of the implanted prosthesis as compared to patients with a self-expanding prosthesis. Eccentricity of the deployed prosthesis is affected by the extent of aortic valve calcification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Balkovec, Christian; Adams, Michael A; Dolan, Patricia; McGill, Stuart M
2015-10-01
Study Design Biomechanical study on cadaveric spines. Objective Spinal bending causes the annulus to pull vertically (axially) on the end plate, but failure mechanisms in response to this type of loading are poorly understood. Therefore, the objective of this study was to identify the weak point of the intervertebral disk in tension. Methods Cadaveric motion segments (aged 79 to 88 years) were dissected to create midsagittal blocks of tissue, with ∼10 mm of bone superior and inferior to the disk. From these blocks, 14 bone-disk-bone slices (average 4.8 mm thick) were cut in the frontal plane. Each slice was gripped by its bony ends and stretched to failure at 1 mm/s. Mode of failure was recorded using a digital camera. Results Of the 14 slices, 10 failed by the hyaline cartilage being peeled off the subchondral bone, with the failure starting opposite the lateral annulus and proceeding medially. Two slices failed by rupturing of the trabecular bone, and a further two failed in the annulus. Conclusions The hyaline cartilage-bone junction is the disk's weak link in tension. These findings provide a plausible mechanism for the appearance of bone and cartilage fragments in herniated material. Stripping cartilage from the bony end plate would result in the herniated mass containing relatively stiff cartilage that does not easily resorb.
The Ross operation: a 12-year experience.
Elkins, R C
1999-09-01
The Ross operation, originally introduced as a scalloped subcoronary implant with an 80% survival and 85% freedom from reoperation, has recently been modified to a root replacement which is now the most utilized implant technique. The mid and late results of this operative technique and comparison of intra-aortic implants and root replacement in a single institution are reported. The records of 328 patients who had a Ross operation at the University of Oklahoma (August 1986 to July 1998) were reviewed to assess operative technique and patient-related factors on survival, autograft valve function, homograft valve function, valve-related complications, and need for reoperation. Operative survival was 95.4% with an actuarial survival of 89% +/- 5% at 8 years. Freedom from replacement of the pulmonary autograft was 94% +/- 3% at 8 years, freedom from reoperation on the pulmonary homograft was 90% +/- 4% at 8 years, and freedom from autograft valve reoperation or dysfunction (3+ autograft valve insufficiency) was 83% +/- 6% at 9 years. The incidence of autograft valve reoperation and late autograft valve dysfunction was decreased by root replacement. Annulus reduction and fixation improved early results in patients with aortic insufficiency and annulus dilatation. Early results have been excellent, as the development of late autograft valve dysfunction or dilatation has been rare. The excellent hemodynamic results with a limited incidence of reoperation and replacement of the autograft valve justify its continued use.
Stress in Lumbar Intervertebral Discs during Distraction
Gay, Ralph E.; Ilharreborde, Brice; Zhao, Kristin D.; Berglund, Lawrence J.; Bronfort, Gert; An, Kai-Nan
2008-01-01
BACKGROUND CONTEXT The intervertebral disc is a common source of low back pain. Prospective studies suggest that treatments that intermittently distract the disc might be beneficial for chronic low back pain. Although the potential exists for distraction therapies to affect the disc biomechanically their effect on intradiscal stress is debated. PURPOSE To determine if distraction alone, distraction combined with flexion or distraction combined with extension can reduce nucleus pulposus pressure and posterior anulus compressive stress in cadaveric lumbar discs compared to simulated standing or lying. STUDY DESIGN Laboratory study using single cadaveric motion segments. OUTCOME MEASURES Strain gauge measures of nucleus pulposus pressure and compressive stress in the anterior and posterior annulus fibrosus METHODS Intradiscal stress profilometry was performed on 15 motion segments during 5 simulated conditions: standing, lying, and 3 distracted conditions. Disc degeneration was graded by inspection from 1 (normal) to 4 (severe degeneration). RESULTS All distraction conditions markedly reduced nucleus pressure compared to either simulated standing or lying. There was no difference between distraction with flexion and distraction with extension in regard to posterior annulus compressive stress. Discs with little or no degeneration appeared to distributed compressive stress differently than those with moderate or severe degeneration. CONCLUSIONS Distraction appears to predictably reduce nucleus pulposus pressure. The effect of distraction therapy on the distribution of compressive stress may be dependent in part on the health of the disc. PMID:17981092
[The use of palisade technique in tympanoplasties after Heermann].
Wielgosz, Romuald; Mroczkowski, Edward
2006-01-01
The palisade tympanoplasties-technique with using of tragal and conchal autografts for reconstruction of the tympanic membrane and the auditory canal wall was described. The operation started with the endaural incision. Tragal and conchal autograft palisade fragments with perichondrium for reconstruction of the tympanic membrane and the auditory canal wall have been used up to 1996 in 15,300 cases. We placed palisaded cartilage fragments parallel to the manubrium of the malleus in type I tympanoplasties and in type II or III procedures parallel to the long process of the incus. The "tunnel plasty" in the eustachian tubal entrance is performed with "simmering", "architrave" and "anti-architrave" to keep the tubal entrance open. This "tunnel plasty" results in a nice reconstruction of the tympano-meatal niche. The "annulus-stapes plate" in type III tympanoplasties replaces the function of the incus, crossing the promontory and reducing adhesions. This annulus-stapes bridge is fixed with a further palisade cartilage, "step plasty", which connects the "tunnel-plasty" with "annulus-stapes plate". The palisade-epitympanum-antrum plasty allows ventilation of the antrum via a tunnel constructed of well-fitting parallel pieces of cartilage fixed by self-tension (no glue) and replacing the bony canal wall. The "columella-tunnel plasty" has an L-shaped notch in the "annulus-stapes plate" fixing a columella of cartilage, placed in the oval window. Only in a case with a narrow oval window niche, a type IV palisade plasty can be performed or a prosthesis placed. The "annulus-stapes cartilage plate" is more stable reconstruction in type III tympanoplasties than are incus of foreign body interpositions. Adhesions on the promontory are found more often with fascia than with cartilage fragments. Histologic study of autograft cartilage showed good preservation of cartilage cells even 26 years after transplantation. The use of palisade cartilage technique brings very good functional and better long-term results.
Nakanishi, Koki; Homma, Shunichi; Han, Jiho; Takayama, Hiroo; Colombo, Paolo C; Yuzefpolskaya, Melana; Garan, Arthur R; Farr, Maryjane A; Kurlansky, Paul; Di Tullio, Marco R; Naka, Yoshifumi; Takeda, Koji
2018-07-01
Although late-onset right-sided heart failure is recognized as a clinical problem in the treatment of patients with left ventricular assist devices (LVADs), the mechanism and predictors are unknown. Tricuspid valve (TV) deformation leads to the restriction of the leaflet motion and decreased coaptation, resulting in a functional tricuspid regurgitation that may act as a surrogate marker of late right-sided heart failure. This study aimed to investigate the association of preoperative TV deformation (annulus dilatation and leaflet tethering) with late right-sided heart failure development after continuous-flow LVAD implantation. The study cohort consisted of 274 patients who underwent 2-dimensional echocardiography before LVAD implantation. TV annulus diameter and tethering distance were measured in an apical 4-chamber view. Late right-sided heart failure was defined as right-sided heart failure requiring readmission and medical and/or surgical treatment after initial LVAD implantation. During a mean follow-up of 25.1 ± 19.0 months after LVAD implantation, late right-sided heart failure occurred in 33 patients (12.0%). Multivariate Cox proportional hazard analysis demonstrated that TV annulus diameter (hazard ratio 1.221 per 1 mm, p <0.001) was significantly associated with late right-sided heart failure development, whereas leaflet tethering distance was not. The best cut-off value of the TV annular diameter was 41 mm (area under the curve 0.787). Kaplan-Meier analysis showed that patients with dilated TV annulus (TV annular diameter ≥41 mm) exhibited a significantly higher late right-sided heart failure occurrence than those without TV annular enlargement (log-rank p <0.001). In conclusion, preoperative TV annulus diameter, but not leaflet tethering distance, predicted the occurrence of late right-sided heart failure after LVAD implantation. Copyright © 2018 Elsevier Inc. All rights reserved.
Kimura, Sumito; Streiff, Cole; Zhu, Meihua; Shimada, Eriko; Datta, Saurabh; Ashraf, Muhammad; Sahn, David J
2014-02-01
The aim of this study was to assess the accuracy, feasibility, and reproducibility of determining stroke volume from a novel 3-dimensional (3D) color Doppler flow quantification method for mitral valve (MV) inflow and left ventricular outflow tract (LVOT) outflow at different stroke volumes when compared with the actual flow rate in a pumped porcine cardiac model. Thirteen freshly harvested pig hearts were studied in a water tank. We inserted a latex balloon into each left ventricle from the MV annulus to the LVOT, which were passively pumped at different stroke volumes (30-80 mL) using a calibrated piston pump at increments of 10 mL. Four-dimensional flow volumes were obtained without electrocardiographic gating. The digital imaging data were analyzed offline using prototype software. Two hemispheric flow-sampling planes for color Doppler velocity measurements were placed at the MV annulus and LVOT. The software computed the flow volumes at the MV annulus and LVOT within the user-defined volume and cardiac cycle. This novel 3D Doppler flow quantification method detected incremental increases in MV inflow and LVOT outflow in close agreement with pumped stroke volumes (MV inflow, r = 0.96; LVOT outflow, r = 0.96; P < .01). Bland-Altman analysis demonstrated overestimation of both (MV inflow, 5.42 mL; LVOT outflow, 4.46 mL) with 95% of points within 95% limits of agreement. Interobserver variability values showed good agreement for all stroke volumes at both the MV annulus and LVOT. This study has shown that the 3D color Doppler flow quantification method we used is able to compute stroke volumes accurately at the MV annulus and LVOT in the same cardiac cycle without electrocardiographic gating. This method may be valuable for assessment of cardiac output in clinical studies.
Khalique, Omar K; Hahn, Rebecca T; Gada, Hemal; Nazif, Tamim M; Vahl, Torsten P; George, Isaac; Kalesan, Bindu; Forster, Molly; Williams, Mathew B; Leon, Martin B; Einstein, Andrew J; Pulerwitz, Todd C; Pearson, Gregory D N; Kodali, Susheel K
2014-08-01
This study sought to determine the impact of quantity and location of aortic valve calcification (AVC) on paravalvular regurgitation (PVR) and rates of post-dilation (PD) immediately after transcatheter aortic valve replacement (TAVR). The impact of AVC in different locations within the aortic valve complex is incompletely understood. This study analyzed 150 patients with severe, symptomatic aortic stenosis who underwent TAVR. Total AVC volume scores were calculated from contrast-enhanced multidetector row computed tomography imaging. AVC was divided by leaflet sector and region (Leaflet, Annulus, left ventricular outflow tract [LVOT]), and a combination of LVOT and Annulus (AnnulusLVOT). Asymmetry was assessed. Receiver-operating characteristic analysis was performed with greater than or equal to mild PVR and PD as classification variables. Logistic regression was performed. Quantity of and asymmetry of AVC for all regions of the aortic valve complex predicted greater than or equal to mild PVR by receiver-operating characteristic analysis (area under the curve = 0.635 to 0.689), except Leaflet asymmetry. Receiver-operating characteristic analysis for PD was significant for quantity and asymmetry of AVC in all regions, with higher area under the curve values than for PVR (area under the curve = 0.648 to 0.741). On multivariable analysis, Leaflet and AnnulusLVOT calcification were independent predictors of both PVR and PD regardless of multidetector row computed tomography area cover index. Quantity and asymmetry of AVC in all regions of the aortic valve complex predict greater than or equal to mild PVR and performance of PD, with the exception of Leaflet asymmetry. Quantity of AnnulusLVOT and Leaflet calcification independently predict PVR and PD when taking into account multidetector row computed tomography area cover index. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Spinner, Erin M; Lerakis, Stamatios; Higginson, Jason; Pernetz, Maria; Howell, Sharon; Veledar, Emir; Yoganathan, Ajit P
2012-01-01
While it is understood that annular dilatation contributes to tricuspid regurgitation (TR), other factors are less clear. The geometry of the right ventricle (RV) and left ventricle (LV) may alter tricuspid annulus size and papillary muscle (PM) positions leading to TR. Three-dimensional echocardiographic images were obtained at Emory University Hospital using a GE Vivid 7 ultrasound system. End-diastolic area was used to classify ventricle geometry: control (n=21), isolated RV dilatation (n=17), isolated LV dilatation (n=13), and both RV and LV dilatation (n=13). GE EchoPAC was used to measure annulus area and position of the PM tips. Patients with RV dilatation had significant (P≤ 0.05) displacement of all PMs apically and the septal PM and posterior PM away from the center of the RV toward the LV. Patients with LV dilatation had significant (P≤0.05) apical displacement of the anterior PM. Pulmonary arterial pressure (r=0.66), annulus area (r=0.51), apical displacement of the anterior PM (r=0.26), posterior PM (r=0.49), and septal PM (r=0.40), lateral displacement of the septal PM (r=0.37) and posterior PM (r=0.40), and tenting area and height (r=0.54, 0.49), were significantly (P≤0.05) correlated to the grade of TR. Ventricle classification (r=0.46) and RV end-diastolic area (r=0.48) also were correlated with the grade of TR. A regression analysis found ventricle classification (P=0.001), pulmonary arterial pressure (P≤0.001) annulus area (P=0.027), and apical displacement of the anterior PM (P=0.061) to be associated with the grade of TR. Alterations in ventricular geometry can lead to TR by altering both tricuspid annulus size and PM position. Understanding these geometric interactions with the aim of correcting pathological alterations of the tricuspid valve apparatus may lead to more robust repairs.
Kretzschmar, Daniel; Lauten, Alexander; Goebel, Bjoern; Doenst, Torsten; Poerner, Tudor C; Ferrari, Markus; Figulla, Hans R; Hamadanchi, Ali
2016-03-01
The assessment of aortic annular size is critical, and inappropriate sizing is thought to be a main reason of paravalvular aortic regurgitation. Multidetector computed tomograph is associated with the risk of contrast nephropathy. For optimal evaluation of the complex structure of the aortic annulus, three-dimensional (3D)-methods should be used. We therefore sought to determine the value of 3D-transoesophageal echocardiography (3D-TEE) for appropriate sizing. Hundred and one patients (mean age 81·4 years) with symptomatic aortic valve stenosis (AS) and high surgical risk profile (mean log. EuroScore 28·8%) being scheduled for transcatheter aortic valve implantation (TAVI) were included. 2D- and 3D-TEE were performed before the procedure to evaluate the aortic annulus diameter. Maximum, minimum and mean (max diameter + min diameter/2) annulus diameters were 24·7, 23·1 and 23. 9 mm in 3D-TEE and compared to 22·6 mm in 2D-TEE (P<0·001; 0·07; <0·001). The interobserver variability for 3D-TEE was low with a mean difference of 0·18 mm compared to 2D-TEE with 0·59 mm. The application of 3D-TEE caused a change of prosthesis size selection in 40% of patients compared to 2D-TEE. In this study, we implanted three different types of catheter-mounted valves (Edwards-SAPIEN(™) XT valve, CoreValve(™) and JenaValve(™) ). Final angiography confirmed valve competence (mild insufficiency) in 91%, and there was no aortic regurgitation greater than moderate in the follow-up echocardiographic evaluation. Assessment of aortic annulus dimensions for TAVI size selection can safely be performed with 3D-TEE only. Based on our results with significantly higher annulus diameter compared to 2D-TEE, we recommend 3D-TEE to reduce prosthesis undersizing. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Single stage, low noise, advanced technology fan. Volume 1: Aerodynamic design
NASA Technical Reports Server (NTRS)
Sullivan, T. J.; Younghans, J. L.; Little, D. R.
1976-01-01
The aerodynamic design for a half-scale fan vehicle, which would have application on an advanced transport aircraft, is described. The single stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec 11,650 ft/sec). The fan and booster components are designed in a scale model flow size convenient for testing with existing facility and vehicle hardware. The design corrected flow per unit annulus area at the fan face is 215 kg/sec sq m (44.0 lb m/sec sq ft) with a hub-tip ratio of 0.38 at the leading edge of the fan rotor. This results in an inlet corrected airflow of 117.9 kg/sec (259.9 lb m/sec) for the selected rotor tip diameter if 90.37 cm (35.58 in.). The variable geometry inlet is designed utilizing a combination of high throat Mach number and acoustic treatment in the inlet diffuser for noise suppression (hybrid inlet). A variable fan exhaust nozzle was assumed in conjunction with the variable inlet throat area to limit the required area change of the inlet throat at approach and hence limit the overall diffusion and inlet length. The fan exit duct design was primarily influenced by acoustic requirements, including length of suppressor wall treatment; length, thickness and position on a duct splitter for additional suppressor treatment; and duct surface Mach numbers.
Micromachined High Frequency PMN-PT/Epoxy 1-3 Composite Ultrasonic Annular Array
Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk
2013-01-01
This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9 μm × 9 μm. The width of the kerf among pillars was ~ 5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm2 with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers e.g. 1D and 2D arrays. PMID:22119324
Universal fuel basket for use with an improved oxide reduction vessel and electrorefiner vessel
Herrmann, Steven D.; Mariani, Robert D.
2002-01-01
A basket, for use in the reduction of UO.sub.2 to uranium metal and in the electrorefining of uranium metal, having a continuous annulus between inner and outer perforated cylindrical walls, with a screen adjacent to each wall. A substantially solid bottom and top plate enclose the continuous annulus defining a fuel bed. A plurality of scrapers are mounted adjacent to the outer wall extending longitudinally thereof, and there is a mechanism enabling the basket to be transported remotely.
NASA Technical Reports Server (NTRS)
Urasek, D. C.; Kovich, G.; Moore, R. D.
1973-01-01
Performance was obtained for a 50-cm-diameter compressor designed for a high weight flow per unit annulus area of 208 (kg/sec)/sq m. Peak efficiency values of 0.83 and 0.79 were obtained for the rotor and stage, respectively. The stall margin for the stage was 23 percent, based on equivalent weight flow and total-pressure ratio at peak efficiency and stall.
Horizontal baffle for nuclear reactors
Rylatt, John A.
1978-01-01
A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.
Constitutive Behavior Modelling of AA1100-O AT Large Strain and High Strain Rates
NASA Astrophysics Data System (ADS)
Testa, Gabriel; Iannitti, Gianluca; Ruggiero, Andrew; Gentile, Domenico; Bonora, Nicola
2017-06-01
Constitutive behavior of AA1100-O, provided as extruded bar, was investigated. Microscopic observation showed that the cross-section has a peculiar microstructure consisting in the inner core with a large grain size surrounded by an external annulus with finer grains. Low and high strain rates tensile tests were carried out at different temperature ranging from -190 ° C to 100 ° C. Constitutive behavior was modelled using a modified version of Rusinek & Klepaczko model. Parameters were calibrated on tensile test results. Tests and numerical simulations of symmetric Taylor (RoR) and dynamic tensile extrusion (DTE) tests at different impact velocities were carried out in order to validate the model under complex deformation paths.
Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements
NASA Technical Reports Server (NTRS)
Trefny, C. J.
1985-01-01
Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.
Slow deformation of intervertebral discs.
Broberg, K B
1993-01-01
Intervertebral discs exhibit pronounced time-dependent deformations when subjected to load variations. These deformations are caused by fluid flow to and from the disc and by viscoelastic deformation of annulus fibres. The fluid flow is caused by differences between mechanical and osmotic pressure. A mechanical model of lumbar disc functions allows one to calculate both the extent of fluid flow and its implications for disc height as well as the role played by viscoelastic deformation of annulus fibres. From such calculations changes in body height are estimated. Experimental results already documented in the literature offer bases for the determination of the parameters involved. Body height variations are studied, both those related to normal diurnal rhythmicity and those related to somewhat exceptional circumstances. The normal diurnal fluid flow is found to be about +/- 40% of the disc fluid content late in the evening. Viscoelastic deformation of annulus fibres contributes approximately one quarter of the height change obtained after several hours normal activity, but dominates during the first hour.
NASA Astrophysics Data System (ADS)
Shahzadi, Iqra; Nadeem, S.
2017-06-01
A genuine neurotic condition is experienced when some blood constituents accumulate on the wall of the artery get withdrew from the wall, again join the circulatory system and coagulation occur. Role of copper nanoparticles and inclined magnetic field on the peristaltic flow of a nanofluid in an annular region of inclined annulus is investigated. We represent the clot model by considering the small artery as an annulus whose outer tube has a wave of sinusoidal nature and inner tube has a clot on its walls. Lubrication approach is used to simplify the problem. Close form solutions are determined for temperature and velocity profile. Impact of related parameters on pressure rise, pressure gradient, velocity and streamlines are interpreted graphically. Comparison among the pure blood and copper blood is presented and analyzed. One main finding of the considered analysis is that the inclusion of copper nanoparticles enlarges the amplitude of the velocity. Therefore, the considered study plays a dominant role in biomedical applications.
NASA Astrophysics Data System (ADS)
Maehara, Kazuyuki; Nakai, Sadaaki; Naga, Kumi; Nishimoto, Seiji
2004-09-01
Changes in discs after Er-Yag laser irradiation are scarcely reported. We made an experimental study using white rabbits and Er-Yag laser. Under general anesthesia, Er-Yag laser was irradiated into lumbar discs. Three or 8 weeks after irradiation, rabbits were sacrificed, and these discs were extracted. The quantitative analysis of the glycosaminoglycan content in the annulus fibrosus, and the incorporation of 35S-sulfate in chondroitin 4 sulfate were measured. The results showed, the increased incorporation of 35S-sulfate in chondroitin 4 sulfate and chondroitin 6 sulfates in groups of laser irradiation may indicate Er-Yag laser irradiation in nucleus pulposus, accelerated glycosaminoglycan production, in the annulus fibrosus. But no difference of unsaturated isomers of chondroitin 4 sulfate, and chondroitin 6 sulfate, and no difference of saturated isomer of keratan sulfate indicate, the influence of Er-Yag laser irradiation was not so high, as to bring the quantitative changes of matrix of annulus fibrosus in term of 8 weeks.
Combustor with multistage internal vortices
Shang, Jer Yu; Harrington, R.E.
1987-05-01
A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard areas to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard. 2 figs.
Combustor with multistage internal vortices
Shang, Jer Y.; Harrington, Richard E.
1989-01-01
A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard area to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard.
Space-charge-limited currents for cathodes with electric field enhanced geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu
This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that themore » space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.« less
Balakrishnan, K G; Sapru, R P; Sasidharan, K; Venkitachalam, C G
1982-01-01
The clinical, haemodynamic and angiographic features of 18 patients with right ventricular endomyocardial fibrosis (RVEMF) and 8 patients with Ebstein's anomaly of the tricuspid valve (EATV) have been compared. Diagnosis was confirmed by selective angiography. The position of the tricuspid annulus was identified from selective right ventricular angiograms and confirmed by selective right coronary angiography. In 83% of RVEMF patients the tricuspid annulus was displaced to the left of the spine. A false impression of displacement of the tricuspid leaflet can thus be created. However, a tricuspid leaflet displaced away from the tricuspid annulus was found only in patients with EATV. A considerable overlap exists between the wide spectrum of clinical presentations of the two conditions. Helpful distinguishing features that favour EATV were, the presence of a scratchy diastolic murmur and polyphasic QRS complexes in the ECG. Atrial fibrillation in the ECG, and myocardial calcification or pericardial effusion, whenever present, favour RVEMF.
NASA Astrophysics Data System (ADS)
Abbas, Zaheer; Hasnain, Jafar
A numerical study is performed to examine the two-phase magnetoconvection and heat transfer phenomena of Fe3O4 -kerosene nanofluid flow in a horizontal composite porous annulus with an external magnetic field. The annulus is filled with immiscible fluids flowing between two concentric cylinders. The governing equations of the flow problem are obtained using Darcy-Brinkman model. Heat transfer is analyzed in the presence of viscous and Darcian dissipation terms. The shooting method is used as a tool to solve the obtained non-linear ordinary differential equations for the velocity and temperature profiles. The velocity and temperature distributions are analyzed and discussed under the influence of involved flow parameters with the aid of graphs. It is found that both velocity and temperature of fluid are decreased with ferroparticle volume fraction. In addition to that, it is also presented that the existence of magnetic field decreases the benefit of ferrofluids in heat transfer progression.
Phase retrieval in annulus sector domain by non-iterative methods
NASA Astrophysics Data System (ADS)
Wang, Xiao; Mao, Heng; Zhao, Da-zun
2008-03-01
Phase retrieval could be achieved by solving the intensity transport equation (ITE) under the paraxial approximation. For the case of uniform illumination, Neumann boundary condition is involved and it makes the solving process more complicated. The primary mirror is usually designed segmented in the telescope with large aperture, and the shape of a segmented piece is often like an annulus sector. Accordingly, It is necessary to analyze the phase retrieval in the annulus sector domain. Two non-iterative methods are considered for recovering the phase. The matrix method is based on the decomposition of the solution into a series of orthogonalized polynomials, while the frequency filtering method depends on the inverse computation process of ITE. By the simulation, it is found that both methods can eliminate the effect of Neumann boundary condition, save a lot of computation time and recover the distorted phase well. The wavefront error (WFE) RMS can be less than 0.05 wavelength, even when some noise is added.
Desrochers, Jane; Duncan, Neil A
2014-01-01
Cells in the intervertebral disc, as in other connective tissues including tendon, ligament and bone, form interconnected cellular networks that are linked via functional gap junctions. These cellular networks may be necessary to affect a coordinated response to mechanical and environmental stimuli. Using confocal microscopy with fluorescence recovery after photobleaching methods, we explored the in situ strain environment of the outer annulus of an intact bovine disc and the effect of high-level flexion on gap junction signalling. The in situ strain environment in the extracellular matrix of the outer annulus under high flexion load was observed to be non-uniform with the extensive cellular processes remaining crimped sometimes at flexion angles greater than 25°. A significant transient disruption of intercellular communication via functional gap junctions was measured after 10 and 20 min under high flexion load. This study illustrates that in healthy annulus fibrosus tissue, high mechanical loads can impede the functioning of the gap junctions. Future studies will explore more complex loading conditions to determine whether losses in intercellular communication can be permanent and whether gap junctions in aged and degenerated tissues become more susceptible to load. The current research suggests that cellular structures such as gap junctions and intercellular networks, as well as other cell-cell and cell-matrix interconnections, need to be considered in computational models in order to fully understand how macroscale mechanical signals are transmitted across scales to the microscale and ultimately into a cellular biosynthetic response in collagenous tissues.
Control rod driveline and grapple
Germer, John H.
1987-01-01
A control rod driveline and grapple is disclosed for placement between a control rod drive and a nuclear reactor control rod containing poison for parasitic neutron absorption required for reactor shutdown. The control rod is provided with an enlarged cylindrical handle which terminates in an upwardly extending rod to provide a grapple point for the driveline. The grapple mechanism includes a tension rod which receives the upwardly extending handle and is provided with a lower annular flange. A plurality of preferably six grapple segments surround and grip the control rod handle. Each grapple rod segment grips the flange on the tension rod at an interior upper annular indentation, bears against the enlarged cylindrical handle at an intermediate annulus and captures the upwardly flaring frustum shaped handle at a lower and complementary female segment. The tension rods and grapple segments are surrounded by and encased within a cylinder. The cylinder terminates immediately and outward extending annulus at the lower portion of the grapple segments. Excursion of the tension rod relative to the encasing cylinder causes rod release at the handle by permitting the grapple segments to pivot outwardly and about the annulus on the tension rod so as to open the lower defined frustum shaped annulus and drop the rod. Relative movement between the tension rod and cylinder can occur either due to electromagnetic release of the tension rod within defined limits of travel or differential thermal expansion as between the tension rod and cylinder as where the reactor exceeds design thermal limits.
Annulus formation on scales of four species of coregonids reared under artificial conditions
Hogman, Walter J.
1968-01-01
Scales from known-age coregonids reared in the laboratory were examined to determine when annuli formed and to learn possible factors of their formation. Scales were taken monthly from marked fish for periods up to 21 months. Scales were also examined from fish that died and from preserved specimens of young-of-the-year for each species. Two marks formed on almost all scales each calender year. The stronger formed during March-April and the weaker in October-November. Both marks had all the usual characteristics of an annulus but the spring mark was considered the annulus and the fall mark an accessory check. The annulus formed during a period of constant temperatures and of little change in growth or increasing growth. The accessory check formed during a period of declining temperatures (1-5 degrees F, or 0.6-2.8 degrees C, per month) and of little change in growth or declining growth. Most fish grew throughout the winter; the only exceptions were one bloater (Coregonus hoyi) and several of the largest lake whitefish (C. clupeaformis). Fish were always given all the food they would eat to eliminate availability of food as a factor of mark formation. The temperature of the water during the winter (50 ±. 0.3 F; 10.0 ±. 0.2 C) did not arrest metabolic activity. The growth rate was related more closely to day length than to other variables examined.
Observations of the north polar water ice annulus on Mars using THEMIS and TES
Wagstaff, K.L.; Titus, T.N.; Ivanov, A.B.; Castano, R.; Bandfield, J.L.
2008-01-01
The Martian seasonal CO2 ice caps advance and retreat each year. In the spring, as the CO2 cap gradually retreats, it leaves behind an extensive defrosting zone from the solid CO2 cap to the location where all CO2 frost has sublimated. We have been studying this phenomenon in the north polar region using data from the THermal EMission Imaging System (THEMIS), a visible and infra-red (IR) camera on the Mars Odyssey spacecraft, and the Thermal Emission Spectrometer (TES) on Mars Global Surveyor. Recently, we discovered that some THEMIS images of the CO2 defrosting zone contain evidence for a distinct defrosting phenomenon: some areas just south of the CO2 cap edge are too bright in visible wavelengths to be defrosted terrain, but too warm in the IR to be CO2 ice. We hypothesize that we are seeing evidence for a seasonal annulus of water ice (frost) that recedes with the seasonal CO2 cap, as predicted by previous workers. In this paper, we describe our observations with THEMIS and compare them to simultaneous observations by TES and OMEGA. All three instruments find that this phenomenon is distinct from the CO2 cap and most likely composed of water ice. We also find strong evidence that the annulus widens as it recedes. Finally, we show that this annulus can be detected in the raw THEMIS data as it is collected, enabling future long-term onboard monitoring. ?? 2007.
Nuclear reactor sealing system
McEdwards, James A.
1983-01-01
A liquid metal-cooled nuclear reactor sealing system. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel.
Chagnon, Amélie; Aubin, Carl-Eric; Villemure, Isabelle
2010-11-01
Spine degeneration is a pathology that will affect 80% of the population. Since the intervertebral disks play an important role in transmitting loads through the spine, the aim of this study was to evaluate the biomechanical impact of disk properties on the load carried by healthy (Thompson grade I) and degenerated (Thompson grades III and IV) disks. A three-dimensional parametric poroelastic finite element model of the L4/L5 motion segment was developed. Grade I, grade II, and grade IV disks were modeled by altering the biomechanical properties of both the annulus and nucleus. Models were validated using published creep experiments, in which a constant compressive axial stress of 0.35 MPa was applied for 4 h. Pore pressure (PP) and effective stress (S(E)) were analyzed as a function of time following loading application (1 min, 5 min, 45 min, 125 min, and 245 min) and discal region along the midsagittal profile for each disk grade. A design of experiments was further implemented to analyze the influence of six disk parameters (disk height (H), fiber proportion (%F), drained Young's modulus (E(a),E(n)), and initial permeability (k(a),k(n)) of both the annulus and nucleus) on load-sharing for disk grades I and IV. Simulations of grade I, grade III, and grade IV disks agreed well with the available published experimental data. Disk height (H) had a significant influence (p<0.05) on the PP and S(E) during the entire loading history for both healthy and degenerated disk models. Young's modulus of the annulus (E(a)) significantly affected not only S(E) in the annular region for both disk grades in the initial creep response but also S(E) in the nucleus zone for degenerated disks with further creep response. The nucleus and annulus permeabilities had a significant influence on the PP distribution for both disk grades, but this effect occurred at earlier stages of loading for degenerated than for healthy disk models. This is the first study that investigates the biomechanical influence of both geometrical and material disk properties on the load transfer of healthy and degenerated disks. Disk height is a significant parameter for both healthy and degenerated disks during the entire loading. Changes in the annulus stiffness, as well as in the annulus and nucleus permeability, control load-sharing in different ways for healthy and degenerated disks.
Dankerl, Peter; Hammon, Matthias; Seuss, Hannes; Tröbs, Monique; Schuhbaeck, Annika; Hell, Michaela M; Cavallaro, Alexander; Achenbach, Stephan; Uder, Michael; Marwan, Mohamed
2017-05-01
To evaluate the performance of computer-aided evaluation software for a comprehensive workup of patients prior to transcatheter aortic valve implantation (TAVI) using low-contrast agent and low radiation dose third-generation dual-source CT angiography. We evaluated 30 consecutive patients scheduled for TAVI. All patients underwent ECG-triggered high-pitch dual-source CT angiography of the aortic root and aorta with a standardized contrast agent volume (30 ml Imeron350, flow rate 4 ml/s) and low-dose (100 kv/350 mAs) protocol. An expert (10 years of experience) manually evaluated aortic root and iliac access dimensions (distance between coronary ostia and aortic annulus, minimal/maximal diameters and area-derived diameter of the aortic annulus) and best CT-predicted fluoroscopic projection angle as the reference standard. Utilizing computer-aided software (syngo.via), the same pre-TAVI workup was performed and compared to the reference standard. Mean CTDI[Formula: see text] was 3.46 mGy and mean DLP 217.6 ± 12.1 mGy cm, corresponding to a mean effective dose of 3.7 ± 0.2 mSv. Computer-aided evaluation was successful in all but one patient. Compared to the reference standard, Bland-Altman analysis indicated very good agreement for the distances between aortic annulus and coronary ostia (RCA: mean difference 0.8 mm; 95 % CI 0.4-1.2 mm; LM: mean difference 0.9 mm; 95 % CI 0.5-1.3 mm); however, we demonstrated a systematic overestimation of annulus- derived diameter using the software (mean difference 44.4 mm[Formula: see text]; 95 % CI 30.4-58.3 mm[Formula: see text]). Based on respective annulus dimensions, the recommended prosthesis size (Edwards SAPIEN 3) matched in 26 out of the 29 patients (90 %). CT-derived fluoroscopic projection angles showed an excellent agreement for both methods. Out of 58 iliac arteries, 15 (25 %) arteries could not be segmented by the software. Preprocessing time of the software was 71 ± 11 s (range 51-96 s), and reading time with the software was 118 ± 31 s (range 68-201 s). In the workup of pre-TAVI CT angiography, computer-aided evaluation of low-contrast, low-dose examinations is feasible with good agreement and quick reading time. However, a systematic overestimation of the aortic annulus area is observed.
Malinowski, Marcin; Wilton, Penny; Khaghani, Asghar; Brown, Michael; Langholz, David; Hooker, Victoria; Eberhart, Lenora; Hooker, Robert L; Timek, Tomasz A
2016-09-01
Left ventricular assist device (LVAD) implantation may alter right ventricular shape and function and lead to tricuspid regurgitation. This in turn has been reported to be a determinant of right ventricular (RV) failure after LVAD implantation, but the effect of mechanical left ventricular (LV) unloading on the tricuspid annulus is unknown. The aim of the study was to provide insight into the effect of LVAD support on tricuspid annular geometry and dynamics that may help to optimize LV unloading with the least deleterious effect on the right-sided geometry. In seven open-chest anaesthetized sheep, nine sonomicrometry crystals were implanted on the right ventricle. Additional nine crystals were implanted around the tricuspid annulus, with one crystal at each commissure defining three separate annular regions: anterior, posterior and septal. Left ventricular unloading was achieved by connecting a cannula in the left atrium and the aorta to a continuous-flow pump. The pump was used for 15 min at a full flow of 3.8 ± 0.3 l/min. Epicardial echocardiography was used to assess the degree of tricuspid insufficiency. Haemodynamic, echocardiographic and sonomicrometry data were collected before and during full unloading. Tricuspid annular area, and the regional and total perimeter were calculated from crystal coordinates, while 3D annular geometry was expressed as the orthogonal distance of each annular crystal to the least squares plane of all annular crystals. There was no significant tricuspid regurgitation observed either before or during LV unloading. Right ventricular free wall to septum diameter increased significantly at end-diastole during unloading from 23.6 ± 5.8 to 26.3 ± 6.5 mm (P = 0.009), but the right ventricular volume, tricuspid annular area and total perimeter did not change from baseline. However, the septal part of the annulus significantly decreased its maximal length (38.6 ± 8.1 to 37.9 ± 8.2 mm, P = 0.03). Annular contraction was not altered. The tricuspid annulus had a complex 3D saddle-shaped geometry that was unaffected during experimental conditions. In healthy sheep hearts, left ventricular unloading increased septal-free wall RV diameter and reduced the length of the septal annulus, without altering the motion or geometry of the tricuspid annulus. Acute left ventricular unloading alone in healthy sheep was not sufficient to significantly perturb tricuspid annular dynamics and result in tricuspid insufficiency. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Experimental and analytical investigation of fan flow interaction with downstream struts
NASA Technical Reports Server (NTRS)
Olsen, T. L.; Ng, W. F.; Obrien, W. F., Jr.
1985-01-01
An investigation which was designed to provide insight into the fundamental aspects of fan rotor-downstream strut interaction was undertaken. High response, miniature pressure transducers were embedded in the rotor blades of an experimental fan rig. Five downstream struts were placed at several downstream locations in the discharge flow annulus of the single-stage machine. Significant interaction of the rotor blade surface pressures with the flow disturbance produced by the downstream struts was measured. Several numerical procedures for calculating the quasi-steady rotor response due to downstream flow obstructions were developed. A preliminary comparison of experimental and calculated fluctuating blade pressures on the rotor blades shows general agreement between the experimental and calculated values.
Iconic-memory processing of unfamiliar stimuli by retarded and nonretarded individuals.
Hornstein, H A; Mosley, J L
1979-07-01
The iconic-memory processing of unfamiliar stimuli was undertaken employing a visually cued partial-report procedure and a visual masking procedure. Subjects viewed stimulus arrays consisting of six Chinese characters arranged in a circular pattern for 100 msec. At variable stimulus-onset asynchronies, a teardrop indicator or an annulus was presented for 100 msec. Immediately upon cue offset, the subject was required to recognize the cued stimulus from a card containing a single character. Retarded subjects' performance was comparable to that of MA- and CA-matched subjects. We suggested that earlier reported iconic-memory differences between retarded and nonretarded individuals may be attributable to processes other than iconic memory.
ADVANCED CUTTINGS TRANSPORT STUDY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefan Miska; Nicholas Takach; Kaveh Ashenayi
2004-01-31
Final design of the mast was completed (Task 5). The mast is consisting of two welded plate girders, set next to each other, and spaced 14-inches apart. Fabrication of the boom will be completed in two parts solely for ease of transportation. The end pivot connection will be made through a single 2-inch diameter x 4 feet-8 inch long 316 SS bar. During installation, hard piping make-ups using Chiksan joints will connect the annular section and 4-inch return line to allow full movement of the mast from horizontal to vertical. Additionally, flexible hoses and piping will be installed to isolatemore » both towers from piping loads and allow recycling operations respectively. Calibration of the prototype Foam Generator Cell has been completed and experiments are now being conducted. We were able to generate up to 95% quality foam. Work is currently underway to attach the Thermo-Haake RS300 viscometer and install a view port with a microscope to measure foam bubble size and bubble size distribution. Foam rheology tests (Task 13) were carried out to evaluate the rheological properties of the proposed foam formulation. After successful completion of the first foam test, two sets of rheological tests were conducted at different foam flow rates while keeping other parameters constant (100 psig, 70F, 80% quality). The results from these tests are generally in agreement with the previous foam tests done previously during Task 9. However, an unanticipated observation during these tests was that in both cases, the frictional pressure drop in 2 inch pipe was lower than that in the 3 inch and 4 inch pipes. We also conducted the first foam cuttings transport test during this quarter. Experiments on aerated fluids without cuttings have been completed in ACTF (Task 10). Gas and liquid were injected at different flow rates. Two different sets of experiments were carried out, where the only difference was the temperature. Another set of tests was performed, which covered a wide range of pressure and temperature. Several parameters were measured during these tests including differential pressure and mixture density in the annulus. Flow patterns during the aerated fluids test have been observed through the view port in the annulus and recorded by a video camera. Most of the flow patterns were slug flow. Further increase in gas flow rate changed the wavy flow pattern to slug flow. At this stage, all of the planned cuttings transport tests have been completed. The results clearly show that temperature significantly affects the cuttings transport efficiency of aerated muds, in addition to the liquid flow rate and gas liquid ratio (GLR). Since the printed circuit board is functioning (Task 11) with acceptable noise level we were able to conduct several tests. We used the newly designed pipe test section to conduct tests. We tested to verify that we can distinguish between different depths of sand in a static bed of sand in the pipe section. The results indicated that we can distinguish between different sand levels. We tested with water, air and a mix of the two mediums. Major modifications (installation of magnetic flow meter, pipe fittings and pipelines) to the dynamic bubble characterization facility (DTF, Task 12) were completed. An Excel program that allows obtaining the desired foam quality in DTF was developed. The program predicts the foam quality by recording the time it takes to pressurize the loop with nitrogen.« less
Thermionic converter temperature controller
Shaner, Benjamin J [McMurray, PA; Wolf, Joseph H [Pittsburgh, PA; Johnson, Robert G. R. [Trafford, PA
2001-04-24
A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.
Guillaume, Olivier; Naqvi, Syeda Masooma; Lennon, Kerri; Buckley, Conor Timothy
2015-04-01
Lower lumbar disc disorders pose a significant problem in an aging society with substantial socioeconomic consequences. Both inner tissue (nucleus pulposus) and outer tissue (annulus fibrosus) of the intervertebral disc are affected by such debilitating disorders and can lead to disc herniation and lower back pain. In this study, we developed an alginate-collagen composite porous scaffold with shape-memory properties to fill defects occurring in annulus fibrosus tissue of degenerated intervertebral discs, which has the potential to be administered using minimal invasive surgery. In the first part of this work, we assessed how collagen incorporation on preformed alginate scaffolds influences the physical properties of the final composite scaffold. We also evaluated the ability of annulus fibrosus cells to attach, migrate, and proliferate on the composite alginate-collagen scaffolds compared to control scaffolds (alginate only). In vitro experiments, performed in intervertebral disc-like microenvironmental conditions (low glucose and low oxygen concentrations), revealed that for alginate only scaffolds, annulus fibrosus cells agglomerated in clusters with limited infiltration and migration capacity. In comparison, for alginate-collagen scaffolds, annulus fibrosus cells readily attached and colonized constructs, while preserving their typical fibroblastic-like cell morphology with spreading behavior and intense cytoskeleton expression. In a second part of this study, we investigated the effects of alginate-collagen scaffold when seeded with bone marrow derived mesenchymal stem cells. In vitro, we observed that alginate-collagen porous scaffolds supported cell proliferation and extracellular matrix deposition (collagen type I), with secretion amplified by the local release of transforming growth factor-β3. In addition, when cultured in ex vivo organ defect model, alginate-collagen scaffolds maintained viability of transplanted mesenchymal stem cells for up to 5 weeks. Taken together, these findings illustrate the advantages of incorporating collagen as a means to enhance cell migration and proliferation in porous scaffolds which could be used to augment tissue repair strategies. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
NASA Technical Reports Server (NTRS)
Holdeman, James D.
1991-01-01
Experimental and computational results on the mixing of single, double, and opposed rows of jets with an isothermal or variable temperature mainstream in a confined subsonic crossflow are summarized. The studies were performed to investigate flow and geometric variations typical of the complex 3-D flowfield in the dilution zone of combustion chambers in gas turbine engines. The principal observations from the experiments were that the momentum-flux ratio was the most significant flow variable, and that temperature distributions were similar (independent of orifice diameter) when the orifice spacing and the square-root of the momentum-flux ratio were inversely proportional. The experiments and empirical model for the mixing of a single row of jets from round holes were extended to include several variations typical of gas turbine combustors. Combinations of flow and geometry that gave optimum mixing were identified from the experimental results. Based on results of calculations made with a 3-D numerical model, the empirical model was further extended to model the effects of curvature and convergence. The principle conclusions from this study were that the orifice spacing and momentum-flux relationships were the same as observed previously in a straight duct, but the jet structure was significantly different for jets injected from the inner wall wall of a turn than for those injected from the outer wall. Also, curvature in the axial direction caused a drift of the jet trajectories toward the inner wall, but the mixing in a turning and converging channel did not seem to be inhibited by the convergence, independent of whether the convergence was radial or circumferential. The calculated jet penetration and mixing in an annulus were similar to those in a rectangular duct when the orifice spacing was specified at the radius dividing the annulus into equal areas.
The Short-Term Effects of Ketogenic Diet on Cardiac Ventricular Functions in Epileptic Children.
Doksöz, Önder; Çeleğen, Kübra; Güzel, Orkide; Yılmaz, Ünsal; Uysal, Utku; İşgüder, Rana; Çeleğen, Mehmet; Meşe, Timur
2015-09-01
Our primary aim was to determine the short-term effects of a ketogenic diet on cardiac ventricular function in patients with refractory epilepsy. Thirty-eight drug-resistant epileptic patients who were treated with a ketogenic diet were enrolled in this prospective study. Echocardiography was performed on all patients before beginning the ketogenic diet and after the sixth month of therapy. Two-dimensional, M-mode, color flow, spectral Doppler, and pulsed-wave tissue Doppler imaging measurements were performed on all patients. The median age of the 32 patients was 45.5 months, and 22 (57.8%) of them were male. Body weight, height, and body mass index increased significantly at the sixth month of therapy when compared with baseline values (P < 0.05). Baseline variables assessed by conventional M-mode echocardiography showed no significant difference at month 6 (P > 0.05). Doppler flow indices of mitral annulus and tricuspid annulus velocity of patients at baseline and month 6 showed no significant differences (P > 0.05). Tricuspid annular E/A ratio was lower at month 6 (P < 0.05). Although mitral annulus tissue Doppler imaging studies showed no significant difference (P > 0.05), there was a decrease in Ea velocity and Ea/Aa ratio gathered from tricuspid annulus at month 6 compared with baseline (P < 0.05). A 6-month duration ketogenic diet does not impair left ventricular functions in children with refractory epilepsy; however, it may be associated with a right ventricular diastolic dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.
Tricuspid Annular Geometry: A Three-Dimensional Transesophageal Echocardiographic Study
Mahmood, Feroze; Kim, Han; Chaudary, Bilal; Bergman, Remco; Matyal, Robina; Gerstle, Jeniffer; Gorman, Joseph H.; Gorman, Robert C.; Khabbaz, Kamal R.
2013-01-01
Objective To demonstrate the clinical feasibility of accurately measuring tricuspid annular area by 3-dimensional (3D) transesophageal echocardiography (TEE) and to assess the geometric differences based on the presence of tricuspid regurgitation (TR). Also, the shape of the tricuspid annulus was compared with previous descriptions in the literature. Design Prospective. Setting Tertiary care university hospital. Interventions Three-dimensional TEE. Participants Patients undergoing cardiac surgery. Measurements and Main Results Volumetric data sets from 20 patients were acquired by 3D TEE and prospectively analyzed. Comparisons in annular geometry were made between groups based on the presence of TR. The QLab (Philips Medical Systems, Andover, MA) software package was used to calculate tricuspid annular area by both linear elliptical dimensions and planimetry. Further analyses were performed in the 4D Cardio-View (TomTec Corporation GmBH, Munich, Germany) and MATLAB (Natick, MA) software environments to accurately assess annular shape. It was found that patients with greater TR had an eccentrically dilated annulus with a larger annular area. Also, the area as measured by the linear ellipse method was overestimated as compared to the planimetry method. Furthermore, the irregular saddle-shaped geometry of the tricuspid annulus was confirmed through the mathematic model developed by the authors. Conclusions Three-dimensional TEE can be used to measure the tricuspid annular area in a clinically feasible fashion, with an eccentric dilation seen in patients with TR. The tricuspid annulus shape is complex, with annular high and low points, and annular area calculation based on linear measurements significantly overestimates 3D planimetered area. PMID:23725682
Cardiovascular Involvement in Children with Osteogenesis Imperfecta
Karamifar, Hamdollah; Ilkhanipoor, Homa; Ajami, Gholamhossein; Karamizadeh, Zohreh; Amirhakimi, Gholamhossein; Shakiba, Ali-Mohammad
2013-01-01
Objective Osteogenesis imperfecta is a hereditary disease resulting from mutation in type I procollagen genes. One of the extra skeletal manifestations of this disease is cardiac involvement. The prevalence of cardiac involvement is still unknown in the children with osteogenesis imperfecta. The present study aimed to investigate the prevalence of cardiovascular abnormalities in these patients. Methods 24 children with osteogenesis imperfecta and 24 normal children who were matched with the patients regarding sex and age were studied. In both groups, standard echocardiography was performed, and heart valves were investigated. Dimensions of left ventricle, aorta annulus, sinotubular junction, ascending and descending aorta were measured and compared between the two groups. Findings The results revealed no significant difference between the two groups regarding age, sex, ejection fraction, shortening fraction, mean of aorta annulus, sinotubular junction, ascending and descending aorta, but after correction based on the body surface area, dimensions of aorta annulus, sinotubular junction, ascending and descending aorta in the patients were significantly higher than those in the control group (P<0.05). Two (8.3%) patients had aortic insufficiency and five (20%) patients had tricuspid regurgitation, three of whom had gradient >25 mmHg and one patient had pulmonary insufficiency with indirect evidence of pulmonary hypertension. According to Z scores of aorta annulus, sinotubular junction and ascending aorta, 5, 3, and 1 out of 24 patients had Z scores >2 respectively. Conclusion The prevalence of valvular heart diseases and aortic root dilation was higher in children with osteogenesis imperfecta. In conclusion, cardiovascular investigation is recommended in these children. PMID:24800009
Single-mode annular chirally-coupled core fibers for fiber lasers
NASA Astrophysics Data System (ADS)
Zhang, Haitao; Hao, He; He, Linlu; Gong, Mali
2018-03-01
Chirally-coupled core (CCC) fiber can transmit single fundamental mode and effectively suppresses higher-order mode (HOM) propagation, thus improve the beam quality. However, the manufacture of CCC fiber is complicated due to its small side core. To decrease the manufacture difficulty in China, a novel fiber structure is presented, defined as annular chirally-coupled core (ACCC) fiber, replacing the small side core by a larger side annulus. In this paper, we designed the fiber parameters of this new structure, and demonstrated that the new structure has a similar property of single mode with traditional CCC fiber. Helical coordinate system was introduced into the finite element method (FEM) to analyze the mode field in the fiber, and the beam propagation method (BPM) was employed to analyze the influence of the fiber parameters on the mode loss. Based on the result above, the fiber structure was optimized for efficient single-mode transmission, in which the core diameter is 35 μm with beam quality M2 value of 1.04 and an optical to optical conversion efficiency of 84%. In this fiber, fundamental mode propagates in an acceptable loss, while the HOMs decay rapidly.
Contrast gain control: a bilinear model for chromatic selectivity.
Singer, B; D'Zmura, M
1995-04-01
We report the results of psychophysical experiments on color contrast induction. In earlier work [Vision Res. 34, 3111 (1994)], we showed that modulating the spatial contrast of an annulus in time induces an apparent modulation of the contrast of a central disk, at isoluminance. Here we vary the chromatic properties of disk and annulus systematically in a study of the interactions among the luminance and the color-opponent channels. Results show that induced contrast depends linearly on both disk and annulus contrast, at low and moderate contrast levels. This dependence leads us to propose a bilinear model for color contrast gain control. The model predicts the magnitude and the chromatic properties of induced contrast. In agreement with experimental results, the model displays chromatic selectivity in contrast gain control and a negligible effect of contrast modulation at isoluminance on the appearance of achromatic contrast. We show that the bilinear model for chromatic selectivity may be realized as a feed-forward multiplicative gain control. Data collected at high contrast levels are fit by embellishing the model with saturating nonlinearities in the contrast gain control of each color channel.
Visual processing of rotary motion.
Werkhoven, P; Koenderink, J J
1991-01-01
Local descriptions of velocity fields (e.g., rotation, divergence, and deformation) contain a wealth of information for form perception and ego motion. In spite of this, human psychophysical performance in estimating these entities has not yet been thoroughly examined. In this paper, we report on the visual discrimination of rotary motion. A sequence of image frames is used to elicit an apparent rotation of an annulus, composed of dots in the frontoparallel plane, around a fixation spot at the center of the annulus. Differential angular velocity thresholds are measured as a function of the angular velocity, the diameter of the annulus, the number of dots, the display time per frame, and the number of frames. The results show a U-shaped dependence of angular velocity discrimination on spatial scale, with minimal Weber fractions of 7%. Experiments with a scatter in the distance of the individual dots to the center of rotation demonstrate that angular velocity cannot be assessed directly; perceived angular velocity depends strongly on the distance of the dots relative to the center of rotation. We suggest that the estimation of rotary motion is mediated by local estimations of linear velocity.
NASA Technical Reports Server (NTRS)
Davino, R.; Lakshminarayana, B.
1982-01-01
The experiment was performed using the rotating hot-wire technique within the rotor blade passage and the stationary hot-wire technique for the exitflow of the rotor blade passage. The measurements reveal the effect of rotation and subsequent flow interactions upon the rotor blade flowfield and wake development in the annulus-wall region. The flow near the rotor blade tips is found to be highly complex due to the interaction of the annulus-wall boundary layer, the blade boundary layers, the tip leakage flow, and the secondary flow. Within the blade passage, this interaction results in an appreciable radial inward flow as well as a defect in the mainstream velocity near the mid-passage. Turbulence levels within this region are very high. This indicates a considerable extent of flow mixing due to the viscous flow interactions. The size and strength of this loss core is found to grow with axial distance from the blade trailing edge. The nature of the rotor blade exit-flow was dominated by the wake development.
Creeping gaseous flows through elastic tube and annulus micro-configurations
NASA Astrophysics Data System (ADS)
Elbaz, Shai; Jacob, Hila; Gat, Amir
2016-11-01
Gaseous flows in elastic micro-configurations is relevant to biological systems (e.g. alveolar ducts in the lungs) as well as to applications such as gas actuated soft micro-robots. We here examine the effect of low-Mach-number compressibility on creeping gaseous axial flows through linearly elastic tube and annulus micro-configurations. For steady flows, the leading-order effects of elasticity on the pressure distribution and mass-flux are obtained. For transient flow in a tube with small deformations, elastic effects are shown to be negligible in leading order due to compressibility. We then examine transient flows in annular configurations where the deformation is significant compared with the gap between the inner and outer cylinders defining the annulus. Both compressibility and elasticity are obtained as dominant terms interacting with viscosity. For a sudden flux impulse, the governing non-linear leading order diffusion equation is initially approximated by a porous-medium-equation of order 2.5 for the pressure square. However, as the fluid expand and the pressure decreases, the governing equation degenerates to a porous-medium-equation of order 2 for the pressure.
Modeling mantle convection in the spherical annulus
NASA Astrophysics Data System (ADS)
Hernlund, John W.; Tackley, Paul J.
2008-12-01
Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.
Speckle tracking evaluation of right ventricular functions in children with sickle cell disease.
Tolba, Osama Abd Rab Elrasol; El-Shanshory, Mohamed Ramadan; El-Gamasy, Mohamed Abd Elaziz; El-Shehaby, Walid Ahmed
2017-01-01
Cardiac dysfunction is a risk factor for death in patients with sickle cell disease (SCD). Aim of the work is to evaluate the right ventricular systolic and diastolic functions by tissue Doppler and speckling tracking imaging in children with SCD. Thirty children with SCD and thirty controls were subjected to clinical, laboratory evaluations, and echocardiographic study using GE Vivid 7 (GE Medical System, Horten, Norway with a 3.5-MHz multifrequency transducer) including; Two-dimensional and tissue Doppler echocardiographic study (lateral tricuspid valve annulus peak E' velocity, lateral tricuspid valve annulus peak A' velocity, E'/A' ratio, isovolumetric relaxation time, lateral tricuspid valve annulus S' and septal S' waves and peak longitudinal systolic strain [PLSS] and time to PLSS) were done in six right ventricular segments. There was a significant decrease in right ventricular systolic and diastolic function in patients group when compared to controls. Children with SCD have impaired right ventricular systolic and diastolic functions when compared to healthy children with early evaluation of the systolic dysfunction by speckle tracking imaging technique.
NASA Astrophysics Data System (ADS)
Vincze, Miklos; Harlander, Uwe; Borchert, Sebastian; Achatz, Ulrich; Baumann, Martin; Egbers, Christoph; Fröhlich, Jochen; Hertel, Claudia; Heuveline, Vincent; Hickel, Stefan; von Larcher, Thomas; Remmler, Sebastian
2014-05-01
In the framework of the German Science Foundation's (DFG) priority program 'MetStröm' various laboratory experiments have been carried out in a differentially heated rotating annulus configuration in order to test, validate and tune numerical methods to be used for modeling large-scale atmospheric processes. This classic experimental set-up is well known since the late 1940s and is a widely studied minimal model of the general mid-latitude atmospheric circulation. The two most relevant factors of cyclogenesis, namely rotation and meridional temperature gradient are quite well captured in this simple arrangement. The tabletop-size rotating tank is divided into three sections by coaxial cylindrical sidewalls. The innermost section is cooled whereas the outermost annular cavity is heated, therefore the working fluid (de-ionized water) in the middle annular section experiences differential heat flow, which imposes thermal (density) stratification on the fluid. At high enough rotation rates the isothermal surfaces tilt, leading to baroclinic instability. The extra potential energy stored in this unstable configuration is then converted into kinetic energy, exciting drifting wave patterns of temperature and momentum anomalies. The signatures of these baroclinic waves at the free water surface have been analysed via infrared thermography in a wide range of rotation rates (keeping the radial temperature difference constant) and under different initial conditions (namely, initial spin-up and "spin-down"). Paralelly to the laboratory simulations of BTU Cottbus-Senftenberg, five other groups from the MetStröm collaboration have conducted simulations in the same parameter regime using different numerical approaches and solvers, and applying different initial conditions and perturbations for stability analysis. The obtained baroclinic wave patterns have been evaluated via determining and comparing their Empirical Orthogonal Functions (EOFs), drift rates and dominant wave modes. Thus certain "benchmarks" have been created that can later be used as test cases for atmospheric numerical model validation. Both in the experiments and in the numerics multiple equilibrium states have been observed in the form of hysteretic behavior depending on the initial conditions. The precise quantification of these state and wave mode transitions may shed light to some aspects of the basic underlying dynamics of the baroclinic annulus configuration, still to be understood.
NASA Technical Reports Server (NTRS)
Anderson, W. J. (Inventor)
1976-01-01
A gas lubricated thrust bearing is described which employs relatively rigid inwardly cantilevered spokes carrying a relatively resilient annular member or annulus. This annulus acts as a beam on which are mounted bearing pads. The resilience of the beam mount causes the pads to accept the load and, with proper design, responds to a rotating thrust-transmitting collar by creating a gas film between the pads and the thrust collar. The bearing may be arranged for load equalization thereby avoiding the necessity of gimbal mounts or the like for the bearing. It may also be arranged to respond to rotation in one or both directions.
NASA Astrophysics Data System (ADS)
Chen, Shanzhen; Jiang, Xiaoyun
2012-08-01
In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.
Accretion flows onto supermassive black holes
NASA Technical Reports Server (NTRS)
Begelman, Mitchell C.
1988-01-01
The radiative and hydrodynamic properties of an angular momentum-dominated accretion flow onto a supermassive black hole depend largely on the ratio of the accretion rate to the Eddington accretion rate. High values of this ratio favor optically thick flows which produce largely thermal radiation, while optically thin 'two-temperature' flows may be present in systems with small values of this ratio. Observations of some AGN suggest that thermal and nonthermal sources of radiation may be of comparable importance in the 'central engine'. Consideration is given to the possibilities for coexistence of different modes of accretion in a single flow. One intriguing possibility is that runaway pair production may cause an optically thick 'accretion annulus' to form at the center of a two-temperature inflow.
Cardiovascular adaptation to extrauterine life after intrauterine growth restriction.
Rodriguez-Guerineau, Luciana; Perez-Cruz, Miriam; Gomez Roig, María D; Cambra, Francisco J; Carretero, Juan; Prada, Fredy; Gómez, Olga; Crispi, Fátima; Bartrons, Joaquim
2018-02-01
Introduction The adaptive changes of the foetal heart in intrauterine growth restriction can persist postnatally. Data regarding its consequences for early circulatory adaptation to extrauterine life are scarce. The aim of this study was to assess cardiac morphometry and function in newborns with late-onset intrauterine growth restriction to test the hypothesis that intrauterine growth restriction causes cardiac shape and functional changes at birth. A comprehensive echocardiographic study was performed in 25 neonates with intrauterine growth restriction and 25 adequate-for-gestational-age neonates. Compared with controls, neonates with intrauterine growth restriction had more globular ventricles, lower longitudinal tricuspid annular motion, and higher left stroke volume without differences in the heart rate. Neonates with intrauterine growth restriction also showed subclinical signs of diastolic dysfunction in the tissue Doppler imaging with lower values of early (e') diastolic annular peak velocities in the septal annulus. Finally, the Tei index in the tricuspid annulus was higher in the intrauterine growth restriction group. Neonates with history of intrauterine growth restriction showed cardiac remodelling and signs of systolic and diastolic dysfunction. Overall, there was a significant tendency to worse cardiac function results in the right heart. The adaptation to extrauterine life occurred with more globular hearts, higher stroke volumes but a similar heart rate compared to adequate-for-gestational-age neonates.
Design and fabrication of a 40-MHz annular array transducer
Ketterling, Jeffrey A.; Lizzi, Frederic L.; Aristizábal, Orlando; Turnbull, Daniel H.
2006-01-01
This paper investigates the feasibility of fabricating a 5-ring, focused annular array transducer operating at 40 MHz. The active piezoelectric material of the transducer was a 9-μm thick polyvinylidene fluoride (PVDF) film. One side of the PVDF was metallized with gold and forms the ground plane of the transducer. The array pattern of the transducer and electrical traces to each annulus were formed on a copper-clad polyimide film. The PVDF and polyimide were bonded with a thin layer of epoxy, pressed into a spherically curved shape, and then back filled with epoxy. A 5-ring transducer with equal area elements and 100 μm kerfs between annuli was fabricated and tested. The transducer had a total aperture of 6 mm and a geometric focus of 12 mm. The pulse/echo response from a quartz plate located at the geometric focus, two-way insertion loss (IL), complex impedance, electrical cross-talk, and lateral beamwidth were all measured for each annulus. The complex impedance data from each element were used to perform electrical matching and the measurements were repeated. After impedance matching, fc ≈ 36 MHz and BWs ranged from 31 to 39%. The ILs for the matched annuli ranged from −28 to −38 dB. PMID:16060516
A new polymer nanocomposite repair material for restoring wellbore seal integrity
Genedy, Moneeb; Kandil, Usama F.; Matteo, Edward N.; ...
2017-03-01
Seal integrity of functional oil wells and abandoned wellbores used for CO 2 subsequent storage has become of significant interest with the oil and gas leaks worldwide. This is attributed to the fact that wellbores intersecting geographical formations contain potential leakage pathways. One of the critical leakage pathways is the cement-shale interface. In this study, we examine the efficiency of a new polymer nanocomposite repair material that can be injected for sealing micro annulus in wellbores. The bond strength and microstructure of the interface of Type G oil well cement (reference), microfine cement, Novolac epoxy incorporating Neat, 0.25%, 0.5%, andmore » 1.0% Aluminum Nanoparticles (ANPs) with shale is investigated. Interfacial bond strength testing shows that injected microfine cement repair has considerably low bond strength, while ANPs-epoxy nanocomposites have a bond strength that is an order of magnitude higher than cement. Microscopic investigations of the interface show that micro annulus interfacial cracks with widths up to 40 μm were observed at the cement-shale interface while these cracks were absent at the cement-epoxy-shale interface. Finally, Fourier Transform Infrared and Dynamic mechanical analysis measurements showed that ANPs improve interfacial bond by limiting epoxy crosslinking, and therefore allowing epoxy to form robust bonds with cement and shale.« less
Tank 241-AY-102 Secondary Liner Corrosion Evaluation - 14191
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boomer, Kayle D.; Washenfelder, Dennis J.; Johnson, Jeremy M.
2014-01-07
In October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of 241-AY-102 (AY-102) was leaking. A number of evaluations were performed after discovery of the leak which identified corrosion from storage of waste at the high waste temperatures as one of the major contributing factors in the failure of the tank. The propensity for corrosion of the waste on the annulus floor will be investigated to determine if it is corrosive and must be promptly removed or if it is benign and may remain in the annulus. The chemical composition of waste, the temperature and themore » character of the steel are important factors in assessing the propensity for corrosion. Unfortunately, the temperatures of the wastes in contact with the secondary steel liner are not known; they are estimated to range from 45 deg C to 60 deg C. It is also notable that most corrosion tests have been carried out with un-welded, stress-relieved steels, but the secondary liner in tank AY-102 was not stress-relieved. In addition, the cold weather fabrication and welding led to many problems, which required repeated softening of the metal to flatten secondary bottom during its construction. This flame treatment may have altered the microstructure of the steel.« less
Attended but unseen: visual attention is not sufficient for visual awareness.
Kentridge, R W; Nijboer, T C W; Heywood, C A
2008-02-12
Does any one psychological process give rise to visual awareness? One candidate is selective attention-when we attend to something it seems we always see it. But if attention can selectively enhance our response to an unseen stimulus then attention cannot be a sufficient precondition for awareness. Kentridge, Heywood & Weiskrantz [Kentridge, R. W., Heywood, C. A., & Weiskrantz, L. (1999). Attention without awareness in blindsight. Proceedings of the Royal Society of London, Series B, 266, 1805-1811; Kentridge, R. W., Heywood, C. A., & Weiskrantz, L. (2004). Spatial attention speeds discrimination without awareness in blindsight. Neuropsychologia, 42, 831-835.] demonstrated just such a dissociation in the blindsight subject GY. Here, we test whether the dissociation generalizes to the normal population. We presented observers with pairs of coloured discs, each masked by the subsequent presentation of a coloured annulus. The discs acted as primes, speeding discrimination of the colour of the annulus when they matched in colour and slowing it when they differed. We show that the location of attention modulated the size of this priming effect. However, the primes were rendered invisible by metacontrast-masking and remained unseen despite being attended. Visual attention could therefore facilitate processing of an invisible target and cannot, therefore, be a sufficient precondition for visual awareness.
Advances in surgical management of lumbar degenerative disease.
Silber, Jeff S; Anderson, D Greg; Hayes, Victor M; Vaccaro, Alexander R
2002-07-01
The past several years have seen many advances in spine technology. Some of these advances have improved the quality of life of patients suffering from disabling low back pain from degenerative disk disease. Traditional fusion procedures are trending toward less invasive approaches with less iatrogenic soft-tissue morbidity. The diversity of bone graft substitutes is increasing with the potential for significant improvements in fusion success with the future introduction of several well tested bone morphogenic proteins to the spinal market. Biologic solutions to modify the natural history of disk degeneration are being investigated. Recently, electrothermal modulation of the posterior annulus fibrosis has been published as a semi-invasive technique to relieve low back pain generated by fissures in the outer annulus and ingrowing nociceptors (intradiskal electrothermal therapy, and intradiskal electrothermal annuloplasty). Initial results are promising, however, prospective randomized studies comparing this technique with conservative therapy are still lacking. The same is true for artificial nucleus pulposus replacement using hydrogel cushions implanted in the intervertebral space after removal of the nucleus pulposus posterior or through an anterior approach. Intervertebral disk prostheses are presently being studied in small prospective patient cohorts. As with all new developments, careful prospective, long-term trials are needed to fully define the role of these technologies in the management of symptomatic lumbar degenerative disk disease.
[Indications for and clinical outcome of the Ross procedure: a review].
Morita, K; Kurosawa, H
2001-04-01
The Ross procedure has been used increasingly to treat aortic valve disease in children and young adults. The primary indication for the Ross procedure is to provide a permanent valve replacement in children with congenital aortic stenosis. More recently, it has been extended to young adults with a bicuspid aortic valve and small aortic annulus, especially women wishing to have children. Other possible indications include complex left ventricular outflow obstructive disease, native or prosthetic valve endocarditis, and adult aortic insufficiency with a dilated aortic annulus. Conversely, Marfan syndrome is considered to an absolute contraindication, and this procedure should be used with caution in patients with rheumatic valve disease and a dysplastic dilated aortic root because of the higher associated incidence of autograft dysfunction. The technique of total aortic root replacement has become the preferred method of autograft implantation, because it carries the lowest risk of pulmonary autograft failure. In patients with marked graft-host size mismatch, either concomitant aortic annulus reduction and fixation or aortic annulus enlargement (i.e., the Ross-Konno procedure) should be performed. The Ross Procedure International Registry data document that in the modern era (post-1986) the early and late mortality rate is 2.5% and 1%, respectively. Excellent long-term results have been reported, and the benefits of this procedure include optimal hemodynamics, low risk of endocarditis, resistance to infection in patients with active endocarditis, and nonthrombogeneicity and therefore few anticoagulation-related complications. The Ross procedure can be performed with acceptable early and mid-term mortality and excellent autograft durability. Further long-term follow-up will confirm the role of this procedure in patients with various types of aortic valve disease.
Riki-Marishani, Mohsen; Gholoobi, Arash; Sazegar, Ghasem; Aazami, Mathias H; Hedjazi, Aria; Sajjadian, Maryam; Ebrahimi, Mahmoud; Aghaii-Zade Torabi, Ahmad
2017-09-01
A prosthetic system to repair secondary tricuspid valve regurgitation was developed. The conceptual engineering of the current device is based on 3D segmental remodelling of the tricuspid valve annulus in lieu of reductive annuloplasty. This study was designed to investigate the operational safety of the current prosthetic system with regard to the anatomical integrity of the right coronary artery (RCA) in fresh cadaveric human hearts. During the study period, from January to April 2016, the current prosthetic system was implanted on the tricuspid valve annulus in fresh cadaveric human hearts that met the study's inclusion criteria. The prepared specimens were investigated via selective coronary angiography of the RCA in the catheterization laboratory. The RCA angiographic anatomies were categorized as normal, distorted, kinked or occluded. Sixteen specimens underwent implantation of the current prosthetic system. The mean age of the cadaveric human hearts was 43.24 ± 15.79 years, with vehicle accident being the primary cause of death (59%). A dominant RCA was noticed in 62.5% of the specimens. None of the specimens displayed any injury, distortion, kinking or occlusion in the RCA due to the implantation of the prostheses. In light of the results of the present study, undertaken on fresh cadaveric human heart specimens, the current segmental prosthetic system for 3D remodelling of the tricuspid valve annulus seems to be safe vis-à-vis the anatomical integrity of the RCA. Further in vivo studies are needed to investigate the functional features of the current prosthetic system with a view to addressing the complex pathophysiology of secondary tricuspid valve regurgitation. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Im, Yu-Mi; Park, Chun Soo; Park, Jeong-Jun; Yun, Tae-Jin
2016-03-01
Surgical techniques currently used for the repair of Ebstein's anomaly comprise reconstruction of the tricuspid valve mechanism at the level of the true annulus with or without plication of the atrialized right ventricle. However, performing this procedure for patients with a dysmorphic anterior leaflet (i.e., insufficient leaflet tissue and decreased mobility due to tethering) may necessitate technical modifications. A retrospective review was performed of 31 patients (seven males and 24 females, median age at operation 31 years) with Ebstein's anomaly, who underwent tricuspid valve repair between March 2002 and December 2014. The original Hetzer technique (annulus to annulus approximation) was employed for six patients with a well-formed anterior leaflet. In 25 patients, the tricuspid valve mechanism was restored at the displaced septal leaflet by approximating the anterior leaflet attachment in the true annulus to the displaced septal leaflet attachment in the mid-septum. A bidirectional superior cavopulmonary anastomosis was added in 27 of 31 (87%) patients. No early or late death occurred during the median follow-up of 66 months (1-138 months). Immediate postoperative tricuspid regurgitation was trivial to mild in 22 patients, and the median preoperative, immediate postoperative, and last follow-up tricuspid regurgitation jet areas in 21 adult patients were 23.3 cm2, 10.4 cm2, and 7.0 cm2, respectively. Two patients underwent reoperation at 81 and 119 months postoperatively. Five-year freedom from severe tricuspid regurgitation or reoperation was 93.2%. Restoration of the tricuspid valve mechanism at the level of displaced septal leaflet leads to excellent long-term outcomes. The addition of the bidirectional superior cavopulmonary anastomosis has contributed to the success of this technique. © 2016 Wiley Periodicals, Inc.
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device.
Coogan, Jessica S; Francis, W Loren; Eliason, Travis D; Bredbenner, Todd L; Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A; Nicolella, Daniel P
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3-L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3-L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus.
Hidalgo, Francisco; Mesa, Dolores; Ruiz, Martín; Delgado, Mónica; Rodríguez, Sara; Pardo, Laura; Pan, Manuel; López, Amador; Romero, Miguel A; Suárez de Lezo, José
2016-11-01
The percutaneous mitral valve repair procedure (MitraClip) appears to reduce mitral annulus diameter in patients with functional mitral regurgitation, but the relationship between this and regurgitation severity has not been demonstrated. The aim of this study was to determine the effect of mitral annulus remodeling on the reduction of mitral regurgitation in patients with functional etiology. The study included all patients with functional mitral regurgitation treated with MitraClip at our hospital until January 2015. Echocardiogram (iE33 model, Philips) was performed in all patients immediately after device positioning. Changes in the mitral annulus correlated with mitral regurgitation severity, as assessed using the effective regurgitant orifice area. The study included 23 patients (age, 65±14 years; 74% men; left ventricular ejection fraction, 31%±13%; systolic pulmonary artery pressure, 47±10 mmHg). After the procedure, the regurgitant orifice area decreased by 0.30 cm 2 ±0.04 cm 2 (P<.0005), from a baseline of 0.49 cm 2 ±0.09 cm 2 . Anteroposterior diameter decreased by 3.14 mm±1.01 mm (P<.0005) from a baseline of 28.27 mm±4.9 mm, with no changes in the intercommissural diameter (0.50 mm±0.91 mm vs 40.68 mm±4.7 mm; P=.26). A significant association was seen between anteroposterior diameter reduction and regurgitant orifice area reduction (r=.49; P=.020). In patients with functional mitral regurgitation, the MitraClip device produces an immediate reduction in the anteroposterior diameter. This remodeling may be related to the reduction in mitral regurgitation. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Tricuspid annuloplasty with the MC3 ring and septal plication technique.
Isomura, Tadashi; Hirota, Masanori; Hoshino, Joji; Fukada, Yasuhisa; Kondo, Taichi; Takahashi, Yu
2015-01-01
Functional tricuspid regurgitation is caused by annular dilation mainly in the posterior annulus. However, ring annuloplasty does not always prevent the recurrence of tricuspid regurgitation due to dilation of the septal annulus. We developed a septal plication technique with a 3-dimensional MC3 ring. Between 2006 and 2011, 76 patients (male/female 30/46; mean age 68 ± 11 years) with functional tricuspid regurgitation received tricuspid ring annuloplasty. After placement of the annular sutures, the 3 commissural ring portions were fixed on the equivalent commissures to plicate the anterior and posterior annulus. The end of the septal ring portion was fixed at the optimal annular position to obtain minimal tricuspid regurgitation. All patients were followed-up for a mean of 47 ± 18 months; the longest duration was 79 months. Although there was no operative death, one patient died of sepsis during hospitalization (hospital mortality 1.3%). After implantation of the MC3 ring (mean size 31.0 ± 3.3 mm), additional edge-to-edge sutures were required for minor leakage in 5 (7%) patients. The degree of tricuspid regurgitation was significantly reduced at discharge (0.5 ± 0.6) and midterm (0.6 ± 0.6) compared to 2.5 ± 0.7 before the operation (p < 0.0001). The surgical durability of the MC3 ring was satisfactory at early and midterm follow-up, suggesting that correct plication of the septal annulus is effective for tricuspid ring annuloplasty with a 3-dimensional MC3 ring. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device
Coogan, Jessica S.; Francis, W. Loren; Eliason, Travis D.; Bredbenner, Todd L.; Stemper, Brian D.; Yoganandan, Narayan; Pintar, Frank A.; Nicolella, Daniel P.
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3–L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3–L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus. PMID:27990418
Nacar, Alper Buğra; Acar, Gürkan; Yorgun, Hikmet; Akçay, Ahmet; Özkaya, Mesut; Canpolat, Uğur; Akkoyun, Murat; Tuncer, Cemal
2012-09-01
Prolonged atrial conduction time measured by tissue Doppler imaging (TDI) has been associated with increased risk of atrial fibrillation. We aimed to evaluate the effect of subclinical hyperthyroidism (SH) and antithyroid treatment on atrial conduction time. A total of 30 patients with SH (26 females; mean age 34.8 ± 8.5 years) and 30 age- and gender-matched controls were included. Using TDI, atrial conduction time was measured from the lateral mitral annulus, septal mitral annulus, and lateral tricuspid annulus. Intra- and interatrial conduction delay were calculated. TDI and thyroid hormone levels were studied at the time of enrollment and after achievement of euthyroid state with propylthiouracil treatment. Patients were followed for 14 ± 3 weeks. Atrial conduction time at the lateral and septal mitral annulus were significantly higher in patients with SH compared to controls. Both inter-, right, and left intraatrial electromechanical delay were prolonged in patients with SH compared to control subjects (21.3 ± 6.1 vs. 13.9 ± 4.3, P < 0.001 and 4.2 ± 3.5 vs. 2.3 ± 1.9, P = 0.014 and 17.1 ± 6.0 vs. 11.6 ± 3.8, P < 0.001, respectively). After achievement of euthyroid state, inter- and left intraatrial electromechanical delay were significantly decreased compared to baseline values and approximated to the values of the control group (P < 0.001). SH is associated with prolonged atrial conduction time. After achievement of euthyroid state, decrement in atrial conduction time may reveal how the antithyroid treatment may prevent the development of atrial fibrillation in these patients. © 2012, Wiley Periodicals, Inc.
Effect of dynamic hydrostatic pressure on rabbit intervertebral disc cells.
Kasra, Mehran; Goel, Vijay; Martin, James; Wang, Shea-Tien; Choi, Woosung; Buckwalter, Joseph
2003-07-01
The pathogenesis of vibration-induced disorders of intervertebral disc at the cellular level is largely unknown. The objective of this study was to establish a method to investigate the ranges of constructive and destructive hydrostatic loading frequencies and amplitudes in preventing or inducing extracellular disc matrix degradation. Using a hydraulic chamber, normal rabbit intervertebral disc cells were tested under dynamic hydrostatic loading. Monolayer cultures of disc outer annulus cells and 3-dimensional (3-D) alginate cultures of disc nucleus pulposus cells were tested. Effects of different loading amplitudes (3-D culture, 0-3 MPa; monolayer, 0-1.7 MPa) and frequencies (1-20 Hz) on disc collagen and protein metabolism were investigated by measuring 3H-proline-labeled proteins associated with the cells in the extracellular matrix and release of 3H-proline-labeled molecules into culture medium. High frequency and high amplitude hydrostatic stress stimulated collagen synthesis in cultures of outer annulus cells whereas the lower amplitude and frequency hydrostatic stress had little effect. For the same loading duration and repetition, neither treatment significantly affected the relative amount of protein released from the cell layers, indicating that protein degradation and stability were unaffected. In the 3-D nucleus culture, higher amplitude and frequency increased synthesis rate and lowered degradation. In this case, loading amplitude had a stronger influence on cell response than that of loading frequency. Considering the ranges of loading amplitude and frequency used in this study, short-term application of high loading amplitudes and frequencies was beneficial in stimulation of protein synthesis and reduction of protein degradation.
Methods of performing downhole operations using orbital vibrator energy sources
Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.
2004-02-17
Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.
NASA Technical Reports Server (NTRS)
Childs, Dara W.
1993-01-01
The bulk-flow analysis results for this contract are incorporated in the following publications: 'Fluid-Structure Interaction Forces at Pump-Impeller Shroud Surfaces for Axial Vibration Analysis'; 'Centrifugal Acceleration Modes for Incompressible Fluid in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing'; 'Influence of Impeller Shroud Forces on Pump Rotordynamics'; 'Pressure Oscillation in the Leakage Annulus Between a Shrouded Impeller and Its Housing Due to Impeller-Discharge-Pressure Disturbances'; and 'Compressibility Effects on Rotor Forces in the Leakage Path Between a Shrouded Pump Impeller and Its Housing'. These publications are summarized and included in this final report. Computational Fluid Mechanics (CFD) results developed by Dr. Erian Baskharone are reported separately.
Absence of posterior tricuspid valve leaflet and valve reconstruction
Komoda, Takeshi; Stamm, Christof; Fleck, Eckart; Hetzer, Roland
2012-01-01
We report a rare case of the absence of a posterior tricuspid valve leaflet. A male patient, aged 46, suffering from severe tricuspid valve regurgitation (TR) of unknown aetiology and atrial septal aneurysm was referred to our hospital for surgery. On surgical inspection, the posterior tricuspid valve leaflet and its subvalvular apparatus were completely absent and only the valve annulus was seen in the corresponding position. The anterior and septal leaflets were normal. We successfully reconstructed the tricuspid valve as follows: the head of an anterior papillary muscle was approximated to the ventricular septum (Sebening stitch). After the approximation of the centre of the tricuspid annulus of the anterior leaflet to the tricuspid annulus on the opposite side, a sizer of 29 mm in diameter was easily passed through the anterior orifice. The posterior orifice was closed with running sutures (posterior annulorrhaphy after Hetzer). Before these procedures, we attempted to reconstruct the tricuspid valve with a posterior annulorrhaphy alone; however, valve competence was insufficient. A Sebening stitch was necessary to improve the valve competence. Echocardiography showed TR grade 1 at the patient's discharge from hospital and TR grade 1 to 2 at the follow-up, 10 months after the operation. PMID:22419794
Yang, Xinlin; Wang, Daidong; Hao, Jianrong; Gong, Meiqing; Arlet, Vincent; Balian, Gary; Shen, Francis H; Li, Xudong Joshua
2011-06-01
Tissue engineering is a promising approach for treatment of disc degeneration. Herein, we evaluated effects of rotating bioreactor culture on the extracellular matrix production and proliferation of human annulus fibrosus (AF) cells. AF cells were embedded into alginate beads, and then cultured up to 3 weeks in a rotating wall vessel bioreactor or a static vessel. By real-time reverse transcription-polymerase chain reaction, expression of aggrecan, collagen type I and type II, and collagen prolyl 4-hydroxylase II was remarkably elevated, whereas expression of matrix metalloproteinase 3 and a disintegrin and metalloproteinase with thrombospondin motifs 5 was significantly decreased under bioreactor. Biochemical analysis revealed that the levels of the whole cell-associated proteoglycan and collagen were approximately five- and twofolds in rotating bioreactor, respectively, compared to those in static culture. Moreover, AF cell proliferation was augmented in rotating bioreactor. DNA contents were threefolds higher in rotating bioreactor than that in static culture. Expression of the proliferating cell nuclear antigen was robustly enhanced in rotating bioreactor as early as 1 week. Our findings suggested that rotating bioreactor culture would be an effective technique for expansion of human annulus cells for tissue engineering driven treatment of disc degeneration.
Stelzeneder, David; Welsch, Goetz Hannes; Kovács, Balázs Krisztián; Goed, Sabine; Paternostro-Sluga, Tatjana; Vlychou, Marianna; Friedrich, Klaus; Mamisch, Tallal Charles; Trattnig, Siegfried
2012-02-01
The purpose of our investigation was to compare quantitative T2 relaxation time measurement evaluation of lumbar intervertebral discs with morphological grading in young to middle-aged patients with low back pain, using a standardized region-of-interest evaluation approach. Three hundred thirty lumbar discs from 66 patients (mean age, 39 years) with low back pain were examined on a 3.0T MR unit. Sagittal T1-FSE, sagittal, coronal, and axial T2-weighted FSE for morphological MRI, as well as a multi-echo spin-echo sequence for T2 mapping, were performed. Morphologically, all discs were classified according to Pfirrmann et al. Equally sized rectangular regions of interest (ROIs) for the annulus fibrosus were selected anteriorly and posteriorly in the outermost 20% of the disc. The space between was defined as the nucleus pulposus. To assess the reproducibility of this evaluation, inter- and intraobserver statistics were performed. The Pfirrmann scoring of 330 discs showed the following results: grade I: six discs (1.8%); grade II: 189 (57.3%); grade III: 96 (29.1%); grade IV: 38 (11.5%); and grade V: one (0.3%). The mean T2 values (in milliseconds) for the anterior and the posterior annulus, and the nucleus pulposus for the respective Pfirrmann groups were: I: 57/30/239; II: 44/67/129; III: 42/51/82; and IV: 42/44/56. The nucleus pulposus T2 values showed a stepwise decrease from Pfirrmann grade I to IV. The posterior annulus showed the highest T2 values in Pfirrmann group II, while the anterior annulus showed relatively constant T2 values in all Pfirrmann groups. The inter- and intraobserver analysis yielded intraclass correlation coefficients (ICC) for average measures in a range from 0.82 (anterior annulus) to 0.99 (nucleus). Our standardized method of region-specific quantitative T2 relaxation time evaluation seems to be able to characterize different degrees of disc degeneration quantitatively. The reproducibility of our ROI measurements is sufficient to encourage the use of this method in future investigations, particularly for longitudinal studies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Tricuspid annulus: A spatial and temporal analysis
Knio, Ziyad O.; Montealegre-Gallegos, Mario; Yeh, Lu; Chaudary, Bilal; Jeganathan, Jelliffe; Matyal, Robina; Khabbaz, Kamal R.; Liu, David C.; Senthilnathan, Venkatachalam; Mahmood, Feroze
2016-01-01
Background: Traditional two-dimensional (2D) echocardiographic evaluation of tricuspid annulus (TA) dilation is based on single-frame measurements of the septolateral (S-L) dimension. This may not represent either the axis or the extent of dynamism through the entire cardiac cycle. In this study, we used real-time 3D transesophageal echocardiography (TEE) to analyze geometric changes in multiple axes of the TA throughout the cardiac cycle in patients without right ventricular abnormalities. Materials and Methods: R-wave-gated 3D TEE images of the TA were acquired in 39 patients undergoing cardiovascular surgery. The patients with abnormal right ventricular/tricuspid structure or function were excluded from the study. For each patient, eight points along the TA were traced in the 3D dataset and used to reconstruct the TA at four stages of the cardiac cycle (end- and mid-systole, end- and mid-diastole). Statistical analyses were applied to determine whether TA area, perimeter, axes, and planarity changed significantly over each stage of the cardiac cycle. Results: TA area (P = 0.012) and perimeter (P = 0.024) both changed significantly over the cardiac cycle. Of all the axes, only the posterolateral-anteroseptal demonstrated significant dynamism (P < 0.001). There was also a significant displacement in the vertical axis between the points and the regression plane in end-systole (P < 0.001), mid-diastole (P = 0.014), and mid-systole (P < 0.001). Conclusions: The TA demonstrates selective dynamism over the cardiac cycle, and its axis of maximal dynamism is different from the axis (S-L) that is routinely measured with 2D TEE. PMID:27716689
Alternate seal configuration for lithium primary cells
NASA Technical Reports Server (NTRS)
Kelley, J. A.
1982-01-01
The problem of glass degradation in the glass-to-metal seals in lithium/sulfur dioxide cells is discussed. The glass degradation mechanism is attributed to lithium reacting with glass which is a result of deposition of lithium at the glass/metal/electrolyte interface. The worst degradation was observed when cells were stored in the inverted position. Alternate sealing methods were examined and a modified Ziegler seal is considered to be one of the best possible methods. The seal consists of a crimp type soft seal using a plastic annulus and a metal tube. Results of degradation tests are presented.
Two-Stage Fan I: Aerodynamic and Mechanical Design
NASA Technical Reports Server (NTRS)
Messenger, H. E.; Kennedy, E. E.
1972-01-01
A two-stage, highly-loaded fan was designed to deliver an overall pressure ratio of 2.8 with an adiabatic efficiency of 83.9 percent. At the first rotor inlet, design flow per unit annulus area is 42 lbm/sec/sq ft (205 kg/sec/sq m), hub/tip ratio is 0.4 with a tip diameter of 31 inches (0.787 m), and design tip speed is 1450 ft/sec (441.96 m/sec). Other features include use of multiple-circular-arc airfoils, resettable stators, and split casings over the rotor tip sections for casing treatment tests.
The response of Galileo aft cover components to laser radiation
NASA Technical Reports Server (NTRS)
Metzger, J. W.
1982-01-01
The aft region of the Galileo probe will be subjected to severe heat transfer rates dominated by the radiation contributions. To assess the response of several vehicle aft region components to thermal radiation, tests employing a 10 KW CO2 laser were conducted. The experiments evaluated the annulus/aft cover interface, the umbilical feedthrough assembly and the mortar cover seal assembly. Experimental evidence of the response of the phenolic nylon heatshield and quantitative measures of its effect on gap geometries of several vehicle components were acquired. In addition, qualitative measures of the survivability of the irradiated components were obtained.
The effect of surface tension on steadily translating bubbles in an unbounded Hele-Shaw cell
2017-01-01
New numerical solutions to the so-called selection problem for one and two steadily translating bubbles in an unbounded Hele-Shaw cell are presented. Our approach relies on conformal mapping which, for the two-bubble problem, involves the Schottky-Klein prime function associated with an annulus. We show that a countably infinite number of solutions exist for each fixed value of dimensionless surface tension, with the bubble shapes becoming more exotic as the solution branch number increases. Our numerical results suggest that a single solution is selected in the limit that surface tension vanishes, with the scaling between the bubble velocity and surface tension being different to the well-studied problems for a bubble or a finger propagating in a channel geometry. PMID:28588410
Visser, Lance C; Scansen, Brian A; Schober, Karsten E
2013-06-01
A coronary artery anomaly characterized by the presence of a single left coronary ostium with absence of the right coronary ostium and an anomalous prepulmonic right coronary artery course was observed in two dogs with concurrent congenital pulmonary valve stenosis. This unique coronary artery anatomy is similar to the previously described single right coronary ostium with anomalous prepulmonic left coronary artery, the so-called type R2A anomaly, in that an anomalous coronary artery encircles the pulmonary valve annulus. Both dogs of this report, a boxer and an English bulldog, were of breeds known to be at risk for the type R2A anomaly. As such, veterinarians should be aware that the echocardiographic presence of a left coronary ostium in a dog with pulmonary valve stenosis does not exclude the possibility of a prepulmonic coronary artery anomaly that may enhance the risk of complications during balloon pulmonary valvuloplasty. A descriptive naming convention for coronary artery anomalies in dogs is also presented, which may be preferable to the older coding classification scheme. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.
1979-01-01
The efficiency of internal noise radiation through coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken to: (1) define the test parameters which influence the internal noise radiation; (2) develop a test methodology which could realistically be used to examine the effects of the test parameters; (3) and to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the in the jet nozzles. Noise transmission characteristics of a nozzle system were then investigated. In particular, the effects of fan nozzle convergence angle, core extention length to annulus height ratio, and flow Mach number and temperatures were studied. The results are presented as normalized directivity plots.
NASA Technical Reports Server (NTRS)
Kovich, G.; Moore, R. D.; Urasek, D. C.
1973-01-01
The overall and blade-element performance are presented for an air compressor stage designed to study the effect of weight flow per unit annulus area on efficiency and flow range. At the design speed of 424.8 m/sec the peak efficiency of 0.81 occurred at the design weight flow and a total pressure ratio of 1.56. Design pressure ratio and weight flow were 1.57 and 29.5 kg/sec (65.0 lb/sec), respectively. Stall margin at design speed was 19 percent based on the weight flow and pressure ratio at peak efficiency and at stall.
Bifurcation of Limit Cycles in a Near-Hamiltonian System with a Cusp of Order Two and a Saddle
NASA Astrophysics Data System (ADS)
Bakhshalizadeh, Ali; Zangeneh, Hamid R. Z.; Kazemi, Rasool
In this paper, the asymptotic expansion of first-order Melnikov function of a heteroclinic loop connecting a cusp of order two and a hyperbolic saddle for a planar near-Hamiltonian system is given. Next, we consider the limit cycle bifurcations of a hyper-elliptic Liénard system with this kind of heteroclinic loop and study the least upper bound of limit cycles bifurcated from the period annulus inside the heteroclinic loop, from the heteroclinic loop itself and the center. We find that at most three limit cycles can be bifurcated from the period annulus, also we present different distributions of bifurcated limit cycles.
Bimodal spatial distribution of macular pigment: evidence of a gender relationship
NASA Astrophysics Data System (ADS)
Delori, François C.; Goger, Douglas G.; Keilhauer, Claudia; Salvetti, Paola; Staurenghi, Giovanni
2006-03-01
The spatial distribution of the optical density of the human macular pigment measured by two-wavelength autofluorescence imaging exhibits in over half of the subjects an annulus of higher density superimposed on a central exponential-like distribution. This annulus is located at about 0.7° from the fovea. Women have broader distributions than men, and they are more likely to exhibit this bimodal distribution. Maxwell's spot reported by subjects matches the measured distribution of their pigment. Evidence that the shape of the foveal depression may be gender related leads us to hypothesize that differences in macular pigment distribution are related to anatomical differences in the shape of the foveal depression.
Yuan, Yuan; Long, Deyong; Dong, Jianzeng; Tao, Ling; Ma, Changsheng
2017-12-01
We report a case of a patient with right axillary ventricular. Similar congenital anomaly of the right atrium was reported as "right appendage diverticulum or right atrial diverticulum." However, this independent chamber has its own annulus, synchronizes with the right ventricular, and generates large ventricular potential. Under the guidance of the CARTO mapping system (Biosense Webster, Diamond Bar, CA, USA), a right atrioventricular accessory pathway associated with type B Wolff-Parkinson-White syndrome was ablated successfully. This pathway was close to the annulus of the axillary ventricular. The patient remained free of arrhythmia at 1-year follow-up. © 2017 Wiley Periodicals, Inc.
3D segmentation of annulus fibrosus and nucleus pulposus from T2-weighted magnetic resonance images
NASA Astrophysics Data System (ADS)
Castro-Mateos, Isaac; Pozo, Jose M.; Eltes, Peter E.; Del Rio, Luis; Lazary, Aron; Frangi, Alejandro F.
2014-12-01
Computational medicine aims at employing personalised computational models in diagnosis and treatment planning. The use of such models to help physicians in finding the best treatment for low back pain (LBP) is becoming popular. One of the challenges of creating such models is to derive patient-specific anatomical and tissue models of the lumbar intervertebral discs (IVDs), as a prior step. This article presents a segmentation scheme that obtains accurate results irrespective of the degree of IVD degeneration, including pathological discs with protrusion or herniation. The segmentation algorithm, employing a novel feature selector, iteratively deforms an initial shape, which is projected into a statistical shape model space at first and then, into a B-Spline space to improve accuracy. The method was tested on a MR dataset of 59 patients suffering from LBP. The images follow a standard T2-weighted protocol in coronal and sagittal acquisitions. These two image volumes were fused in order to overcome large inter-slice spacing. The agreement between expert-delineated structures, used here as gold-standard, and our automatic segmentation was evaluated using Dice Similarity Index and surface-to-surface distances, obtaining a mean error of 0.68 mm in the annulus segmentation and 1.88 mm in the nucleus, which are the best results with respect to the image resolution in the current literature.
Shoreline features of Titan's Ontario Lacus from Cassini/VIMS observations
Barnes, J.W.; Brown, R.H.; Soderblom, J.M.; Soderblom, L.A.; Jaumann, R.; Jackson, B.; Le, Mouelic S.; Sotin, Christophe; Buratti, B.J.; Pitman, K.M.; Baines, K.H.; Clark, R.N.; Nicholson, P.D.; Turtle, E.P.; Perry, J.
2009-01-01
We analyze observations of Titan's south polar lake Ontario Lacus obtained by Cassini's Visual and Infrared Mapping Spectrometer during the 38th flyby of Titan (T38; 2007 December 5). These near-closest-approach observations have the highest signal-to-noise, the finest spatial resolution, and the least atmospheric influence of any near-infrared lake observation to date. We use the large, spatially flat, and low-albedo interior of Ontario Lacus as a calibration target allowing us to derive an analytical atmospheric correction for emission angle. The dark lake interior is surrounded by two separate annuli that follow the lake interior's contours. The inner annulus is uniformly dark, but not so much as the interior lake, and is generally 5-10 kilometers wide at the lake's southeastern margin. We propose that it represents wet lakebed sediments exposed by either tidal sloshing of the lake or seasonal methane loss leading to lower lake-volume. The exterior annulus is bright and shows a spectrum consistent with a relatively low water-ice content relative to the rest of Titan. It may represent fine-grained condensate deposits from a past era of higher lake level. Together, the annuli seem to indicate that the lake level for Ontario Lacus has changed over time. This hypothesis can be tested with observations scheduled for future Titan flybys. ?? 2008 Elsevier Inc.
The role of three-dimensional visualization in robotics-assisted cardiac surgery
NASA Astrophysics Data System (ADS)
Currie, Maria; Trejos, Ana Luisa; Rayman, Reiza; Chu, Michael W. A.; Patel, Rajni; Peters, Terry; Kiaii, Bob
2012-02-01
Objectives: The purpose of this study was to determine the effect of three-dimensional (3D) versus two-dimensional (2D) visualization on the amount of force applied to mitral valve tissue during robotics-assisted mitral valve annuloplasty, and the time to perform the procedure in an ex vivo animal model. In addition, we examined whether these effects are consistent between novices and experts in robotics-assisted cardiac surgery. Methods: A cardiac surgery test-bed was constructed to measure forces applied by the da Vinci surgical system (Intuitive Surgical, Sunnyvale, CA) during mitral valve annuloplasty. Both experts and novices completed roboticsassisted mitral valve annuloplasty with 2D and 3D visualization. Results: The mean time for both experts and novices to suture the mitral valve annulus and to tie sutures using 3D visualization was significantly less than that required to suture the mitral valve annulus and to tie sutures using 2D vision (p∠0.01). However, there was no significant difference in the maximum force applied by novices to the mitral valve during suturing (p = 0.3) and suture tying (p = 0.6) using either 2D or 3D visualization. Conclusion: This finding suggests that 3D visualization does not fully compensate for the absence of haptic feedback in robotics-assisted cardiac surgery. Keywords: Robotics-assisted surgery, visualization, cardiac surgery
Kumar, Gideon Praveen; Cui, Fangsen; Phang, Hui Qun; Su, Boyang; Leo, Hwa Liang; Hon, Jimmy Kim Fatt
2014-07-01
Percutaneous heart valve replacement is gaining popularity, as more positive reports of satisfactory early clinical experiences are published. However this technique is mostly used for the replacement of pulmonary and aortic valves and less often for the repair and replacement of atrioventricular valves mainly due to their anatomical complexity. While the challenges posed by the complexity of the mitral annulus anatomy cannot be mitigated, it is possible to design mitral stents that could offer good anchorage and support to the valve prosthesis. This paper describes four new Nitinol based mitral valve designs with specific features intended to address migration and paravalvular leaks associated with mitral valve designs. The paper also describes maximum possible crimpability assessment of these mitral stent designs using a crimpability index formulation based on the various stent design parameters. The actual crimpability of the designs was further evaluated using finite element analysis (FEA). Furthermore, fatigue modeling and analysis was also done on these designs. One of the models was then coated with polytetrafluoroethylene (PTFE) with leaflets sutured and put to: (i) leaflet functional tests to check for proper coaptation of the leaflet and regurgitation leakages on a phantom model and (ii) anchorage test where the stented valve was deployed in an explanted pig heart. Simulations results showed that all the stents designs could be crimped to 18F without mechanical failure. Leaflet functional test results showed that the valve leaflets in the fabricated stented valve coapted properly and the regurgitation leakage being within acceptable limits. Deployment of the stented valve in the explanted heart showed that it anchors well in the mitral annulus. Based on these promising results of the one design tested, the other stent models proposed here were also considered to be promising for percutaneous replacement of mitral valves for the treatment of mitral regurgitation, by virtue of their key features as well as effective crimping. These models will be fabricated and put to all the aforementioned tests before being taken for animal trials. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Likhitpanichkul, M.; Dreischarf, M.; Illien-Junger, S.; Walter, B. A.; Nukaga, T.; Long, R. G; Sakai, D.; Hecht, A. C.; Iatridis, J. C.
2015-01-01
Annulus fibrosus (AF) defects from annular tears, herniation, and discectomy procedures are associated with painful conditions and accelerated intervertebral disc (IVD) degeneration. Currently, no effective treatments exist to repair AF damage, restore IVD biomechanics and promote tissue regeneration. An injectable fibrin-genipin adhesive hydrogel (Fib-Gen) was evaluated for its performance repairing large AF defects in a bovine caudal IVD model using ex vivo organ culture and biomechanical testing of motion segments, and for its in vivo longevity and biocompatibility in a rat model by subcutaneous implantation. Fib-Gen sealed AF defects, prevented IVD height loss, and remained well-integrated with native AF tissue following approximately 14,000 cycles of compression in 6-day organ culture experiments. Fib-Gen repair also retained high viability of native AF cells near the repair site, reduced nitric oxide released to the media, and showed evidence of AF cell migration into the gel. Biomechanically, Fib-Gen fully restored compressive stiffness to intact levels validating organ culture findings. However, only partial restoration of tensile and torsional stiffness was obtained, suggesting opportunities to enhance this formulation. Subcutaneous implantation results, when compared with the literature, suggested Fib-Gen exhibited similar biocompatibility behaviour to fibrin alone but degraded much more slowly. We conclude that injectable Fib-Gen successfully sealed large AF defects, promoted functional restoration with improved motion segment biomechanics, and served as a biocompatible adhesive biomaterial that had greatly enhanced in vivo longevity compared to fibrin. Fib-Gen offers promise for AF repairs that may prevent painful conditions and accelerated degeneration of the IVD, and warrants further material development and evaluation. PMID:25036053
Likhitpanichkul, M; Dreischarf, M; Illien-Junger, S; Walter, B A; Nukaga, T; Long, R G; Sakai, D; Hecht, A C; Iatridis, J C
2014-07-18
Annulus fibrosus (AF) defects from annular tears, herniation, and discectomy procedures are associated with painful conditions and accelerated intervertebral disc (IVD) degeneration. Currently, no effective treatments exist to repair AF damage, restore IVD biomechanics and promote tissue regeneration. An injectable fibrin-genipin adhesive hydrogel (Fib-Gen) was evaluated for its performance repairing large AF defects in a bovine caudal IVD model using ex vivo organ culture and biomechanical testing of motion segments, and for its in vivo longevity and biocompatibility in a rat model by subcutaneous implantation. Fib-Gen sealed AF defects, prevented IVD height loss, and remained well-integrated with native AF tissue following approximately 14,000 cycles of compression in 6-day organ culture experiments. Fib-Gen repair also retained high viability of native AF cells near the repair site, reduced nitric oxide released to the media, and showed evidence of AF cell migration into the gel. Biomechanically, Fib-Gen fully restored compressive stiffness to intact levels validating organ culture findings. However, only partial restoration of tensile and torsional stiffness was obtained, suggesting opportunities to enhance this formulation. Subcutaneous implantation results, when compared with the literature, suggested Fib-Gen exhibited similar biocompatibility behaviour to fibrin alone but degraded much more slowly. We conclude that injectable Fib-Gen successfully sealed large AF defects, promoted functional restoration with improved motion segment biomechanics, and served as a biocompatible adhesive biomaterial that had greatly enhanced in vivo longevity compared to fibrin. Fib-Gen offers promise for AF repairs that may prevent painful conditions and accelerated degeneration of the IVD, and warrants further material development and evaluation.
Unexpected delayed complete atrioventricular block after Cardioband implantation.
Sorini Dini, Carlotta; Landi, Daniele; Meucci, Francesco; Di Mario, Carlo
2018-03-06
The Cardioband system is a transcatheter direct annuloplasty device that is implanted in patients with severe symptomatic functional mitral regurgitation (MR) due to annulus dilatation and high surgical risk. This device covers the posterior two-thirds of the annulus, from the anterolateral to the posteromedial commissure, implanted in close proximity of the left circumflex artery, atrioventricular (AV) conduction system, and coronary sinus. We present the case of an 80-year-old-gentleman with prohibitive surgical risk, treated with Cardioband implantation for functional MR with an evident P1-P2 cleft and P2-P3 indentation, a relative contraindication to MitraClip implantation. We achieved procedural success with significative mitral annulus reduction (30% anteroposterior reduction from 37 to 26 mm) and MR reduction (from grade 4 to grade 1-2). A late onset Mobitz 2 AV block developed after 26 hr and evolved to complete AV block in the following day, requiring definitive biventricular pacemaker (PM). Less than 200 Cardioband implantations have been performed but, to our knowledge, this is the first reported AV block, possibly facilitated by the pre-existing bifascicular block, suggesting the opportunity of prolonged ECG monitoring after Cardioband like any other mechanical transcatheter structural intervention possibly affecting the AV conduction system. © 2018 Wiley Periodicals, Inc.
Cagdas, Metin; Velibey, Yalcin; Guvenc, Tolga Sinan; Gungor, Baris; Guzelburc, Ozge; Calik, Nazmi; Ugur, Murat; Tekkesin, Ahmet Ilker; Gurkan, Kadir; Eren, Mehmet
2015-01-01
Atrial electromechanical delay (AEMD) that reflects delayed conduction may show us the clinical reflection of pathological changes in the atria. The main objective of the present study is to investigate AEMD in patients who had previous rheumatic carditis but without hemodynamically significant valvular disease. A total of 40 patients, previously diagnosed as rheumatic carditis but without significant valvular stenosis/regurgitation and atrial enlargement; and 39 age- and-sex matched controls were enrolled for the present study. Parameters of AEMD (lateral mitral annulus electromechanical delay, septal mitral annulus electromechanical delay and lateral tricuspid annulus electromechanical delay) were measured with tissue Doppler echocardiography and left intra-atrial and inter-atrial conduction times were calculated accordingly. A 24h ambulatory Holter monitoring was used in both groups to detect atrial fibrillation episodes and quantify atrial extrasystoles. Parameters of AEMD, including left intra-atrial and inter-atrial conduction times of subjects in the study group were longer compared to the control group (23.7 ± 7.0 vs. 18.3 ± 6.2). Increased AEMD is observed in patients with previous rheumatic carditis and no significant valvular stenosis/regurgitation and atrial enlargement, which may partly explain the increased incidence of atrial fibrillation observed in these patients.
Calafiore, Antonio Maria; Bartoloni, Giovanni; Al Amri, Hussein; Iacò, Angela Lorena; Abukhudair, Walid; Lanzaro, Bianca Iadanza; Di Mauro, Michele
2012-11-01
The tricuspid valve (TV) lies in between the right atrium and the right ventricle (RV), consisting of annulus, leaflets, chords and papillary muscles. The RV appears triangular-shaped in a lateral view and crescent-shaped in a cross-section one. In normal conditions, the septum is concave toward the left ventricle (LV) in both systole and diastole and the RV volume is larger than the LV volume, although its mass is a third of the LV. The strict relationship between the TV apparatus and the RV underlies the physiological mechanism of TV functioning, and so, the RV plays an important role in case of functional tricuspid regurgitation. Nevertheless, the systematic assessment of RV is still not performed mainly due to lack of standardization. Hence, new echocardiographic guidelines have recently been proposed to standardize the RV assessment using transthoracic 2D‑echocardiography. 3D-echocardiography and MRI are more useful to measure volumes and ejection fraction; in particular, MRI is able to provide a tissue evaluation. Today, surgical strategies are directed mainly to the annulus with fluctuating results because functional tricuspid regurgitation is not due only to the annulus but also to the RV, which is difficult to assess, due to its evolution being unpredictable and complicated by the interaction with LV.
Small aspect ratio Taylor-Couette flow: onset of a very-low-frequency three-torus state.
Lopez, Juan M; Marques, Francisco
2003-09-01
The nonlinear dynamics of Taylor-Couette flow in a small aspect ratio annulus (where the length of the cylinders is half of the annular gap between them) is investigated by numerically solving the full three-dimensional Navier-Stokes equations. The system is invariant to arbitrary rotations about the annulus axis and to a reflection about the annulus half-height, so that the symmetry group is SO(2)xZ2. In this paper, we systematically investigate primary and subsequent bifurcations of the basic state, concentrating on a parameter regime where the basic state becomes unstable via Hopf bifurcations. We derive the four distinct cases for the symmetries of the bifurcated orbit, and numerically find two of these. In the parameter regime considered, we also locate the codimension-two double Hopf bifurcation where these two Hopf bifurcations coincide. Secondary Hopf bifurcations (Neimark-Sacker bifurcations), leading to modulated rotating waves, are subsequently found and a saddle-node-infinite-period bifurcation between a stable (node) and an unstable (saddle) modulated rotating wave is located, which gives rise to a very-low-frequency three-torus. This paper provides the computed example of such a state, along with a comprehensive bifurcation sequence leading to its onset.
Silicon sample holder for molecular beam epitaxy on pre-fabricated integrated circuits
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor)
1994-01-01
The sample holder of the invention is formed of the same semiconductor crystal as the integrated circuit on which the molecular beam expitaxial process is to be performed. In the preferred embodiment, the sample holder comprises three stacked micro-machined silicon wafers: a silicon base wafer having a square micro-machined center opening corresponding in size and shape to the active area of a CCD imager chip, a silicon center wafer micro-machined as an annulus having radially inwardly pointing fingers whose ends abut the edges of and center the CCD imager chip within the annulus, and a silicon top wafer micro-machined as an annulus having cantilevered membranes which extend over the top of the CCD imager chip. The micro-machined silicon wafers are stacked in the order given above with the CCD imager chip centered in the center wafer and sandwiched between the base and top wafers. The thickness of the center wafer is about 20% less than the thickness of the CCD imager chip. Preferably, four titanium wires, each grasping the edges of the top and base wafers, compress all three wafers together, flexing the cantilever fingers of the top wafer to accommodate the thickness of the CCD imager chip, acting as a spring holding the CCD imager chip in place.
Ultrasound based mitral valve annulus tracking for off-pump beating heart mitral valve repair
NASA Astrophysics Data System (ADS)
Li, Feng P.; Rajchl, Martin; Moore, John; Peters, Terry M.
2014-03-01
Mitral regurgitation (MR) occurs when the mitral valve cannot close properly during systole. The NeoChordtool aims to repair MR by implanting artificial chordae tendineae on flail leaflets inside the beating heart, without a cardiopulmonary bypass. Image guidance is crucial for such a procedure due to the lack of direct vision of the targets or instruments. While this procedure is currently guided solely by transesophageal echocardiography (TEE), our previous work has demonstrated that guidance safety and efficiency can be significantly improved by employing augmented virtuality to provide virtual presentation of mitral valve annulus (MVA) and tools integrated with real time ultrasound image data. However, real-time mitral annulus tracking remains a challenge. In this paper, we describe an image-based approach to rapidly track MVA points on 2D/biplane TEE images. This approach is composed of two components: an image-based phasing component identifying images at optimal cardiac phases for tracking, and a registration component updating the coordinates of MVA points. Preliminary validation has been performed on porcine data with an average difference between manually and automatically identified MVA points of 2.5mm. Using a parallelized implementation, this approach is able to track the mitral valve at up to 10 images per second.
Kapich, Davorin D.
1985-01-01
A shaft seal system is disclosed for isolating two regions of different fluid mediums through which a rotatable shaft extends. The seal system includes a seal housing through which the shaft extends and which defines an annular land and an annular labyrinth both of which face on the shaft so that each establishes a corresponding fluid sealing annulus. A collection cavity is formed in communication with the annular sealing spaces, and fluids compatible with the fluids in each of the two regions to be isolated are introduced, respectively, into the annular sealing spaces and collected in the collection cavity from which the fluid mixture is removed and passed to a separator which separates the fluids and returns them to their respective annular sealing spaces in a recycling manner. In the illustrated embodiment, the isolated fluid mediums comprise a liquid region and a gas region. Gas is removed from the gas region and passed through a purifier and a gas pump operative to introduce the purified gas through the labyrinth sealing annulus to the collection cavity. After passing to the separator, the separated gas is passed through a dryer from which the dried gas is caused to pass through the labyrinth sealing annulus into the collection cavity independently of the purified gas so as to insure isolation of the gas region in the event of sealing gas pump malfunction.
Skoda, G.I.
1989-03-28
A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring-preferably of the Belleville variety-acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion.
Degradation of Victoria Crater, Mars
NASA Technical Reports Server (NTRS)
Wilson, Sharon A.; Grant, John A.; Cohen, Barbara A.; Golombek, Mathew P.; Geissler, Paul E.; Sullivan, Robert J.; Kirk, Randolph L.; Parker, Timothy J.
2008-01-01
The $\\sim$750 m diameter and $\\sim$75 m deep Victoria crater in Meridiani Planum, Mars, presents evidence for significant degradation including a low, serrated, raised rim characterized by alternating alcoves and promontories, a surrounding low relief annulus, and a floor partially covered by dunes. The amount and processes of degradation responsible for the modified appearance of Victoria crater were evaluated using images obtained in situ by the Mars Exploration Rover Opportunity in concert with a digital elevation model created using orbital HiRISE images. Opportunity traversed along the north and northwest rim and annulus, but sufficiently characterized features visible in the DEM to enable detailed measurements of rim relief, ejecta thickness, and wall slopes around the entire degraded, primary impact structure. Victoria retains a 5 m raised rim consisting of 1-2 m of uplifted rocks overlain by 3 m of ejecta at the rim crest. The rim is $\\sim$120 to 220 m wide and is surrounded by a dark annulus reaching an average of 590 m beyond the raised rim. Comparison between observed morphology and that expected for pristine craters 500 to 750 m across indicate the original, pristine crater was close to 600 m in diameter. Hence, the crater has been erosionally widened by approximately 150 m and infilled by about 50 m of sediments. Eolian processes are responsible for modification at Victoria, but lesser contributions from mass wasting or other processes cannot be ruled out. Erosion by prevailing winds is most significant along the exposed rim and upper walls and accounts for $\\sim$50 m widening across a WNW-ESE diameter. The volume of material eroded from the crater walls and rim is $\\sim$20% less than the volume of sediments partially filling the crater, indicating eolian infilling from sources outside the crater over time. The annulus formed when $\\sim$1 m deflation of the ejecta created a lag of more resistant hematite spherules that trapped darker, regional basaltic sands.
Laser anemometer measurements in a transonic axial-flow fan rotor
NASA Technical Reports Server (NTRS)
Strazisar, Anthony J.; Wood, Jerry R.; Hathaway, Michael D.; Suder, Kenneth L.
1989-01-01
Laser anemometer surveys were made of the 3-D flow field in NASA rotor 67, a low aspect ratio transonic axial-flow fan rotor. The test rotor has a tip relative Mach number of 1.38. The flowfield was surveyed at design speed at near peak efficiency and near stall operating conditions. Data is presented in the form of relative Mach number and relative flow angle distributions on surfaces of revolution at nine spanwise locations evenly spaced from hub to tip. At each spanwise location, data was acquired upstream, within, and downstream of the rotor. Aerodynamic performance measurements and detailed rotor blade and annulus geometry are also presented so that the experimental results can be used as a test case for 3-D turbomachinery flow analysis codes.
Prenatal Sonographic Predictors of Neonatal Coarctation of the Aorta.
Anuwutnavin, Sanitra; Satou, Gary; Chang, Ruey-Kang; DeVore, Greggory R; Abuel, Ashley; Sklansky, Mark
2016-11-01
To identify practical prenatal sonographic markers for the postnatal diagnosis of coarctation of the aorta. We reviewed the fetal echocardiograms and postnatal outcomes of fetal cases of suspected coarctation of the aorta seen at a single institution between 2010 and 2014. True- and false-positive cases were compared. Logistic regression analysis was used to determine echocardiographic predictors of coarctation of the aorta. Optimal cutoffs for these markers and a multivariable threshold scoring system were derived to discriminate fetuses with coarctation of the aorta from those without coarctation of the aorta. Among 35 patients with prenatal suspicion of coarctation of the aorta, the diagnosis was confirmed postnatally in 9 neonates (25.7% true-positive rate). Significant predictors identified from multivariate analysis were as follows: Z score for the ascending aorta diameter of -2 or less (P = < .001), Z score for the mitral valve annulus of -2 or less (P= .033), Zscore for the transverse aortic arch diameter of -2 or less (P= .028), and abnormal aortic valve morphologic features (P= .026). Among all variables studied, the ascending aortic Z score had the highest sensitivity (78%) and specificity (92%) for detection of coarctation of the aorta. A multivariable threshold scoring system identified fetuses with coarctation of the aorta with still greater sensitivity (89%) and only mildly decreased specificity (88%). The finding of a diminutive ascending aorta represents a powerful and practical prenatal predictor of neonatal coarctation of the aorta. A multivariable scoring system, including dimensions of the ascending and transverse aortas, mitral valve annulus, and morphologic features of the aortic valve, provides excellent sensitivity and specificity. The use of these practical sonographic markers may improve prenatal detection of coarctation of the aorta. © 2016 by the American Institute of Ultrasound in Medicine.
NASA Astrophysics Data System (ADS)
Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi
2017-10-01
With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.
NASA Astrophysics Data System (ADS)
Spotts, Nathan
As modern trends in commercial aircraft design move toward high-bypass-ratio fan systems of increasing diameter with shorter, nonaxisymmetric nacelle geometries, inlet distortion is becoming common in all operating regimes. The distortion may induce aerodynamic instabilities within the fan system, leading to catastrophic damage to fan blades, should the surge margin be exceeded. Even in the absence of system instability, the heterogeneity of the flow affects aerodynamic performance significantly. Therefore, an understanding of fan-distortion interaction is critical to aircraft engine system design. This thesis research elucidates the complex fluid dynamics and fan-distortion interaction by means of computational fluid dynamics (CFD) modeling of a complete engine fan system; including rotor, stator, spinner, nacelle and nozzle; under conditions typical of those encountered by commercial aircraft. The CFD simulations, based on a Reynolds-averaged Navier-Stokes (RANS) approach, were unsteady, three-dimensional, and of a full-annulus geometry. A thorough, systematic validation has been performed for configurations from a single passage of a rotor to a full-annulus system by comparing the predicted flow characteristics and aerodynamic performance to those found in literature. The original contributions of this research include the integration of a complete engine fan system, based on the NASA rotor 67 transonic stage and representative of the propulsion systems in commercial aircraft, and a benchmark case for unsteady RANS simulations of distorted flow in such a geometry under realistic operating conditions. This study is unique in that the complex flow dynamics, resulting from fan-distortion interaction, were illustrated in a practical geometry under realistic operating conditions. For example, the compressive stage is shown to influence upstream static pressure distributions and thus suppress separation of flow on the nacelle. Knowledge of such flow physics is valuable for engine system design.
NASA Astrophysics Data System (ADS)
Rice, A. K.; McCray, J. E.; Singha, K.
2016-12-01
The development of directional drilling and stimulation of reservoirs by hydraulic fracturing has transformed the energy landscape in the U.S. by making recovery of hydrocarbons from shale formations not only possible but economically viable. Activities associated with hydraulic fracturing present a set of water-quality challenges, including the potential for impaired groundwater quality. In this project, we use a three-dimensional, multiphase, multicomponent numerical model to investigate hydrogeologic conditions that could lead to groundwater contamination from natural gas wellbore leakage. This work explores the fate of methane that enters a well annulus, possibly from an intermediate formation or from the production zone via a flawed cement seal, and leaves the annulus at one of two depths: at the elevation of groundwater or below a freshwater aquifer. The latter leakage scenario is largely ignored in the current scientific literature, where focus has been on leakage directly into freshwater aquifers, despite modern regulations requiring steel casings and cement sheaths at these depths. We perform a three-stage sensitivity analysis, examining (1) hydrogeologic parameters of media surrounding a methane leakage source zone, (2) geostatistical variations in intrinsic permeability, and (3) methane source zone pressurization. Results indicate that in all cases methane reaches groundwater within the first year of leakage. To our knowledge, this is the first study to consider natural gas wellbore leakage in the context of multiphase flow through heterogeneous permeable media; advantages of multiphase modeling include more realistic analysis of methane vapor-phase relative permeability as compared to single-phase models. These results can be used to inform assessment of aquifer vulnerability to hydrocarbon wellbore leakage at varying depths.
A closer look at four-dot masking of a foveated target
Wilson, Hugh R.
2016-01-01
Four-dot masking with a common onset mask was recently demonstrated in a fully attended and foveated target (Filmer, Mattingley & Dux, 2015). Here, we replicate and extend this finding by directly comparing a four-dot mask with an annulus mask while probing masking as a function of mask duration, and target-mask separation. Our results suggest that while an annulus mask operates via spatially local contour interactions, a four-dot mask operates through spatially global mechanisms. We also measure how the visual system’s representation of an oriented bar is impacted by a four-dot mask, and find that masking here does not degrade the precision of perceived targets, but instead appears to be driven exclusively by rendering the target completely invisible. PMID:27280073
Two-phase/two-phase heat exchanger simulation analysis
NASA Technical Reports Server (NTRS)
Kim, Rhyn H.
1992-01-01
The capillary pumped loop (CPL) system is one of the most desirable devices to dissipate heat energy in the radiation environment of the Space Station providing a relatively easy control of the temperature. A condenser, a component of the CPL system, is linked with a buffer evaporator in the form of an annulus section of a double tube heat exchanger arrangement: the concentric core of the double tube is the condenser; the annulus section is used as a buffer between the conditioned space and the radiation surrounding but works as an evaporator. A CPL system with this type of condenser is modeled to simulate its function numerically. Preliminary results for temperature variations of the system are shown and more investigations are suggested for further improvement.
Instantons in Script N = 2 magnetized D-brane worlds
NASA Astrophysics Data System (ADS)
Billò, Marco; Frau, Marialuisa; Pesando, Igor; Di Vecchia, Paolo; Lerda, Alberto; Marotta, Raffaele
2007-10-01
In a toroidal orbifold of type IIB string theory we study instanton effects in Script N = 2 super Yang-Mills theories engineered with systems of wrapped magnetized D9 branes and Euclidean D5 branes. We analyze the various open string sectors in this brane system and study the 1-loop amplitudes described by annulus diagrams with mixed boundary conditions, explaining their rôle in the stringy instanton calculus. We show in particular that the non-holomorphic terms in these annulus amplitudes precisely reconstruct the appropriate Kähler metric factors that are needed to write the instanton correlators in terms of purely holomorphic variables. We also explicitly derive the correct holomorphic structure of the instanton induced low energy effective action in the Coulomb branch.
Fitts' Law? a Test of the Relationship Between Information Load and Movement Precision
NASA Technical Reports Server (NTRS)
Zalaski, M.; Sanderson, P.
1984-01-01
The independence of information load (Hick's Law) and movement precision (Fitts' Law) was tested using additive factors methodology. Subjects were required to classify stimuli according to a decision rule with a variable entropy. The stimuli were presented in the center of the CRT screen. In response, subjects had to move a cursor from a starting point near the stimulus to the appropriate target. The precision of the response movement was varied by manipulating the ratio of the radius of the annulus to the width of the target area. The dependent measure was elapsed time between onset of the stimulus and completion of the response movement. Independence of the Hick's Law and Fitts' Law components of the reaction time was tested with an analysis of variance. Presence of an interaction would suggest that a decision stage and a response stage are dependent, and cannot be considered discrete steps in a serial process.
Ultrasonic Doppler measurement of renal artery blood flow
NASA Technical Reports Server (NTRS)
Freund, W. R.; Beaver, W. L.; Meindl, J. D.
1976-01-01
Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.
Inertial migration of particles in Taylor-Couette flows
NASA Astrophysics Data System (ADS)
Majji, Madhu V.; Morris, Jeffrey F.
2018-03-01
An experimental study of inertial migration of neutrally buoyant particles in the circular Couette flow (CCF), Taylor vortex flow (TVF) and wavy vortex flow (WVF) is reported. This work considers a concentric cylinder Taylor-Couette device with a stationary outer cylinder and rotating inner cylinder. The device has a radius ratio of η = ri/ro = 0.877, where ri and ro are the inner and outer radii of the flow annulus. The ratio of the annular width between the cylinders (δ = ro - ri) and the particle diameter (dp) is α = δ/dp = 20. For η = 0.877, the flow of a Newtonian fluid undergoes transitions from CCF to TVF and TVF to WVF at Reynolds numbers Re = 120 and 151, respectively, and for the dilute suspensions studied here, these critical Reynolds numbers are almost unchanged. In CCF, particles were observed to migrate, due to the competition between the shear gradient of the flow and the wall interactions, to an equilibrium location near the middle of the annulus with an offset toward the inner cylinder. In TVF, the vortex motion causes the particles to be exposed to the shear gradient and wall interactions in a different manner, resulting in a circular equilibrium region in each vortex. The radius of this circular region grows with increase in Re. In WVF, the azimuthal waviness results in fairly well-distributed particles across the annulus.
NASA Astrophysics Data System (ADS)
Zeeshan, M.; Duggal, R.; Tated, M. K.; Singh, M.
2018-02-01
Heat exchangers are widely used in various energy-recovery applications. However, for specific applications where metallic tubes are subjected to various drawbacks i.e. cost, weight, corrosion etc. polymer materials are promising alternatives. In present study, various conventional as well as promising alternatives materials are chosen for investigation computationally. Experimentally, bi-annulus heat exchanger configuration is investigated for metallic materials. The simulations carried out conclude that the dimensionless temperature parameter for Cross-linked polypropylethylene (PEX) is greater than other polymers. It increases with increasing axial length of tube. The value for dimensionless temperature is higher for copper which is used as conventional tube material. Among different polymers highest temperature is observed for PEX followed by Low density polypropylene (LDPE), Polypropylene (PP) and Polyvinylidene fluoride (PVDF). For axial length up to 70mm approx. the temperature rises for PEX, LDPE is 28.3% and 26.4% respectively. However, temperature variation is same for PP and PVDF for same axial distance. This temperature variation is increased to 72.4%, 67.2%, 58.62% and 56.89% for PEX, LDPE, PP and PVDF respectively as axial distance variation reaches the end of pipe. The inner annulus temperature for PEX material at 10% length of tube is 28.3% of temperature achieved in copper tube which increases to 72.4% for full length of tube.
Ye, Dongping; Liang, Weiguo; Dai, Libing; Zhou, Longqiang; Yao, Yicun; Zhong, Xin; Chen, Honghui; Xu, Jiake
2015-05-01
Degeneration of the intervertebral disc (IVD) is a major chronic medical condition associated with back pain. To better understand the pathogenesis of IVD degeneration, we performed comparative and quantitative proteomic analyses of normal and degenerated human annulus fibrosus (AF) cells and identified proteins that are differentially expressed between them. Annulus fibrosus cells were isolated and cultured from patients with lumbar disc herniation (the experimental group, degenerated AF cells) and scoliosis patients who underwent orthopaedic surgery (the control group, normal AF cells). Comparative proteomic analyses of normal and degenerated cultured AF cells were carried out using 2-D electrophoresis, mass spectrometric analyses, and database searching. Quantitative analyses of silver-stained 2-D electrophoresis gels of normal and degenerated cultured AF cells identified 10 protein spots that showed the most altered differential expression levels between the two groups. Among these, three proteins were decreased, including heat shock cognate 71-kDa protein, glucose-6-phosphate 1-dehydrogenase, and protocadherin-23, whereas seven proteins were increased, including guanine nucleotide-binding protein G(i) subunit α-2, superoxide dismutase, transmembrane protein 51, adenosine receptor A3, 26S protease regulatory subunit 8, lipid phosphate phosphatase-related protein, and fatty acyl-crotonic acid reductase 1. These differentially expressed proteins might be involved in the pathophysiological process of IVD degeneration and have potential values as biomarkers of the degeneration of IVD. © 2015 Wiley Publishing Asia Pty Ltd.
The role of the notochord in amniote vertebral column segmentation.
Ward, Lizzy; Pang, Angel S W; Evans, Susan E; Stern, Claudio D
2018-07-01
The vertebral column is segmented, comprising an alternating series of vertebrae and intervertebral discs along the head-tail axis. The vertebrae and outer portion (annulus fibrosus) of the disc are derived from the sclerotome part of the somites, whereas the inner nucleus pulposus of the disc is derived from the notochord. Here we investigate the role of the notochord in vertebral patterning through a series of microsurgical experiments in chick embryos. Ablation of the notochord causes loss of segmentation of vertebral bodies and discs. However, the notochord cannot segment in the absence of the surrounding sclerotome. To test whether the notochord dictates sclerotome segmentation, we grafted an ectopic notochord. We find that the intrinsic segmentation of the sclerotome is dominant over any segmental information the notochord may possess, and no evidence that the chick notochord is intrinsically segmented. We propose that the segmental pattern of vertebral bodies and discs in chick is dictated by the sclerotome, which first signals to the notochord to ensure that the nucleus pulposus develops in register with the somite-derived annulus fibrosus. Later, the notochord is required for maintenance of sclerotome segmentation as the mature vertebral bodies and intervertebral discs form. These results highlight differences in vertebral development between amniotes and teleosts including zebrafish, where the notochord dictates the segmental pattern. The relative importance of the sclerotome and notochord in vertebral patterning has changed significantly during evolution. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Apodization of two-dimensional pupils with aberrations
NASA Astrophysics Data System (ADS)
Reddy, Andra Naresh Kumar; Hashemi, Mahdieh; Khonina, Svetlana Nikolaevna
2018-06-01
The technique proposed to enhance the resolution of the point spread function (PSF) of an optical system underneath defocussing and spherical aberrations. The method of approach is based on the amplitude and phase masking in a ring aperture for modifying the light intensity distribution in the Gaussian focal plane (YD = 0) and in the defocussed planes (YD= π and YD= 2π ). The width of the annulus modifies the distribution of the light intensity in the side lobes of the resultant PSF. In the presence of an asymmetry in the phase of the annulus, the Hanning amplitude apodizer [cos(π β ρ )] employed in the pupil function can modify the spatial distribution of light in the maximum defocussed plane ({Y}D = 2π ), results in PSF with improved resolution.
Fabrication and Characterization of a Nanocoax-Based Electrochemical Sensor
NASA Astrophysics Data System (ADS)
Rizal, Binod; Archibald, Michelle M.; Naughton, Jeffrey R.; Connolly, Timothy; Shepard, Stephen C.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.
2014-03-01
We used an imprint lithography process to fabricate three dimensional electrochemical sensors comprising arrays of vertically-oriented coaxial electrodes, with the coax cores and shields serving as working and counter electrodes, respectively, and with nanoscale separation gaps.[2] Arrays of devices with different electrode gaps (coax annuli) were prepared, yielding increasing sensitivity with decreasing annulus thickness. A coax-based sensor with a 100 nm annulus was found to have sensitivity 100 times greater than that of a conventional planar sensor control, which had millimeter-scale electrode gap spacing. We suggest that this enhancement is due to an increase in the diffusion of molecules between electrodes, which improves the current per unit surface area compared to the planar device. Supported by NIH (National Cancer Institute and the National Institute of Allergy and Infectious Diseases).
NASA Astrophysics Data System (ADS)
Hatami, M.; Zhou, J.; Geng, J.; Jing, D.
2018-04-01
In this paper, the effect of a variable magnetic field (VMF) on the natural convection heat transfer of Fe3O4-water nanofluid in a half-annulus cavity is studied by finite element method using FlexPDE commercial code. After deriving the governing equations and solving the problem by defined boundary conditions, the effects of three main parameters (Hartmann Number (Ha), nanoparticles volume fraction (φ) and Rayleigh number (Ra)) on the local and average Nusselt numbers of inner wall are investigated. As a main outcome, results confirm that in low Eckert numbers, increasing the Hartmann number make a decrease on the Nusselt number due to Lorentz force resulting from the presence of stronger magnetic field.
Core disruptive accident margin seal
Garin, John
1978-01-01
An apparatus for sealing the annulus defined between a substantially cylindrical rotatable first riser assembly and plug combination disposed in a substantially cylindrical second riser assembly and plug combination of a nuclear reactor system. The apparatus comprises a flexible metal member having a first side attached to one of the riser components and a second side extending toward the other riser component and an actuating mechanism attached to the flexible metal member while extending to an accessible location. When the actuating mechanism is not activated, the flexible metal member does not contact the other riser component thus allowing the free rotation of the riser assembly and plug combination. When desired, the actuating mechanism causes the second side of the flexible metal member to contact the other riser component thereby sealing the annulus between the components.
Pathophysiology of Degenerative Mitral Regurgitation: New 3-Dimensional Imaging Insights.
Antoine, Clemence; Mantovani, Francesca; Benfari, Giovanni; Mankad, Sunil V; Maalouf, Joseph F; Michelena, Hector I; Enriquez-Sarano, Maurice
2018-01-01
Despite its high prevalence, little is known about mechanisms of mitral regurgitation in degenerative mitral valve disease apart from the leaflet prolapse itself. Mitral valve is a complex structure, including mitral annulus, mitral leaflets, papillary muscles, chords, and left ventricular walls. All these structures are involved in physiological and pathological functioning of this valvuloventricular complex but up to now were difficult to analyze because of inherent limitations of 2-dimensional imaging. The advent of 3-dimensional echocardiography, computed tomography, and cardiac magnetic resonance imaging overcoming these limitations provides new insights into mechanistic analysis of degenerative mitral regurgitation. This review will detail the contribution of quantitative and qualitative dynamic analysis of mitral annulus and mitral leaflets by new imaging methods in the understanding of degenerative mitral regurgitation pathophysiology. © 2018 American Heart Association, Inc.
Compressible Convection Experiment using Xenon Gas in a Centrifuge
NASA Astrophysics Data System (ADS)
Menaut, R.; Alboussiere, T.; Corre, Y.; Huguet, L.; Labrosse, S.; Deguen, R.; Moulin, M.
2017-12-01
We present here an experiment especially designed to study compressible convection in the lab. For significant compressible convection effects, the parameters of the experiment have to be optimized: we use xenon gaz in a cubic cell. This cell is placed in a centrifuge to artificially increase the apparent gravity and heated from below. With these choices, we are able to reach a dissipation number close to Earth's outer core value. We will present our results for different heating fluxes and rotation rates. We success to observe an adiabatic gradient of 3K/cm in the cell. Studies of pressure and temperature fluctuations lead us to think that the convection takes place under the form of a single roll in the cell for high heating flux. Moreover, these fluctuations show that the flow is geostrophic due to the high rotation speed. This important role of rotation, via Coriolis force effects, in our experimental setup leads us to develop a 2D quasigeostrophic compressible model in the anelastic liquid approximation. We test numerically this model with the finite element solver FreeFem++ and compare its results with our experimental data. In conclusion, we will present our project for the next experiment in which the cubic cell will be replace by a annulus cell. We will discuss the new expected effects due to this geometry as Rossby waves and zonal flows.
da Silva, Cristina; Sahlen, Anders; Winter, Reidar; Bäck, Magnus; Rück, Andreas; Settergren, Magnus; Manouras, Aristomenis; Shahgaldi, Kambiz
2014-12-01
To investigate the role of 2D-transthoracic echocardiography (2D-TTE) and 3D-transesophageal echocardiography (3D-TEE) in the determination of aortic annulus size prior transcatheter aortic valve implantation (TAVI) and its' impact on the prevalence of patient prosthesis mismatch (PPM). Echocardiography plays an important role in measuring aortic annulus dimension in patients undergoing TAVI. This has great importance since it determines both eligibility for TAVI and selection of prosthesis type and size, and can be potentially important in preventing an inadequate ratio between the prosthetic valvular orifice and the patient's body surface area, concept known as prosthesis-patient mismatch (PPM). A total of 45 patients were studied pre-TAVI: 20 underwent 3D-TEE (men/women 12/8, age 84.8 ± 5.6) and 25 2D-TTE (men/women 9/16, age 84.4 ± 5.4) in order to measure aortic annulus diameter. The presence of PPM was assessed before hospital discharge and after a mean period of 3 months. Moderate PPM was defined as indexed aortic valve area (AVAi) ≤ 0.85 cm(2)/m(2) and severe PPM as AVAi < 0.65 cm(2)/m(2). Immediately post-TAVI, moderate PPM was present in 25 and 28 % of patients worked up using 3D-TEE and 2D-TTE respectively p value = n.s) and severe PPM occurred in 10 % of the patients who underwent 3D-TEE and in 20 % in those with 2D-TTE (p value = n.s). The echocardiographic evaluation 3 months post-TAVI showed 25 % moderate PPM in the 3D-TEE group compared with 24 % in the 2D-TTE group (p value = n.s) and no cases of severe PPM in the 3DTEE group comparing to 20 % in the 2D-TTE group (p = 0.032). Our results indicate a higher incidence of severe PPM in patients who performed 2DTTE compared to those performing 3DTEE prior TAVI. This suggests that the 3D technique should replace the 2DTTE analysis when investigating the aortic annulus diameter in patients undergoing TAVI.
Skoda, George I.
1989-01-01
A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring--preferably of the Belleville variety--acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion. The latch plate in surrounding the stem is limited in its outward movement by a boss attached to the stem at the end of the stem remote from the disk. The latch plate is held normally closed by three radial latches spaced at 120.degree. around the periphery of the plate.
NASA Astrophysics Data System (ADS)
Schultz, David Sheldon
Countless debilitating pathologies exhibit symptoms that result from altered mechanical behavior of soft tissue. Therefore, it is of clinical and economic importance to mechanically evaluate soft tissues and attribute degenerative changes to alterations in structural constituents. The studies presented here focus on the annulus fibrosus and the sclera. Failure in these tissues is common and catastrophic. The annulus fibrosus may fail, resulting in herniation and nerve impingement, or the disc may degenerate over time, resulting in reduced mobility and pain. Similarly, the sclera may degenerate over time with intraocular pressure spurring creep behavior that distends the eye beyond its ideal shape. This causes myopic vision and puts patients at risk of macular degeneration and retinal detachment. These two tissues share a common structural role as the outer wall of a pressure vessel. Also, they are made of strikingly similar constituents, primarily consisting of water, type I collagen, glycosaminoglycans and elastin. The microstructure of these tissues, however, is very different. The annulus fibrosus is representative of an anisotropic tissue. Its well-organized fibril structure was analyzed via polarization modulated second harmonic microscopy in order to characterize fibril architecture. Structurally relevant biochemical constituents were quantified with biochemical assays. Morphologically healthy annulus tended to have a more highly organized microstructure and tended to absorb more strain energy when subject to a tensile load cycle. Given the strong correlation between fibril organization and select mechanical properties, predictive models will likely benefit from a characterization of fibril continuity and orientation coherence. The sclera is representative of an isotropic tissue. Its less-organized fibril structure has evolved to sustain biaxial plane stress. In the sclera, collagen content and associated crosslinks were primary determinants of stiffness. Substantial collagen crosslink accumulation is a primary factor causing the stiffening of sclera with increased age. The influence of crosslinks dominates diffusion and permeability behavior. Exogenous crosslinking may help modulate the mechanical and fluid transport properties of the sclera and cornea. Treatment with methylglyoxal reduces the permeability and increases the stiffness of both. However, differences in the pre-treatment level of organization within the microstructure encourages asymmetric results.
2012-01-01
Background In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following Institutional Review Board approval. Results Analyses were performed on more generated (Thompson grade IV and V) discs vs. less degenerated discs (grades I-III), on surgically operated discs vs. control discs, and on herniated vs. control discs. Analyses of more degenerated vs. less degenerated discs identified significant upregulation of well-recognized pain-related genes (bradykinin receptor B1, calcitonin gene-related peptide and catechol-0-methyltransferase). Nerve growth factor was significantly upregulated in surgical vs. control and in herniated vs. control discs. All three analyses also found significant changes in numerous proinflammatory cytokine- and chemokine-related genes. Nerve, neurotrophin and pain-ontology searches identified many matrix, signaling and functional genes which have known importance in the disc. Immunohistochemistry was utilized to confirm the presence of calcitonin gene-related peptide, catechol-0-methyltransferase and bradykinin receptor B1 at the protein level in the human annulus. Conclusions Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in proinflammatory cytokines and chemokines which also have significant relevance to disc biology. Since the degenerating human disc is primarily an avascular tissue site into which disc cells have contributed high levels of proinflammatory cytokines, these substances are not cleared from the tissue and remain there over time. We hypothesize that as nerves grow into the human annulus, they encounter a proinflammatory cytokine-rich milieu which may sensitize nociceptors and exacerbate pain production. PMID:22963171
Ii, Hisataka; Warraich, Sumeeta; Tenn, Neil; Quinonez, Diana; Holdsworth, David W; Hammond, James R; Dixon, S Jeffrey; Séguin, Cheryle A
2016-09-01
Equilibrative nucleoside transporter 1 (ENT1) mediates passage of adenosine across the plasma membrane. We reported previously that mice lacking ENT1 (ENT1(-/-)) exhibit progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis (DISH) in humans. Here, we investigated mechanisms underlying aberrant mineralization in ENT1(-/-) mice. Micro-CT revealed ectopic mineralization of spinal tissues in both male and female ENT1(-/-) mice, involving the annulus fibrosus of the intervertebral discs (IVDs) of older mice. IVDs were isolated from wild-type and ENT1(-/-) mice at 2months of age (prior to disc mineralization), 4, and 6months of age (disc mineralization present) and processed for real-time PCR, cell isolation, or histology. Relative to the expression of ENTs in other tissues, ENT1 was the primary nucleoside transporter expressed in wild-type IVDs and mediated the functional uptake of [(3)H]2-chloroadenosine by annulus fibrosus cells. No differences in candidate gene expression were detected in IVDs from ENT1(-/-) and wild-type mice at 2 or 4months of age. However, at 6months of age, expression of genes that inhibit biomineralization Mgp, Enpp1, Ank, and Spp1 were reduced in IVDs from ENT1(-/-) mice. To assess whether changes detected in ENT1(-/-) mice were cell autonomous, annulus fibrosus cell cultures were established. Compared to wild-type cells, cells isolated from ENT1(-/-) IVDs at 2 or 6months of age demonstrated greater activity of alkaline phosphatase, a promoter of biomineralization. Cells from 2-month-old ENT1(-/-) mice also showed greater mineralization than wild-type. Interestingly, altered localization of alkaline phosphatase activity was detected in the inner annulus fibrosus of ENT1(-/-) mice in vivo. Alkaline phosphatase activity, together with the marked reduction in mineralization inhibitors, is consistent with the mineralization of IVDs seen in ENT1(-/-) mice at older ages. These findings establish that both cell-autonomous and systemic mechanisms contribute to ectopic mineralization in ENT1(-/-) mice. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Clements, T. R.
1972-01-01
A performance development program has been conducted on a short length, double-annular, ram-induction combustor. The combustor was designed for a large augmented turbofan engine capable of sustained flight speeds up to Mach 3.0. Performance tests were conducted at an inlet temperature and Mach number simulating engine sea level takeoff conditions. At the design temperature rise of 1600 F, combustion efficiency was 100%, pattern factor was 0.20, and combined diffuser-combustor pressure loss was 4.4% or 1.12 times the diffuser inlet velocity head. A temperature rise in excess of 2400 F with a combustion efficiency of 94% was demonstrated.
Energy efficient engine: High pressure turbine uncooled rig technology report
NASA Technical Reports Server (NTRS)
Gardner, W. B.
1979-01-01
Results obtained from testing five performance builds (three vane cascades and two rotating rigs of the Energy Efficient Engine uncooled rig have established the uncooled aerodynamic efficiency of the high-pressure turbine at 91.1 percent. This efficiency level was attained by increasing the rim speed and annulus area (AN(2)), and by increasing the turbine reaction level. The increase in AN(2) resulted in a performance improvement of 1.15 percent. At the design point pressure ratio, the increased reaction level rig demonstrated an efficiency of 91.1 percent. The results of this program have verified the aerodynamic design assumptions established for the Energy Efficient Engine high-pressure turbine component.
Investigation of the tip clearance flow inside and at the exit of a compressor rotor passage
NASA Technical Reports Server (NTRS)
Pandya, A.; Lakshminarayana, B.
1982-01-01
The nature of the tip clearance flow in a moderately loaded compressor rotor is studied. The measurements were taken inside the clearance between the annulus-wall casing and the rotor blade tip. These measurements were obtained using a stationary two-sensor hot-wire probe in combination with an ensemble averaging technique. The flowfield was surveyed at various radial locations and at ten axial locations, four of which were inside the blade passage in the clearance region and the remaining six outside the passage. Variations of the mean flow properties in the tangential and the radial directions at various axial locations were derived from the data. Variation of the leakage velocity at different axial stations and the annulus-wall boundary layer profiles from passage-averaged mean velocities were also estimated.
Unsteady flow of fractional Oldroyd-B fluids through rotating annulus
NASA Astrophysics Data System (ADS)
Tahir, Madeeha; Naeem, Muhammad Nawaz; Javaid, Maria; Younas, Muhammad; Imran, Muhammad; Sadiq, Naeem; Safdar, Rabia
2018-04-01
In this paper exact solutions corresponding to the rotational flow of a fractional Oldroyd-B fluid, in an annulus, are determined by applying integral transforms. The fluid starts moving after t = 0+ when pipes start rotating about their axis. The final solutions are presented in the form of usual Bessel and hypergeometric functions, true for initial and boundary conditions. The limiting cases for the solutions for ordinary Oldroyd-B, fractional Maxwell and Maxwell and Newtonian fluids are obtained. Moreover, the solution is obtained for the fluid when one pipe is rotating and the other one is at rest. At the end of this paper some characteristics of fluid motion, the effect of the physical parameters on the flow and a correlation between different fluid models are discussed. Finally, graphical representations confirm the above affirmation.
Hydrogen generation from caustic aluminum reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
REYNOLDS, D.A.
2001-10-23
A ''crawler'' is to enter the AY farm annulus to clean the metal surface for corrosion measurements. The ''crawler'' weighs about 190 pounds of which 150 pounds are aluminum. (These values are supplied by the vender of the ''crawler''.) There is a potential that cleaning the surface of the metal may cause a leak to occur in the primary tank wall and the waste may contact the aluminum. The hydroxide in the waste may react with the aluminum and form hydrogen gas. The purpose of this analysis is to estimate the rate of hydrogen gas generation and the time tomore » reach the lower flammable limit (LFL) in the annulus. Surface area of the aluminum piece is estimated to be 2 sq.ft. (This value was given by the vender.) SA:= 2 {center_dot} ft{sup 2}.« less
Simulation of Plasma Transport in a Toroidal Annulus with TEMPEST
NASA Astrophysics Data System (ADS)
Xiong, Z.
2005-10-01
TEMPEST is an edge gyro-kinetic continuum code currently under development at LLNL to study boundary plasma transport over a region extending from inside the H-mode pedestal across the separatrix to the divertor plates. Here we report simulation results from the 4D (θ, ψ, E, μ) TEMPEST, for benchmark purpose, in an annulus region immediately inside the separatrix of a large aspect ratio, circular cross-section tokamak. Besides the normal poloidal trapping regions, there are radial inaccessible regions at a fixed poloid angle, energy and magnetic moment due to the radial variation of the B field. To handle such cases, a fifth-order WENO differencing scheme is used in the radial direction. The particle and heat transport coefficients are obtained for different collisional regimes and compared with the neo-classical transport theory.
NASA Astrophysics Data System (ADS)
Jha, B. K.; Aina, B.; Muhammad, S. A.
2015-03-01
This study investigates analytically the hydrodynamic and thermal behaviour of a fully developed natural convection flow in a vertical micro-porous-annulus (MPA) taking into account the velocity slip and temperature jump at the outer surface of inner porous cylinder and inner surface of outer porous cylinder. A closed — form solution is presented for velocity, temperature, volume flow rate, skin friction and rate of heat transfer expressed as a Nusselt number. The influence of each governing parameter on hydrodynamic and thermal behaviour is discussed with the aid of graphs. During the course of investigation, it is found that as suction/injection on the cylinder walls increases, the fluid velocity and temperature is enhanced. In addition, it is observed that wall surface curvature has a significant effect on flow and thermal characteristics.
Nazmul, Mohammed N; Cha, Yong-Mei; Lin, Grace; Asirvatham, Samuel J; Powell, Brian D
2013-03-01
Pacemaker and implantable cardioverter-defibrillator (ICD) leads can cause tricuspid valve regurgitation (TR). Few data are available on the best management of significant TR that develops after pacemaker or ICD implantation and regarding any benefits of right ventricular (RV) lead extraction. We sought to determine the impact of RV lead removal on lead-induced TR. We reviewed all patients between 1 January 2000 and 31 December 2010 at the tertiary care hospital who had a preoperative indication of TR and underwent percutaneous extraction of an RV lead with the intent of trying to correct moderate or severe TR. Pre- and post-procedure echoes and clinical data were retrospectively reviewed. In the four patients identified, the RV lead was removed and placed in the coronary sinus to try to improve moderate or severe TR due to lead impingement. There was no significant improvement in the degree of TR except one patient where TR improved slightly from moderate to mild-moderate. All patients had a dilated tricuspid valve annulus by the time of lead extraction. Tricuspid annulus dilatation appeared to account for the persistent TR after RV lead removal. A greater degree of tricuspid valve annulus dilatation may be a marker and mechanism for irreversible lead-induced TR. Further studies are needed to determine whether surgical tricuspid valve repair or replacement combined with RV lead extraction would result in better outcomes than a percutaneous lead extraction approach.
Mikami, T; Kudo, T; Sakurai, N; Sakamoto, S; Tanabe, Y; Yasuda, H
1983-06-01
The mechanism for the development of functional tricuspid regurgitation (TR) was studied by an ultrasonic method. Thirty-five examinations were performed in 31 patients who were expected to have functional TR, and the severity was classified into 4 grades according to the extension of the regurgitant signals by pulsed Doppler echocardiography. The satisfactory horizontal section of the tricuspid valve was obtained by two-dimensional echocardiography (2DE) to measure the tricuspid annular diameter and to observe systolic configuration of the tricuspid valve in 22 examinations. The tricuspid annular diameter was well correlated with the severity of TR, and "lack of coaptation" of the valve was recognized on 2DE in some cases of severe TR with the markedly dilated annulus, indicating that this dilatation was an important trigger of functional TR. Additionally, in the majority of patients with severe TR, "anterior displacement" of the tips of tricuspid leaflet(s) (6 mm or more from the tricuspid annulus towards the right ventricle) was observed, which was thought to be due to the chordal traction secondary to the right ventricular dilatation, and contributed to the development of functional TR by disturbing sufficient coaptation. In one particular case, severe TR was associated with " malaligned coaptation" caused by the anterior displacement confined to the septal leaflet, indicating that asymmetrical dilatation of the right ventricle and/or disorientation of chordae-valve system may contribute to TR.(ABSTRACT TRUNCATED AT 250 WORDS)
Koshkelashvili, Nikoloz; Codolosa, Jose N; Goykhman, Igor; Romero-Corral, Abel; Pressman, Gregg S
2015-12-15
Aging is associated with calcium deposits in various cardiovascular structures, but patterns of calcium deposition, if any, are unknown. In search of such patterns, we performed quantitative assessment of mitral annular calcium (MAC) and aortic valve calcium (AVC) in a broad clinical sample. Templates were created from gated computed tomography (CT) scans depicting the aortic valve cusps and mitral annular segments in relation to surrounding structures. These were then applied to CT reconstructions from ungated, clinically indicated CT scans of 318 subjects, aged ≥65 years. Calcium location was assigned using the templates and quantified by the Agatston method. Mean age was 76 ± 7.3 years; 48% were men and 58% were white. Whites had higher prevalence (p = 0.03) and density of AVC than blacks (p = 0.02), and a trend toward increased MAC (p = 0.06). Prevalence of AVC was similar between men and women, but AVC scores were higher in men (p = 0.008); this difference was entirely accounted for by whites. Within the aortic valve, the left cusp was more frequently calcified than the others. MAC was most common in the posterior mitral annulus, especially its middle (P2) segment. For the anterior mitral annulus, the medial (A3) segment calcified most often. In conclusion, AVC is more common in whites than blacks, and more intense in men, but only in whites. Furthermore, calcium deposits in the mitral annulus and aortic valve favor certain locations. Copyright © 2015 Elsevier Inc. All rights reserved.
A meta-analysis of aortic root size in elite athletes.
Iskandar, Aline; Thompson, Paul D
2013-02-19
The aorta is exposed to hemodynamic stress during exercise, but whether or not the aorta is larger in athletes is not clear. We performed a systematic literature review and meta-analysis to examine whethere athletes demonstrate increased aortic root dimensions compared with nonathlete controls. We searched MEDLINE and Scopus from inception through August 12, 2012, for English-language studies reporting the aortic root size in elite athletes. Two investigators independently extracted athlete and study characteristics. A multivariate linear mixed model was used to conduct meta-regression analyses. We identified 71 studies reporting aortic root dimensions in 8564 unique athletes, but only 23 of these studies met our criteria by reporting aortic root dimensions at the aortic valve annulus or sinus of Valsalva in elite athletes (n=5580). Athletes were compared directly with controls (n=727) in 13 studies. On meta-regression, the weighted mean aortic root diameter measured at the sinuses of Valsalva was 3.2 mm (P=0.02) larger in athletes than in the nonathletic controls, whereas aortic root size at the aortic valve annulus was 1.6 mm (P=0.04) greater in athletes than in controls. Elite athletes have a small but significantly larger aortic root diameter at the sinuses of Valsalva and aortic valve annulus, but this difference is minor and clinically insignificant. Clinicians evaluating athletes should know that marked aortic root dilatation likely represents a pathological process and not a physiological adaptation to exercise.
Jamieson, W R Eric
2006-01-01
Since the 2002 Surgical Technology International monograph on valvular prostheses, there have been significant developmental and investigative advances. Aortic bioprostheses and mechanical prostheses have undergone design changes to optimize hemodynamics and prevent patient-prosthesis mismatch to have a potential satisfactory influence on survival. There has been continual technological improvements striving to bring forward advances that improve the durability of bioprostheses and reduce the thrombogenicity of mechanical prostheses. There also has been a continuance to preserve biological tissue with glutaraldehyde, rather than clinically evaluate other cross-linking technologies, by controlling or retarding calcification with therapies to control phospholipids and residual aldehydes. The techniques of mitral valve reconstruction have now been well established and new annuloplasty rings have been designed for the potential of maintaining the anatomical and physiological characteristics of the mitral annulus. Several objectives exist for annuloplasty, namely remodeling of the length and shape of the dilated annulus, prevention of dilatation of the annulus, and support for the potentially fragile area after partial-leaflet resection. Currently, there exists an emergence of catheter-based therapies for management of aortic stenosis and mitral regurgitation. For management of selected populations with critical aortic stenosis, techniques for aortic valve substitution have been developed for both antegrade and retrograde catheter techniques, as well as apical transventricular implantation. Mitral regurgitation has been addressed by experimental transcoronary sinus, stent-like devices and transventricular, edge-to-edge leaflet devices. The devices, descriptions and pictorial images comprise this monograph.
Edge loss of high-harmonic fast-wave heating power in NSTX: a cylindrical model
Perkins, R. J.; Hosea, J. C.; Bertelli, N.; ...
2017-09-04
Efficient high-harmonic fast-wave (HHFW) heating in the National Spherical Torus Experiment Upgrade (NSTX-U) would facilitate experiments in turbulence, transport, fast-ion studies, and more. However, previous HHFW operation in NSTX exhibited a large loss of fast-wave power to the divertor along the scrape-off layer field lines for edge densities above the fast-wave cutoff. It was postulated that the wave amplitude is enhanced in the scrapeoff layer due to cavity-like modes, and that these enhanced fields drive sheath losses through RF rectification. As part of ongoing work to confirm this hypothesis, we have developed a cylindrical cold-plasma model to identify and understandmore » scenarios where a substantial fraction of wave power is confined to the plasma periphery. We previously identified a peculiar class of modes, named annulus resonances, that conduct approximately half of their wave power in the periphery and can also account for a significant fraction of the total wave power. Here, we study the influence of annulus resonances on wave field reconstructions and find instances where annulus-resonant modes dominate the spectrum and trap over half of the total wave power at the edge. The work is part of an ongoing effort to determine the mechanism underlying these scrape-off layer losses in NSTX, identify optimal conditions for operation in NSTX-U, and predict whether similar losses occur for the ion-cyclotron minority heating scheme for both current experiments and future devices such as ITER.« less
A critical role of solute carrier 22a14 in sperm motility and male fertility in mice
Maruyama, Shin-ya; Ito, Momoe; Ikami, Yuusuke; Okitsu, Yu; Ito, Chizuru; Toshimori, Kiyotaka; Fujii, Wataru; Yogo, Keiichiro
2016-01-01
We previously identified solute carrier 22a14 (Slc22a14) as a spermatogenesis-associated transmembrane protein in mice. Although Slc22a14 is a member of the organic anion/cation transporter family, its expression profile and physiological role have not been elucidated. Here, we show that Slc22a14 is crucial for sperm motility and male fertility in mice. Slc22a14 is expressed specifically in male germ cells, and mice lacking the Slc22a14 gene show severe male infertility. Although the overall differentiation of sperm was normal, Slc22a14−/− cauda epididymal spermatozoa showed reduced motility with abnormal flagellar bending. Further, the ability to migrate into the female reproductive tract and fertilise the oocyte were also impaired in Slc22a14−/− spermatozoa. The abnormal flagellar bending was thought to be partly caused by osmotic cell swelling since osmotic challenge or membrane permeabilisation treatment alleviated the tail abnormality. In addition, we found structural abnormalities in Slc22a14−/− sperm cells: the annulus, a ring-like structure at the mid-piece–principal piece junction, was disorganised, and expression and localisation of septin 4, an annulus component protein that is essential for the annulus formation, was also impaired. Taken together, our results demonstrated that Slc22a14 plays a pivotal role in normal flagellar structure, motility and fertility in mouse spermatozoa. PMID:27811987
Edge loss of high-harmonic fast-wave heating power in NSTX: a cylindrical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, R. J.; Hosea, J. C.; Bertelli, N.
Efficient high-harmonic fast-wave (HHFW) heating in the National Spherical Torus Experiment Upgrade (NSTX-U) would facilitate experiments in turbulence, transport, fast-ion studies, and more. However, previous HHFW operation in NSTX exhibited a large loss of fast-wave power to the divertor along the scrape-off layer field lines for edge densities above the fast-wave cutoff. It was postulated that the wave amplitude is enhanced in the scrapeoff layer due to cavity-like modes, and that these enhanced fields drive sheath losses through RF rectification. As part of ongoing work to confirm this hypothesis, we have developed a cylindrical cold-plasma model to identify and understandmore » scenarios where a substantial fraction of wave power is confined to the plasma periphery. We previously identified a peculiar class of modes, named annulus resonances, that conduct approximately half of their wave power in the periphery and can also account for a significant fraction of the total wave power. Here, we study the influence of annulus resonances on wave field reconstructions and find instances where annulus-resonant modes dominate the spectrum and trap over half of the total wave power at the edge. The work is part of an ongoing effort to determine the mechanism underlying these scrape-off layer losses in NSTX, identify optimal conditions for operation in NSTX-U, and predict whether similar losses occur for the ion-cyclotron minority heating scheme for both current experiments and future devices such as ITER.« less
The SRB heat shield: Aeroelastic stability during reentry
NASA Technical Reports Server (NTRS)
Ventres, C. S.; Dowell, E. H.
1977-01-01
Wind tunnel tests of a 3% scale model of the aft portion of the SRB equipped with partially scaled heat shields were conducted for the purpose of measuring fluctuating pressure levels in the aft skirt region. During these tests, the heat shields were observed to oscillate violently, the oscillations in some instances causing the heat shields to fail. High speed films taken during the tests reveal a regular pattern of waves in the fabric starting near the flow stagnation point and progressing around both sides of the annulus. The amplitude of the waves was too great, and their pattern too regular, for them to be attributed to the fluctuating pressure levels measured during the tests. The cause of the oscillations observed in the model heat shields, and whether or not similar oscillations will occur in the full scale SRB heat shield during reentry were investigated. Suggestions for modifying the heat shield so as to avoid the oscillations are provided, and recommendations are made for a program of vibration and wind tunnel tests of reduced-scale aeroelastic models of the heat shield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefrancois, A S; Roeske, F; Benterou, J
2006-02-10
The Explosive Component Water Gap Test (ECWGT) has been validated to assess the shock sensitivity of lead and booster components having a diameter larger than 5 mm. Several countries have investigated by experiments and numerical simulations the effect of confinement on the go/no go threshold for Pentaerythritol Tetranitrate (PETN) pellets having a height and diameter of 3 mm, confined by a steel annulus of wall thickness 1-3.5 mm. Confinement of the PETN by a steel annulus of the same height of the pellet with 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increasedmore » to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased to 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally. Recent numerical simulations using Ignition and Growth model [1] for the PETN Pellet have reproduced the experimental results for the steel confinement up to 2 mm thick [2]. The presence of a stronger re-shock following the first input shock from the water and focusing on the axis have been identified in the pellet due to the steel confinement. The double shock configuration is well-known to lead in some cases to shock desensitization. This work presents the numerical simulations using Ignition and Growth model for LX16 (PETN based HE) and LX19 (CL20 based HE) Pellets [3] in order to assess the shock sensitivity of mm-scale detonators. The pellets are 0.6 mm in diameter and 3 mm length with different type of steel confinement 2.2 mm thick and 4.7 mm thick. The influence of an aluminum confinement is calculated for the standard LX 16 pellet 3 mm in diameter and 3 mm in height. The question of reducing the size of the donor charge is also investigated to small scale the test itself.« less
Lightweight thermally efficient composite feedlines for the space tug cryogenic propulsion system
NASA Technical Reports Server (NTRS)
Spond, D. E.
1975-01-01
Six liquid hydrogen feedline design concepts were developed for the cryogenic space tug. The feedlines include composite and all-metal vacuum jacketed and nonvacuum jacketed concepts, and incorporate the latest technological developments in the areas of thermally efficient vacuum jacket end closures and standoffs, radiation shields in the vacuum annulus, thermal coatings, and lightweight dissimilar metal flanged joints. The feedline design concepts are evaluated on the basis of thermal performance, weight, cost, reliability, and reusability. Design concepts were proved in a subscale test program. Detail design was completed on the most promising composite feedline concept and an all-metal feedline. Three full scale curved composite feedlines and one all-metal feedline assembly were fabricated and subjected to a test program representative of flight hardware qualification. The test results show that composite feedline technology is fully developed. Composite feedlines are ready for space vehicle application and offer significant reduction in weights over the conventional all-metal feedlines presently used.
The Effects of Glucosamine Sulfate on Intervertebral Disc Annulus Fibrosus Cells in Vitro
Sowa, Gwendolyn; Coelho, J. Paulo; Jacobs, Lloydine; Komperda, Kasey; Sherry, Nora; Vo, Nam; Preuss, Harry; Balk, Judith; Kang, Jame
2014-01-01
Background context Glucosamine has gained widespread use among patients, despite inconclusive efficacy data. Inconsistency in the clinical literature may be related to lack of understanding of the effects of glucosamine on the intervertebral disc, and therefore, improper patient selection. Purpose The goal of our study was to investigate the effects of glucosamine on intervertebral disc cells in vitro under the physiological conditions of inflammation and mechanical loading. Study Design Controlled in vitro laboratory setting Methods Intervertebral disc cells isolated from the rabbit annulus fibrosus were exposed to glucosamine sulfate in the presence and absence of interleukin-1beta and tensile strain. Outcome measures included gene expression, measurement of total glycosaminoglycans, new proteoglycan synthesis, prostaglandin E2 production, and matrix metalloproteinase activity. The study was funded by NIH/NCCAM and the authors have no conflicts of interest. Results Under conditions of inflammatory stimulation alone, glucosamine demonstrated a dose dependent effect in decreasing inflammatory and catabolic mediators and increasing anabolic genes. However, under conditions of mechanical stimulation, although inflammatory gene expression was decreased, PGE2 was not. In addition, MMP-3 gene expression was increased and aggrecan expression decreased, both of which would have a detrimental effect on matrix homeostasis. Consistent with this, measurement of total glycosaminoglycans and new proteoglycan synthesis demonstrated detrimental effects of glucosamine under all conditions tested. Conclusions These results may in part help to explain the conflicting reports of efficacy, as there is biological plausibility for a therapeutic effect under conditions of predominate inflammation, but not under conditions where mechanical loading is present or in which matrix synthesis is needed. PMID:24361347
TERRESTRIAL PLANET FORMATION FROM AN ANNULUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Kevin J.; Levison, Harold F., E-mail: kwalsh@boulder.swri.edu
It has been shown that some aspects of the terrestrial planets can be explained, particularly the Earth/Mars mass ratio, when they form from a truncated disk with an outer edge near 1.0 au. This has been previously modeled starting from an intermediate stage of growth utilizing pre-formed planetary embryos. We present simulations that were designed to test this idea by following the growth process from km-sized objects located between 0.7 and 1.0 au up to terrestrial planets. The simulations explore initial conditions where the solids in the disk are planetesimals with radii initially between 3 and 300 km, alternately includingmore » effects from a dissipating gaseous solar nebula and collisional fragmentation. We use a new Lagrangian code known as LIPAD, which is a particle-based code that models the fragmentation, accretion, and dynamical evolution of a large number of planetesimals, and can model the entire growth process from km-sizes up to planets. A suite of large (∼ Mars mass) planetary embryos is complete in only ∼1 Myr, containing most of the system mass. A quiescent period then persists for 10–20 Myr characterized by slow diffusion of the orbits and continued accretion of the remaining planetesimals. This is interrupted by an instability that leads to embryos crossing orbits and embryo–embryo impacts that eventually produce the final set of planets. While this evolution is different than that found in other works exploring an annulus, the final planetary systems are similar, with roughly the correct number of planets and good Mars-analogs.« less
Pantoja, Joe Luis; Ge, Liang; Zhang, Zhihong; Morrel, William G; Guccione, Julius M; Grossi, Eugene A; Ratcliffe, Mark B
2014-10-01
The role of posterior papillary muscle anchoring (PPMA) in the management of chronic ischemic mitral regurgitation (CIMR) is controversial. We studied the effect of anchoring point direction and relocation displacement on left ventricular (LV) regional myofiber stress and pump function. Previously described finite element models of sheep 16 weeks after posterolateral myocardial infarction (MI) were used. True-sized mitral annuloplasty (MA) ring insertion plus different PPM anchoring techniques were simulated. Anchoring points tested included both commissures and the central anterior mitral annulus; relocation displacement varied from 10% to 40% of baseline diastolic distance from the PPM to the anchor points on the annulus. For each reconstruction scenario, myofiber stress in the MI, border zone, and remote myocardium as well as pump function were calculated. PPMA caused reductions in myofiber stress at end-diastole and end-systole in all regions of the left ventricle that were proportional to the relocation displacement. Although stress reduction was greatest in the MI region, it also occurred in the remote region. The maximum 40% displacement caused a slight reduction in LV pump function. However, with the correction of regurgitation by MA plus PPMA, there was an overall increase in forward stroke volume. Finally, anchoring point direction had no effect on myofiber stress or pump function. PPMA reduces remote myofiber stress, which is proportional to the absolute distance of relocation and independent of anchoring point. Aggressive use of PPMA techniques to reduce remote myofiber stress may accelerate reverse LV remodeling without impairing LV function. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Driscoll, Tristan P; Nakasone, Ryan H; Szczesny, Spencer E; Elliott, Dawn M; Mauck, Robert L
2013-06-01
The annulus fibrosus (AF) of the intervertebral disk plays a critical role in vertebral load transmission that is heavily dependent on the microscale structure and composition of the tissue. With degeneration, both structure and composition are compromised, resulting in a loss of AF mechanical function. Numerous tissue engineering strategies have addressed the issue of AF degeneration, but few have focused on recapitulation of AF microstructure and function. One approach that allows for generation of engineered AF with appropriate (+/-)30° lamellar microstructure is the use of aligned electrospun scaffolds seeded with mesenchymal stem cells (MSCs) and assembled into angle-ply laminates (APL). Previous work indicates that opposing lamellar orientation is necessary for development of near native uniaxial tensile properties. However, most native AF tensile loads are applied biaxially, as the disk is subjected to multi-axial loads and is constrained by its attachments to the vertebral bodies. Thus, the objective of this study was to evaluate the biaxial mechanical response of engineered AF bilayers, and to determine the importance of opposing lamellar structure under this loading regime. Opposing bilayers, which replicate native AF structure, showed a significantly higher modulus in both testing directions compared to parallel bilayers, and reached ∼60% of native AF biaxial properties. Associated with this increase in biaxial properties, significantly less shear, and significantly higher stretch in the fiber direction, was observed. These results provide additional insight into native tissue structure-function relationships, as well as new benchmarks for engineering functional AF tissue constructs. Copyright © 2013 Orthopaedic Research Society.
Posterior convex release and interbody fusion for thoracic scoliosis: technical note.
Mac-Thiong, Jean-Marc; Asghar, Jahangir; Parent, Stefan; Shufflebarger, Harry L; Samdani, Amer; Labelle, Hubert
2016-09-01
Anterior release and fusion is sometimes required in pediatric patients with thoracic scoliosis. Typically, a formal anterior approach is performed through open thoracotomy or video-assisted thoracoscopic surgery. The authors recently developed a technique for anterior release and fusion in thoracic scoliosis referred to as "posterior convex release and interbody fusion" (PCRIF). This technique is performed via the posterior-only approach typically used for posterior instrumentation and fusion and thus avoids a formal anterior approach. In this article the authors describe the technique and its use in 9 patients-to prevent a crankshaft phenomenon in 3 patients and to optimize the correction in 6 patients with a severe thoracic curve showing poor reducibility. After Ponte osteotomies at the levels requiring anterior release and fusion, intervertebral discs are approached from the convex side of the scoliosis. The annulus on the convex side of the scoliosis is incised from the lateral border of the pedicle to the lateral annulus while visualizing and protecting the pleura and spinal cord. The annulus in contact with the pleura and the anterior longitudinal ligament are removed before completing the discectomies and preparing the endplates. The PCRIF was performed at 3 levels in 4 patients and at 4 levels in 5 patients. Mean correction of the main thoracic curve, blood loss, and length of stay were 74.9%, 1290 ml, and 7.6 days, respectively. No neurological deficit, implant failure, or pseudarthrosis was observed at the last follow-up. Two patients had pleural effusion postoperatively, with 1 of them requiring placement of a chest tube. One patient had pulmonary edema secondary to fluid overload, while another patient underwent reoperation for a deep wound infection 3 weeks after the initial surgery. The technique is primarily indicated in skeletally immature patients with open triradiate cartilage and/or severe scoliosis. It can be particularly useful if there is significant vertebral rotation because access to the disc and anterior longitudinal ligament from the convex side will become safer. The PCRIF is an alternative to the formal anterior approach and does not require repositioning between the anterior and posterior stages, which prolongs the surgery and can be associated with an increased complication rate. The procedure can be done in the presence of preexisting pulmonary morbidity such as pleural adhesions and decreased pulmonary function because it does not require mobilization of the lung or single-lung ventilation. However, PCRIF can still be associated with pulmonary complications such as a pleural effusion, and care should be taken to avoid iatrogenic injury to the pleura. Placement of a deep wound drain at the level of the PCRIF is strongly recommended if postoperative bleeding is anticipated, to decrease the risk of pleural effusion.
Accuracy assessment of fluoroscopy-transesophageal echocardiography registration
NASA Astrophysics Data System (ADS)
Lang, Pencilla; Seslija, Petar; Bainbridge, Daniel; Guiraudon, Gerard M.; Jones, Doug L.; Chu, Michael W.; Holdsworth, David W.; Peters, Terry M.
2011-03-01
This study assesses the accuracy of a new transesophageal (TEE) ultrasound (US) fluoroscopy registration technique designed to guide percutaneous aortic valve replacement. In this minimally invasive procedure, a valve is inserted into the aortic annulus via a catheter. Navigation and positioning of the valve is guided primarily by intra-operative fluoroscopy. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to heart valve embolization, obstruction of the coronary ostia and acute kidney injury. The use of TEE US images to augment intra-operative fluoroscopy provides significant improvements to image-guidance. Registration is achieved using an image-based TEE probe tracking technique and US calibration. TEE probe tracking is accomplished using a single-perspective pose estimation algorithm. Pose estimation from a single image allows registration to be achieved using only images collected in standard OR workflow. Accuracy of this registration technique is assessed using three models: a point target phantom, a cadaveric porcine heart with implanted fiducials, and in-vivo porcine images. Results demonstrate that registration can be achieved with an RMS error of less than 1.5mm, which is within the clinical accuracy requirements of 5mm. US-fluoroscopy registration based on single-perspective pose estimation demonstrates promise as a method for providing guidance to percutaneous aortic valve replacement procedures. Future work will focus on real-time implementation and a visualization system that can be used in the operating room.
Visualizing polarization singularities in Bessel-Poincaré beams.
Shvedov, V; Karpinski, P; Sheng, Y; Chen, X; Zhu, W; Krolikowski, W; Hnatovsky, C
2015-05-04
We demonstrate that an annulus of light whose polarization is linear at each point, but the plane of polarization gradually rotates by π radians can be used to generate Bessel-Poincaré beams. In any transverse plane this beam exhibits concentric rings of polarization singularities in the form of L-lines, where the polarization is purely linear. Although the L-lines are invisible in terms of light intensity variations, we present a simple way to visualize them as dark rings around a sharp peak of intensity in the beam center. To do this we use a segmented polarizer whose transmission axes are oriented differently in each segment. The radius of the first L-line is always smaller than the radius of the central disk of the zero-order Bessel beam that would be produced if the annulus were homogeneously polarized and had no phase circulation along it.
Coaxial fuel and air premixer for a gas turbine combustor
York, William D; Ziminsky, Willy S; Lacy, Benjamin P
2013-05-21
An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.
Large panel design for containment air baffle
Orr, Richard S.
1992-01-01
The movable air baffle shield means in accordance with the present invention provides an efficient method of cooling the space surrounding the containment vessel while also providing the capability of being moved away from the containment vessel during inspection. The containment apparatus comprises a generally cylindrical sealed containment vessel for containing at least a portion of a nuclear power generation plant, a disparate shield building surrounding and housing the containment vessel therein and spaced outwardly thereof so as to form an air annulus in the space between the shield building and the containment vessel, a shield baffle means positioned in the air annulus around at least a portion of the sides of the containment vessel providing a coolant path between the baffle means and the containment vessel to permit cooling of the containment vessel by air, the shield baffle means being movable to afford access to the containment vessel.
NASA Astrophysics Data System (ADS)
Liang, Feng; Wang, Dechang
In this paper, we suppose that a planar piecewise Hamiltonian system, with a straight line of separation, has a piecewise generalized homoclinic loop passing through a Saddle-Fold point, and assume that there exists a family of piecewise smooth periodic orbits near the loop. By studying the asymptotic expansion of the first order Melnikov function corresponding to the period annulus, we obtain the formulas of the first six coefficients in the expansion, based on which, we provide a lower bound for the maximal number of limit cycles bifurcated from the period annulus. As applications, two concrete systems are considered. Especially, the first one reveals that a quadratic piecewise Hamiltonian system can have five limit cycles near a generalized homoclinic loop under a quadratic piecewise smooth perturbation. Compared with the smooth case [Horozov & Iliev, 1994; Han et al., 1999], three more limit cycles are found.
Well purge and sample apparatus and method
Schalla, Ronald; Smith, Ronald M.; Hall, Stephen H.; Smart, John E.; Gustafson, Gregg S.
1995-01-01
The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.
Stress fields around two pores in an elastic body: exact quadrature domain solutions.
Crowdy, Darren
2015-08-08
Analytical solutions are given for the stress fields, in both compression and far-field shear, in a two-dimensional elastic body containing two interacting non-circular pores. The two complex potentials governing the solutions are found by using a conformal mapping from a pre-image annulus with those potentials expressed in terms of the Schottky-Klein prime function for the annulus. Solutions for a three-parameter family of elastic bodies with two equal symmetric pores are presented and the compressibility of a special family of pore pairs is studied in detail. The methodology extends to two unequal pores. The importance for boundary value problems of plane elasticity of a special class of planar domains known as quadrature domains is also elucidated. This observation provides the route to generalization of the mathematical approach here to finding analytical solutions for the stress fields in bodies containing any finite number of pores.
NASA Astrophysics Data System (ADS)
Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin
2018-02-01
The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.
Genus Ranges of Chord Diagrams
Burns, Jonathan; Jonoska, Nataša; Saito, Masahico
2015-01-01
A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can be, and those that cannot be, realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges. PMID:26478650
Genus Ranges of Chord Diagrams.
Burns, Jonathan; Jonoska, Nataša; Saito, Masahico
2015-04-01
A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can be, and those that cannot be, realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges.
Well purge and sample apparatus and method
Schalla, R.; Smith, R.M.; Hall, S.H.; Smart, J.E.; Gustafson, G.S.
1995-10-24
The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion. 8 figs.
Feedwater temperature control methods and systems
Moen, Stephan Craig; Noonan, Jack Patrick; Saha, Pradip
2014-04-22
A system for controlling the power level of a natural circulation boiling water nuclear reactor (NCBWR) is disclosed. The system, in accordance with an example embodiment of the present invention, may include a controller configured to control a power output level of the NCBWR by controlling a heating subsystem to adjust a temperature of feedwater flowing into an annulus of the NCBWR. The heating subsystem may include a steam diversion line configured to receive steam generated by a core of the NCBWR and a steam bypass valve configured to receive commands from the controller to control a flow of the steam in the steam diversion line, wherein the steam received by the steam diversion line has not passed through a turbine. Additional embodiments of the invention may include a feedwater bypass valve for controlling an amount of flow of the feedwater through a heater bypass line to the annulus.
Large panel design for containment air baffle
Orr, R.S.
1992-12-08
The movable air baffle shield means in accordance with the present invention provides an efficient method of cooling the space surrounding the containment vessel while also providing the capability of being moved away from the containment vessel during inspection. The containment apparatus comprises a generally cylindrical sealed containment vessel for containing at least a portion of a nuclear power generation plant, a disparate shield building surrounding and housing the containment vessel therein and spaced outwardly thereof so as to form an air annulus in the space between the shield building and the containment vessel, a shield baffle means positioned in the air annulus around at least a portion of the sides of the containment vessel providing a coolant path between the baffle means and the containment vessel to permit cooling of the containment vessel by air, the shield baffle means being movable to afford access to the containment vessel. 9 figs.
Preliminary considerations for extraction of thermal effect from magma
NASA Astrophysics Data System (ADS)
Hickox, C. E.; Dunn, J. C.
Simplified mathematical models are developed to describe the extraction of thermal energy from magma based on the concept of a counter-flow heat exchanger inserted into the magma body. Analytical solutions are used to investigate influence of the basic variables on electric power production. Calculations confirm that the proper heat exchanger flow path is down the annulus with hot fluid returning to the surface through the central core. The core must be insulated from the annulus to achieve acceptable wellhead temperatures, but this insulation thickness can be quite small. The insulation is effective in maintaining the colder annular flow below expected formation temperatures so that a net beat gain from the formation above a magma body is predicted. The analynes show that optimum flow rates exist that maximize electric power production. These optimum flow rates are functions of the heat transfer coefficients that describe magma energy extraction.
Opposing flow in square porous annulus: Influence of Dufour effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athani, Abdulgaphur, E-mail: abbu.bec@gmail.com; Al-Rashed, Abdullah A. A. A., E-mail: aa.alrashed@paaet.edu.kw; Khaleed, H. M. T., E-mail: khalid-tan@yahoo.com
Heat and mass transfer in porous medium is very important area of research which is also termed as double diffusive convection or thermo-solutal convection. The buoyancy ratio which is the ratio of thermal to concentration buoyancy can have negative values thus leading to opposing flow. This article is aimed to study the influence of Dufour effect on the opposing flow in a square porous annulus. The partial differential equations that govern the heat and mass transfer behavior inside porous medium are solved using finite element method. A three node triangular element is used to divide the porous domain into smallermore » elements. Results are presented with respect to geometric and physical parameters such as duct diameter ratio, Rayleigh number, radiation parameter etc. It is found that the heat transfer increase with increase in Rayleigh number and radiation parameter. It is observed that Dufour coefficient has more influence on velocity profile.« less
Local fragmentation of thin disks in Eddington-inspired gravity
NASA Astrophysics Data System (ADS)
Roshan, Mahmood; Kazemi, Ali; De Martino, Ivan
2018-06-01
We find the generalized version of the Toomre's criterion for the stability of a rotating thin disk in the context of Eddington inspired Born-Infeld (EiBI) gravity which possesses one free parameter χ. To do so we use the weak field limit of the theory and find the dispersion relation for the propagation of matter density waves on the surface of a self-gravitating and differentially rotating disk. Finally we find a new version of Toomre's stability criterion for thin disks. We show that EiBI gravity with negative χ destabilizes all the rotating thin disks. On the other hand EiBI with positive χ substantially can suppress the local fragmentation, and has stabilizing effects against axi-symmetric perturbations. More specifically, we show that only an annulus remains unstable on the surface of the disk. The width of the annulus directly depends on the magnitude of χ.
Complex Analysis of Diffusion Transport and Microstructure of an Intervertebral Disk.
Byvaltsev, V A; Kolesnikov, S I; Belykh, E G; Stepanov, I A; Kalinin, A A; Bardonova, L A; Sudakov, N P; Klimenkov, I V; Nikiforov, S B; Semenov, A V; Perfil'ev, D V; Bespyatykh, I V; Antipina, S L; Giers, M; Prul, M
2017-12-01
We studied the relationship between diffusion transport and morphological and microstructural organization of extracellular matrix of human intervertebral disk. Specimens of the lumbar intervertebral disks without abnormalities were studied ex vivo by diffusion-weighed magnetic resonance imaging, histological and immunohistochemical methods, and electron microscopy. Distribution of the diffusion coefficient in various compartments of the intervertebral disk was studied. Significant correlations between diffusion coefficient and cell density in the nucleus pulposus, posterior aspects of annulus fibrosus, and endplate at the level of the posterior annulus fibrosus were detected for each disk. In disks with nucleus pulposus diffusion coefficient below 15×10 -4 mm 2 /sec, collagens X and XI were detected apart from aggrecan and collagens I and II. The results supplement the concept on the relationship between the microstructure and cell composition of various compartments of the intervertebral disk and parameters of nutrient transport.
Mixed Convection Opposing Flow in a Vertical Porous Annulus-Two Temperature Model
NASA Astrophysics Data System (ADS)
Al-Rashed, Abdullah A. AA; J, Salman Ahmed N.; Khaleed, H. M. T.; Yunus Khan, T. M.; NazimAhamed, K. S.
2016-09-01
The opposing flow in a porous medium refers to a condition when the forcing velocity flows in opposite direction to thermal buoyancy obstructing the buoyant force. The present research refers to the effect of opposing flow in a vertical porous annulus embedded with fluid saturated porous medium. The thermal non-equilibrium approach with Darcy modal is considered. The boundary conditions are such that the inner radius is heated with constant temperature Tw the outer radius is maintained at constant temperature Tc. The coupled nonlinear partial differential equations such as momentum equation, energy equation for fluid and energy equation for solid are solved using the finite element method. The opposing flow variation of average Nusselt number with respect to radius ratio Rr, Aspect ratioAr and Radiation parameter Rd for different values of Peclet number Pe are investigated. It is found that the flow behavior is quite different from that of aiding flow.
Enhanced retinal vasculature imaging with a rapidly configurable aperture
Sapoznik, Kaitlyn A.; Luo, Ting; de Castro, Alberto; Sawides, Lucie; Warner, Raymond L.; Burns, Stephen A.
2018-01-01
In adaptive optics scanning laser ophthalmoscope (AOSLO) systems, capturing multiply scattered light can increase the contrast of the retinal microvasculature structure, cone inner segments, and retinal ganglion cells. Current systems generally use either a split detector or offset aperture approach to collect this light. We tested the ability of a spatial light modulator (SLM) as a rapidly configurable aperture to use more complex shapes to enhance the contrast of retinal structure. Particularly, we varied the orientation of a split detector aperture and explored the use of a more complex shape, the half annulus, to enhance the contrast of the retinal vasculature. We used the new approach to investigate the influence of scattering distance and orientation on vascular imaging. PMID:29541524
Lehr, Edgar; Rabosky, Daniel L.
2018-01-01
The loss of hearing structures and loss of advertisement calls in many terrestrial breeding frogs (Strabomantidae) living at high elevations in South America are common and intriguing phenomena. The Andean frog genus Phrynopus Peters, 1873 has undergone an evolutionary radiation in which most species lack the tympanic membrane and tympanic annulus, yet the phylogenetic relationships among species in this group remain largely unknown. Here, we present an expanded molecular phylogeny of Phrynopus that includes 24 nominal species. Our phylogeny includes Phrynopus peruanus, the type species of the genus, and 10 other species for which genetic data were previously unavailable. We found strong support for monophyly of Phrynopus, and that two nominal species—Phrynopus curator and Phrynopus nicoleae—are junior synonyms of Phrynopus tribulosus. Using X-ray computed tomography (CT) imaging, we demonstrate that the absence of external hearing structures is associated with complete loss of the auditory skeletal elements (columella) in at least one member of the genus. We mapped the tympanum condition on to a species tree to infer whether the loss of hearing structures took place once or multiple times. We also assessed whether tympanum condition, body size, and body shape are associated with the elevational distribution and habitat use. We identified a single evolutionary transition that involved the loss of both the tympanic membrane and tympanic annulus, which in turn is correlated with the absence of advertisement calls. We also identified several species pairs where one species inhabits the Andean grassland and the other montane forest. When accounting for phylogenetic relatedness among species, we detected a significant pattern of increasing body size with increasing elevation. Additionally, species at higher elevations tend to develop shorter limbs, shorter head, and shorter snout than species living at lower elevations. Our findings strongly suggest a link between ecological divergence and morphological diversity of terrestrial breeding frogs living in montane gradients. PMID:29492332
Generalized Couette Poiseuille flow with boundary mass transfer
NASA Astrophysics Data System (ADS)
Marques, F.; Sanchez, J.; Weidman, P. D.
1998-11-01
A generalized similarity formulation extending the work of Terrill (1967) for Couette Poiseuille flow in the annulus between concentric cylinders of infinite extent is given. Boundary conditions compatible with the formulation allow a study of the effects of inner and outer cylinder transpiration, rotation, translation, stretching and twisting, in addition to that of an externally imposed constant axial pressure gradient. The problem is governed by [eta], the ratio of inner to outer radii, a Poiseuille number, and nine Reynolds numbers. Single-cylinder and planar problems can be recovered in the limits [eta][rightward arrow]0 and [eta][rightward arrow]1, respectively. Two coupled primary nonlinear equations govern the meridional motion generated by uniform mass flux through the porous walls and the azimuthal motion generated by torsional movement of the cylinders; subsidiary equations linearly slaved to the primary flow govern the effects of cylinder translation, cylinder rotation, and an external pressure gradient. Steady solutions of the primary equations for uniform source/sink flow of strength F through the inner cylinder are reported for 0[less-than-or-eq, slant][eta][less-than-or-eq, slant]1. Asymptotic results corroborating the numerical solutions are found in different limiting cases. For F<0 fluid emitted through the inner cylinder fills the gap and flows uniaxially down the annulus; an asymptotic analysis leads to a scaling that removes the effect of [eta] in the pressure parameter [beta], namely [beta]=[pi]2R*2, where R*=F(1[minus sign][eta])/(1+[eta]). The case of sink flow for F>0 is more complex in that unique solutions are found at low Reynolds numbers, a region of triple solutions exists at moderate Reynolds numbers, and a two-cell solution prevails at large Reynolds numbers. The subsidiary linear equations are solved at [eta]=0.5 to exhibit the effects of cylinder translation, rotation, and an axial pressure gradient on the source/sink flows.
Maeda, Koichi; Kuratani, Toru; Torikai, Kei; Shimamura, Kazuo; Mizote, Isamu; Ichibori, Yasuhiro; Takeda, Yasuharu; Daimon, Takashi; Nakatani, Satoshi; Nanto, Shinsuke; Sawa, Yoshiki
2013-07-01
Even mild paravalvular leakage (PVL) after transcatheter aortic valve replacement (TAVR) is associated with increased late mortality. Electrocardiogram-gated multi-slice computed tomography (MSCT) enables detailed aortic annulus assessment. We describe the impact of MSCT for PVL following TAVR. Congruence between the prosthesis and annulus diameters affects PVL; therefore, we calculated the OverSized AortiC Annular ratio (OSACA ratio) and OSACA (transesophageal echocardiography, TEE) ratio as prosthesis diameter/annulus diameter on MSCT or TEE, respectively, and compared their relationship with PVL ≤ trace following TAVR. Of 36 consecutive patients undergoing TAVR (Group A), the occurrence of PVL ≤ trace (33.3%) was significantly related to the OSACA ratio (p = 0.00020). In receiver-operating characteristics analysis, the cutoff value of 1.03 for the OSACA ratio had the highest sum of sensitivity (75.0%) and specificity (91.7%; AUC = 0.87) with significantly higher discriminatory performance for PVL as compared to the OSACA (TEE) ratio (AUC = 0.69, p = 0.028). In nine consecutive patients (Group B) undergoing TAVR based on guidelines formulated from our experience with Group A, PVL ≤ trace was significantly more frequent (88.9%) than that in Group A (p = 0.0060). The OSACA ratio has a significantly higher discriminatory performance for PVL ≤ trace than the OSACA (TEE) ratio, and aortic annular measurement from MSCT is more accurate than that from TEE. © 2013 Wiley Periodicals, Inc.
Aortic root dynamism, geometry, and function after the remodeling operation: Clinical relevance.
Yacoub, Magdi H; Aguib, Heba; Gamrah, Mazen Abou; Shehata, Nairouz; Nagy, Mohamed; Donia, Mohamed; Aguib, Yasmine; Saad, Hesham; Romeih, Soha; Torii, Ryo; Afifi, Ahmed; Lee, Su-Lin
2018-04-13
Valve-conserving operations for aneurysms of the ascending aorta and root offer many advantages, and their use is steadily increasing. Optimizing the results of these operations depends on providing the best conditions for normal function and durability of the new root. Multimodality imaging including 2-dimensional echocardiography, multislice computed tomography, and cardiovascular magnetic resonance combined with image processing and computational fluid dynamics were used to define geometry, dynamism and aortic root function, before and after the remodeling operation. This was compared with 4 age-matched controls. The size and shape of the ascending aorta, aortic root, and its component parts showed considerable changes postoperatively, with preservation of dynamism. The postoperative size of the aortic annulus was reduced without the use of external bands or foreign material. Importantly, the elliptical shape of the annulus was maintained and changed during the cardiac cycle (Δ ellipticity index was 15% and 28% in patients 1 and 2, respectively). The "cyclic" area of the annulus changed in size (Δarea: 11.3% in patient 1 and 13.1% in patient 2). Functional analysis showed preserved reservoir function of the aortic root, and computational fluid dynamics demonstrated normalized pattern of flow in the ascending aorta, sinuses of Valsalva, and distal aorta. The remodeling operation results in near-normal geometry of the aortic root while maintaining dynamism of the aortic root and its components. This could have very important functional implications; the influence of these effects on both early- and long-term outcomes needs to be studied further. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Pnevmatikos, Dimitris; Geka, Maria; Divane, Maria
2010-12-01
This study investigates the emergence, development and structure of ethnic identity during childhood. Forty Roma children living in Greece aged between 2.8 and 11.9 years answered questions about their awareness/recognition of four aspects of their ethnic identity-namely place of habitation, traditional costumes, the Roma language, and early betrothal of children-their identity and their sense of stability and constancy. The study also investigates how the children feel about the abandonment of those four aspects. The evidence from the current data supports the hypothesis that awareness of ethnic identity emerges before the age of 4. Moreover, this study offers direct empirical evidence of the multidimensionality of ethnic identity. A model of three concentric rings is proposed, extending from a core containing the most highly valued aspects of ethnic identity to the outer annulus that comprises the nonpermanent and nonstable aspects of ethnic identity. The aspects in each annulus differ in terms of the development of the sense of stability and constancy and the feelings associated with loss of the aspects in question. Even the youngest participants considered the aspects in the core to be stable and constant as well as emotionally charged; and even the 11-year-olds did not consider the aspects contained in the outer, more fluid annulus as stable and constant aspects of their ethnic identity. The development of an aspect is determined by what the majority of adults in a society, at a particular time in history, consider to be most important.
Precession effects on a liquid planetary core
NASA Astrophysics Data System (ADS)
Liu, Min; Li, Li-Gang
2018-02-01
Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a rotating cylindrical annulus, which simultaneously possesses slow precession. The same problemhas been studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the Ekman number E, the Poincaré number Po and the radius-height aspect ratio Γ. While in an annulus, there is another parameter, the inner-radius-height aspect ratio ϒ, which also plays an important role in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic energy. As the precessional force increases, our simulation suggests that the nonlinear interaction between the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional regime of rich dynamics to disordered flow. The inertial mode u 111, followed by u 113 or u 112, always dominates the precessing flow when 0.001 ≤ Po ≤ 0.05, ranging from weak to moderate precession. Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a laminar to disordered flow.
Melrose, J; Taylor, T K; Ghosh, P
1997-06-01
Trypsin inhibitory proteins of low buoyant density (p < or = 1.35 g/mL) fractions were prepared by CsCl density gradient ultracentrifugation of 4 M guanidinium hydrochloride extracts of lumbar beagle and greyhound annulus fibrosus and nucleus pulposus from animals aged 1 to 6 years. Affinity blotting with biotinylated trypsin was used to identify active trypsin inhibitory protein species; these species were also identified immunologically by Western blotting using antibodies against bovine pancreatic trypsin inhibitor (BPTI), and human inter-alpha-trypsin inhibitor (ITI). None of the trypsin inhibitory species evident in Western blots were reactive with anti-human alpha1-proteinase inhibitor (alpha-1-PI), alpha2-macroglobulin or secretory leucocyte proteinase inhibitor. The greyhound intervertebral disc samples generally had higher levels of active trypsin inhibitor species per unit weight of tissue extracted, and a more extensive range of inhibitor species. Inhibitor species of 30, 32, 34 kDa were identified in both beagle and greyhound intervertebral disc samples; these species were generally most prominent in the annulus fibrosus samples. In contrast, the nucleus pulposus samples contained relatively large trypsin inhibitor species; the anti-BPTI detected an inhibitor species of approximately 85-90 kDa; anti-ITI detected species of 120-250 kDa; biotinylated trypsin detected species of 60-110 kDa. A small molecular mass trypsin inhibitor species of 6 kDa, which was of similar mobility to BPTI, was also detected in annulus fibrosus samples; however, this species did not react with anti-BPTI.
NASA Astrophysics Data System (ADS)
Omojaro, Adebola Peter; Breitkopf, Cornelia
2017-07-01
Heat transfer performance during the simultaneous charging and discharging (SCD) operation process for phase change materials (PCM) contained inside the annulus of concentric horizontal cylinder was investigated. In the experimental set-up, the PCM inside the annulus serves as the heat sink along with an externally imposed forced cooling air. The obtained time wise temperature profile was used to determine the effects of different heat fluxes and the imposed forced convection cooling on the melt fraction values and the transition shift time from the observed conduction to natural convection heat transfer patterns. Furthermore, non-dimensional analysis was presented for the heat transfer at the interface to enable generalizing the result. Comparison of the results show that the SCD operation mode establish the condition that enables much PCM phase transition time and thus longer time of large latent heat transfer effect than the Partial and non simultaneous operations. Analysis results show that the variation of the heat flux for the SCD mode did not change the dominance of the natural convection over conduction heat transfers in the PCM. However, it significantly influences the commencement/transition shift time and melting rate while higher heat fluxes yields melt fraction that was 38-63% more for investigated process time. Variation with different cooling air flow rate shows more influences on the melt fraction than on the mode of heat transfer occurring in the PCM during melting. Available non-SCD modes correlation was shown to be insufficient to accurately predict interface heat transfer for the SCD modes.
Corrosion studies of titanium in borated water for TPX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, D.F.; Pawel, S.J.; DeVan, J.H.
1995-12-31
Corrosion testing was performed to demonstrate the compatibility of the titanium vacuum vessel with borated water. Borated water is proposed to fill the annulus of the double wall vacuum vessel to provide effective radiation shielding. Borating the water with 110 grams of boric acid per liter is sufficient to reduce the nuclear heating in the Toroidal Field Coil set and limit the activation of components external to the vacuum vessel. Constant extension rate tensile (CERT) and electrochemical potentiodynamic tests were performed. Results of the CERT tests confirm that stress corrosion cracking is not significant for Ti-6Al4V or Ti-3AI-2.5V. Welded andmore » unwelded specimens were tested in air and in borated water at 150{degree}C. Strength, elongation, and time to failure were nearly identical for all test conditions, and all the samples exhibited ductile failure. Potentiodynamic tests on Ti-6A1-4V and Ti in borated water as a function of temperature showed low corrosion rates over a wide passive potential range. Further, this passivity appeared stable to anodic potentials substantially greater than those expected from MHD effects.« less
Boiler for generating high quality vapor
NASA Technical Reports Server (NTRS)
Gray, V. H.; Marto, P. J.; Joslyn, A. W.
1972-01-01
Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.
30 CFR 250.428 - What must I do in certain cementing and casing situations?
Code of Federal Regulations, 2010 CFR
2010-07-01
... point. (h) Need to use less than required cement for the surface casing during floating drilling... permafrost zone uncemented Fill the annulus with a liquid that has a freezing point below the minimum...
Mitral Annular Dynamics in Mitral Annular Calcification: A Three-Dimensional Imaging Study.
Pressman, Gregg S; Movva, Rajesh; Topilsky, Yan; Clavel, Marie-Annick; Saldanha, Jason A; Watanabe, Nozomi; Enriquez-Sarano, Maurice
2015-07-01
The mitral annulus displays complex conformational changes during the cardiac cycle that can now be quantified by three-dimensional echocardiography. Mitral annular calcification (MAC) is increasingly encountered, but its structural and dynamic consequences are largely unexplored. The objective of this study was to describe alterations in mitral annular dimensions and dynamics in patients with MAC. Transthoracic three-dimensional echocardiography was performed in 43 subjects with MAC and 36 age- and sex-matched normal control subjects. Mitral annular dimensions were quantified, using dedicated software, at six time points (three diastolic, three systolic) during the cardiac cycle. In diastole, the calcified annulus was larger and flatter than normal, with increased anteroposterior diameter (29.4 ± 0.6 vs 27.8 ± 0.6 mm, P = .046), reduced height (2.8 ± 0.2 vs 3.6 ± 0.2 mm, P = .006), and decreased saddle shape (8.9 ± 0.6% vs 11.4 ± 0.6%, P = .005). In systole, patients with MAC had greater annular area at all time points (P < .05 for each) compared with control subjects, because of reduced contraction along the anteroposterior diameter (P < .001). Saddle shape increased in early systole (from 10.5% to 13.5%, P = .04) in control subjects but not in those with MAC (P = NS). Valvular alterations were also noted; although mitral valve tent length decreased during systole in both groups, decreases were less in patients with MAC (P < .05 for mid- and late systole). For certain parameters (e.g., annular area), changes were confined largely to those patients with moderate to severe MAC (P = .006 vs control subjects, but nonsignificant for patients with mild MAC). Quantitative three-dimensional echocardiography provides new insights into the dynamic consequences of MAC. This imaging technique demonstrates that the mitral annulus is not made smaller by calcification. However, there is loss of annular contraction, particularly along the anteroposterior diameter, and loss of early systolic folding along the intercommissural diameter. Associated valvular alterations include smaller than usual declines in tenting during systole. These quantitative three-dimensional echocardiographic data provide new insights into the dynamic physiology of the calcified mitral annulus. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Chen, Chieh-Li; Bojikian, Karine D; Wen, Joanne C; Zhang, Qinqin; Xin, Chen; Mudumbai, Raghu C; Johnstone, Murray A; Chen, Philip P; Wang, Ruikang K
2017-05-01
Understanding the differences in vascular microcirculation of the peripapillary retinal nerve fiber layer (RNFL) between the hemispheres in eyes with glaucoma with single-hemifield visual field (VF) defects may provide insight into the pathophysiology of glaucoma. To investigate the changes in the microcirculation of the peripapillary RNFL of eyes with glaucoma by using optical microangiography. Eyes with glaucoma and single-hemifield VF defect and normal eyes underwent scanning using an optical microangiography system covering a 6.7 × 6.7-mm2 area centered at the optic nerve head. The RNFL microcirculation was measured within an annulus region centered at the optic nerve head divided into superior and inferior hemispheres. Blood flux index (the mean flow signal intensity in the vessels) and vessel area density (the percentage of the detected vessels in the annulus) were measured. Differences in microcirculation between the hemispheres in eyes with glaucoma and normal eyes and correlations among blood flow metrics, VF thresholds, and clinical optical coherence tomography structural measurements were assessed. Twenty-one eyes from 21 patients with glaucoma (7 men and 14 women; mean [SD] age, 63.7 [9.9] years) and 20 eyes from 20 healthy control individuals (9 men and 11 women; mean [SD] age, 68.3 [10.7] years) were studied. In eyes with glaucoma, the abnormal hemisphere showed a thinner RNFL (mean [SE] difference, 23.5 [4.5] μm; 95% CI, 15.1-32.0 µm; P < .001), lower RNFL blood flux index (mean [SE] difference, 0.04 [0.01]; 95% CI, 0.02-0.05; P < .001), and less vessel area density (mean [SE] difference, 0.08% [0.02%]; 95% CI, 0.05%-0.10%; P < .001) than did the normal hemisphere. Compared with normal eyes, reduced RNFL microcirculation was found in the normal hemisphere of eyes with glaucoma, measured by mean [SE] differences in blood flux index (0.06 [0.01]; 95% CI, 0.04-0.09; P < .001) and vessel area density (0.04% [0.02%]; 95% CI, 0.02%-0.08%; P = .003) but not in RNFL thickness (3.4 [4.7] μm; 95% CI, -6.2 to 12.9 µm; P = .48). Strong correlations were found between the blood flux index and VF mean deviation (Spearman ρ = 0.44; P = .045) and RNFL thickness (Spearman ρ = 0.65; P = .001) in the normal hemisphere of the eye with glaucoma. Reduced RNFL microcirculation was detected in the normal hemisphere of eyes with glaucoma, with strong correspondence with VF loss and RNFL thinning. Although the results suggest that vascular dysfunction precedes structural changes seen in glaucoma, longitudinal studies would be needed to confirm this finding.
Neural activity in cortical area V4 underlies fine disparity discrimination.
Shiozaki, Hiroshi M; Tanabe, Seiji; Doi, Takahiro; Fujita, Ichiro
2012-03-14
Primates are capable of discriminating depth with remarkable precision using binocular disparity. Neurons in area V4 are selective for relative disparity, which is the crucial visual cue for discrimination of fine disparity. Here, we investigated the contribution of V4 neurons to fine disparity discrimination. Monkeys discriminated whether the center disk of a dynamic random-dot stereogram was in front of or behind its surrounding annulus. We first behaviorally tested the reference frame of the disparity representation used for performing this task. After learning the task with a set of surround disparities, the monkey generalized its responses to untrained surround disparities, indicating that the perceptual decisions were generated from a disparity representation in a relative frame of reference. We then recorded single-unit responses from V4 while the monkeys performed the task. On average, neuronal thresholds were higher than the behavioral thresholds. The most sensitive neurons reached thresholds as low as the psychophysical thresholds. For subthreshold disparities, the monkeys made frequent errors. The variable decisions were predictable from the fluctuation in the neuronal responses. The predictions were based on a decision model in which each V4 neuron transmits the evidence for the disparity it prefers. We finally altered the disparity representation artificially by means of microstimulation to V4. The decisions were systematically biased when microstimulation boosted the V4 responses. The bias was toward the direction predicted from the decision model. We suggest that disparity signals carried by V4 neurons underlie precise discrimination of fine stereoscopic depth.
40 CFR 147.3107 - Mechanical integrity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Mechanical integrity. 147.3107 Section 147.3107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Oklahoma Indian Tribes § 147.3107 Mechanical integrity. (a) Monitoring of annulus pressure conducted...
Chowdhury, Shahryar M; Butts, Ryan J; Buckley, Jason; Hlavacek, Anthony M; Hsia, Tain-Yen; Khambadkone, Sachin; Baker, G Hamilton
2014-08-01
Echocardiographic measurements of diastolic function have not been validated against invasive pressure-volume loop (PVL) analysis in the single-ventricle population. The authors hypothesized that echocardiographic measures of diastolic function would correlate with PVL indices of diastolic function in patients with a single-ventricle physiology. The conductance-derived PVL measures of diastolic function included the isovolumic relaxation time constant (τ), the maximum rate of ventricular pressure decline (peak -dP/dt), and a measure of passive diastolic stiffness (μ). The echocardiographic measures included Doppler inflow patterns of the dominant atrioventricular valve (DAVV), tissue Doppler velocities (TDI) at the lateral (ventricular free wall) component of the DAVV annulus, and the TDI-derived isovolumic relaxation time (IVRT'). The correlation between PVL and echocardiographic measures was examined. The study enrolled 13 patients at various stages of surgical palliation. The median age of the patients was 3 years (range 3 months to 19 years). τ correlated well with Doppler E:A (r = 0.832; p = 0.005), lateral E:E' (r = 0.747; p = 0.033), and IVRT' (r = 0.831; p = 0.001). Peak -dP/dt also was correlated with IVRT' (r = 0.609; p = 0.036), and μ also was correlated with IVRT' (r = 0.884; p = 0.001). This study represents the first-ever comparison of diastolic echocardiographic and PVL indices in a single-ventricle population. The findings show that Doppler E:A, lateral E:E', and IVRT' correlate well with PVL measures of diastolic function. This study supports further validation of echocardiographic measures of diastolic function versus PVL measures of diastolic function in the single-ventricle population.
Sharen, Gao-Wa; Zhang, Jun; Qin, Chuan; Lv, Qing
2017-02-01
The dynamic characteristics of the area of the atrial septal defect (ASD) were evaluated using the technique of real-time three-dimensional echocardiography (RT 3DE), the potential factors responsible for the dynamic characteristics of the area of ASD were observed, and the overall and local volume and functions of the patients with ASD were measured. RT 3DE was performed on the 27 normal controls and 28 patients with ASD. Based on the three-dimensional data workstations, the area of ASD was measured at P wave vertex, R wave vertex, T wave starting point, and T wave terminal point and in the T-P section. The right atrial volume in the same time phase of the cardiac cycle and the motion displacement distance of the tricuspid annulus in the corresponding period were measured. The measured value of the area of ASD was analyzed. The changes in the right atrial volume and the motion displacement distance of the tricuspid annulus in the normal control group and the ASD group were compared. The right ventricular ejection fractions in the normal control group and the ASD group were compared using the RT 3DE long-axis eight-plane (LA 8-plane) method. Real-time three-dimensional volume imaging was performed in the normal control group and ASD group (n=30). The right ventricular inflow tract, outflow tract, cardiac apex muscular trabecula dilatation, end-systolic volume, overall dilatation, end-systolic volume, and appropriate local and overall ejection fractions in both two groups were measured with the four-dimensional right ventricular quantitative analysis method (4D RVQ) and compared. The overall right ventricular volume and the ejection fraction measured by the LA 8-plane method and 4D RVQ were subjected to a related analysis. Dynamic changes occurred to the area of ASD in the cardiac cycle. The rules for dynamic changes in the area of ASD and the rules for changes in the right atrial volume in the cardiac cycle were consistent. The maximum value of the changes in the right atrial volume occurred in the end-systolic period when the peak of the curve appeared. The minimum value of the changes occurred in the end-systolic period and was located at the lowest point of the volume variation curve. The area variation curve for ASD and the motion variation curve for the tricuspid annulus in the cardiac cycle were the same. The displacement of the tricuspid annulus exhibited directionality. The measured values of the area of ASD at P wave vertex, R wave vertex, T wave starting point, T wave terminal point and in the T-P section were properly correlated with the right atrial volume (P<0.001). The area of ASD and the motion displacement distance of the tricuspid annulus were negatively correlated (P<0.05). The right atrial volumes in the ASD group in the cardiac cycle in various time phases increased significantly as compared with those in the normal control group (P=0.0001). The motion displacement distance of the tricuspid annulus decreased significantly in the ASD group as compared with that in the normal control group (P=0.043). The right ventricular ejection fraction in the ASD group was lower than that in the normal control group (P=0.032). The ejection fraction of the cardiac apex trabecula of the ASD patients was significantly lower than the ejection fractions of the right ventricular outflow tract and inflow tract and overall ejection fraction. The difference was statistically significant (P=0.005). The right ventricular local and overall dilatation and end-systolic volumes in the ASD group increased significantly as compared with those in the normal control group (P=0.031). The aRVEF and the overall ejection fraction decreased in the ASD group as compared with those in the normal control group (P=0.0005). The dynamic changes in the area of ASD and the motion curves for the right atrial volume and tricuspid annulus have the same dynamic characteristics. RT 3DE can be used to accurately evaluate the local and overall volume and functions of the right ventricle. The local and overall volume loads of the right ventricle in the ASD patients increase significantly as compared with those of the normal people. The right ventricular cardiac apex and the overall systolic function decrease.
A mitral annulus tracking approach for navigation of off-pump beating heart mitral valve repair.
Li, Feng P; Rajchl, Martin; Moore, John; Peters, Terry M
2015-01-01
To develop and validate a real-time mitral valve annulus (MVA) tracking approach based on biplane transesophageal echocardiogram (TEE) data and magnetic tracking systems (MTS) to be used in minimally invasive off-pump beating heart mitral valve repair (MVR). The authors' guidance system consists of three major components: TEE, magnetic tracking system, and an image guidance software platform. TEE provides real-time intraoperative images to show the cardiac motion and intracardiac surgical tools. The magnetic tracking system tracks the TEE probe and the surgical tools. The software platform integrates the TEE image planes and the virtual model of the tools and the MVA model on the screen. The authors' MVA tracking approach, which aims to update the MVA model in near real-time, comprises of three steps: image based gating, predictive reinitialization, and registration based MVA tracking. The image based gating step uses a small patch centered at each MVA point in the TEE images to identify images at optimal cardiac phases for updating the position of the MVA. The predictive reinitialization step uses the position and orientation of the TEE probe provided by the magnetic tracking system to predict the position of the MVA points in the TEE images and uses them for the initialization of the registration component. The registration based MVA tracking step aims to locate the MVA points in the images selected by the image based gating component by performing image based registration. The validation of the MVA tracking approach was performed in a phantom study and a retrospective study on porcine data. In the phantom study, controlled translations were applied to the phantom and the tracked MVA was compared to its "true" position estimated based on a magnetic sensor attached to the phantom. The MVA tracking accuracy was 1.29 ± 0.58 mm when the translation distance is about 1 cm, and increased to 2.85 ± 1.19 mm when the translation distance is about 3 cm. In the study on porcine data, the authors compared the tracked MVA to a manually segmented MVA. The overall accuracy is 2.37 ± 1.67 mm for single plane images and 2.35 ± 1.55 mm for biplane images. The interoperator variation in manual segmentation was 2.32 ± 1.24 mm for single plane images and 1.73 ± 1.18 mm for biplane images. The computational efficiency of the algorithm on a desktop computer with an Intel(®) Xeon(®) CPU @3.47 GHz and an NVIDIA GeForce 690 graphic card is such that the time required for registering four MVA points was about 60 ms. The authors developed a rapid MVA tracking algorithm for use in the guidance of off-pump beating heart transapical mitral valve repair. This approach uses 2D biplane TEE images and was tested on a dynamic heart phantom and interventional porcine image data. Results regarding the accuracy and efficiency of the authors' MVA tracking algorithm are promising, and fulfill the requirements for surgical navigation.
The saturation of monochromatic lights obliquely incident on the retina.
Alpern, M; Tamaki, R
1983-01-01
Foveal dark-adaptation undertaken to test the hypothesis that the excitation of rods causes the desaturation of 'yellow' lights in a 1 degree field traversing the margin of the pupil, fails to exclude that possibility. The desaturation is largest for a 1 degree outside diameter annular test, is still measurable with a 0.5 degree circular disk, but disappears for a 0.29 degree disk. The supersaturation of obliquely incident 501.2 nm test light follows the opposite pattern; it disappears with an annulus and is largest for a 0.29 degree circular field. It is unlikely that rods replace short-wave sensitive cones in the trichromatic match of an obliquely incident test with normally incident primaries. If rods as well as all three cones species are involved, the matches might not be trichromatic in the strong sense. Grassmann's law of scalar multiplication was tested and shown not to hold for the match of an obliquely incident test with normally incident primaries, though it remains valid whenever, both primaries and test strike the retina at the same angle of incidence (independent of that angle). The result in section 3 (above) cannot be due to rod intrusion. It persists (and becomes more conspicuous) on backgrounds (4.0 log scotopic td) which saturate rods. Moreover obliquely incident 'yellow' lights remain desaturated in intervals in the dark after a full bleach, whilst the test field is below rod threshold. The amount of desaturation does not differ appreciably from that normally found. The assumption of the unified theory of Alpern, Kitahara & Tamaki (1983) that the outer segments of only a single set of three cone species (with acceptance angles wide enough to include the entire exit pupil) contain the visual pigments absorbing both the normally incident primaries and the obliquely incident test is disproved by these results. Failure of Grassmann's law is most conspicuous under the conditions for which the changes in saturation upon changing from normal to oblique incidence are greatest and least when the saturation changes are the smallest. Either all unified theories of the Stiles-Crawford effects are wrong or all the effects of oblique incidence operate at a stage in the visual process at which the effects of radiation of different wave-lengths are no longer compounded by the simple linear laws. PMID:6875976
Stability of Cucumber Necrosis Virus at the Quasi-6-Fold Axis Affects Zoospore Transmission.
Sherman, Michael B; Kakani, Kishore; Rochon, D'Ann; Jiang, Wen; Voss, Neil R; Smith, Thomas J
2017-10-01
Cucumber necrosis virus (CNV) is a member of the genus Tombusvirus and has a monopartite positive-sense RNA genome. CNV is transmitted in nature via zoospores of the fungus Olpidium bornovanus As with other members of the Tombusvirus genus, the CNV capsid swells when exposed to alkaline pH and EDTA. We previously demonstrated that a P73G mutation blocks the virus from zoospore transmission while not significantly affecting replication in plants (K. Kakani, R. Reade, and D. Rochon, J Mol Biol 338:507-517, 2004, https://doi.org/10.1016/j.jmb.2004.03.008). P73 lies immediately adjacent to a putative zinc binding site (M. Li et al., J Virol 87:12166-12175, 2013, https://doi.org/10.1128/JVI.01965-13) that is formed by three icosahedrally related His residues in the N termini of the C subunit at the quasi-6-fold axes. To better understand how this buried residue might affect vector transmission, we determined the cryo-electron microscopy structure of wild-type CNV in the native and swollen state and of the transmission-defective mutant, P73G, under native conditions. With the wild-type CNV, the swollen structure demonstrated the expected expansion of the capsid. However, the zinc binding region at the quasi-6-fold at the β-annulus axes remained intact. By comparison, the zinc binding region of the P73G mutant, even under native conditions, was markedly disordered, suggesting that the β-annulus had been disrupted and that this could destabilize the capsid. This was confirmed with pH and urea denaturation experiments in conjunction with electron microscopy analysis. We suggest that the P73G mutation affects the zinc binding and/or the β-annulus, making it more fragile under neutral/basic pH conditions. This, in turn, may affect zoospore transmission. IMPORTANCE Cucumber necrosis virus (CNV), a member of the genus Tombusvirus , is transmitted in nature via zoospores of the fungus Olpidium bornovanus While a number of plant viruses are transmitted via insect vectors, little is known at the molecular level as to how the viruses are recognized and transmitted. As with many spherical plant viruses, the CNV capsid swells when exposed to alkaline pH and EDTA. We previously demonstrated that a P73G mutation that lies inside the capsid immediately adjacent to a putative zinc binding site (Li et al., J Virol 87:12166-12175, 2013, https://doi.org/10.1128/JVI.01965-13) blocks the virus from zoospore transmission while not significantly affecting replication in plants (K. Kakani, R. Reade, and D. Rochon, J Mol Biol 338:507-517, 2004, https://doi.org/10.1016/j.jmb.2004.03.008). Here, we show that the P73G mutant is less stable than the wild type, and this appears to be correlated with destabilization of the β-annulus at the icosahedral 3-fold axes. Therefore, the β-annulus appears not to be essential for particle assembly but is necessary for interactions with the transmission vector. Copyright © 2017 American Society for Microbiology.
Stability of Cucumber Necrosis Virus at the Quasi-6-Fold Axis Affects Zoospore Transmission
Sherman, Michael B.; Kakani, Kishore; Rochon, D'Ann; Jiang, Wen; Voss, Neil R.
2017-01-01
ABSTRACT Cucumber necrosis virus (CNV) is a member of the genus Tombusvirus and has a monopartite positive-sense RNA genome. CNV is transmitted in nature via zoospores of the fungus Olpidium bornovanus. As with other members of the Tombusvirus genus, the CNV capsid swells when exposed to alkaline pH and EDTA. We previously demonstrated that a P73G mutation blocks the virus from zoospore transmission while not significantly affecting replication in plants (K. Kakani, R. Reade, and D. Rochon, J Mol Biol 338:507–517, 2004, https://doi.org/10.1016/j.jmb.2004.03.008). P73 lies immediately adjacent to a putative zinc binding site (M. Li et al., J Virol 87:12166–12175, 2013, https://doi.org/10.1128/JVI.01965-13) that is formed by three icosahedrally related His residues in the N termini of the C subunit at the quasi-6-fold axes. To better understand how this buried residue might affect vector transmission, we determined the cryo-electron microscopy structure of wild-type CNV in the native and swollen state and of the transmission-defective mutant, P73G, under native conditions. With the wild-type CNV, the swollen structure demonstrated the expected expansion of the capsid. However, the zinc binding region at the quasi-6-fold at the β-annulus axes remained intact. By comparison, the zinc binding region of the P73G mutant, even under native conditions, was markedly disordered, suggesting that the β-annulus had been disrupted and that this could destabilize the capsid. This was confirmed with pH and urea denaturation experiments in conjunction with electron microscopy analysis. We suggest that the P73G mutation affects the zinc binding and/or the β-annulus, making it more fragile under neutral/basic pH conditions. This, in turn, may affect zoospore transmission. IMPORTANCE Cucumber necrosis virus (CNV), a member of the genus Tombusvirus, is transmitted in nature via zoospores of the fungus Olpidium bornovanus. While a number of plant viruses are transmitted via insect vectors, little is known at the molecular level as to how the viruses are recognized and transmitted. As with many spherical plant viruses, the CNV capsid swells when exposed to alkaline pH and EDTA. We previously demonstrated that a P73G mutation that lies inside the capsid immediately adjacent to a putative zinc binding site (Li et al., J Virol 87:12166–12175, 2013, https://doi.org/10.1128/JVI.01965-13) blocks the virus from zoospore transmission while not significantly affecting replication in plants (K. Kakani, R. Reade, and D. Rochon, J Mol Biol 338:507–517, 2004, https://doi.org/10.1016/j.jmb.2004.03.008). Here, we show that the P73G mutant is less stable than the wild type, and this appears to be correlated with destabilization of the β-annulus at the icosahedral 3-fold axes. Therefore, the β-annulus appears not to be essential for particle assembly but is necessary for interactions with the transmission vector. PMID:28724762
Park, Won Man; Choi, Dae Kyung; Kim, Kyungsoo; Kim, Yongjung J; Kim, Yoon Hyuk
2015-12-01
Spinal fusion surgery is a widely used surgical procedure for sagittal realignment. Clinical studies have reported that spinal fusion may cause proximal junctional kyphosis and failure with disc failure, vertebral fracture, and/or failure at the implant-bone interface. However, the biomechanical injury mechanisms of proximal junctional kyphosis and failure remain unclear. A finite element model of the thoracolumbar spine was used. Nine fusion models with pedicle screw systems implanted at the L2-L3, L3-L4, L4-L5, L5-S1, L2-L4, L3-L5, L4-S1, L2-L5, and L3-S1 levels were developed based on the respective surgical protocols. The developed models simulated flexion-extension using hybrid testing protocol. When spinal fusion was performed at more distal levels, particularly at the L5-S1 level, the following biomechanical properties increased during flexion-extension: range of motion, stress on the annulus fibrosus fibers and vertebra at the adjacent motion segment, and the magnitude of axial forces on the pedicle screw at the uppermost instrumented vertebra. The results of this study demonstrate that more distal fusion levels, particularly in spinal fusion including the L5-S1 level, lead to greater increases in the risk of proximal junctional kyphosis and failure, as evidenced by larger ranges of motion, higher stresses on fibers of the annulus fibrosus and vertebra at the adjacent segment, and higher axial forces on the screw at the uppermost instrumented vertebra in flexion-extension. Therefore, fusion levels should be carefully selected to avoid proximal junctional kyphosis and failure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hilal-Alnaqbi, Ali; Mourad, Abdel-Hamid I; Yousef, Basem F
2014-01-01
A mathematical model is developed to predict oxygen transfer in the fiber-in-fiber (FIF) bioartificial liver device. The model parameters are taken from the constructed and tested FIF modules. We extended the Krogh cylinder model by including one more zone for oxygen transfer. Cellular oxygen uptake was based on Michaelis-Menten kinetics. The effect of varying a number of important model parameters is investigated, including (1) oxygen partial pressure at the inlet, (2) the hydraulic permeability of compartment B (cell region), (3) the hydraulic permeability of the inner membrane, and (4) the oxygen diffusivity of the outer membrane. The mathematical model is validated by comparing its output against the experimentally acquired values of an oxygen transfer rate and the hydrostatic pressure drop. Three governing simultaneous linear differential equations are derived to predict and validate the experimental measurements, e.g., the flow rate and the hydrostatic pressure drop. The model output simulated the experimental measurements to a high degree of accuracy. The model predictions show that the cells in the annulus can be oxygenated well even at high cell density or at a low level of gas phase PG if the value of the oxygen diffusion coefficient Dm is 16 × 10(-5) . The mathematical model also shows that the performance of the FIF improves by increasing the permeability of polypropylene membrane (inner fiber). Moreover, the model predicted that 60% of plasma has access to the cells in the annulus within the first 10% of the FIF bioreactor axial length for a specific polypropylene membrane permeability and can reach 95% within the first 30% of its axial length. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Cardiac Calcifications on Echocardiography Are Associated with Mortality and Stroke.
Lu, Marvin Louis Roy; Gupta, Shuchita; Romero-Corral, Abel; Matejková, Magdaléna; De Venecia, Toni; Obasare, Edinrin; Bhalla, Vikas; Pressman, Gregg S
2016-12-01
Calcium deposits in the aortic valve and mitral annulus have been associated with cardiovascular events and mortality. However, there is no accepted standard method for scoring such cardiac calcifications, and most existing methods are simplistic. The aim of this study was to test the hypothesis that a semiquantitative score, one that accounts for all visible calcium on echocardiography, could predict all-cause mortality and stroke in a graded fashion. This was a retrospective study of 443 unselected subjects derived from a general echocardiography database. A global cardiac calcium score (GCCS) was applied that assigned points for calcification in the aortic root and valve, mitral annulus and valve, and submitral apparatus, and points for restricted leaflet mobility. The primary outcome was all-cause mortality, and the secondary outcome was stroke. Over a mean 3.8 ± 1.7 years of follow-up, there were 116 deaths and 34 strokes. Crude mortality increased in a graded fashion with increasing GCCS. In unadjusted proportional hazard analysis, the GCCS was significantly associated with total mortality (hazard ratio, 1.26; 95% CI, 1.17-1.35; P < .0001) and stroke (hazard ratio, 1.23; 95% CI, 1.07-1.40; P = .003). After adjusting for demographic and clinical factors (age, gender, body mass index, diabetes, hypertension, dyslipidemia, smoking, family history of coronary disease, chronic kidney disease, history of atrial fibrillation, and history of stroke), these associations remained significant. The GCCS is easily applied to routinely acquired echocardiograms and has clinically significant associations with total mortality and stroke. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Akyuva, Yener; Kaplan, Necati; Yilmaz, Ibrahim; Ozbek, Hanefi; Sirin, Duygu Yasar; Karaaslan, Numan; Guler, Olcay; Ateş, Özkan
2018-04-09
The aim of this in vitro experimental study was to design a novel, polyvinyl alcohol(PVA)-basedpolymericscaffold that permits the controlled release of insulin-likegrowthfactor1(IGF-1)/bonemorphogenetic protein-2(BMP-2) following intervertebral disc administration. The drug delivery system was composed of two different solutions that formed a scaffold within seconds after coming into contact with each other. We performed swelling,pH,temperature tests and analysis of the controlled release of growth factors from this system.The release kinetics of the growth factors was determined through enzyme linked immunosorbent assay(ELISA). Cell proliferation and viability was monitored with microscopy and analyzed using an MTT assay and acridine orange/propidium iodide(AO/PI) staining. Chondroadherin(CHAD), hypoxiainduciblefactor-1alpha(HIF-1α),collagentypeII(COL2A1) gene expressions were determined with quantitative real-timepolymerasechainreaction(qRT-PCR) analysis to show the effects of IGF-1/BMP-2 administration on annulus fibrosus cell(AFC)/nucleus pulposus cell(NPC) cultures. The scaffold allowed for the controlled release of IGF-1 and BMP-2 in different time intervals. It was observed that as the application time increased, the number of cells and the degree of extracellular matrix development increased in AFC/NPC cultures. AO/PI staining and an MTT analysis showed that cells retained their specific morphology and continued to proliferate. It was observed that HIF-1α and CHAD expression increased in a time-dependent manner, and there wasn't any COL2A1 expression in the AFC/NPC cultures. The designed scaffold may be used as an alternative method for intervertebral disc administration of growth factors after further in vivo studies. We believe that such prototype scaffolds may be an innovative technology in targeted drug therapies after reconstructive neurosurgeries.
Diprionidae sawflies on lodgepole and ponderosa pines
USDA-ARS?s Scientific Manuscript database
Eight species of Diprionidae feed on lodgepole pine (Pinus contorta) and ponderosa pine (P. ponderosa) in western United States: Neodiprion burkei Middleton, N. annulus contortae Ross, N. autumnalis Smith, N. fulviceps (Cresson), N. gillettei (Rohwer), N. mundus Rohwer, N. ventralis Ross, and Zadi...
Detection of atrial electromechanical dysfunction in obesity.
Erdem, Fatma Hizal; Ozturk, Serkan; Baltaci, Davut; Donmez, Ibraham; Alçelik, Aytekin; Ayhan, Selim; Yaz, Mehmet
2015-12-01
Obesity is associated with atrial fibrillation and is known as an independent risk factor. The aim of our study was to investigate if there was any association between the body mass index and atrial electromechanical intervals in obese and non-obese patients. Seventy patients were enrolled in the study. Body mass index (BMI), functional capacity, and fasting blood sugar were evaluated; then, these patients were divided into two groups, patients who had a BMI ≥ 30 were known as obese (35 patients) and those who had a BMI < 30 were known as non-obese patients. All patients were evaluated by transthoracic echocardiography. LA volumes were measured by the discs method in the apical four-chamber view. LA active and passive emptying volumes and fraction were calculated. Using TDI, atrial electromechanical coupling (PA) was measured from the lateral mitral annulus (PA lateral), septal mitral annulus (PA septum), and right ventricular tricuspid annulus (PA tricuspid). LA diameter was significantly higher in obese patients (P = 0.021). LA passive emptying volume and fraction were significantly decreased in obese patients (P = 0.038 and P = 0.011). LA active emptying volume and fraction were significantly increased in obese patients (P = 0.001 and P = 0.001). Left intraatrial and interatrial electromechanical delay were significantly higher in obese patients (18.9 ± 3.8 vs 11.9 ± 2.0, P < 0.001 and 29.5 ± 4.1 vs 17.9 ± 2.5, P < 0.001). Also interatrial electromechanical delay correlated positively with BMI. This study revealed that delayed atrial electromechanical interval and impaired LA mechanical functions were related to BMI in obese-patients. These findings may be an early sign of subclinical atrial dysfunction and arrhythmias in obese patients.
Chokan, Kou; Murakami, Hideki; Endo, Hirooki; Mimata, Yoshikuni; Yamabe, Daisuke; Tsukimura, Itsuko; Oikawa, Ryosuke; Doita, Minoru
2016-04-01
T2 mapping was used to quantify moisture content of the lumbar spinal disk nucleus pulposus (NP) and annulus fibrosus before and after exercise stress, and after rest, to evaluate the intervertebral disk function. To clarify water retention in intervertebral disks of the lumbar vertebrae by performing magnetic resonance imaging before and after exercise stress and quantitatively measuring changes in moisture content of intervertebral disks with T2 mapping. To date, a few case studies describe functional evaluation of articular cartilage with T2 mapping; however, T2 mapping to the functional evaluation of intervertebral disks has rarely been applied. Using T2 mapping might help detect changes in the moisture content of intervertebral disks, including articular cartilage, before and after exercise stress, thus enabling the evaluation of changes in water retention shock absorber function. Subjects, comprising 40 healthy individuals (males: 26, females: 14), underwent magnetic resonance imaging T2 mapping before and after exercise stress and after rest. Image J image analysis software was then used to set regions of interest in the obtained images of the anterior annulus fibrosus, posterior annulus fibrosus, and NP. T2 values were measured and compared according to upper vertebrae position and degeneration grade. T2 values significantly decreased in the NP after exercise stress and significantly increased after rest. According to upper vertebrae position, in all of the upper vertebrae positions, T2 values for the NP significantly decreased after exercise stress and significantly increased after rest. According to the degeneration grade, in the NP of grade 1 and 2 cases, T2 values significantly decreased after exercise stress and significantly increased after rest. T2 mapping could be used to not only diagnose the degree of degeneration but also evaluate intervertebral disk function. 3.
De Groot-de Laat, Lotte E; Ren, Ben; McGhie, Jackie; Oei, Frans B S; Raap, Goris Bol; Bogers, J J C; Geleijnse, Marcel L
2014-11-01
Mitral regurgitation (MR) is a common disorder for which mitral valve surgery is an established therapy. Although surgical indications are clearly defined for the management of valvular heart disease, a gap exists between current guidelines and their effective application. The study aim was to provide an insight into the diagnostic information provided for cardiac surgeons before performing mitral valve surgery. The source documents and echocardiographic studies of 100 patients, referred by nine hospitals, were screened for arguments for MR severity justifying referral for surgery. Details of the documented MR mechanism, mitral annulus (MA) size, tricuspid regurgitation (TR) severity and annulus size were also noted. According to the referring physician, MR was severe in 83% and moderate-to-severe in 17%. In the great majority of patients (98%) the MR mechanism was mentioned, although specific information on the prolapsing scallops was available in only 17% of cases. The recommended primary determinants of MR severity, vena contracta and proximal isovelocity surface area (PISA) were measured in only 22% and 31% of patients, respectively. In 94% of patients with available PISA information this was described only qualitatively. Correct image expansion using the zoom mode was performed in only 25% of these patients, and a correct adaptation of the Nyquist limit in only 6%. Tricuspid annulus measurements guiding the need for concomitant tricuspid valvuloplasty in patients with less than severe TR were reported in only 6% of patients. These data demonstrate a clear and important gap between current guidelines and real-world practice with regards to the echocardiographic diagnostic information provided to the surgeon before performing mitral valve surgery.
Wong, Dennis T L; Bertaso, Angela G; Liew, Gary Y H; Thomson, Viji S; Cunnington, Michael S; Richardson, James D; Gooley, Robert; Lockwood, Siobhan; Meredith, Ian T; Worthley, Matthew I; Worthley, Stephen G
2013-04-01
Significant paravalvular aortic regurgitation (PAR) after transcatheter aortic valve implantation (TAVI) is associated with negative clinical consequences. We hypothesize that increased eccentricity of the aortic annulus is associated with greater PAR. Patients with severe aortic stenosis underwent multidetector computed tomography (MDCT) before successful TAVI with the Medtronic CoreValve bioprosthesis. The smallest (D(min)) and largest (D(max)) orthogonal diameters in the basal ring of the aortic annulus were determined. We defined circularity of aortic annulus using the eccentricity index (1 - D(min)/D(max)). The primary endpoint was early occurrence of significant PAR, defined as > grade II PAR by postprocedural aortography. Eighty-four patients, mean age 83 ± 4 years with a mean aortic valve area of 0.7 ± 0.2 cm² were included. Twenty patients had postprocedural PAR > grade II. Using a receiver operating characteristic (ROC) analysis, eccentricity index correlated with significant PAR (AUC = 0.834; P=.034). A retrospectively determined eccentricity index cut-off of >0.25 was related to significant PAR with a sensitivity of 80%, specificity of 86%, and negative predictive value of 95% (P<.001). On univariate logistic regression, eccentricity index of >0.25 (P<.001) and device implantation depth (P=.015) correlated with significant PAR, while other parameters such as annular calcification and cover index did not. On multivariate analysis including only parameters with P<.1 on univariate analysis, eccentricity index >0.25 was the sole independent predictor of significant PAR. Eccentricity index is related to significant PAR after TAVI with Medtronic CoreValve. Further larger studies are required to determine the utility of this novel index in screening suitable patients for this procedure.
Equilibrium and magnetic properties of a rotating plasma annulus
NASA Astrophysics Data System (ADS)
Wang, Zhehui; Si, Jiahe; Liu, Wei; Li, Hui
2008-10-01
Local linear analysis shows that magneto-rotational instability can be excited in laboratory rotating plasmas with a density of 1019m-3, a temperature on the order of 10eV, and a magnetic field on the order of 100G. A laboratory plasma annulus experiment with a dimension of ˜1m, and rotation at ˜0.5 sound speed is described. Correspondingly, magnetic Reynolds number of these plasmas is ˜1000, and magnetic Prandtl number ranges from about one to a few hundred. A radial equilibrium, ρUθ2/r =d(p+Bz2/2μ0)/dr=K0, with K0 being a nonzero constant, is proposed for the experimental data. Plasma rotation is observed to drive a quasisteady diamagnetic electrical current (rotational current drive) in a high-β plasma annulus. The rotational energy depends on the direction and the magnitude of the externally applied magnetic field. Radial current (Jr) is produced through biasing the center rod at a negative electric potential relative to the outer wall. Jr×Bz torque generates and sustains the plasma rotation. Rotational current drive can reverse the direction of vacuum magnetic field, satisfying a necessary condition for self-generated closed magnetic flux surfaces inside plasmas. The Hall term is found to be substantial and therefore needs to be included in the Ohm's law for the plasmas. Azimuthal magnetic field (Bθ) is found to be comparable with the externally applied vacuum magnetic field Bz, and mainly caused by the electric current flowing in the center cylinder; thus, Bθ∝r-1. Magnetic fluctuations are anisotropic, radial-dependent, and contain many Fourier modes below the ion cyclotron frequency. Further theoretical analysis reflecting these observations is needed to interpret the magnetic fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuah, Yon Jin; Lee, Wu Chean; Wong, Hee Kit
Prior research has investigated the immediate response after application of tensile strain on annulus fibrosus (AF) cells for the past decade. Although mechanical strain can produce either catabolic or anabolic consequences to the cell monolayer, little is known on how to translate these findings into further tissue engineering applications. Till to date, the application and effect of tensile pre-strained cells to construct a three-dimensional (3D) AF tissue remains unknown. This study aims to investigate the effect of tensile pre-strained exposure of 1 to 24 h on the development of AF pellet culture for 3 weeks. Equibiaxial cyclic tensile strain wasmore » applied on AF monolayer cells over a period of 24 h, which was subsequently developed into a cell pellet. Investigation on cellular proliferation, phenotypic gene expression, and histological changes revealed that tensile pre-strain for 24 h had significant and lasting effect on the AF tissue development, with enhanced cell proliferation, and up-regulation of collagen type I, II, and aggrecan expression. Our results demonstrated the regenerative ability of AF cell pellets subjected to 24 h tensile pre-straining. Knowledge on the effects of tensile pre-strain exposure is necessary to optimize AF development for tissue reconstruction. Moreover, the tensile pre-strained cells may further be utilized in either cell therapy to treat mild disc degeneration disease, or the development of a disc construct for total disc replacement. - Highlights: • Establishment of tensile pre-strained cell line population for annulus development. • Tensile strain limits collagen gene expression declination in monolayer culture. • Tensile pre-strained cells up-regulate their matrix protein in 3D pellet culture.« less
Krackhardt, Florian; Kherad, Behrouz; Krisper, Maximilian; Pieske, Burkert; Laule, Michael; Tschöpe, Carsten
2017-01-01
Conduction disturbances requiring permanent pacemaker implantation following transcatheter aortic valve replacement (TAVR) are a common problem. Pacemaker implantation rates after TAVR appear to be higher compared to conventional aortic valve replacement. The aim of this study was to analyze whether a high annulus implantation conveys the benefit of a decreased rate of permanent pacemaker implantation while being safe and successful according to Valve Academic Research Consortium 2 (VARC2)-criteria. A total of 23 patients with symptomatic severe aortic valve stenosis, an aortic annulus of 19-27 mm and at high risk for surgery were treated with the Lotus valve. In all patients the valve was implanted in a high annulus position via femoral access. The primary device performance endpoint was VARC2-defined device success after 30 days and the primary safety endpoint was the need for permanent pacemaker implantation. The mean age was 73.23 ± 7.65 years, 46% were female, 38% were New York Heart Association class III/IV at baseline. Thirty-day follow-up data were available for all patients. The VARC2-defined device success rate after 30 days was 22/23 (96%). 2/21 (10%) patients required a newly implanted pacemaker due to 3rd degree atrioventricular block. 25% of the patients developed a new left bundle branch block after valvuloplasty or device implantation. 21 of the 23 patients (96%) had no other signs of conduction disturbances after 30 days. The approach of the modified implantation technique of Lotus TAVR device was safe and effective. The incidence of need for a permanent pacemaker following TAVR could be significantly reduced due to adopted implantation protocol.
NASA Astrophysics Data System (ADS)
Ritvanen, J.; Jalali, P.
2009-06-01
Rapid granular shear flow is a classical example in granular materials which exhibits both fluid-like and solid-like behaviors. Another interesting feature of rapid granular shear flows is the formation of ordered structures upon shearing. Certain amount of granular material, with uniform size distribution, is required to be loaded in the container in order to shear it under stable conditions. This work concerns the experimental study of rapid granular shear flows in annular Couette geometry. The flow is induced by continuous rotation of the plate over the top of the granular bed in an annulus. The compressive pressure, driving torque, instantaneous bed height from three symmetric locations and rotational speed of the shearing plate are measured. The annulus has a capacity of up to 15 kg of spherical steel balls of 3 mm in diameter. Rapid shear flow experiments are performed in one compressive force and rotation rate. The sensitivity of fluctuations is then investigated by different means through monodisperse packing. In this work, we present the results of the experiments showing how the flow properties depend on the amount of loaded granular material which is varied by small amounts between different experiments. The flow can exist in stable (fixed behavior) and unstable (time-dependent behavior) regimes as a function of the loaded material. We present the characteristics of flow to detect the formation of any additional structured layer in the annulus. As a result, an evolution graph for the bed height has been obtained as material is gradually added. This graph shows how the bed height grows when material increases. Using these results, the structure inside the medium can be estimated at extreme stable and unstable conditions.
Detonation propagation in annular arcs of condensed phase explosives
NASA Astrophysics Data System (ADS)
Ioannou, Eleftherios; Schoch, Stefan; Nikiforakis, Nikolaos; Michael, Louisa
2017-11-01
We present a numerical study of detonation propagation in unconfined explosive charges shaped as an annular arc (rib). Steady detonation in a straight charge propagates at constant speed, but when it enters an annular section, it goes through a transition phase and eventually reaches a new steady state of constant angular velocity. This study examines the speed of the detonation wave along the annular charge during the transition phase and at steady state, as well as its dependence on the dimensions of the annulus. The system is modeled using a recently proposed diffuse-interface formulation which allows for the representation of a two-phase explosive and of an additional inert material. The explosive considered is the polymer-bonded TATB-based LX-17 and is modeled using two Jones-Wilkins-Lee (JWL) equations of state and the ignition and growth reaction rate law. Results show that steady state speeds are in good agreement with experiment. In the transition phase, the evolution of outer detonation speed deviates from the exponential bounded growth function suggested by previous studies. We propose a new description of the transition phase which consists of two regimes. The first regime is caused by local effects at the outer edge of the annulus and leads to a dependence of the outer detonation speed on the angular position along the arc. The second regime is induced by effects originating from the inner edge of the annular charge and leads to the deceleration of the outer detonation until steady state is reached. The study concludes with a parametric study where the dependence of the steady state and the transition phase on the dimensions of the annulus is investigated.
Bhatti, M M; Zeeshan, A; Ellahi, R
2016-12-01
In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Stolfo, Davide; De Luca, Antonio; Morea, Gaetano; Merlo, Marco; Vitrella, Giancarlo; Caiffa, Thomas; Barbati, Giulia; Rakar, Serena; Korcova, Renata; Perkan, Andrea; Pinamonti, Bruno; Pappalardo, Aniello; Berardini, Alessandra; Biagini, Elena; Saia, Francesco; Grigioni, Francesco; Rapezzi, Claudio; Sinagra, Gianfranco
2018-04-15
Patients with heart failure (HF) and severe symptomatic functional mitral regurgitation (FMR) may benefit from MitraClip implantation. With increasing numbers of patients being treated the success of procedure becomes a key issue. We sought to investigate the pre-procedural predictors of device failure in patients with advanced HF treated with MitraClip. From April 2012 to November 2016, 76 patients with poor functional class (NYHA class III-IV) and severe left ventricular (LV) remodeling underwent MitraClip implantation at University Hospitals of Trieste and Bologna (Italy). Device failure was assessed according to MVARC criteria. Patients were subsequently followed to additionally assess the patient success after 12months. Mean age was 67±12years, the mean Log-EuroSCORE was 23.4±16.5%, and the mean LV end-diastolic volume index and ejection fraction (EF) were 112±33ml/m 2 and 30.6±8.9%, respectively. At short-term evaluation, device failure was observed in 22 (29%) patients. Univariate predictors of device failure were LVEF, LV and left atrial volumes and anteroposterior mitral annulus diameter. Annulus dimension (OR 1.153, 95% CI 1.002-1.327, p=0.043) and LV end-diastolic volume (OR 1.024, 95% CI 1.000-1.049, p=0.049) were the only variables independently associated with the risk of device failure at the multivariate model. Pre-procedural anteroposterior mitral annulus diameter accurately predicted the risk of device failure after MitraClip in the setting of advanced HF. Its assessment might aid the selection of the best candidates to percutaneous correction of FMR. Copyright © 2018 Elsevier B.V. All rights reserved.
Horehledova, Barbora; Mihl, Casper; Hendriks, Babs M F; Eijsvoogel, Nienke G; Vainer, Jindrich; Veenstra, Leo F; Wildberger, Joachim E; Das, Marco
2018-06-16
Incorrect prosthesis size has direct impact on patient outcome after transcatheter aortic valve implantation (TAVI) procedure. Currently, annular diameter, area or perimeter may be used for prosthesis size selection. The aim was to evaluate whether the use different annular dimensions would result in the selection of different prosthesis sizes, when assessed in the same TAVI-candidate during the same phase of a cardiac cycle. Fifty consecutive TAVI-candidates underwent retrospectively ECG-gated computed tomography angiography (CTA). Aortic root dimensions were assessed in the 20% phase of the R-R interval. Annular short diameter, perimeter and area were used to select the prosthesis size, based on the industry recommendations for a self-expandable (Medtronic CoreValve; MCV) and balloon-expandable (Edwards Sapien XT Valve; ESV) valve. Complete agreement on selected prosthesis size amongst all three annular dimensions was observed in 62% (31/50; ESV) and 30% (15/50; MCV). Short aortic annulus measurement resulted in a smaller prosthesis size in 20% (10/50; ESV) and in 60% of cases (30/50; MCV) compared to the size suggested by both annular perimeter and area. In 18% (9/50; ESV) and 10% of cases (5/50; MCV) a larger prosthesis would have been selected based on annular perimeter compared to annular diameter and area. Prosthesis size derived from area was always in agreement with at least one other parameter in all cases. Aortic annulus area appears to be the most robust parameter for TAVI-prosthesis size selection, regardless of the specific prosthesis size. Short aortic annulus diameter may underestimate the prosthesis size, while use of annular perimeter may lead to size overestimation in some cases.
Emanuel, Kaj S; van der Veen, Albert J; Rustenburg, Christine M E; Smit, Theodoor H; Kingma, Idsart
2018-03-21
The mechanical behaviour of the intervertebral disc highly depends on the content and transport of interstitial fluid. It is unknown, however, to what extent the time-dependent behaviour can be attributed to osmosis. Here we investigate the effect of both mechanical and osmotic loading on water content, nucleus pressure and disc height. Eight goat intervertebral discs, immersed in physiological saline, were subjected to a compressive force with a pressure needle inserted in the nucleus. The loading protocol was: 10 N (6 h); 150 N (42 h); 10 N (24 h). Half-way the 150 N-phase (24 h), we eliminated the osmotic gradient by adding 26% poly-ethylene glycol to the surrounding fluid. For 62 additional discs, we determined the water content of both nucleus and annulus after 6, 24, 48, or 72 h. The compressive load was initially counterbalanced by the hydrostatic pressure in the nucleus. The load forced 4.3% of the water out of the nucleus, which reduced nucleus pressure by 44(±6)%. Reduction of the osmotic gradient disturbed the equilibrium disc height, and a significant loss of annulus water content was found. Remarkably, pressure and water content of the nucleus pulposus remained unchanged. This shows that annulus water content is important in the response to axial loading. After unloading, in the absence of an osmotic gradient, there was substantial viscoelastic recovery of 53(±11)% of the disc height, without a change in water content. However, for restoration of the nucleus pressure and for full restoration of disc height, restoration of the osmotic gradient was needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experimental Investigation of Rotating Stall in a Research Multistage Axial Compressor
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan; Braunscheidel, Edward P.; Welch, Gerard E.
2007-01-01
A collection of experimental data acquired in the NASA low-speed multistage axial compressor while operated in rotating stall is presented in this paper. The compressor was instrumented with high-response wall pressure modules and a static pressure disc probe for in-flow measurement, and a split-fiber probe for simultaneous measurements of velocity magnitude and flow direction. The data acquired to-date have indicated that a single fully developed stall cell rotates about the flow annulus at 50.6% of the rotor speed. The stall phenomenon is substantially periodic at a fixed frequency of 8.29 Hz. It was determined that the rotating stall cell extends throughout the entire compressor, primarily in the axial direction. Spanwise distributions of the instantaneous absolute flow angle, axial and tangential velocity components, and static pressure acquired behind the first rotor are presented in the form of contour plots to visualize different patterns in the outer (midspan to casing) and inner (hub to mid-span) flow annuli during rotating stall. In most of the cases observed, the rotating stall started with a single cell. On occasion, rotating stall started with two emerging stall cells. The root cause of the variable stall cell count is unknown, but is not attributed to operating procedures.
NASA Technical Reports Server (NTRS)
Huff, Edward M.; Dzwonczyk, Mark; Norvig, Peter (Technical Monitor)
2000-01-01
Flight experiment was designed primarily to determine the extent to which steady-state maneuvers influence characteristic vibration patterns measured at the input pinion and output annulus gear locations of the main transmission. If results were to indicate that maneuvers systematically influence vibration patterns, more extensive studies would be planned to explore the response surface. It was also designed to collect baseline data for comparison with experimental data to be recorded at a later date from test stands at Glenn Research Center. Finally, because this was the first vibration flight study on the Cobra aircraft, considerable energy was invested in developing an in-flight recording apparatus, as well as exploring acceleration mounting methods, and generally learning about the overall vibratory characteristics of the aircraft itself.
Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update - 15302
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washenfelder, D. J.; Johnson, J. M.
2014-12-22
Tank AY-102 was the first of 28 double-shell radioactive waste storage tanks constructed at the U. S. Department of Energy’s Hanford Site, near Richland, WA. The tank was completed in 1970, and entered service in 1971. In August, 2012, an accumulation of material was discovered at two sites on the floor of the annulus that separates the primary tank from the secondary liner. The material was sampled and determined to originate from the primary tank. This paper summarizes the changes in leak behavior that have occurred during the past two years, inspections to determine the capability of the secondary linermore » to continue safely containing the leakage, and the initial results of testing to determine the leak mechanism.« less
Tapia, M; Latrémouille, C; Chabert, J P; Fabiani, J N
1995-12-01
The authors report the case of major tricuspid regurgitation occurring early after mitral valve replacement. The mechanism was demonstrated at reoperation: the heart was deformed by a posterior pericardial effusion and cardiodiaphragmatic pericardial adhesions.
High-tip-speed, low-loading transonic fan stage. Part 3: Final report
NASA Technical Reports Server (NTRS)
Ware, T. C.; Kobayashi, R. J.; Jackson, R. J.
1974-01-01
Tests were conducted on a high-tip-speed, low-loading transonic fan stage to determine the performance and inlet flow distortion tolerance of the design. The fan was designed for high efficiency at a moderate pressure ratio by designing the hub section to operate at minimum loss when the tip operates with an oblique shock. The design objective was an efficiency of 86 percent at a pressure ratio of 1.5, a specific flow (flow per unit annulus area) of 42 lb/sec-sq. ft (205.1 kgm/sec-m sq), and a tip speed of 1600 ft/sec (488.6 m/sec). During testing, a peak efficiency of 84 percent was achieved at design speed and design specific flow. At the design speed and pressure ratio, the flow was 4 percent greater than design, efficiency was 81 percent, and a stall margin of 24 percent was obtained. The stall line was improved with hub radial distortion but was reduced when the stage was tested with tip radial and circumferential flow distortions. Blade-to-blade values of static pressures were measured over the rotor blade tips.
Improved power efficiency for very-high-temperature solar-thermal-cavity receivers
McDougal, A.R.; Hale, R.R.
1982-04-14
This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positiond in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatues are attained.
Hydrologic data for a subsurface waste-injection site at Mulberry, Florida; 1972-77
Wilson, William Edward; Parsons, David C.; Spechler, R.M.
1979-01-01
Since October 1972, industrial liquid waste has been injected into a brine aquifer of limestone and dolomite in Mulberry, FL., at a depth of more than 4,000 feet below land surface. During 1977, the injection rate was about 8.8 million gallons per month. To determine what effect the injected waste has on the ground-water body, water levels have been measured and water samples collected from two monitor wells that tap different permeable zones above the injection zone, and from a satellite monitor well that taps the injection zone. The monitor wells are in the annulus of the injection well, and the satellite monitor well is 2,291 feet from the injection well. This report updates previous data reports and includes all hydrologic data collected by the U.S. Geological Survey during 1972-77. Included is a table of well-construction data, a graph showing the volume of waste injected each month, and hydrographs of the annulus monitor wells and the satellite monitor well. (Woodard-USGS)
Convection driven zonal flows and vortices in the major planets.
Busse, F. H.
1994-06-01
The dynamical properties of convection in rotating cylindrical annuli and spherical shells are reviewed. Simple theoretical models and experimental simulations of planetary convection through the use of the centrifugal force in the laboratory are emphasized. The model of columnar convection in a cylindrical annulus not only serves as a guide to the dynamical properties of convection in rotating sphere; it also is of interest as a basic physical system that exhibits several dynamical properties in their most simple form. The generation of zonal mean flows is discussed in some detail and examples of recent numerical computations are presented. The exploration of the parameter space for the annulus model is not yet complete and the theoretical exploration of convection in rotating spheres is still in the beginning phase. Quantitative comparisons with the observations of the dynamics of planetary atmospheres will have to await the consideration in the models of the effects of magnetic fields and the deviations from the Boussinesq approximation.
Power efficiency for very high temperature solar thermal cavity receivers
McDougal, Allan R.; Hale, Robert R.
1984-01-01
This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.
Transcatheter Therapies for Treating Tricuspid Regurgitation.
Rodés-Cabau, Josep; Hahn, Rebecca T; Latib, Azeem; Laule, Michael; Lauten, Alexander; Maisano, Francesco; Schofer, Joachim; Campelo-Parada, Francisco; Puri, Rishi; Vahanian, Alec
2016-04-19
Tricuspid valve (TV) disease has been relatively neglected, despite the known association between severe tricuspid regurgitation (TR) and mortality. Few patients undergo isolated tricuspid surgery, which remains associated with high in-hospital mortality rates, particularly in patients with prior left-sided valve surgery. Patients with severe TR are often managed medically for years before TV repair or replacement. Current guidelines recommend TV repair in the presence of a dilated tricuspid annulus at the time of a left-sided valve surgical intervention, even if regurgitation is mild. This proposed algorithm aims to prevent the inevitable progression to severe TR and the need for a second surgical intervention. Recently, novel transcatheter treatment options were developed for treating patients with severe TR and right heart failure with prohibitive surgical risk. Here we describe currently available transcatheter treatment options for severe TR implanted at different levels: the junction between vena cavae and right atrium; the tricuspid annulus; or between TV leaflets, improving coaptation. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Well fluid isolation and sample apparatus and method
Schalla, Ronald; Smith, Ronald M.; Hall, Stephen H.; Smart, John E.
1995-01-01
The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. A seal may be positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Purged well fluid is stored in a riser above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.
Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.
Cui, Zhihua; Ai, Chi; Lv, Lei; Yin, Fangxian
2017-01-01
The shear swirling flow vibration cementing (SSFVC) technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1) the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2) the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.
1990-01-01
The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.
Transcatheter aortic-valve implantation with one single minimal contrast media injection.
Arrigo, Mattia; Maisano, Francesco; Haueis, Sabine; Binder, Ronald K; Taramasso, Maurizio; Nietlispach, Fabian
2015-06-01
Performing transcatheter aortic valve implantation (TAVI) with the use of minimal contrast in patients at high-risk for acute kidney injury (AKI). Contrast-induced nephropathy (CIN) is a major cause of AKI following TAVI and is associated with increased morbidity and mortality. The amount of contrast media used increases the risk for CIN. Computed tomography was omitted during the screening process. For the procedure transfemoral access was default. The self-expanding CoreValve prosthesis was chosen in all patients to minimize the risk of annular rupture in case of oversizing. Valve sizing was based on echocardiography, aortography, calcification on fluoroscopy, as well as weight and height of the patient. A single contrast injection was performed to confirm correct position of the pigtail catheter at the level of the annulus. The pigtail then served as the marker for the device landing zone. Intraprocedural assessment of the implantation result relied on echocardiography and hemodynamics. Five patients with severe aortic stenosis and at high risk for developing CIN were included. Device success was achieved in all patients and no major complications occurred. The median dose of injected contrast media was 8 ml (4-9). All but one patient had improved renal function after the intervention compared to baseline. Our study shows feasibility of performing TAVI with a single minimal contrast media injection, using a self-expandable valve. This technique has the potential to reduce the incidence of CIN. © 2015 Wiley Periodicals, Inc.
Chromatic discrimination: differential contributions from two adapting fields
Cao, Dingcai; Lu, Yolanda H.
2012-01-01
To test whether a retinal or cortical mechanism sums contributions from two adapting fields to chromatic discrimination, L/M discrimination was measured with a test annulus surrounded by an inner circular field and an outer rectangular field. A retinal summation mechanism predicted that the discrimination pattern would not change with a change in the fixation location. Therefore, the fixation was set either in the inner or the outer field in two experiments. When one of the adapting fields was “red” and the other was “green,” the adapting field where the observer fixated always had a stronger influence on chromatic discrimination. However, when one adapting field was “white” and the other was red or green, the white field always weighted more heavily than the other adapting field in determining discrimination thresholds, whether the white field or the fixation was in the inner or outer adapting field. These results suggest that a cortical mechanism determines the relative contributions from different adapting fields. PMID:22330364
Learning prosthetic vision: a virtual-reality study.
Chen, Spencer C; Hallum, Luke E; Lovell, Nigel H; Suaning, Gregg J
2005-09-01
Acceptance of prosthetic vision will be heavily dependent on the ability of recipients to form useful information from such vision. Training strategies to accelerate learning and maximize visual comprehension would need to be designed in the light of the factors affecting human learning under prosthetic vision. Some of these potential factors were examined in a visual acuity study using the Landolt C optotype under virtual-reality simulation of prosthetic vision. Fifteen normally sighted subjects were tested for 10-20 sessions. Potential learning factors were tested at p < 0.05 with regression models. Learning was most evident across-sessions, though 17% of sessions did express significant within-session trends. Learning was highly concentrated toward a critical range of optotype sizes, and subjects were less capable in identifying the closed optotype (a Landolt C with no gap, forming a closed annulus). Training for implant recipients should target these critical sizes and the closed optotype to extend the limit of visual comprehension. Although there was no evidence that image processing affected overall learning, subjects showed varying personal preferences.
Chromatic discrimination: differential contributions from two adapting fields.
Cao, Dingcai; Lu, Yolanda H
2012-02-01
To test whether a retinal or cortical mechanism sums contributions from two adapting fields to chromatic discrimination, L/M discrimination was measured with a test annulus surrounded by an inner circular field and an outer rectangular field. A retinal summation mechanism predicted that the discrimination pattern would not change with a change in the fixation location. Therefore, the fixation was set either in the inner or the outer field in two experiments. When one of the adapting fields was "red" and the other was "green," the adapting field where the observer fixated always had a stronger influence on chromatic discrimination. However, when one adapting field was "white" and the other was red or green, the white field always weighted more heavily than the other adapting field in determining discrimination thresholds, whether the white field or the fixation was in the inner or outer adapting field. These results suggest that a cortical mechanism determines the relative contributions from different adapting fields. © 2012 Optical Society of America
NASA Technical Reports Server (NTRS)
Biaglow, James A.; Trout, Arthur M.
1977-01-01
Emissions and performance characteristics were determined for two full annulus modular combustors operated to near stoichiometric fuel air ratios. The tests were conducted to obtain stoichiometric data at inlet air temperatures from 756 to 894 K and to determine the effects of a flat plate circular flame stabilizer with upstream fuel injection and a contraswirl flame stabilizer with downstream fuel injection. Levels of unburned hydrocarbons were below 0.50 gram per kilogram of fuel for both combustors and thus there was no detectable difference in the two methods of fuel injection. The contraswirl flame stabilizer did not produce the level of mixing obtained with a flat plate circular flame stabilizer. It did produce higher levels of oxides of nitrogen, which peaked at a fuel air ratio of 0.037. For the flat plate circular flame stabilizer, oxides of nitrogen emission levels were still increasing with fuel air ratio to the maximum tested value of 0.045.
NASA Technical Reports Server (NTRS)
Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi
2003-01-01
The effects of two types of flow non-uniformity on stall inception behavior were assessed with linearized stability analyses of two compressor flow models. Response to rotating tip clearance asymmetries induced by a whirling rotor shaft or rotor height variations were investigated with a two-dimensional flow model. A 3-D compressor model was also developed to study the stability of both full-span and part-span rotating stall modes in annular geometries with radial flow variations. The studies focussed on (1) understanding what compressor designs were sensitive to these types of circumferential and spanwise flow non-uniformities, and (2) situations where 2-D stability theories were inadequate because of 3-D flow effects. Rotating tip clearance non-uniformity caused the greatest performance loss for shafts whirling at the rotating stall frequency. A whirling shaft displacement of 1 percent chord caused the stalling mass flow to rise by as much as 10 percent and the peak pressure rise to decrease by 6 percent. These changes were an order of magnitude larger than for equivalent-sized stationary or rotor-locked clearance asymmetries. Spanwise flow non-uniformity always destabilized the compressor, so that 2-D models over-predicted that stall margin compared to 3-D theory. The difference increased for compressors with larger spanwise variations of characteristic slope and reduced characteristic curvature near the peak. Differences between 2-D and 3-D stall point predictions were generally unacceptable (2 - 4 percent of flow coefficient) for single-stage configurations, but were less than 1 percent for multistage compressors. 2-D analyses predicted the wrong stall mode for specific cases of radial inlet flow distortion, mismatching and annulus area contraction, where higher-order radial modes led to stall. The stability behavior of flows with circumferential or radial non-uniformity was unified through a single stability criterion. The stall point for both cases was set by the integral around the annulus of the pressure rise characteristic slope, weighted by the amplitude of the mode shape. For the case of steady circumferential variations, this criterion reduced to the integrated mean slope (IMS) condition associated with steady inlet distortions. The rotating tip clearance asymmetry model was also used to demonstrate the feasibility of actively controlling the shaft position to suppress rotating stall. In axisymmetric mean flow, this method only stabilized the first harmonic mode, increasing the operating range until surge or higher harmonic modes became unstable.
40 CFR 146.91 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... any event that exceeds operating parameters for annulus pressure or injection pressure specified in the permit; (4) A description of any event which triggers a shut-off device required pursuant to § 146... plugging reports, post-injection site care data, including, if appropriate, data and information used to...
NASA Astrophysics Data System (ADS)
von Larcher, Thomas; Harlander, Uwe; Alexandrov, Kiril; Wang, Yongtai
2010-05-01
The model of the differentially heated, rotating cylindrical gap filled with a fluid is since more than four decades extensively used for laboratory experiments of baroclinic wave interactions, and a number of data acquisition techniques are applied e.g. to unhide regular waves of different zonal wave number, to better understand the transition to the quasi-chaotic regime, and to reveal the underlying dynamical processes of complex wave flows. In our experiments presented here, we make use of non-intrusive measurement techniques of a quite different nature. While the high accurate Laser-Doppler-Velocimetry (LDV ) is used for measurements of the radial velocity component at equidistant azimuthal positions, a high sensitive thermographic camera, which resolution allows for resolving fine scale structures, measures the surface temperature field. Both sets of time series data are analyzed by using multivariate statistical techniques. While the LDV data sets are studied by applying the Multi-Channel Singular Spectrum Analysis (M - SSA), the temperature data sets are analyzed by applying the Empirical Orthogonal Functions (EOF ). In addition, the temperature data are processed in a way to become comparable to the LDV data, i.e. reducing the size of the data set in such a manner that the temperature measurements would imaginary be performed at equidistant azimuthal positions only. This approach initially results in a great loss of information. But applying the M - SSA to the reduced temperature data sets enable us not only to compare the data analysis methods but also to reclassify the results yielded with the LDV data analysis. The measurements are performed at particular parameter points, where our former studies show that kinds of complex wave patterns occur [1, 2]. For example, we found a dominant and a weak mode in the 3-4 wave transition region. This finding confirms earlier ideas on wave dispersion in transition regions between regular waves. Increasing the annulus' rotation leads to a growth of the weak mode until this mode becomes the dominant one. [1] Th. von Larcher and C. Egbers, Experiments on transitions of baroclinic waves in a differentially heated rotating annulus, Nonlinear Processes in Geophysics, 2005, 12, 1033-1041, NPG Print: ISSN 1023-5809, NPG Online: ISSN 1607-7946 [2] U. Harlander, Th. von Larcher, Y. Wang and C. Egbers, PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus, Experiments in Fluids, 2009, DOI: 10.1007/s00348-009-0792-5
Menegazzo, L; Bussadori, C; Chiavegato, D; Quintavalla, C; Bonfatti, V; Guglielmini, C; Sturaro, E; Gallo, L; Carnier, P
2012-02-01
The aims of this study were to investigate the role and relative importance of auscultation and echocardiography traits as risk factors for the diagnosis of subaortic (SubAS) and pulmonic (PS) stenosis and to estimate the heritability (h(2)) of cardiac measurements taken through echocardiography for a random sample of Italian Boxer dogs. The data were cardiovascular examination results of 1,283 Italian Boxer dogs (686 females and 597 males) enrolled in the national screening program for heart defects arranged by the Italian Boxer Club. Examinations were performed during a 6-yr period by a group of 7 veterinary cardiologists following a standard protocol. Occurrence and severity of SubAS and PS were diagnosed, taking into account clinical and echocardiography findings such as the grade of cardiac murmur, direct ultrasound imaging of the anatomic obstructive lesions, and values of aortic or pulmonary blood flow velocities. A Bayesian logistic regression analysis was performed to identify clinical and echocardiography variables related to SubAS and PS diagnosis. Estimation of variance components for clinical and echocardiography traits was performed using a mixed linear animal model, Bayesian procedures, and the Gibbs sampler. Prevalence of SubAS (PS) was 8.4% (2.2) and 10.7% (6.4) for female and male dogs, respectively. Cardiac murmur, peak velocities, and annulus areas behaved as risk factors for SubAS and PS. The risk of a positive diagnosis for SubAS was 3 times greater for dogs with aortic annulus area <2.1 cm(2) relative to dogs with areas >2.37 cm(2), 84 times greater for dogs showing aortic peak velocities >2.19 m/s relative to dogs with peak velocities <1.97 m/s, and 41 times greater for dogs with moderate to severe murmur grades relative to dogs with absent murmur. Similar results were obtained for PS. The estimated h(2) for the occurrence of cardiac defects was 23.3% for SubAS and 8.6% for PS. Echocardiography and cardiac murmur grades exhibited moderate h(2) estimates and exploitable additive genetic variation. The estimated h(2) was 36, 24, and 20% for aortic annulus area, aortic peak velocity, and cardiac murmur score, respectively. For the area of the pulmonary annulus and peak pulmonary velocity, the estimated h(2) were smaller, ranging from 9.5 to 12.8%. These measures are candidate indicator traits that might be effectively used in dog breeding to reduce the prevalence and severity of cardiac defects.
NASA Technical Reports Server (NTRS)
Patterson, Michael J. (Inventor)
2013-01-01
An electric propulsion machine includes an ion thruster having an annular discharge chamber housing an anode having a large surface area. The ion thruster includes flat annular ion optics with a small span to gap ratio. Optionally, a second electric propulsion thruster may be disposed in a cylindrical space disposed within an interior of the annulus.
Evaluation of the Virgin Mechanical and Thermal Properties of AVCO 3DCC Heatshield Materials
1977-03-01
alumina or zirconia powder . Surrounding the guard is an annulus of distomaceous earth enclosed in an aluminum or transite shell. The specimens and...pa.-ked with either copper granules, graphite or zirconia powder . This packing provides a positive method for centering the calorimeter within the
Characterizing a Co-Flow Nozzle for use in a Filtered Rayleigh Scattering System
2006-06-01
61 Figure 31- Plot of centerline axial velocity and derivative along centerline of outer annulus while running... axial locations ................................................................................................. 64 Figure 34- Qualitative comparison...have axisymmetric annular flows centered on one another. These geometries are often found in combustors, turbofans , chemical processing and
Randomized ablation strategies for the treatment of persistent atrial fibrillation: RASTA study.
Dixit, Sanjay; Marchlinski, Francis E; Lin, David; Callans, David J; Bala, Rupa; Riley, Michael P; Garcia, Fermin C; Hutchinson, Mathew D; Ratcliffe, Sarah J; Cooper, Joshua M; Verdino, Ralph J; Patel, Vickas V; Zado, Erica S; Cash, Nancy R; Killian, Tony; Tomson, Todd T; Gerstenfeld, Edward P
2012-04-01
The single-procedure efficacy of pulmonary vein isolation (PVI) is less than optimal in patients with persistent atrial fibrillation (AF). Adjunctive techniques have been developed to enhance single-procedure efficacy in these patients. We conducted a study to compare 3 ablation strategies in patients with persistent AF. Subjects were randomized as follows: arm 1, PVI + ablation of non-PV triggers identified using a stimulation protocol (standard approach); arm 2, standard approach + empirical ablation at common non-PV AF trigger sites (mitral annulus, fossa ovalis, eustachian ridge, crista terminalis, and superior vena cava); or arm 3, standard approach + ablation of left atrial complex fractionated electrogram sites. Patients were seen at 6 weeks, 6 months, and 1 year; transtelephonic monitoring was performed at each visit. Antiarrhythmic drugs were discontinued at 3 to 6 months. The primary study end point was freedom from atrial arrhythmias off antiarrhythmic drugs at 1 year after a single-ablation procedure. A total of 156 patients (aged 59±9 years; 136 males; AF duration, 47±50 months) participated (arm 1, 55 patients; arm 2, 50 patients; arm 3, 51 patients). Procedural outcomes (procedure, fluoroscopy, and PVI times) were comparable between the 3 arms. More lesions were required to target non-PV trigger sites than a complex fractionated electrogram (33±9 versus 22±9; P<0.001). The primary end point was achieved in 71 patients and was worse in arm 3 (29%) compared with arm 1 (49%; P=0.04) and arm 2 (58%; P=0.004). These data suggest that additional substrate modification beyond PVI does not improve single-procedure efficacy in patients with persistent AF. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00379301.
Improved Tensile Adhesion Specimens for High Strength Epoxy Systems in Aerospace Applications
NASA Technical Reports Server (NTRS)
Haddock, M. Reed; McLennan, Michael L.
2000-01-01
An improved tensile adhesion button has been designed and tested that results in higher measured tensile adhesion strength while providing increased capability for testing high strength epoxy adhesive systems. The best attributes of two well-established tensile button designs were combined and refined into an optimized tensile button. The most significant design change to the tensile button was to improve alignment of the bonded tensile button specimens during tensile testing by changing the interface between the tensile button and the tensile test machine. The established or old button design uses a test fixture that pulls from a grooved annulus or anvil head while the new button design pulls from a threaded hole in the centerline of the button. Finite element (FE) analysis showed that asymmetric loading of the established anvil head tensile button significantly increases the stress concentration in the adhesive, causing failure at lower tensile test loads. The new tensile button was designed to eliminate asymmetric loading and eliminate misalignment sensitivity. Enhanced alignment resulted in improved tensile adhesion strength measurement up to 13.8 MPa (2000psi) over the established button design. Another design change increased the capability of the button by increasing the threaded hole diameter allowing it to test high strength epoxy systems up to 85 MPa(less than 12,000 psi). The improved tensile button can be used in button- to-button or button-to-panel configurations.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
...] Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and... of Committee: Circulatory System Devices Panel of the Medical Devices Advisory Committee. General... also comes with a sheath, introducer, loader, dilator, balloon (used to pre-dilate the native annulus...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-27
...] Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and... of Committee: Circulatory System Devices Panel of the Medical Devices Advisory Committee. General..., introducer, loader, dilator, balloon (used to pre-dilate the native annulus) and a crimper. FDA intends to...
Torsional Oscillations of the Earths's Core
NASA Technical Reports Server (NTRS)
Hide, Raymond; Boggs, Dale H.; Dickey, Jean O.
1997-01-01
Torsional oscillations of the Earth's liquid metallic outer core are investigated by diving the core into twenty imaginary e1qui-volume annuli coaxial with the axis of ratation of the Earth and determining temproal fluctuations in the axial component of angular memonetum of each annulus under the assumption of iso-rotation on cylindrical surfaces.
Combination downflow-upflow vapor-liquid separator
Kidwell, John H.; Prueter, William P.; Eaton, Andrew M.
1987-03-10
An improved vapor-liquid separator having a vertically disposed conduit for flow of a mixture. A first, second and third plurality of curved arms penetrate and extend within the conduit. A cylindrical member is radially spaced from the conduit forming an annulus therewith and having perforations and a retaining lip at its upper end.
30 CFR 250.514 - Well-control fluids, equipment, and operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... uppermost BOP; (2) A well-control, fluid-volume measuring device for determining fluid volumes when filling the hole on trips; and (3) A recording mud-pit-level indicator to determine mud-pit-volume gains and... the hole with drill pipe, the annulus shall be filled with well-control fluid before the change in...
30 CFR 250.614 - Well-control fluids, equipment, and operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... workover string, the annulus shall be filled with well-control fluid before the change in such fluid level... equivalent well-control fluid volume shall be calculated and posted near the operator's station. A mechanical... utilized: (1) A fill-up line above the uppermost BOP; (2) A well-control, fluid-volume measuring device for...
Messner, Alina; Stelzeneder, David; Trattnig, Stefan; Welsch, Götz H; Schinhan, Martina; Apprich, Sebastian; Brix, Martin; Windhager, Reinhard; Trattnig, Siegfried
2017-03-01
Indicating lumbar disc herniation via magnetic resonance imaging (MRI) T2 mapping in the posterior annulus fibrosus (AF). Sagittal T2 maps of 313 lumbar discs of 64 patients with low back pain were acquired at 3.0 Tesla (3T). The discs were rated according to disc herniation and bulging. Region of interest (ROI) analysis was performed on median, sagittal T2 maps. T2 values of the AF, in the most posterior 10% (PAF-10) and 20% of the disc (PAF-20), were compared. A significant increase in the T2 values of discs with herniations affecting the imaged area, compared to bulging discs and discs with lateral herniation, was shown in the PAF-10, where no association to the NP was apparent. The PAF-20 exhibited a moderate correlation to the nucleus pulposus (NP). High T2 values in the PAF-10 suggest the presence of disc herniation (DH). The results indicate that T2 values in the PAF-20 correspond more to changes in the NP.
Chaotic micromixer utilizing electro-osmosis and induced charge electro-osmosis in eccentric annulus
NASA Astrophysics Data System (ADS)
Feng, Huicheng; Wong, Teck Neng; Che, Zhizhao; Marcos
2016-06-01
Efficient mixing is of significant importance in numerous chemical and biomedical applications but difficult to realize rapidly in microgeometries due to the lack of turbulence. We propose to enhance mixing by introducing Lagrangian chaos through electro-osmosis (EO) or induced charge electro-osmosis (ICEO) in an eccentric annulus. The analysis reveals that the created Lagrangian chaos can achieve a homogeneous mixing much more rapidly than either the pure EO or the pure ICEO. Our systematic investigations on the key parameters, ranging from the eccentricity, the alternating time period, the number of flow patterns in one time period, to the specific flow patterns utilized for the Lagrangian chaos creation, present that the Lagrangian chaos is considerably robust. The system can obtain a good mixing effect with wide ranges of eccentricity, alternating time period, and specific flow patterns utilized for the Lagrangian chaos creation as long as the number of flow patterns in one time period is two. As the electric field increases, the time consumption for homogenous mixing is reduced more remarkably for the Lagrangian chaos of the ICEO than that of the EO.
External combustor for gas turbine engine
Santanam, Chandran B.; Thomas, William H.; DeJulio, Emil R.
1991-01-01
An external combustor for a gas turbine engine has a cyclonic combustion chamber into which combustible gas with entrained solids is introduced through an inlet port in a primary spiral swirl. A metal draft sleeve for conducting a hot gas discharge stream from the cyclonic combustion chamber is mounted on a circular end wall of the latter adjacent the combustible gas inlet. The draft sleeve is mounted concentrically in a cylindrical passage and cooperates with the passage in defining an annulus around the draft sleeve which is open to the cyclonic combustion chamber and which is connected to a source of secondary air. Secondary air issues from the annulus into the cyclonic combustion chamber at a velocity of three to five times the velocity of the combustible gas at the inlet port. The secondary air defines a hollow cylindrical extension of the draft sleeve and persists in the cyclonic combustion chamber a distance of about three to five times the diameter of the draft sleeve. The hollow cylindrical extension shields the drive sleeve from the inlet port to prevent discharge of combustible gas through the draft sleeve.
Notochord to Nucleus Pulposus Transition.
Lawson, Lisa; Harfe, Brian D
2015-10-01
A tissue that commonly deteriorates in older vertebrates is the intervertebral disc, which is located between the vertebrae. Age-related changes in the intervertebral discs are thought to cause most cases of back pain. Back pain affects more than half of people over the age of 65, and the treatment of back pain costs 50-100 billion dollars per year in the USA. The normal intervertebral disc is composed of three distinct regions: a thick outer ring of fibrous cartilage called the annulus fibrosus, a gel-like material that is surrounded by the annulus fibrosus called the nucleus pulposus, and superior and inferior cartilaginous end plates. The nucleus pulposus has been shown to be critical for disc health and function. Damage to this structure often leads to disc disease. Recent reports have demonstrated that the embryonic notochord, a rod-like structure present in the midline of vertebrate embryos, gives rise to all cell types found in adult nuclei pulposi. The mechanism responsible for the transformation of the notochord into nuclei pulposi is unknown. In this review, we discuss potential molecular and physical mechanisms that may be responsible for the notochord to nuclei pulposi transition.
Magnetic resonance imaging in congenital Brown syndrome.
Kim, Jae Hyoung; Hwang, Jeong-Min
2015-08-01
Our aim was to elucidate the etiology of Brown syndrome by evaluating the trochlea position, morphologic characteristics of the extraocular muscles including superior oblique muscle/tendon complex, and the presence of the cranial nerves (CN) III, IV, and VI using magnetic resonance imaging (MRI) in eight patients with unilateral congenital Brown syndrome and one patient with bilateral congenital Brown syndrome. Nine consecutive patients diagnosed with congenital Brown syndrome had a comprehensive ocular examination and MRI for the CN III, CN VI, and the extraocular muscles. Five of the nine patients underwent additional high resolution MRI for CN IV. The distance from the annulus of Zinn to the trochlea was measured. Normal sized CN III, IV, and VI, as well as all extraocular muscles, could be identified bilaterally in all patients with available MRI. The distance from the annulus of Zinn to the trochlea was the same in both eyes. The findings for our patients, particularly in those who underwent additional high resolution MRI, did not provide evidence of a lack of CN IV as a cause of Brown syndrome.
Fujita, Seiya; Matsuura, Kazunori
2014-01-01
A viral β-annulus peptide connected with a zinc oxide (ZnO)-binding sequence (HCVAHR) at its N-terminal was synthesized, and the inclusion behavior of quantum-sized ZnO nanoparticles into the peptide nanocapsules formed by self-assembly of the peptide in water was investigated. Dynamic light scattering (DLS) measurements showed that ZnO nanoparticles (approximately 10 nm) in the presence of the peptide (0.1 mM) formed assemblies with an average size of 48 ± 24 nm, whereas ZnO nanoparticles in the absence of the peptide formed large aggregates. Transmission electron microscopy (TEM) observations of the ZnO nanoparticles in the presence of the peptide revealed that ZnO nanoparticles were encapsulated into the peptide nanocapsules with a size of approximately 50 nm. Fluorescence spectra of a mixture of the peptide and ZnO nanoparticles suggested that the ZnO surface and the peptide interact. Template synthesis of ZnO nanoparticles with the peptide nanocapsules afforded larger nanoparticles (approximately 40 nm), which are not quantum-sized ZnO. PMID:28344248
NASA National Combustion Code Simulations
NASA Technical Reports Server (NTRS)
Iannetti, Anthony; Davoudzadeh, Farhad
2001-01-01
A systematic effort is in progress to further validate the National Combustion Code (NCC) that has been developed at NASA Glenn Research Center (GRC) for comprehensive modeling and simulation of aerospace combustion systems. The validation efforts include numerical simulation of the gas-phase combustor experiments conducted at the Center for Turbulence Research (CTR), Stanford University, followed by comparison and evaluation of the computed results with the experimental data. Presently, at GRC, a numerical model of the experimental gaseous combustor is built to simulate the experimental model. The constructed numerical geometry includes the flow development sections for air annulus and fuel pipe, 24 channel air and fuel swirlers, hub, combustor, and tail pipe. Furthermore, a three-dimensional multi-block, multi-grid grid (1.6 million grid points, 3-levels of multi-grid) is generated. Computational simulation of the gaseous combustor flow field operating on methane fuel has started. The computational domain includes the whole flow regime starting from the fuel pipe and the air annulus, through the 12 air and 12 fuel channels, in the combustion region and through the tail pipe.
Computer-aided design of the human aortic root.
Ovcharenko, E A; Klyshnikov, K U; Vlad, A R; Sizova, I N; Kokov, A N; Nushtaev, D V; Yuzhalin, A E; Zhuravleva, I U
2014-11-01
The development of computer-based 3D models of the aortic root is one of the most important problems in constructing the prostheses for transcatheter aortic valve implantation. In the current study, we analyzed data from 117 patients with and without aortic valve disease and computed tomography data from 20 patients without aortic valvular diseases in order to estimate the average values of the diameter of the aortic annulus and other aortic root parameters. Based on these data, we developed a 3D model of human aortic root with unique geometry. Furthermore, in this study we show that by applying different material properties to the aortic annulus zone in our model, we can significantly improve the quality of the results of finite element analysis. To summarize, here we present four 3D models of human aortic root with unique geometry based on computational analysis of ECHO and CT data. We suggest that our models can be utilized for the development of better prostheses for transcatheter aortic valve implantation. Copyright © 2014 Elsevier Ltd. All rights reserved.
An experimental system for coiled tubing partial underbalanced drilling (CT-PUBD) technique
NASA Astrophysics Data System (ADS)
Shi, H. Z.; Ji, Z. S.; Zhao, H. Q.; Chen, Z. L.; Zhang, H. Z.
2018-05-01
To improve the rate of penetration (ROP) in hard formations, a new high-speed drilling technique called Coiled Tubing Partial Underbalanced Drilling (CT-PUBD) is proposed. This method uses a rotary packer to realize an underbalanced condition near the bit by creating a micro-annulus and an overbalanced condition at the main part of the annulus. A new full-scale laboratory experimental system is designed and set up to study the hydraulic characteristics and drilling performance of this method. The system is composed of a drilling system, circulation system, and monitor system, including three key devices, namely, cuttings discharge device, rotary packer, and backflow device. The experimental results showed that the pressure loss increased linearly with the flow rate of the drilling fluid. The high drilling speed of CT-PUBD proved it a better drilling method than the conventional drilling. The experimental system may provide a fundamental basis for the research of CT-PUBD, and the results proved that this new method is feasible in enhancing ROP and guaranteeing the drilling safety.
Al-Kouz, Wael; Alshare, Aiman; Alkhalidi, Ammar; Kiwan, Suhil
2016-01-01
A numerical simulation of the steady two-dimensional laminar natural convection heat transfer for the gaseous low-pressure flows in the annulus region between two concentric horizontal cylinders is carried out. This type of flow occurs in "evacuated" solar collectors and in the receivers of the solar parabolic trough collectors. A finite volume code is used to solve the coupled set of governing equations. Boussinesq approximation is utilized to model the buoyancy effect. A correlation for the thermal conductivity ratio (k r = k eff/k) in terms of Knudsen number and the modified Rayleigh number is proposed for Prandtl number (Pr = 0.701). It is found that as Knudsen number increases then the thermal conductivity ratio decreases for a given Rayleigh number. Also, it is shown that the thermal conductivity ratio k r increases as Rayleigh number increases. It appears that there is no consistent trend for varying the dimensionless gap spacing between the inner and the outer cylinder ([Formula: see text]) on the thermal conductivity ratio (k r) for the considered spacing range.
Early Feasibility Study of a Transcatheter Tricuspid Valve Annuloplasty: SCOUT Trial 30-Day Results.
Hahn, Rebecca T; Meduri, Christopher U; Davidson, Charles J; Lim, Scott; Nazif, Tamim M; Ricciardi, Mark J; Rajagopal, Vivek; Ailawadi, Gorav; Vannan, Mani A; Thomas, James D; Fowler, Dale; Rich, Stuart; Martin, Randy; Ong, Geraldine; Groothuis, Adam; Kodali, Susheel
2017-04-11
The SCOUT (Percutaneous Tricuspid Valve Annuloplasty System for Symptomatic Chronic Functional Tricuspid Regurgitation) trial is a prospective, single-arm, multicenter, early feasibility study of a novel transcatheter device to plicate the tricuspid annulus (TA) and reduce tricuspid regurgitation (TR). This study tested the feasibility and safety of a novel transcatheter device and assessed its early performance and functional outcomes. Between November 2015 and June 2016, 15 patients with New York Heart Association (NYHA) functional class ≥II and moderate or greater functional TR were enrolled. Primary performance and safety endpoint outcomes were technically successful at 30 days with no reintervention. Echocardiographic measurements (TA diameter, effective regurgitant orifice area [EROA], left ventricular stroke volume [LVSV]) and quality-of-life (QoL) measurements (NYHA functional class, Minnesota Living with Heart Failure Questionnaire [MLHFQ], and 6-min walk test [6MWT]) were performed at baseline and 30 days. All patients (mean 73.2 ± 6.9 years of age, 87% female) underwent successful device implantation with no deaths, strokes, bleeding, tamponade, or valve reintervention. Technical success rate at 30 days was 80%, with 3 single-pledget annular detachments without reintervention. In the remaining 12 patients, there were significant reductions in TA (12.3 ± 3.1 cm 2 to 11.3 ± 2.7 cm 2 , respectively; p = 0.019) and EROA (0.51 ± 0.18 cm 2 vs. 0.32 ± 0.18 cm 2 , respectively; p = 0.020), with significant increase in LVSV (63.6 ± 17.9 ml vs. 71.5 ± 25.7 ml, respectively; p = 0.021). In the intention-to-treat cohort, there were significant improvements in NYHA functional class (≥1 class, p = 0.001), MLHFQ (47.4 ± 17.6 to 20.9 ± 14.8; p < 0.001), and 6MWT (245.2 ± 110.1 to 298.0 m ± 107.6 m; p = 0.008). The 30-day results of the SCOUT trial confirmed the safety of the novel transcatheter device, which reduced TA and EROA, increased LVSV, and improved QoL. (Early Feasibility of the Mitralign Percutaneous Tricuspid Valve Annuloplasty System (PTVAS) Also Known as TriAlign [SCOUT]; NCT02574650.). Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
The Effect of Surface Topography on the Nonlinear Dynamics of Rossby Waves
NASA Technical Reports Server (NTRS)
Abarzhi, S. I.; Desjardins, O.; Pitsch, H.
2003-01-01
Boussinesq convection in rotating systems attracts a sustained attention of the fluid dynamics community, because it has intricate non-linear dynamics (Cross & Hohenberg 1993) and plays an important role in geophysical and astrophysical applications, such as the motion of the liquid outer core of Earth, the Red Spot in Jupiter, the giant cells in the Sun etc. (Alridge et al. 1990). A fundamental distinction between the real geo- and astrophysical problems and the idealized laboratory studies is that natural systems are inhomogeneous (Alridge et al. 1990). Heterogeneities modulate the flow and influence significantly the dynamics of convective patterns (Alridge et al. 1990; Hide 1971). The effect of modulations on pattern formation and transition to turbulence in Boussinesq convection is far from being completely understood (Cross & Hohenberg 1993; Aranson & Kramer 2002). It is generally accepted that in the liquid outer core of the Earth the transport of the angular momentum and internal heat occurs via thermal Rossby waves (Zhang et al. 2001; Kuang & Bloxham 1999). These waves been visualized in laboratory experiments in rotating liquid-filled spheres and concentric spherical shells (Zhang et al. 2001; Kuang & Bloxham 1999). The basic dynamical features of Rossby waves have been reproduced in a cylindrical annulus, a system much simpler than the spherical ones (Busse & Or 1986; Or & Busse 1987). For convection in a cylindrical annulus, the fluid motion is two-dimensional, and gravity is replaced by a centrifugal force, (Busse & Or 1986; Or & Busse 1987). Hide (1971) has suggested that the momentum and heat transport in the core might be influenced significantly by so-called bumps, which are heterogeneities on the mantle-core boundary. To model the effect of surface topography on the transport of momentum and energy in the liquid outer core of the Earth, Bell & Soward (1996), Herrmann & Busse (1998) and Westerburg & Busse (2001) have studied the nonlinear dynamics of thermal Rossby waves in a cylindrical annulus with azimuthally modulated height.
NASA Astrophysics Data System (ADS)
Rolland, Joran; Achatz, Ulrich
2017-04-01
The differentially heated, rotating annulus configuration has been used for a long time as a model system of the earth troposphere. It can easily reproduce thermal wind and baroclinic waves in the laboratory. It has recently been shown numerically that provided the Rossby number, the rotation rate and the Brunt-Väisälä frequency were well chosen, this configuration also reproduces the spontaneous emission of gravity waves by jet front systems [1]. This offers a very practical configuration in which to study an important process of emission of atmospheric gravity waves. It has also been shown experimentally that this configuration can be modified in order to add the possibility for the emitted wave to reach a strongly stratified region [2]. It thus creates a system containing a model troposphere where gravity waves are spontaneously emitted and can propagate to a model stratosphere. For this matter a stratification was created using a salinity gradient in the experimental apparatus. Through double diffusion, this generates a strongly stratified layer in the middle of the flow (the model stratosphere) and two weakly stratified region in the top and bottom layers (the model troposphere). In this poster, we present simulations of this configuration displaying baroclinic waves in the top and bottom layers. We aim at creating jet front systems strong enough that gravity waves can be spontaneously emitted. This will thus offer the possibility of studying the wave characteristic and mechanisms in emission and propagation in details. References [1] S. Borchert, U. Achatz, M.D. Fruman, Spontaneous Gravity wave emission in the differentially heated annulus, J. Fluid Mech. 758, 287-311 (2014). [2] M. Vincze, I. Borcia, U. Harlander, P. Le Gal, Double-diffusive convection convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability, Fluid Dyn. Res. 48, 061414 (2016).
Research on Annular Frictional Pressure Loss of Hydraulic-Fracturing in Buckling Coiled Tubing
NASA Astrophysics Data System (ADS)
Liu, Bin; Cai, Meng; Li, Junliang; Xu, Yongquan; Wang, Peng
2018-01-01
Compared with conventional hydraulic fracturing, coiled tubing (CT) annular delivery sand fracturing technology is a new method to enhance the recovery ratio of low permeability reservoir. Friction pressure loss through CT has been a concern in fracturing. The small diameter of CT limits the cross-sectional area open to flow, therefore, to meet large discharge capacity, annular delivery sand technology has been gradually developed in oilfield. Friction pressure is useful for determining the required pump horsepower and fracturing construction design programs. Coiled tubing can buckle when the axial compressive load acting on the tubing is greater than critical buckling load, then the geometry shape of annular will change. Annular friction pressure loss elevates dramatically with increasing of discharge capacity, especially eccentricity and CT buckling. Despite the frequency occurrence of CT buckling in oilfield operations, traditionally annular flow frictional pressure loss considered concentric and eccentric annuli, not discussing the effects of for discharge capacity and sand ratio varying degree of CT buckling. The measured data shows that the factors mentioned above cannot be ignored in the prediction of annular pressure loss. It is necessary to carry out analysis of annulus flow pressure drop loss in coiled tubing annular with the methods of theoretical analysis and numerical simulation. Coiled tubing buckling has great influence on pressure loss of fracturing fluid. Therefore, the correlations have been developed for turbulent flow of Newtonian fluids and Two-phase flow (sand-liquid), and that improve the friction pressure loss estimation in coiled tubing operations involving a considerable level of buckling. Quartz sand evidently increases pressure loss in buckling annular, rising as high as 40%-60% more than fresh water. Meanwhile, annulus flow wetted perimeter increases with decreasing helical buckling pitch of coiled tubing, therefore, the annulus flow frictional pressure loss rapidly increases with decreasing helical buckling pitch. The research achievement provides theoretical guidance for coiled tubing annular delivery sand fracturing operation and design.
Finite Element Analysis of the Effect of Epidural Adhesions.
Lee, Nam; Ji, Gyu Yeul; Yi, Seong; Yoon, Do Heum; Shin, Dong Ah; Kim, Keung Nyun; Ha, Yoon; Oh, Chang Hyun
2016-07-01
It is well documented that epidural adhesion is associated with spinal pain. However, the underlying mechanism of spinal pain generation by epidural adhesion has not yet been elucidated. To elucidate the underlying mechanism of spinal pain generation by epidural adhesion using a two-dimensional (2D) non-linear finite element (FE) analysis. A finite element analysis. A two-dimensional nonlinear FE model of the herniated lumbar disc on L4/5 with epidural adhesion. A two-dimensional nonlinear FE model of the lumbar spine was developed, consisting of intervertebral discs, dura, spinal nerve, and lamina. The annulus fibrosus and nucleus pulpous were modeled as hyperelastic using the Mooney-Rivlin equation. The FE mesh was generated and analyzed using Abaqus (ABAQUS 6.13.; Hibbitt, Karlsson & Sorenson, Inc., Providence, RI, USA). Epidural adhesion was simulated as rough contact, in which no slip occurred once two surfaces were in contact, between the dura mater and posterior annulus fibrosus. The FE model of adhesion showed significant stress concentration in the spinal nerves, especially on the dorsal root ganglion (DRG). The stress concentration was caused by the lack of adaptive displacement between the dura mater and posterior annulus fibrosus. The peak von Mises stress was higher in the epidural adhesion model (Adhesion, 0.67 vs. Control, 0.46). In the control model, adaptive displacement was observed with decreased stress in the spinal nerve and DRG (with adhesion, 2.59 vs. without adhesion, 3.58, P < 0.00). This study used a 2D non-linear FE model, which simplifies the 3D nature of the human intervertebral disc. In addition, this 2D non-linear FE model has not yet been validated. The current study clearly demonstrated that epidural adhesion causes significantly increased stress in the spinal nerves, especially at the DRG. We believe that the increased stress on the spinal nerve might elicit more pain under similar magnitudes of lumbar disc protrusion.
Hardin, E.L.; Cheng, C.H.; Paillet, F.L.; Mendelson, J.D.
1987-01-01
Results are presented from experiments carried out in conjunction with the U. S. Geological Survey at the Hubbard Brook Experimental Forest near Mirror Lake, New Hampshire. The study focuses on our ability to obtain orientation and transmissivity estimates of naturally occurring fractures. The collected data set includes a four-offset hydrophone vertical seismic profile, full waveform acoustic logs at 5, 15, and 34 kHz, borehole televiewer, temperature, resistivity, and self-potential logs, and borehole-to-borehole pump test data. Borehole televiewer and other geophysical logs indicate that permeable fractures intersect the Mirror Lake boreholes at numerous depths, but less than half of these fractures appear to have significant permeability beyond the annulus of drilling disturbance on the basis of acoustic waveform log analysis. The vertical seismic profiling (VSP) data indicate a single major permeable fracture near a depth of 44 m, corresponding to one of the most permeable fractures identified in the acoustic waveform log analysis. VSP data also indicate a somewhat less permeable fracture at 220 m and possible fractures at depths of 103 and 135 m; all correspond to major permeable fractures in the acoustic waveform data set. Pump test data confirm the presence of a hydraulic connection between the Mirror Lake boreholes through a shallow dipping zone of permeability at 44 m in depth. Effective fracture apertures calculated from modeled transmissivities correspond to those estimated for the largest fractures indicated on acoustic waveform logs but are over an order of magnitude larger than effective apertures calculated from tube waves in the VSP data set. This discrepancy is attributed to the effect of fracture stiffness. A new model is presented to account for the mechanical strength of asperities in resisting fracture closure during the passage of seismic waves during the generation of VSPs.
Perera-Garcia, Martha A; Mendoza-Carranza, Manuel; Contreras-Sánchez, Wilfrido; Ferrara, Allyse; Huerta-Ortiz, Maricela; Hernández-Gómez, Raúl E
2013-06-01
Common snook Centropomus unidecimalis is an important commercial and fishery species in Southern Mexico, however the high exploitation rates have resulted in a strong reduction of its abundances. Since, the information about its population structure is scarce, the objective of the present research was to determine and compare the age structure in four important fishery sites. For this, age and growth of common snook were determined from specimens collected monthly, from July 2006 to March 2008, from two coastal (Barra Bosque and Barra San Pedro) and two riverine (San Pedro and Tres Brazos) commercial fishery sites in Tabasco, Mexico. Age was determined using sectioned saggitae otoliths and data analyzed by von Bertalanffy and Levenberg-Marquardt among others. Estimated ages ranged from 2 to 17 years. Monthly patterns of marginal increment formation and the percentage of otoliths with opaque rings on the outer edge demonstrated that a single annulus was formed each year. The von Bertalanffy parameters were calculated for males and females using linear adjustment and the non-linear method of Levenberg-Marquardt. The von Bertalanffy growth equations were FLt = 109.21(1-e-0.2(t+0.57)) for Barra Bosque, FLt = 94.56(1-e-027(t+0.485)) for Barra San Pedro, FLt = 97.15(1-e 0.17(t + 1.32)) for San Pedro and FLt = 83.77(1-e-026(t + 0.49)) for Tres Brazos. According to (Hotelling's T2, p < 0.05) test growth was significantly greater for females than for males. Based on the Chen test, von Bertalanffy growth curves were different among the study sites (RSS, p < 0.05). Based on the observed differences in growth parameters among sampling sites (coastal and riverine environments) future research need to be conducted on migration and population genetics, in order to delineate the stock structure of this population and support management programs.
NASA Astrophysics Data System (ADS)
Fang, Pingping
1998-12-01
An extended numerical investigation of fully developed, forced convective laminar flows with heat transfer in eccentric annuli has been carried out. Both Newtonian and non-Newtonian (power-law or Ostwald-de Waele) fluids are studied, representing typical applications in petrochemical, bio-chemical, personal care products, polymer/plastic extrusion and food industries. For the heat transfer problem, with an insulated outer surface, two types of thermal boundary conditions have been considered: Constant wall temperature (T), and uniform axial heat flux with constant peripheral temperature (H1) on the inner surface of the annulus. The governing differential equations for momentum and energy conservation are solved by finite-difference methods. Velocity and temperature distributions in the flow cross section, the wall shear-stress distribution, and isothermal f Re, Nu i,T and Nu i,H1 values for different eccentric annuli (0/leɛ/*/le0.6,/ 0.2/le r/sp/*/le0.8) are presented. In Newtonian flows, the eccentricity is found to have a very strong influence on the flow and temperature fields. In an annulus with relatively large inner cylinder eccentricity, the flow tends to stagnate in the narrow section and has higher peak velocities in the wide section of the annulus. There is considerable flow maldistribution in the azimuthal direction, which in turn produces greater nonuniformity in the temperature field and a consequent degradation in the average heat transfer. Also, the H1 wall condition sustains higher heat transfer coefficients relative to the T boundary condition on the inner surface. For viscous, power-law type non-Newtonian flows, both shear thinning (n<1) and shear thickening (n>1) fluids are considered. Here, the non-linear shear behavior of the fluid is found to further aggravate the flow and temperature maldistribution, and once again the eccentricity is seen to exhibit a very strong influence on the friction and heat transfer behavior. Finally, the hydrodynamic characteristics of fully developed axial laminar flow of Newtonian fluids in eccentric annuli with a rotating inner cylinder are investigated. These are of significant importance to the design and operation of oil and gas drilling wells. Using finite-difference method to solve the governing flow equations in bipolar coordinates, computational results for a wide range of annulus geometry (0/le r/sp/*/le1,/ 0/le/varepsilon/sp/*/le0.8), and rotational Reynolds number (0/le Rer/le150) are presented, where the rotational speeds are restricted to the sub-critical Taylor number regime. The results delineate the effects of annuli r/sp/* and ɛsp/*, and inner cylinder rotation speed on the flow structure and frictional losses.
Scansen, Brian A; Kent, Agnieszka M; Cheatham, Sharon L; Cheatham, John P; Cheatham, John D
2014-09-01
Two dogs with severe dysplastic pulmonary valve stenosis and right-to-left shunting defects (patent foramen ovale, perimembranous ventricular septal defect) underwent palliative stenting of the right ventricular outflow tract and pulmonary valve annulus using balloon expandable stents. One dog received 2 over-lapping bare metal stents placed 7 months apart; the other received a single covered stent. Both procedures were considered technically successful with a reduction in the transpulmonary valve pressure gradient from 202 to 90 mmHg in 1 dog and from 168 to 95 mmHg in the other. Clinical signs of exercise intolerance and syncope were temporarily resolved in both dogs. However, progressive right ventricular concentric hypertrophy, recurrent stenosis, and erythrocytosis were observed over the subsequent 6 months leading to poor long-term outcomes. Stenting of the right ventricular outflow tract is feasible in dogs with severe dysplastic pulmonary valve stenosis, though further study and optimization of the procedure is required. Copyright © 2014 Elsevier B.V. All rights reserved.
Iatrogenic left ventricular-right atrial communication after tricuspid annuloplasty; a case report.
Tayama, Eiki; Tomita, Yukihiro; Imasaka, Ken-ichi; Kono, Takanori
2014-06-18
A 75-year-old man (Asian, Japanese) was readmitted for examination of a heart murmur and haemolytic anemia 3 months after mitral valve and tricuspid annuloplasties and coronary artery bypass. A new systolic murmur was heard, and echocardiography showed a high-velocity jet originating from the left ventricular outflow tract and extending to the right atrium, a small defect between the left ventricle and the right atrium. No periprosthetic leaks were found in the mitral position. We judged that surgical repair of the defect was essential to treat mechanical haemolysis. At operation, we found a communication (3 mm in diameter) just beneath the detached prosthetic ring at the anteroseptal commissure of the tricuspid valve. After partially removing the tricuspid ring from the anteroseptal commissure area, the defect was closed using a single mattress suture with pledget. In this case, the tricuspid annuloplasty stitch in the atrioventricular region was probably placed on the membranous septum rather than on the tricuspid annulus. A tear then occurred in the atrioventricular membranous septum, leading to left ventricular-right atrial communication.
Human and bovine spinal disc mechanics subsequent to trypsin injection.
Alsup, Jeremy; Bishop, Timothy; Eggett, Dennis; Bowden, Anton E
2017-10-01
To investigate the biomechanical effects of injections of a protease on the characteristics of bovine coccygeal and human lumbar disc motion segments. Mechanics of treated tissues were measured immediately after injection and 3 h after injection. Motion segments underwent axial rotation and flexion-extension loading. Stiffness and neutral zone parameters experienced significant changes over time, with bovine tissues more strongly affected than human cadaver tissues. This was true in both axial rotation and flexion-extension. The treatment type significantly affected the neutral zone measurements in axial rotation. Hysteresis parameters were impacted by control injections. The extrapolation of bovine coccygeal motion testing results to human lumbar disc mechanics is not yet practical. The injected treatment may have a smaller impact on disc mechanics than time in testing. Viscoelasticity of human lumbar discs may be impacted by any damage to the annulus fibrosis induced by needlestick. Preclinical testing of novel spinal devices is essential to the design validation and regulatory processes, but current testing techniques rely on cadaveric testing of primarily older spines with essentially random amounts of disc degeneration. The present work investigates the viability of using trypsin injections to create a more uniform preclinical model of disc degeneration from a mechanics perspective, for the purpose of testing spinal devices. Such a model would facilitate translation of new spinal technologies to clinical practice.
Integrated gas turbine engine-nacelle
NASA Technical Reports Server (NTRS)
Adamson, A. P.; Sargisson, D. F.; Stotler, C. L., Jr. (Inventor)
1977-01-01
A nacelle for use with a gas turbine engine is presented. An integral webbed structure resembling a spoked wheel for rigidly interconnecting the nacelle and engine, provides lightweight support. The inner surface of the nacelle defines the outer limits of the engine motive fluid flow annulus while the outer surface of the nacelle defines a streamlined envelope for the engine.
Canister arrangement for storing radioactive waste
Lorenzo, D.K.; Van Cleve, J.E. Jr.
1980-04-23
The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.
Development of a rotor wake-vortex model, volume 1
NASA Technical Reports Server (NTRS)
Majjigi, R. K.; Gliebe, P. R.
1984-01-01
Certain empirical rotor wake and turbulence relationships were developed using existing low speed rotor wave data. A tip vortex model was developed by replacing the annulus wall with a row of image vortices. An axisymmetric turbulence spectrum model, developed in the context of rotor inflow turbulence, was adapted to predicting the turbulence spectrum of the stator gust upwash.
Canister arrangement for storing radioactive waste
Lorenzo, Donald K.; Van Cleve, Jr., John E.
1982-01-01
The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.
ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM- 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, B; Ruel Waltz, R
2008-06-05
Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. The 2007 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. A very small amount of material had seeped from Tank 12 from a previously identified leaksite. The material observed had dried on the tank wall and did not reach the annulus floor. A total of 5945 photographs were made and 1221 visual and video inspections were performed during 2007. Additionally, ultrasonic testing was performed on four Waste Tanksmore » (15, 36, 37 and 38) in accordance with approved inspection plans that met the requirements of WSRC-TR-2002- 00061, Revision 2 'In-Service Inspection Program for High Level Waste Tanks'. The Ultrasonic Testing (UT) In-Service Inspections (ISI) are documented in a separate report that is prepared by the ISI programmatic Level III UT Analyst. Tanks 15, 36, 37 and 38 are documented in 'Tank Inspection NDE Results for Fiscal Year 2007'; WSRC-TR-2007-00064.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
At present, the only viable technique for accurately measuring stresses at depth in a borehole is hydraulic fracturing. These have been termed microfracs because very small amounts of fluid are injected at low flow rates into the formation. When the well is shut in, the pressure immediately drops from the injection pressure to the instantaneous shut-in pressure (ISIP) which is approximately equal to sigma/sub min/. In general, the ISIP can be measured quite accurately in open holes. For most oil and gas applications, however, it is impossible or impractical to conduct these tests in an open-hole environment. The effects ofmore » the casing, cement annulus, explosive perforation damage, and random performation orientation are impossible to predict theoretically, and laboratory tests are usually conducted under nonrealistic conditions. A set of in situ experiments was conducted to evaluate the accuracy and reliability of this technique, to aid in the selection of an optimum perforation schedule, and to develop a diagnostic capability from the pressure response.« less
Simulation of two-dimensional turbulent flows in a rotating annulus
NASA Astrophysics Data System (ADS)
Storey, Brian D.
2004-05-01
Rotating water tank experiments have been used to study fundamental processes of atmospheric and geophysical turbulence in a controlled laboratory setting. When these tanks are undergoing strong rotation the forced turbulent flow becomes highly two dimensional along the axis of rotation. An efficient numerical method has been developed for simulating the forced quasi-geostrophic equations in an annular geometry to model current laboratory experiments. The algorithm employs a spectral method with Fourier series and Chebyshev polynomials as basis functions. The algorithm has been implemented on a parallel architecture to allow modelling of a wide range of spatial scales over long integration times. This paper describes the derivation of the model equations, numerical method, testing and performance of the algorithm. Results provide reasonable agreement with the experimental data, indicating that such computations can be used as a predictive tool to design future experiments.
In Vitro Hydrodynamic Assessment of a New Transcatheter Heart Valve Concept (the TRISKELE).
Rahmani, Benyamin; Tzamtzis, Spyros; Sheridan, Rose; Mullen, Michael J; Yap, John; Seifalian, Alexander M; Burriesci, Gaetano
2017-04-01
This study presents the in vitro hydrodynamic assessment of the TRISKELE, a new system suitable for transcatheter aortic valve implantation (TAVI), aiming to mitigate the procedural challenges experienced with current technologies. The TRISKELE valve comprises three polymeric leaflet and an adaptive sealing cuff, supported by a novel fully retrievable self-expanding nitinol wire frame. Valve prototypes were manufactured in three sizes of 23, 26, and 29 mm by automated dip-coating of a biostable polymer, and tested in a hydrodynamic bench setup in mock aortic roots of 21, 23, 25, and 27 mm annulus, and compared to two reference valves suitable for equivalent implantation ranges: Edwards SAPIEN XT and Medtronic CoreValve. The TRISKELE valves demonstrated a global hydrodynamic performance comparable or superior to the controls with significant reduction in paravalvular leakage. The TRISKELE valve exhibits enhanced anchoring and improved sealing. The valve is currently under preclinical investigation.
S-cone discrimination in the presence of two adapting fields: data and model
Cao, Dingcai
2014-01-01
This study investigated S-cone discrimination using a test annulus surrounded by an inner and outer adapting field with systematic manipulation of the adapting l = L/(L + M) or s = S/(L + M) chromaticities. The results showed that different adapting l chromaticities altered S-cone discrimination for a high adapting s chromaticity due to parvocellular input to the koniocellular pathway. In addition, S-cone discrimination was determined by the combined spectral signals arising from both adapting fields. The “white” adapting field or an adapting field with a different l chromaticity from the other fields was more likely to have a stronger influence on discrimination thresholds. These results indicated that the two cardinal axes are not independent in S-cone discrimination, and the two adapting fields jointly contribute to S-cone discrimination through a cortical summation mechanism. PMID:24695204
Nerurkar, Nandan L; Mauck, Robert L; Elliott, Dawn M
2008-12-01
Integrating theoretical and experimental approaches for annulus fibrosus (AF) functional tissue engineering. Apply a hyperelastic constitutive model to characterize the evolution of engineered AF via scalar model parameters. Validate the model and predict the response of engineered constructs to physiologic loading scenarios. There is need for a tissue engineered replacement for degenerate AF. When evaluating engineered replacements for load-bearing tissues, it is necessary to evaluate mechanical function with respect to the native tissue, including nonlinearity and anisotropy. Aligned nanofibrous poly-epsilon-caprolactone scaffolds with prescribed fiber angles were seeded with bovine AF cells and analyzed over 8 weeks, using experimental (mechanical testing, biochemistry, histology) and theoretical methods (a hyperelastic fiber-reinforced constitutive model). The linear region modulus for phi = 0 degrees constructs increased by approximately 25 MPa, and for phi = 90 degrees by approximately 2 MPa from 1 day to 8 weeks in culture. Infiltration and proliferation of AF cells into the scaffold and abundant deposition of s-GAG and aligned collagen was observed. The constitutive model had excellent fits to experimental data to yield matrix and fiber parameters that increased with time in culture. Correlations were observed between biochemical measures and model parameters. The model was successfully validated and used to simulate time-varying responses of engineered AF under shear and biaxial loading. AF cells seeded on nanofibrous scaffolds elaborated an organized, anisotropic AF-like extracellular matrix, resulting in improved mechanical properties. A hyperelastic fiber-reinforced constitutive model characterized the functional evolution of engineered AF constructs, and was used to simulate physiologically relevant loading configurations. Model predictions demonstrated that fibers resist shear even when the shearing direction does not coincide with the fiber direction. Further, the model suggested that the native AF fiber architecture is uniquely designed to support shear stresses encountered under multiple loading configurations.
Brunvand, Leif; Fugelseth, Drude; Stensaeth, Knut Håkon; Dahl-Jørgensen, Knut; Margeirsdottir, Hanna Dis
2016-05-25
Reduced diastolic myocardial function is an early sign of diabetic cardiomyopathy. The aim of this study was to test the hypothesis that children and adolescents with type 1 diabetes mellitus (T1D), but without other known complications, have early reduced diastolic myocardial function diagnosed with echocardiographic color tissue Doppler imaging (cTDI). cTDI examination was carried out in 173 T1D patients and 62 age-matched controls. The T1D-patients were 8-18 years old with (mean (SD)) diabetes duration of 5.6 (3.4) years and HbA1c of 8.4 (1.3). All were treated with either insulin pumps or 4-6 daily insulin injections. cTDI early (E') and late (A') peak diastolic velocities and systolic peak velocity were measured from the lateral, septal, anterior and posterior mitral annulus and from the lateral tricuspidal annulus. Myocardial diastolic function was reduced in the T1D-patients with higher peak A'-velocity and lower E'/A'-ratio in all registrations. Overall mean (SD) mitral E'/A'-ratio was 2.3 (0.5) in T1D and 2.7 (0.6) in the controls (p < 0001). The overall mitral E'/A'-ratio was negative associated with blood pressure (BP) and body mass index (BMI). Stratifying all participants into three groups according to BMI (<25, 25-75, >75 centile, respectively), the T1D had lower E'/A'-values in all stratified groups, except for in the highest BMI-group where both T1D and controls had the lowest E'/A'-ratio. Systolic function did not differ in any of the measurements. There were no associations with sex, diabetes duration, carotid artery intima-media-thickness, vessel elasticity or HbA1c. Diabetic children and adolescents using modern intensive insulin treatment had echocardiographic signs of reduced diastolic myocardial function despite short duration of disease. The reduced function was associated with higher BP and higher BMI.
Annulus Fibrosus Repair Using High-Density Collagen Gel: An In Vivo Ovine Model.
Pennicooke, Brenton; Hussain, Ibrahim; Berlin, Connor; Sloan, Stephen R; Borde, Brandon; Moriguchi, Yu; Lang, Gernot; Navarro-Ramirez, Rodrigo; Cheetham, Jonathan; Bonassar, Lawrence J; Härtl, Roger
2018-02-15
Ovine in vivo study. To perform lateral approach lumbar surgery in an ovine model to administer an injectable riboflavin cross-linked high-density collagen (HDC) gel and to assess its ability to mitigate intervertebral disc (IVD) degeneration after induced annulus fibrosus (AF) injury. Biological-based injectable gels have shown efficacy in restoring biomechanical, radiographic, and histological parameters in IVD-injured animal models. Riboflavin cross-linked HDC gel has previously demonstrated retention of nucleus pulposus (NP) tissue, reduced loss of disc height, and prevention of terminal cellular degenerative changes in rat-tail spines. However, this biological therapy has never been tested in large animal models. Forty lumbar IVDs were accessed from eight sheep via lateral approach surgery. IVDs were randomly assigned to healthy control, injury and HDC treatment, or negative control with injury and no treatment. IVD injury was carried out using a drill-bit through the AF followed by needle puncture of the NP. Sheep were followed for 16 weeks and underwent qualitative/quantitative magnetic resonance imaging, x-ray, and histological analyses of collagen and proteoglycan content. The lateral approach to the ovine lumbar spine to deliver HDC gel proved to be safe and reproducible. IVDs treated with the HDC gel revealed less degenerative changes at the microscopic level based on AF and NP histology. However, mean Pfirrmann grade, T2 relaxation time, NP voxel size, and disc height index were not significantly different between the two injury groups. Injectable HDC gel can be administered safely via lateral approach surgery in an ovine AF injury model. IVDs treated with HDC gel demonstrated less degeneration at the microscopic level though radiographic changes were slight when comparing treated to untreated IVDs. Future studies will need to elucidate the role of injury technique and time frame for follow-up in correlating histological and radiographical outcomes. N /A.
Park, Jon; Shin, Jun Jae; Lim, Jesse
2014-12-01
The objective of this study was designed to compare 2-level cervical disc surgery (2-level anterior cervical discectomy and fusion [ACDF] or disc arthroplasty) and hybrid surgery (ACDF/arthroplasty) in terms of postoperative adjacent-level intradiscal pressure (IDP) and facet contact force (FCF). Twenty-four cadaveric cervical spines (C3-T2) were tested in various modes, including extension, flexion, and bilateral axial rotation, to compare adjacent-level IDP and FCF after specified treatments as follows: 1) C5-C6 arthroplasty using ProDisc-C (Synthes Spine, West Chester, Pennsylvania, USA) and C6-C7 ACDF, 2) C5-C6 ACDF and C6-C7 arthroplasty using ProDisc-C, 3) 2-level C5-C6/C6-C7 disc arthroplasties, and 4) 2-level C5-C6/C6-C7 ACDF. IDPs were recorded at anterior, central, and posterior disc portions. After 2-level cervical arthrodesis (ACDF), IDP increased significantly at the anterior annulus of distal adjacent-level disc during flexion and axial rotation and at the center of proximal adjacent-level disc during flexion. In contrast, after cervical specified treatments, including disc arthroplasty (2-level disc arthroplasties and hybrid surgery), IDP decreased significantly at the anterior annulus of distal adjacent-level disc during flexion and extension and was unchanged at the center of proximal adjacent-level disc during flexion. Two-level cervical arthrodesis also tended to adversely impact facet loads, increasing distal rather than proximal adjacent-level FCF. Both hybrid surgery and 2-level arthroplasties seem to offer significant advantages over 2-level arthrodesis by reducing IDP at adjacent levels and approximating FCF of an intact spine. These findings suggest that cervical arthroplasties and hybrid surgery are an alternative to reduce IDP and facet loads at adjacent levels. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ashby, George C., Jr.; Robbins, W. Eugene; Horsley, Lewis A.
1991-01-01
Probe readily positionable in core of uniform flow in hypersonic wind tunnel. Formed of pair of mating cylindrical housings: transducer housing and pitot-tube housing. Pitot tube supported by adjustable wedge fairing attached to top of pitot-tube housing with semicircular foot. Probe adjusted both radially and circumferentially. In addition, pressure-sensing transducer cooled internally by water or other cooling fluid passing through annulus of cooling system.
77 FR 50166 - Petitions for Modification of Application of Existing Mandatory Safety Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-20
... less than one shot per 10 feet to permit expanding cement to infiltrate the annulus between the casing... mineable coal seam will be perforated with one shot at the elevation of each coal seam above the lowest... detected. The record will be retained at the mine for one year. The petitioner asserts that the proposed...
de Madron, E; Kadish, A; Spear, J F; Knight, D H
1987-01-01
In a dog, tricuspid regurgitation due to congenital tricuspid dysplasia resulted in extreme right heart enlargement and right heart failure. Incessant supraventricular tachycardias were present, requiring the intravenous administration of verapamil to reduce the ventricular rate. Oral therapy using a combination of verapamil and quinidine was partially effective in controlling the ventricular rate during the following week. At that time, electrophysiologic studies were performed. They revealed that a succession of several atrial tachycardias with different cycle lengths, including one episode of atrial flutter, was present. Atrial activity was spanning the majority of the cycle length in all these arrhythmias. Epicardial mapping was performed during the atrial flutter. This enabled the detection of a depolarization wave-front traveling counterclockwise from the dorsolateral right atrium toward the right appendage, following the tricuspid valve annulus. No areas of abnormal conduction were detected. Because programmed electric stimulation maneuvers could not be performed, definitive conclusions about the mechanism of the arrhythmia could not be drawn. The two most likely possibilities were circus movement using part of the dilated tricuspid valve annulus as an anatomic barrier or a leading circle type of re-entry.
Some effects of swirl on turbulent mixing and combustion
NASA Technical Reports Server (NTRS)
Rubel, A.
1972-01-01
A general formulation of some effects of swirl on turbulent mixing is given. The basis for the analysis is that momentum transport is enhanced by turbulence resulting from rotational instability of the fluid field. An appropriate form for the turbulent eddy viscosity is obtained by mixing length type arguments. The result takes the form of a corrective factor that is a function of the swirl and acts to increase the eddy viscosity. The factor is based upon the initial mixing conditions implying that the rotational turbulence decays in a manner similar to that of free shear turbulence. Existing experimental data for free jet combustion are adequately matched by using the modifying factor to relate the effects of swirl on eddy viscosity. The model is extended and applied to the supersonic combustion of a ring jet of hydrogen injected into a constant area annular air stream. The computations demonstrate that swirling the flow could: (1) reduce the burning length by one half, (2) result in more uniform burning across the annulus width, and (3) open the possibility of optimization of the combustion characteristics by locating the fuel jet between the inner wall and center of the annulus width.
Extender for securing a closure
Thomas, II, Patrick A.
2012-10-02
An apparatus for securing a closure such as door or a window that opens and closes by movement relative to a fixed structure such as a wall or a floor. Many embodiments provide a device for relocating a padlock from its normal location where it secures a fastener (such as a hasp) to a location for the padlock that is more accessible for locking and unlocking the padlock. Typically an extender is provided, where the extender has a hook at a first end that is disposed through the eye of the staple of the hasp, and at an opposing second end the extender has an annulus, such as a hole in the extender or a loop or ring affixed to the extender. The shackle of the padlock may be disposed through the annulus and may be disposed through the eye of a second staple to secure the door or window in a closed or open position. Some embodiments employ a rigid sheath to enclose at least a portion of the extender. Typically the rigid sheath has an open state where the hook is exposed outside the sheath and a closed state where the hook is disposed within the sheath.
NASA Astrophysics Data System (ADS)
Engelhardt, Sandy; Kolb, Silvio; De Simone, Raffaele; Karck, Matthias; Meinzer, Hans-Peter; Wolf, Ivo
2016-03-01
Mitral valve annuloplasty describes a surgical procedure where an artificial prosthesis is sutured onto the anatomical structure of the mitral annulus to re-establish the valve's functionality. Choosing an appropriate commercially available ring size and shape is a difficult decision the surgeon has to make intraoperatively according to his experience. In our augmented-reality framework, digitalized ring models are superimposed onto endoscopic image streams without using any additional hardware. To place the ring model on the proper position within the endoscopic image plane, a pose estimation is performed that depends on the localization of sutures placed by the surgeon around the leaflet origins and punctured through the stiffer structure of the annulus. In this work, the tissue penetration points are tracked by the real-time capable Lucas Kanade optical flow algorithm. The accuracy and robustness of this tracking algorithm is investigated with respect to the question whether outliers influence the subsequent pose estimation. Our results suggest that optical flow is very stable for a variety of different endoscopic scenes and tracking errors do not affect the position of the superimposed virtual objects in the scene, making this approach a viable candidate for annuloplasty augmented reality-enhanced decision support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyashita, Takenori, E-mail: takenori@med.kagawa-u.ac.jp; Burford, James L.; Hong, Young-Kwon
Highlights: •We newly developed the whole-mount imaging method of the tympanic membrane. •Lymphatic vessel loops were localized around the malleus handle and annulus tympanicus. •In regeneration, abundant lymphatic vessels were observed in the pars tensa. •Site-specific lymphatic vessels may play an important role in the tympanic membrane. -- Abstract: We clarified the localization of lymphatic vessels in the tympanic membrane and proliferation of lymphatic vessels during regeneration after perforation of the tympanic membrane by using whole-mount imaging of the tympanic membrane of Prox1 GFP mice. In the pars tensa, lymphatic vessel loops surrounded the malleus handle and annulus tympanicus. Apartmore » from these locations, lymphatic vessel loops were not observed in the pars tensa in the normal tympanic membrane. Lymphatic vessel loops surrounding the malleus handle were connected to the lymphatic vessel loops in the pars flaccida and around the tensor tympani muscle. Many lymphatic vessel loops were detected in the pars flaccida. After perforation of the tympanic membrane, abundant lymphatic regeneration was observed in the pars tensa, and these regenerated lymphatic vessels extended from the lymphatic vessels surrounding the malleus at day 7. These results suggest that site-specific lymphatic vessels play an important role in the tympanic membrane.« less
Elastic fibre organization in the intervertebral discs of the bovine tail
Yu, Jing; Peter, C; Roberts, Sally; Urban, Jill PG
2002-01-01
Elastic fibres have been revealed by both elastin immunostaining and conventional histological orcein-staining in the intervertebral discs of the bovine tail. These fibres are distributed in all regions of the disc but their organization varies from region to region. In the centre of the nucleus, long (>150 μm) elastic fibres are orientated radially. In the transitional region between nucleus and annulus, the orientation of the elastic fibres changes, producing a criss-cross pattern. In the annulus itself, elastic fibres appear densely distributed in the region between the lamellae and also in ‘bridges’ across the lamellae, particularly in the adult. Elastic fibres are apparent within the lamellae, orientated parallel to the collagen fibres of each lamella, particularly in the young (12-day-old) discs. In the region between the disc and the cartilaginous endplate, elastic fibres appear to anchor into the plate and terminate there. The results of this study suggest that elastic fibres contribute to the mechanical functioning of the intervertebral disc. The varying organization of the elastic fibres in the different regions of the disc is likely to relate to the different regional loading patterns PMID:12489758
Chaotic micromixer utilizing electro-osmosis and induced charge electro-osmosis in eccentric annulus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Huicheng; Wong, Teck Neng, E-mail: mtnwong@ntu.edu.sg; Marcos
Efficient mixing is of significant importance in numerous chemical and biomedical applications but difficult to realize rapidly in microgeometries due to the lack of turbulence. We propose to enhance mixing by introducing Lagrangian chaos through electro-osmosis (EO) or induced charge electro-osmosis (ICEO) in an eccentric annulus. The analysis reveals that the created Lagrangian chaos can achieve a homogeneous mixing much more rapidly than either the pure EO or the pure ICEO. Our systematic investigations on the key parameters, ranging from the eccentricity, the alternating time period, the number of flow patterns in one time period, to the specific flow patternsmore » utilized for the Lagrangian chaos creation, present that the Lagrangian chaos is considerably robust. The system can obtain a good mixing effect with wide ranges of eccentricity, alternating time period, and specific flow patterns utilized for the Lagrangian chaos creation as long as the number of flow patterns in one time period is two. As the electric field increases, the time consumption for homogenous mixing is reduced more remarkably for the Lagrangian chaos of the ICEO than that of the EO.« less
Ultrastructure of inclusion bodies in annulus cells in the degenerating human intervertebral disc.
Gruber, H E; Hanley, E N
2009-06-01
The rough endoplasmic reticulum (rER) of the cell has an architectural editing function that checks whether protein structure and three-dimensional assembly have occurred properly prior to export of newly synthesized material out of the cell. If these have been faulty, the material is retained within the rER as an inclusion body. Inclusion bodies have been identified previously in chondrocytes and osteoblasts in chondrodysplasias and osteogenesis imperfecta. Inclusion bodies in intervertebral disc cells, however, have only recently been recognized. Our objectives were to use transmission electron microscopy to analyze more fully inclusion bodies in the annulus pulposus and to study the extracellular matrix (ECM) surrounding cells containing inclusion bodies. ECM frequently encapsulated cells with inclusion bodies, and commonly contained prominent banded aggregates of Type VI collagen. Inclusion body material had several morphologies, including relatively smooth, homogeneous material, or a rougher, less homogeneous feature. Such findings expand our knowledge of the fine structure of the human disc cell and ECM during disc degeneration, and indicate the potential utility of ultrastructural identification of discs with intracellular inclusion bodies as a screening method for molecular studies directed toward identification of defective gene products in degenerating discs.
Sinha, Santosh Kumar; Mishra, Vikas; Razi, Mahmadula; Jha, Mukesh Jitendra
2017-10-04
Transcatheter therapy of valvular pulmonary stenosis is one of first catheter interventions facilitating its application in field of structural heart disease and now treatment of choice for significant pulmonary stenosis. Myriads of balloon catheter have been used for this purpose starting from Diamond (Boston Scientific,Natick, MA USA), Marshal (Medi-Tech,Watertown MAUSA), Innoue balloon, Tyshak I and currently Tyshak II. Diameter and length of balloon depend on size of annulus and age group, respectively. Problem with shorter balloon is difficulty in keeping it across the annulus while inflation as it tends to slip distally whereas with longer balloon, potential of tricuspid leak or conduction block as it may impinge on adjacent structures. Potential advantage of Accura balloon over Tyshak balloon lies in its peculiar shape while inflation and variable diameter, making stepwise dilatation possible. Here, we report a case of successful balloon pulmonary valvuloplasty using Accura balloon (Vascular Concept, UK) with little modification of conventional technique. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Evaluation of age determination techniques for gray wolves
Landon, D.B.; Waite, C.A.; Peterson, R.O.; Mech, L.D.
1998-01-01
We evaluated tooth wear, cranial suture fusion, closure of the canine pulp cavity, and cementum annuli as methods of age determination for known- and unknown-age gray wolves (Canis lupus) from Alaska, Minnesota, Ontario, and Isle Royale, Michigan. We developed age classes for cranial suture closure and tooth wear. We used measurement data obtained from known-age captive and wild wolves to generate a regression equation to predict age based on the degree of closure of the canine pulp cavity. Cementum annuli were studied in known- and unknown-age animals, and calcified, unstained thin sections were found to provide clear annulus patterns under polarized transmitted light. Annuli counts varied among observers, partly because of variation in the pattern of annuli in different regions of the cementum. This variation emphasizes the need for standardized models of cementum analysis. Cranial suture fusion is of limited utility in age determination, while tooth wear can be used to estimate age of adult wolves within 4 years. Wolves lt 7 years old could be aged to within 13 years with the regression equation for closure of the canine pulp cavity. Although inaccuracy remains a problem, cementum-annulus counts were the most promising means of estimating age for gray wolves.
NASA Astrophysics Data System (ADS)
Conway, Jonathan; Bodeker, Greg; Cameron, Chris
2018-06-01
The wintertime stratospheric westerly winds circling the Antarctic continent, also known as the Southern Hemisphere polar vortex, create a barrier to mixing of air between middle and high latitudes. This dynamical isolation has important consequences for export of ozone-depleted air from the Antarctic stratosphere to lower latitudes. The prevailing view of this dynamical barrier has been an annulus compromising steep gradients of potential vorticity (PV) that create a single semi-permeable barrier to mixing. Analyses presented here show that this barrier often displays a bifurcated structure where a double-walled barrier exists. The bifurcated structure manifests as enhanced gradients of PV at two distinct latitudes - usually on the inside and outside flanks of the region of highest wind speed. Metrics that quantify the bifurcated nature of the vortex have been developed and their variation in space and time has been analysed. At most isentropic levels between 395 and 850 K, bifurcation is strongest in mid-winter and decreases dramatically during spring. From August onwards a distinct structure emerges, where elevated bifurcation remains between 475 and 600 K, and a mostly single-walled barrier occurs at other levels. While bifurcation at a given level evolves from month to month, and does not always persist through a season, interannual variations in the strength of bifurcation display coherence across multiple levels in any given month. Accounting for bifurcation allows the region of reduced mixing to be better characterised. These results suggest that improved understanding of cross-vortex mixing requires consideration of the polar vortex not as a single mixing barrier but as a barrier with internal structure that is likely to manifest as more complex gradients in trace gas concentrations across the vortex barrier region.
Performance and durability testing of parabolic trough receivers
NASA Astrophysics Data System (ADS)
Lei, Dongqiang; Fu, Xuqiang; Zhao, Dongming; Yuan, Guofeng; Wang, Zhifeng; Guo, Minghuan
2017-06-01
The paper describes the key performance and durability testing facilities of the parabolic trough receiver developed by Institute of Electrical Engineering, Chinese Academy of Sciences. The indoor heat loss test can be applied at 4-7 different temperature levels within 200-550 on receivers. The optical efficiency test bench consists of 12 metal halide lamps as the solar simulator and a 5 m length half-elliptical cylinder reflector with flat end reflectors. 3 ultra-precision temperature sensors are used in receiver each end to get the temperature difference. The residual gas analysis test bench is applied to analyze and predict the vacuum lifetime of the receiver. It can test the variations of composition and partial pressure of residual gases with temperature and time in the receiver annulus space by a high sensitivity quadrupole mass spectrometer gas analyzer. A coating accelerated ageing test bench, which is also used to test the thermal cycle, has been developed. This test bench uses the absorber tube of the recevier as the resistance heater to heat up the whole receiver. The coating lifetime can be predicted by the Arrhenius parameters. For the cycling test, the compressed air is used to directly cool the inner surface of the absorber tube. The thermal cycling test is performed with temperature cycles from 150 °C to 450 °C for 160 cycles. The maximum thermal cycling frequency is 8 cycles per day. The mechanical fatigue test bench is used to test the bellows and the glass-to-metal seals durability at the same time. Both bellows are expanded and compressed to 6.5 mm in turn with 10,000 cycles. A new rotating test bench was also developed to test the thermal efficiency of the receiver.
The Double-Orifice Valve Technique to Treat Tricuspid Valve Incompetence.
Hetzer, Roland; Javier, Mariano; Delmo Walter, Eva Maria
2016-01-01
A straightforward tricuspid valve (TV) repair technique was used to treat either moderate or severe functional (normal valve with dilated annulus) or for primary/organic (Ebstein's anomaly, leaflet retraction/tethering and chordal malposition/tethering, with annular dilatation) TV incompetence, and its long-term outcome assessed. A double-orifice valve technique was employed in 91 patients (mean age 52.6 ± 23.2 years; median age 56 years; range: 0.6-82 years) with severe tricuspid regurgitation. Among the patients, three had post-transplant iatrogenic chordal rupture, five had infective endocarditis, 11 had mitral valve insufficiency, 23 had Ebstein's anomaly, and 47 had isolated severe TV incompetence. The basic principle was to reduce the distance between the coapting leaflets, wherein the most mobile leaflet could coapt to the opposite leaflet, by creating two orifices, ensuring valve competence. The TV repair was performed through a median sternotomy or right anterior thoracotomy in the fifth intercostal space under cardiopulmonary bypass. The degree and extent of creating a double-valve orifice was determined by considering the minimal body surface area (BSA)-related acceptable TV diameter. Repair was accomplished by passing pledgeted mattress sutures from the middle of the true anterior annulus to a spot on the opposite septal annulus, located approximately two-thirds of the length of the septal annulus to avoid injury to the bundle of His. The annular apposition divides the TV into a larger anterior and a smaller posterior orifices, enabling valve closure, on both sides. In adults, the diameter of the anterior valve orifice should be 23-25 mm, and the posterior orifice 15-18 mm; thus, the total valve orifice area is 5-6 cm2. In children, the total valve orifice should be a standard deviation of 1.7 mm for a BSA of <1. 0m2, and 1.5 mm for a BSA of >1.0m2. During a mean follow up of 8.7 ± 1.34 years (median 10 years; range: 1.5-25.9 years) there have been no reoperations for TV insufficiency or stenosis. Reoperations on three patients (mean age 42.5 ± 8.7 years) were indicated for aortic valve replacement at 14 months postoperatively (n = 1) and for assist device implantation (n = 2) who eventually underwent heart transplant at 18 and 20 months after TV repair, respectively. The cumulative 12-year survival rate was 86.9%. This double-orifice technique is technically a straightforward repair to abolish TV incompetence with highly satisfactory results, particularly in patients with severe annular dilatation or with leaflet and chordal tethering. In the present series, the technique provided no pitfalls (if the location of the conduction system was borne in mind), requiring only a gentle placement of sutures. It also led to no residual regurgitation or reoperation during the follow up period.
Liew, Lawrence J; Day, Richard M; Dilley, Rodney J
2017-03-01
Tissue engineering approaches using growth factors and various materials for repairing chronic perforations of the tympanic membrane are being developed, but there are surprisingly few relevant tissue culture models available to test new treatments. Here, we present a simple three-dimensional model system based on micro-dissecting the rat tympanic membrane umbo and grafting it into the membrane of a cell culture well insert. Cell outgrowth from the graft produced sufficient cells to populate a membrane of similar surface area to the human tympanic membrane within 2 weeks. Tissue grafts from the annulus region also showed cell outgrowth but were not as productive. The umbo organoid supported substantial cell proliferation and migration under the influence of keratinocyte growth medium. Cells from umbo grafts were enzymatically harvested from the polyethylene terephthalate (PET) membrane for expansion in routine culture and cells could be harvested consecutively from the same graft over multiple cycles. We used harvested cells to test cell migration properties and to engraft a porous silk scaffold material as proof-of-principle for tissue engineering applications. This model is simple enough to be widely adopted for tympanic membrane regeneration studies and has promise as a tissue-equivalent model alternative to animal testing.