Sample records for single aperture triode

  1. A vacuum sealed high emission current and transmission efficiency carbon nanotube triode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Yunsong; Jiangsu Key Laboratory of Optoelectronic Technology, Nanjing Normal University, Nanjing 210023; Wang, Qilong

    A vacuum sealed carbon nanotubes (CNTs) triode with a concave and spoke-shaped Mo grid is presented. Due to the high aperture ratio of the grid, the emission current could be modulated at a relatively high electric field. Totally 75 mA emission current has been obtained from the CNTs cathode with the average applied field by the grid shifting from 8 to 13 V/μm. Whilst with the electron transmission efficiency of the grid over 56%, a remarkable high modulated current electron beam over 42 mA has been collected by the anode. Also contributed by the high aperture ration of the grid,more » desorbed gas molecules could flow away from the emission area rapidly when the triode has been operated at a relative high emission current, and finally collected by a vacion pump. The working pressure has been maintained at ∼1 × 10{sup −7} Torr, seldom spark phenomena occurred. Nearly perfect I-V curve and corresponding Fowler-Nordheim (FN) plot confirmed the accuracy of the measured data, and the emission current was long term stable and reproducible. Thusly, this kind of triode would be used as a high-power electron source.« less

  2. Triode for Magnetic Flux Quanta.

    PubMed

    Vlasko-Vlasov, V K; Colauto, F; Benseman, T; Rosenmann, D; Kwok, W-K

    2016-11-15

    In an electronic triode, the electron current emanating from the cathode is regulated by the electric potential on a grid between the cathode and the anode. Here we demonstrate a triode for single quantum magnetic field carriers, where the flow of individual magnetic vortices in a superconducting film is regulated by the magnetic potential of striae of soft magnetic strips deposited on the film surface. By rotating an applied in-plane field, the magnetic strip potential can be varied due to changes in the magnetic charges at the strip edges, allowing accelerated or retarded motion of magnetic vortices inside the superconductor. Scaling down our design and reducing the gap width between the magnetic stripes will enable controlled manipulation of individual vortices and creation of single flux quantum circuitry for novel high-speed low-power superconducting electronics.

  3. Triode for Magnetic Flux Quanta

    DOE PAGES

    Vlasko-Vlasov, V. K.; Colauto, F.; Benseman, T.; ...

    2016-11-15

    In an electronic triode, the electron current emanating from the cathode is regulated by the electric potential on a grid between the cathode and the anode. Here we demonstrate a triode for single quantum magnetic field carriers, where the flow of individual magnetic vortices in a superconducting film is regulated by the magnetic potential of striae of soft magnetic strips deposited on the film surface. By rotating an applied in-plane field, the magnetic strip potential can be varied due to changes in the magnetic charges at the strip edges, allowing accelerated or retarded motion of magnetic vortices inside the superconductor.more » Scaling down our design and reducing the gap width between the magnetic stripes will enable controlled manipulation of individual vortices and creation of single flux quantum circuitry for novel high-speed low-power superconducting electronics.« less

  4. Multi-MA reflex triode research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanekamp, Stephen Brian; Commisso, Robert J.; Weber, Bruce V.

    The Reflex Triode can efficiently produce and transmit medium energy (10-100 keV) x-rays. Perfect reflexing through thin converter can increase transmission of 10-100 keV x-rays. Gamble II experiment at 1 MV, 1 MA, 60 ns - maximum dose with 25 micron tantalum. Electron orbits depend on the foil thickness. Electron orbits from LSP used to calculate path length inside tantalum. A simple formula predicts the optimum foil thickness for reflexing converters. The I(V) characteristics of the diode can be understood using simple models. Critical current dominates high voltage triodes, bipolar current is more important at low voltage. Higher current (2.5more » MA), lower voltage (250 kV) triodes are being tested on Saturn at Sandia. Small, precise, anode-cathode gaps enable low impedance operation. Sample Saturn results at 2.5 MA, 250 kV. Saturn dose rate could be about two times greater. Cylindrical triode may improve x-ray transmission. Cylindrical triode design will be tested at 1/2 scale on Gamble II. For higher current on Saturn, could use two cylindrical triodes in parallel. 3 triodes in parallel require positive polarity operation. 'Triodes in series' would improve matching low impedance triodes to generator. Conclusions of this presentation are: (1) Physics of reflex triodes from Gamble II experiments (1 MA, 1 MV) - (a) Converter thickness 1/20 of CSDA range optimizes x-ray dose; (b) Simple model based on electron orbits predicts optimum thickness from LSP/ITS calculations and experiment; (c) I(V) analysis: beam dynamics different between 1 MV and 250 kV; (2) Multi-MA triode experiments on Saturn (2.5 MA, 250 kV) - (a) Polarity inversion in vacuum, (b) No-convolute configuration, accurate gap settings, (c) About half of current produces useful x-rays, (d) Cylindrical triode one option to increase x-ray transmission; and (3) Potential to increase Saturn current toward 10 MA, maintaining voltage and outer diameter - (a) 2 (or 3) cylindrical triodes in parallel, (b) Triodes in series to improve matching, (c) These concepts will be tested first on Gamble II.« less

  5. Space-charge-limited solid-state triode

    NASA Technical Reports Server (NTRS)

    Shumka, A. (Inventor)

    1975-01-01

    A solid-state triode is provided from a wafer of nearinstrinsic semiconductor material sliced into filaments of rectangular cross section. Before slicing, emitter and collector regions are formed on the narrow sides of the filaments, and after slicing gate regions are formed in arrow strips extending longitudinally along the midsections of the wide sides of the filaments. Contacts are then formed on the emitter, collector and gate regions of each filament individually for a single filament device, or in parallel for an array of filament devices to increase load current.

  6. Charge line quad pulser

    DOEpatents

    Booth, R.

    1996-10-08

    A quartet of parallel coupled planar triodes is removably mounted in a quadrahedron shaped PCB structure. Releasable brackets and flexible means attached to each triode socket make triode cathode and grid contact with respective conductive coatings on the PCB and a detachable cylindrical conductive element enclosing and contacting the triode anodes jointly permit quick and easy replacement of faulty triodes. By such orientation, the quad pulser can convert a relatively low and broad pulse into a very high and narrow pulse. 16 figs.

  7. Charge line quad pulser

    DOEpatents

    Booth, Rex

    1996-01-01

    A quartet of parallel coupled planar triodes is removably mounted in a quadrahedron shaped PCB structure. Releasable brackets and flexible means attached to each triode socket make triode cathode and grid contact with respective conductive coatings on the PCB and a detachable cylindrical conductive element enclosing and contacting the triode anodes jointly permit quick and easy replacement of faulty triodes. By such orientation, the quad pulser can convert a relatively low and broad pulse into a very high and narrow pulse.

  8. Vidicon intensifier

    NASA Technical Reports Server (NTRS)

    Carpentier, R. P.; Pietrzyk, J. P.; Beyer, R. R.; Kalafut, J. S.

    1976-01-01

    Computer-designed sensor, consisting of single-stage electrostatically-focused, triode image intensifier, provides high quality imaging characterized by exceptionally low geometric distortion, low shading, and high center-and-corner modulation transfer function.

  9. Planar triode pulser socket

    DOEpatents

    Booth, Rex

    1994-01-01

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes.

  10. Investigation of ion beam space charge compensation with a 4-grid analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, C., E-mail: c.ullmann@gsi.de; Adonin, A.; Berezov, R.

    2016-02-15

    Experiments to investigate the space charge compensation of pulsed high-current heavy ion beams are performed at the GSI ion source text benches with a 4-grid analyzer provided by CEA/Saclay. The technical design of the 4-grid analyzer is revised to verify its functionality for measurements at pulsed high-current heavy ion beams. The experimental investigation of space charge compensation processes is needed to increase the performance and quality of current and future accelerator facilities. Measurements are performed directly downstream a triode extraction system mounted to a multi-cusp ion source at a high-current test bench as well as downstream the post-acceleration system ofmore » the high-current test injector (HOSTI) with ion energies up to 120 keV/u for helium and argon. At HOSTI, a cold or hot reflex discharge ion source is used to change the conditions for the measurements. The measurements were performed with helium, argon, and xenon and are presented. Results from measurements with single aperture extraction systems are shown.« less

  11. Planar triode pulser socket

    DOEpatents

    Booth, R.

    1994-10-25

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes. 14 figs.

  12. From Vacuum Tubes to a Semiconductor Triode

    NASA Astrophysics Data System (ADS)

    Mil'shtein, S.

    2005-06-01

    Current study presents a brief review of an electronic technology evolution: from vacuum tubes, to transistors, to a novel, recently developed semiconductor triode, where electrons travel vertically about 600 angstroms from the filament to the anode. We plotted I-V and transfer curves for the semiconductor triodes. The very first prototypes proved to carry a maximum gain of about 15db and fT=8GHz. Filaments of variable length were produced to study mutual electrostatic interaction of the electrodes in the triode.

  13. Hydrogen atom kinetics in capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Nunomura, Shota; Katayama, Hirotaka; Yoshida, Isao

    2017-05-01

    Hydrogen (H) atom kinetics has been investigated in capacitively coupled very high frequency (VHF) discharges at powers of 16-780 mW cm-2 and H2 gas pressures of 0.1-2 Torr. The H atom density has been measured using vacuum ultra violet absorption spectroscopy (VUVAS) with a micro-discharge hollow cathode lamp as a VUV light source. The measurements have been performed in two different electrode configurations of discharges: conventional parallel-plate diode and triode with an intermediate mesh electrode. We find that in the triode configuration, the H atom density is strongly reduced across the mesh electrode. The H atom density varies from ˜1012 cm-3 to ˜1010 cm-3 by crossing the mesh with 0.2 mm in thickness and 36% in aperture ratio. The fluid model simulations for VHF discharge plasmas have been performed to study the H atom generation, diffusion and recombination kinetics. The simulations suggest that H atoms are generated in the bulk plasma, by the electron impact dissociation (e + H2 \\to e + 2H) and the ion-molecule reaction (H2 + + H2 \\to {{{H}}}3+ + H). The diffusion of H atoms is strongly limited by a mesh electrode, and thus the mesh geometry influences the spatial distribution of the H atoms. The loss of H atoms is dominated by the surface recombination.

  14. Influence of chromatic aberrations on space charge ion optics.

    PubMed

    Whealton, J H; Tsai, C C

    1978-04-01

    By solution to the Poisson-Vlasov equation the influence of fluctuations (chromatic aberrations) on ion optics is shown for various accelerator designs : (1) cylindrical bore triode with various aspect ratios, (2) pseudo-Pierce shaped electrode triode at various aspect ratios, (3) insulated coating emission electrode triode for various preacceleration potentials, and (4) cylindrical bore tetrodes for various field distributions. Fluctuation levels of 20% can be very important in limiting the ion optics in certain cases.

  15. Optimization of a triode-type cusp electron gun for a W-band gyro-TWA

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Donaldson, Craig R.; He, Wenlong

    2018-04-01

    A triode-type cusp electron gun was optimized through numerical simulations for a W-band gyrotron traveling wave amplifier. An additional electrode in front of the cathode could switch the electron beam on and off instantly when its electric potential is properly biased. An optimal electron beam of current 1.7 A and a velocity ratio (alpha) of 1.12 with an alpha spread of ˜10.7% was achieved when the triode gun was operated at 40 kV.

  16. Triode carbon nanotube field emission display using barrier rib structure and manufacturing method thereof

    DOEpatents

    Han, In-taek; Kim, Jong-min

    2003-01-01

    A triode carbon nanotube field emission display (FED) using a barrier rib structure and a manufacturing method thereof are provided. In a triode carbon nanotube FED employing barrier ribs, barrier ribs are formed on cathode lines by a screen printing method, a mesh structure is mounted on the barrier ribs, and a spacer is inserted between the barrier ribs through slots of the mesh structure, thereby stably fixing the mesh structure and the spacer within a FED panel due to support by the barrier ribs.

  17. Constant-current corona triode adapted and optimized for the characterization of thin dielectric films

    NASA Astrophysics Data System (ADS)

    Giacometti, José A.

    2018-05-01

    This work describes an enhanced corona triode with constant current adapted to characterize the electrical properties of thin dielectric films used in organic electronic devices. A metallic grid with a high ionic transparency is employed to charge thin films (100 s of nm thick) with a large enough charging current. The determination of the surface potential is based on the grid voltage measurement, but using a more sophisticated procedure than the previous corona triode. Controlling the charging current to zero, which is the open-circuit condition, the potential decay can be measured without using a vibrating grid. In addition, the electric capacitance and the characteristic curves of current versus the stationary surface potential can also be determined. To demonstrate the use of the constant current corona triode, we have characterized poly(methyl methacrylate) thin films with films with thicknesses in the range from 300 to 500 nm, frequently used as gate dielectric in organic field-effect transistors.

  18. PEAK LIMITING AMPLIFIER

    DOEpatents

    Goldsworthy, W.W.; Robinson, J.B.

    1959-03-31

    A peak voltage amplitude limiting system adapted for use with a cascade type amplifier is described. In its detailed aspects, the invention includes an amplifier having at least a first triode tube and a second triode tube, the cathode of the second tube being connected to the anode of the first tube. A peak limiter triode tube has its control grid coupled to thc anode of the second tube and its anode connected to the cathode of the second tube. The operation of the limiter is controlled by a bias voltage source connected to the control grid of the limiter tube and the output of the system is taken from the anode of the second tube.

  19. A digital miniature x-ray tube with a high-density triode carbon nanotube field emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul

    2013-01-14

    We have fabricated a digital miniature x-ray tube (6 mm in diameter and 32 mm in length) with a high-density triode carbon nanotube (CNT) field emitter for special x-ray applications. The triode CNT emitter was densely formed within a diameter of below 4 mm with the focusing-functional gate. The brazing process enables us to obtain and maintain a desired vacuum level for the reliable electron emission from the CNT emitters after the vacuum packaging. The miniature x-ray tube exhibited a stable and reliable operation over 250 h in a pulse mode at an anode voltage of above 25 kV.

  20. An Experiment on Thermionic Emission: Back to the Good Old Triode

    ERIC Educational Resources Information Center

    Azooz, A. A.

    2007-01-01

    A simple experiment to study thermionic emission, the Richardson-Dushman equation and the energy distribution function of thermionic electrons emitted from a hot cathode using a triode vacuum tube is described. It is pointed out that such a distribution function is directly proportional to the first derivative of the Edison anode current with…

  1. a Compact, Rf-Driven Pulsed Ion Source for Intense Neutron Generation

    NASA Astrophysics Data System (ADS)

    Perkins, L. T.; Celata, C. M.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.

    1997-05-01

    Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier 2 MHz radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a #197# 5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 us and source pressures as low as #197# 5 mTorr. In this configuration, peak extractable hydrogen current exceeding 35 mA from a 2 mm diameter aperture together with H1+ yields over 94% have been achieved. The required rf impedance matching network has been miniaturized to #197# 5 cm diameter. The accelerator column is a triode design using the IGUN ion optics codes and allows for electron suppression. Results from the testing of the integrated matching network-ion source-accelerator system will be presented.

  2. Direct Synthesis of Carbon Nanotube Field Emitters on Metal Substrate for Open-Type X-ray Source in Medical Imaging.

    PubMed

    Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang

    2017-07-29

    We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm² through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42-70 kV voltage by digital switching control between emitter and ground electrode.

  3. Direct Synthesis of Carbon Nanotube Field Emitters on Metal Substrate for Open-Type X-ray Source in Medical Imaging

    PubMed Central

    Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang

    2017-01-01

    We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm2 through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42–70 kV voltage by digital switching control between emitter and ground electrode. PMID:28773237

  4. Preliminary results from the Small Negative Ion Facility (SNIF) at CCFE

    NASA Astrophysics Data System (ADS)

    Zacks, J.; McAdams, R.; Booth, J.; Flinders, K.; Holmes, A. J. T.; Simmonds, M.; Stevens, B.; Stevenson, P.; Surrey, E.; Warder, S.; Whitehead, A.; Young, D.

    2013-02-01

    At Culham Centre for Fusion Energy, a new beam extraction test facility has been built with the purpose of studying and enhancing negative ion beam production and transport. The multipole hydrogen ion source is based on a RF generated plasma using a continuous 5kW power supply operating at the industrial standard frequency of 13.56MHz. The cylindrical source has a diameter of 30cm and a depth of 20cm, with a flat spiral antenna driving the source through a quartz window. The magnet configuration is arranged to produce a dipole filter field across the ion source close to the plasma grid. The plasma load is matched to the RF generator using a Pi matching network. The accelerator uses a single extraction aperture of 14mm diameter, with a biased insert for electron suppression. The accelerator is a triode design with a beam energy of up to 30kV. The beamline consists of a turbomolecular pumped vacuum tank with an instrumented beam dump and ports for additional diagnostics. The ITER Neutral Beam source operates with the enhancement of caesium, which, when scaled up to a reactor, will be heavily consumed. The small size of SNIF allows for fast turn around of modifications and alternative materials to caesium can be tested. A full description of the facility and planned diagnostics is given. Initial results are presented, including measurements and calculations of the plasma load on the RF generator, and beam extraction measurements.

  5. Carbon nanotube emitters and field emission triode

    NASA Astrophysics Data System (ADS)

    Fan, Zhiqin; Zhang, Binglin; Yao, Ning; Zhang, Lan; Ma, Huizhong; Deng, Jicai

    2006-05-01

    Based on our study on field emission from multi-walled carbon nanotubes (MWNTs), we experimentally manufactured field emission display (FED) triode with a MWNTs cold cathode, and demonstrated an excellent performance of MWNTs as field emitters. The measured luminance of the phosphor screens was 1.8*10^(3) cd/m2 for green light. The emission is stable with a fluctuation of only 1.5% at an average current of 260 'mu'A.

  6. Investigation of accelerating ion triode with magnetic insulation for neutron generation

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Kozlovskij, K. I.; Vovchenko, E. D.; Rashchikov, V. I.; Shatokhin, V. L.; Isaev, A. A.

    2017-12-01

    Vacuum accelerating tube (AT) for neutron generation with the secondary electron emission suppressed by helical line pulse magnetic field which allocated inside accelerating gap in front of hollow conical cathodeis discussed. The central anode was covered by the hollow cathode. This technical solution of AT is an ion triode in which helical line serve as a grid. Computer simulation results of longitudinal magnetic field distributional along the axis are presented.

  7. Reflex Triode X-Ray Source Research on Gamble

    DTIC Science & Technology

    2007-06-01

    dosimeters ( TLDs ) located at the vacuum window (18-27 cm from the converter), near the pinhole camera and near the image plate. II. EXPERIMENTAL...MeV- electron beams to thin converters in order to optimize emission of sub-100- keV x-rays. Thin converters reduce self-absorption of low-energy...x-rays, but the beam electrons must pass many times through the converter for efficient x-ray production. The triode configuration was found to be

  8. Application of Semiconductor Devices in Computer Technique.

    DTIC Science & Technology

    1960-10-14

    large number of circuits v&th point-contact triod.es are used in practice f’^J" - £"i? 7° Yfe shall consider below only sojae of 7 «. -X... la a number of devices, for example in adders and registersj for the control and for connection with other circuits it is necessary to pick up... la discontin tied the voltage on the collector remains the saaaes fox’ some tiae and passing through •’the has© and collector is the space

  9. Repetitive compact flash x-ray generators for soft radiography

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Shikoda, Arimitsu; Kimura, Shingo; Sagae, Michiaki; Oizumi, Teiji; Takahashi, Kei; Hayasi, Yasuomi; Shoji, Tetsuo; Shishido, Koro; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1993-01-01

    The construction and the fundamental studies for the repetitive flash x-ray generators designed by Japan Impulse Laboratory in Iwate Medical University are described. These generators are classified to the following two major types: (1) generators having diodes, and (2) generators having triodes. In order to generate high-voltage impulses, we employed the following transmission lines (pulsers): (a) high-voltage-inversion type with a maximum output voltage Vom of about 80 kV, (b) high-voltage- inversion type having a coaxial cable (Vom equals 130 kV), (c) two-stage Marx pulser (Vom equals 150 kV), (d) two-cable-type Blumlein (Vom equals 120 kV), (e) modified Blumlein (Vom equals 120 kV), (f) fundamental transmission line for triode (Vom equals 100 kV), and (g) transmission line for an enclosed triode (Vom equals 100 kV). Using these generators we succeeded in performing high-speed radiography as follows: (a) delayed radiography; (b) multiple-shot radiography; and (c) cineradiography.

  10. SU-E-T-344: Dynamic Electron Beam Therapy Using Multiple Apertures in a Single Cut-Out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, A; Yin, F; Wu, Q

    2015-06-15

    Purpose: Few leaf electron collimators (FLEC) or electron MLCs (eMLC) are highly desirable for dynamic electron beam therapies as they produce multiple apertures within a single delivery to achieve conformal dose distributions. However, their clinical implementation has been challenging. Alternatively, multiple small apertures in a single cut-out with variable jaw sizes could be utilized in a single dynamic delivery. In this study, we investigate dosimetric characteristics of such arrangement. Methods: Monte Carlo (EGSnrc/BEAMnrc/DOSXYnrc) simulations utilized validated Varian TrueBeam phase spaces. Investigated quantities included: Energy (6 MeV), jaw size (1×1 to 22×22 cm {sup 2}; centered to aperture), applicator/cut-out (15×15 cm{supmore » 2}), aperture (1×1, 2×2, 3×3, 4×4 cm{sup 2}), and aperture placement (on/off central axis). Three configurations were assessed: (1) single aperture on-axis, (2) single aperture off-axis, and (3) multiple apertures. Reference was configuration (1) with standard jaw size. Aperture placement and jaw size were optimized to maintain reference dosimetry and minimize leakage through unused apertures to <5%. Comparison metrics included depth dose and orthogonal profiles. Results: Configuration (1) and (2): Jaw openings were reduced to 10×10 cm{sup 2} without affecting dosimetry (gamma 2%/1mm) regardless of on- or off-axis placement. For smaller jaw sizes, reduced surface (<2%, 5% for 1×1 cm{sup 2} aperture) and increased Bremsstrahlung (<2%, 10% for 1×1 cm{sup 2} aperture) dose was observed. Configuration (3): Optimal aperture placement was in the corners (order: 1×1, 4×4, 2×2, 3×3 cm{sup 2}) and jaw sizes were 4×4, 4×4, 7×7, and 5×5 cm{sup 2} (apertures: 1×1, 2×2, 3×3, 4×4 cm{sup 2} ). Asymmetric leakage was found from upper and lower jaws. Leakage was generally within 5% with a maximum of 10% observed for the 1×1 cm{sup 2} aperture irradiation. Conclusion: Multiple apertures in a single cut-out with variable jaw size can be used in a single dynamic delivery, providing a practical alternative to FLEC or eMLC. Future simulations will expand on all variables.« less

  11. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.

    PubMed

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.

  12. Quench performance and field quality of FNAL twin-aperture 11 T Nb 3Sn dipole model for LHC upgrades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoynev, Stoyan; Andreev, Nikolai; Apollinari, Giorgio

    A 2 m long single-aperture dipole demonstrator and two 1 m long single-aperture models based on Nb 3Sn superconductor have been built and tested at FNAL. The two 1 m long collared coils were then assembled in a twin-aperture Nb 3Sn dipole demonstrator compatible with the LHC main dipole and tested in two thermal cycles. This paper summarizes the quench performance of the FNAL twin-aperture Nb 3Sn 11 T dipole in the temperature range of 1.9-4.5 K. The results of magnetic measurements for one of the two apertures are also presented. Test results are compared to the performance of coilsmore » in a single-aperture configuration. Lastly, a summary of quench propagation studies in both apertures is given.« less

  13. Quench performance and field quality of FNAL twin-aperture 11 T Nb 3Sn dipole model for LHC upgrades

    DOE PAGES

    Stoynev, Stoyan; Andreev, Nikolai; Apollinari, Giorgio; ...

    2016-12-07

    A 2 m long single-aperture dipole demonstrator and two 1 m long single-aperture models based on Nb 3Sn superconductor have been built and tested at FNAL. The two 1 m long collared coils were then assembled in a twin-aperture Nb 3Sn dipole demonstrator compatible with the LHC main dipole and tested in two thermal cycles. This paper summarizes the quench performance of the FNAL twin-aperture Nb 3Sn 11 T dipole in the temperature range of 1.9-4.5 K. The results of magnetic measurements for one of the two apertures are also presented. Test results are compared to the performance of coilsmore » in a single-aperture configuration. Lastly, a summary of quench propagation studies in both apertures is given.« less

  14. ELECTRICAL CIRCUITS USING COLD-CATHODE TRIODE VALVES

    DOEpatents

    Goulding, F.S.

    1957-11-26

    An electrical circuit which may be utilized as a pulse generator or voltage stabilizer is presented. The circuit employs a cold-cathode triode valve arranged to oscillate between its on and off stages by the use of selected resistance-capacitance time constant components in the plate and trigger grid circuits. The magnitude of the d-c voltage applied to the trigger grid circuit effectively controls the repetition rate of the output pulses. In the voltage stabilizer arrangement the d-c control voltage is a portion of the supply voltage and the rectified output voltage is substantially constant.

  15. The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks

    NASA Astrophysics Data System (ADS)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.

    2016-05-01

    Predicting equivalent permeability in fractured reservoirs requires an understanding of the fracture network geometry and apertures. There are different methods for defining aperture, based on outcrop observations (power law scaling), fundamental mechanics (sublinear length-aperture scaling), and experiments (Barton-Bandis conductive shearing). Each method predicts heterogeneous apertures, even along single fractures (i.e., intrafracture variations), but most fractured reservoir models imply constant apertures for single fractures. We compare the relative differences in aperture and permeability predicted by three aperture methods, where permeability is modeled in explicit fracture networks with coupled fracture-matrix flow. Aperture varies along single fractures, and geomechanical relations are used to identify which fractures are critically stressed. The aperture models are applied to real-world large-scale fracture networks. (Sub)linear length scaling predicts the largest average aperture and equivalent permeability. Barton-Bandis aperture is smaller, predicting on average a sixfold increase compared to matrix permeability. Application of critical stress criteria results in a decrease in the fraction of open fractures. For the applied stress conditions, Coulomb predicts that 50% of the network is critically stressed, compared to 80% for Barton-Bandis peak shear. The impact of the fracture network on equivalent permeability depends on the matrix hydraulic properties, as in a low-permeable matrix, intrafracture connectivity, i.e., the opening along a single fracture, controls equivalent permeability, whereas for a more permeable matrix, absolute apertures have a larger impact. Quantification of fracture flow regimes using only the ratio of fracture versus matrix permeability is insufficient, as these regimes also depend on aperture variations within fractures.

  16. The Information Content of Interferometric Synthetic Aperture Radar: Vegetation and Underlying Surface Topography

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.

    1996-01-01

    This paper first gives a heuristic description of the sensitivity of Interferometric Synthetic Aperture Radar to vertical vegetation distributions and underlying surface topography. A parameter estimation scenario is then described in which the Interferometric Synthetic Aperture Radar cross-correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous-layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of Interferometric Synthetic Aperture Radar observations for single-baseline, single-frequency, single-incidence-angle, single-polarization Interferometric Synthetic Aperture Radar. Using ancillary ground-truth data to compensate for the underdetermination of the parameters, forest depths are estimated from the INSAR data. A recently-analyzed multibaseline data set is also discussed and the potential for stand-alone Interferometric Synthetic Aperture Radar parameter estimation is assessed. The potential of combining the information content of Interferometric Synthetic Aperture Radar with that of infrared/optical remote sensing data is briefly discussed.

  17. Method and device for electroextraction of heavy metals from technological solutions and wastewater

    DOEpatents

    Khalemsky, Aron Mikhailov; Payusov, Sergei Abramovic; Kelner, Leonid; Jo, Jae

    2005-05-03

    The basic principles of the method for heavy metals electroextraction from technological solutions and wastewater includes pretreating to remove Chromium-6 and high concentrations of heavy metals and periodically treating in a six-electrode bipolar cylindrical electroreactor made of non-conducting material to achieve lower accepted levels of impurities. Six cylindrical steel electrodes form two triode stacks and are fed with three-phase alternating current of commercial frequency (50-60 Hz), which can be pulsed. Each phase of the three-phase current is connected to three electrodes of one triode stack or in parallel to two triode stacks. The parallel connection of three-phase current to two triode stacks is performed so that the same phase of the three phase current is connected in parallel with each two opposite electrodes of six electrodes located along the periphery, or with two adjacent electrodes. A bipolar stationary aluminum electrode is situated in the inter-electrode space. In one of the embodiments, the bipolar electrode is made of a perforated heat-resistant plastic container filled with secondary aluminum and duralumin scrap. In another embodiment, the bipolar electrode of aluminum or duralumin scrap may be made without a perforated container and is placed in the inter-electrode space as a bulk scrap. In this case, to prevent shorts, each of six steel electrodes is placed in isolated perforated plastic shell with holes of 5 mm in diameter. Non-ferrous metals are extracted in a form of ferrite-chromites, and aluminates as well as hydroxyl salts deposited in the inter-electrode space without electrolysis deposits on electrodes. Deposits are separated from solution by known methods of filtration.

  18. Polymer space-charge-limited transistor as a solid-state vacuum tube triode

    NASA Astrophysics Data System (ADS)

    Chao, Yu-Chiang; Ku, Ming-Che; Tsai, Wu-Wei; Zan, Hsiao-Wen; Meng, Hsin-Fei; Tsai, Hung-Kuo; Horng, Sheng-Fu

    2010-11-01

    We report the construction of a polymer space-charge-limited transistor (SCLT), a solid-state version of vacuum tube triode. The SCLT achieves a high on/off ratio of 3×105 at a low operation voltage of 1.5 V by using high quality insulators both above and below the grid base electrode. Applying a greater bias to the base increases the barrier potential, and turns off the channel current, without introducing a large parasitic leakage current. Simulation result verifies the influence of base bias on channel potential distribution. The output current density is 1.7 mA/cm2 with current gain greater than 1000.

  19. Measurements of Dynamic Effects in FNAL 11 T Nb 3Sn Dipole Models

    DOE PAGES

    Velev, Gueorgui; Strauss, Thomas; Barzi, Emanuela; ...

    2018-01-17

    Fermilab, in collaboration with CERN, has developed a twin-aperture 11 T Nb 3Sn dipole suitable for the high-luminosity LHC upgrade. During 2012-2014, a 2-m long single-aperture dipole demonstrator and three 1-m long single-aperture dipole models were fabricated by FNAL and tested at its Vertical Magnet Test Facility. Collared coils from two of the 1-m long models were then used to assemble the first twin-aperture dipole demonstrator. This magnet had extensive testing in 2015-2016, including quench performance, quench protection, and field quality studies. Here, this paper reports the results of measurements of persistent current effects in the single-aperture and twin-aperture 11more » T Nb 3Sn dipoles and compares them with similar measurements in previous NbTi magnets« less

  20. Measurements of Dynamic Effects in FNAL 11 T Nb 3Sn Dipole Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velev, Gueorgui; Strauss, Thomas; Barzi, Emanuela

    Fermilab, in collaboration with CERN, has developed a twin-aperture 11 T Nb 3Sn dipole suitable for the high-luminosity LHC upgrade. During 2012-2014, a 2-m long single-aperture dipole demonstrator and three 1-m long single-aperture dipole models were fabricated by FNAL and tested at its Vertical Magnet Test Facility. Collared coils from two of the 1-m long models were then used to assemble the first twin-aperture dipole demonstrator. This magnet had extensive testing in 2015-2016, including quench performance, quench protection, and field quality studies. Here, this paper reports the results of measurements of persistent current effects in the single-aperture and twin-aperture 11more » T Nb 3Sn dipoles and compares them with similar measurements in previous NbTi magnets« less

  1. STABILIZED OSCILLATOR

    DOEpatents

    Jessen, P.L.; Price, H.J.

    1958-03-18

    This patent relates to sine-wave generators and in particular describes a generator with a novel feedback circuit resulting in improved frequency stability. The generator comprises two triodes having a common cathode circuit connected to oscillate at a frequency and amplitude at which the loop galn of the circutt ls unity, and another pair of triodes having a common cathode circuit arranged as a conventional amplifier. A signal is conducted from the osciliator through a frequency selective network to the amplifier and fed back to the osciliator. The unique feature of the feedback circuit is the amplifier operates in the nonlinear portion of its tube characteristics thereby providing a relatively constant feedback voltage to the oscillator irrespective of the amplitude of its input signal.

  2. Field Quality Study of a 1-m-Long Single-Aperture 11-T Nb$$_3$$Sn Dipole Model for LHC Upgrades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chlachidze, G.; DiMarco, J.; Andreev, N.

    2014-01-01

    FNAL and CERN are carrying out a joint R&D program with the goal of building a 5.5-m-long twin-aperture 11-T Nb_3Sn dipole prototype that is suitable for installation in the LHC. An important part of the program is the development and test of a series of short single-aperture and twin-aperture dipole models with a nominal field of 11 T at the LHC operation current of 11.85 kA and 20% margin. This paper presents the results of magnetic measurements of a 1-m-long single-aperture Nb_3Sn dipole model fabricated and tested recently at FNAL, including geometrical field harmonics and effects of coil magnetization andmore » iron yoke saturation.« less

  3. Terahertz Near-Field Imaging Using Enhanced Transmission through a Single Subwavelength Aperture

    NASA Astrophysics Data System (ADS)

    Ishihara, Kunihiko; Ikari, Tomofumi; Minamide, Hiroaki; Shikata, Jun-ichi; Ohashi, Keishi; Yokoyama, Hiroyuki; Ito, Hiromasa

    2005-07-01

    We demonstrate terahertz (THz) near-field imaging using resonantly enhanced transmission of THz-wave radiation (λ˜ 200 μm) through a bull’s eye structure (a single subwavelength aperture surrounded by concentric periodic grooves in a metal plate). The bull’s eye structure shows extremely large enhanced transmission, which has the advantage for a single subwavelength aperture. The spatial resolution for the bull’s eye structure (with an aperture diameter d=100 μm) is evaluated in the near-field region, and a resolution of 50 μm (corresponding to λ/4) is achieved. We obtain the THz near-field images of the subwavelength metal pattern with a spatial resolution below the diffraction limit.

  4. Van der Pol and the history of relaxation oscillations: Toward the emergence of a concept

    NASA Astrophysics Data System (ADS)

    Ginoux, Jean-Marc; Letellier, Christophe

    2012-06-01

    Relaxation oscillations are commonly associated with the name of Balthazar van der Pol via his paper (Philosophical Magazine, 1926) in which he apparently introduced this terminology to describe the nonlinear oscillations produced by self-sustained oscillating systems such as a triode circuit. Our aim is to investigate how relaxation oscillations were actually discovered. Browsing the literature from the late 19th century, we identified four self-oscillating systems in which relaxation oscillations have been observed: (i) the series dynamo machine conducted by Gérard-Lescuyer (1880), (ii) the musical arc discovered by Duddell (1901) and investigated by Blondel (1905), (iii) the triode invented by de Forest (1907), and (iv) the multivibrator elaborated by Abraham and Bloch (1917). The differential equation describing such a self-oscillating system was proposed by Poincaré for the musical arc (1908), by Janet for the series dynamo machine (1919), and by Blondel for the triode (1919). Once Janet (1919) established that these three self-oscillating systems can be described by the same equation, van der Pol proposed (1926) a generic dimensionless equation which captures the relevant dynamical properties shared by these systems. Van der Pol's contributions during the period of 1926-1930 were investigated to show how, with Le Corbeiller's help, he popularized the "relaxation oscillations" using the previous experiments as examples and, turned them into a concept.

  5. Triode for magnetic flux quanta.

    NASA Astrophysics Data System (ADS)

    Vlasko-Vlasov, Vitalii; Colauto, Fabiano; Benseman, Timothy; Rosenmann, Daniel; Kwok, Wai-Kwong

    We designed a magnetic vortex triode using an array of closely spaced soft magnetic Py strips on top of a Nb superconducting film. The strips act similar to the grid electrode in an electronic triode, where the electron flow is regulated by the grid potential. In our case, we tune the vortex motion by the magnetic charge potential of the strip edges, using a small magnetic field rotating in the film plane. The magnetic charges emerging at the stripe edges and proportional to the magnetization component perpendicular to the edge direction, form linear potential barriers or valleys for vortex motion in the superconducting layer. We directly imaged the normal flux penetration into the Py/Nb films and observed retarded or accelerated entry of the normal vortices depending on the in-plane magnetization direction in the stripes. The observed flux behavior is explained by interactions between magnetically charged lines and magnetic monopoles of vortices similar to those between electrically charged strings and point charges. We discuss the possibility of using our design for manipulation of individual vortices in high-speed, low-power superconducting electronic circuits. This work was supported by the U.S. DOE, Office of Science, Materials Sciences and Engineering Division, and Office of BES (contract DE-AC02-06CH11357). F. Colauto thanks the Sao Paulo Research Foundation FAPESP (Grant No. 2015/06.085-3).

  6. Ionization-chamber smoke detector system

    DOEpatents

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  7. Design considerations for eye-safe single-aperture laser radars

    NASA Astrophysics Data System (ADS)

    Starodubov, D.; McCormick, K.; Volfson, L.

    2015-05-01

    The design considerations for low cost, shock resistant, compact and efficient laser radars and ranging systems are discussed. The reviewed approach with single optical aperture allows reducing the size, weight and power of the system. Additional design benefits include improved stability, reliability and rigidity of the overall system. The proposed modular architecture provides simplified way of varying the performance parameters of the range finder product family by selecting the sets of specific illumination and detection modules. The performance operation challenges are presented. The implementation of non-reciprocal optical elements is considered. The cross talk between illumination and detection channels for single aperture design is reviewed. 3D imaging capability for the ranging applications is considered. The simplified assembly and testing process for single aperture range finders that allows to mass produce the design are discussed. The eye safety of the range finder operation is summarized.

  8. Noncoherent Combination Of Optical-Heterodyne Outputs

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Lesh, James R.

    1990-01-01

    In proposed scheme for reception of amplitude- or frequency-modulated signals transmitted optically through atmosphere, main receiver aperture divided into subapertures equipped with receivers, and outputs of receivers combined noncoherently. Multiple subaperture receivers used instead of attempting to focus all light from single large aperture onto one receiver. Outputs of receivers combined after demodulation. System will not perform as well as fully coherent system, but surpasses single-large-aperture system in presence of atmospheric turbulence. Offers superior performance in presence of distorted wavefront and/or imperfect receiver optics.

  9. Light-efficient photography.

    PubMed

    Hasinoff, Samuel W; Kutulakos, Kiriakos N

    2011-11-01

    In this paper, we consider the problem of imaging a scene with a given depth of field at a given exposure level in the shortest amount of time possible. We show that by 1) collecting a sequence of photos and 2) controlling the aperture, focus, and exposure time of each photo individually, we can span the given depth of field in less total time than it takes to expose a single narrower-aperture photo. Using this as a starting point, we obtain two key results. First, for lenses with continuously variable apertures, we derive a closed-form solution for the globally optimal capture sequence, i.e., that collects light from the specified depth of field in the most efficient way possible. Second, for lenses with discrete apertures, we derive an integer programming problem whose solution is the optimal sequence. Our results are applicable to off-the-shelf cameras and typical photography conditions, and advocate the use of dense, wide-aperture photo sequences as a light-efficient alternative to single-shot, narrow-aperture photography.

  10. Spatial imaging of UV emission from Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Moos, H. W.

    1981-01-01

    Spatial imaging with the IUE is accomplished both by moving one of the apertures in a series of exposures and within the large aperture in a single exposure. The image of the field of view subtended by the large aperture is focussed directly onto the detector camera face at each wavelength; since the spatial resolution of the instrument is 5 to 6 arc sec and the aperture extends 23.0 by 10.3 arc sec, imaging both parallel and perpendicular to dispersion is possible in a single exposure. The correction for the sensitivity variation along the slit at 1216 A is obtained from exposures of diffuse geocoronal H Ly alpha emission. The relative size of the aperture superimposed on the apparent discs of Jupiter and Saturn in typical observation is illustrated. By moving the planet image 10 to 20 arc sec along the major axis of the aperture (which is constrained to point roughly north-south) maps of the discs of these planets are obtained with 6 arc sec spatial resolution.

  11. Revolutionary astrophysics using an incoherent synthetic optical aperture

    NASA Astrophysics Data System (ADS)

    Rafanelli, Gerard L.; Cosner, Christopher M.; Spencer, Susan B.; Wolfe, Douglas; Newman, Arthur; Polidan, Ronald; Chakrabarti, Supriya

    2017-09-01

    We describe a paradigm shift for astronomical observatories that would replace circular apertures with rotating synthetic apertures. Rotating Synthetic Aperture (RSA) observatories can enable high value science measurements for the lowest mass to orbit, have superior performance relative to all sparse apertures, can provide resolution of 20m to 30m apertures having the collecting area of 8m to 12m telescopes with much less mass, risk, schedule, and cost. RSA is based on current, or near term technology and can be launched on a single, current launch vehicle to L2. Much larger apertures are possible using the NASA Space Launch System.

  12. Revolutionary Astrophysics using an Incoherent Synthetic Optical Aperture

    NASA Astrophysics Data System (ADS)

    Rafanelli, Gerard L.; Cosner, Christopher M.; Spencer, Susan B.; Wolfe, Douglas w.; Newman, Arthur M.; Polidan, Ronald S.; Chakrabarti, Supriya

    2018-01-01

    We describe a paradigm shift for astronomical observatories that would replace circular apertures with rotating synthetic apertures. Rotating Synthetic Aperture (RSA) observatories can enable high value science measurements for the lowest mass to orbit, have superior performance relative to all sparse apertures, can provide resolution of 20m to 30m apertures having the collecting area of 8m to 12m telescopes with much less mass, risk, schedule, and cost. RSA is based on current, or near term technology and can be launched on a single, current launch vehicle to L2. Much larger apertures are possible using the NASA Space Launch System.

  13. Three-dimensional simulation of triode-type MIG for 1 MW, 120 GHz gyrotron for ECRH applications

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Kumar, Narendra; Kumar, Anil; Sinha, A. K.

    2012-01-01

    In this paper, the three-dimensional simulation of triode-type magnetron injection gun (MIG) for 120 GHz, 1 MW gyrotron is presented. The operating voltages of the modulating anode and the accelerating anode are 57 kV and 80 kV respectively. The high order TE 22,6 mode is selected as the operating mode and the electron beam is launched at the first radial maxima for the fundamental beam-mode operation. The initial design is obtained by using the in-house developed code MIGSYN. The numerical simulation is performed by using the commercially available code CST-Particle Studio (PS). The simulated results of MIG obtained by using CST-PS are validated with other simulation codes EGUN and TRAK, respectively. The results on the design output parameters obtained by using these three codes are found to be in close agreement.

  14. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  15. A simplified model to evaluate the effect of fluid rheology on non-Newtonian flow in variable aperture fractures

    NASA Astrophysics Data System (ADS)

    Felisa, Giada; Ciriello, Valentina; Longo, Sandro; Di Federico, Vittorio

    2017-04-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing operations, largely used for optimal exploitation of oil, gas and thermal reservoirs. Complex fluids interact with pre-existing rock fractures also during drilling operations, enhanced oil recovery, environmental remediation, and other natural phenomena such as magma and sand intrusions, and mud volcanoes. A first step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is typically spatially variable. A large bibliography exists on Newtonian flow in single, variable aperture fractures. Ultimately, stochastic modeling of aperture variability at the single fracture scale leads to determination of the flowrate under a given pressure gradient as a function of the parameters describing the variability of the aperture field and the fluid rheological behaviour. From the flowrate, a flow, or 'hydraulic', aperture can then be derived. The equivalent flow aperture for non-Newtonian fluids of power-law nature in single, variable aperture fractures has been obtained in the past both for deterministic and stochastic variations. Detailed numerical modeling of power-law fluid flow in a variable aperture fracture demonstrated that pronounced channelization effects are associated to a nonlinear fluid rheology. The availability of an equivalent flow aperture as a function of the parameters describing the fluid rheology and the aperture variability is enticing, as it allows taking their interaction into account when modeling flow in fracture networks at a larger scale. A relevant issue in non-Newtonian fracture flow is the rheological nature of the fluid. The constitutive model routinely used for hydro-fracturing modeling is the simple, two-parameter power-law. Yet this model does not characterize real fluids at low and high shear rates, as it implies, for shear-thinning fluids, an apparent viscosity which becomes unbounded for zero shear rate and tends to zero for infinite shear rate. On the contrary, the four-parameter Carreau constitutive equation includes asymptotic values of the apparent viscosity at those limits; in turn, the Carreau rheological equation is well approximated by the more tractable truncated power-law model. Results for flow of such fluids between parallel walls are already available. This study extends the adoption of the truncated power-law model to variable aperture fractures, with the aim of understanding the joint influence of rheology and aperture spatial variability. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and perpendicular to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results are then compared with those obtained for pure power-law fluids for different combinations of model parameters. It is seen that the adoption of the pure power law model leads to significant overestimation of the flowrate with respect to the truncated model, more so for large external pressure gradient and/or aperture variability.

  16. Thermal drawdown-induced flow channeling in a single fracture in EGS

    DOE PAGES

    Guo, Bin; Fu, Pengcheng; Hao, Yue; ...

    2016-01-28

    Here, the evolution of flow pattern along a single fracture and its effects on heat production is a fundamental problem in the assessments of engineered geothermal systems (EGS). The channelized flow pattern associated with ubiquitous heterogeneity in fracture aperture distribution causes non-uniform temperature decrease in the rock body, which makes the flow increasingly concentrated into some preferential paths through the action of thermal stress. This mechanism may cause rapid heat production deterioration of EGS reservoirs. In this study, we investigated the effects of aperture heterogeneity on flow pattern evolution in a single fracture in a low-permeability crystalline formation. We developedmore » a numerical model on the platform of GEOS to simulate the coupled thermo-hydro-mechanical processes in a penny-shaped fracture accessed via an injection well and a production well. We find that aperture heterogeneity generally exacerbates flow channeling and reservoir performance generally decreases with longer correlation length of aperture field. The expected production life is highly variable (5 years to beyond 30 years) when the aperture correlation length is longer than 1/5 of the well distance, whereas a heterogeneous fracture behaves similar to a homogeneous one when the correlation length is much shorter than the well distance. Besides, the mean production life decreases with greater aperture standard deviation only when the correlation length is relatively long. Although flow channeling is inevitable, initial aperture fields and well locations that enable tortuous preferential paths tend to deliver long heat production lives.« less

  17. Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas.

    PubMed

    Boyarsky, Michael; Sleasman, Timothy; Pulido-Mancera, Laura; Diebold, Aaron V; Imani, Mohammadreza F; Smith, David R

    2018-05-20

    Through aperture synthesis, an electrically small antenna can be used to form a high-resolution imaging system capable of reconstructing three-dimensional (3D) scenes. However, the large spectral bandwidth typically required in synthetic aperture radar systems to resolve objects in range often requires costly and complex RF components. We present here an alternative approach based on a hybrid imaging system that combines a dynamically reconfigurable aperture with synthetic aperture techniques, demonstrating the capability to resolve objects in three dimensions (3D), with measurements taken at a single frequency. At the core of our imaging system are two metasurface apertures, both of which consist of a linear array of metamaterial irises that couple to a common waveguide feed. Each metamaterial iris has integrated within it a diode that can be biased so as to switch the element on (radiating) or off (non-radiating), such that the metasurface antenna can produce distinct radiation profiles corresponding to different on/off patterns of the metamaterial element array. The electrically large size of the metasurface apertures enables resolution in range and one cross-range dimension, while aperture synthesis provides resolution in the other cross-range dimension. The demonstrated imaging capabilities of this system represent a step forward in the development of low-cost, high-performance 3D microwave imaging systems.

  18. Simultaneous displacement and slope measurement in electronic speckle pattern interferometry using adjustable aperture multiplexing.

    PubMed

    Lu, Min; Wang, Shengjia; Aulbach, Laura; Koch, Alexander W

    2016-08-01

    This paper suggests the use of adjustable aperture multiplexing (AAM), a method which is able to introduce multiple tunable carrier frequencies into a three-beam electronic speckle pattern interferometer to measure the out-of-plane displacement and its first-order derivative simultaneously. In the optical arrangement, two single apertures are located in the object and reference light paths, respectively. In cooperation with two adjustable mirrors, virtual images of the single apertures construct three pairs of virtual double apertures with variable aperture opening sizes and aperture distances. By setting the aperture parameter properly, three tunable spatial carrier frequencies are produced within the speckle pattern and completely separate the information of three interferograms in the frequency domain. By applying the inverse Fourier transform to a selected spectrum, its corresponding phase difference distribution can thus be evaluated. Therefore, we can obtain the phase map due to the deformation as well as its slope of the test surface from two speckle patterns which are recorded at different loading events. By this means, simultaneous and dynamic measurements are realized. AAM has greatly simplified the measurement system, which contributes to improving the system stability and increasing the system flexibility and adaptability to various measurement requirements. This paper presents the AAM working principle, the phase retrieval using spatial carrier frequency, and preliminary experimental results.

  19. Extended Aperture Photometry of K2 RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Plachy, Emese; Klagyivik, Péter; Molnár, László; Sódor, Ádám; Szabó, Róbert

    2017-10-01

    We present the method of the Extended Aperture Photometry (EAP) that we applied on K2 RR Lyrae stars. Our aim is to minimize the instrumental variations of attitude control maneuvers by using apertures that cover the positional changes in the field of view thus contain the stars during the whole observation. We present example light curves that we compared to the light curves from the K2 Systematics Correction (K2SC) pipeline applied on the automated Single Aperture Photometry (SAP) and on the Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP) data.

  20. Rotating Aperture System

    DOEpatents

    Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

    2005-01-18

    A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

  1. Multi-aperture digital coherent combining for free-space optical communication receivers.

    PubMed

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.

  2. Development of large-aperture electro-optical switch for high power laser at CAEP

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongjun; Wu, Dengsheng; Zhang, Jun; Lin, Donghui; Zheng, Jiangang; Zheng, Kuixing

    2015-02-01

    Large-aperture electro-optical switch based on plasma Pockels cell (PPC) is one of important components for inertial confinement fusion (ICF) laser facility. We have demonstrated a single-pulse driven 4×1 PPC with 400mm×400mm aperture for SGIII laser facility. And four 2×1 PPCs modules with 350mm×350mm aperture have been operated in SGII update laser facility. It is different to the PPC of NIF and LMJ for its simple operation to perform Pockels effect. With optimized operation parameters, the PPCs meet the SGII-U laser requirement of four-pass amplification control. Only driven by one high voltage pulser, the simplified PPC system would be provided with less associated diagnostics, and higher reliability. To farther reduce the insert loss of the PPC, research on the large-aperture PPC based on DKDP crystal driven by one pulse is developed. And several single-pulse driven PPCs with 80mm×80mm DKDP crystal have been manufactured and operated in laser facilities.

  3. Material Measurements Using Groundplane Apertures

    NASA Technical Reports Server (NTRS)

    Komisarek, K.; Dominek, A.; Wang, N.

    1995-01-01

    A technique for material parameter determination using an aperture in a groundplane is studied. The material parameters are found by relating the measured reflected field in the aperture to a numerical model. Two apertures are studied which can have a variety of different material configurations covering the aperture. The aperture cross-sections studied are rectangular and coaxial. The material configurations involved combinations of single layer and dual layers with or without a resistive exterior resistive sheet. The resistivity of the resistive sheet can be specified to simulate a perfect electric conductor (PEC) backing (0 Ohms/square) to a free space backing (infinity Ohms/square). Numerical parameter studies and measurements were performed to assess the feasibility of the technique.

  4. Numerical aperture limits on efficient ball lens coupling of laser diodes to single-mode fibers with defocus to balance spherical aberration

    NASA Technical Reports Server (NTRS)

    Wilson, R. Gale

    1994-01-01

    The potential capabilities and limitations of single ball lenses for coupling laser diode radiation to single-mode optical fibers have been analyzed; parameters important to optical communications were specifically considered. These parameters included coupling efficiency, effective numerical apertures, lens radius, lens refractive index, wavelength, magnification in imaging the laser diode on the fiber, and defocus to counterbalance spherical aberration of the lens. Limiting numerical apertures in object and image space were determined under the constraint that the lens perform to the Rayleigh criterion of 0.25-wavelength (Strehl ratio = 0.80). The spherical aberration-defocus balance to provide an optical path difference of 0.25 wavelength units was shown to define a constant coupling efficiency (i.e., 0.56). The relative numerical aperture capabilities of the ball lens were determined for a set of wavelengths and associated fiber-core diameters of particular interest for single-mode fiber-optic communication. The results support general continuing efforts in the optical fiber communications industry to improve coupling links within such systems with emphasis on manufacturing simplicity, system packaging flexibility, relaxation of assembly alignment tolerances, cost reduction of opto-electronic components and long term reliability and stability.

  5. Differential Optical Synthetic Aperture Radar

    DOEpatents

    Stappaerts, Eddy A.

    2005-04-12

    A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.

  6. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  7. Two dimensional simulations of triode VHF SiH4 plasma

    NASA Astrophysics Data System (ADS)

    Su, Li-Wen; Chen, Weiting; Uchino, Kiichiro; Kawai, Yoshinobu

    2018-06-01

    Two-dimensional simulations of a triode VHF SiH4 plasma (60 MHz) were performed using a fluid model, where the plasma was realized using multirod electrodes. Higher-order silanes that are responsible for the quality of amorphous silicon were included in the simulations. A typical VHF plasma with an electron density higher than 1016 m‑3 and an electron temperature lower than 3 eV was predicted between discharge electrodes while the electron density near the substrate was very low. The SiH3 density was fairly uniform between discharge electrodes and did not decrease rapidly near the substrate, suggesting a high-speed deposition. Higher-order molecules and radicals that play an important role in dust formation had similar spatial profiles and their densities were five to 6 orders of magnitude lower than the SiH3 density. We discussed the effect of the rate constant of reaction, SiH3 + SiH3 → SiH2 + SiH4, on the SiH3 density.

  8. High efficiency thermionic converter studies

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, D. P.; Oettinger, P. E.

    1976-01-01

    The objective is to improve thermionic converter performance by means of reduced interelectrode losses, greater emitter capabilities, and lower collector work functions until the converter performance level is suitable for out-of-core space reactors and radioisotope generators. Electrode screening experiments have identified several promising collector materials. Back emission work function measurements of a ZnO collector in a thermionic diode have given values less than 1.3 eV. Diode tests were conducted over the range of temperatures of interest for space power applications. Enhanced mode converter experiments have included triodes operated in both the surface ionization and plasmatron modes. Pulsed triodes were studied as a function of pulse length, pulse potential, inert gas fill pressure, cesium pressure, spacing, emitter temperature and collector temperature. Current amplifications (i.e., mean output current/mean grid current) of several hundred were observed up to output current densities of one amp/sq cm. These data correspond to an equivalent arc drop less than 0.1 eV.

  9. Impact of nonzero boresight pointing error on ergodic capacity of MIMO FSO communication systems.

    PubMed

    Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Beatriz; Castillo-Vázquez, Carmen

    2016-02-22

    A thorough investigation of the impact of nonzero boresight pointing errors on the ergodic capacity of multiple-input/multiple-output (MIMO) free-space optical (FSO) systems with equal gain combining (EGC) reception under different turbulence models, which are modeled as statistically independent, but not necessarily identically distributed (i.n.i.d.) is addressed in this paper. Novel closed-form asymptotic expressions at high signal-to-noise ratio (SNR) for the ergodic capacity of MIMO FSO systems are derived when different geometric arrangements of the receive apertures at the receiver are considered in order to reduce the effect of nonzero inherent boresight displacement, which is inevitably present when more than one receive aperture is considered. As a result, the asymptotic ergodic capacity of MIMO FSO systems is evaluated over log-normal (LN), gamma-gamma (GG) and exponentiated Weibull (EW) atmospheric turbulence in order to study different turbulence conditions, different sizes of receive apertures as well as different aperture averaging conditions. It is concluded that the use of single-input/multiple-output (SIMO) and MIMO techniques can significantly increase the ergodic capacity respect to the direct path link when the inherent boresight displacement takes small values, i.e. when the spacing among receive apertures is not too big. The effect of nonzero additional boresight errors, which is due to the thermal expansion of the building, is evaluated in multiple-input/single-output (MISO) and single-input/single-output (SISO) FSO systems. Simulation results are further included to confirm the analytical results.

  10. Analysis of fluid flow and solute transport through a single fracture with variable apertures intersecting a canister: Comparison between fractal and Gaussian fractures

    NASA Astrophysics Data System (ADS)

    Liu, L.; Neretnieks, I.

    Canisters with spent nuclear fuel will be deposited in fractured crystalline rock in the Swedish concept for a final repository. The fractures intersect the canister holes at different angles and they have variable apertures and therefore locally varying flowrates. Our previous model with fractures with a constant aperture and a 90° intersection angle is now extended to arbitrary intersection angles and stochastically variable apertures. It is shown that the previous basic model can be simply amended to account for these effects. More importantly, it has been found that the distributions of the volumetric and the equivalent flow rates are all close to the Normal for both fractal and Gaussian fractures, with the mean of the distribution of the volumetric flow rate being determined solely by the hydraulic aperture, and that of the equivalent flow rate being determined by the mechanical aperture. Moreover, the standard deviation of the volumetric flow rates of the many realizations increases with increasing roughness and spatial correlation length of the aperture field, and so does that of the equivalent flow rates. Thus, two simple statistical relations can be developed to describe the stochastic properties of fluid flow and solute transport through a single fracture with spatially variable apertures. This obviates, then, the need to simulate each fracture that intersects a canister in great detail, and allows the use of complex fractures also in very large fracture network models used in performance assessment.

  11. Microfabricated high-bandpass foucault aperture for electron microscopy

    DOEpatents

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  12. Single-lens computed tomography imaging spectrometer and method of capturing spatial and spectral information

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W. (Inventor); Johnson, William R. (Inventor); Bearman, Gregory H. (Inventor)

    2011-01-01

    Computed tomography imaging spectrometers ("CTISs") employing a single lens are provided. The CTISs may be either transmissive or reflective, and the single lens is either configured to transmit and receive uncollimated light (in transmissive systems), or is configured to reflect and receive uncollimated light (in reflective systems). An exemplary transmissive CTIS includes a focal plane array detector, a single lens configured to transmit and receive uncollimated light, a two-dimensional grating, and a field stop aperture. An exemplary reflective CTIS includes a focal plane array detector, a single mirror configured to reflect and receive uncollimated light, a two-dimensional grating, and a field stop aperture.

  13. 4D Light Field Imaging System Using Programmable Aperture

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam

    2012-01-01

    Complete depth information can be extracted from analyzing all angles of light rays emanated from a source. However, this angular information is lost in a typical 2D imaging system. In order to record this information, a standard stereo imaging system uses two cameras to obtain information from two view angles. Sometimes, more cameras are used to obtain information from more angles. However, a 4D light field imaging technique can achieve this multiple-camera effect through a single-lens camera. Two methods are available for this: one using a microlens array, and the other using a moving aperture. The moving-aperture method can obtain more complete stereo information. The existing literature suggests a modified liquid crystal panel [LC (liquid crystal) panel, similar to ones commonly used in the display industry] to achieve a moving aperture. However, LC panels cannot withstand harsh environments and are not qualified for spaceflight. In this regard, different hardware is proposed for the moving aperture. A digital micromirror device (DMD) will replace the liquid crystal. This will be qualified for harsh environments for the 4D light field imaging. This will enable an imager to record near-complete stereo information. The approach to building a proof-ofconcept is using existing, or slightly modified, off-the-shelf components. An SLR (single-lens reflex) lens system, which typically has a large aperture for fast imaging, will be modified. The lens system will be arranged so that DMD can be integrated. The shape of aperture will be programmed for single-viewpoint imaging, multiple-viewpoint imaging, and coded aperture imaging. The novelty lies in using a DMD instead of a LC panel to move the apertures for 4D light field imaging. The DMD uses reflecting mirrors, so any light transmission lost (which would be expected from the LC panel) will be minimal. Also, the MEMS-based DMD can withstand higher temperature and pressure fluctuation than a LC panel can. Robotics need near complete stereo images for their autonomous navigation, manipulation, and depth approximation. The imaging system can provide visual feedback

  14. Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naify, Christina J., E-mail: christina.naify@nrl.navy.mil; Rohde, Charles A.; Martin, Theodore P.

    2016-05-30

    Here, we present a class of metamaterial-based acoustic vortex generators which are both geometrically simple and broadly tunable. The aperture overcomes the significant limitations of both active phasing systems and existing passive coded apertures. The metamaterial approach generates topologically diverse acoustic vortex waves motivated by recent advances in leaky wave antennas by wrapping the antenna back upon itself to produce an acoustic vortex wave antenna. We demonstrate both experimentally and analytically that this single analog structure is capable of creating multiple orthogonal orbital angular momentum modes using only a single transducer. The metamaterial design makes the aperture compact, with amore » diameter nearly equal to the excitation wavelength and can thus be easily integrated into high-density systems. Applications range from acoustic communications for high bit-rate multiplexing to biomedical devices such as microfluidic mixers.« less

  15. Deployable reflector configurations

    NASA Astrophysics Data System (ADS)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  16. Deployable reflector configurations. [for space telescope

    NASA Technical Reports Server (NTRS)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    1983-01-01

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  17. Fresnel Lenses for Wide-Aperture Optical Receivers

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2004-01-01

    Wide-aperture receivers for freespace optical communication systems would utilize Fresnel lenses instead of conventional telescope lenses, according to a proposal. Fresnel lenses weigh and cost much less than conventional lenses having equal aperture widths. Plastic Fresnel lenses are commercially available in diameters up to 5 m large enough to satisfy requirements for aperture widths of the order of meters for collecting sufficient light in typical long-distance free-space optical communication systems. Fresnel lenses are not yet suitable for high-quality diffraction-limited imaging, especially in polychromatic light. However, optical communication systems utilize monochromatic light, and there is no requirement for high-quality imaging; instead, the basic requirement for an optical receiver is to collect the incoming monochromatic light over a wide aperture and concentrate the light onto a photodetector. Because of lens aberrations and diffraction, the light passing through any lens is focused to a blur circle rather than to a point. Calculations for some representative cases of wide-aperture non-diffraction-limited Fresnel lenses have shown that it should be possible to attain blur-circle diameters of less than 2 mm. Preferably, the blur-circle diameter should match the width of the photodetector. For most high-bandwidth communication applications, the required photodetector diameters would be about 1 mm. In a less-preferable case in which the blur circle was wider than a single photodetector, it would be possible to occupy the blur circle with an array of photodetectors. As an alternative to using a single large Fresnel lens, one could use an array of somewhat smaller lenses to synthesize the equivalent aperture area. Such a configuration might be preferable in a case in which a single Fresnel lens of the requisite large size would be impractical to manufacture, and the blur circle could not be made small enough. For example one could construct a square array of four 5-m-diameter Fresnel lenses to obtain the same light-collecting area as that of a single 10-m-diameter lens. In that case (see figure), the light collected by each Fresnel lens could be collimated, the collimated beams from the four Fresnel lenses could be reflected onto a common offaxis paraboloidal reflector, and the paraboloidal reflector would focus the four beams onto a single photodetector. Alternatively, detected signal from each detector behind each lens would be digitized before summing the signals.

  18. Measurements of Aperture Averaging on Bit-Error-Rate

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.; hide

    2005-01-01

    We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 in. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.

  19. A functional probe with bowtie aperture and bull's eye structure for nanolithograph

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Li, Xu-Feng; Wang, Qiao; Guo, Ying-Yan; Pan, Shi

    2012-10-01

    The bowtie aperture surrounded by concentric gratings (the bull's eye structure) integrated on the near-field scanning optical microscopy (NSOM) probe (aluminum coated fiber tip) for nanolithography has been investigated using the finite-difference time domain (FDTD) method. By modifying the parameters of the bowtie aperture and the concentric gratings, a maximal field enhancement factor of 391.69 has been achieved, which is 18 times larger than that obtained from the single bowtie aperture. Additionally, the light spot depends on the gap size of the bowtie aperture and can be confined to sub-wavelength. The superiority of the combination of the bowtie aperture and the bull's eye structure is confirmed, and the mechanism for the electric field enhancement in this derived structure is analyzed.

  20. Measurements of aperture averaging on bit-error-rate

    NASA Astrophysics Data System (ADS)

    Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.; Burdge, Geoffrey L.; Wayne, David; Pescatore, Robert

    2005-08-01

    We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 m. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.

  1. Focusing of white synchrotron radiation using large-acceptance cylindrical refractive lenses made of single – crystal diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polikarpov, M., E-mail: polikarpov.maxim@mail.ru; Snigireva, I.; Snigirev, A.

    2016-07-27

    Large-aperture cylindrical refractive lenses were manufactured by laser cutting of single-crystal diamond. Five linear single lenses with apertures of 1 mm and the depth of the structure of 1.2 mm were fabricated and tested at the ESRF ID06 beamline performing the focusing of white-beam synchrotron radiation. Uniform linear focus was stable during hours of exposure, representing such lenses as pre-focusing and collimating devices suitable for the front-end sections of today synchrotron radiation sources.

  2. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures

    PubMed Central

    Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605

  3. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    PubMed

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-21

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  4. Field Quality Measurements in the FNAL Twin-Aperture 11 T Dipole for LHC Upgrades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, T.; Apollinari, G.; Apollinari, G.

    2016-11-08

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC to provide room for additional collimators. Two 1 m long collared coils previously tested at FNAL in single-aperture dipole configuration were assembled into the twin-aperture configuration and tested including magnet quench performance and field quality. The results of magnetic measurements are reported and discussed in this paper.

  5. Demonstration of a directional sonic prism in two dimensions using an air-acoustic leaky wave antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naify, Christina J., E-mail: christina.naify@nrl.navy.mil; Rohde, Charles A.; Calvo, David C.

    Analysis and experimental demonstration of a two-dimensional acoustic leaky wave antenna is presented for use in air. The antenna is comprised of a two-dimensional waveguide patterned with radiating acoustic shunts. When excited using a single acoustic source within the waveguide, the antenna acts as a sonic prism that exhibits frequency steering. This design allows for control of acoustic steering angle using only a single source transducer and a patterned aperture. Aperture design was determined using transmission line analysis and finite element methods. The designed antenna was fabricated and the steering angle measured. The performance of the measured aperture was withinmore » 9% of predicted angle magnitudes over all examined frequencies.« less

  6. Nonimaging polygonal mirrors achieving uniform irradiance distributions on concentrating photovoltaic cells.

    PubMed

    Schmitz, Max; Dähler, Fabian; Elvinger, François; Pedretti, Andrea; Steinfeld, Aldo

    2017-04-10

    We introduce a design methodology for nonimaging, single-reflection mirrors with polygonal inlet apertures that generate a uniform irradiance distribution on a polygonal outlet aperture, enabling a multitude of applications within the domain of concentrated photovoltaics. Notably, we present single-mirror concentrators of square and hexagonal perimeter that achieve very high irradiance uniformity on a square receiver at concentrations ranging from 100 to 1000 suns. These optical designs can be assembled in compound concentrators with maximized active area fraction by leveraging tessellation. More advanced multi-mirror concentrators, where each mirror individually illuminates the whole area of the receiver, allow for improved performance while permitting greater flexibility for the concentrator shape and robustness against partial shading of the inlet aperture.

  7. Pulse Circuits of Radar Stations

    DTIC Science & Technology

    1982-08-06

    be less than in a symmetrical flip-flop since voltage webs additionally is reduced, given presence of cathode coupling (triode L2 cathode potential...and t, f(t). 636 7o%:i. iI where C’ - d-c component equal, in accordance with (1.5) -- L. ( * -. wiX " -- angular pulse repetition frequency tPRF]; T. K

  8. Early evolution of Tubulogenerina during the Paleogene of Europe

    USGS Publications Warehouse

    Gibson, T.G.; Barbin, V.; Poignant, A.; Sztrakos, K.

    1991-01-01

    The early evolution of Tubulogenerina took place in Europe where eight species occur in lower Eocene to uppermost Oligocene or lower Miocene strata. Species diversity within Tubulogenerina dropped significantly in the early Oligocne; only a single species persisted from the late Eocene, and it became extinct before the end of the early Oligocene. Morphologic changes during the European phylogeny of Tubulogenerina include (1) the development of costate and more complex tubulopore ornamentation, and (2) the change from a single elongated apertural slit with a single toothplate to multiple apertures and toothplates. Three new Tubulogenerina species are described. -from Authors

  9. Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture

    NASA Astrophysics Data System (ADS)

    Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.

    2017-12-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.

  10. Joint synthetic aperture radar plus ground moving target indicator from single-channel radar using compressive sensing

    DOEpatents

    Thompson, Douglas; Hallquist, Aaron; Anderson, Hyrum

    2017-10-17

    The various embodiments presented herein relate to utilizing an operational single-channel radar to collect and process synthetic aperture radar (SAR) and ground moving target indicator (GMTI) imagery from a same set of radar returns. In an embodiment, data is collected by randomly staggering a slow-time pulse repetition interval (PRI) over a SAR aperture such that a number of transmitted pulses in the SAR aperture is preserved with respect to standard SAR, but many of the pulses are spaced very closely enabling movers (e.g., targets) to be resolved, wherein a relative velocity of the movers places them outside of the SAR ground patch. The various embodiments of image reconstruction can be based on compressed sensing inversion from undersampled data, which can be solved efficiently using such techniques as Bregman iteration. The various embodiments enable high-quality SAR reconstruction, and high-quality GMTI reconstruction from the same set of radar returns.

  11. A novel three-dimensional image reconstruction method for near-field coded aperture single photon emission computerized tomography

    PubMed Central

    Mu, Zhiping; Hong, Baoming; Li, Shimin; Liu, Yi-Hwa

    2009-01-01

    Coded aperture imaging for two-dimensional (2D) planar objects has been investigated extensively in the past, whereas little success has been achieved in imaging 3D objects using this technique. In this article, the authors present a novel method of 3D single photon emission computerized tomography (SPECT) reconstruction for near-field coded aperture imaging. Multiangular coded aperture projections are acquired and a stack of 2D images is reconstructed separately from each of the projections. Secondary projections are subsequently generated from the reconstructed image stacks based on the geometry of parallel-hole collimation and the variable magnification of near-field coded aperture imaging. Sinograms of cross-sectional slices of 3D objects are assembled from the secondary projections, and the ordered subset expectation and maximization algorithm is employed to reconstruct the cross-sectional image slices from the sinograms. Experiments were conducted using a customized capillary tube phantom and a micro hot rod phantom. Imaged at approximately 50 cm from the detector, hot rods in the phantom with diameters as small as 2.4 mm could be discerned in the reconstructed SPECT images. These results have demonstrated the feasibility of the authors’ 3D coded aperture image reconstruction algorithm for SPECT, representing an important step in their effort to develop a high sensitivity and high resolution SPECT imaging system. PMID:19544769

  12. Effect of Aperture Field Variability, Flow Rate, and Ionic Strength on Colloid Transport in Single Fractures: Laboratory-Scale Experiments and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Q.; Dickson, S.; Guo, Y.

    2007-12-01

    A good understanding of the physico-chemical processes (i.e., advection, dispersion, attachment/detachment, straining, sedimentation etc.) governing colloid transport in fractured media is imperative in order to develop appropriate bioremediation and/or bioaugmentation strategies for contaminated fractured aquifers, form management plans for groundwater resources to prevent pathogen contamination, and identify suitable radioactive waste disposal sites. However, research in this field is still in its infancy due to the complex heterogeneous nature of fractured media and the resulting difficulty in characterizing this media. The goal of this research is to investigate the effects of aperture field variability, flow rate and ionic strength on colloid transport processes in well characterized single fractures. A combination of laboratory-scale experiments, numerical simulations, and imaging techniques were employed to achieve this goal. Transparent replicas were cast from natural rock fractures, and a light transmission technique was employed to measure their aperture fields directly. The surface properties of the synthetic fractures were characterized by measuring the zeta-potential under different ionic strengths. A 33 (3 increased to the power of 3) factorial experiment was implemented to investigate the influence of aperture field variability, flow rate, and ionic strength on different colloid transport processes in the laboratory-scale fractures, specifically dispersion and attachment/detachment. A fluorescent stain technique was employed to photograph the colloid transport processes, and an analytical solution to the one-dimensional transport equation was fit to the colloid breakthrough curves to calculate the average transport velocity, dispersion coefficient, and attachment/detachment coefficient. The Reynolds equation was solved to obtain the flow field in the measured aperture fields, and the random walk particle tracking technique was employed to model the colloid transport experiments. The images clearly show the development of preferential pathways for colloid transport in the different aperture fields and under different flow conditions. Additionally, a correlation between colloid deposition and fracture wall topography was identified. This presentation will demonstrate (1) differential transport between colloid and solute in single fractures, and the relationship between differential transport and aperture field statistics; (2) the relationship between the colloid dispersion coefficient and aperture field statistics; and (3) the relationship between attachment/detachment, aperture field statistics, fracture wall topography, flow rate, and ionic strength. In addition, this presentation will provide insight into the application of the random walk particle tracking technique for modeling colloid transport in variable-aperture fractures.

  13. Investigation of novel fractal shape of the nano-aperture as a metasurface for bio sensing application

    NASA Astrophysics Data System (ADS)

    Heydari, Samaneh; Rastan, Iman; Parvin, Amin; Pirooj, Azadeh; Zarrabi, Ferdows B.

    2017-01-01

    Recently, nano-aperture is noticed due to its good transmission in the optical regime. Also, the nano-apertures are developed at the metasurface design for circular polarization; for this aim, various shapes of the nano-aperture are suggested. To reach this objective, we have developed a novel Jerusalem cross fractal shape for a mid-infrared application. We have simulated various formations of the nano-fractal Jerusalem cross based on a simple cross to show the effect of nano-aperture shape on electrical field enhancement in the near-field which is important in spectroscopy and optical imaging. In addition, we have used a single layer graphene over the aperture as a coat for making reconfigurable characteristic also creating a membrane for placement of nano-particle over the aperture. Implementation of the graphene is an amendment to the transfer of the nano-apertures. The biological materials with a thickness of 80 nm have been placed over the graphene layer and the Figures of Merits (FOM) have been obtained. Additionally, the prototype of nano-antenna is independent from incident wave polarization. The Finite Difference Time Domain (FDTD) calculations have been implemented in the simulation and modeling the nano-apertures.

  14. Impact of finite receiver-aperture size in a non-line-of-sight single-scatter propagation model.

    PubMed

    Elshimy, Mohamed A; Hranilovic, Steve

    2011-12-01

    In this paper, a single-scatter propagation model is developed that expands the classical model by considering a finite receiver-aperture size for non-line-of-sight communication. The expanded model overcomes some of the difficulties with the classical model, most notably, inaccuracies in scenarios with short range and low elevation angle where significant scattering takes place near the receiver. The developed model does not approximate the receiver aperture as a point, but uses its dimensions for both field-of-view and solid-angle computations. To verify the model, a Monte Carlo simulation of photon transport in a turbid medium is applied. Simulation results for temporal responses and path losses are presented at a wavelength of 260 nm that lies in the solar-blind ultraviolet region.

  15. Resonant Circuits and Introduction to Vacuum Tubes, Industrial Electronics 2: 9325.03. Course Outline.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The 135 clock-hour course for the 11th year consists of outlines for blocks of instruction on series resonant circuits, parallel resonant circuits, transformer theory and application, vacuum tube fundamentals, diode vacuum tubes, triode tube construction and parameters, vacuum tube tetrodes and pentodes, beam-power and multisection tubes, and…

  16. Measuring system for the determination of nonlinear elastic and electromechanical properties in solids

    NASA Astrophysics Data System (ADS)

    Straube, U.; Beige, H.

    1999-03-01

    An arbitrary waveform generator was introduced to produce pulse bursts with improved time jitter for the generation of ultrasound pulses. The problem of pulse amplification was solved using a ceramic power triode driven by a power FET amplifier. The construction of these special amplifier stages is mainly considered in this paper.

  17. Improved fabrication of focused single element P(VDF–TrFE) transducer for high frequency ultrasound applications

    PubMed Central

    Jeong, Jong Seob; Shung, K. Kirk

    2013-01-01

    We present an improved fabrication technique for the focused single element poly (vinylidene fluoride–trifluoroethylene) P(VDF–TrFE) transducer. In this work, a conductive epoxy for a backing layer was directly bonded to the 25 μm thick P(VDF–TrFE) film and thus made it easy to conform the aperture of the P(VDF–TrFE) transducer. Two prototype focused P(VDF–TrFE) transducers with disk- and ring-type aperture were fabricated and their performance was evaluated using the UBM (Ultrasound Biomicroscopy) system with a wire phantom. All transducers had a spherically focused aperture with a low f-number (focal depth/aperture size = 1). The center frequency of the disk-type P(VDF–TrFE) transducer was 23 MHz and −6 dB bandwidth was 102%. The ring-type P(VDF–TrFE) transducer had 20 MHz center frequency and −6 dB bandwidth of 103%. The measured pulse echo signal had reduced reverberation due to no additional adhesive layer between the P(VDF–TrFE) film and the backing layer. Hence, the proposed method is promising to fabricate a single element transducer using P(VDF–TrFE) film for high frequency applications. PMID:23021238

  18. InGaAsP/InP-air-aperture microcavities for single-photon sources at 1.55-μm telecommunication band

    NASA Astrophysics Data System (ADS)

    Guo, Sijie; Zheng, Yanzhen; Weng, Zhuo; Yao, Haicheng; Ju, Yuhao; Zhang, Lei; Ren, Zhilei; Gao, Ruoyao; Wang, Zhiming M.; Song, Hai-Zhi

    2016-11-01

    InGaAsP/InP-air-aperture micropillar cavities are proposed to serve as 1.55-μm single photon sources, which are indispensable in silica-fiber based quantum information processing. Owing to air-apertures introduced to InP layers, and adiabatically tapered distributed Bragg-reflector structures used in the central cavity layers, the pillar diameters can be less than 1 μm, achieving mode volume as small as (λ/n)3, and the quality factors are more than 104 - 105, sufficient to increase the quantum dot emission rate for 100 times and create strong coupling between the optical mode and the 1.55- μm InAs/InP quantum dot emitter. The mode wavelengths and quality factors are found weakly changing with the cavity size and the deviation from the ideal shape, indicating the robustness against the imperfection of the fabrication technique. The fabrication, simply epitaxial growth, dry and chemical etching, is a damage-free and monolithic process, which is advantageous over previous hybrid cavities. The above properties satisfy the requirements of efficient, photonindistinguishable and coherent 1.55-μm quantum dot single photon sources, so the proposed InGaAsP/InP-air-aperture micropillar cavities are prospective candidates for quantum information devices at telecommunication band.

  19. Measurement of Fracture Aperture Fields Using Ttransmitted Light: An Evaluation of Measurement Errors and their Influence on Simulations of Flow and Transport through a Single Fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detwiler, Russell L.; Glass, Robert J.; Pringle, Scott E.

    Understanding of single and multi-phase flow and transport in fractures can be greatly enhanced through experimentation in transparent systems (analogs or replicas) where light transmission techniques yield quantitative measurements of aperture, solute concentration, and phase saturation fields. Here we quanti@ aperture field measurement error and demonstrate the influence of this error on the results of flow and transport simulations (hypothesized experimental results) through saturated and partially saturated fractures. find that precision and accuracy can be balanced to greatly improve the technique and We present a measurement protocol to obtain a minimum error field. Simulation results show an increased sensitivity tomore » error as we move from flow to transport and from saturated to partially saturated conditions. Significant sensitivity under partially saturated conditions results in differences in channeling and multiple-peaked breakthrough curves. These results emphasize the critical importance of defining and minimizing error for studies of flow and transpoti in single fractures.« less

  20. Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality.

    PubMed

    Peng, Kun; Zhan, Huan; Ni, Li; Wang, Xiaolong; Wang, Yuying; Gao, Cong; Li, Yuwei; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2016-12-10

    By using the chelate precursor doping technique, we report on an ytterbium-doped aluminophosphosilicate (APS) large-mode-area fiber with ultralow numerical aperture of 0.036 and effective fundamental mode area of ∼550  μm2. With a bend diameter of 600 mm, the bending loss of fundamental mode LP01 was measured to be <10-3  dB/m, in agreement with the corresponding simulation results, while that of higher order mode LP11 is >100  dB/m at 1080 nm. Measured in an all-fiber oscillator laser cavity, 592 W single-mode laser output was obtained at 1079.64 nm with high-beam quality M2 of 1.12. The results indicate that the chelate precursor doping technique is a competitive method for ultralow numerical aperture fiber fabrication, which is very suitable for developing single-mode seed lasers for high power laser systems.

  1. A numerical study on the correlation between fracture transmissivity, hydraulic aperture and transport aperture

    NASA Astrophysics Data System (ADS)

    Sawada, A.; Takebe, A.; Sakamoto, K.

    2006-12-01

    Quantitative evaluation of the groundwater velocity in the fractures is a key part of contaminants transport assessment especially in the radioactive waste disposal programs. In a hydrogeological model such as the discrete fracture network model, the transport aperture of water conducting fracture is one of the important parameters for evaluating groundwater velocity. Tracer tests that measure velocity (or transport aperture) are few compared with flow tests that measure transmissivity (or hydraulic aperture). Thus it is useful to estimate transport properties from flow properties. It is commonly assumed that flow and transport aperture are the same, and that aperture is related to the cube root of transmissivity by the parallel-plate analog. Actual field experiments, however, show transport and hydraulic apertures are not always the same, and that transport aperture relates to an empirical constant times the square root of transmissivity. Compared with these field results, the cubic law underestimates transport aperture and overestimates velocity. A possible source of this discrepancy is in-plane heterogeneity of aperture and transmissivity. To study this behavior, numerical simulations using MAFIC were conducted for a single fracture model with a heterogeneous aperture distribution. The simulations varied three parameters - the mean geometrical aperture, JRC (Joint Roughness Coefficient), and the contact area ratio (fracture contact area divided by total fracture area). For each model we determined the equivalent transmissivity and cubic-law aperture under steady flow conditions. Then we simulated mass transport using particle tracking through the same fracture. The transport aperture was estimated from the particle peak arrival time at the downstream boundary. The results show that the mean geometrical aperture is the most sensitive parameter among the three variable parameters in this study. It is also found that the contact area ratio affects transmissivity more than the JRC, and while the JRC strongly affects the velocity and transport aperture. Based on these results, a correlation between the transmissivity, the hydraulic conductivity and the transport aperture will be discussed.

  2. High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Shang, C. Y.; Feng, Y.; Yan, C. L.; Zhao, Y. J.; Wang, Y. X.; Wang, X. H.; Liu, G. J.

    2011-02-01

    The carrier conglomeration effect has been one of the main problems in developing electrically pumped high power vertical cavity surface emitting laser (VCSEL) with large aperture. We demonstrate a high power 808 nm VCSEL with multi-ring-shaped-aperture (MRSA) to weaken the carrier conglomeration effect. Compared with typical VCSEL with single large aperture (SLA), the 300-μm-diameter VCSEL with MRSA has more uniform near field and far field patterns. Moreover, MRSA laser exhibits maximal CW light output power 0.3 W which is about 3 times that of SLA laser. And the maximal wall-plug efficiency of 17.4% is achieved, higher than that of SLA laser by 10%.

  3. Phenomenology of electromagnetic coupling: Conductors penetrating an aperture

    NASA Astrophysics Data System (ADS)

    Wright, D. B.; King, R. J.

    1987-06-01

    The purpose of this study was to investigate the coupling effects of penetrating conductors through free-standing apertures. This penetrating conductor and aperture arrangement are referred to as a modified aperture. A penetrating conductor is defined here to be a thin, single wire bent twice at 90 angles. The wire was inserted through a rectangular aperture in a metal wall. Vertical segments on both sides of the wall coupled energy from one region to the other. Energy was incident upon the modified aperture from what is referred to as the exterior region. The amount of coupling was measured by a D sensor on the other (interior) side of the wall. This configuration of an aperture in a metal wall was used as opposed to an aperture in a cavity in order to simplify the interpretation of resulting data. The added complexity of multiple cavity resonances was therefore eliminated. Determining the effects of penetrating conductors on aperture coupling is one of several topics being investigated as part of on-going research at Lawrence Livermore National Laboratory on the phenomenology of electromagnetic coupling. These phenomenology studies are concerned with the vulnerability of electronic systems to high intensity electromagnetic fields. The investigation is relevant to high altitude EMP (HEMP), enhanced HEMP (EHEMP), and high power microwave (HPM) coupling.

  4. Transverse mode selection in vertical-cavity surface-emitting lasers via deep impurity-induced disordering

    NASA Astrophysics Data System (ADS)

    O'Brien, Thomas R.; Kesler, Benjamin; Dallesasse, John M.

    2017-02-01

    Top emission 850-nm vertical-cavity surface-emitting lasers (VCSELs) demonstrating transverse mode selection via impurity-induced disordering (IID) are presented. The IID apertures are fabricated via closed ampoule zinc diffusion. A simple 1-D plane wave model based on the intermixing of Group III atoms during IID is presented to optimize the mirror loss of higher-order modes as a function of IID strength and depth. In addition, the impact of impurity diffusion into the cap layer of the lasers is shown to improve contact resistance. Further investigation of the mode-dependent characteristics of the device imply an increase in the thermal impedance associated with the fraction of IID contained within the oxide aperture. The optimization of the ratio of the IID aperture to oxide aperture is experimentally determined. Single fundamental mode output of 1.6 mW with 30 dBm side mode suppression ratio is achieved by a 3.0 μm oxide-confined device with an IID aperture of 1.3 μm indicating an optimal IID aperture size of 43% of the oxide aperture.

  5. Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1982-01-01

    A single-frequency multibeam synthetic aperture radar for large swath imaging is disclosed. Each beam illuminates a separate ""footprint'' (i.e., range and azimuth interval). The distinct azimuth intervals for the separate beams produce a distinct Doppler frequency spectrum for each beam. After range correlation of raw data, an optical processor develops image data for the different beams by spatially separating the beams to place each beam of different Doppler frequency spectrum in a different location in the frequency plane as well as the imaging plane of the optical processor. Selection of a beam for imaging may be made in the frequency plane by adjusting the position of an aperture, or in the image plane by adjusting the position of a slit. The raw data may also be processed in digital form in an analogous manner.

  6. Self-aligned gated field emission devices using single carbon nanofiber cathodes

    NASA Astrophysics Data System (ADS)

    Guillorn, M. A.; Melechko, A. V.; Merkulov, V. I.; Hensley, D. K.; Simpson, M. L.; Lowndes, D. H.

    2002-11-01

    We report on the fabrication and operation of integrated gated field emission devices using single vertically aligned carbon nanofiber (VACNF) cathodes where the gate aperture has been formed using a self-aligned technique based on chemical mechanical polishing. We find that this method for producing gated cathode devices easily achieves structures with gate apertures on the order of 2 mum that show good concentric alignment to the VACNF emitter. The operation of these devices was explored and field emission characteristics that fit well to the Fowler-Nordheim model of emission was demonstrated.

  7. Optical devices

    DOEpatents

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-07-13

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  8. Single-mode VCSEL operation via photocurrent feedback

    NASA Astrophysics Data System (ADS)

    Riyopoulos, Spilios

    1999-04-01

    On-axis channeling through the use of photoactive layers in VCSEL cavities is proposed to counteract hole burning and mode switching. The photoactive layers act as variable resistivity screens whose radial `aperture' is controlled by the light itself. It is numerically demonstrated that absorption of a small fraction of the light intensity suffices for significant on axis current peaking and single mode operation at currents many times threshold, with minimum efficiency loss and optical mode distortion. Fabrication is implemented during the molecular beam epitaxy phase without wafer post processing, as for oxide apertures.

  9. Dynamically reconfigurable holographic metasurface aperture for a Mills-Cross monochromatic microwave camera.

    PubMed

    Yurduseven, Okan; Marks, Daniel L; Fromenteze, Thomas; Smith, David R

    2018-03-05

    We present a reconfigurable, dynamic beam steering holographic metasurface aperture to synthesize a microwave camera at K-band frequencies. The aperture consists of a 1D printed microstrip transmission line with the front surface patterned into an array of slot-shaped subwavelength metamaterial elements (or meta-elements) dynamically tuned between "ON" and "OFF" states using PIN diodes. The proposed aperture synthesizes a desired radiation pattern by converting the waveguide-mode to a free space radiation by means of a binary modulation scheme. This is achieved in a holographic manner; by interacting the waveguide-mode (reference-wave) with the metasurface layer (hologram layer). It is shown by means of full-wave simulations that using the developed metasurface aperture, the radiated wavefronts can be engineered in an all-electronic manner without the need for complex phase-shifting circuits or mechanical scanning apparatus. Using the dynamic beam steering capability of the developed antenna, we synthesize a Mills-Cross composite aperture, forming a single-frequency all-electronic microwave camera.

  10. A precise method for adjusting the optical system of laser sub-aperture

    NASA Astrophysics Data System (ADS)

    Song, Xing; Zhang, Xue-min; Yang, Jianfeng; Xue, Li

    2018-02-01

    In order to adapt to the requirement of modern astronomical observation and warfare, the resolution of the space telescope is needed to improve, sub-aperture stitching imaging technique is one method to improve the resolution, which could be used not only the foundation and space-based large optical systems, also used in laser transmission and microscopic imaging. A large aperture main mirror of sub-aperture stitching imaging system is composed of multiple sub-mirrors distributed according to certain laws. All sub-mirrors are off-axis mirror, so the alignment of sub-aperture stitching imaging system is more complicated than a single off-axis optical system. An alignment method based on auto-collimation imaging and interferometric imaging is introduced in this paper, by using this alignment method, a sub-aperture stitching imaging system which is composed of 12 sub-mirrors was assembled with high resolution, the beam coincidence precision is better than 0.01mm, and the system wave aberration is better than 0.05λ.

  11. The impact of in-situ stress and outcrop-based fracture geometry on hydraulic aperture and upscaled permeability in fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.

    2016-10-01

    Aperture has a controlling impact on porosity and permeability and is a source of uncertainty in modeling of naturally fractured reservoirs. This uncertainty results from difficulties in accurately quantifying aperture in the subsurface and from a limited fundamental understanding of the mechanical and diagenetic processes that control aperture. In the absence of cement bridges and high pore pressure, fractures in the subsurface are generally considered to be closed. However, experimental work, outcrop analyses and subsurface data show that some fractures remain open, and that aperture varies even along a single fracture. However, most fracture flow models consider constant apertures for fractures. We create a stress-dependent heterogeneous aperture by combining Finite Element modeling of discrete fracture networks with an empirical aperture model. Using a modeling approach that considers fractures explicitly, we quantify equivalent permeability, i.e. combined matrix and stress-dependent fracture flow. Fracture networks extracted from a large outcropping pavement form the basis of these models. The results show that the angle between fracture strike and σ1 has a controlling impact on aperture and permeability, where hydraulic opening is maximum for an angle of 15°. At this angle, the fracture experiences a minor amount of shear displacement that allows the fracture to remain open even when fluid pressure is lower than the local normal stress. Averaging the heterogeneous aperture to scale up permeability probably results in an underestimation of flow, indicating the need to incorporate full aperture distributions rather than simplified aperture models in reservoir-scale flow models.

  12. System and method for phase retrieval for radio telescope and antenna control

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2013-01-01

    Disclosed herein are systems, methods, and non-transitory computer-readable storage media for radio phase retrieval. A system practicing the method gathers first data from radio waves associated with an object observed via a first aperture, gathers second data from radio waves associated with the object observed via an introduced second aperture associated with the first aperture, generates reduced noise data by incoherently subtracting the second data from the first data, and performs phase retrieval for the radio waves by modeling the reduced noise data using a single Fourier transform. The first and second apertures are at different positions, such as side by side. This approach can include determining a value Q which represents a ratio of wavelength times a focal ratio divided by pixel spacing. This information can be used to accurately measure and correct alignment errors or other optical system flaws in the apertures.

  13. Performance analysis of fiber-based free-space optical communications with coherent detection spatial diversity.

    PubMed

    Li, Kangning; Ma, Jing; Tan, Liying; Yu, Siyuan; Zhai, Chao

    2016-06-10

    The performances of fiber-based free-space optical (FSO) communications over gamma-gamma distributed turbulence are studied for multiple aperture receiver systems. The equal gain combining (EGC) technique is considered as a practical scheme to mitigate the atmospheric turbulence. Bit error rate (BER) performances for binary-phase-shift-keying-modulated coherent detection fiber-based free-space optical communications are derived and analyzed for EGC diversity receptions through an approximation method. To show the net diversity gain of a multiple aperture receiver system, BER performances of EGC are compared with a single monolithic aperture receiver system with the same total aperture area (same average total incident optical power on the aperture surface) for fiber-based free-space optical communications. The analytical results are verified by Monte Carlo simulations. System performances are also compared for EGC diversity coherent FSO communications with or without considering fiber-coupling efficiencies.

  14. Single Carrier with Frequency Domain Equalization for Synthetic Aperture Underwater Acoustic Communications

    PubMed Central

    He, Chengbing; Xi, Rui; Wang, Han; Jing, Lianyou; Shi, Wentao; Zhang, Qunfei

    2017-01-01

    Phase-coherent underwater acoustic (UWA) communication systems typically employ multiple hydrophones in the receiver to achieve spatial diversity gain. However, small underwater platforms can only carry a single transducer which can not provide spatial diversity gain. In this paper, we propose single-carrier with frequency domain equalization (SC-FDE) for phase-coherent synthetic aperture acoustic communications in which a virtual array is generated by the relative motion between the transmitter and the receiver. This paper presents synthetic aperture acoustic communication results using SC-FDE through data collected during a lake experiment in January 2016. The performance of two receiver algorithms is analyzed and compared, including the frequency domain equalizer (FDE) and the hybrid time frequency domain equalizer (HTFDE). The distances between the transmitter and the receiver in the experiment were about 5 km. The bit error rate (BER) and output signal-to-noise ratio (SNR) performances with different receiver elements and transmission numbers were presented. After combining multiple transmissions, error-free reception using a convolution code with a data rate of 8 kbps was demonstrated. PMID:28684683

  15. Joint estimation of high resolution images and depth maps from light field cameras

    NASA Astrophysics Data System (ADS)

    Ohashi, Kazuki; Takahashi, Keita; Fujii, Toshiaki

    2014-03-01

    Light field cameras are attracting much attention as tools for acquiring 3D information of a scene through a single camera. The main drawback of typical lenselet-based light field cameras is the limited resolution. This limitation comes from the structure where a microlens array is inserted between the sensor and the main lens. The microlens array projects 4D light field on a single 2D image sensor at the sacrifice of the resolution; the angular resolution and the position resolution trade-off under the fixed resolution of the image sensor. This fundamental trade-off remains after the raw light field image is converted to a set of sub-aperture images. The purpose of our study is to estimate a higher resolution image from low resolution sub-aperture images using a framework of super-resolution reconstruction. In this reconstruction, these sub-aperture images should be registered as accurately as possible. This registration is equivalent to depth estimation. Therefore, we propose a method where super-resolution and depth refinement are performed alternatively. Most of the process of our method is implemented by image processing operations. We present several experimental results using a Lytro camera, where we increased the resolution of a sub-aperture image by three times horizontally and vertically. Our method can produce clearer images compared to the original sub-aperture images and the case without depth refinement.

  16. Shaped Apertures in Photoresist Films Enhance the Lifetime and Mechanical Stability of Suspended Lipid Bilayers

    PubMed Central

    Kalsi, Sumit; Powl, Andrew M.; Wallace, B.A.; Morgan, Hywel; de Planque, Maurits R.R.

    2014-01-01

    Planar lipid bilayers suspended in apertures provide a controlled environment for ion channel studies. However, short lifetimes and poor mechanical stability of suspended bilayers limit the experimental throughput of bilayer electrophysiology experiments. Although bilayers are more stable in smaller apertures, ion channel incorporation through vesicle fusion with the suspended bilayer becomes increasingly difficult. In an alternative bilayer stabilization approach, we have developed shaped apertures in SU8 photoresist that have tapered sidewalls and a minimum diameter between 60 and 100 μm. Bilayers formed at the thin tip of these shaped apertures, either with the painting or the folding method, display drastically increased lifetimes, typically >20 h, and mechanical stability, being able to withstand extensive perturbation of the buffer solution. Single-channel electrical recordings of the peptide alamethicin and of the proteoliposome-delivered potassium channel KcsA demonstrate channel conductance with low noise, made possible by the small capacitance of the 50 μm thick SU8 septum, which is only thinned around the aperture, and unimpeded proteoliposome fusion, enabled by the large aperture diameter. We anticipate that these shaped apertures with micrometer edge thickness can substantially enhance the throughput of channel characterization by bilayer lipid membrane electrophysiology, especially in combination with automated parallel bilayer platforms. PMID:24739164

  17. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    PubMed

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  18. Real-time multiple-look synthetic aperture radar processor for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Wu, C.; Tyree, V. C. (Inventor)

    1981-01-01

    A spaceborne synthetic aperture radar (SAR) having pipeline multiple-look data processing is described which makes use of excessive azimuth bandwidth in radar echo signals to produce multiple-looking images. Time multiplexed single-look image lines from an azimuth correlator go through an energy analyzer which analyzes the mean energy in each separate look to determine the radar antenna electric boresight for use in generating the correct reference functions for the production of high quality SAR images. The multiplexed single look image lines also go through a registration delay to produce multi-look images.

  19. Optical manifold for light-emitting diodes

    DOEpatents

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Parkyn, Jr., William A.; Alvarez, Roberto; Dross, Oliver

    2008-06-03

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  20. Large aperture deformable mirror with a transferred single-crystal silicon membrane actuated using large-stroke PZT Unimorph Actuators

    NASA Technical Reports Server (NTRS)

    Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)

    2005-01-01

    We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.

  1. Incorporating Scale-Dependent Fracture Stiffness for Improved Reservoir Performance Prediction

    NASA Astrophysics Data System (ADS)

    Crawford, B. R.; Tsenn, M. C.; Homburg, J. M.; Stehle, R. C.; Freysteinson, J. A.; Reese, W. C.

    2017-12-01

    We present a novel technique for predicting dynamic fracture network response to production-driven changes in effective stress, with the potential for optimizing depletion planning and improving recovery prediction in stress-sensitive naturally fractured reservoirs. A key component of the method involves laboratory geomechanics testing of single fractures in order to develop a unique scaling relationship between fracture normal stiffness and initial mechanical aperture. Details of the workflow are as follows: tensile, opening mode fractures are created in a variety of low matrix permeability rocks with initial, unstressed apertures in the micrometer to millimeter range, as determined from image analyses of X-ray CT scans; subsequent hydrostatic compression of these fractured samples with synchronous radial strain and flow measurement indicates that both mechanical and hydraulic aperture reduction varies linearly with the natural logarithm of effective normal stress; these stress-sensitive single-fracture laboratory observations are then upscaled to networks with fracture populations displaying frequency-length and length-aperture scaling laws commonly exhibited by natural fracture arrays; functional relationships between reservoir pressure reduction and fracture network porosity, compressibility and directional permeabilities as generated by such discrete fracture network modeling are then exported to the reservoir simulator for improved naturally fractured reservoir performance prediction.

  2. Laser differential image-motion monitor for characterization of turbulence during free-space optical communication tests.

    PubMed

    Brown, David M; Juarez, Juan C; Brown, Andrea M

    2013-12-01

    A laser differential image-motion monitor (DIMM) system was designed and constructed as part of a turbulence characterization suite during the DARPA free-space optical experimental network experiment (FOENEX) program. The developed link measurement system measures the atmospheric coherence length (r0), atmospheric scintillation, and power in the bucket for the 1550 nm band. DIMM measurements are made with two separate apertures coupled to a single InGaAs camera. The angle of arrival (AoA) for the wavefront at each aperture can be calculated based on focal spot movements imaged by the camera. By utilizing a single camera for the simultaneous measurement of the focal spots, the correlation of the variance in the AoA allows a straightforward computation of r0 as in traditional DIMM systems. Standard measurements of scintillation and power in the bucket are made with the same apertures by redirecting a percentage of the incoming signals to InGaAs detectors integrated with logarithmic amplifiers for high sensitivity and high dynamic range. By leveraging two, small apertures, the instrument forms a small size and weight configuration for mounting to actively tracking laser communication terminals for characterizing link performance.

  3. Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability

    NASA Astrophysics Data System (ADS)

    Schwartz, Jerrod J.; Stavrakis, Stavros; Quake, Stephen R.

    2010-02-01

    Although single-molecule fluorescence spectroscopy was first demonstrated at near-absolute zero temperatures (1.8 K), the field has since advanced to include room-temperature observations, largely owing to the use of objective lenses with high numerical aperture, brighter fluorophores and more sensitive detectors. This has opened the door for many chemical and biological systems to be studied at native temperatures at the single-molecule level both in vitro and in vivo. However, it is difficult to study systems and phenomena at temperatures above 37 °C, because the index-matching fluids used with high-numerical-aperture objective lenses can conduct heat from the sample to the lens, and sustained exposure to high temperatures can cause the lens to fail. Here, we report that TiO2 colloids with diameters of 2 µm and a high refractive index can act as lenses that are capable of single-molecule imaging at 70 °C when placed in immediate proximity to an emitting molecule. The optical system is completed by a low-numerical-aperture optic that can have a long working distance and an air interface, which allows the sample to be independently heated. Colloidal lenses were used for parallel imaging of surface-immobilized single fluorophores and for real-time single-molecule measurements of mesophilic and thermophilic enzymes at 70 °C. Fluorophores in close proximity to TiO2 also showed a 40% increase in photostability due to a reduction of the excited-state lifetime.

  4. Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musgrove, Cameron

    For synthetic aperture radars radio frequency interference from sources external to the radar system and techniques to mitigate the interference can degrade the quality of the image products. Usually the radar system designer will try to balance the amount of mitigation for an acceptable amount of interference to optimize the image quality. This dissertation examines the effect of interference mitigation upon coherent data products of fine resolution, high frequency synthetic aperture radars using stretch processing. Novel interference mitigation techniques are introduced that operate on single or multiple apertures of data that increase average coherence compared to existing techniques. New metricsmore » are applied to evaluate multiple mitigation techniques for image quality and average coherence. The underlying mechanism for interference mitigation techniques that affect coherence is revealed.« less

  5. Digital equalization of time-delay array receivers on coherent laser communications.

    PubMed

    Belmonte, Aniceto

    2017-01-15

    Field conjugation arrays use adaptive combining techniques on multi-aperture receivers to improve the performance of coherent laser communication links by mitigating the consequences of atmospheric turbulence on the down-converted coherent power. However, this motivates the use of complex receivers as optical signals collected by different apertures need to be adaptively processed, co-phased, and scaled before they are combined. Here, we show that multiple apertures, coupled with optical delay lines, combine retarded versions of a signal at a single coherent receiver, which uses digital equalization to obtain diversity gain against atmospheric fading. We found in our analysis that, instead of field conjugation arrays, digital equalization of time-delay multi-aperture receivers is a simpler and more versatile approach to accomplish reduction of atmospheric fading.

  6. Combination induction plasma tube and current concentrator for introducing a sample into a plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1988-01-01

    An induction plasma tube in combination with a current concentrator. The rent concentrator has a substantially cylindrical body having an open end and a partially closed end which defines an aperture. A first slot extends the longitudinal length of the cylindrical body and a second slot extends radially outward from the aperture. Together the first and second slots form a single L-shaped slot. The current concentrator is disposed within a volume bounded by an induction coil substantially along the axis thereof, and when power is applied to the induction coil a concentrated current is induced within the current concentrator aperture. The concentrator is moveable relative to the coil along the longitudinal axis of the coil to control the amount of current which is concentrated at the aperture.

  7. Controlled deterministic implantation by nanostencil lithography at the limit of ion-aperture straggling

    NASA Astrophysics Data System (ADS)

    Alves, A. D. C.; Newnham, J.; van Donkelaar, J. A.; Rubanov, S.; McCallum, J. C.; Jamieson, D. N.

    2013-04-01

    Solid state electronic devices fabricated in silicon employ many ion implantation steps in their fabrication. In nanoscale devices deterministic implants of dopant atoms with high spatial precision will be needed to overcome problems with statistical variations in device characteristics and to open new functionalities based on controlled quantum states of single atoms. However, to deterministically place a dopant atom with the required precision is a significant technological challenge. Here we address this challenge with a strategy based on stepped nanostencil lithography for the construction of arrays of single implanted atoms. We address the limit on spatial precision imposed by ion straggling in the nanostencil—fabricated with the readily available focused ion beam milling technique followed by Pt deposition. Two nanostencils have been fabricated; a 60 nm wide aperture in a 3 μm thick Si cantilever and a 30 nm wide aperture in a 200 nm thick Si3N4 membrane. The 30 nm wide aperture demonstrates the fabricating process for sub-50 nm apertures while the 60 nm aperture was characterized with 500 keV He+ ion forward scattering to measure the effect of ion straggling in the collimator and deduce a model for its internal structure using the GEANT4 ion transport code. This model is then applied to simulate collimation of a 14 keV P+ ion beam in a 200 nm thick Si3N4 membrane nanostencil suitable for the implantation of donors in silicon. We simulate collimating apertures with widths in the range of 10-50 nm because we expect the onset of J-coupling in a device with 30 nm donor spacing. We find that straggling in the nanostencil produces mis-located implanted ions with a probability between 0.001 and 0.08 depending on the internal collimator profile and the alignment with the beam direction. This result is favourable for the rapid prototyping of a proof-of-principle device containing multiple deterministically implanted dopants.

  8. Eyeglass: A Very Large Aperture Diffractive Space Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, R; Dixit, S; Weisberg, A

    2002-07-29

    Eyeglass is a very large aperture (25-100 meter) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope's large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently fieldable (lightweight and flat, hence packagable and deployable) and virtually eliminates the traditional, very tight, surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by correctivemore » optics in the telescope's eyepiece. The Eyeglass can provide diffraction-limited imaging with either single-band, multiband, or continuous spectral coverage. Broadband diffractive telescopes have been built at LLNL and have demonstrated diffraction-limited performance over a 40% spectral bandwidth (0.48-0.72 {micro}m). As one approach to package a large aperture for launch, a foldable lens has been built and demonstrated. A 75 cm aperture diffractive lens was constructed from 6 panels of 1 m thick silica; it achieved diffraction-limited performance both before and after folding. This multiple panel, folding lens, approach is currently being scaled-up at LLNL. We are building a 5 meter aperture foldable lens, involving 72 panels of 700 {micro}m thick glass sheets, diffractively patterned to operate as coherent f/50 lens.« less

  9. Intense ion beam generator

    DOEpatents

    Humphries, Jr., Stanley; Sudan, Ravindra N.

    1977-08-30

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

  10. A CCD Monolithic LMS Adaptive Analog Signal Processor Integrated Circuit.

    DTIC Science & Technology

    1980-03-01

    adaptive filter with electrically- reprogrammable MOS analog conductance weights. I The analog and digital peripheral MOS on-chip circuits are provided with...electrically reprogrammable analog weights at tap positions along a CCD analog delay line in order to form a basic linear combiner for adaptive filtering...electrically reprogrammable analog conductance weights was introduced with the use of non-volatile MNOS memory 6-7 transistors biased in their triode

  11. Mid-frequency MTF compensation of optical sparse aperture system.

    PubMed

    Zhou, Chenghao; Wang, Zhile

    2018-03-19

    Optical sparse aperture (OSA) can greatly improve the spatial resolution of optical system. However, because of its aperture dispersion and sparse, its mid-frequency modulation transfer function (MTF) are significantly lower than that of a single aperture system. The main focus of this paper is on the mid-frequency MTF compensation of the optical sparse aperture system. Firstly, the principle of the mid-frequency MTF decreasing and missing of optical sparse aperture are analyzed. This paper takes the filling factor as a clue. The method of processing the mid-frequency MTF decreasing with large filling factor and method of compensation mid-frequency MTF with small filling factor are given respectively. For the MTF mid-frequency decreasing, the image spatial-variant restoration method is proposed to restore the mid-frequency information in the image; for the mid-frequency MTF missing, two images obtained by two system respectively are fused to compensate the mid-frequency information in optical sparse aperture image. The feasibility of the two method are analyzed in this paper. The numerical simulation of the system and algorithm of the two cases are presented using Zemax and Matlab. The results demonstrate that by these two methods the mid-frequency MTF of OSA system can be compensated effectively.

  12. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre

    NASA Astrophysics Data System (ADS)

    Leite, Ivo T.; Turtaev, Sergey; Jiang, Xin; Šiler, Martin; Cuschieri, Alfred; Russell, Philip St. J.; Čižmár, Tomáš

    2018-01-01

    Holographic optical tweezers (HOT) hold great promise for many applications in biophotonics, allowing the creation and measurement of minuscule forces on biomolecules, molecular motors and cells. Geometries used in HOT currently rely on bulk optics, and their exploitation in vivo is compromised by the optically turbid nature of tissues. We present an alternative HOT approach in which multiple three-dimensional (3D) traps are introduced through a high-numerical-aperture multimode optical fibre, thus enabling an equally versatile means of manipulation through channels having cross-section comparable to the size of a single cell. Our work demonstrates real-time manipulation of 3D arrangements of micro-objects, as well as manipulation inside otherwise inaccessible cavities. We show that the traps can be formed over fibre lengths exceeding 100 mm and positioned with nanometric resolution. The results provide the basis for holographic manipulation and other high-numerical-aperture techniques, including advanced microscopy, through single-core-fibre endoscopes deep inside living tissues and other complex environments.

  13. A Morphogenetic Model Accounting for Pollen Aperture Pattern in Flowering Plants.

    PubMed

    Ressayre; Godelle; Mignot; Gouyon

    1998-07-21

    Pollen grains are embeddded in an extremely resistant wall. Apertures are well defined places where the pollen wall is reduced or absent that permit pollen tube germination. Pollen grains are produced by meiosis and aperture number definition appears to be linked with the partition that follows meiosis and leads to the formation of a tetrad of four haploid microspores. In dicotyledonous plants, meiosis is simultaneous which means that cytokinesis occurs once the two nuclear divisions are completed. A syncitium with the four nuclei stemming from meiosis is formed and cytokinesis isolates simulataneously the four products of meiosis. We propose a theoretical morphogenetic model which takes into account part of the features of the ontogeny of the pollen grains. The nuclei are considered as attractors acting upon a morphogenetic substance distributed within the cytoplasm of the dividing cell. This leads to a partition of the volume of the cell in four domains that is similar to the observations of cytokinesis in the studied species. The most widespread pattern of aperture distribution in dicotyledonous plants (three apertures equidistributed on the pollen grain equator) can be explained by bipolar interactions between nuclei stemming from the second meiotic division, and observed variations on these patterns by disturbances of these interactions. In numerous plant species, several pollen grains differing in aperture number are produced by a single individual. The distribution of the different morphs within tetrads indicates that the four daughter cells can have different aperture number. The model provides an explanation for the duplication of one of the apertures of a three-aperture pollen grain leading to a four-aperture one and in parallel it gives an explanation for how heterogeneous tetrads can be formed.Copyright 1998 Academic Press

  14. Single- and multiple-pulse noncoherent detection statistics associated with partially developed speckle.

    PubMed

    Osche, G R

    2000-08-20

    Single- and multiple-pulse detection statistics are presented for aperture-averaged direct detection optical receivers operating against partially developed speckle fields. A partially developed speckle field arises when the probability density function of the received intensity does not follow negative exponential statistics. The case of interest here is the target surface that exhibits diffuse as well as specular components in the scattered radiation. An approximate expression is derived for the integrated intensity at the aperture, which leads to single- and multiple-pulse discrete probability density functions for the case of a Poisson signal in Poisson noise with an additive coherent component. In the absence of noise, the single-pulse discrete density function is shown to reduce to a generalized negative binomial distribution. The radar concept of integration loss is discussed in the context of direct detection optical systems where it is shown that, given an appropriate set of system parameters, multiple-pulse processing can be more efficient than single-pulse processing over a finite range of the integration parameter n.

  15. Compact electrostatic beam optics for multi-element focused ion beams: simulation and experiments.

    PubMed

    Mathew, Jose V; Bhattacharjee, Sudeep

    2011-01-01

    Electrostatic beam optics for a multi-element focused ion beam (MEFIB) system comprising of a microwave multicusp plasma (ion) source is designed with the help of two widely known and commercially available beam simulation codes: AXCEL-INP and SIMION. The input parameters to the simulations are obtained from experiments carried out in the system. A single and a double Einzel lens system (ELS) with and without beam limiting apertures (S) have been investigated. For a 1 mm beam at the plasma electrode aperture, the rms emittance of the focused ion beam is found to reduce from ∼0.9 mm mrad for single ELS to ∼0.5 mm mrad for a double ELS, when S of 0.5 mm aperture size is employed. The emittance can be further improved to ∼0.1 mm mrad by maintaining S at ground potential, leading to reduction in beam spot size (∼10 μm). The double ELS design is optimized for different electrode geometrical parameters with tolerances of ±1 mm in electrode thickness, electrode aperture, inter electrode distance, and ±1° in electrode angle, providing a robust design. Experimental results obtained with the double ELS for the focused beam current and spot size, agree reasonably well with the simulations.

  16. Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology.

    PubMed

    Chen, Shuo; Luo, Chenggao; Deng, Bin; Wang, Hongqiang; Cheng, Yongqiang; Zhuang, Zhaowen

    2018-01-19

    As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI) can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D) TCAI architecture based on single input multiple output (SIMO) technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.

  17. High aperture efficiency symmetric reflector antennas with up to 60 deg field of view

    NASA Astrophysics Data System (ADS)

    Rappaport, Carey M.; Craig, William P.

    1991-03-01

    A microwave single-reflector scanning antenna derived from an ellipse (rather than the usual parabola) which gives a much greater field of view is presented. This reflector combines reasonable scanning in one plane with good focusing in the other, and its scanning ability is superior to the torus and other single reflectors because it has much greater aperture efficiency and is thus smaller while having the same performance. The reflector surface is derived in two steps: a fourth-order even polynomial profile curve in the scan plane is found using least squares to minimize the scanned ray errors; then even polynomial terms in x and y that minimize astigmatism for both the unscanned and maximally scanned beams are added to form the three-dimensional surface. Numerical simulations of radiation patterns for a variety of antenna diameter and field-of-view cases give excellent results. The 60 deg scan case with 30-lambda-diameter aperture has only 0.2-dB peak gain deviation from ideal and first sidelobe levels below 14 dB down from peak gain. The 17 deg, 500-lambda case has only 0.8-dB gain variation and -14 to -11 dB sidelobe levels for approximately +/-68 beamwidths of scan, with focal length to aperture diameter ratio equal to about one.

  18. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  19. Many-body Study of Core-valence Partitioning and Correlation in Systems with Large-Z Element

    NASA Astrophysics Data System (ADS)

    Zehtabi-Oskuie, Ana

    This thesis presents optical trapping of various single nanoparticles, and the method for integrating the optical trap system into a microfluidic channel to examine the trapping stiffness and to study binding at the single molecule level. Optical trapping is the capability to immobilize, move, and manipulate small objects in a gentle way. Conventional trapping methods are able to trap dielectric particles with size greater than 100 nm. Optical trapping using nanostructures has overcome this limitation so that it has been of interest to trap nanoparticles for bio-analytical studies. In particular, aperture optical trapping allows for trapping at low powers, and easy detection of the trapping events by noting abrupt jumps in the transmission intensity of the trapping beam through the aperture. Improved trapping efficiency has been achieved by changing the aperture shape from a circle; for example, to a rectangle, double nanohole (DNH), or coaxial aperture. The DNH has the advantage of a well-defined trapping region between the two cusps where the nanoholes overlap, which typically allows only single particle trapping due to steric hindrance. Trapping of 21 nm encapsulated quantum dot has been achieved which shows optical trapping can be used in technologies that seek to place a quantum dot at a specific location in a plasmonic or nanophotonic structure. The DNH has been used to trap and unfold a single protein. The high signal-to-noise ratio of 33 in monitoring single protein trapping and unfolding shows a tremendous potential for using the double nanohole as a sensor for protein binding events at a single molecule level. The DNH integrated in a microfluidic chip with flow to show that stable trapping can be achieved under reasonable flow rates of a few microL/min. With such stable trapping under flow, it is possible to envision co-trapping of proteins to study their interactions. Co-trapping is achieved for the case where we flow in a protein (bovine serum albumin -- BSA) and co-trap its antibody (anti-BSA).

  20. Tibial tunnel aperture irregularity after drilling with 5 reamer designs: a qualitative micro-computed tomography analysis.

    PubMed

    Geeslin, Andrew G; Jansson, Kyle S; Wijdicks, Coen A; Chapman, Mark A; Fok, Alex S; LaPrade, Robert F

    2011-04-01

    There is limited information in the literature on comparisons of antegrade versus retrograde reaming techniques and the effect on the creation of anterior cruciate ligament (ACL) tibial tunnel entry and exit apertures. Proximal and distal apertures of ACL tibial tunnels, as created with different reamers, will be affected by type of reamer design. Controlled laboratory study. Forty skeletally mature porcine tibias with bone mineral density values comparable with a young athletic population were included in this study. Five 9-mm reamer models were used (3 antegrade: A1, smooth-bore reamer; A2, acorn-head reamer; A3, flat-head reamer; 2 retrograde: R1, retrograde acorn reamer; R2, single-blade retrograde reamer), and a new reamer was used for each tibia (8 reamer-tibia pairs per reamer model). All specimens underwent micro-computed tomography scanning, and images were reconstructed and analyzed using 3-dimensional image analysis software. Aperture rim fractures were graded on a 0-IV scale that described the proportion of the fractured aperture circumference. Specimens with incomplete apertures were also recorded. Because of the unique characteristics of various tunnels, intratunnel characteristics were observed and recorded. In sum, 1 proximal and 7 distal aperture rim fractures were found; 3, 0, and 4 distal aperture rim fractures were found with groups A1, A2, and A3, respectively. Incomplete apertures were more commonly found at the distal aperture (n = 15) than the proximal aperture (n = 8); there were no tibias with this finding at both apertures. All incomplete distal apertures occurred with the retrograde technique, and all incomplete proximal apertures occurred with the antegrade technique, most commonly with reamer design A3. An added finding of tunnel curvature at the distal aspect of the tunnel was observed in all 8 tibias with R1 reamers and 5 tibias with R2 reamers. This phenomenon was not observed in any of the tibias reamed with the antegrade technique. Anterior cruciate ligament tibial tunnel aperture characteristics were highly dependent on reamer design. Optimal proximal aperture characteristics were produced by the retrograde reamers, whereas optimal distal aperture characteristics were obtained with the antegrade reamers. In addition, a phenomenon of tunnel curvature in retrograde-type reamers was found, which may have effects on ACL graft or screw fixation. Differences in tunnel aperture shapes and fractures depend on reamer design. This information is important for the creation of ACL reconstruction tunnels with different reamer designs.

  1. Field-Emission Staggered Structure Based on Diamond-Graphite Clusters

    NASA Astrophysics Data System (ADS)

    Davidovich, M. V.; Yafarov, R. K.

    2018-02-01

    We have proposed and designed a vacuum field-emission triode structure with high-resistivity semiconducting or insulating micrometer-size right parallelepipeds deposited in the staggered order on the conducting substrate (cathode), as well as a structure with a nanofilm on the cathode, which is formed by evaporated diamond-graphite clusters. It has been shown theoretically and experimentally that the emissivity of these structures is much higher than that of an uncoated cathode.

  2. Textured carbon surfaces on copper by sputtering

    NASA Technical Reports Server (NTRS)

    Curren, A. N. (Inventor); Jensen, K. A. (Inventor); Roman, R. F. (Inventor)

    1986-01-01

    A very thin layer of highly textured carbon is applied to a copper surface by a triode sputtering process. A carbon target and a copper substrate are simultaneously exposed to an argon plasma in a vacuum chamber. The resulting carbon surface is characterized by a dense, random array of needle like spires or peaks which extend perpendicularly from the copper surface. The coated copper is especially useful for electrode plates in multistage depressed collectors.

  3. An Aperture Photometry Pipeline for K2 Data

    NASA Astrophysics Data System (ADS)

    Buzasi, Derek L.; Carboneau, Lindsey; Lezcano, Andy; Vydra, Ekaterina

    2016-01-01

    As part of an ongoing research program with undergraduate students at Florida Gulf Coast University, we have constructed an aperture photometry pipeline for K2 data. The pipeline performs dynamic automated aperture mask definition for all targets in the K2 fields, followed by aperture photometry and detrending. Our pipeline is currently used to support a number of projects, including studies of stellar rotation and activity, red giant asteroseismology, gyrochronology, and exoplanet searches. In addition, output is used to support an undergraduate class on exoplanets aimed at a student audience of both majors and non-majors. The pipeline is designed for both batch and single-target use, and is easily extensible to data from other missions, and pipeline output is available to the community. This paper will describe our pipeline and its capabilities and illustrate the quality of the results, drawing on all of the applications for which it is currently used.

  4. Ultra-Tuning of the Rare-Earth fcu-MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins.

    PubMed

    Assen, Ayalew H; Belmabkhout, Youssef; Adil, Karim; Bhatt, Prashant M; Xue, Dong-Xu; Jiang, Hao; Eddaoudi, Mohamed

    2015-11-23

    Using isoreticular chemistry allows the design and construction of a new rare-earth metal (RE) fcu-MOF with a suitable aperture size for practical steric adsorptive separations. The judicious choice of a relatively short organic building block, namely fumarate, to bridge the 12-connected RE hexanuclear clusters has afforded the contraction of the well-defined RE-fcu-MOF triangular window aperture, the sole access to the two interconnected octahedral and tetrahedral cages. The newly constructed RE (Y(3+) and Tb(3+)) fcu-MOF analogues display unprecedented total exclusion of branched paraffins from normal paraffins. The resultant window aperture size of about 4.7 Å, regarded as a sorbate-size cut-off, enabled a complete sieving of branched paraffins from normal paraffins. The results are supported by collective single gas and mixed gas/vapor adsorption and calorimetric studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tibial tunnel aperture location during single-bundle posterior cruciate ligament reconstruction: comparison of tibial guide positions.

    PubMed

    Shin, Young-Soo; Han, Seung-Beom; Hwang, Yeok-Ku; Suh, Dong-Won; Lee, Dae-Hee

    2015-05-01

    We aimed to compare posterior cruciate ligament (PCL) tibial tunnel location after tibial guide insertion medial (between the PCL remnant and the medial femoral condyle) and lateral (between the PCL remnant and the anterior cruciate ligament) to the PCL stump as determined by in vivo 3-dimensional computed tomography (3D-CT). Tibial tunnel aperture location was analyzed by immediate postoperative in vivo CT in 66 patients who underwent single-bundle PCL reconstruction, 31 by over-the-PCL and 35 by under-the-PCL tibial guide insertion techniques. Tibial tunnel positions were measured in the medial to lateral and proximal to distal directions of the posterior proximal tibia. The center of the tibial tunnel aperture was located more laterally (by 2.7 mm) in the over-the-PCL group than in the under-the-PCL group (P = .040) and by a relative percentage (absolute value/tibial width) of 3.2% (P = .031). Tibial tunnel positions in the proximal to distal direction, determined by absolute value and relative percentage, were similar in the 2 groups. Tibial tunnel apertures were located more laterally after lateral-to-the-PCL tibial guide insertion than after medial-to-the-PCL tibial guide insertion. There was, however, no significant difference between these techniques in distance from the joint line to the tibial tunnel aperture. Insertion lateral to the PCL stump may result in better placement of the PCL in its anatomic footprint. Level III, retrospective comparative study. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  6. A higher-speed compressive sensing camera through multi-diode design

    NASA Astrophysics Data System (ADS)

    Herman, Matthew A.; Tidman, James; Hewitt, Donna; Weston, Tyler; McMackin, Lenore

    2013-05-01

    Obtaining high frame rates is a challenge with compressive sensing (CS) systems that gather measurements in a sequential manner, such as the single-pixel CS camera. One strategy for increasing the frame rate is to divide the FOV into smaller areas that are sampled and reconstructed in parallel. Following this strategy, InView has developed a multi-aperture CS camera using an 8×4 array of photodiodes that essentially act as 32 individual simultaneously operating single-pixel cameras. Images reconstructed from each of the photodiode measurements are stitched together to form the full FOV. To account for crosstalk between the sub-apertures, novel modulation patterns have been developed to allow neighboring sub-apertures to share energy. Regions of overlap not only account for crosstalk energy that would otherwise be reconstructed as noise, but they also allow for tolerance in the alignment of the DMD to the lenslet array. Currently, the multi-aperture camera is built into a computational imaging workstation configuration useful for research and development purposes. In this configuration, modulation patterns are generated in a CPU and sent to the DMD via PCI express, which allows the operator to develop and change the patterns used in the data acquisition step. The sensor data is collected and then streamed to the workstation via an Ethernet or USB connection for the reconstruction step. Depending on the amount of data taken and the amount of overlap between sub-apertures, frame rates of 2-5 frames per second can be achieved. In a stand-alone camera platform, currently in development, pattern generation and reconstruction will be implemented on-board.

  7. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    PubMed

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality.

  8. A flat array large telescope concept for use on the moon, earth, and in space

    NASA Technical Reports Server (NTRS)

    Woodgate, Bruce E.

    1991-01-01

    An astronomical optical telescope concept is described which can provide very large collecting areas, of order 1000 sq m. This is an order of magnitude larger than the new generation of telescopes now being designed and built. Multiple gimballed flat mirrors direct the beams from a celestial source into a single telescope of the same aperture as each flat mirror. Multiple images of the same source are formed at the telescope focal plane. A beam combiner collects these images and superimposes them into a single image, onto a detector or spectrograph aperture. This telescope could be used on the earth, the moon, or in space.

  9. Advanced communications payload for mobile applications

    NASA Technical Reports Server (NTRS)

    Ames, S. A.; Kwan, R. K.

    1990-01-01

    An advanced satellite payload is proposed for single hop linking of mobile terminals of all classes as well as Very Small Aperture Terminal's (VSAT's). It relies on an intensive use of communications on-board processing and beam hopping for efficient link design to maximize capacity and a large satellite antenna aperture and high satellite transmitter power to minimize the cost of the ground terminals. Intersatellite links are used to improve the link quality and for high capacity relay. Power budgets are presented for links between the satellite and mobile, VSAT, and hub terminals. Defeating the effects of shadowing and fading requires the use of differentially coherent demodulation, concatenated forward error correction coding, and interleaving, all on a single link basis.

  10. RF/optical shared aperture for high availability wideband communication RF/FSO links

    DOEpatents

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2014-04-29

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  11. RF/optical shared aperture for high availability wideband communication RF/FSO links

    DOEpatents

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2015-03-24

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  12. Gametophytic vs. sporophytic control of pollen aperture number: a generational conflict.

    PubMed

    Till-Bottraud, Irène; Gouyon, Pierre-Henri; Ressayre, Adrienne; Godelle, Bernard

    2012-11-01

    In flowering plants, the haploid phase is reduced to the pollen grain and embryo sac. These reproductive tissues (gametophytes) are actually distinct individuals that have a different genome from the plant (sporophyte), and are more or less independent. The morphology of pollen grains, particularly the openings permitting pollen tube germination (apertures), is crucial for determining the outcome of pollen competition. Many species of flowering plants simultaneously produce pollen grains with different aperture numbers in a single individual (heteromorphism). In this paper, we show that the heteromorphic pollen aperture pattern depends on the genetic control of pollen morphogenesis. This points out a conflict of interest between genes expressed in the sporophyte and genes expressed in the gametophyte. More generally, such a conflict should exist whenever heteromorphism is an ESS resulting from a bet-hedging strategy. For pollen aperture, heteromorphism has been observed in about 40% of angiosperm species, suggesting that conflicting situations are the rule. In this context, the sporo-gametophytic conflict could be one of the factors that led to the reduction of the haploid phase in plants. 2012 Elsevier Inc. All rights reserved

  13. Plural output optimetric sample cell and analysis system

    NASA Technical Reports Server (NTRS)

    Haley, F. C. (Inventor)

    1971-01-01

    An apparatus suitable for receiving a sample for optimetric analysis includes a sample cell comprising an opaque hollow tube. Several apertures are defined in the wall of the tubing and a lens barrel which extends beyond to opposite surfaces of the wall is supported within at least one of the apertures. A housing is provided with one channel for receiving the sample cell and a series of channels extending from the exterior housing to the sample cell apertures. A filter element is housed in each of these latter channels. These channels slidingly receive an excitation light source for a photodetector cell to permit selective focusing. A sample cell containing at least three apertures in the walls can be mounted for rotation relative to a light source or photoconduction means for simultaneous or alternative optimetric determination of the components of a single sample. The sample cell is fabricated by supporting a lens barrel within the aperture. A molten portion of glass is deposited in the lens barrel and cooled while in a horizontal position to form a lens having an acceptable angle.

  14. Proof of Concept Coded Aperture Miniature Mass Spectrometer Using a Cycloidal Sector Mass Analyzer, a Carbon Nanotube (CNT) Field Emission Electron Ionization Source, and an Array Detector.

    PubMed

    Amsden, Jason J; Herr, Philip J; Landry, David M W; Kim, William; Vyas, Raul; Parker, Charles B; Kirley, Matthew P; Keil, Adam D; Gilchrist, Kristin H; Radauscher, Erich J; Hall, Stephen D; Carlson, James B; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T; Russell, Zachary E; Grego, Sonia; Edwards, Steven J; Sperline, Roger P; Denton, M Bonner; Stoner, Brian R; Gehm, Michael E; Glass, Jeffrey T

    2018-02-01

    Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified. Graphical Abstract ᅟ.

  15. Proof of Concept Coded Aperture Miniature Mass Spectrometer Using a Cycloidal Sector Mass Analyzer, a Carbon Nanotube (CNT) Field Emission Electron Ionization Source, and an Array Detector

    NASA Astrophysics Data System (ADS)

    Amsden, Jason J.; Herr, Philip J.; Landry, David M. W.; Kim, William; Vyas, Raul; Parker, Charles B.; Kirley, Matthew P.; Keil, Adam D.; Gilchrist, Kristin H.; Radauscher, Erich J.; Hall, Stephen D.; Carlson, James B.; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T.; Russell, Zachary E.; Grego, Sonia; Edwards, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Stoner, Brian R.; Gehm, Michael E.; Glass, Jeffrey T.

    2018-02-01

    Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified.

  16. 1985 Nuclear Science Symposium, 32nd, and 1985 Symposium on Nuclear Power Systems, 17th, San Francisco, CA, October 23-25, 1985, Proceedings

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The present conference ranges over topics in high energy physics instrumentation, detectors, nuclear medical applications, health physics and environmental monitoring, reactor instrumentation, nuclear spacecraft instrumentation, the 'Fastbus' data acquisition system, circuits and systems for nuclear research facilities, and the development status of nuclear power systems. Specific attention is given to CCD high precision detectors, a drift chamber preamplifier, a Cerenkov ring imaging detector, novel scintillation glasses and scintillating fibers, a modular multidrift vertex detector, radial wire drift chambers, liquid argon polarimeters, a multianode photomultiplier, the reliability of planar silicon detectors, the design and manufacture of wedge and strip anodes, ultrafast triode photodetectors, photomultiplier tubes, a barium fluoride plastic scintillator, a fine grained neutron hodoscope, the stability of low leakage silicon photodiodes for crystal calorimeters, and X-ray proportional counters. Also considered are positron emission tomography, single photon emission computed tomography, nuclear magnetic resonance imaging, Geiger-Muller detectors, nuclear plant safeguards, a 32-bit Fastbus computer, an advanced light water reactor, and nuclear plant maintenance.

  17. Open-split interface for mass spectrometers

    DOEpatents

    Diehl, John W.

    1991-01-01

    An open-split interface includes a connector body having four leg members projecting therefrom within a single plane, the first and third legs being coaxial and the second and fourth legs being coaxial. A tubular aperture extends through the first and third legs and a second tubular aperture extends through the second and fourth legs, connecting at a juncture within the center of the connector body. A fifth leg projects from the connector body and has a third tubular aperture extending therethrough to the juncture of the first and second tubular apertures. A capillary column extends from a gas chromatograph into the third leg with its end adjacent the juncture. A flow restrictor tube extends from a mass spectrometer through the first tubular aperture in the first and third legs and into the capillary columnm end, so as to project beyond the end of the third leg within the capillary column. An annular gap between the tube and column allows excess effluent to pass to the juncture. A pair of short capillary columns extend from separate detectors into the second tubular aperture in the second and fourth legs, and are oriented with their ends spaced slightly from the first capillary column end. A sweep flow tube is mounted in the fifth leg so as to supply a helium sweep flow to the juncture.

  18. The Information Content of Interferometric Synthetic Aperture Radar: Vegetation and Underlying Surface Topography

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.

    1996-01-01

    Drawing from recently submitted work, this paper first gives a heuristic description of the sensitivity of interferometric synthetic aperture radar (INSAR) to vertical vegetation distribution and under laying surface topography. A parameter estimation scenario is then described in which the INSAR cross correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of INSAR observations for single baseline, single frequency, single incidence-angle, single polarization INSAR. Using ancillary ground truth data to compensate for the under determination of the parameters, forest depths are estimated from the INSAR data. A recently analyzed multi-baseline data set is also discussed and the potential for stand alone INSAR parameter estimation is assessed. The potential of combining the information content of INSAR with that of infrared/optical remote sensing data is briefly discussed.

  19. Synthetic aperture radar and digital processing: An introduction

    NASA Technical Reports Server (NTRS)

    Dicenzo, A.

    1981-01-01

    A tutorial on synthetic aperture radar (SAR) is presented with emphasis on digital data collection and processing. Background information on waveform frequency and phase notation, mixing, Q conversion, sampling and cross correlation operations is included for clarity. The fate of a SAR signal from transmission to processed image is traced in detail, using the model of a single bright point target against a dark background. Some of the principal problems connected with SAR processing are also discussed.

  20. Ultra-compact imaging system based on multi-aperture architecture

    NASA Astrophysics Data System (ADS)

    Meyer, Julia; Brückner, Andreas; Leitel, Robert; Dannberg, Peter; Bräuer, Andreas; Tünnermann, Andreas

    2011-03-01

    As a matter of course, cameras are integrated in the field of information and communication technology. It can be observed, that there is a trend that those cameras get smaller and at the same time cheaper. Because single aperture have a limit of miniaturization, while simultaneously keeping the same space-bandwidth-product and transmitting a wide field of view, there is a need of new ideas like the multi aperture optical systems. In the proposed camera system the image is formed with many different channels each consisting of four microlenses which are arranged one after another in different microlens arrays. A partial image which fits together with the neighbouring one is formed in every single channel, so that a real erect image is generated and a conventional image sensor can be used. The microoptical fabrication process and the assembly are well established and can be carried out on wafer-level. Laser writing is used for the fabrication of the masks. UV-lithography, a reflow process and UV-molding is needed for the fabrication of the apertures and the lenses. The developed system is very small in terms of both length and lateral dimensions and has a VGA resolution and a diagonal field of view of 65 degrees. This microoptical vision system is appropriate for being implemented in electronic devices such as webcams integrated in notebookdisplays.

  1. Birefringence of single and bundled microtubules.

    PubMed

    Oldenbourg, R; Salmon, E D; Tran, P T

    1998-01-01

    We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from sea urchin sperm) had a peak retardance 20 times higher than that of single MTs, in accordance with the nine doublets and two singlets arrangement of parallel MTs in the axoneme. Measured filament retardance decreased when the filament was defocused or the numerical aperture of the imaging system was decreased. However, the retardance "area," which we defined as the image retardance integrated along a line perpendicular to the filament axis, proved to be independent of focus and of numerical aperture. These results are in good agreement with a theory that we developed for measuring retardances with imaging optics. Our theoretical concept is based on Wiener's theory of mixed dielectrics, which is well established for nonimaging applications. We extend its use to imaging systems by considering the coherence region defined by the optical set-up. Light scattered from within that region interferes coherently in the image point. The presence of a filament in the coherence region leads to a polarization dependent scattering cross section and to a finite retardance measured in the image point. Similar to resolution measurements, the linear dimension of the coherence region for retardance measurements is on the order lambda/(2 NA), where lambda is the wavelength of light and NA is the numerical aperture of the illumination and imaging lenses.

  2. Birefringence of single and bundled microtubules.

    PubMed Central

    Oldenbourg, R; Salmon, E D; Tran, P T

    1998-01-01

    We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from sea urchin sperm) had a peak retardance 20 times higher than that of single MTs, in accordance with the nine doublets and two singlets arrangement of parallel MTs in the axoneme. Measured filament retardance decreased when the filament was defocused or the numerical aperture of the imaging system was decreased. However, the retardance "area," which we defined as the image retardance integrated along a line perpendicular to the filament axis, proved to be independent of focus and of numerical aperture. These results are in good agreement with a theory that we developed for measuring retardances with imaging optics. Our theoretical concept is based on Wiener's theory of mixed dielectrics, which is well established for nonimaging applications. We extend its use to imaging systems by considering the coherence region defined by the optical set-up. Light scattered from within that region interferes coherently in the image point. The presence of a filament in the coherence region leads to a polarization dependent scattering cross section and to a finite retardance measured in the image point. Similar to resolution measurements, the linear dimension of the coherence region for retardance measurements is on the order lambda/(2 NA), where lambda is the wavelength of light and NA is the numerical aperture of the illumination and imaging lenses. PMID:9449366

  3. Numerical examination of the factors controlling DNAPL migration through a single fracture.

    PubMed

    Reynolds, D A; Kueper, B H

    2002-01-01

    The migration of five dense nonaqueous phase liquids (DNAPLs) through a single fracture in a clay aquitard was numerically simulated with the use of a compositional simulator. The effects of fracture aperture, fracture dip, matrix porosity, and matrix organic carbon content on the migration of chlorobenzene, 1,2-dichloroethylene, trichloroethylene, tetra-chloroethylene, and 1,2-dibromoethane were examined. Boundary conditions were chosen such that DNAPL entry into the system was allowed to vary according to the stresses applied. The aperture is the most important factor of those studied controlling the migration rate of DNAPL through a single fracture embedded in a clay matrix. Loss of mass to the matrix through diffusion does not significantly retard the migration rate of the DNAPL, particularly in larger aperture fractures (e.g., 50 microm). With time, the ratio of diffusive loss to the matrix to DNAPL flux into the fracture approaches an asymptotic value lower than unity. The implication is that matrix diffusion cannot arrest the migration of DNAPL in a single fracture. The complex relationships between density, viscosity, and solubility that, to some extent, govern the migration of DNAPL through these systems prevent accurate predictions without the use of numerical models. The contamination potential of the migrating DNAPL is significantly increased through the transfer of mass to the matrix. The occurrence of opposite concentration gradients within the matrix can cause dissolved phase contamination to exist in the system for more than 1000 years after the DNAPL has been completely removed from the fracture.

  4. High power VCSEL devices for atomic clock applications

    NASA Astrophysics Data System (ADS)

    Watkins, L. S.; Ghosh, C.; Seurin, J.-F.; Zhou, D.; Xu, G.; Xu, B.; Miglo, A.

    2015-09-01

    We are developing VCSEL technology producing >100mW in single frequency at wavelengths 780nm, 795nm and 850nm. Small aperture VCSELs with few mW output have found major applications in atomic clock experiments. Using an external cavity three-mirror configuration we have been able to operate larger aperture VCSELs and obtain >70mW power in single frequency operation. The VCSEL has been mounted in a fiber pigtailed package with the external mirror mounted on a shear piezo. The package incorporates a miniature Rb cell locker to lock the VCSEL wavelength. This VCSEL operates in single frequency and is tuned by a combination of piezo actuator, temperature and current. Mode-hop free tuning over >30GHz frequency span is obtained. The VCSEL has been locked to the Rb D2 line and feedback control used to obtain line-widths of <100kHz.

  5. High dynamic range imaging by pupil single-mode filtering and remapping

    NASA Astrophysics Data System (ADS)

    Perrin, G.; Lacour, S.; Woillez, J.; Thiébaut, É.

    2006-12-01

    Because of atmospheric turbulence, obtaining high angular resolution images with a high dynamic range is difficult even in the near-infrared domain of wavelengths. We propose a novel technique to overcome this issue. The fundamental idea is to apply techniques developed for long baseline interferometry to the case of a single-aperture telescope. The pupil of the telescope is broken down into coherent subapertures each feeding a single-mode fibre. A remapping of the exit pupil allows interfering all subapertures non-redundantly. A diffraction-limited image with very high dynamic range is reconstructed from the fringe pattern analysis with aperture synthesis techniques, free of speckle noise. The performances of the technique are demonstrated with simulations in the visible range with an 8-m telescope. Raw dynamic ranges of 1:106 can be obtained in only a few tens of seconds of integration time for bright objects.

  6. SU-F-T-142: An Analytical Model to Correct the Aperture Scattered Dose in Clinical Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, B; Liu, S; Zhang, T

    2016-06-15

    Purpose: Apertures or collimators are used to laterally shape proton beams in double scattering (DS) delivery and to sharpen the penumbra in pencil beam (PB) delivery. However, aperture-scattered dose is not included in the current dose calculations of treatment planning system (TPS). The purpose of this study is to provide a method to correct the aperture-scattered dose based on an analytical model. Methods: A DS beam with a non-divergent aperture was delivered using a single-room proton machine. Dose profiles were measured with an ion-chamber scanning in water and a 2-D ion chamber matrix with solid-water buildup at various depths. Themore » measured doses were considered as the sum of the non-contaminated dose and the aperture-scattered dose. The non-contaminated dose was calculated by TPS and subtracted from the measured dose. Aperture scattered-dose was modeled as a 1D Gaussian distribution. For 2-D fields, to calculate the scatter-dose from all the edges of aperture, a sum of weighted distance was used in the model based on the distance from calculation point to aperture edge. The gamma index was calculated between the measured and calculated dose with and without scatter correction. Results: For a beam with range of 23 cm and aperture size of 20 cm, the contribution of the scatter horn was ∼8% of the total dose at 4 cm depth and diminished to 0 at 15 cm depth. The amplitude of scatter-dose decreased linearly with the depth increase. The 1D gamma index (2%/2 mm) between the calculated and measured profiles increased from 63% to 98% for 4 cm depth and from 83% to 98% at 13 cm depth. The 2D gamma index (2%/2 mm) at 4 cm depth has improved from 78% to 94%. Conclusion: Using the simple analytical method the discrepancy between the measured and calculated dose has significantly improved.« less

  7. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures.

    PubMed

    Gao, Weilu; Shu, Jie; Reichel, Kimberly; Nickel, Daniel V; He, Xiaowei; Shi, Gang; Vajtai, Robert; Ajayan, Pulickel M; Kono, Junichiro; Mittleman, Daniel M; Xu, Qianfan

    2014-03-12

    Gate-controllable transmission of terahertz (THz) radiation makes graphene a promising material for making high-speed THz wave modulators. However, to date, graphene-based THz modulators have exhibited only small on/off ratios due to small THz absorption in single-layer graphene. Here we demonstrate a ∼50% amplitude modulation of THz waves with gated single-layer graphene by the use of extraordinary transmission through metallic ring apertures placed right above the graphene layer. The extraordinary transmission induced ∼7 times near-filed enhancement of THz absorption in graphene. These results promise complementary metal-oxide-semiconductor compatible THz modulators with tailored operation frequencies, large on/off ratios, and high speeds, ideal for applications in THz communications, imaging, and sensing.

  8. Phase dependence of transport-aperture coordination variability reveals control strategy of reach-to-grasp movements.

    PubMed

    Rand, Miya K; Shimansky, Y P; Hossain, Abul B M I; Stelmach, George E

    2010-11-01

    Based on an assumption of movement control optimality in reach-to-grasp movements, we have recently developed a mathematical model of transport-aperture coordination (TAC), according to which the hand-target distance is a function of hand velocity and acceleration, aperture magnitude, and aperture velocity and acceleration (Rand et al. in Exp Brain Res 188:263-274, 2008). Reach-to-grasp movements were performed by young adults under four different reaching speeds and two different transport distances. The residual error magnitude of fitting the above model to data across different trials and subjects was minimal for the aperture-closure phase, but relatively much greater for the aperture-opening phase, indicating considerable difference in TAC variability between those phases. This study's goal is to identify the main reasons for that difference and obtain insights into the control strategy of reach-to-grasp movements. TAC variability within the aperture-opening phase of a single trial was found minimal, indicating that TAC variability between trials was not due to execution noise, but rather a result of inter-trial and inter-subject variability of motor plan. At the same time, the dependence of the extent of trial-to-trial variability of TAC in that phase on the speed of hand transport was sharply inconsistent with the concept of speed-accuracy trade-off: the lower the speed, the larger the variability. Conversely, the dependence of the extent of TAC variability in the aperture-closure phase on hand transport speed was consistent with that concept. Taking into account recent evidence that the cost of neural information processing is substantial for movement planning, the dependence of TAC variability in the aperture-opening phase on task performance conditions suggests that it is not the movement time that the CNS saves in that phase, but the cost of neuro-computational resources and metabolic energy required for TAC regulation in that phase. Thus, the CNS performs a trade-off between that cost and TAC regulation accuracy. It is further discussed that such trade-off is possible because, due to a special control law that governs optimal switching from aperture opening to aperture closure, the inter-trial variability of the end of aperture opening does not affect the high accuracy of TAC regulation in the subsequent aperture-closure phase.

  9. Wavelength Independent Optical Microscopy and Lithography

    DTIC Science & Technology

    1987-10-31

    methods have been used in the past to fabricate the submicron apertures needed in near-field microscopy (2-4). However, under this contract we developed an...screens. Durig, et al. (4) in Zurich produced apertures at the tip of a single crystal of quartz etched using HF to make a fine point and covered...stage pulling process was used . Scanning electron li __ NO iI |06 j JlliM ° wm ..... 3 micrographs of a 100nm diameter pipette and a 500nm diameter

  10. Numerical Simulation of MIG for 42 GHz, 200 kW Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Bera, Anirban; Kumar, Narendra; Purohit, L. P.; Sinha, Ashok K.

    2010-06-01

    A triode type magnetron injection gun (MIG) of a 42 GHz, 200 kW gyrotron for an Indian TOKAMAK system is designed by using the commercially available code EGUN. The operating voltages of the modulating anode and the accelerating anode are 29 kV and 65 kV respectively. The operating mode of the gyrotron is TE03 and it is operated in fundamental harmonic. The simulated results of MIG obtained with the EGUN code are validated with another trajectory code TRAK.

  11. Electrical Activation Studies of Silicon Implanted Aluminum Gallium Nitride with High Aluminum Mole Fraction

    DTIC Science & Technology

    2007-12-01

    realized with silicon due to its indirect band gap that results in poor quantum efficiency . The first LEDs and laser diodes were developed with...deep UV (λ < 340 nm) still face many challenges and have low internal quantum efficiency . Jong Kyu Kim et al. have developed a light emitting triode...LET) to try to overcome some of the challenges and 16 have produced a lighting device with increased quantum efficiency (16). AlxGa1-xN has been

  12. GaN Light-Emitting Triodes (LETs) for High-Efficiency Hole Injection and for Assessment of the Physical Origin of the Efficiency Droop

    DTIC Science & Technology

    2007-07-06

    quantum efficiency . In AlGaN-based UV LEDs, an electron-blocking layer (EBL) is frequently inserted between the p-type cladding layer and the active...me). This limits the hole injection efficiency into the active region, and hence internal quantum efficiency . Figure 1: (a) Schematic band...less efficient than along the lateral direction because most of the holes ionized from the acceptors are localized inside the quantum wells which are

  13. Adaptive array antenna for satellite cellular and direct broadcast communications

    NASA Technical Reports Server (NTRS)

    Horton, Charles R.; Abend, Kenneth

    1993-01-01

    Adaptive phased-array antennas provide cost-effective implementation of large, light weight apertures with high directivity and precise beamshape control. Adaptive self-calibration allows for relaxation of all mechanical tolerances across the aperture and electrical component tolerances, providing high performance with a low-cost, lightweight array, even in the presence of large physical distortions. Beam-shape is programmable and adaptable to changes in technical and operational requirements. Adaptive digital beam-forming eliminates uplink contention by allowing a single electronically steerable antenna to service a large number of receivers with beams which adaptively focus on one source while eliminating interference from others. A large, adaptively calibrated and fully programmable aperture can also provide precise beam shape control for power-efficient direct broadcast from space. Advanced adaptive digital beamforming technologies are described for: (1) electronic compensation of aperture distortion, (2) multiple receiver adaptive space-time processing, and (3) downlink beam-shape control. Cost considerations for space-based array applications are also discussed.

  14. Towards a 1 MW, 170 GHz gyrotron design for fusion application

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Kumar, Nitin; Singh, Udaybir; Bhattacharya, Ranajoy; Yadav, Vivek; Sinha, A. K.

    2013-03-01

    The electrical design of different components of 1 MW, 170 GHz gyrotron such as, magnetron injection gun, cylindrical interaction cavity and collector and RF window is presented in this article. Recently, a new project related to the development of 170 GHz, 1 MW gyrotron has been started for the Indian Tokamak. TE34,10 mode is selected as the operating mode after studied the problem of mode competition. The triode type geometry is selected for the design of magnetron injection gun (MIG) to achieve the required beam parameters. The maximum transverse velocity spread of 3.28% at the velocity ratio of 1.34 is obtained in simulations for a 40 A, 80 kV electron beam. The RF output power of more than 1 MW with 36.5% interaction efficiency without depressed collector is predicted by simulation in single-mode operation at 170 GHz frequency. The simulated single-stage depressed collector of the gyrotron predicted the overall device efficiencies >55%. Due to the very good thermal conductivity and very weak dependency of the dielectric parameters on temperature, PACVD diamond is selected for window design for the transmission of RF power. The in-house developed code MIGSYN and GCOMS are used for initial geometry design of MIG and mode selection respectively. Commercially available simulation tools MAGIC and ANSYS are used for beam-wave interaction and mechanical analysis respectively.

  15. High resolution telescope including an array of elemental telescopes aligned along a common axis and supported on a space frame with a pivot at its geometric center

    DOEpatents

    Norbert, M.A.; Yale, O.

    1992-04-28

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employes speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by a electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 15 figs.

  16. High resolution telescope including an array of elemental telescopes aligned along a common axis and supported on a space frame with a pivot at its geometric center

    DOEpatents

    Norbert, Massie A.; Yale, Oster

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employes speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by a electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  17. Tailoring the morphology and luminescence of GaN/InGaN core-shell nanowires using bottom-up selective-area epitaxy

    NASA Astrophysics Data System (ADS)

    Nami, Mohsen; Eller, Rhett F.; Okur, Serdal; Rishinaramangalam, Ashwin K.; Liu, Sheng; Brener, Igal; Feezell, Daniel F.

    2017-01-01

    Controlled bottom-up selective-area epitaxy (SAE) is used to tailor the morphology and photoluminescence properties of GaN/InGaN core-shell nanowire arrays. The nanowires are grown on c-plane sapphire substrates using pulsed-mode metal organic chemical vapor deposition. By varying the dielectric mask configuration and growth conditions, we achieve GaN nanowire cores with diameters ranging from 80 to 700 nm that exhibit various degrees of polar, semipolar, and nonpolar faceting. A single InGaN quantum well (QW) and GaN barrier shell is also grown on the GaN nanowire cores and micro-photoluminescence is obtained and analyzed for a variety of nanowire dimensions, array pitch spacings, and aperture diameters. By increasing the nanowire pitch spacing on the same growth wafer, the emission wavelength redshifts from 440 to 520 nm, while increasing the aperture diameter results in a ˜35 nm blueshift. The thickness of one QW/barrier period as a function of pitch and aperture diameter is inferred using scanning electron microscopy, with larger pitches showing significantly thicker QWs. Significant increases in indium composition were predicted for larger pitches and smaller aperture diameters. The results are interpreted in terms of local growth conditions and adatom capture radius around the nanowires. This work provides significant insight into the effects of mask configuration and growth conditions on the nanowire properties and is applicable to the engineering of monolithic multi-color nanowire LEDs on a single chip.

  18. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    NASA Astrophysics Data System (ADS)

    Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.

    2014-12-01

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.

  19. Monte Carlo simulation of ion-neutral charge exchange collisions and grid erosion in an ion thruster

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1991-01-01

    A combined particle-in-cell (PIC)/Monte Carlo simulation model has been developed in which the PIC method is used to simulate the charge exchange collisions. It is noted that a number of features were reproduced correctly by this code, but that its assumption of two-dimensional axisymmetry for a single set of grid apertures precluded the reproduction of the most characteristic feature of actual test data; namely, the concentrated grid erosion at the geometric center of the hexagonal aperture array. The first results of a three-dimensional code, which takes into account the hexagonal symmetry of the grid, are presented. It is shown that, with this code, the experimentally observed erosion patterns are reproduced correctly, demonstrating explicitly the concentration of sputtering between apertures.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasui, Keisuke, E-mail: k.yasui.20@west-med.jp; Toshito, Toshiyuki; Omachi, Chihiro

    Purpose: In the authors’ proton therapy system, the patient-specific aperture can be attached to the nozzle of spot scanning beams to shape an irradiation field and reduce lateral fall-off. The authors herein verified this system for clinical application. Methods: The authors prepared four types of patient-specific aperture systems equipped with an energy absorber to irradiate shallow regions less than 4 g/cm{sup 2}. The aperture was made of 3-cm-thick brass and the maximum water equivalent penetration to be used with this system was estimated to be 15 g/cm{sup 2}. The authors measured in-air lateral profiles at the isocenter plane and integralmore » depth doses with the energy absorber. All input data were obtained by the Monte Carlo calculation, and its parameters were tuned to reproduce measurements. The fluence of single spots in water was modeled as a triple Gaussian function and the dose distribution was calculated using a fluence dose model. The authors compared in-air and in-water lateral profiles and depth doses between calculations and measurements for various apertures of square, half, and U-shaped fields. The absolute doses and dose distributions with the aperture were then validated by patient-specific quality assurance. Measured data were obtained by various chambers and a 2D ion chamber detector array. Results: The patient-specific aperture reduced the penumbra from 30% to 70%, for example, from 34.0 to 23.6 mm and 18.8 to 5.6 mm. The calculated field width for square-shaped apertures agreed with measurements within 1 mm. Regarding patient-specific aperture plans, calculated and measured doses agreed within −0.06% ± 0.63% (mean ± SD) and 97.1% points passed the 2%-dose/2 mm-distance criteria of the γ-index on average. Conclusions: The patient-specific aperture system improved dose distributions, particularly in shallow-region plans.« less

  1. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    DOE PAGES

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; ...

    2016-08-01

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale fracture networks has been under debate for a long time, since the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We addressmore » this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P 32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. The recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate kilometer scale DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time, , and cumulative retention, , are calculated along particles streamlines. As a result, it is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture aperture variability than the tails of travel time distributions, where no significant effect of the in-fracture aperture variations and spatial correlation length is observed.« less

  2. Quantify fluid saturation in fractures by light transmission technique and its application

    NASA Astrophysics Data System (ADS)

    Ye, S.; Zhang, Y.; Wu, J.

    2016-12-01

    The Dense Non-Aqueous Phase Liquids (DNAPLs) migration in transparent and rough fractures with variable aperture was studied experimentally using a light transmission technique. The migration of trichloroethylene (TCE) in variable-aperture fractures (20 cm wide x 32.5 cm high) showed that a TCE blob moved downward with snap-off events in four packs with apertures from 100 μm to 1000 μm, and that the pattern presented a single and tortuous cluster with many fingers in a pack with two apertures of 100 μm and 500 μm. The variable apertures in the fractures were measured by light transmission. A light intensity-saturation (LIS) model based on light transmission was used to quantify DNAPL saturation in the fracture system. Known volumes of TCE, were added to the chamber and these amounts were compared to the results obtained by LIS model. Strong correlation existed between results obtained based on LIS model and the known volumes of T CE. Sensitivity analysis showed that the aperture was more sensitive than parameter C2 of LIS model. LIS model was also used to measure dyed TCE saturation in air sparging experiment. The results showed that the distribution and amount of TCE significantly influenced the efficient of air sparging. The method developed here give a way to quantify fluid saturation in two-phase system in fractured medium, and provide a non-destructive, non-intrusive tool to investigate changes in DNAPL architecture and flow characteristics in laboratory experiments. Keywords: light transmission, fluid saturation, fracture, variable aperture AcknowledgementsFunding for this research from NSFC Project No. 41472212.

  3. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale fracture networks has been under debate for a long time, since the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We addressmore » this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P 32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. The recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate kilometer scale DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time, , and cumulative retention, , are calculated along particles streamlines. As a result, it is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture aperture variability than the tails of travel time distributions, where no significant effect of the in-fracture aperture variations and spatial correlation length is observed.« less

  4. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.

    PubMed

    Witteveen, Heidi J B; Rietman, Hans S; Veltink, Peter H

    2015-06-01

    User feedback about grasping force and hand aperture is very important in object handling with myoelectric forearm prostheses but is lacking in current prostheses. Vibrotactile feedback increases the performance of healthy subjects in virtual grasping tasks, but no extensive validation on potential users has been performed. Investigate the performance of upper-limb loss subjects in grasping tasks with vibrotactile stimulation, providing hand aperture, and grasping force feedback. Cross-over trial. A total of 10 subjects with upper-limb loss performed virtual grasping tasks while perceiving vibrotactile feedback. Hand aperture feedback was provided through an array of coin motors and grasping force feedback through a single miniature stimulator or an array of coin motors. Objects with varying sizes and weights had to be grasped by a virtual hand. Percentages correctly applied hand apertures and correct grasping force levels were all higher for the vibrotactile feedback condition compared to the no-feedback condition. With visual feedback, the results were always better compared to the vibrotactile feedback condition. Task durations were comparable for all feedback conditions. Vibrotactile grasping force and hand aperture feedback improves grasping performance of subjects with upper-limb loss. However, it should be investigated whether this is of additional value in daily-life tasks. This study is a first step toward the implementation of sensory vibrotactile feedback for users of myoelectric forearm prostheses. Grasping force feedback is crucial for optimal object handling, and hand aperture feedback is essential for reduction of required visual attention. Grasping performance with feedback is evaluated for the potential users. © The International Society for Prosthetics and Orthotics 2014.

  5. Shared Aperture Multiplexed (SAM) Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.

    1999-01-01

    A concept is introduced in which a single optic containing several holographic optical elements, are employed to effect multiple fields of view as an alternative to mechanically scanned lidar receivers.

  6. Design of compact surface optical coupler based on vertically curved silicon waveguide for high-numerical-aperture single-mode optical fiber

    NASA Astrophysics Data System (ADS)

    Atsumi, Yuki; Yoshida, Tomoya; Omoda, Emiko; Sakakibara, Youichi

    2017-09-01

    A surface optical coupler based on a vertically curved Si waveguide was designed for coupling with high-numerical aperture single-mode optical fibers with a mode-field diameter of 5 µm. This coupler has a quite small device size, with a height of approximately 12 µm, achieved by introducing an effective spot-size converter configured with the combination of an extremely short Si exponential-inverse taper and a dome-structured SiO2 lens formed on the coupler top. The designed coupler shows high-efficiency optical coupling, with a loss of 0.8 dB for TE polarized light, as well as broad-band coupling with a 0.5-dB-loss band of 420 nm.

  7. Single-ring magnetic cusp low gas pressure ion source

    DOEpatents

    Bacon, Frank M.; Brainard, John P.; O'Hagan, James B.; Walko, Robert J.

    1985-01-01

    A single-ring magnetic cusp low gas pressure ion source designed for use in a sealed, nonpumped neutron generator utilizes a cathode and an anode, three electrically floating electrodes (a reflector behind the cathode, a heat shield around the anode, and an aperture plate), together with a single ring-cusp magnetic field, to establish and energy-filtering mechanism for producing atomic-hydrogen ions.

  8. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Cary; Homa, Dan; Yu, Zhihao

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  9. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    DOE PAGES

    Hill, Cary; Homa, Dan; Yu, Zhihao; ...

    2017-05-03

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  10. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    PubMed

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  11. Multibeam synthetic aperture radar for global oceanography

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1979-01-01

    A single-frequency multibeam synthetic aperture radar concept for large swath imaging desired for global oceanography is evaluated. Each beam iilluminates a separate range and azimuth interval, and images for different beams may be separated on the basis of the Doppler spectrum of the beams or their spatial azimuth separation in the image plane of the radar processor. The azimuth resolution of the radar system is selected so that the Doppler spectrum of each beam does not interfere with the Doppler foldover due to the finite pulse repetition frequency of the radar system.

  12. Dual-sided coded-aperture imager

    DOEpatents

    Ziock, Klaus-Peter [Clinton, TN

    2009-09-22

    In a vehicle, a single detector plane simultaneously measures radiation coming through two coded-aperture masks, one on either side of the detector. To determine which side of the vehicle a source is, the two shadow masks are inverses of each other, i.e., one is a mask and the other is the anti-mask. All of the data that is collected is processed through two versions of an image reconstruction algorithm. One treats the data as if it were obtained through the mask, the other as though the data is obtained through the anti-mask.

  13. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers.

    PubMed

    Arbabi, Amir; Briggs, Ryan M; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei

    2015-12-28

    Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M2=1.02.

  14. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers

    DOE PAGES

    Arbabi, Amir; Briggs, Ryan M.; Horie, Yu; ...

    2015-01-01

    Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. We report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventionalmore » UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M² =1.02.« less

  15. The Effect of Sub-Aperture in DRIA Framework Applied on Multi-Aspect PolSAR Data

    NASA Astrophysics Data System (ADS)

    Xue, Feiteng; Yin, Qiang; Lin, Yun; Hong, Wen

    2016-08-01

    Multi-aspect SAR is a new remote sensing technology, achieves consecutive data in large look angle as platform moves. Multi- aspect observation brings higher resolution and SNR to SAR picture. Multi-aspect PolSAR data can increase the accuracy of target identify and classification because it contains the 3-D polarimetric scattering properties.DRIA(detecting-removing-incoherent-adding)framework is a multi-aspect PolSAR data processing method. In this method, the anisotropic and isotropic scattering is separated by maximum- likelihood ratio test. The anisotropic scattering is removed to gain a removal series. The isotropic scattering is incoherent added to gain a high resolution picture. The removal series describes the anisotropic scattering property and is used in features extraction and classification.This article focuses on the effect brought by difference of sub-aperture numbers in anisotropic scattering detection and removal. The more sub-apertures are, the less look angle is. Artificial target has anisotropic scattering because of Bragg resonances. The increase of sub-aperture number brings more accurate observation in azimuth though the quality of each single image may loss. The accuracy of classification in agricultural fields is affected by the anisotropic scattering brought by Bragg resonances. The size of the sub-aperture has a significant effect in the removal result of Bragg resonances.

  16. APPHi: Automated Photometry Pipeline for High Cadence Large Volume Data

    NASA Astrophysics Data System (ADS)

    Sánchez, E.; Castro, J.; Silva, J.; Hernández, J.; Reyes, M.; Hernández, B.; Alvarez, F.; García T.

    2018-04-01

    APPHi (Automated Photometry Pipeline) carries out aperture and differential photometry of TAOS-II project data. It is computationally efficient and can be used also with other astronomical wide-field image data. APPHi works with large volumes of data and handles both FITS and HDF5 formats. Due the large number of stars that the software has to handle in an enormous number of frames, it is optimized to automatically find the best value for parameters to carry out the photometry, such as mask size for aperture, size of window for extraction of a single star, and the number of counts for the threshold for detecting a faint star. Although intended to work with TAOS-II data, APPHi can analyze any set of astronomical images and is a robust and versatile tool to performing stellar aperture and differential photometry.

  17. Planet detection and spectroscopy in visible light with a single aperture telescope and a nulling coronagraph

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Serabyn, Eugene; Levine, Bruce Martin; Beichman, Charles; Liu, Duncan; Martin, Stefan; Orton, Glen; Mennesson, Bertrand; Morgan, Rhonda; Velusamy, Thangasamy; hide

    2003-01-01

    This talk describes a new concept for visible direct detection of Earth like extra solar planets using a nulling coronagraph instrument behind a 4m telescope in space. In the baseline design, a 4 beam nulling interferometer is synthesized from the telescope pupil, producing a very deep theta^4null which is then filtered by a coherent array of single mode fibers to suppress the residual scattered light. With perfect optics, the stellar leakage is less than 1e-11 of the starlight at the location of the planet. With diffraction limited telescope optics (lambda/20), suppression of the starlight to 1e-10 is possible. The concept is described along with the key advantages over more traditional approaches such as apodized aperture telescopes and Lyot type coronagraphs.

  18. Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap.

    PubMed

    Yoo, Daehan; Gurunatha, Kargal L; Choi, Han-Kyu; Mohr, Daniel A; Ertsgaard, Christopher T; Gordon, Reuven; Oh, Sang-Hyun

    2018-06-13

    We present optical trapping with a 10 nm gap resonant coaxial nanoaperture in a gold film. Large arrays of 600 resonant plasmonic coaxial nanoaperture traps are produced on a single chip via atomic layer lithography with each aperture tuned to match a 785 nm laser source. We show that these single coaxial apertures can act as efficient nanotweezers with a sharp potential well, capable of trapping 30 nm polystyrene nanoparticles and streptavidin molecules with a laser power as low as 4.7 mW. Furthermore, the resonant coaxial nanoaperture enables real-time label-free detection of the trapping events via simple transmission measurements. Our fabrication technique is scalable and reproducible, since the critical nanogap dimension is defined by atomic layer deposition. Thus our platform shows significant potential to push the limit of optical trapping technologies.

  19. On stabilization of field emission and increase in the current density of planar nanostructures with DLC films

    NASA Astrophysics Data System (ADS)

    Yakunin, Alexander N.; Aban'shin, Nikolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Loginov, Alexander P.; Mosiyash, Denis S.; Akchurin, Garif G.

    2018-04-01

    The paper provides a justification and a comparative analysis of the scaling directions of the developed and investigated planar triode field emission cathode unit with the aim of increasing the maximum field current density up to 0.75 A-cm-2 without sacrificing durability. The design features of the vacuum device with a planar structure provided low-voltage control - at 150 V in the mode of long-term durability and not more than 250 V in the mode of the maximum permissible emission current.

  20. Thermionic energy converter investigations

    NASA Technical Reports Server (NTRS)

    Goodale, D. B.; Lee, C.; Lieb, D.; Oettinger, P. E.

    1979-01-01

    This paper presents evaluation of a variety of thermionic converter configurations to obtain improved efficiency. A variable-spacing diode using an iridium emitter gave emission properties comparable to platinum, but the power output from a sintered LaB6 collector diode was not consistent with its work function. Reflectivities above 0.5 were measured at thermal energies on oxygenated-cesiated surfaces using a field emission retarding potential gun. Performance of converters with structured electrodes and the characteristics of a pulsed triode were studied as a function of emitter, collector, cesium reservoir, interelectrode spacing, xenon pressure, and pulsing parameters.

  1. The Approach to Equilibrium in a Reflex Triode

    DTIC Science & Technology

    1990-09-24

    once to yield dT ±---27yT"= ’, where y = d/A and the prime also denotes d/ de . The damping length scale is now just a parameter that can be obtained from...pressures near K2 which will figure in the gap shorting time, and the boundary condition evolution at the anode. Aside from the steady conduction...phase evolution of 77 to values near the sin- gular point, one finds that (from an operational point of view in fixing 3) all such auxillary physics

  2. Advanced thermionic converter development

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Lieb, D.; Briere, T. R.; Sommer, A. H.; Rufeh, F.

    1976-01-01

    Recent progress at Thermo Electron in developing advanced thermionic converters is summarized with particular attention paid to the development of electrodes, diodes, and triodes. It is found that one class of materials (ZnO, BaO and SrO) provides interesting cesiated work functions (1.3-1.4 eV) without additional oxygen. The second class of materials studied (rare earth oxides and hexaborides) gives cesiated/oxygenated work functions of less than 1.2 eV. Five techniques of oxygen addition to thermionic converters are discussed. Vapor deposited tungsten oxide collector diodes and the reflux converter are considered.

  3. The effect of changes in surface wettability on two-phase saturated flow in horizontal replicas of single natural fractures.

    PubMed

    Bergslien, Elisa; Fountain, John

    2006-12-15

    By using translucent epoxy replicas of natural single fractures, it is possible to optically measure aperture distribution and directly observe NAPL flow. However, detailed characterization of epoxy reveals that it is not a sufficiently good analogue to natural rock for many two-phase flow studies. The surface properties of epoxy, which is hydrophobic, are quite unlike those of natural rock, which is generally assumed to be hydrophilic. Different surface wettabilities result in dramatically different two-phase flow behavior and residual distributions. In hydrophobic replicas, the NAPL flows in well-developed channels, displacing water and filling all of the pore space. In hydrophilic replicas, the invading NAPL is confined to the largest aperture pathways and flow frequently occurs in pulses, with no limited or no stable channel development, resulting in isolated blobs with limited accessible surface area. The pulsing and channel abandonment behaviors described are significantly different from the piston-flow frequently assumed in current modeling practice. In addition, NAPL never achieved total saturation in hydrophilic models, indicating that significantly more than a monolayer of water was bound to the model surface. Despite typically only 60-80% NAPL saturation, there was generally good agreement between theoretically calculated Young-Laplace aperture invasion boundaries and the observed minimum apertures invaded. The key to determining whether surface wettability is negligible, or not, lies in accurate characterization of the contaminant-geologic media system under study. As long as the triple-point contact angle of the system is low (<20 degrees), the assumption of perfect water wettability is not a bad one.

  4. Can the design of glove dispensing boxes influence glove contamination?

    PubMed

    Assadian, O; Leaper, D J; Kramer, A; Ousey, K J

    2016-11-01

    Few studies have explored the microbial contamination of glove boxes in clinical settings. The objective of this observational study was to investigate whether a new glove packaging system in which single gloves are dispensed vertically, cuff end first, has lower levels of contamination on the gloves and on the surface around the box aperture compared with conventional glove boxes. Seven participating sites were provided with vertical glove dispensing systems (modified boxes) and conventional boxes. Before opening glove boxes, the surface around the aperture was sampled microbiologically to establish baseline levels of superficial contamination. Once the glove boxes were opened, the first pair of gloves in each box was sampled for viable bacteria. Thereafter, testing sites were visited on a weekly basis over a period of six weeks and the same microbiological assessments were made. The surface near the aperture of the modified boxes became significantly less contaminated over time compared with the conventional boxes (P<0.001), with an average of 46.7% less contamination around the aperture. Overall, gloves from modified boxes showed significantly less colony-forming unit contamination than gloves from conventional boxes (P<0.001). Comparing all sites over the entire six-week period, gloves from modified boxes had 88.9% less bacterial contamination. This simple improvement to glove box design reduces contamination of unused gloves. Such modifications could decrease the risk of microbial cross-transmission in settings that use gloves. However, such advantages do not substitute for strict hand hygiene compliance and appropriate use of non-sterile, single-use gloves. Copyright © 2016 The Healthcare Infection Society. All rights reserved.

  5. An Array of Optical Receivers for Deep-Space Communications

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Chi-Wung; Srinivasan, Meera; Andrews, Kenneth

    2007-01-01

    An array of small optical receivers is proposed as an alternative to a single large optical receiver for high-data-rate communications in NASA s Deep Space Network (DSN). Because the telescope for a single receiver capable of satisfying DSN requirements must be greater than 10 m in diameter, the design, building, and testing of the telescope would be very difficult and expensive. The proposed array would utilize commercially available telescopes of 1-m or smaller diameter and, therefore, could be developed and verified with considerably less difficulty and expense. The essential difference between a single-aperture optical-communications receiver and an optical-array receiver is that a single-aperture receiver focuses all of the light energy it collects onto the surface of an optical detector, whereas an array receiver focuses portions of the total collected energy onto separate detectors, optically detects each fractional energy component, then combines the electrical signal from the array of detector outputs to form the observable, or "decision statistic," used to decode the transmitted data. A conceptual block diagram identifying the key components of the optical-array receiver suitable for deep-space telemetry reception is shown in the figure. The most conspicuous feature of the receiver is the large number of small- to medium-size telescopes, with individual apertures and number of telescopes selected to make up the desired total collecting area. This array of telescopes is envisioned to be fully computer- controlled via the user interface and prediction-driven to achieve rough pointing and tracking of the desired spacecraft. Fine-pointing and tracking functions then take over to keep each telescope pointed toward the source, despite imperfect pointing predictions, telescope-drive errors, and vibration caused by wind.

  6. Progress on MEVVA source VARIS at GSI

    NASA Astrophysics Data System (ADS)

    Adonin, A.; Hollinger, R.

    2018-05-01

    For the last few years, the development of the VARIS (vacuum arc ion source) was concentrated on several aspects. One of them was the production of high current ion beams of heavy metals such as Au, Pb, and Bi. The requested ion charge state for these ion species is 4+. This is quite challenging to produce in vacuum arc driven sources for reasonable beam pulse length (>120 µs) due to the physical properties of these elements. However, the situation can be dramatically improved by using the composite materials or alloys with enhanced physical properties of the cathodes. Another aspect is an increase of the beam brilliance for intense U4+ beams by the optimization of the geometry of the extraction system. A new 7-hole triode extraction system allows an increase of the extraction voltage from 30 kV to 40 kV and also reduces the outer aperture of the extracted ion beam. Thus, a record beam brilliance for the U4+ beam in front of the RFQ (Radio-Frequency Quadrupole) has been achieved, exceeding the RFQ space charge limit for an ion current of 15 mA. Several new projectiles in the middle-heavy region have been successfully developed from VARIS to fulfill the requirements of the future FAIR (Facility for Antiproton and Ion Research) programs. An influence of an auxiliary gas on the production performance of certain ion charge states as well as on operation stability has been investigated. The optimization of the ion source parameters for a maximum production efficiency and highest particle current in front of the RFQ has been performed. The next important aspect of the development will be the increase of the operation repetition rate of VARIS for all elements especially for uranium to 2.7 Hz in order to provide the maximum availability of high current ion beams for future FAIR experiments.

  7. Three dimensional fracture aperture and porosity distribution using computerized tomography

    NASA Astrophysics Data System (ADS)

    Wenning, Q.; Madonna, C.; Joss, L.; Pini, R.

    2017-12-01

    A wide range of geologic processes and geo-engineered applications are governed by coupled hydromechanical properties in the subsurface. In geothermal energy reservoirs, quantifying the rate of heat transfer is directly linked with the transport properties of fractures, underscoring the importance of fracture aperture characterization for achieving optimal heat production. In this context, coupled core-flooding experiments with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) provide a powerful method to make observations of these properties under representative geologic conditions. This study focuses on quantifying fracture aperture distribution in a fractured westerly granite core by using a recently developed calibration-free method [Huo et al., 2016]. Porosity is also estimated with the X-ray saturation technique using helium and krypton gases as saturating fluids, chosen for their high transmissibility and high CT contrast [e.g., Vega et al., 2014]. The westerly granite sample (diameter: 5 cm, length: 10 cm) with a single through-going rough-walled fracture was mounted in a high-pressure aluminum core-holder and placed inside a medical CT scanner for imaging. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated to have the desired effective pressure (0.5, 5, 7 and 10 MPa) under loading and unloading conditions. 3D reconstructions of the sample have been prepared in terms of fracture aperture and porosity at a maximum resolution of (0.24×0.24×1) mm3. Fracture aperture maps obtained independently using helium and krypton for the whole core depict a similar heterogeneous aperture field, which is also dependent on confining pressure. Estimates of the average hydraulic aperture from CT scans are in quantitative agreement with results from fluid flow experiments. However, the latter lack of the level of observational detail achieved through imaging, which further evidence the presence of strong heterogeneities in fracture aperture at the mm-scale. These results exemplify the use of non-destructive imaging to determine fracture aperture maps, which can be used to address flow channelization and heat transfer that cannot be obtained from core-flooding experiments alone.

  8. the Large Aperture GRB Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertou, Xavier

    2009-04-30

    The Large Aperture GRB Observatory (LAGO) aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique (SPT) in ground based water Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on the project progresses and the first operation at high altitude, search for bursts in 6 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  9. Polarizing aperture stereoscopic cinema camera

    NASA Astrophysics Data System (ADS)

    Lipton, Lenny

    2012-03-01

    The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor (the size of the standard 35mm frame) with the means to select left and right image information. Even with the added stereoscopic capability the appearance of existing camera bodies will be unaltered.

  10. Polarizing aperture stereoscopic cinema camera

    NASA Astrophysics Data System (ADS)

    Lipton, Lenny

    2012-07-01

    The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor, the size of the standard 35 mm frame, with the means to select left and right image information. Even with the added stereoscopic capability, the appearance of existing camera bodies will be unaltered.

  11. Pressure independence of granular flow through an aperture.

    PubMed

    Aguirre, M A; Grande, J G; Calvo, A; Pugnaloni, L A; Géminard, J-C

    2010-06-11

    We experimentally demonstrate that the flow rate of granular material through an aperture is controlled by the exit velocity imposed on the particles and not by the pressure at the base, contrary to what is often assumed in previous work. This result is achieved by studying the discharge process of a dense packing of monosized disks through an orifice. The flow is driven by a conveyor belt. This two-dimensional horizontal setup allows us to independently control the velocity at which the disks escape the horizontal silo and the pressure in the vicinity of the aperture. The flow rate is found to be proportional to the belt velocity, independent of the amount of disks in the container and, thus, independent of the pressure in the outlet region. In addition, this specific configuration makes it possible to get information on the system dynamics from a single image of the disks that rest on the conveyor belt after the discharge.

  12. Analysis on the optical aberration effect on spectral resolution of coded aperture spectroscopy

    NASA Astrophysics Data System (ADS)

    Hao, Peng; Chi, Mingbo; Wu, Yihui

    2017-10-01

    The coded aperture spectrometer can achieve high throughput and high spectral resolution by replacing the traditional single slit with two-dimensional array slits manufactured by MEMS technology. However, the sampling accuracy of coding spectrum image will be distorted due to the existence of system aberrations, machining error, fixing errors and so on, resulting in the declined spectral resolution. The influence factor of the spectral resolution come from the decode error, the spectral resolution of each column, and the column spectrum offset correction. For the Czerny-Turner spectrometer, the spectral resolution of each column most depend on the astigmatism, in this coded aperture spectroscopy, the uncorrected astigmatism does result in degraded performance. Some methods must be used to reduce or remove the limiting astigmatism. The curvature of field and the spectral curvature can be result in the spectrum revision errors.

  13. Ultra Small Aperture Terminal for Ka-Band SATCOM

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto; Reinhart, Richard; Lee, Richard; Simons, Rainee

    1997-01-01

    An ultra small aperture terminal (USAT) at Ka-band frequency has been developed by Lewis Research Center (LeRC) for data rates up to 1.5 Mbps in the transmit mode and 40 Mbps in receive mode. The terminal consists of a 35 cm diameter offset-fed parabolic antenna which is attached to a solid state power amplifier and low noise amplifier. A single down converter is used to convert the Ka-band frequency to 70 MHz intermediate frequency (IF). A variable rate (9.6 Kbps to 10 Mbps) commercial modem with a standard RS-449/RS-232 interface is used to provide point-to-point digital services. The terminal has been demonstrated numerous times using the Advanced Communications Technology Satellite (ACTS) and the 4.5 in Link Evaluation Terminal (LET) in Cleveland. A conceptual design for an advanced terminal has also been developed. This advanced USAT utilizes Microwave Monolithic Integrated Circuit (MMIC) and flat plate array technologies. This terminal will be self contained in a single package which will include a 1 watt solid state amplifier (SSPA), low noise amplifier (LNA) and a modem card located behind the aperture of the array. The advanced USAT will be light weight, transportable, low cost and easy to point to the satellite. This paper will introduce designs for the reflector based and array based USAT's.

  14. Application of CHESS single-bounce capillaries at synchrotron beamlines

    NASA Astrophysics Data System (ADS)

    Huang, R.; Szebenyi, T.; Pfeifer, M.; Woll, A.; Smilgies, D.-M.; Finkelstein, K.; Dale, D.; Wang, Y.; Vila-Comamala, J.; Gillilan, R.; Cook, M.; Bilderback, D. H.

    2014-03-01

    Single-bounce capillaries are achromatic X-ray focusing optics that can provide efficient and high demagnification focusing with large numerical apertures. Capillary fabrication at CHESS can be customized according to specific application requirements. Exemplary applications are reviewed in this paper, as well as recent progress on condensers for high-resolution transmission X-ray microscopy and small focal size capillaries.

  15. High-Accuracy Multisensor Geolocation Technology to Support Geophysical Data Collection at MEC Sites

    DTIC Science & Technology

    2012-12-01

    image with intensity data in a single step. Flash LiDAR can use both basic solutions to emit laser , either a single pulse with large aperture will...45 6. LASER SENSOR DEVELOPMENTS...and a terrestrial laser scanner (TLS). State-of-the-art GPS navigation allows for cm- accurate positioning in open areas where a sufficient number

  16. Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture : towards rapid multicomponent screening at high concentrations.

    PubMed

    Wenger, Jérôme; Gérard, Davy; Lenne, Pierre-François; Rigneault, Hervé; Dintinger, José; Ebbesen, Thomas W; Boned, Annie; Conchonaud, Fabien; Marguet, Didier

    2006-12-11

    Single nanometric apertures in a metallic film are used to develop a simple and robust setup for dual-color fluorescence cross-correlation spectroscopy (FCCS) at high concentrations. If the nanoaperture concept has already proven to be useful for single-species analysis, its extension to the dual-color case brings new interesting specificities. The alignment and overlap of the two excitation beams are greatly simplified. No confocal pinhole is used, relaxing the requirement for accurate correction of chromatic aberrations. Compared to two-photon excitation, nanoapertures have the advantage to work with standard fluorophore constructions having high absorption cross-section and well-known absorption/emission spectra. Thanks to the ultra-low volume analysed within one single aperture, fluorescence correlation analysis can be performed with single molecule resolution at micromolar concentrations, resulting in 3 orders of magnitude gain compared to conventional setups. As applications of this technique, we follow the kinetics of an enzymatic cleavage reaction at 2 muM DNA oligonucleotide concentration.We also demonstrate that FCCS in nanoaper-tures can be applied to the fast screening of a sample for dual-labeled species within 1 s acquisition time. This offers new possibilities for rapid screening applications in biotechnology at high concentrations.

  17. RF Performance of Membrane Aperture Shells

    NASA Technical Reports Server (NTRS)

    Flint, Eirc M.; Lindler, Jason E.; Thomas, David L.; Romanofsky, Robert

    2007-01-01

    This paper provides an overview of recent results establishing the suitability of Membrane Aperture Shell Technology (MAST) for Radio Frequency (RF) applications. These single surface shells are capable of maintaining their figure with no preload or pressurization and minimal boundary support, yet can be compactly roll stowed and passively self deploy. As such, they are a promising technology for enabling a future generation of RF apertures. In this paper, we review recent experimental and numerical results quantifying suitable RF performance. It is shown that candidate materials possess metallic coatings with sufficiently low surface roughness and that these materials can be efficiently fabricated into RF relevant doubly curved shapes. A numerical justification for using a reflectivity metric, as opposed to the more standard RF designer metric of skin depth, is presented and the resulting ability to use relatively thin coating thickness is experimentally validated with material sample tests. The validity of these independent film sample measurements are then confirmed through experimental results measuring RF performance for reasonable sized doubly curved apertures. Currently available best results are 22 dBi gain at 3 GHz (S-Band) for a 0.5m aperture tested in prime focus mode, 28dBi gain for the same antenna in the C-Band (4 to 6 GHz), and 36.8dBi for a smaller 0.25m antenna tested at 32 GHz in the Ka-Band. RF range test results for a segmented aperture (one possible scaling approach) are shown as well. Measured antenna system actual efficiencies (relative to the unachievable) ideal for these on axis tests are generally quite good, typically ranging from 50 to 90%.

  18. The Process of Developing a Multi-Cell KEMS Instrument

    NASA Technical Reports Server (NTRS)

    Copland, E. H.; Auping, J. V.; Jacobson, N. S.

    2012-01-01

    Multi-cell KEMS offers many advantages over single cell instruments in regard to in-situ temperature calibration and studies on high temperature alloys and oxides of interest to NASA. The instrument at NASA Glenn is a 90 deg magnetic sector instrument originally designed for single cell operation. The conversion of this instrument to a multi-cell instrument with restricted collimation is discussed. For restricted collimation, the 'field aperture' is in the copper plate separating the Knudsen Cell region and the ionizer and the 'source aperture' is adjacent to the ionizer box. A computer controlled x-y table allows positioning of one of the three cells into the sampling region. Heating is accomplished via a Ta sheet element and temperature is measured via an automatic pyrometer from the bottom of the cells. The computer control and data system have been custom developed for this instrument and are discussed. Future improvements are also discussed.

  19. Digital elevation model generation from satellite interferometric synthetic aperture radar: Chapter 5

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Lei; Lee, Wonjin; Lee, Chang-Wook

    2012-01-01

    An accurate digital elevation model (DEM) is a critical data set for characterizing the natural landscape, monitoring natural hazards, and georeferencing satellite imagery. The ideal interferometric synthetic aperture radar (InSAR) configuration for DEM production is a single-pass two-antenna system. Repeat-pass single-antenna satellite InSAR imagery, however, also can be used to produce useful DEMs. DEM generation from InSAR is advantageous in remote areas where the photogrammetric approach to DEM generation is hindered by inclement weather conditions. There are many sources of errors in DEM generation from repeat-pass InSAR imagery, for example, inaccurate determination of the InSAR baseline, atmospheric delay anomalies, and possible surface deformation because of tectonic, volcanic, or other sources during the time interval spanned by the images. This chapter presents practical solutions to identify and remove various artifacts in repeat-pass satellite InSAR images to generate a high-quality DEM.

  20. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1994-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  1. Solar Rejection Filter for Large Telescopes

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James

    2009-01-01

    To reject solar radiation photons at the front aperture for large telescopes, a mosaic of large transmission mode filters is placed in front of the telescope or at the aperture of the dome. Filtering options for effective rejection of sunlight include a smaller filter down-path near the focus of the telescope, and a large-diameter filter located in the front of the main aperture. Two types of large filters are viable: reflectance mode and transmittance mode. In the case of reflectance mode, a dielectric coating on a suitable substrate (e.g. a low-thermal-expansion glass) is arranged to reflect only a single, narrow wavelength and to efficiently transmit all other wavelengths. These coatings are commonly referred to as notch filter. In this case, the large mirror located in front of the telescope aperture reflects the received (signal and background) light into the telescope. In the case of transmittance mode, a dielectric coating on a suitable substrate (glass, sapphire, clear plastic, membrane, and the like) is arranged to transmit only a single wavelength and to reject all other wavelengths (visible and near IR) of light. The substrate of the large filter will determine its mass. At first glance, a large optical filter with a diameter of up to 10 m, located in front of the main aperture, would require a significant thickness to avoid sagging. However, a segmented filter supported by a structurally rugged grid can support smaller filters. The obscuration introduced by the grid is minimal because the total area can be made insignificant. This configuration can be detrimental to a diffraction- limited telescope due to diffraction effects at the edges of each sub-panel. However, no discernable degradation would result for a 20 diffraction-limit telescope (a photon bucket). Even the small amount of sagging in each subpanel should have minimal effect in the performance of a non-diffraction limited telescope because the part has no appreciable optical power. If the front aperture filter is integrated with the telescope dome, it will reject heat from the dome and will significantly reduce dome temperature regulation requirements and costs. Also, the filter will protect the telescope optics from dust and other contaminants in the atmosphere. It will be simpler to clean or replace this filter than the telescope primary mirror. It may be necessary to paint the support grid with a highly reflective material to avoid overheating.

  2. A compressive-sensing Fourier-transform on-chip Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Podmore, Hugh; Scott, Alan; Lee, Regina

    2018-02-01

    We demonstrate a novel compressive sensing Fourier-transform spectrometer (FTS) for snapshot Raman spectroscopy in a compact format. The on-chip FTS consists of a set of planar-waveguide Mach-Zehnder interferometers (MZIs) arrayed on a photonic chip, effecting a discrete Fourier-transform of the input spectrum. Incoherence between the sampling domain (time), and the spectral domain (frequency) permits compressive sensing retrieval using undersampled interferograms for sparse spectra such as Raman emission. In our fabricated device we retain our chosen bandwidth and resolution while reducing the number of MZIs, e.g. the size of the interferogram, to 1/4th critical sampling. This architecture simultaneously reduces chip footprint and concentrates the interferogram in fewer pixels to improve the signal to noise ratio. Our device collects interferogram samples simultaneously, therefore a time-gated detector may be used to separate Raman peaks from sample fluorescence. A challenge for FTS waveguide spectrometers is to achieve multi-aperture high throughput broadband coupling to a large number of single-mode waveguides. A multi-aperture design allows one to increase the bandwidth and spectral resolution without sacrificing optical throughput. In this device, multi-aperture coupling is achieved using an array of microlenses bonded to the surface of the chip, and aligned with a grid of vertically illuminated waveguide apertures. The microlens array accepts a collimated beam with near 100% fill-factor, and the resulting spherical wavefronts are coupled into the single-mode waveguides using 45& mirrors etched into the waveguide layer via focused ion-beam (FIB). The interferogram from the waveguide outputs is imaged using a CCD, and inverted via l1-norm minimization to correctly retrieve a sparse input spectrum.

  3. High-rate synthetic aperture communications in shallow water.

    PubMed

    Song, H C; Hodgkiss, W S; Kuperman, W A; Akal, T; Stevenson, M

    2009-12-01

    Time reversal communication exploits spatial diversity to achieve spatial and temporal focusing in complex ocean environments. Spatial diversity can be provided easily by a vertical array in a waveguide. Alternatively, spatial diversity can be obtained from a virtual horizontal array generated by two elements, a transmitter and a receiver, due to relative motion between them, referred to as a synthetic aperture. This paper presents coherent synthetic aperture communication results from at-sea experiments conducted in two different frequency bands: (1) 2-4 kHz and (2) 8-20 kHz. Case (1) employs binary-phase shift-keying modulation, while case (2) involves up to eight-phase shift keying modulation with a data rate of 30 kbits/s divided by the number of transmissions (diversity) to be accumulated. The receiver utilizes time reversal diversity combining followed by a single channel equalizer, with frequent channel updates to accommodate the time-varying channel due to coupling of space and time in the presence of motion. Two to five consecutive transmissions from a source moving at 4 kts over 3-6 km range in shallow water are combined successfully after Doppler compensation, confirming the feasibility of coherent synthetic aperture communications using time reversal.

  4. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor.

    PubMed

    Mochizuki, Futa; Kagawa, Keiichiro; Okihara, Shin-ichiro; Seo, Min-Woong; Zhang, Bo; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji

    2016-02-22

    In the work described in this paper, an image reproduction scheme with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor was demonstrated. The sensor captures an object by compressing a sequence of images with focal-plane temporally random-coded shutters, followed by reconstruction of time-resolved images. Because signals are modulated pixel-by-pixel during capturing, the maximum frame rate is defined only by the charge transfer speed and can thus be higher than those of conventional ultra-high-speed cameras. The frame rate and optical efficiency of the multi-aperture scheme are discussed. To demonstrate the proposed imaging method, a 5×3 multi-aperture image sensor was fabricated. The average rising and falling times of the shutters were 1.53 ns and 1.69 ns, respectively. The maximum skew among the shutters was 3 ns. The sensor observed plasma emission by compressing it to 15 frames, and a series of 32 images at 200 Mfps was reconstructed. In the experiment, by correcting disparities and considering temporal pixel responses, artifacts in the reconstructed images were reduced. An improvement in PSNR from 25.8 dB to 30.8 dB was confirmed in simulations.

  5. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  6. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A., E-mail: kojima.atsushi@jaea.go.jp; Hanada, M.; Tobari, H.

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltagemore » holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.« less

  7. Dosimetric effect of limited aperture multileaf collimator on VMAT plan quality: A study of prostate and head-and-neck cancers.

    PubMed

    Murtaza, Ghulam; Mehmood, Shahid; Rasul, Shahid; Murtaza, Imran; Khan, Ehsan Ullah

    2018-01-01

    The aim of study was to evaluate the dosimetric effect of collimator-rotation on VMAT plan quality, when using limited aperture multileaf collimator of Elekta Beam Modulator™ providing a maximum aperture of 21 cm × 16 cm. The increased use of VMAT technique to deliver IMRT from conventional to very specialized treatments present a challenge in plan optimization. In this study VMAT plans were optimized for prostate and head and neck cancers using Elekta Beam-Modulator TM , whereas previous studies were reported for conventional Linac aperture. VMAT plans for nine of each prostate and head-and-neck cancer patients were produced using the 6 MV photon beam for Elekta-SynergyS ® Linac using Pinnacle 3 treatment planning system. Single arc, dual arc and two combined independent-single arcs were optimized for collimator angles (C) 0°, 90° and 0°-90° (0°-90°; i.e. the first-arc was assigned C0° and second-arc was assigned C90°). A treatment plan comparison was performed among C0°, C90° and C(0°-90°) for single-arc dual-arc and two independent-single-arcs VMAT techniques to evaluate the influence of extreme collimator rotations (C0° and 90°) on VMAT plan quality. Plan evaluation criteria included the target coverage, conformity index, homogeneity index and doses to organs at risk. A 'two-sided student t -test' ( p  ≤ 0.05) was used to determine if there was a significant difference in dose volume indices of plans. For both prostate and head-and-neck, plan quality at collimator angles C0° and C(0°-90°) was clinically acceptable for all VMAT-techniques, except SA for head-and-neck. Poorer target coverage, higher normal tissue doses and significant p -values were observed for collimator angle 90° when compared with C0° and C(0°-90°). A collimator rotation of 0° provided significantly better target coverage and sparing of organs-at-risk than a collimator rotation of 90° for all VMAT techniques.

  8. Material Characterization for Composite Materials in Load Bearing Wave Guides

    DTIC Science & Technology

    2012-03-01

    ISIS Integrated Sensor Is Structure MUSTRAP Multifunctional Structural Aperture MWCNT Multi-walled Carbon Nanotube SWCNT Single-walled Carbon...CNTs go through a specific process to coat them with nickel. The process includes conditioning the CNTs in different solutions and adding...a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube ( MWCNT ), or a graphene nanoribbon (GNR). A SWCNT is a hollow cylindrical

  9. Separating and combining single-mode and multimode optical beams

    DOEpatents

    Ruggiero, Anthony J; Masquelier, Donald A; Cooke, Jeffery B; Kallman, Jeffery S

    2013-11-12

    Techniques for combining initially separate single mode and multimode optical beams into a single "Dual Mode" fiber optic have been developed. Bi-directional propagation of two beams that are differentiated only by their mode profiles (i.e., wavefront conditions) is provided. The beams can be different wavelengths and or contain different modulation information but still share a common aperture. This method allows the use of conventional micro optics and hybrid photonic packaging techniques to produce small rugged packages suitable for use in industrial or military environments.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moteabbed, M; Depauw, N; Kooy, H

    Purpose: To investigate the dosimetric benefits of pencil beam scanning (PBS) compared with passive scattered (PS) proton therapy for treatment of pediatric head&neck patients as a function of the PBS spot size and explore the advantages of using apertures in PBS. Methods: Ten pediatric patients with head&neck cancers treated by PS proton therapy at our institution were retrospectively selected. The histologies included rhabdomyosarcoma, ependymoma, astrocytoma, craniopharyngioma and germinoma. The prescribed dose ranged from 36 to 54 Gy(RBE). Five PBS plans were created for each patient using variable spot size (average sigma at isocenter) and choice of beam specific apertures: (1)more » 10mm spots, (2) 10mm spots with apertures, (3) 6mm spots, (4) 6mm spots with apertures, and (5) 3mm spots. The plans were optimized for intensity modulated proton therapy (IMPT) with no single beam uniformity constraints. Dose volume indices as well as equivalent uniform dose (EUD) were compared between PS and PBS plans. Results: Although target coverage was clinically adequate for all cases, the plans with largest (10mm) spots provide inferior quality compared with PS in terms of dose to organs-at-risk (OAR). However, adding apertures to these plans ensured lower OAR dose than PS. The average EUD difference between PBS and PS plans over all patients and organs at risk were (1) 2.5%, (2) −5.1%, (3) -5%, (4) −7.8%, and (5) −9.5%. As the spot size decreased, more conformal plans were achieved that offered similar target coverage but lower dose to the neighboring healthy organs, while alleviating the need for using apertures. Conclusion: The application of PBS does not always translate to better plan qualities compared to PS depending on the available beam spot size. We recommend that institutions with spot size larger than ∼6mm at isocenter consider using apertures to guarantee clinically comparable or superior dosimetric efficacy to PS treatments.« less

  11. A Novel Multi-Aperture Based Sun Sensor Based on a Fast Multi-Point MEANSHIFT (FMMS) Algorithm

    PubMed Central

    You, Zheng; Sun, Jian; Xing, Fei; Zhang, Gao-Fei

    2011-01-01

    With the current increased widespread interest in the development and applications of micro/nanosatellites, it was found that we needed to design a small high accuracy satellite attitude determination system, because the star trackers widely used in large satellites are large and heavy, and therefore not suitable for installation on micro/nanosatellites. A Sun sensor + magnetometer is proven to be a better alternative, but the conventional sun sensor has low accuracy, and cannot meet the requirements of the attitude determination systems of micro/nanosatellites, so the development of a small high accuracy sun sensor with high reliability is very significant. This paper presents a multi-aperture based sun sensor, which is composed of a micro-electro-mechanical system (MEMS) mask with 36 apertures and an active pixels sensor (APS) CMOS placed below the mask at a certain distance. A novel fast multi-point MEANSHIFT (FMMS) algorithm is proposed to improve the accuracy and reliability, the two key performance features, of an APS sun sensor. When the sunlight illuminates the sensor, a sun spot array image is formed on the APS detector. Then the sun angles can be derived by analyzing the aperture image location on the detector via the FMMS algorithm. With this system, the centroid accuracy of the sun image can reach 0.01 pixels, without increasing the weight and power consumption, even when some missing apertures and bad pixels appear on the detector due to aging of the devices and operation in a harsh space environment, while the pointing accuracy of the single-aperture sun sensor using the conventional correlation algorithm is only 0.05 pixels. PMID:22163770

  12. Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.; Quinn, David A.; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building, and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 34 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers, and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.

  13. Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.; Quinn, David A.

    2004-01-01

    With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 3 - 4 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.

  14. SU-F-T-89: Investigation of Simultaneous Optimization of Photon and Electron Apertures for Mixed Beam Radiotherapy Based On An Academic Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, S; Joosten, A; Fix, MK

    Purpose: To estimate the dosimetric potential of mixed beam radiotherapy (MBRT) by using a single process optimizing the shape and weight of photon and electron apertures simultaneously based on Monte Carlo beamlet dose distributions. Methods: A simulated annealing based direct aperture optimization capable to perform simultaneous optimization was developed to generate treatment plans for MERT, photon-IMRT and MBRT. Both photon and electron apertures are collimated with the photon-MLC and are delivered in a segmented manner. For dosimetric comparison and for investigating the dependency on the number of apertures, photon-IMRT, MERT and MBRT plans were generated for an academic case consistingmore » of a water phantom containing two shallow PTVs differing in the maximal depth of 5 and 7 cm, respectively and two OARs in distal and lateral direction to the PTVs. Results: For the superficial PTV, the dose homogeneity (V95%–V107%) and the mean dose (in percent of the prescribed dose) to the distal and the lateral OARs of the MBRT plan (94.9%, 16.9%, 17.8%) are superior or comparable to those for the MERT (74%, 18.4%, 15.4%) and the photon-IMRT plan (89.4%, 20.8%, 24.7%). For the enlarged PTV, the dosimetric superiority of MBRT compared to MERT and photon-IMRT is even more pronounced. Furthermore, an MBRT plan with 12 electron and 10 photon apertures lead to an objective function value 38% lower than that of a photon-IMRT plan with 40 apertures. Conclusion: The results of simultaneous optimization for MBRT are promising with regards to further OAR sparing and improved dose coverage to the PTV compared to photon-IMRT and MERT. Especially superficial targets with deeper subparts (>5 cm) could substantially benefit. Moreover, MBRT seems to be a possible solution of two downsides of photon-IMRT, namely the extended low dose bath and the requirement of numerous apertures. This work was supported by Varian Medical Systems. This work was supported by Varian Medical Systems.« less

  15. Minerva: A Dedicated Observatory for the Detection of Small Planets in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Hogstrom, Kristina; Johnson, J. A.; Wright, J.; McCrady, N.; Swift, J.; Muirhead, P.; Bottom, M.; Plavchan, P.; Zhao, M.; Riddle, R. L.

    2013-01-01

    Minerva is an array of 0.7m aperture robotic telescopes to be built atop Palomar Mountain outfitted for both photometry and high-resolution spectroscopy. It will be the first U.S. observatory dedicated to exoplanetary science capable of both precise radial velocimetry and transit studies. The multi-telescope concept will be implemented to either observe separate targets or a single target with a larger effective aperture. The flexibility of the observatory will maximize scientific potential and also provide ample opportunities for education and public outreach. The design and implementation of Minerva will be carried out by postdoctoral and student researchers at Caltech.

  16. MO-AB-BRA-01: A Global Level Set Based Formulation for Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, D; Lyu, Q; Ruan, D

    2016-06-15

    Purpose: The current clinical Volumetric Modulated Arc Therapy (VMAT) optimization is formulated as a non-convex problem and various greedy heuristics have been employed for an empirical solution, jeopardizing plan consistency and quality. We introduce a novel global direct aperture optimization method for VMAT to overcome these limitations. Methods: The global VMAT (gVMAT) planning was formulated as an optimization problem with an L2-norm fidelity term and an anisotropic total variation term. A level set function was used to describe the aperture shapes and adjacent aperture shapes were penalized to control MLC motion range. An alternating optimization strategy was implemented to solvemore » the fluence intensity and aperture shapes simultaneously. Single arc gVMAT plans, utilizing 180 beams with 2° angular resolution, were generated for a glioblastoma multiforme (GBM), lung (LNG), and 2 head and neck cases—one with 3 PTVs (H&N3PTV) and one with 4 PTVs (H&N4PTV). The plans were compared against the clinical VMAT (cVMAT) plans utilizing two overlapping coplanar arcs. Results: The optimization of the gVMAT plans had converged within 600 iterations. gVMAT reduced the average max and mean OAR dose by 6.59% and 7.45% of the prescription dose. Reductions in max dose and mean dose were as high as 14.5 Gy in the LNG case and 15.3 Gy in the H&N3PTV case. PTV coverages (D95, D98, D99) were within 0.25% of the prescription dose. By globally considering all beams, the gVMAT optimizer allowed some beams to deliver higher intensities, yielding a dose distribution that resembles a static beam IMRT plan with beam orientation optimization. Conclusions: The novel VMAT approach allows for the search of an optimal plan in the global solution space and generates deliverable apertures directly. The single arc VMAT approach fully utilizes the digital linacs’ capability in dose rate and gantry rotation speed modulation. Varian Medical Systems, NIH grant R01CA188300, NIH grant R43CA183390.« less

  17. A surgical confocal microlaparoscope for real-time optical biopsies

    NASA Astrophysics Data System (ADS)

    Tanbakuchi, Anthony Amir

    The first real-time fluorescence confocal microlaparoscope has been developed that provides instant in vivo cellular images, comparable to those provided by histology, through a nondestructive procedure. The device includes an integrated contrast agent delivery mechanism and a computerized depth scan system. The instrument uses a fiber bundle to relay the image plane of a slit-scan confocal microlaparoscope into tissue. The confocal laparoscope was used to image the ovaries of twenty-one patients in vivo using fluorescein sodium and acridine orange as the fluorescent contrast agents. The results indicate that the device is safe and functions as designed. A Monte Carlo model was developed to characterize the system performance in a scattering media representative of human tissues. The results indicate that a slit aperture has limited ability to image below the surface of tissue. In contrast, the results show that multi-pinhole apertures such as a Nipkow disk or a linear pinhole array can achieve nearly the same depth performance as a single pinhole aperture. The model was used to determine the optimal aperture spacing for the multi-pinhole apertures. The confocal microlaparoscope represents a new type of in vivo imaging device. With its ability to image cellular details in real time, it has the potential to aid in the early diagnosis of cancer. Initially, the device may be used to locate unusual regions for guided biopsies. In the long term, the device may be able to supplant traditional biopsies and allow the surgeon to identify early stage cancer in vivo.

  18. a Predictive Model of Permeability for Fractal-Based Rough Rock Fractures during Shear

    NASA Astrophysics Data System (ADS)

    Huang, Na; Jiang, Yujing; Liu, Richeng; Li, Bo; Zhang, Zhenyu

    This study investigates the roles of fracture roughness, normal stress and shear displacement on the fluid flow characteristics through three-dimensional (3D) self-affine fractal rock fractures, whose surfaces are generated using the modified successive random additions (SRA) algorithm. A series of numerical shear-flow tests under different normal stresses were conducted on rough rock fractures to calculate the evolutions of fracture aperture and permeability. The results show that the rough surfaces of fractal-based fractures can be described using the scaling parameter Hurst exponent (H), in which H = 3 - Df, where Df is the fractal dimension of 3D single fractures. The joint roughness coefficient (JRC) distribution of fracture profiles follows a Gauss function with a negative linear relationship between H and average JRC. The frequency curves of aperture distributions change from sharp to flat with increasing shear displacement, indicating a more anisotropic and heterogeneous flow pattern. Both the mean aperture and permeability of fracture increase with the increment of surface roughness and decrement of normal stress. At the beginning of shear, the permeability increases remarkably and then gradually becomes steady. A predictive model of permeability using the mean mechanical aperture is proposed and the validity is verified by comparisons with the experimental results reported in literature. The proposed model provides a simple method to approximate permeability of fractal-based rough rock fractures during shear using fracture aperture distribution that can be easily obtained from digitized fracture surface information.

  19. Optical aperture synthesis: limitations and interest for the earth observation

    NASA Astrophysics Data System (ADS)

    Brouard, Laurent; Safa, Frederic; Crombez, Vincent; Laubier, David

    2017-11-01

    For very large telescope diameters, typically above 4 meters, monolithic telescopes can hardly be envisaged for space applications. Optical aperture synthesis can be envisaged in the future for improving the image resolution from high altitude orbits by co-phasing several individual telescopes of smaller size and reconstituting an aperture of large surface. The telescopes can be deployed on a single spacecraft or distributed on several spacecrafts in free flying formation. Several future projects are based on optical aperture synthesis for science or earth observation. This paper specifically discusses the limitations and interest of aperture synthesis technique for Earth observation from high altitude orbits, in particular geostationary orbit. Classical Fizeau and Michelson configurations are recalled, and system design aspects are investigated: synthesis of the Modulation Transfer Function (MTF), integration time and imaging procedure are first discussed then co-phasing strategies and instrument metrology are developed. The discussion is supported by specific designs made at EADS Astrium. As example, a telescope design is presented with a surface of only 6.6 m2 for the primary mirror for an external diameter of 10.6 m allowing a theoretical resolution of 1.2 m from geostationary orbit with a surface lower than 10% of the overall surface. The impact is that the integration time is increasing leading to stringent satellite attitude requirements. Image simulation results are presented. The practical implementation of the concept is evaluated in terms of system impacts in particular spacecraft attitude control, spacecraft operations and imaging capability limitations.

  20. Improving the photometric precision of IRAC Channel 1

    NASA Astrophysics Data System (ADS)

    Mighell, Kenneth J.; Glaccum, William; Hoffmann, William

    2008-07-01

    Planning is underway for a possible post-cryogenic mission with the Spitzer Space Telescope. Only Channels 1 and 2 (3.6 and 4.5 μm) of the Infrared Array Camera (IRAC) will be operational; they will have unmatched sensitivity from 3 to 5 microns until the James Webb Space Telescope is launched. At SPIE Orlando, Mighell described his NASA-funded MATPHOT algorithm for precision stellar photometry and astrometry and presented MATPHOT-based simulations that suggested Channel 1 stellar photometry may be significantly improved by modeling the nonuniform RQE within each pixel, which, when not taken into account in aperture photometry, causes the derived flux to vary according to where the centroid falls within a single pixel (the pixel-phase effect). We analyze archival observations of calibration stars and compare the precision of stellar aperture photometry, with the recommended 1-dimensional and a new 2-dimensional pixel-phase aperture-flux correction, and MATPHOT-based PSF-fitting photometry which accounts for the observed loss of stellar flux due to the nonuniform intrapixel quantum efficiency. We show how the precision of aperture photometry of bright isolated stars corrected with the new 2-dimensional aperture-flux correction function can yield photometry that is almost as precise as that produced by PSF-fitting procedures. This timely research effort is intended to enhance the science return not only of observations already in Spitzer data archive but also those that would be made during the Spitzer Warm Mission.

  1. Controlled Patterning and Growth of Single Wall and Multi-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor)

    2005-01-01

    Method and system for producing a selected pattern or array of at least one of a single wall nanotube and/or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and/or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and/or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and/or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and/or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.

  2. Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)

    2001-01-01

    Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.

  3. A comprehensive formulation for volumetric modulated arc therapy planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Dan; Lyu, Qihui; Ruan, Dan

    2016-07-15

    Purpose: Volumetric modulated arc therapy (VMAT) is a widely employed radiation therapy technique, showing comparable dosimetry to static beam intensity modulated radiation therapy (IMRT) with reduced monitor units and treatment time. However, the current VMAT optimization has various greedy heuristics employed for an empirical solution, which jeopardizes plan consistency and quality. The authors introduce a novel direct aperture optimization method for VMAT to overcome these limitations. Methods: The comprehensive VMAT (comVMAT) planning was formulated as an optimization problem with an L2-norm fidelity term to penalize the difference between the optimized dose and the prescribed dose, as well as an anisotropicmore » total variation term to promote piecewise continuity in the fluence maps, preparing it for direct aperture optimization. A level set function was used to describe the aperture shapes and the difference between aperture shapes at adjacent angles was penalized to control MLC motion range. A proximal-class optimization solver was adopted to solve the large scale optimization problem, and an alternating optimization strategy was implemented to solve the fluence intensity and aperture shapes simultaneously. Single arc comVMAT plans, utilizing 180 beams with 2° angular resolution, were generated for a glioblastoma multiforme case, a lung (LNG) case, and two head and neck cases—one with three PTVs (H&N{sub 3PTV}) and one with foue PTVs (H&N{sub 4PTV})—to test the efficacy. The plans were optimized using an alternating optimization strategy. The plans were compared against the clinical VMAT (clnVMAT) plans utilizing two overlapping coplanar arcs for treatment. Results: The optimization of the comVMAT plans had converged within 600 iterations of the block minimization algorithm. comVMAT plans were able to consistently reduce the dose to all organs-at-risk (OARs) as compared to the clnVMAT plans. On average, comVMAT plans reduced the max and mean OAR dose by 6.59% and 7.45%, respectively, of the prescription dose. Reductions in max dose and mean dose were as high as 14.5 Gy in the LNG case and 15.3 Gy in the H&N{sub 3PTV} case. PTV coverages measured by D95, D98, and D99 were within 0.25% of the prescription dose. By comprehensively optimizing all beams, the comVMAT optimizer gained the freedom to allow some selected beams to deliver higher intensities, yielding a dose distribution that resembles a static beam IMRT plan with beam orientation optimization. Conclusions: The novel nongreedy VMAT approach simultaneously optimizes all beams in an arc and then directly generates deliverable apertures. The single arc VMAT approach thus fully utilizes the digital Linac’s capability in dose rate and gantry rotation speed modulation. In practice, the new single VMAT algorithm generates plans superior to existing VMAT algorithms utilizing two arcs.« less

  4. Method and Apparatus for Computed Imaging Backscatter Radiography

    NASA Technical Reports Server (NTRS)

    Shedlock, Daniel (Inventor); Sabri, Nissia (Inventor); Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor); Meng, Christopher (Inventor)

    2013-01-01

    Systems and methods of x-ray backscatter radiography are provided. A single-sided, non-destructive imaging technique utilizing x-ray radiation to image subsurface features is disclosed, capable of scanning a region using a fan beam aperture and gathering data using rotational motion.

  5. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis

    PubMed Central

    De Angeli, Alexis; Zhang, Jingbo; Meyer, Stefan; Martinoia, Enrico

    2013-01-01

    Water deficit strongly affects crop productivity. Plants control water loss and CO2 uptake by regulating the aperture of the stomatal pores within the leaf epidermis. Stomata aperture is regulated by the two guard cells forming the pore and changing their size in response to ion uptake and release. While our knowledge about potassium and chloride fluxes across the plasma membrane of guard cells is advanced, little is known about fluxes across the vacuolar membrane. Here we present the molecular identification of the long-sought-after vacuolar chloride channel. AtALMT9 is a chloride channel activated by physiological concentrations of cytosolic malate. Single-channel measurements demonstrate that this activation is due to a malate-dependent increase in the channel open probability. Arabidopsis thaliana atalmt9 knockout mutants exhibited impaired stomatal opening and wilt more slowly than the wild type. Our findings show that AtALMT9 is a vacuolar chloride channel having a major role in controlling stomata aperture. PMID:23653216

  6. Apparatus and method to achieve high-resolution microscopy with non-diffracting or refracting radiation

    DOEpatents

    Tobin, Jr., Kenneth W.; Bingham, Philip R.; Hawari, Ayman I.

    2012-11-06

    An imaging system employing a coded aperture mask having multiple pinholes is provided. The coded aperture mask is placed at a radiation source to pass the radiation through. The radiation impinges on, and passes through an object, which alters the radiation by absorption and/or scattering. Upon passing through the object, the radiation is detected at a detector plane to form an encoded image, which includes information on the absorption and/or scattering caused by the material and structural attributes of the object. The encoded image is decoded to provide a reconstructed image of the object. Because the coded aperture mask includes multiple pinholes, the radiation intensity is greater than a comparable system employing a single pinhole, thereby enabling a higher resolution. Further, the decoding of the encoded image can be performed to generate multiple images of the object at different distances from the detector plane. Methods and programs for operating the imaging system are also disclosed.

  7. Development of pre pre-driver amplifier stage for generator of SST-1 ICRH system

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Sinh Makwana, Azad; Srinivas, Y. S. S.; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    The Ion Cyclotron Resonance Heating (ICRH) system for SST1 consists mainly of the cwrf power generator to deliver 1.5MW for 1000sec duration at the frequencies 22.8, 24.3 and 45.6±1MHz, the transmission line and the antenna. This is planned to develop a independent and dedicated cwrf generator that consists of a oscillator, buffer, rf switch, modulator, rf attenuator, directional coupler, three stage solid state low power amplifier and four stage triode & tetrode based high power amplifier with specific performance at 45.6±1MHz including frequencies 22.8 and 24.3±1MHz. The pre pre-driver high power amplifier stage is fabricated about triode 3CX3000A7. The tube has sufficient margin in terms of plate dissipation and grid dissipation that makes it suitable to withstand momentarily load mismatch and to upgrade the source in terms of output power later. This indigenously developed amplifier is integrated inside a radiation resistant rack with all required biasing power supplies, cooling blower, controls, monitors and interlocks for manual or remote control operation. This grounded grid mode amplifier will be operated at plate with 3.8KV/ 800mA in class AB for 1.8KW cwrf output power rating. The input circuit is broadband and the output circuit is tunable with slide variable inductor and a vacuum variable capacitor in the frequency range of 22.8 to 45.6MHz. It is designed for a gain of about 12dB, fabrication completed and undergoing cwrf power testing. This paper presents specifications, design criteria, circuit used, operating parameters, tests conducted and the results obtained.

  8. Laser beam propagation through turbulence and adaptive optics for beam delivery improvement

    NASA Astrophysics Data System (ADS)

    Nicolas, Stephane

    2015-10-01

    We report results from numerical simulations of laser beam propagation through atmospheric turbulence. In particular, we study the statistical variations of the fractional beam energy hitting inside an optical aperture placed at several kilometer distance. The simulations are performed for different turbulence conditions and engagement ranges, with and without the use of turbulence mitigation. Turbulence mitigation is simulated with phase conjugation. The energy fluctuations are deduced from time sequence realizations. It is shown that turbulence mitigation leads to an increase of the mean energy inside the aperture and decrease of the fluctuations even in strong turbulence conditions and long distance engagement. As an example, the results are applied to a high energy laser countermeasure system, where we determine the probability that a single laser pulse, or one of the pulses in a sequence, will provide a lethal energy inside the target aperture. Again, turbulence mitigation contributes to increase the performance of the system at long-distance and for strong turbulence conditions in terms of kill probability. We also discuss a specific case where turbulence contributes to increase the pulse energy within the target aperture. The present analysis can be used to evaluate the performance of a variety of systems, such as directed countermeasures, laser communication, and laser weapons.

  9. An Improved Solution for Integrated Array Optics in Quasi-Optical mm and Submm Receivers: the Hybrid Antenna

    NASA Technical Reports Server (NTRS)

    Buttgenbach, Thomas H.

    1993-01-01

    The hybrid antenna discussed here is defined as a dielectric lens-antenna as a special case of an extended hemi-spherical dielectric lens that is operated in the diffraction limited regime. It is a modified version of the planar antenna on a lens scheme developed by Rutledge. The dielectric lens-antenna is fed by a planar-structure antenna, which is mounted on the flat side of the dielectric lens-antenna using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of extension of the hemi- spherical lens and different lens sizes. An optimum extension distance is found experimentally and numerically for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved. At 115 GHz the aperture efficiency was measured to be (76 4 +/- 6) % for a diffraction limited beam with sidelobes below -17 dB. Results of a single hybrid antenna with an integrated Superconductor-Insulator-Superconductor (SIS) detector and a broad-band matching structure at submillimeter wavelengths are presented. The hybrid antenna is diffraction limited, space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays.

  10. Single Lens Dual-Aperture 3D Imaging System: Color Modeling

    NASA Technical Reports Server (NTRS)

    Bae, Sam Y.; Korniski, Ronald; Ream, Allen; Fritz, Eric; Shearn, Michael

    2012-01-01

    In an effort to miniaturize a 3D imaging system, we created two viewpoints in a single objective lens camera. This was accomplished by placing a pair of Complementary Multi-band Bandpass Filters (CMBFs) in the aperture area. Two key characteristics about the CMBFs are that the passbands are staggered so only one viewpoint is opened at a time when a light band matched to that passband is illuminated, and the passbands are positioned throughout the visible spectrum, so each viewpoint can render color by taking RGB spectral images. Each viewpoint takes a different spectral image from the other viewpoint hence yielding a different color image relative to the other. This color mismatch in the two viewpoints could lead to color rivalry, where the human vision system fails to resolve two different colors. The difference will be closer if the number of passbands in a CMBF increases. (However, the number of passbands is constrained by cost and fabrication technique.) In this paper, simulation predicting the color mismatch is reported.

  11. Charting the Winds that Change the Universe, II The Single Aperture Far Infrared Observatory (SAFIR)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    2003-01-01

    The Single Aperture Far Infrared Observatory (SAFIR) will study the birth and evolution of stars and planetary systems so young that they are invisible to optical and near-infrared telescopes such as NGST. Not only does the far-infrared radiation penetrate the obscuring dust clouds that surround these systems, but the protoplanetary disks also emit much of their radiation in the far infrared. Furthermore, the dust reprocesses much of the optical emission from the newly forming stars into this wavelength band. Similarly, the obscured central regions of galaxies, which harbor massive black holes and huge bursts of star formation, can be seen and analyzed in the far infrared. SAFIR will have the sensitivity to see the first dusty galaxies in the universe. For studies of both star-forming regions in our galaxy and dusty galaxies at high redshifts, SAFIR will be essential in tying together information that NGST will obtain on these systems at shorter wavelengths and that ALMA will obtain at longer wavelengths.

  12. photPARTY: Python Automated Square-Aperture Photometry

    NASA Astrophysics Data System (ADS)

    Symons, Teresa A.

    As CCD's have drastically increased the amount of information recorded per frame, so too have they increased the time and effort needed to sift through the data. For observations of a single star, information from millions of pixels needs to be distilled into one number: the magnitude. Various computer systems have been used to streamline this process over the years. The CCDPhot photometer, in use at the Kitt Peak 0.9-m telescope in the 1990's, allowed for user settings and provided real time magnitudes during observation of single stars. It is this level of speed and convenience that inspired the development of the Python-based software analysis system photPARTY, which can quickly and efficiently produce magnitudes for a set of single- star or un-crowded field CCD frames. Seeking to remove the need for manual interaction after initial settings for a group of images, photPARTY automatically locates stars, subtracts the background, and performs square-aperture photometry. Rather than being a package of available functions, it is essentially a self-contained, one-click analysis system, with the capability to process several hundred frames in just a couple of minutes. Results of comparisons with present systems such as IRAF are presented.

  13. The equivalent thermal properties of a single fracture

    NASA Astrophysics Data System (ADS)

    Sangaré, D.; Thovert, J.-F.; Adler, P. M.

    2008-10-01

    The normal resistance and the tangential conductivity of a single fracture with Gaussian or self-affine surfaces are systematically studied as functions of the nature of the materials in contact and of the geometrical parameters. Analytical formulas are provided in the lubrication limit for fractures with sinusoidal apertures; these formulas are used to substantiate empirical formulas for resistance and conductivity. Other approximations based on the combination of series and parallel formulas are tested.

  14. Narrowband, tunable, 2 µm optical parametric master-oscillator power amplifier with large-aperture periodically poled Rb:KTP

    NASA Astrophysics Data System (ADS)

    Coetzee, R. S.; Zheng, X.; Fregnani, L.; Laurell, F.; Pasiskevicius, V.

    2018-06-01

    A high-energy, ns, narrow-linewidth optical parametric oscillator and amplifier system based on large-aperture periodically poled Rb:KTP is presented. The 2 µm seed source is a singly resonant OPO locked with a transversely chirped volume Bragg grating, allowing a wavelength tuning of 21 nm and output linewidth of 0.56 nm. A maximum output energy of 52 mJ and conversion efficiency of 36% was obtained from the amplifier for a pump energy of 140 mJ. The high-energy and the robust and narrow dual-wavelength spectra obtained make this system an ideal pump source for difference frequency generation-based THz generation schemes.

  15. Radar systems for the water resources mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The state of the art determination was made for radar measurement of: soil moisture, snow, standing and flowing water, lake and river ice, determination of required spacecraft radar parameters, study of synthetic-aperture radar systems to meet these parametric requirements, and study of techniques for on-board processing of the radar data. Significant new concepts developed include the following: scanning synthetic-aperture radar to achieve wide-swath coverage; single-sideband radar; and comb-filter range-sequential, range-offset SAR processing. The state of the art in radar measurement of water resources parameters is outlined. The feasibility for immediate development of a spacecraft water resources SAR was established. Numerous candidates for the on-board processor were examined.

  16. 3D Imaging Millimeter Wave Circular Synthetic Aperture Radar

    PubMed Central

    Zhang, Renyuan; Cao, Siyang

    2017-01-01

    In this paper, a new millimeter wave 3D imaging radar is proposed. The user just needs to move the radar along a circular track, and high resolution 3D imaging can be generated. The proposed radar uses the movement of itself to synthesize a large aperture in both the azimuth and elevation directions. It can utilize inverse Radon transform to resolve 3D imaging. To improve the sensing result, the compressed sensing approach is further investigated. The simulation and experimental result further illustrated the design. Because a single transceiver circuit is needed, a light, affordable and high resolution 3D mmWave imaging radar is illustrated in the paper. PMID:28629140

  17. A high-gain, compact, nonimaging concentrator: RXI.

    PubMed

    Miñano, J C; Gonźlez, J C; Benítez, P

    1995-12-01

    The design procedure of a new nonimaging concentrator (called an RXI) is explained. Rays that impinge on the concentrator aperture, within the acceptance angle, are directed to the receiver by means of one refraction, one reflection, and one total internal reflection. The concentrator can be made as a single dielectric piece (in which the receiver is immersed) whose aspect ratio (thickness/aperture diameter) is close to 1/3. Ray-tracing analysis of a rotational symmetric RXI shows total transmissions of greater than 94.5% (no absorption or reflection losses are considered) when the acceptance angle of the incoming rays is small (<3°) and when the receiver area is the smallest possible (maximal concentration.).

  18. Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, R

    2003-02-10

    A series of studies by the Air Force, the National Reconnaissance Office and NASA have identified the critical role played by large optics in fulfilling many of the space related missions of these agencies. Whether it is the Next Generation Space Telescope for NASA, high resolution imaging systems for NRO, or beam weaponry for the Air Force, the diameter of the primary optic is central to achieving high resolution (imaging) or a small spot size on target (lethality). While the detailed requirements differ for each application (high resolution imaging over the visible and near-infrared for earth observation, high damage thresholdmore » but single-wavelength operation for directed energy), the challenges of a large, lightweight primary optic which is space compatible and operates with high efficiency are the same. The advantage of such large optics to national surveillance applications is that it permits these observations to be carried-out with much greater effectiveness than with smaller optics. For laser weapons, the advantage is that it permits more tightly focused beams which can be leveraged into either greater effective range, reduced laser power, and/or smaller on-target spot-sizes; weapon systems can be made either much more effective or much less expensive. This application requires only single-wavelength capability, but places an emphasis upon robust, rapidly targetable optics. The advantages of large aperture optics to astronomy are that it increases the sensitivity and resolution with which we can view the universe. This can be utilized either for general purpose astronomy, allowing us to examine greater numbers of objects in more detail and at greater range, or it can enable the direct detection and detailed examination of extra-solar planets. This application requires large apertures (for both light-gathering and resolution reasons), with broad-band spectral capability, but does not emphasize either large fields-of-view or pointing agility. Despite differences in their requirements and implementations, the fundamental difficulty in utilizing large aperture optics is the same for all of these applications: It is extremely difficult to design large aperture space optics which are both optically precise and can meet the practical requirements for launch and deployment in space. At LLNL we have developed a new concept (Eyeglass) which uses large diffractive optics to solve both of these difficulties; greatly reducing both the mass and the tolerance requirements for large aperture optics. During previous LDRD-supported research, we developed this concept, built and tested broadband diffractive telescopes, and built 50 cm aperture diffraction-limited diffractive lenses (the largest in the world). This work is fully described in UCRL-ID-136262, Eyeglass: A Large Aperture Space Telescope. However, there is a large gap between optical proof-of-principle with sub-meter apertures, and actual 50 meter space telescopes. This gap is far too large (both in financial resources and in spacecraft expertise) to be filled internally at LLNL; implementation of large aperture diffractive space telescopes must be done externally using non-LLNL resources and expertise. While LLNL will never become the primary contractor and integrator for large space optical systems, our natural role is to enable these devices by developing the capability of producing very large diffractive optics. Accordingly, the purpose of the Large Aperture, Lightweight Space Optics Strategic Initiative was to develop the technology to fabricate large, lightweight diffractive lenses. The additional purpose of this Strategic Initiative was, of course, to demonstrate this lens-fabrication capability in a fashion compellingly enough to attract the external support necessary to continue along the path to full-scale space-based telescopes. During this 3 year effort (FY2000-FY2002) we have developed the capability of optically smoothing and diffractively-patterning thin meter-sized sheets of glass into lens panels. We have also developed alignment and seaming techniques which allow individual lens panels to be assembled together, forming a much larger, segmented, diffractive lens. The capabilities provided by this LDRD-supported developmental effort were then demonstrated by the fabrication and testing of a lightweight, 5 meter aperture, diffractive lens.« less

  19. The warm, rich sound of valve guitar amplifiers

    NASA Astrophysics Data System (ADS)

    Keeports, David

    2017-03-01

    Practical solid state diodes and transistors have made glass valve technology nearly obsolete. Nevertheless, valves survive largely because electric guitar players much prefer the sound of valve amplifiers to the sound of transistor amplifiers. This paper discusses the introductory-level physics behind that preference. Overdriving an amplifier adds harmonics to an input sound. While a moderately overdriven valve amplifier produces strong even harmonics that enhance a sound, an overdriven transistor amplifier creates strong odd harmonics that can cause dissonance. The functioning of a triode valve explains its creation of even and odd harmonics. Music production software enables the examination of both the wave shape and the harmonic content of amplified sounds.

  20. Vertically aligned carbon nanotube emitter on metal foil for medical X-ray imaging.

    PubMed

    Ryu, Je Hwang; Kim, Wan Sun; Lee, Seung Ho; Eom, Young Ju; Park, Hun Kuk; Park, Kyu Chang

    2013-10-01

    A simple method is proposed for growing vertically aligned carbon nanotubes on metal foil using the triode direct current plasma-enhanced chemical vapor deposition (PECVD). The carbon nanotube (CNT) electron emitter was fabricated using fewer process steps with an acid treated metal substrate. The CNT emitter was used for X-ray generation, and the X-ray image of mouse's joint was obtained with an anode current of 0.5 mA at an anode bias of 60 kV. The simple fabrication of a well-aligned CNT with a protection layer on metal foil, and its X-ray application, were studied.

  1. Simulations of S-band RF gun with RF beam control

    NASA Astrophysics Data System (ADS)

    Barnyakov, A. M.; Levichev, A. E.; Maltseva, M. V.; Nikiforov, D. A.

    2017-08-01

    The RF gun with RF control is discussed. It is based on the RF triode and two kinds of the cavities. The first cavity is a coaxial cavity with cathode-grid assembly where beam bunches are formed, the second one is an accelerating cavity. The features of such a gun are the following: bunched and relativistic beams in the output of the injector, absence of the back bombarding electrons, low energy spread and short length of the bunches. The scheme of the injector is shown. The electromagnetic field simulation and longitudinal beam dynamics are presented. The possible using of the injector is discussed.

  2. An integrated optics microfluidic device for detecting single DNA molecules.

    PubMed

    Krogmeier, Jeffrey R; Schaefer, Ian; Seward, George; Yantz, Gregory R; Larson, Jonathan W

    2007-12-01

    A fluorescence-based integrated optics microfluidic device is presented, capable of detecting single DNA molecules in a high throughput and reproducible manner. The device integrates microfluidics for DNA stretching with two optical elements for single molecule detection (SMD): a plano-aspheric refractive lens for fluorescence excitation (illuminator) and a solid parabolic reflective mirror for fluorescence collection (collector). Although miniaturized in size, both optical components were produced and assembled onto the microfluidic device by readily manufacturable fabrication techniques. The optical resolution of the device is determined by the small and relatively low numerical aperture (NA) illuminator lens (0.10 effective NA, 4.0 mm diameter) that delivers excitation light to a diffraction limited 2.0 microm diameter spot at full width half maximum within the microfluidic channel. The collector (0.82 annular NA, 15 mm diameter) reflects the fluorescence over a large collection angle, representing 71% of a hemisphere, toward a single photon counting module in an infinity-corrected scheme. As a proof-of-principle experiment for this simple integrated device, individual intercalated lambda-phage DNA molecules (48.5 kb) were stretched in a mixed elongational-shear microflow, detected, and sized with a fluorescence signal to noise ratio of 9.9 +/-1.0. We have demonstrated that SMD does not require traditional high numerical aperture objective lenses and sub-micron positioning systems conventionally used in many applications. Rather, standard manufacturing processes can be combined in a novel way that promises greater accessibility and affordability for microfluidic-based single molecule applications.

  3. Controlling coherence in epsilon-near-zero metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Caglayan, Humeyra; Hajian, Hodjat; Ozbay, Ekmel

    2017-05-01

    Recently, metamaterials with near-zero refractive index have attracted much attention. Light inside these materials experiences no spatial phase change and extremely large phase velocity, makes these peculiar systems applicable for realizing directional emission, tunneling waveguides, large-area single-mode devices and electromagnetic cloaks. In addition, epsilon-near-zero (ENZ) metamaterials can also enhance light transmission through a subwavelength aperture. Impedance-matched all-dielectric zero-index metamaterials which exhibit Dirac cone dispersions at center of the Brillouin zone, have been experimentally demonstrated at microwave regime and optical frequencies for transverse-magnetic (TM) polarization of light. More recently, it has been also proved that these systems can be realized in a miniaturized in-plane geometry useful for integrated photonic applications, i.e. these metamaterials can be integrated with other optical elements, including waveguides, resonators and interferometers. In this work, using a zero-index metamaterial at the inner and outer sides of a subwavelength aperture, we numerically and experimental study light transmission through and its extraction from the aperture. The metamaterial consists of a combination of two double-layer arrays of scatterers with dissimilar subwavelength dimensions. The metamaterial exhibits zero-index optical response in microwave region. Our numerical investigation shows that the presence of the metamaterial at the inner side of the aperture leads to a considerable increase in the transmission of light through the subwavelength aperture. This enhancement is related to the amplification of the amplitude of the electromagnetic field inside the metamaterial which drastically increases the coupling between free space and the slit. By obtaining the electric field profile of the light passing through the considered NZI/aperture/NZI system at this frequency we found out that in addition to the enhanced transmission there is an excellent beaming of the extracted light from the structure. We have theoretically and experimentally shown that using a zero-index metamaterial at the inner and outer sides of a metallic subwavelength slit can considerably enhance the transmission of light through the aperture and beam its extraction, respectively. This work has been supported by TUBITAK under Project No 114E505. The author H.C. also acknowledges partial support from the Turkish Academy of Sciences.

  4. High-brightness 800nm fiber-coupled laser diodes

    NASA Astrophysics Data System (ADS)

    Berk, Yuri; Levy, Moshe; Rappaport, Noam; Tessler, Renana; Peleg, Ophir; Shamay, Moshe; Yanson, Dan; Klumel, Genadi; Dahan, Nir; Baskin, Ilya; Shkedi, Lior

    2014-03-01

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W - 5 W. Consequently, commercially available fiber coupled modules only deliver 5W - 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.

  5. Accessing High Spatial Resolution in Astronomy Using Interference Methods

    ERIC Educational Resources Information Center

    Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean

    2018-01-01

    In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of…

  6. PREDICTION OF SINGLE PHASE TRANSPORT PARAMETERS IN A VARIABLE APERTURE FRACTURE. (R825689C063,R825689C080)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Semantic and Phonological Task-Set Priming and Stimulus Processing Investigated Using Magnetoencephalography (MEG)

    ERIC Educational Resources Information Center

    McNab, F.; Rippon, G.; Hillebrand, A.; Singh, K. D.; Swithenby, S. J.

    2007-01-01

    In this study the neural substrates of semantic and phonological task priming and task performance were investigated using single word task-primes. Magnetoencephalography (MEG) data were analysed using Synthetic Aperture Magnetometry (SAM) to determine the spatiotemporal and spectral characteristics of cortical responses. Comparisons were made…

  8. Tidal Flexure, Ice Velocities, and Ablation Rates of Peterman Gletscher, Greenland

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1996-01-01

    Over the floating section of a tide-water glacier, single radar intererograms are difficult to use because the long-term steady motion of the ice is intermixed with the tidal vertical motion of the glacier. With multiple interferograms, it is however possible to isolate the tidal signal and remove it from the single interferograms to estimate the ice velocities. The technique is applied to ERS-1 synthetic aperture radar (SAR) images of Petermann Gletscher, north Greenland.

  9. WE-AB-209-09: Optimization of Rotational Arc Station Parameter Optimized Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, P; Xing, L; Ungun, B

    Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of improving VMAT in both plan quality and delivery efficiency. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based Proximal Operator Graph Solver (POGS) within seconds. Apertures with zero or low weight were thrown out. Tomore » avoid being trapped in a local minimum, a stochastic gradient descent method was employed which also greatly increased the convergence rate of the objective function. The above procedure repeated until the plan could not be improved any further. A weighting factor associated with the total plan MU also indirectly controlled the complexities of aperture shapes. The number of apertures for VMAT and SPORT was confined to 180. The SPORT allowed the coexistence of multiple apertures in a single SP. The optimization technique was assessed by using three clinical cases (prostate, H&N and brain). Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. Prostate case: the volume of the 50% prescription dose was decreased by 22% for the rectum. H&N case: SPORT improved the mean dose for the left and right parotids by 15% each. Brain case: the doses to the eyes, chiasm and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the H&N case. Conclusion: The superior dosimetric quality and delivery efficiency presented here indicates that SPORT is an intriguing alternative treatment modality.« less

  10. SU-E-T-187: Collimation Methods in Spot Scanning Proton Therapy: A Treatment Plan Comparison Between a Fixed Aperture and a Dynamic Collimation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, B; Gelover, E; Wang, D

    2015-06-15

    Purpose: Low-energy treatments during spot scanning proton therapy (SSPT) suffer from poor conformity due to increased spot size. Collimation devices can reduce the lateral penumbra of a proton therapy dose distribution and improve the overall plan quality. The purpose of this work was to study the advantages of individual energy-layer collimation, which is unique to a recently proposed Dynamic Collimation System (DCS), in comparison to a standard, fixed aperture that allows only a single shape for all energy layers. Methods: Three brain patients previously planned and treated with SSPT were re-planned using an in-house treatment planning system capable of modelingmore » collimated and un-collimated proton beamlets. The un-collimated plans, which served as a baseline for comparison, reproduced the target coverage of the clinically delivered plans. The collimator opening for the aperture based plans included a 0.6 cm expansion of the largest cross section of the target in the Beam’s Eye View, while the DCS based plans were created by optimizing the collimator position for beam spots near the periphery of the target in each energy layer. Results: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring, averaged 9.13% and 3.48% for the DCS and aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 16.42% and 8.16% for the DCS and aperture plans, respectively. Conclusion: Collimation reduces the dose to normal tissue adjacent to the target and increases dose conformity to the target region for low-energy SSPT. The ability of the DCS to provide collimation to each energy layer yields better conformity in comparison to fixed aperture plans. This work was partially funded by IBA (Ion Beam Applications S.A.)« less

  11. Numerical simulation based on core analysis of a single fracture in an Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Jarrahi, Miad; Holländer, Hartmut

    2017-04-01

    The permeability of reservoirs is widely affected by the presence of fractures dispersed within them, as they form superior paths for fluid flow. Core analysis studies the fractures characteristics and explains the fluid-rock interactions to provide the information of permeability and saturation of a hydraulic fracturing reservoir or an enhanced geothermal system (EGS). This study conducted numerical simulations of a single fracture in a Granite core obtained from a depth of 1890 m in borehole EPS1 from Soultz-sous-Forêts, France. Blaisonneau et al. (2016) designed the apparatus to investigate the complex physical phenomena on this cylindrical sample. The method of the tests was to percolate a fluid through a natural fracture contained in a rock sample, under controlled thermo-hydro-mechanical conditions. A divergent radial flow within the fracture occurred due to the injection of fluid into the center of the fracture. The tests were performed within a containment cell with a normal stress of 2.6, 4.9, 7.2 and 9.4 MPa loading on the sample perpendicular to the fracture plane. This experiment was numerically performed to provide an efficient numerical method by modeling single phase flow in between the fracture walls. Detailed morphological features of the fracture such as tortuosity and roughness, were obtained by image processing. The results included injection pressure plots with respect to injection flow rate. Consequently, by utilizing Hagen-Poiseuille's cubic law, the equivalent hydraulic aperture size, of the fracture was derived. Then, as the sample is cylindrical, to modify the Hagen-Poiseuille's cubic law for circular parallel plates, the geometric relation was applied to obtain modified hydraulic aperture size. Finally, intrinsic permeability of the fracture under each mechanical normal stress was evaluated based on modified hydraulic aperture size. The results were presented in two different scenarios, before and after reactive percolation test, to demonstrate the effect of chemical reactive flow. The fracture after percolation test showed larger equivalent aperture size and higher permeability. Additionally, the higher the normal stress, the lower permeability was investigated. This confirmed the permeability evolution due to chemical percolation and mechanical loading. All results showed good agreements with corresponding experimental results provided by Blaisonneau et al. (2016). Keyword: Core analysis, Hydraulic fracturing, Enhanced geothermal system, Permeability, Fluid-rock interactions.

  12. CubeSats for Astrophysics: The Current Perspective

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Shkolnik, Evgenya; Gorjian, Varoujan

    2017-01-01

    Cubesats are small satellites built to multiples of 1U (1000 cm3). The 2016 NRC Report “Achieving Science with CubeSats” indicates that between 2013 and 2018 NASA and NSF sponsored 104 CubeSats. Of those, only one is devoted to astrophysics: HaloSat (PI: P. Kaaret), a 6U CubeSat with an X-ray payload to study the hot galactic halo.Despite this paucity of missions, CubeSats have a lot of potential for astrophysics. To assess the science landscape that a CubeSat astrophysics mission may occupy, we consider the following parameters:1-Wavelength: CubeSats are not competitive in the visible, unless the application (e.g. high precision photometry) is difficult to do from the ground. Thermal IR science is limited by the lack of low-power miniaturized cryocoolers and by the large number of infrared astrophysical missions launched or planned. In the UV, advances in δ-doping processes result in larger sensitivity with smaller apertures. Commercial X-ray detectors also allow for competitive science.2-Survey vs. Pointed observations: All-sky surveys have been done at most wavelengths from X-rays to Far-IR and CubeSats will not be able to compete in sensitivity with them. CubeSat science should then center on specific objects or object classes. Due to poor attitude control, unresolved photometry is scientifically more promising that extended imaging.3-Single-epoch vs. time domain: CubeSat apertures cannot compete in sensitivity with big satellites when doing single-epoch observations. However, time-domain astrophysics is an area in which CubeSats can provide very valuable science return.Technologically, CubeSat astrophysics is limited by:1-Lack of large apertures: The largest aperture CubeSat launched is ~10 cm, although deployable apertures as large as 20 cm could be fitted to 6U buses.2-Poor attitude control: State-of-the-art systems have demonstrated jitter of ~10” on timescales of seconds. Jitter imposes limits on image quality and, coupled with detector errors, limits the S/N.Other technology limitations include the lack of high-bandwidth communication and low-power miniaturized cryocoolers. However, even with today’s technological limitations, astrophysics applications of CubeSats are only limited by our imagination.

  13. Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT

    PubMed Central

    Klein, Thomas; André, Raphael; Wieser, Wolfgang; Pfeiffer, Tom; Huber, Robert

    2013-01-01

    Joint-aperture optical coherence tomography (JA-OCT) is an angle-resolved OCT method, in which illumination from an active channel is simultaneously probed by several passive channels. JA-OCT increases the collection efficiency and effective sensitivity of the OCT system without increasing the power on the sample. Additionally, JA-OCT provides angular scattering information about the sample in a single acquisition, so the OCT imaging speed is not reduced. Thus, JA-OCT is especially suitable for ultra high speed in-vivo imaging. JA-OCT is compared to other angle-resolved techniques, and the relation between joint aperture imaging, adaptive optics, coherent and incoherent compounding is discussed. We present angle-resolved imaging of the human retina at an axial scan rate of 1.68 MHz, and demonstrate the benefits of JA-OCT: Speckle reduction, signal increase and suppression of specular and parasitic reflections. Moreover, in the future JA-OCT may allow for the reconstruction of the full Doppler vector and tissue discrimination by analysis of the angular scattering dependence. PMID:23577296

  14. Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers.

    PubMed

    Jain, Deepak; Jung, Yongmin; Barua, Pranabesh; Alam, Shaiful; Sahu, Jayanta K

    2015-03-23

    In this paper, we report the mode area scaling of a rare-earth doped step index fiber by using low numerical aperture. Numerical simulations show the possibility of achieving an effective area of ~700 um² (including bend induced effective area reduction) at a bend diameter of 32 cm from a 35 μm core fiber with a numerical aperture of 0.038. An effective single mode operation is ensured following the criterion of the fundamental mode loss to be lower than 0.1 dB/m while ensuring the higher order modes loss to be higher than 10 dB/m at a wavelength of 1060 nm. Our optimized modified chemical vapor deposition process in conjunction with solution doping process allows fabrication of an Yb-doped step index fiber having an ultra-low numerical aperture of ~0.038. Experimental results confirm a Gaussian output beam from a 35 μm core fiber validating our simulation results. Fiber shows an excellent laser efficiency of ~81%and aM² less than 1.1.

  15. Efficient creation of electron vortex beams for high resolution STEM imaging.

    PubMed

    Béché, A; Juchtmans, R; Verbeeck, J

    2017-07-01

    The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angström, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Alternative Beam Efficiency Calculations for a Large-aperture Multiple-frequency Microwave Radiometer (LAMMR)

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1979-01-01

    The fundamental definition of beam efficiency, given in terms of a far field radiation pattern, was used to develop alternative definitions which improve accuracy, reduce the amount of calculation required, and isolate the separate factors composing beam efficiency. Well-known definitions of aperture efficiency were introduced successively to simplify the denominator of the fundamental definition. The superposition of complex vector spillover and backscattered fields was examined, and beam efficiency analysis in terms of power patterns was carried out. An extension from single to dual reflector geometries was included. It is noted that the alternative definitions are advantageous in the mathematical simulation of a radiometer system, and are not intended for the measurements discipline where fields have merged and therefore lost their identity.

  17. Dual-camera design for coded aperture snapshot spectral imaging.

    PubMed

    Wang, Lizhi; Xiong, Zhiwei; Gao, Dahua; Shi, Guangming; Wu, Feng

    2015-02-01

    Coded aperture snapshot spectral imaging (CASSI) provides an efficient mechanism for recovering 3D spectral data from a single 2D measurement. However, since the reconstruction problem is severely underdetermined, the quality of recovered spectral data is usually limited. In this paper we propose a novel dual-camera design to improve the performance of CASSI while maintaining its snapshot advantage. Specifically, a beam splitter is placed in front of the objective lens of CASSI, which allows the same scene to be simultaneously captured by a grayscale camera. This uncoded grayscale measurement, in conjunction with the coded CASSI measurement, greatly eases the reconstruction problem and yields high-quality 3D spectral data. Both simulation and experimental results demonstrate the effectiveness of the proposed method.

  18. Bistatic synthetic aperture radar imaging for arbitrary flight trajectories.

    PubMed

    Yarman, Can Evren; Yazici, Birsen; Cheney, Margaret

    2008-01-01

    In this paper, we present an analytic, filtered backprojection (FBP) type inversion method for bistatic synthetic aperture radar (BISAR). We consider a BISAR system where a scene of interest is illuminated by electromagnetic waves that are transmitted, at known times, from positions along an arbitrary, but known, flight trajectory and the scattered waves are measured from positions along a different flight trajectory which is also arbitrary, but known. We assume a single-scattering model for the radar data, and we assume that the ground topography is known but not necessarily flat. We use microlocal analysis to develop the FBP-type reconstruction method. We analyze the computational complexity of the numerical implementation of the method and present numerical simulations to demonstrate its performance.

  19. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, G.; Chlachidze, G.; Wanderer, P.

    2016-10-06

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to addressmore » them are also presented and discussed.« less

  20. Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves

    DOEpatents

    Vincent, Paul

    2005-06-28

    A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.

  1. Direct visualization of the in-plane leakage of high-order transverse modes in vertical-cavity surface-emitting lasers mediated by oxide-aperture engineering

    NASA Astrophysics Data System (ADS)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Burger, S.; Schmidt, F.; Ledentsov, N. N.

    2016-03-01

    Oxide-confined apertures in vertical cavity surface emitting laser (VCSEL) can be engineered such that they promote leakage of the transverse optical modes from the non- oxidized core region to the selectively oxidized periphery of the device. The reason of the leakage is that the VCSEL modes in the core can be coupled to tilted modes in the periphery if the orthogonality between the core mode and the modes at the periphery is broken by the oxidation-induced optical field redistribution. Three-dimensional modeling of a practical VCSEL design reveals i) significantly stronger leakage losses for high-order transverse modes than that of the fundamental one as high-order modes have a higher field intensity close to the oxide layers and ii) narrow peaks in the far-field profile generated by the leaky component of the optical modes. Experimental 850-nm GaAlAs leaky VCSELs produced in the modeled design demonstrate i) single-mode lasing with the aperture diameters up to 5μm with side mode suppression ratio >20dB at the current density of 10kA/cm2; and ii) narrow peaks tilted at 37 degrees with respect to the vertical axis in excellent agreement with the modeling data and confirming the leaky nature of the modes and the proposed mechanism of mode selection. The results indicate that in- plane coupling of VCSELs, VCSELs and p-i-n photodiodes, VCSEL and delay lines is possible allowing novel photonic integrated circuits. We show that the approach enables design of oxide apertures, air-gap apertures, devices created by impurity-induced intermixing or any combinations of such designs through quantitative evaluation of the leaky emission.

  2. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  3. Stitching interferometry for ellipsoidal x-ray mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa; Matsuyama, Satoshi

    2016-05-15

    Ellipsoidal mirrors, which can efficiently produce a two-dimensional focusing beam with a single mirror, are superior x-ray focusing optics, especially when compared to elliptical-cylinder mirrors in the Kirkpatrick–Baez geometry. However, nano-focusing ellipsoidal mirrors are not commonly used for x-ray optics because achieving the accuracy required for the surface metrology of nano-focusing ellipsoidal mirrors is difficult due to their small radius of curvature along the short ellipsoidal axis. Here, we developed a surface metrology system for nano-focusing ellipsoidal mirrors using stitching interferometric techniques. The developed system simultaneously measures sub-aperture shapes with a microscopic interferometer and the tilt angles of the sub-aperturemore » shapes with a large Fizeau interferometer. After correcting the systematic errors included in the sub-aperture shapes, the entire mirror shape is calculated by stitching the sub-aperture shapes based on the obtained relative angles between partially overlapped sub-apertures. In this study, we developed correction methods for systematic errors in sub-aperture shapes that originated from off-axis aberrations produced in the optics of the microscopic interferometer. The systematic errors on an ellipsoidal mirror were estimated by measuring a series of tilted plane substrates and the ellipsoidal substrate. From measurements of an ellipsoidal mirror with a 3.6-mm radius of curvature at the mirror center, we obtained a measurement repeatability of 0.51 nm (root-mean-square) in an assessment area of 0.5 mm × 99.18 mm. This value satisfies the requirements for surface metrology of nano-focusing x-ray mirrors. Thus, the developed metrology system should be applicable for fabricating nano-focusing ellipsoidal mirrors.« less

  4. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; hide

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  5. Design and implementation of coded aperture coherent scatter spectral imaging of cancerous and healthy breast tissue samples

    PubMed Central

    Lakshmanan, Manu N.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.

    2016-01-01

    Abstract. A scatter imaging technique for the differentiation of cancerous and healthy breast tissue in a heterogeneous sample is introduced in this work. Such a technique has potential utility in intraoperative margin assessment during lumpectomy procedures. In this work, we investigate the feasibility of the imaging method for tumor classification using Monte Carlo simulations and physical experiments. The coded aperture coherent scatter spectral imaging technique was used to reconstruct three-dimensional (3-D) images of breast tissue samples acquired through a single-position snapshot acquisition, without rotation as is required in coherent scatter computed tomography. We perform a quantitative assessment of the accuracy of the cancerous voxel classification using Monte Carlo simulations of the imaging system; describe our experimental implementation of coded aperture scatter imaging; show the reconstructed images of the breast tissue samples; and present segmentations of the 3-D images in order to identify the cancerous and healthy tissue in the samples. From the Monte Carlo simulations, we find that coded aperture scatter imaging is able to reconstruct images of the samples and identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) inside them with a cancerous voxel identification sensitivity, specificity, and accuracy of 92.4%, 91.9%, and 92.0%, respectively. From the experimental results, we find that the technique is able to identify cancerous and healthy tissue samples and reconstruct differential coherent scatter cross sections that are highly correlated with those measured by other groups using x-ray diffraction. Coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue inside samples within a time on the order of a minute per slice. PMID:26962543

  6. Design and implementation of coded aperture coherent scatter spectral imaging of cancerous and healthy breast tissue samples.

    PubMed

    Lakshmanan, Manu N; Greenberg, Joel A; Samei, Ehsan; Kapadia, Anuj J

    2016-01-01

    A scatter imaging technique for the differentiation of cancerous and healthy breast tissue in a heterogeneous sample is introduced in this work. Such a technique has potential utility in intraoperative margin assessment during lumpectomy procedures. In this work, we investigate the feasibility of the imaging method for tumor classification using Monte Carlo simulations and physical experiments. The coded aperture coherent scatter spectral imaging technique was used to reconstruct three-dimensional (3-D) images of breast tissue samples acquired through a single-position snapshot acquisition, without rotation as is required in coherent scatter computed tomography. We perform a quantitative assessment of the accuracy of the cancerous voxel classification using Monte Carlo simulations of the imaging system; describe our experimental implementation of coded aperture scatter imaging; show the reconstructed images of the breast tissue samples; and present segmentations of the 3-D images in order to identify the cancerous and healthy tissue in the samples. From the Monte Carlo simulations, we find that coded aperture scatter imaging is able to reconstruct images of the samples and identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) inside them with a cancerous voxel identification sensitivity, specificity, and accuracy of 92.4%, 91.9%, and 92.0%, respectively. From the experimental results, we find that the technique is able to identify cancerous and healthy tissue samples and reconstruct differential coherent scatter cross sections that are highly correlated with those measured by other groups using x-ray diffraction. Coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue inside samples within a time on the order of a minute per slice.

  7. Method for measuring the focal spot size of an x-ray tube using a coded aperture mask and a digital detector.

    PubMed

    Russo, Paolo; Mettivier, Giovanni

    2011-04-01

    The goal of this study is to evaluate a new method based on a coded aperture mask combined with a digital x-ray imaging detector for measurements of the focal spot sizes of diagnostic x-ray tubes. Common techniques for focal spot size measurements employ a pinhole camera, a slit camera, or a star resolution pattern. The coded aperture mask is a radiation collimator consisting of a large number of apertures disposed on a predetermined grid in an array, through which the radiation source is imaged onto a digital x-ray detector. The method of the coded mask camera allows one to obtain a one-shot accurate and direct measurement of the two dimensions of the focal spot (like that for a pinhole camera) but at a low tube loading (like that for a slit camera). A large number of small apertures in the coded mask operate as a "multipinhole" with greater efficiency than a single pinhole, but keeping the resolution of a single pinhole. X-ray images result from the multiplexed output on the detector image plane of such a multiple aperture array, and the image of the source is digitally reconstructed with a deconvolution algorithm. Images of the focal spot of a laboratory x-ray tube (W anode: 35-80 kVp; focal spot size of 0.04 mm) were acquired at different geometrical magnifications with two different types of digital detector (a photon counting hybrid silicon pixel detector with 0.055 mm pitch and a flat panel CMOS digital detector with 0.05 mm pitch) using a high resolution coded mask (type no-two-holes-touching modified uniformly redundant array) with 480 0.07 mm apertures, designed for imaging at energies below 35 keV. Measurements with a slit camera were performed for comparison. A test with a pinhole camera and with the coded mask on a computed radiography mammography unit with 0.3 mm focal spot was also carried out. The full width at half maximum focal spot sizes were obtained from the line profiles of the decoded images, showing a focal spot of 0.120 mm x 0.105 mm at 35 kVp and M = 6.1, with a detector entrance exposure as low as 1.82 mR (0.125 mA s tube load). The slit camera indicated a focal spot of 0.112 mm x 0.104 mm at 35 kVp and M = 3.15, with an exposure at the detector of 72 mR. Focal spot measurements with the coded mask could be performed up to 80 kVp. Tolerance to angular misalignment with the reference beam up to 7 degrees in in-plane rotations and 1 degrees deg in out-of-plane rotations was observed. The axial distance of the focal spot from the coded mask could also be determined. It is possible to determine the beam intensity via measurement of the intensity of the decoded image of the focal spot and via a calibration procedure. Coded aperture masks coupled to a digital area detector produce precise determinations of the focal spot of an x-ray tube with reduced tube loading and measurement time, coupled to a large tolerance in the alignment of the mask.

  8. Analyzing spatial coherence using a single mobile field sensor.

    PubMed

    Fridman, Peter

    2007-04-01

    According to the Van Cittert-Zernike theorem, the intensity distribution of a spatially incoherent source and the mutual coherence function of the light impinging on two wave sensors are related. It is the comparable relationship using a single mobile sensor moving at a certain velocity relative to the source that is calculated in this paper. The auto-corelation function of the electric field at the sensor contains information about the intensity distribution. This expression could be employed in aperture synthesis.

  9. Chromophore Poling in Thin Films of Organic Glasses. 3. Setup for Corona Triode Discharge / Hromoforu Polarizēšana Plānās Organisko Stiklu Kārtiņās 3. Koronas Izlādes Triodes Ierīce

    NASA Astrophysics Data System (ADS)

    Vilitis, O.; Titavs, E.; Nitiss, E.; Rutkis, M.

    2013-02-01

    The corona discharge is described focusing on the advantages of corona triode techniques for the direct current (DC) positive poling of optical polymers. The proposed experimental setup allows the corona poling of nonlinear optical (NLO) polymers in the modes of DC constant current (the lowest 1nA) and of the fixed corona-grid voltage, making it possible to carry out the corona-onset poling at elevated temperature (COPET) up to 200 oC. The setup also provides a wide range of the corona discharge voltage (3 kV - 15 kV), variable reciprocal distance of electrodes as well as the possibility to choose from different types of the corona electrode (needle, multi-needle, wire, etc.). By keeping the corona-to-grid voltage constant, a stable corona discharge at electrode is attained. The grid voltage can be varied in the range from 0 to 3kV. The corona poling area on the sample surface is pre-defined by placing ring spacers above it. The setup is completely computerized, allowing both control and monitoring of the corona discharge, which promotes research into the process of charging NLO polymer samples and selection of the optimal poling mode. Using the voltage-current characteristics and the second-harmonic measurements of a poled polymer we also demonstrate the influence of the setup parameters on the efficiency of poling the thin film NLO polymers. Darba ievadā īsumā aprakstīta koronas izlāde, izceļot koronas triodes theniskās metodes lietošanas priekšrocības optisko polimeru polarizēšanā ar pozitīvās koronas līdzstrāvu. Rakstā apskatīta eksperimentāla koronas polēšanas ierīce, kas sniedz iespēju polarizēt nelineāros optiskos (NLO) polimērus pie konstantas strāvas (līdz pat 1 nA) un fiksēta koronas elektroda-tīkliņa sprieguma, ļaujot veikt polēšanu paaugstinātās temperatūrās līdz 200 oC. Ierīcē paredzētas plašas koronas izlādes sprieguma izvēles robežas (3-15 kV), iespējas mainīt elektrodu savstarpējo izvietojumu un izvēlēties dažādus koronas elektrodu veidus (adatu, vairākas adatas, stiepli). Ir iespējams nodrošināt pastāvīgu koronas elektroda darba režīmu, saglabājot konstantu spriegumu starp koronas elektrodu un tīkliņu pie tīkliņa sprieguma izmainīšanas iespējām robežās no 0-3 kV. Parauga virsmas polarizēšanas laukumu var mainīt ar gredzenveida starplikām, ko novieto virs parauga virsmas. Ierīce ir pilnībā datorizēta, kas ļauj sekot koronas izlādes gaitai, to vadīt un reģistrēt rezultātus. Tas savukārt uzlabo NLO polimēru paraugu uzlādēšanas procesu pētījumu kvalitāti un ļauj veiksmīgāk noteikt optimālāko polarizēšanas režīmu. Izmantojot strāvas-sprieguma raksturlīknes un polarizēto polimēru otrās harmonikas mērījumus, var arī uzskatāmi parādīt, kā polarizēšanas ierīces un tās darba režīma parametri ietekmē polarizēto plāno kārtiņu NLO efektivitāti.

  10. Microcrystallography using single-bounce monocapillary optics

    PubMed Central

    Gillilan, R. E.; Cook, M. J.; Cornaby, S. W.; Bilderback, D. H.

    2010-01-01

    X-ray microbeams have become increasingly valuable in protein crystallography. A number of synchrotron beamlines worldwide have adapted to handling smaller and more challenging samples by providing a combination of high-precision sample-positioning hardware, special visible-light optics for sample visualization, and small-diameter X-ray beams with low background scatter. Most commonly, X-ray microbeams with diameters ranging from 50 µm to 1 µm are produced by Kirkpatrick and Baez mirrors in combination with defining apertures and scatter guards. A simple alternative based on single-bounce glass monocapillary X-ray optics is presented. The basic capillary design considerations are discussed and a practical and robust implementation that capitalizes on existing beamline hardware is presented. A design for mounting the capillary is presented which eliminates parasitic scattering and reduces deformations of the optic to a degree suitable for use on next-generation X-ray sources. Comparison of diffraction data statistics for microcrystals using microbeam and conventional aperture-collimated beam shows that capillary-focused beam can deliver significant improvement. Statistics also confirm that the annular beam profile produced by the capillary optic does not impact data quality in an observable way. Examples are given of new structures recently solved using this technology. Single-bounce monocapillary optics can offer an attractive alternative for retrofitting existing beamlines for microcrystallography. PMID:20157276

  11. Method of mounting a fuel pellet in a laser-excited fusion reactor

    DOEpatents

    Hirsch, Robert L.

    1979-01-01

    Laser irradiation means for irradiating a target, wherein a single laser light beam from a source and a mirror close to the target are used with aperture means for directing laser light to interact with the target over a broad area of the surface, and for protecting the laser light source.

  12. Three-dimensional light trap for reflective particles

    DOEpatents

    Neal, Daniel R.

    1999-01-01

    A system for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focussed beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focussed beams creates a "light cage" and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained.

  13. Three-dimensional light trap for reflective particles

    DOEpatents

    Neal, D.R.

    1999-08-17

    A system is disclosed for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focused beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focused beams creates a ``light cage`` and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained. 10 figs.

  14. Multi-diversity combining and selection for relay-assisted mixed RF/FSO system

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Weidong

    2017-12-01

    We propose and analyze multi-diversity combining and selection to enhance the performance of relay-assisted mixed radio frequency/free-space optics (RF/FSO) system. We focus on a practical scenario for cellular network where a single-antenna source is communicating to a multi-apertures destination through a relay equipped with multiple receive antennas and multiple transmit apertures. The RF single input multiple output (SIMO) links employ either maximal-ratio combining (MRC) or receive antenna selection (RAS), and the FSO multiple input multiple output (MIMO) links adopt either repetition coding (RC) or transmit laser selection (TLS). The performance is evaluated via an outage probability analysis over Rayleigh fading RF links and Gamma-Gamma atmospheric turbulence FSO links with pointing errors where channel state information (CSI) assisted amplify-and-forward (AF) scheme is considered. Asymptotic closed-form expressions at high signal-to-noise ratio (SNR) are also derived. Coding gain and diversity order for different combining and selection schemes are further discussed. Numerical results are provided to verify and illustrate the analytical results.

  15. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar.

    PubMed

    Wang, Zhirui; Xu, Jia; Huang, Zuzhen; Zhang, Xudong; Xia, Xiang-Gen; Long, Teng; Bao, Qian

    2016-03-16

    To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target's position on the road as well as its radial velocity can be determined according to the target's offset distance and traffic rules. Furthermore, the target's azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm.

  16. New perspective on single-radiator multiple-port antennas for adaptive beamforming applications.

    PubMed

    Byun, Gangil; Choo, Hosung

    2017-01-01

    One of the most challenging problems in recent antenna engineering fields is to achieve highly reliable beamforming capabilities in an extremely restricted space of small handheld devices. In this paper, we introduce a new perspective on single-radiator multiple-port (SRMP) antenna to alter the traditional approach of multiple-antenna arrays for improving beamforming performances with reduced aperture sizes. The major contribution of this paper is to demonstrate the beamforming capability of the SRMP antenna for use as an extremely miniaturized front-end component in more sophisticated beamforming applications. To examine the beamforming capability, the radiation properties and the array factor of the SRMP antenna are theoretically formulated for electromagnetic characterization and are used as complex weights to form adaptive array patterns. Then, its fundamental performance limits are rigorously explored through enumerative studies by varying the dielectric constant of the substrate, and field tests are conducted using a beamforming hardware to confirm the feasibility. The results demonstrate that the new perspective of the SRMP antenna allows for improved beamforming performances with the ability of maintaining consistently smaller aperture sizes compared to the traditional multiple-antenna arrays.

  17. NIAC Phase II Orbiting Rainbows: Future Space Imaging with Granular Systems

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.; Basinger, Scott; Arumugam, Darmindra; Swartzlander, Grover

    2017-01-01

    Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultra-lightweight space optics and, ultimately, in-situ space system fabrication. Typically, the cost of an optical system is driven by the size and mass of the primary aperture. The ideal system is a cloud of spatially disordered dust-like objects that can be optically manipulated: it is highly reconfigurable, fault-tolerant, and allows very large aperture sizes at low cost. This new concept is based on recent understandings in the physics of optical manipulation of small particles in the laboratory and the engineering of distributed ensembles of spacecraft swarms to shape an orbiting cloud of micron-sized objects. In the same way that optical tweezers have revolutionized micro- and nano-manipulation of objects, our breakthrough concept will enable new large scale NASA mission applications and develop new technology in the areas of Astrophysical Imaging Systems and Remote Sensing because the cloud can operate as an adaptive optical imaging sensor. While achieving the feasibility of constructing one single aperture out of the cloud is the main topic of this work, it is clear that multiple orbiting aerosol lenses could also combine their power to synthesize a much larger aperture in space to enable challenging goals such as exo-planet detection. Furthermore, this effort could establish feasibility of key issues related to material properties, remote manipulation, and autonomy characteristics of cloud in orbit. There are several types of endeavors (science missions) that could be enabled by this type of approach, i.e. it can enable new astrophysical imaging systems, exo-planet search, large apertures allow for unprecedented high resolution to discern continents and important features of other planets, hyperspectral imaging, adaptive systems, spectroscopy imaging through limb, and stable optical systems from Lagrange-points. Furthermore, future micro-miniaturization might hold promise of a further extension of our dust aperture concept to other more exciting smart dust concepts with other associated capabilities. Our objective in Phase II was to experimentally and numerically investigate how to optically manipulate and maintain the shape of an orbiting cloud of dust-like matter so that it can function as an adaptable ultra-lightweight surface. Our solution is based on the aperture being an engineered granular medium, instead of a conventional monolithic aperture. This allows building of apertures at a reduced cost, enables extremely fault-tolerant apertures that cannot otherwise be made, and directly enables classes of missions for exoplanet detection based on Fourier spectroscopy with tight angular resolution and innovative radar systems for remote sensing. In this task, we have examined the advanced feasibility of a crosscutting concept that contributes new technological approaches for space imaging systems, autonomous systems, and space applications of optical manipulation. The proposed investigation has matured the concept that we started in Phase I to TRL 3, identifying technology gaps and candidate system architectures for the space-borne cloud as an aperture.

  18. Recent developments of x-ray lithography in Canada

    NASA Astrophysics Data System (ADS)

    Chaker, Mohamed; Boily, Stephane; Ginovker, A.; Jean, Alain; Kieffer, Jean-Claude; Mercier, P. P.; Pepin, Henri; Leung, Pak; Currie, John F.; Lafontaine, Hugues

    1991-08-01

    An overview of current activities in Canada is reported, including x-ray lithography studies based on laser plasma sources and x-ray mask development. In particular, the application of laser plasma sources for x-ray lithography is discussed, taking into account the industrial requirement and the present state of laser technology. The authors describe the development of silicon carbide membranes for x-ray lithography application. SiC films were prepared using either a 100 kHz plasma-enhanced chemical vapor deposition (PECVD) system or a laser ablation technique. These membranes have a relatively large diameter (> 1 in.) and a high optical transparency (> 50%). Experimental studies on stresses in tungsten films deposited with triode sputtering are reported.

  19. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  20. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  1. Multiple-aperture optical design for micro-level cameras using 3D-printing method

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Jei; Hsu, Wei-Yao; Cheng, Yuan-Chieh; Lin, Wen-Lung; Yu, Zong-Ru; Chou, Hsiao-Yu; Chen, Fong-Zhi; Fu, Chien-Chung; Wu, Chong-Syuan; Huang, Chao-Tsung

    2018-02-01

    The design of the ultra miniaturized camera using 3D-printing technology directly printed on to the complementary metal-oxide semiconductor (CMOS) imaging sensor is presented in this paper. The 3D printed micro-optics is manufactured using the femtosecond two-photon direct laser writing, and the figure error which could achieve submicron accuracy is suitable for the optical system. Because the size of the micro-level camera is approximately several hundreds of micrometers, the resolution is reduced much and highly limited by the Nyquist frequency of the pixel pitch. For improving the reduced resolution, one single-lens can be replaced by multiple-aperture lenses with dissimilar field of view (FOV), and then stitching sub-images with different FOV can achieve a high resolution within the central region of the image. The reason is that the angular resolution of the lens with smaller FOV is higher than that with larger FOV, and then the angular resolution of the central area can be several times than that of the outer area after stitching. For the same image circle, the image quality of the central area of the multi-lens system is significantly superior to that of a single-lens. The foveated image using stitching FOV breaks the limitation of the resolution for the ultra miniaturized imaging system, and then it can be applied such as biomedical endoscopy, optical sensing, and machine vision, et al. In this study, the ultra miniaturized camera with multi-aperture optics is designed and simulated for the optimum optical performance.

  2. Comparison of femur tunnel aperture location in patients undergoing transtibial and anatomical single-bundle anterior cruciate ligament reconstruction.

    PubMed

    Lee, Dae-Hee; Kim, Hyun-Jung; Ahn, Hyeong-Sik; Bin, Seong-Il

    2016-12-01

    Although three-dimensional computed tomography (3D-CT) has been used to compare femoral tunnel position following transtibial and anatomical anterior cruciate ligament (ACL) reconstruction, no consensus has been reached on which technique results in a more anatomical position because methods of quantifying femoral tunnel position on 3D-CT have not been consistent. This meta-analysis was therefore performed to compare femoral tunnel location following transtibial and anatomical ACL reconstruction, in both the low-to-high and deep-to-shallow directions. This meta-analysis included all studies that used 3D-CT to compare femoral tunnel location, using quadrant or anatomical coordinate axis methods, following transtibial and anatomical (AM portal or OI) single-bundle ACL reconstruction. Six studies were included in the meta-analysis. Femoral tunnel location was 18 % higher in the low-to-high direction, but was not significant in the deep-to-shallow direction, using the transtibial technique than the anatomical methods, when measured using the anatomical coordinate axis method. When measured using the quadrant method, however, femoral tunnel positions were significantly higher (21 %) and shallower (6 %) with transtibial than anatomical methods of ACL reconstruction. The anatomical ACL reconstruction techniques led to a lower femoral tunnel aperture location than the transtibial technique, suggesting the superiority of anatomical techniques for creating new femoral tunnels during revision ACL reconstruction in femoral tunnel aperture location in the low-to-high direction. However, the mean difference in the deep-to-shallow direction differed by method of measurement. Meta-analysis, Level II.

  3. Tip localization of an atomic force microscope in transmission microscopy with nanoscale precision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, Fabian; Pippig, Diana A., E-mail: diana.pippig@physik.uni-muenchen.de; Gaub, Hermann E.

    Since the atomic force microscope (AFM) has evolved into a general purpose platform for mechanical experiments at the nanoscale, the need for a simple and generally applicable localization of the AFM cantilever in the reference frame of an optical microscope has grown. Molecular manipulations like in single molecule cut and paste or force spectroscopy as well as tip mediated nanolithography are prominent examples for the broad variety of applications implemented to date. In contrast to the different kinds of superresolution microscopy where fluorescence is used to localize the emitter, we, here, employ the absorbance of the tip to localize itsmore » position in transmission microscopy. We show that in a low aperture illumination, the tip causes a significant reduction of the intensity in the image plane of the microscope objective when it is closer than a few hundred nm. By independently varying the z-position of the sample slide, we could verify that this diffraction limited image of the tip is not caused by a near field effect but is rather caused by the absorbance of the transmitted light in the low apex needle-like tip. We localized the centroid position of this tip image with a precision of better than 6 nm and used it in a feedback loop to position the tip into nano-apertures of 110 nm radius. Single-molecule force spectroscopy traces on the unfolding of individual green fluorescent proteins within the nano-apertures showed that their center positions were repeatedly approached with very high fidelity leaving the specific handle chemistry on the tip’s surface unimpaired.« less

  4. Fracture characterization and fracture-permeability estimation at the underground research laboratory in southeastern Manitoba, Canada

    USGS Publications Warehouse

    Paillet, Frederick L.

    1988-01-01

    Various conventional geophysical well logs were obtained in conjunction with acoustic tube-wave amplitude and experimental heat-pulse flowmeter measurements in two deep boreholes in granitic rocks on the Canadian shield in southeastern Manitoba. The objective of this study is the development of measurement techniques and data processing methods for characterization of rock volumes that might be suitable for hosting a nuclear waste repository. One borehole, WRA1, intersected several major fracture zones, and was suitable for testing quantitative permeability estimation methods. The other borehole, URL13, appeared to intersect almost no permeable fractures; it was suitable for testing methods for the characterization of rocks of very small permeability and uniform thermo-mechanical properties in a potential repository horizon. Epithermal neutron , acoustic transit time, and single-point resistance logs provided useful, qualitative indications of fractures in the extensively fractured borehole, WRA1. A single-point log indicates both weathering and the degree of opening of a fracture-borehole intersection. All logs indicate the large intervals of mechanically and geochemically uniform, unfractured granite below depths of 300 m in the relatively unfractured borehole, URL13. Some indications of minor fracturing were identified in that borehole, with one possible fracture at a depth of about 914 m, producing a major acoustic waveform anomaly. Comparison of acoustic tube-wave attenuation with models of tube-wave attenuation in infinite fractures of given aperture provide permeability estimates ranging from equivalent single-fractured apertures of less than 0.01 mm to apertures of > 0.5 mm. One possible fracture anomaly in borehole URL13 at a depth of about 914 m corresponds with a thin mafic dike on the core where unusually large acoustic contrast may have produced the observed waveform anomaly. No indications of naturally occurring flow existed in borehole URL13; however, flowmeter measurements indicated flow at < 0.05 L/min from the upper fracture zones in borehole WRA1 to deeper fractures at depths below 800 m. (Author 's abstract)

  5. The Multispectral Atmospheric Mapping Sensor (MAMS): Instrument description, calibration and data quality

    NASA Technical Reports Server (NTRS)

    Jedlovec, G. J.; Menzel, W. P.; Atkinson, R.; Wilson, G. S.; Arvesen, J.

    1986-01-01

    A new instrument has been developed to produce high resolution imagery in eight visible and three infared spectral bands from an aircraft platform. An analysis of the data and calibration procedures has shown that useful data can be obtained at up to 50 m resolution with a 2.5 milliradian aperture. Single sample standard errors for the measurements are 0.5, 0.2, and 0.9 K for the 6.5, 11.1, and 12.3 micron spectral bands, respectively. These errors are halved when a 5.0 milliradian aperture is used to obtain 100 m resolution data. Intercomparisons with VAS and AVHRR measurements show good relative calibration. MAMS development is part of a larger program to develop multispectral Earth imaging capabilities from space platforms during the 1990s.

  6. Debris-less method and apparatus for forming apertures in hollow metallic articles

    DOEpatents

    Jordan, C.L.; Chodelka, E.J.

    1980-06-24

    This invention is a method for forming an aperture in a wall of a hollow metallic article without introducing metallic debris therein. In a typical operation, an annular groove is formed in an exterior portion of the wall. The groove defines an annular wall segment, and the bottom of the groove is shaped to slope downwardly away from the segment to form a tapered annular web which connects the segment to the wall. Any suitable coupling is attached to the outer face of the segment, as by welding. Pull then is applied to the coupling to effect circumferential breakage of the web, thus forming a removable single-piece wall fragment consisting of the web and segment. The fragment and the coupling member attached thereto then are removed from the wall.

  7. Mission Concepts for High-Resolution Solar Imaging with a Photon Sieve

    NASA Astrophysics Data System (ADS)

    Rabin, Douglas M.; Davila, Joseph; Daw, Adrian N.; Denis, Kevin L.; Novo-Gradac, Anne-Marie; Shah, Neerav; Widmyer, Thomas R.

    2017-08-01

    The best EUV coronal imagers are unable to probe the expected energy dissipation scales of the solar corona (<100 km) because conventional optics cannot be figured to near diffraction-limited accuracy at these wavelengths. Davila (2011) has proposed that a photon sieve, a diffractive imaging element similar to a Fresnel zone plate, provides a technically feasible path to the required angular resolution. We have produced photon sieves as large as 80 mm clear aperture. We discuss laboratory measurements of these devices and the path to larger apertures. The focal length of a sieve with high EUV resolution is at least 10 m. Options for solar imaging with such a sieve include a sounding rocket, a single spacecraft with a deployed boom, and two spacecraft flying in precise formation.

  8. The Born approximation, multiple scattering, and the butterfly algorithm

    NASA Astrophysics Data System (ADS)

    Martinez, Alejandro F.

    Radar works by focusing a beam of light and seeing how long it takes to reflect. To see a large region the beam is pointed in different directions. The focus of the beam depends on the size of the antenna (called an aperture). Synthetic aperture radar (SAR) works by moving the antenna through some region of space. A fundamental assumption in SAR is that waves only bounce once. Several imaging algorithms have been designed using that assumption. The scattering process can be described by iterations of a badly behaving integral. Recently a method for efficiently evaluating these types of integrals has been developed. We will give a detailed implementation of this algorithm and apply it to study the multiple scattering effects in SAR using target estimates from single scattering algorithms.

  9. Performance limits for maritime Inverse Synthetic Aperture Radar (ISAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin Walter

    2013-11-01

    The performance of an Inverse Synthetic Aperture Radar (ISAR) system depends on a variety of factors, many which are interdependent in some manner. In this report we specifically examine ISAR as applied to maritime targets (e.g. ships). It is often difficult to get your arms around the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall ISAR system. While themore » information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the seek time.« less

  10. Miniaturized CARS microendoscope probe design for label-free intraoperative imaging

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Wang, Xi; Xu, Xiaoyun; Cheng, Jie; Liu, Zhengfan; Weng, Sheng; Thrall, Michael J.; Goh, Alvin C.; McCormick, Daniel T.; Wong, Kelvin; Wong, Stephen T. C.

    2014-03-01

    A Coherent Anti-Stokes Raman Scattering (CARS) microendoscope probe for early stage label-free prostate cancer diagnosis at single cell resolution is presented. The handheld CARS microendoscope probe includes a customized micro-electromechanical systems (MEMS) scanning mirror as well as miniature optical and mechanical components. In our design, the excitation laser (pump and stokes beams) from the fiber is collimated, reflected by the reflecting mirror, and transmitted via a 2D MEMS scanning mirror and a micro-objective system onto the sample; emission in the epi-direction is returned through the micro-objective lens, MEMS and reflecting mirror, and collimation system, and finally the emission signal is collected by a photomultiplier tube (PMT). The exit pupil diameter of the collimator system is designed to match the diameter of the MEMS mirror and the entrance pupil diameter of the micro-objective system. The back aperture diameter of the micro-objective system is designed according to the largest MEMS scanning angle and the distance between the MEMS mirror and the back aperture. To increase the numerical aperture (NA) of the micro-objective system in order to enhance the signal collection efficiency, the back aperture diameter of the micro-objective system is enlarged with an upfront achromatic wide angle Keplerian telescope beam expander. The integration of a miniaturized micro-optics probe with optical fiber CARS microscopy opens up the possibility of in vivo molecular imaging for cancer diagnosis and surgical intervention.

  11. Achieving the Earth Science Enterprise Vision for the 21st Century: Platform Challenges

    NASA Technical Reports Server (NTRS)

    Lemmerman, Loren; Komar, George (Technical Monitor)

    2001-01-01

    The ESE observational architecture of the future vision is dramatically different from that of today. The vision suggests observations from multiple orbits, collaborating space assets, and even seamless integration of space and other assets. Observations from GEO or from Libration points rather than from LEO suggest spacecraft carrying instruments with large deployable apertures. Minimization of launch costs suggests that these large apertures have long life, be extremely mass and volume efficient, and have low life cycle cost. Another significant challenge associated with high latitude orbits is high precision pointing and control. Finally, networks of spacecraft flying in predetermined constellation will be required either to apply complementary assets to an observation or to extend the virtual aperture beyond that attainable with a single spacecraft. These changes dictate development of new technology on several fronts, which are outlined in this paper. A section on high speed communications will outline requirements and approaches now envisioned. Sensorwebs will be developed from the viewpoint of work already begun for both space and for terrestrial networks. Precision guidance, navigation and control will be addressed from the perspective of precision flying for repeat pass interferometry and extreme pointing stability for advanced altimetry. A separate section will address requirements for distributed systems. Large lightweight deployables will be discussed with an emphasis on inflatable technology and its predicted benefits for large aperture instruments. For each technology area listed, current state-of-the-art, technological approaches for future development, and projected levels of performance are outlined.

  12. Institute for Defense Analysis. Annual Report 1994

    DTIC Science & Technology

    1994-01-01

    activities with engineering and rines in submarine-unique roles. However, we manufacturing development into a single identified a number of other...development efforts. In addition, and mine-laying capabilities, with roughly 25 the panel proposed increasing both the number nations manufacturing ...the engineering concepts and design, and for implementing Synthetic Aperture Radar flexible manufacturing procedures for focal Reconnaissance

  13. Compressive Coded-Aperture Multimodal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Rueda-Chacon, Hoover F.

    Multimodal imaging refers to the framework of capturing images that span different physical domains such as space, spectrum, depth, time, polarization, and others. For instance, spectral images are modeled as 3D cubes with two spatial and one spectral coordinate. Three-dimensional cubes spanning just the space domain, are referred as depth volumes. Imaging cubes varying in time, spectra or depth, are referred as 4D-images. Nature itself spans different physical domains, thus imaging our real world demands capturing information in at least 6 different domains simultaneously, giving turn to 3D-spatial+spectral+polarized dynamic sequences. Conventional imaging devices, however, can capture dynamic sequences with up-to 3 spectral channels, in real-time, by the use of color sensors. Capturing multiple spectral channels require scanning methodologies, which demand long time. In general, to-date multimodal imaging requires a sequence of different imaging sensors, placed in tandem, to simultaneously capture the different physical properties of a scene. Then, different fusion techniques are employed to mix all the individual information into a single image. Therefore, new ways to efficiently capture more than 3 spectral channels of 3D time-varying spatial information, in a single or few sensors, are of high interest. Compressive spectral imaging (CSI) is an imaging framework that seeks to optimally capture spectral imagery (tens of spectral channels of 2D spatial information), using fewer measurements than that required by traditional sensing procedures which follows the Shannon-Nyquist sampling. Instead of capturing direct one-to-one representations of natural scenes, CSI systems acquire linear random projections of the scene and then solve an optimization algorithm to estimate the 3D spatio-spectral data cube by exploiting the theory of compressive sensing (CS). To date, the coding procedure in CSI has been realized through the use of ``block-unblock" coded apertures, commonly implemented as chrome-on-quartz photomasks. These apertures block or permit to pass the entire spectrum from the scene at given spatial locations, thus modulating the spatial characteristics of the scene. In the first part, this thesis aims to expand the framework of CSI by replacing the traditional block-unblock coded apertures by patterned optical filter arrays, referred as ``color" coded apertures. These apertures are formed by tiny pixelated optical filters, which in turn, allow the input image to be modulated not only spatially but spectrally as well, entailing more powerful coding strategies. The proposed colored coded apertures are either synthesized through linear combinations of low-pass, high-pass and band-pass filters, paired with binary pattern ensembles realized by a digital-micromirror-device (DMD), or experimentally realized through thin-film color-patterned filter arrays. The optical forward model of the proposed CSI architectures will be presented along with the design and proof-of-concept implementations, which achieve noticeable improvements in the quality of the reconstructions compared with conventional block-unblock coded aperture-based CSI architectures. On another front, due to the rich information contained in the infrared spectrum as well as the depth domain, this thesis aims to explore multimodal imaging by extending the range sensitivity of current CSI systems to a dual-band visible+near-infrared spectral domain, and also, it proposes, for the first time, a new imaging device that captures simultaneously 4D data cubes (2D spatial+1D spectral+depth imaging) with as few as a single snapshot. Due to the snapshot advantage of this camera, video sequences are possible, thus enabling the joint capture of 5D imagery. It aims to create super-human sensing that will enable the perception of our world in new and exciting ways. With this, we intend to advance in the state of the art in compressive sensing systems to extract depth while accurately capturing spatial and spectral material properties. The applications of such a sensor are self-evident in fields such as computer/robotic vision because they would allow an artificial intelligence to make informed decisions about not only the location of objects within a scene but also their material properties.

  14. Small aperture seismic arrays for studying planetary interiors and seismicity

    NASA Astrophysics Data System (ADS)

    Schmerr, N. C.; Lekic, V.; Fouch, M. J.; Panning, M. P.; Siegler, M.; Weber, R. C.

    2017-12-01

    Seismic arrays are a powerful tool for understanding the interior structure and seismicity across objects in the Solar System. Given the operational constraints of ground-based lander investigations, a small aperture seismic array can provide many of the benefits of a larger-scale network, but does not necessitate a global deployment of instrumentation. Here we define a small aperture array as a deployment of multiple seismometers, with a separation between instruments of 1-1000 meters. For example, small aperture seismic arrays have been deployed on the Moon during the Apollo program, the Active Seismic Experiments of Apollo 14 and 16, and the Lunar Seismic Profiling Experiment deployed by the Apollo 17 astronauts. Both were high frequency geophone arrays with spacing of 50 meters that provided information on the layering and velocity structure of the uppermost kilometer of the lunar crust. Ideally such arrays would consist of instruments that are 3-axis short period or broadband seismometers. The instruments must have a sampling rate and frequency range sensitivity capable of distinguishing between waves arriving at each station in the array. Both terrestrial analogs and the data retrieved from the Apollo arrays demonstrate the efficacy of this approach. Future opportunities exist for deployment of seismic arrays on Europa, asteroids, and other objects throughout the Solar System. Here we will present both observational data and 3-D synthetic modeling results that reveal the sensing requirements and the primary advantages of a small aperture seismic array over single station approach. For example, at the smallest apertures of < 1 m, we constrain that sampling rates must exceed 500 Hz and instrument sensitivity must extend to 100 Hz or greater. Such advantages include the improved ability to resolve the location of the sources near the array through detection of backazimuth and differential timing between stations, determination of the small-scale structure (layering, scattering bodies, density and velocity variations) in the vicinity of the array, as well as the ability to improve the signal to noise ratio of distant body waves by additive methods such as stacking and velocity-slowness analysis. These results will inform future missions on the surfaces of objects throughout the Solar System.

  15. Medium-sized aperture camera for Earth observation

    NASA Astrophysics Data System (ADS)

    Kim, Eugene D.; Choi, Young-Wan; Kang, Myung-Seok; Kim, Ee-Eul; Yang, Ho-Soon; Rasheed, Ad. Aziz Ad.; Arshad, Ahmad Sabirin

    2017-11-01

    Satrec Initiative and ATSB have been developing a medium-sized aperture camera (MAC) for an earth observation payload on a small satellite. Developed as a push-broom type high-resolution camera, the camera has one panchromatic and four multispectral channels. The panchromatic channel has 2.5m, and multispectral channels have 5m of ground sampling distances at a nominal altitude of 685km. The 300mm-aperture Cassegrain telescope contains two aspheric mirrors and two spherical correction lenses. With a philosophy of building a simple and cost-effective camera, the mirrors incorporate no light-weighting, and the linear CCDs are mounted on a single PCB with no beam splitters. MAC is the main payload of RazakSAT to be launched in 2005. RazakSAT is a 180kg satellite including MAC, designed to provide high-resolution imagery of 20km swath width on a near equatorial orbit (NEqO). The mission objective is to demonstrate the capability of a high-resolution remote sensing satellite system on a near equatorial orbit. This paper describes the overview of the MAC and RarakSAT programmes, and presents the current development status of MAC focusing on key optical aspects of Qualification Model.

  16. Coded-Aperture X- or gamma -ray telescope with Least- squares image reconstruction. III. Data acquisition and analysis enhancements

    NASA Astrophysics Data System (ADS)

    Kohman, T. P.

    1995-05-01

    The design of a cosmic X- or gamma -ray telescope with least- squares image reconstruction and its simulated operation have been described (Rev. Sci. Instrum. 60, 3396 and 3410 (1989)). Use of an auxiliary open aperture ("limiter") ahead of the coded aperture limits the object field to fewer pixels than detector elements, permitting least-squares reconstruction with improved accuracy in the imaged field; it also yields a uniformly sensitive ("flat") central field. The design has been enhanced to provide for mask-antimask operation. This cancels and eliminates uncertainties in the detector background, and the simulated results have virtually the same statistical accuracy (pixel-by-pixel output-input RMSD) as with a single mask alone. The simulations have been made more realistic by incorporating instrumental blurring of sources. A second-stage least-squares procedure had been developed to determine the precise positions and total fluxes of point sources responsible for clusters of above-background pixels in the field resulting from the first-stage reconstruction. Another program converts source positions in the image plane to celestial coordinates and vice versa, the image being a gnomic projection of a region of the sky.

  17. Imaging Protoplanets: Observing Transition Disks with Non-Redundant Masking

    NASA Astrophysics Data System (ADS)

    Sallum, Stephanie

    2017-01-01

    Transition disks - protoplanetary disks with inner, solar system sized clearings - may be shaped by young planets. Directly imaging protoplanets in these objects requires high contrast and resolution, making them promising targets for future extremely large telescopes. The interferometric technique of non-redundant masking (NRM) is well suited for these observations, enabling companion detection for contrasts of 1:100 - 1:1000 at or within the diffraction limit. My dissertation focuses on searching for and characterizing companions in transition disk clearings using NRM. I will briefly describe the technique and present spatially resolved observations of the T Cha and LkCa 15 transition disks. Both of these objects hosted posited substellar companions. However multi-epoch T Cha datasets cannot be explained by planets orbiting in the disk plane. Conversely, LkCa 15 data taken with the Large Binocular Telescope (LBT) in single-aperture mode reveal the presence of multiple forming planets. The dual aperture LBT will provide triple the angular resolution of these observations, dramatically increasing the phase space for exoplanet detection. I will also present new results from the dual-aperture LBT, with similar resolution to that expected for next generation facilities like GMT.

  18. Wideband monolithically integrated front-end subsystems and components

    NASA Astrophysics Data System (ADS)

    Mruk, Joseph Rene

    This thesis presents the analysis, design, and measurements of passive, monolithically integrated, wideband recta-coax and printed circuit board front-end components. Monolithic fabrication of antennas, impedance transformers, filters, and transitions lowers manufacturing costs by reducing assembly time and enhances performance by removing connectors and cabling between the devices. Computational design, fabrication, and measurements are used to demonstrate the capabilities of these front-end assemblies. Two-arm wideband planar log-periodic antennas fed using a horizontal feed that allows for filters and impedance transformers to be readily fabricated within the radiating region of the antenna are demonstrated. At microwave frequencies, low-cost printed circuit board processes are typically used to produce planar devices. A 1.8 to 11 GHz two-arm planar log-periodic antenna is designed with a monolithically integrated impedance transformer. Band rejection methods based on modifying the antenna aperture, use of an integrated filter, and the application of both methods are investigated with realized gain suppressions of over 25 dB achieved. The ability of standard circuit board technology to fabricate millimeter-wave devices up to 110 GHz is severely limited. Thin dielectrics are required to prevent the excitation of higher order modes in the microstrip substrate. Fabricating the thin line widths required for the antenna aperture also becomes prohibitively challenging. Surface micro-machining typically used in the fabrication of MEMS devices is capable of producing the extremely small features that can be used to fabricate antennas extending through W-band. A directly RF fed 18 to 110 GHz planar log-periodic antenna is developed. The antenna is fabricated with an integrated impedance transformer and additional transitions for measurement characterization. Singly terminated low-loss wideband millimeter-wave filters operating over V- and W- band are developed. High quality performance of an 18 to 100 GHz front-end is realized by dividing the single instantaneous antenna into two apertures operating from 18 to 50 and 50 to 100 GHz. Each channel features an impedance transformer, low-pass (low-frequency) or band-pass (high-frequency) filter, and grounded CPW launch. This dual-aperture front-end demonstrates that micromachining technology is now capable of fabricating broadband millimeter-wave components with a high degree of integration.

  19. Microwave window breakdown experiments and simulations on the UM/L-3 relativistic magnetron

    NASA Astrophysics Data System (ADS)

    Hoff, B. W.; Mardahl, P. J.; Gilgenbach, R. M.; Haworth, M. D.; French, D. M.; Lau, Y. Y.; Franzi, M.

    2009-09-01

    Experiments have been performed on the UM/L-3 (6-vane, L-band) relativistic magnetron to test a new microwave window configuration designed to limit vacuum side breakdown. In the baseline case, acrylic microwave windows were mounted between three of the waveguide coupling cavities in the anode block vacuum housing and the output waveguides. Each of the six 3 cm deep coupling cavities is separated from its corresponding anode cavity by a 1.75 cm wide aperture. In the baseline case, vacuum side window breakdown was observed to initiate at single waveguide output powers close to 20 MW. In the new window configuration, three Air Force Research Laboratory-designed, vacuum-rated directional coupler waveguide segments were mounted between the coupling cavities and the microwave windows. The inclusion of the vacuum side power couplers moved the microwave windows an additional 30 cm away from the anode apertures. Additionally, the Lucite microwave windows were replaced with polycarbonate windows and the microwave window mounts were redesigned to better maintain waveguide continuity in the region around the microwave windows. No vacuum side window breakdown was observed in the new window configuration at single waveguide output powers of 120+MW (a factor of 3 increase in measured microwave pulse duration and factor of 3 increase in measured peak power over the baseline case). Simulations were performed to investigate likely causes for the window breakdown in the original configuration. Results from these simulations have shown that in the original configuration, at typical operating voltage and magnetic field ranges, electrons emitted from the anode block microwave apertures strike the windows with a mean kinetic energy of 33 keV with a standard deviation of 14 keV. Calculations performed using electron impact angle and energy data predict a first generation secondary electron yield of 65% of the primary electron population. The effects of the primary aperture electron impacts, combined with multiplication of the secondary populations, were determined to be the likely causes of the poor microwave window performance in the original configuration.

  20. Coherent single-atom superradiance

    NASA Astrophysics Data System (ADS)

    Kim, Junki; Yang, Daeho; Oh, Seung-hoon; An, Kyungwon

    2018-02-01

    Superradiance is a quantum phenomenon emerging in macroscopic systems whereby correlated single atoms cooperatively emit photons. Demonstration of controlled collective atom-field interactions has resulted from the ability to directly imprint correlations with an atomic ensemble. Here we report cavity-mediated coherent single-atom superradiance: Single atoms with predefined correlation traverse a high–quality factor cavity one by one, emitting photons cooperatively with the N atoms that have already gone through the cavity (N represents the number of atoms). Enhanced collective photoemission of N-squared dependence was observed even when the intracavity atom number was less than unity. The correlation among single atoms was achieved by nanometer-precision position control and phase-aligned state manipulation of atoms by using a nanohole-array aperture. Our results demonstrate a platform for phase-controlled atom-field interactions.

  1. Signal-to-noise ratio of Singer product apertures

    NASA Astrophysics Data System (ADS)

    Shutler, Paul M. E.; Byard, Kevin

    2017-09-01

    Formulae for the signal-to-noise ratio (SNR) of Singer product apertures are derived, allowing optimal Singer product apertures to be identified, and the CPU time required to decode them is quantified. This allows a systematic comparison to be made of the performance of Singer product apertures against both conventionally wrapped Singer apertures, and also conventional product apertures such as square uniformly redundant arrays. For very large images, equivalently for images at very high resolution, the SNR of Singer product apertures is asymptotically as good as the best conventional apertures, but Singer product apertures decode faster than any conventional aperture by at least a factor of ten for image sizes up to several megapixels. These theoretical predictions are verified using numerical simulations, demonstrating that coded aperture video is for the first time a realistic possibility.

  2. Linear phase encoding for holographic data storage with a single phase-only spatial light modulator.

    PubMed

    Nobukawa, Teruyoshi; Nomura, Takanori

    2016-04-01

    A linear phase encoding is presented for realizing a compact and simple holographic data storage system with a single spatial light modulator (SLM). This encoding method makes it possible to modulate a complex amplitude distribution with a single phase-only SLM in a holographic storage system. In addition, an undesired light due to the imperfection of an SLM can be removed by spatial frequency filtering with a Nyquist aperture. The linear phase encoding is introduced to coaxial holographic data storage. The generation of a signal beam using linear phase encoding is experimentally verified in an interferometer. In a coaxial holographic data storage system, single data recording, shift selectivity, and shift multiplexed recording are experimentally demonstrated.

  3. Fabrication and Characterization of Single-Aperture 3.5-MHz BNT-Based Ultrasonic Transducer for Therapeutic Application.

    PubMed

    Taghaddos, Elaheh; Ma, T; Zhong, Hui; Zhou, Qifa; Wan, M X; Safari, Ahmad

    2018-04-01

    This paper discusses the fabrication and characterization of 3.5-MHz single-element transducers for therapeutic applications in which the active elements are made of hard lead-free BNT-based and hard commercial PZT (PZT-841) piezoceramics. Composition of (BiNa 0.88 K 0.08 Li 0.04 ) 0.5 (Ti 0.985 Mn 0.015 )O 3 (BNKLT88-1.5Mn) was used to develop lead-free piezoelectric ceramic. Mn-doped samples exhibited high mechanical quality factor ( ) of 970, thickness coupling coefficient ( ) of 0.48, a dielectric constant ( ) of 310 (at 1 kHz), depolarization temperature ( ) of 200 °C, and coercive field ( ) of 52.5 kV/cm. Two different unfocused single-element transducers using BNKLT88-1.5Mn and PZT-841 with the same center frequency of 3.5 MHz and similar aperture size of 10.7 and 10.5 mm were fabricated. Pulse-echo response, acoustic frequency spectrum, acoustic pressure field, and acoustic intensity field of transducers were characterized. The BNT-based transducer shows linear response up to the peak-to-peak voltage of 105 V in which the maximum rarefactional acoustic pressure of 1.1 MPa, and acoustic intensity of 43 W/cm 2 were achieved. Natural focal point of this transducer was at 60 mm from the surface of the transducer.

  4. All solid-state diode pumped Nd:YAG MOPA with stimulated Brillouin phase conjugate mirror

    NASA Astrophysics Data System (ADS)

    Offerhaus, H. L.; Godfried, H. P.; Witteman, W. J.

    1996-02-01

    At the Nederlands Centrum voor Laser Research (NCLR) a 1 kHz diode-pumped Nd:YAG Master Oscillator Power Amplifier (MOPA) chain with a Stimulated Brillouin Scattering (SBS) Phase Conjugate mirror is designed and operated. A small Brewster angle Nd:YAG slab (2 by 2 by 20 mm) is side pumped with 200 μs diode pulses in a stable oscillator. The oscillator is Q-switched and injection seeded with a commercial diode pumped single frequency CW Nd:YAG laser. The output consists of single-transverse, single-longitudinal mode 25 ns FWHM-pulses at 1064 nm. The oscillator slab is imaged on a square aperture that transmits between 3 and 2 mJ (at 100 and 400 Hz, resp.) The aperture is subsequently imaged four times in the amplifier. The amplifier is a 3 by 6 by 60 mm Brewster angle zig-zag slab, pumped by an 80-bar diode stack with pulses up to 250 μs. After the second pass the light is focused in two consecutive cells containing Freon-113 for wave-front reversal in an oscillator/amplifier-setup with a reflectivity of 60%. The light then passes through the amplifier twice more to produce 20 W (at 400 Hz) of output with near diffraction limited beam quality. To increase the output to 50 W at 1 kHz thermal lensing in the oscillator will be reduced.

  5. Multi-mode horn

    NASA Technical Reports Server (NTRS)

    Neilson, Jeffrey M. (Inventor)

    2002-01-01

    A horn has an input aperture and an output aperture, and comprises a conductive inner surface formed by rotating a curve about a central axis. The curve comprises a first arc having an input aperture end and a transition end, and a second arc having a transition end and an output aperture end. When rotated about the central axis, the first arc input aperture end forms an input aperture, and the second arc output aperture end forms an output aperture. The curve is then optimized to provide a mode conversion which maximizes the power transfer of input energy to the Gaussian mode at the output aperture.

  6. High-performance imaging of stem cells using single-photon emissions

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; Moats, Rex A.; Hartsough, Neal E.; Meier, Dirk; Hugg, James W.; Yang, Tang; Gazit, Dan; Pelled, Gadi; Patt, Bradley E.

    2011-10-01

    Radiolabeled cells have been imaged for decades in the field of autoradiography. Recent advances in detector and microelectronics technologies have enabled the new field of "digital autoradiography" which remains limited to ex vivo specimens of thin tissue slices. The 3D field-of-view (FOV) of single cell imaging can be extended to millimeters if the low energy (10-30 keV) photon emissions of radionuclides are used for single-photon nuclear imaging. This new microscope uses a coded aperture foil made of highly attenuating elements such as gold or platinum to form the image as a kind of "lens". The detectors used for single-photon emission microscopy are typically silicon detectors with a pixel pitch less than 60 μm. The goal of this work is to image radiolabeled mesenchymal stem cells in vivo in an animal model of tendon repair processes. Single-photon nuclear imaging is an attractive modality for translational medicine since the labeled cells can be imaged simultaneously with the reparative processes by using the dual-isotope imaging technique. The details our microscope's two-layer gold aperture and the operation of the energy-dispersive, pixellated silicon detector are presented along with the first demonstration of energy discrimination with a 57Co source. Cell labeling techniques have been augmented by genetic engineering with the sodium-iodide symporter, a type of reporter gene imaging method that enables in vivo uptake of free 99mTc or an iodine isotope at a time point days or weeks after the insertion of the genetically modified stem cells into the animal model. This microscopy work in animal research may expand to the imaging of reporter-enabled stem cells simultaneously with the expected biological repair process in human clinical trials of stem cell therapies.

  7. Feasibility Study of Space Based Solar Power to Tethered Aerostat Systems

    NASA Technical Reports Server (NTRS)

    Blank, Stephen J.; Leete, Stephen J.; Jaffe, Paul

    2013-01-01

    The feasibility of two-stage Space-Based Solar Power to Tethered Aerostat to Earth (SSP-TA) system architectures that offer significant advantages over conventional single stage space-to-earth architectures is being studied. There have been many proposals for the transmission of solar power collected in space to the surface of the earth so that solar energy could provide a major part of the electric power requirements on earth. There are, however, serious difficulties in implementing the single stage space-based solar power systems that have been previously studied. These difficulties arise due to: i) the cost of transporting the components needed for the extremely large microwave transmit beaming aperture into space orbit, ii) the even larger collection apertures required on earth, iii) the potential radiation hazard to personnel and equipment on earth, and iv) a lack of flexibility in location of the collection station on the earth. Two candidate system architectures are described here to overcome these difficulties. In both cases a two-stage space to tethered aerostat to earth transmission system (SSP-TA) is proposed. The use of high altitude tethered aerostats (or powered airships) avoids the effects of attenuation of EM energy propagating through the earth s lower atmosphere. This allows the use of beaming frequencies to be chosen from the range of high millimeter (THz) to near-infra-red (NIR) to the visible. This has the potential for: i) greatly reduced transportation costs to space, ii) much smaller receiver collection apertures and ground stations, iii) elimination of the potential radiation hazard to personnel and equipment on earth, and iv) ease in transportation and flexibility in location of the collection station on the earth. A preliminary comparison of system performance and efficiencies is presented.

  8. Current scaling of radiated power for 40-mm diameter single wire arrays on Z

    NASA Astrophysics Data System (ADS)

    Nash, T. J.; Cuneo, M. E.; Spielman, R. B.; Chandler, G. A.; Leeper, R. J.; Seaman, J. F.; McGurn, J.; Lazier, S.; Torres, J.; Jobe, D.; Gilliland, T.; Nielsen, D.; Hawn, R.; Bailey, J. E.; Lake, P.; Carlson, A. L.; Seamen, H.; Moore, T.; Smelser, R.; Pyle, J.; Wagoner, T. C.; LePell, P. D.; Deeney, C.; Douglas, M. R.; McDaniel, D.; Struve, K.; Mazarakis, M.; Stygar, W. A.

    2004-11-01

    In order to estimate the radiated power that can be expected from the next-generation Z-pinch driver such as ZR at 28 MA, current-scaling experiments have been conducted on the 20 MA driver Z. We report on the current scaling of single 40 mm diameter tungsten 240 wire arrays with a fixed 110 ns implosion time. The wire diameter is decreased in proportion to the load current. Reducing the charge voltage on the Marx banks reduces the load current. On one shot, firing only three of the four levels of the Z machine further reduced the load current. The radiated energy scaled as the current squared as expected but the radiated power scaled as the current to the 3.52±0.42 power due to increased x-ray pulse width at lower current. As the current is reduced, the rise time of the x-ray pulse increases and at the lowest current value of 10.4 MA, a shoulder appears on the leading edge of the x-ray pulse. In order to determine the nature of the plasma producing the leading edge of the x-ray pulse at low currents further shots were taken with an on-axis aperture to view on-axis precursor plasma. This aperture appeared to perturb the pinch in a favorable manner such that with the aperture in place there was no leading edge to the x-ray pulses at lower currents and the radiated power scaled as the current squared ±0.75. For a full-current shot we will present x-ray images that show precursor plasma emitting on-axis 77 ns before the main x-ray burst.

  9. High Energy, Narrow Linewidth 1572nm Eryb-Fiber Based MOPA for a Multi-Aperture CO2 Trace-Gas Laser Space Transmitter

    NASA Technical Reports Server (NTRS)

    Engin, Doruk; Mathason, Brian; Stephen, Mark; Yu, Anthony; Cao, He; Fouron, Jean-Luc; Storm, Mark

    2016-01-01

    Accurate global measurements of tropospheric CO2 mixing ratios are needed to study CO2 emissions and CO2 exchange with the land and oceans. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar to allow global measurements of atmospheric CO2 column densities from space. Our group has developed, and successfully flown, an airborne pulsed lidar instrument that uses two tunable pulsed laser transmitters allowing simultaneous measurement of a single CO2 absorption line in the 1570 nm band, absorption of an O2 line pair in the oxygen A-band (765 nm), range, and atmospheric backscatter profiles in the same path. Both lasers are pulsed at 10 kHz, and the two absorption line regions are sampled at typically a 300 Hz rate. A space-based version of this lidar must have a much larger lidar power-area product due to the x40 longer range and faster along track velocity compared to airborne instrument. Initial link budget analysis indicated that for a 400 km orbit, a 1.5 m diameter telescope and a 10 second integration time, a 2 mJ laser energy is required to attain the precision needed for each measurement. To meet this energy requirement, we have pursued parallel power scaling efforts to enable space-based lidar measurement of CO2 concentrations. These included a multiple aperture approach consists of multi-element large mode area fiber amplifiers and a single-aperture approach consists of a multi-pass Er:Yb:Phosphate glass based planar waveguide amplifier (PWA). In this paper we will present our laser amplifier design approaches and preliminary results.

  10. Preparation, patterning, and properties of thin YBa2Cu3O(7-delta) films

    NASA Astrophysics Data System (ADS)

    de Vries, J. W. C.; Dam, B.; Heijman, M. G. J.; Stollman, G. M.; Gijs, M. A. M.

    1988-05-01

    High T(c) superconducting thin films were prepared on (100) SrTiO3 substrates by dc triode sputtering and subsequent annealing. In these films Hall-bar structures having a width down to 5 microns were patterned using a reactive ion-etching technique. Superconductivity above 77 K was observed. When compared with the original film there is only a small reduction in T(c). The critical current density determined by electrical measurements is substantially reduced. On the other hand, the critical current density in the bulk of the grains as measured by the torque on a film is not reduced by the patterning process. It is suggested that superconductor-normal metal-superconductor junctions between the grains account for this difference.

  11. Plasma deposition and surface modification techniques for wear resistance

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1982-01-01

    The ion-assisted or plasma coating technology is discussed as it applies to the deposition of hard, wear resistant refractory compound films. Of the many sputtering and ion plating modes and configurations the reactive magnetron sputtering and the reactive triode ion plating techniques are the preferred ones to deposit wear resistant coatings for tribological applications. Both of these techniques incorporate additional means to enhance the ionization efficiency and chemical reaction to precision tailor desirable tribological characteristics. Interrelationships between film formation, structure, and ribological properties are strictly controlled by the deposition parameters and the substrate condition. The enhanced ionization contributes to the excellent adherence and coherence, reduced internal stresses and improved structural growth to form dense, cohesive, equiaxed grain structure for improved wear resistance and control.

  12. Ultrasound beam transmission using a discretely orthogonal Gaussian aperture basis

    NASA Astrophysics Data System (ADS)

    Roberts, R. A.

    2018-04-01

    Work is reported on development of a computational model for ultrasound beam transmission at an arbitrary geometry transmission interface for generally anisotropic materials. The work addresses problems encountered when the fundamental assumptions of ray theory do not hold, thereby introducing errors into ray-theory-based transmission models. Specifically, problems occur when the asymptotic integral analysis underlying ray theory encounters multiple stationary phase points in close proximity, due to focusing caused by concavity on either the entry surface or a material slowness surface. The approach presented here projects integrands over both the transducer aperture and the entry surface beam footprint onto a Gaussian-derived basis set, thereby distributing the integral over a summation of second-order phase integrals which are amenable to single stationary phase point analysis. Significantly, convergence is assured provided a sufficiently fine distribution of basis functions is used.

  13. Analysis of synthetic aperture radar data acquired over a variety of land cover

    NASA Technical Reports Server (NTRS)

    Wu, S.-T.

    1984-01-01

    The results of Synthetic Aperture Radar (SAR) measurements over Kershaw County, South Carolina, using HH, HV, and VV polarization and two-incidence angle X-band airborne SAR system and over Baldwin County, Alabama, using HH polarization L-band Shuttle Imaging Radar (SIR-A) are presented. The X-band data indicate higher HH than VV radar return for cypress forest with standing water. Multipolarization (HH, HV, and VV) data help delineate several land-cover types that are difficult to delineate by the single polarization (HH) data. The L-band data indicate that radar return signal strength is highly correlated with tree height or age for three types of pine forest. It is found that delineation of urban/residential from deciduous forest is significantly improved by the inclusion of Landsat multispectral scanner data.

  14. A new star (sensor) is born

    NASA Astrophysics Data System (ADS)

    Leijtens, Johan; Vliegenthart, Willem; Lampridis, Dimitris; Vacanti, Giuseppe; Monna, Bert; Bechthum, Elbert; Hagenaars, Koen; van der Heide, Erik; Kruijff, Michiel; van Breukelen, Eddie; LeMair, Anita

    2017-11-01

    In the frame of the Dutch Prequalification for ESA Programs(PEP), as part of the efforts to design an integrated optical attitude control subsytem (IOPACS), a consortium of TNO and several SME's in the Netherlands have been working on a novel type of startracker called MABS (Multiple Aperture Baffled Startracker). The system comprises a single cast metal housing with four reflective optical telescopes which use only structural internal baffling. Inherent to the design are a very high stability and excellent co-alignment between the apertures, a significant decrease in system size and low recurring production cost. The concept is a radical change from more common multiple startracker setups. The presentation will concentrate on the validity of the concept, the predicted performance and benefits for space applications, the produced breadboard and measured performances as well as the costing aspects.

  15. Vehicle Counting and Moving Direction Identification Based on Small-Aperture Microphone Array.

    PubMed

    Zu, Xingshui; Zhang, Shaojie; Guo, Feng; Zhao, Qin; Zhang, Xin; You, Xing; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2017-05-10

    The varying trend of a moving vehicle's angles provides much important intelligence for an unattended ground sensor (UGS) monitoring system. The present study investigates the capabilities of a small-aperture microphone array (SAMA) based system to identify the number and moving direction of vehicles travelling on a previously established route. In this paper, a SAMA-based acoustic monitoring system, including the system hardware architecture and algorithm mechanism, is designed as a single node sensor for the application of UGS. The algorithm is built on the varying trend of a vehicle's bearing angles around the closest point of approach (CPA). We demonstrate the effectiveness of our proposed method with our designed SAMA-based monitoring system in various experimental sites. The experimental results in harsh conditions validate the usefulness of our proposed UGS monitoring system.

  16. Spontaneous generation of vortex and coherent vector beams from a thin-slice c-cut Nd:GdVO4 laser with wide-aperture laser-diode end pumping: application to highly sensitive rotational and translational Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Otsuka, Kenju; Chu, Shu-Chun

    2017-07-01

    Selective excitation of Laguerre-Gauss modes (optical vortices: helical LG0,2 and LG0,1), reflecting their weak transverse cross-saturation of population inversions against a preceding higher-order Ince-Gauss (IG0,2) or Hermite-Gauss (HG2,1) mode, was observed in a thin-slice c-cut Nd:GdVO4 laser with wide-aperture laser-diode end pumping. Single-frequency coherent vector beams were generated through the transverse mode locking of a pair of orthogonally polarized IG2,0 and LG0,2 or HG2,1 and LG0,1 modes. Highly sensitive self-mixing rotational and translational Doppler velocimetry is demonstrated by using vortex and coherent vector beams.

  17. Dynamic Metasurface Aperture as Smart Around-the-Corner Motion Detector.

    PubMed

    Del Hougne, Philipp; F Imani, Mohammadreza; Sleasman, Timothy; Gollub, Jonah N; Fink, Mathias; Lerosey, Geoffroy; Smith, David R

    2018-04-25

    Detecting and analysing motion is a key feature of Smart Homes and the connected sensor vision they embrace. At present, most motion sensors operate in line-of-sight Doppler shift schemes. Here, we propose an alternative approach suitable for indoor environments, which effectively constitute disordered cavities for radio frequency (RF) waves; we exploit the fundamental sensitivity of modes of such cavities to perturbations, caused here by moving objects. We establish experimentally three key features of our proposed system: (i) ability to capture the temporal variations of motion and discern information such as periodicity ("smart"), (ii) non line-of-sight motion detection, and (iii) single-frequency operation. Moreover, we explain theoretically and demonstrate experimentally that the use of dynamic metasurface apertures can substantially enhance the performance of RF motion detection. Potential applications include accurately detecting human presence and monitoring inhabitants' vital signs.

  18. Resonant optical transmission through sub-wavelength annular apertures caused by a plasmonic transverse electromagnetic (TEM) mode

    NASA Astrophysics Data System (ADS)

    Ndao, A.; Salvi, J.; Salut, R.; Bernal, M.-P.; Alaridhee, T.; Belkhir, A.; Baida, F. I.

    2014-12-01

    We demonstrate enhanced transmission through annular aperture arrays (AAA) by the excitation of the transverse electromagnetic (TEM) guided mode. A complete numerical study is performed to correctly design the structure before it is experimentally characterized. Actually, the challenge was to get efficient TEM-based transmission in the visible range. It turned out to be a hard task because of the strong absorption associated with this guided mode. Nevertheless, we have succeeded to experimentally prove its excitation thanks to the enhanced transmission measured in the far-field. This is the first time we demonstrate experimental evidence of this phenomenon with such AAA structure illuminated at oblique incidence in the visible range. This increases the potential applications of such structures as well, single molecule spectroscopy, photovoltaic, spectral filtering, optical trapping, etc...

  19. Steerable Space Fed Lens Array for Low-Cost Adaptive Ground Station Applications

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Popovic, Zoya; Rondineau, Sebastien; Miranda, Felix A.

    2007-01-01

    The Space Fed Lens Array (SFLA) is an alternative to a phased array antenna that replaces large numbers of expensive solid-state phase shifters with a single spatial feed network. SFLA can be used for multi-beam application where multiple independent beams can be generated simultaneously with a single antenna aperture. Unlike phased array antennas where feed loss increases with array size, feed loss in a lens array with more than 50 elements is nearly independent of the number of elements, a desirable feature for large apertures. In addition, SFLA has lower cost as compared to a phased array at the expense of total volume and complete beam continuity. For ground station applications, both of these tradeoff parameters are not important and can thus be exploited in order to lower the cost of the ground station. In this paper, we report the development and demonstration of a 952-element beam-steerable SFLA intended for use as a low cost ground station for communicating and tracking of a low Earth orbiting satellite. The dynamic beam steering is achieved through switching to different feed-positions of the SFLA via a beam controller.

  20. UAVSAR Instrument: Current Operations and Planned Upgrades

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Hensley, Scott; Chao, Roger; Chapin, Elaine; Heavy, Brandon; Jones, Cathleen; Miller, Timothy; Naftel, Chris; Fratello, David

    2011-01-01

    The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument is a pod-based Lband polarimetric synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. This instrument is currently installed on the NASA Gulfstream- III (G-III) aircraft with precision real-time Global Positioning System (GPS) and a sensor-controlled flight management system for precision repeat-pass data acquisitions. UAVSAR has conducted engineering and preliminary science data flights since October 2007 on the G-III. We are porting the radar to the Global Hawk Unmanned Airborne Vehicle (UAV) to enable long duration/long range data campaigns. We plan to install two radar pods (each with its own active array antenna) under the wings of the Global Hawk to enable the generation of precision topographic maps and single pass polarimetric-interferometry (SPI) providing vertical structure of ice and vegetation. Global Hawk's range of 8000 nm will enable regional surveys with far fewer sorties as well as measurements of remote locations without the need for long and complicated deployments. We are also developing P-band polarimetry and Ka-band single-pass interferometry capabilities on UAVSAR by replacing the radar antenna and front-end electronics to operate at these

  1. New perspective on single-radiator multiple-port antennas for adaptive beamforming applications

    PubMed Central

    Choo, Hosung

    2017-01-01

    One of the most challenging problems in recent antenna engineering fields is to achieve highly reliable beamforming capabilities in an extremely restricted space of small handheld devices. In this paper, we introduce a new perspective on single-radiator multiple-port (SRMP) antenna to alter the traditional approach of multiple-antenna arrays for improving beamforming performances with reduced aperture sizes. The major contribution of this paper is to demonstrate the beamforming capability of the SRMP antenna for use as an extremely miniaturized front-end component in more sophisticated beamforming applications. To examine the beamforming capability, the radiation properties and the array factor of the SRMP antenna are theoretically formulated for electromagnetic characterization and are used as complex weights to form adaptive array patterns. Then, its fundamental performance limits are rigorously explored through enumerative studies by varying the dielectric constant of the substrate, and field tests are conducted using a beamforming hardware to confirm the feasibility. The results demonstrate that the new perspective of the SRMP antenna allows for improved beamforming performances with the ability of maintaining consistently smaller aperture sizes compared to the traditional multiple-antenna arrays. PMID:29023493

  2. Analysis of the covariance function and aperture averaged fluctuations of irradiance to calculate Cn2

    NASA Astrophysics Data System (ADS)

    Cauble, Galen D.; Wayne, David T.

    2017-09-01

    The growth of optical communication has created a need to correctly characterize the atmospheric channel. Atmospheric turbulence along a given channel can drastically affect optical communication signal quality. One means of characterizing atmospheric turbulence is through measurement of the refractive index structure parameter, Cn2. When calculating Cn2 from the scintillation index, σΙ2,the point aperture scintillation index is required. Direct measurement of the point aperture scintillation index is difficult at long ranges due to the light collecting abilities of small apertures. When aperture size is increased past the atmospheric correlation width, aperture averaging decreases the scintillation index below that of the point aperture scintillation index. While the aperture averaging factor can be calculated from theory, it does not often agree with experimental results. Direct measurement of the aperture averaging factor via the pupil plane irradiance covariance function allows conversion from the aperture averaged scintillation index to the point aperture scintillation index. Using a finite aperture, camera, and detector, the aperture averaged scintillation index and aperture averaging factor are measured in parallel and the point aperture scintillation index is calculated. A new instrument built by SSC Pacific was used to collect scintillation data at the Townes Institute Science and Technology Experimentation Facility (TISTEF). This new instrument's data was then compared to BLS900 data. The results show that direct measurement of the aperture averaging factor is achievable using a camera and matches well with groundtruth instrumentation.

  3. Petrothermal heat extraction using a single deviated well (Horstberg, revisited)

    NASA Astrophysics Data System (ADS)

    Ghergut, Julia; Behrens, Horst; Vogt, Esther; Bartetzko, Anne; Sauter, Martin

    2013-04-01

    The single-well tracer test conducted (Behrens et al. 2006) in conjunction with waterfrac experiments at Horstberg is re-examined with a view at four basic issues: why single-well? why fracturing? why tracers? does this only work at Horstberg, or can it work almost anywhere else in the Northern-German sedimentary basin? Heat and tracer transport within a composite reservoir (impermeable matrix + waterfrac + permeable layer), as accessed by a single deviated well, turn out to fit into a surprisingly simple description, as the plain (arithmetic) sum of certain petrothermal-type and aquifer-type contributions, whose weighting relative to each other can vary from site to site, depending upon stratigraphy and upon wellbore geometry. At Horstberg, within the particular formations tested ('Volpriehausen', 'Detfurth', 'Solling', comprising mainly claystone and sandstone layers), thermal lifetime results to be petrothermally-dominated, while tracer residence times prove to be 'aquifer'-dominated. Despite this disparity, the reservoir's thermal lifetime can reliably be predicted from tracer test results. What cannot be determined from waterfrac flow-path tracing is the very waterfrac's aperture. Aperture uncertainty, however, does not impede upon thermal lifetime predictability. The results of the semi-analytical approach are confirmed by numerical simulations using a FE model that includes more details of hydrogeological heterogeneity for the Horstberg site. They are complemented by a parameter sensitivity analysis. ACKNOWLEDGEMENT: This study is funded by MWK Niedersachsen (Lower-Saxony's Science and Culture Ministry) and by Baker Hughes (Celle) within task unit G6 of the Collaborative Research Project 'gebo' ('Geothermal Energy and High-Performance Drilling').

  4. Production of multi-, oligo- and single-pore membranes using a continuous ion beam

    NASA Astrophysics Data System (ADS)

    Apel, P. Yu.; Ivanov, O. M.; Lizunov, N. E.; Mamonova, T. I.; Nechaev, A. N.; Olejniczak, K.; Vacik, J.; Dmitriev, S. N.

    2015-12-01

    Ion track membranes (ITM) have attracted significant interest over the past two decades due to their numerous applications in physical, biological, chemical, biochemical and medical experimental works. A particular feature of ITM technology is the possibility to fabricate samples with a predetermined number of pores, including single-pore membranes. The present report describes a procedure that allowed for the production of multi-, oligo- and single-pore membranes using a continuous ion beam from an IC-100 cyclotron. The beam was scanned over a set of small diaphragms, from 17 to ∼1000 μm in diameter. Ions passed through the apertures and impinged two sandwiched polymer foils, with the total thickness close to the ion range in the polymer. The foils were pulled across the ion beam at a constant speed. The ratio between the transport speed and the scanning frequency determined the distance between irradiation spots. The beam intensity and the aperture diameters were adjusted such that either several, one or no ions passed through the diaphragms during one half-period of scanning. After irradiation, the lower foil was separated from the upper foil and was etched to obtain pores 6-8 μm in diameter. The pores were found using a color chemical reaction between two reagents placed on opposite sides of the foil. The located pores were further confirmed using SEM and optical microscopy. The numbers of tracks in the irradiation spots were consistent with the Poisson statistics. Samples with single or few tracks obtained in this way were employed to study fine phenomena in ion track nanopores.

  5. Expanding Coherent Array Processing to Larger Apertures Using Empirical Matched Field Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringdal, F; Harris, D B; Kvaerna, T

    2009-07-23

    We have adapted matched field processing, a method developed in underwater acoustics to detect and locate targets, to classify transient seismic signals arising from mining explosions. Matched field processing, as we apply it, is an empirical technique, using observations of historic events to calibrate the amplitude and phase structure of wavefields incident upon an array aperture for particular repeating sources. The objective of this project is to determine how broadly applicable the method is and to understand the phenomena that control its performance. We obtained our original results in distinguishing events from ten mines in the Khibiny and Olenegorsk miningmore » districts of the Kola Peninsula, for which we had exceptional ground truth information. In a cross-validation test, some 98.2% of 549 explosions were correctly classified by originating mine using just the Pn observations (2.5-12.5 Hz) on the ARCES array at ranges from 350-410 kilometers. These results were achieved despite the fact that the mines are as closely spaced as 3 kilometers. Such classification performance is significantly better than predicted by the Rayleigh limit. Scattering phenomena account for the increased resolution, as we make clear in an analysis of the information carrying capacity of Pn under two alternative propagation scenarios: free-space propagation and propagation with realistic (actually measured) spatial covariance structure. The increase in information capacity over a wide band is captured by the matched field calibrations and used to separate explosions from very closely-spaced sources. In part, the improvement occurs because the calibrations enable coherent processing at frequencies above those normally considered coherent. We are investigating whether similar results can be expected in different regions, with apertures of increasing scale and for diffuse seismicity. We verified similar performance with the closely-spaced Zapolyarni mines, though discovered that it may be necessary to divide event populations from a single mine into identifiable subpopulations. For this purpose, we perform cluster analysis using matched field statistics calculated on pairs of individual events as a distance metric. In our initial work, calibrations were derived from ensembles of events ranging in number to more than 100. We are considering the performance now of matched field calibrations derived with many fewer events (even, as mentioned, individual events). Since these are high-variance estimates, we are testing the use of cross-channel, multitaper, spectral estimation methods to reduce the variance of calibrations and detection statistics derived from single-event observations. To test the applicability of the technique in a different tectonic region, we have obtained four years of continuous data from 4 Kazakh arrays and are extracting large numbers of event segments. Our initial results using 132 mining explosions recorded by the Makanchi array are similar to those obtained in the European Arctic. Matched field processing clearly separates the explosions from three closely-spaced mines located approximately 400 kilometers from the array, again using waveforms in a band (6-10 Hz) normally considered incoherent for this array. Having reproduced ARCES-type performance with another small aperture array, we have two additional objectives for matched field processing. We will attempt to extend matched field processing to larger apertures: a 200 km aperture (the KNET) and, if data permit, to an aperture comprised of several Kazakh arrays. We also will investigate the potential of developing matched field processing to roughly locate and classify natural seismicity, which is more diffuse than the concentrated sources of mining explosions that we have investigated to date.« less

  6. Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.

    PubMed

    Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan

    2016-12-01

    The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.

  7. Research on the magnetorheological finishing of large aperture off-axis aspheric optical surfaces for zinc sulfide

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfei; Huang, Wen; Zheng, Yongcheng; Ji, Fang; Xu, Min; Duan, Zhixin; Luo, Qing; Liu, Qian; Xiao, Hong

    2016-03-01

    Zinc sulfide is a kind of typical infrared optical material, commonly produced using single point diamond turning (SPDT). SPDT can efficiently produce zinc sulfide aspheric surfaces with micro-roughness and acceptable figure error. However the tool marks left by the diamond turning process cause high micro-roughness that degrades the optical performance when used in the visible region of the spectrum. Magnetorheological finishing (MRF) is a deterministic, sub-aperture polishing technology that is very helpful in improving both surface micro-roughness and surface figure.This paper mainly investigates the MRF technology of large aperture off-axis aspheric optical surfaces for zinc sulfide. The topological structure and coordinate transformation of a MRF machine tool PKC1200Q2 are analyzed and its kinematics is calculated, then the post-processing algorithm model of MRF for an optical lens is established. By taking the post-processing of off-axis aspheric surfacefor example, a post-processing algorithm that can be used for a raster tool path is deduced and the errors produced by the approximate treatment are analyzed. A polishing algorithm of trajectory planning and dwell time based on matrix equation and optimization theory is presented in this paper. Adopting this algorithm an experiment is performed to machining a large-aperture off-axis aspheric surface on the MRF machine developed by ourselves. After several times' polishing, the figure accuracy PV is proved from 3.3λ to 2.0λ and RMS from 0.451λ to 0.327λ. This algorithm is used to polish the other shapes including spheres, aspheres and prisms.

  8. Multi-Aperture-Based Probabilistic Noise Reduction of Random Telegraph Signal Noise and Photon Shot Noise in Semi-Photon-Counting Complementary-Metal-Oxide-Semiconductor Image Sensor

    PubMed Central

    Ishida, Haruki; Kagawa, Keiichiro; Komuro, Takashi; Zhang, Bo; Seo, Min-Woong; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji

    2018-01-01

    A probabilistic method to remove the random telegraph signal (RTS) noise and to increase the signal level is proposed, and was verified by simulation based on measured real sensor noise. Although semi-photon-counting-level (SPCL) ultra-low noise complementary-metal-oxide-semiconductor (CMOS) image sensors (CISs) with high conversion gain pixels have emerged, they still suffer from huge RTS noise, which is inherent to the CISs. The proposed method utilizes a multi-aperture (MA) camera that is composed of multiple sets of an SPCL CIS and a moderately fast and compact imaging lens to emulate a very fast single lens. Due to the redundancy of the MA camera, the RTS noise is removed by the maximum likelihood estimation where noise characteristics are modeled by the probability density distribution. In the proposed method, the photon shot noise is also relatively reduced because of the averaging effect, where the pixel values of all the multiple apertures are considered. An extremely low-light condition that the maximum number of electrons per aperture was the only 2e− was simulated. PSNRs of a test image for simple averaging, selective averaging (our previous method), and the proposed method were 11.92 dB, 11.61 dB, and 13.14 dB, respectively. The selective averaging, which can remove RTS noise, was worse than the simple averaging because it ignores the pixels with RTS noise and photon shot noise was less improved. The simulation results showed that the proposed method provided the best noise reduction performance. PMID:29587424

  9. Simulation of photoacoustic tomography (PAT) system in COMSOL and comparison of two popular reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Sowmiya, C.; Thittai, Arun K.

    2017-03-01

    Photoacoustic imaging is a molecular cum functional imaging modality based on differential optical absorption of the incident laser pulse by the endogeneous tissue chromophores. Several numerical simulations and finite element models have been developed in the past to describe and study Photoacoustic (PA) signal generation principles and study the effect of variation in PA parameters. Most of these simulation work concentrate on analyzing extracted 1D PA signals and each of them mostly describe only few of the building blocks of a Photoacoustic Tomography (PAT) imaging system. Papers describing simulation of the entire PAT system in one simulation platform, along with reconstruction is seemingly rare. This study attempts to describe how a commercially available Finite Element software (COMSOL(R)), can serve as a single platform for simulating PAT that couples the electromagnetic, thermodynamic and acoustic pressure physics involved in PA phenomena. Further, an array of detector elements placed at the boundary in the FE model can provide acoustic pressure data that can be exported to Matlab(R) to perform tomographic image reconstruction. The performance of two most commonly used image reconstruction techniques; namely, Filtered Backprojection (FBP) and Synthetic Aperture (SA) beamforming are compared. Results obtained showed that the lateral resolution obtained using FBP vs. SA largely depends on the aperture parameters. FBP reconstruction was able to provide a slightly better lateral resolution for smaller aperture while SA worked better for larger aperture. This interesting effect is currently being investigated further. Computationally FBP was faster, but it had artifacts along the spherical shell on which the data is projected.

  10. Optimal beamforming in ultrasound using the ideal observer.

    PubMed

    Abbey, Craig K; Nguyen, Nghia Q; Insana, Michael F

    2010-08-01

    Beamforming of received pulse-echo data generally involves the compression of signals from multiple channels within an aperture. This compression is irreversible, and therefore allows the possibility that information relevant for performing a diagnostic task is irretrievably lost. The purpose of this study was to evaluate information transfer in beamforming using a previously developed ideal observer model to quantify diagnostic information relevant to performing a task. We describe an elaborated statistical model of image formation for fixed-focus transmission and single-channel reception within a moving aperture, and we use this model on a panel of tasks related to breast sonography to evaluate receive-beamforming approaches that optimize the transfer of information. Under the assumption that acquisition noise is well described as an additive wide-band Gaussian white-noise process, we show that signal compression across receive-aperture channels after a 2-D matched-filtering operation results in no loss of diagnostic information. Across tasks, the matched-filter beamformer results in more information than standard delay-and-sum beamforming in the subsequent radio-frequency signal by a factor of two. We also show that for this matched filter, 68% of the information gain can be attributed to the phase of the matched-filter and 21% can be attributed to the amplitude. A 1-D matched filtering along axial lines shows no advantage over delay-andsum, suggesting an important role for incorporating correlations across different aperture windows in beamforming. We also show that a post-compression processing before the computation of an envelope is necessary to pass the diagnostic information in the beamformed radio-frequency signal to the final envelope image.

  11. Observing single protein binding by optical transmission through a double nanohole aperture in a metal film

    PubMed Central

    Al Balushi, Ahmed A.; Zehtabi-Oskuie, Ana; Gordon, Reuven

    2013-01-01

    We experimentally demonstrate protein binding at the single particle level. A double nanohole (DNH) optical trap was used to hold onto a 20 nm biotin-coated polystyrene (PS) particle which subsequently is bound to streptavidin. Biotin-streptavidin binding has been detected by an increase in the optical transmission through the DNH. Similar optical transmission behavior was not observed when streptavidin binding sites where blocked by mixing streptavidin with excess biotin. Furthermore, interaction of non-functionalized PS particles with streptavidin did not induce a change in the optical transmission through the DNH. These results are promising as the DNH trap can make an excellent single molecule resolution sensor which would enable studying biomolecular interactions and dynamics at a single particle/molecule level. PMID:24049672

  12. Observation of quasiperiodic dynamics in a one-dimensional quantum walk of single photons in space

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Qin, Hao; Tang, Bao; Sanders, Barry C.

    2014-05-01

    We realize the quasi-periodic dynamics of a quantum walker over 2.5 quasi-periods by realizing the walker as a single photon passing through a quantum-walk optical-interferometer network. We introduce fully controllable polarization-independent phase shifters in each optical path to realize arbitrary site-dependent phase shifts, and employ large clear-aperture beam displacers, while maintaining high-visibility interference, to enable 10 quantum-walk steps to be reached. By varying the half-wave-plate setting, we control the quantum-coin bias thereby observing a transition from quasi-periodic dynamics to ballistic diffusion.

  13. Large-acceptance diamond planar refractive lenses manufactured by laser cutting.

    PubMed

    Polikarpov, Maxim; Snigireva, Irina; Morse, John; Yunkin, Vyacheslav; Kuznetsov, Sergey; Snigirev, Anatoly

    2015-01-01

    For the first time, single-crystal diamond planar refractive lenses have been fabricated by laser micromachining in 300 µm-thick diamond plates which were grown by chemical vapour deposition. Linear lenses with apertures up to 1 mm and parabola apex radii up to 500 µm were manufactured and tested at the ESRF ID06 beamline. The large acceptance of these lenses allows them to be used as beam-conditioning elements. Owing to the unsurpassed thermal properties of single-crystal diamond, these lenses should be suitable to withstand the extreme flux densities expected at the planned fourth-generation X-ray sources.

  14. Analysis and design of fiber-coupled high-power laser diode array

    NASA Astrophysics Data System (ADS)

    Zhou, Chongxi; Liu, Yinhui; Xie, Weimin; Du, Chunlei

    2003-11-01

    A conclusion that a single conventional optical system could not realize fiber coupled high-power laser diode array is drawn based on the BPP of laser beam. According to the parameters of coupled fiber, a method to couple LDA beams into a single multi-mode fiber including beams collimating, shaping, focusing and coupling is present. The divergence angles after collimating are calculated and analyzed; the shape equation of the collimating micro-lenses array is deprived. The focusing lens is designed. A fiber coupled LDA result with the core diameter of 800 um and numeric aperture of 0.37 is gotten.

  15. Aircraft Rockets,

    DTIC Science & Technology

    1981-10-16

    applied the cospressczs cf two types - axial and centrifugal . Axial-flow compressor ccnsists of the set of fastened with each o her rotor wheals...to 16 such steps/stages. Air compression can be made by the centrifugal compressor in which the entered through the central opening/aperture air is...pressure. Centrifugal comEressors usually are single-stage. Combustion chamber is placed between the turbine and the compressor, they are which they are

  16. Characterization of Atmospheric Turbulence Effects Over 149 km Propagation Path using Multi-Wavelength Laser Beacons

    DTIC Science & Technology

    2010-09-01

    received beams (Fig. 2). Narrow bandpass filters were used to dedicate each subaperture to a specific wave from a single beacon. In this paper we...r , (6) where 1 1 ( )Mn n mmI M I − = = ∑ r is the aperture-average intensity for the nth frame. The index S in Eq. (6) denotes averaging over

  17. Community Plan for Far-Infared/Submillimeter Space Astronomy

    NASA Technical Reports Server (NTRS)

    Leisawitz, David; Oegerle, William (Technical Monitor)

    2003-01-01

    The consensus of attendees at the Second Workshop on New Concepts for Far-Infrared/Submillimeter Space Astronomy is that the Single Aperture Far-IR telescope (SAFIR), a cooled spaceborne observatory, is important for the future of far-infrared astronomy. This paper describes the specifications and capabilities of SAFIR, possible designs for SAFIR, and suggests a development strategy for the technology necessary for the telescope.

  18. WE-G-BRF-01: Adaptation to Intrafraction Tumor Deformation During Intensity-Modulated Radiotherapy: First Proof-Of-Principle Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Y; OBrien, R; Shieh, C

    2014-06-15

    Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor systemmore » phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an image-guided radiotherapy system to treat deforming tumors in real-time. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship, Cure Cancer Australia Foundation, NHMRC Project Grant APP1042375 and US NIH/NCI R01CA93626.« less

  19. Analysis and measurement of the modulation transfer function of harmonic shear wave induced phase encoding imaging.

    PubMed

    McAleavey, Stephen A

    2014-05-01

    Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.

  20. High resolution three-dimensional robotic synthetic tracked aperture ultrasound imaging: feasibility study

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Fang, Ting Yun; Finocchi, Rodolfo; Boctor, Emad M.

    2017-03-01

    Three dimensional (3D) ultrasound imaging is becoming a standard mode for medical ultrasound diagnoses. Conventional 3D ultrasound imaging is mostly scanned either by using a two dimensional matrix array or by motorizing a one dimensional array in the elevation direction. However, the former system is not widely assessable due to its cost, and the latter one has limited resolution and field-of-view in the elevation axis. Here, we propose a 3D ultrasound imaging system based on the synthetic tracked aperture approach, in which a robotic arm is used to provide accurate tracking and motion. While the ultrasound probe is moved by a robotic arm, each probe position is tracked and can be used to reconstruct a wider field-of-view as there are no physical barriers that restrict the elevational scanning. At the same time, synthetic aperture beamforming provides a better resolution in the elevation axis. To synthesize the elevational information, the single focal point is regarded as the virtual element, and forward and backward delay-andsum are applied to the radio-frequency (RF) data collected through the volume. The concept is experimentally validated using a general ultrasound phantom, and the elevational resolution improvement of 2.54 and 2.13 times was measured at the target depths of 20 mm and 110 mm, respectively.

  1. The correction of aberrations computed in the aperture plane of multifrequency microwave radiometer antennas

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1984-01-01

    An analytical/numerical approach to identifying and correcting the aberrations introduced by a general displacement of the feed from the focal point of a single offset paraboloid antenna used in deployable radiometer systems is developed. A 15 meter reflector with 18 meter focal length is assumed for the analysis, which considers far field radiation pattern quality, focal region fields, and aberrations appearing in the aperture plane. The latter are obtained by ray tracing in the transmit mode and are expressed in terms of optical notation. Attention is given to the physical restraints imposed on corrective elements by real microwave systems and to the intermediate near field aspects of the problem in three dimensions. The subject of wave fronts and caustics in the receive mode is introduced for comparative purposes. Several specific examples are given for aberration reduction at eight beamwidths of scan at a frequency of 1.414 GHz.

  2. Photonic Multitasking Interleaved Si Nanoantenna Phased Array.

    PubMed

    Lin, Dianmin; Holsteen, Aaron L; Maguid, Elhanan; Wetzstein, Gordon; Kik, Pieter G; Hasman, Erez; Brongersma, Mark L

    2016-12-14

    Metasurfaces provide unprecedented control over light propagation by imparting local, space-variant phase changes on an incident electromagnetic wave. They can improve the performance of conventional optical elements and facilitate the creation of optical components with new functionalities and form factors. Here, we build on knowledge from shared aperture phased array antennas and Si-based gradient metasurfaces to realize various multifunctional metasurfaces capable of achieving multiple distinct functions within a single surface region. As a key point, we demonstrate that interleaving multiple optical elements can be accomplished without reducing the aperture of each subelement. Multifunctional optical elements constructed from Si-based gradient metasurface are realized, including axial and lateral multifocus geometric phase metasurface lenses. We further demonstrate multiwavelength color imaging with a high spatial resolution. Finally, optical imaging functionality with simultaneous color separation has been obtained by using multifunctional metasurfaces, which opens up new opportunities for the field of advanced imaging and display.

  3. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam

    NASA Astrophysics Data System (ADS)

    Lin, Han; Gu, Min

    2013-02-01

    Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.

  4. Emittance studies of the 2.45 GHz permanent magnet ECR ion source

    NASA Astrophysics Data System (ADS)

    Zelenak, A.; Bogomolov, S. L.; Yazvitsky, N. Yu.

    2004-05-01

    During the past several years different types of permanent magnet 2.45 GHz (electron cyclotron resonance) ion sources were developed for production of singly charged ions. Ion sources of this type are used in the first stage of DRIBs project, and are planned to be used in the MASHA mass separator. The emittance of the beam provided by the source is one of the important parameters for these applications. An emittance scanner composed from a set of parallel slits and rotary wire beam profile monitor was used for the studying of the beam emittance characteristics. The emittance of helium and argon ion beams was measured with different shapes of the plasma electrode for several ion source parameters: microwave power, source potential, plasma aperture-puller aperture gap distance, gas pressure. The results of measurements are compared with previous simulations of ion optics.

  5. Fine resolution topographic mapping of the Jovian moons: a Ka-band high resolution topographic mapping interferometric synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  6. Fine Resolution Topographic Mapping of the Jovian Moons: A Ka-Band High Resolution Topographic Mapping Interferometric Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Madsen, S. N.; Carsey, F. D.; Turtle, E. P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through use of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  7. Shack-Hartmann reflective micro profilometer

    NASA Astrophysics Data System (ADS)

    Gong, Hai; Soloviev, Oleg; Verhaegen, Michel; Vdovin, Gleb

    2018-01-01

    We present a quantitative phase imaging microscope based on a Shack-Hartmann sensor, that directly reconstructs the optical path difference (OPD) in reflective mode. Comparing with the holographic or interferometric methods, the SH technique needs no reference beam in the setup, which simplifies the system. With a preregistered reference, the OPD image can be reconstructed from a single shot. Also, the method has a rather relaxed requirement on the illumination coherence, thus a cheap light source such as a LED is feasible in the setup. In our previous research, we have successfully verified that a conventional transmissive microscope can be transformed into an optical path difference microscope by using a Shack-Hartmann wavefront sensor under incoherent illumination. The key condition is that the numerical aperture of illumination should be smaller than the numerical aperture of imaging lens. This approach is also applicable to characterization of reflective and slightly scattering surfaces.

  8. Singer product apertures-A coded aperture system with a fast decoding algorithm

    NASA Astrophysics Data System (ADS)

    Byard, Kevin; Shutler, Paul M. E.

    2017-06-01

    A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.

  9. Experimental demonstration of tri-aperture Differential Synthetic Aperture Ladar

    NASA Astrophysics Data System (ADS)

    Zhao, Zhilong; Huang, Jianyu; Wu, Shudong; Wang, Kunpeng; Bai, Tao; Dai, Ze; Kong, Xinyi; Wu, Jin

    2017-04-01

    A tri-aperture Differential Synthetic Aperture Ladar (DSAL) is demonstrated in laboratory, which is configured by using one common aperture to transmit the illuminating laser and another two along-track receiving apertures to collect back-scattered laser signal for optical heterodyne detection. The image formation theory on this tri-aperture DSAL shows that there are two possible methods to reconstruct the azimuth Phase History Data (PHD) for aperture synthesis by following standard DSAL principle, either method resulting in a different matched filter as well as an azimuth image resolution. The experimental setup of the tri-aperture DSAL adopts a frequency chirped laser of about 40 mW in 1550 nm wavelength range as the illuminating source and an optical isolator composed of a polarizing beam-splitter and a quarter wave plate to virtually line the three apertures in the along-track direction. Various DSAL images up to target distance of 12.9 m are demonstrated using both PHD reconstructing methods.

  10. Apertured averaged scintillation of fully and partially coherent Gaussian, annular Gaussian, flat toped and dark hollow beams

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.

    2015-03-01

    Apertured averaged scintillation requires the evaluation of rather complicated irradiance covariance function. Here we develop a much simpler numerical method based on our earlier introduced semi-analytic approach. Using this method, we calculate aperture averaged scintillation of fully and partially coherent Gaussian, annular Gaussian flat topped and dark hollow beams. For comparison, the principles of equal source beam power and normalizing the aperture averaged scintillation with respect to received power are applied. Our results indicate that for fully coherent beams, upon adjusting the aperture sizes to capture 10 and 20% of the equal source power, Gaussian beam needs the largest aperture opening, yielding the lowest aperture average scintillation, whilst the opposite occurs for annular Gaussian and dark hollow beams. When assessed on the basis of received power normalized aperture averaged scintillation, fixed propagation distance and aperture size, annular Gaussian and dark hollow beams seem to have the lowest scintillation. Just like the case of point-like scintillation, partially coherent beams will offer less aperture averaged scintillation in comparison to fully coherent beams. But this performance improvement relies on larger aperture openings. Upon normalizing the aperture averaged scintillation with respect to received power, fully coherent beams become more advantageous than partially coherent ones.

  11. Advanced thermionic energy conversion

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Fitzpatrick, G. D.; Hansen, L. K.; Rasor, N. S.

    1974-01-01

    Basic analytical and experimental exploration was conducted on several types of advanced thermionic energy converters, and preliminary analysis was performed on systems utilizing advanced converter performance. The Pt--Nb cylindrical diode which exhibited a suppressed arc drop, as described in the preceding report, was reassembled and the existence of the postulated hydrid mode of operation was tentatively confirmed. Initial data obtained on ignited and unignited triode operation in the demountable cesium vapor system essentially confirmed the design principles developed in earlier work, with a few exceptions. Three specific advanced converter concepts were selected as candidates for concentrated basic study and for practical evaluation in fixed-configuration converters. Test vehicles and test stands for these converters and a unique controlled-atmosphere station for converter assembly and processing were designed, and procurement was initiated.

  12. Large Coded Aperture Mask for Spaceflight Hard X-ray Images

    NASA Technical Reports Server (NTRS)

    Vigneau, Danielle N.; Robinson, David W.

    2002-01-01

    The 2.6 square meter coded aperture mask is a vital part of the Burst Alert Telescope on the Swift mission. A random, but known pattern of more than 50,000 lead tiles, each 5 mm square, was bonded to a large honeycomb panel which projects a shadow on the detector array during a gamma ray burst. A two-year development process was necessary to explore ideas, apply techniques, and finalize procedures to meet the strict requirements for the coded aperture mask. Challenges included finding a honeycomb substrate with minimal gamma ray attenuation, selecting an adhesive with adequate bond strength to hold the tiles in place but soft enough to allow the tiles to expand and contract without distorting the panel under large temperature gradients, and eliminating excess adhesive from all untiled areas. The largest challenge was to find an efficient way to bond the > 50,000 lead tiles to the panel with positional tolerances measured in microns. In order to generate the desired bondline, adhesive was applied and allowed to cure to each tile. The pre-cured tiles were located in a tool to maintain positional accuracy, wet adhesive was applied to the panel, and it was lowered to the tile surface with synchronized actuators. Using this procedure, the entire tile pattern was transferred to the large honeycomb panel in a single bond. The pressure for the bond was achieved by enclosing the entire system in a vacuum bag. Thermal vacuum and acoustic tests validated this approach. This paper discusses the methods, materials, and techniques used to fabricate this very large and unique coded aperture mask for the Swift mission.

  13. Cost Modeling for Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2011-01-01

    Parametric cost models are an important tool for planning missions, compare concepts and justify technology investments. This paper presents on-going efforts to develop single variable and multi-variable cost models for space telescope optical telescope assembly (OTA). These models are based on data collected from historical space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models.

  14. Utilizing Microelectromechanical Systems (MEMS) Micro-Shutter Designs for Adaptive Coded Aperture Imaging (ACAI) Technologies

    DTIC Science & Technology

    2009-03-01

    52 Figure 4-1: Applied voltage versus deflection curve for Poly1/Poly2 stacked 300-μm single hot-arm actuator (shown on right...58 Figure 4-2: Applied voltage versus deflection curve for Poly1/Poly2 stacked 300-μm double hot-arm actuator (shown on...61 Figure 4-5: Deflection vs. power curves for an individual wedge from

  15. Dual-polarization airborne lidar for freshwater fisheries management and research

    NASA Astrophysics Data System (ADS)

    Roddewig, Michael R.; Pust, Nathan J.; Churnside, James H.; Shaw, Joseph A.

    2017-03-01

    The design of a compact, dual-polarization, nonscanning lidar system intended to fly in a small, single-engine aircraft for airborne study of freshwater marine ecosystems and mapping of fish schools in mountain lakes is discussed. Design trade-offs are presented with special attention paid to selecting the field of view and telescope aperture diameter. Example results and a comparison with a similar existing lidar system are presented.

  16. Embedded Meta-Material Antennas

    DTIC Science & Technology

    2009-01-31

    influence of the overall capacitance . Based on the tunable SRRs, we designed a tunable loop antenna with SRRs and HPTs as tuning elements. In this case, we...are those of the authors) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by...single aperture, which can provide significant miniaturization and flexibility to the entire system. To design such miniaturized antennas, new materials

  17. Ferroelectric/Semiconductor Tunable Microstrip Patch Antenna Developed

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2001-01-01

    A lithographically printed microwave antenna that can be switched and tuned has been developed. The structure consists of a rectangular metallic "patch" radiator patterned on a thin ferroelectric film that was grown on high-resistivity silicon. Such an antenna may one day enable a single-phased array aperture to transmit and receive signals at different frequencies, or it may provide a simple way to reconfigure fractal arrays for communications and radar applications.

  18. Crustal thickness variations across the Blue Ridge mountains, southern Appalachians: an alternative procedure for migrating wide-angle reflection data

    Treesearch

    Robert B. Hawman

    2008-01-01

    Migration of wide-angle reflections generated by quarry blasts suggests that crustal thickness increases from 38 km beneath the Carolina Terrane to 47–51 km along the southeastern flank of the Blue Ridge. The migration algorithm, developed for generating single-fold images from explosions and earthquakes recorded with isolated, short-aperture arrays, uses the localized...

  19. Light field image denoising using a linear 4D frequency-hyperfan all-in-focus filter

    NASA Astrophysics Data System (ADS)

    Dansereau, Donald G.; Bongiorno, Daniel L.; Pizarro, Oscar; Williams, Stefan B.

    2013-02-01

    Imaging in low light is problematic as sensor noise can dominate imagery, and increasing illumination or aperture size is not always effective or practical. Computational photography offers a promising solution in the form of the light field camera, which by capturing redundant information offers an opportunity for elegant noise rejection. We show that the light field of a Lambertian scene has a 4D hyperfan-shaped frequency-domain region of support at the intersection of a dual-fan and a hypercone. By designing and implementing a filter with appropriately shaped passband we accomplish denoising with a single all-in-focus linear filter. Drawing examples from the Stanford Light Field Archive and images captured using a commercially available lenselet- based plenoptic camera, we demonstrate that the hyperfan outperforms competing methods including synthetic focus, fan-shaped antialiasing filters, and a range of modern nonlinear image and video denoising techniques. We show the hyperfan preserves depth of field, making it a single-step all-in-focus denoising filter suitable for general-purpose light field rendering. We include results for different noise types and levels, over a variety of metrics, and in real-world scenarios. Finally, we show that the hyperfan's performance scales with aperture count.

  20. The Single Aperture Far-Infrared (SAFIR) Observatory and its Cryogenic Detector Needs

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Moseley, S. H.

    2003-01-01

    The development of a large, far-infrared telescope in space has taken on a new urgency with breakthroughs in detector technology and recognition of the fundamental importance of the far-infrared spectral region to questions ranging from cosmology to our own Solar System. The Single Aperture Far-InfraRed (SAFIR) Observatory is l0m-class far-infrared observatory that would begin development later in this decade to meet these needs. SAFIR's science goals are driven by the fact that youngest stages of almost all phenomena in the universe are shrouded in absorption by and emission from cool dust that emits strongly in the far-infrared, 20 microns - 1mm. Its operating temperature (4 K) and instrument complement would be optimized to reach the natural sky confusion limit in the far-infrared with diffraction-limited performance down to at least the atmospheric cutoff at 40 microns. This would provide a point source sensitivity improvement of several orders of magnitude over that of SIRTF. In order to achieve this, large arrays of detectors with NEPs ranging from a few to a hundred zeptowatts/sqrt(Hz) are needed. Very low temperature superconducting transition edge sensors and far-infrared "photon counting" detectors are critical technologies requiring development for the SAFIR mission.

  1. 120W, NA_0.15 fiber coupled LD module with 125-μm clad/NA 0.22 fiber by spatial coupling method

    NASA Astrophysics Data System (ADS)

    Ishige, Yuta; Kaji, Eisaku; Katayama, Etsuji; Ohki, Yutaka; Gajdátsy, Gábor; Cserteg, András.

    2018-02-01

    We have fabricated a fiber coupled semiconductor laser diode module by means of spatial beam combining of single emitter broad area semiconductor laser diode chips in the 9xx nm band. In the spatial beam multiplexing method, the numerical aperture of the output light from the optical fiber increases by increasing the number of laser diodes coupled into the fiber. To reduce it, we have tried the approach to improving assembly process technology. As a result, we could fabricate laser diode modules having a light output power of 120W or more and 95% power within NA of 0.15 or less from a single optical fiber with 125-μm cladding diameter. Furthermore, we have obtained that the laser diode module maintaining high coupling efficiency can be realized even around the fill factor of 0.95. This has been achieved by improving the optical alignment method regarding the fast axis stack pitch of the laser diodes in the laser diode module. Therefore, without using techniques such as polarization combining and wavelength combining, high output power was realized while keeping small numerical aperture. This contributes to a reduction in unit price per light output power of the pumping laser diode module.

  2. Numerical Investigation of the Acoustic Damping of Plane Acoustic Waves by Perforated Liners with Bias Flow

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Zhong, Zhi Yuan

    Perforated liners are extensively used in aero-engines and gas turbine combustors to suppress combustion instabilities. These liners, typically subjected to a low Mach number bias flow (a cooling flow through perforated holes), are fitted along the bounding walls of a combustor to convert acoustic energy into flow energy by generating vorticity at the rims of the perforated apertures. To investigate the acoustic damping of such liners with bias flow on plane acoustic waves, a time-domain numerical model is developed to compute acoustic wave propagation in a cylindrical duct with a single-layer liner attached. The damping mechanism of the liner is characterized in real-time by using a 'compliance', developed especially for this work. It is a rational function representation of the frequency-domain homogeneous compliance adapted from the Rayleigh conductivity of a single aperture with mean bias flow in the z-domain. The liner 'compliance' model is then incorporated into partial differential equations of the duct system, which are solved by using the method of lines. The numerical results are then evaluated by comparing with the numerical results of Eldredge and Dowling's frequency-domain model. Good agreement is observed. This confirms that the model and the approach developed are suitable for real-time characterizing the acoustic damping of perforated liners.

  3. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    PubMed Central

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-01-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939

  4. Imaging performance of annular apertures. II - Line spread functions

    NASA Technical Reports Server (NTRS)

    Tschunko, H. F. A.

    1978-01-01

    Line images formed by aberration-free optical systems with annular apertures are investigated in the whole range of central obstruction ratios. Annular apertures form lines images with central and side line groups. The number of lines in each line group is given by the ratio of the outer diameter of the annular aperture divided by the width of the annulus. The theoretical energy fraction of 0.889 in the central line of the image formed by an unobstructed aperture increases for centrally obstructed apertures to 0.932 for the central line group. Energy fractions for the central and side line groups are practically constant for all obstruction ratios and for each line group. The illumination of rectangular secondary apertures of various length/width ratios by apertures of various obstruction ratios is discussed.

  5. Extraordinary electromagnetic transmission by antenna arrays and frequency selective surfaces having compound unit cells with dissimilar elements

    DOEpatents

    Loui, Hung; Strassner, II, Bernd H.

    2018-03-20

    The various embodiments presented herein relate to extraordinary electromagnetic transmission (EEMT) to enable multiple inefficient (un-matched) but coupled radiators and/or apertures to radiate and/or pass electromagnetic waves efficiently. EEMT can be utilized such that signal transmission from a plurality of antennas and/or apertures occurs at a transmission frequency different to transmission frequencies of the individual antennas and/or aperture elements. The plurality of antennas/apertures can comprise first antenna/aperture having a first radiating area and material(s) and second antenna/aperture having a second radiating area and material(s), whereby the first radiating/aperture area and second radiating/aperture area can be co-located in a periodic compound unit cell. Owing to mutual coupling between the respective antennas/apertures in their arrayed configuration, the transmission frequency of the array can be shifted from the transmission frequencies of the individual elements. EEMT can be utilized for an array of evanescent of inefficient radiators connected to a transmission line(s).

  6. Influence of coma aberration on aperture averaged scintillations in oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Luo, Yujuan; Ji, Xiaoling; Yu, Hong

    2018-01-01

    The influence of coma aberration on aperture averaged scintillations in oceanic turbulence is studied in detail by using the numerical simulation method. In general, in weak oceanic turbulence, the aperture averaged scintillation can be effectively suppressed by means of the coma aberration, and the aperture averaged scintillation decreases as the coma aberration coefficient increases. However, in moderate and strong oceanic turbulence the influence of coma aberration on aperture averaged scintillations can be ignored. In addition, the aperture averaged scintillation dominated by salinity-induced turbulence is larger than that dominated by temperature-induced turbulence. In particular, it is shown that for coma-aberrated Gaussian beams, the behavior of aperture averaged scintillation index is quite different from the behavior of point scintillation index, and the aperture averaged scintillation index is more suitable for characterizing scintillations in practice.

  7. Performance of a clinical gridded electron gun in magnetic fields: Implications for MRI-linac therapy.

    PubMed

    Whelan, Brendan; Holloway, Lois; Constantin, Dragos; Oborn, Brad; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Keall, Paul

    2016-11-01

    MRI-linac therapy is a rapidly growing field, and requires that conventional linear accelerators are operated with the fringe field of MRI magnets. One of the most sensitive accelerator components is the electron gun, which serves as the source of the beam. The purpose of this work was to develop a validated finite element model (FEM) model of a clinical triode (or gridded) electron gun, based on accurate geometric and electrical measurements, and to characterize the performance of this gun in magnetic fields. The geometry of a Varian electron gun was measured using 3D laser scanning and digital calipers. The electric potentials and emission current of these guns were measured directly from six dose matched true beam linacs for the 6X, 10X, and 15X modes of operation. Based on these measurements, a finite element model (FEM) of the gun was developed using the commercial software opera/scala. The performance of the FEM model in magnetic fields was characterized using parallel fields ranging from 0 to 200 G in the in-line direction, and 0-35 G in the perpendicular direction. The FEM model matched the average measured emission current to within 5% across all three modes of operation. Different high voltage settings are used for the different modes; the 6X, 10X, and 15X modes have an average high voltage setting of 15, 10, and 11 kV. Due to these differences, different operating modes show different sensitivities in magnetic fields. For in line fields, the first current loss occurs at 40, 20, and 30 G for each mode. This is a much greater sensitivity than has previously been observed. For perpendicular fields, first beam loss occurred at 8, 5, and 5 G and total beam loss at 27, 22, and 20 G. A validated FEM model of a clinical triode electron gun has been developed based on accurate geometric and electrical measurements. Three different operating modes were simulated, with a maximum mean error of 5%. This gun shows greater sensitivity to in-line magnetic fields than previously presented models, and different operating modes show different sensitivity.

  8. Performance of a clinical gridded electron gun in magnetic fields: Implications for MRI-linac therapy

    PubMed Central

    Whelan, Brendan; Holloway, Lois; Constantin, Dragos; Oborn, Brad; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Keall, Paul

    2016-01-01

    Purpose: MRI-linac therapy is a rapidly growing field, and requires that conventional linear accelerators are operated with the fringe field of MRI magnets. One of the most sensitive accelerator components is the electron gun, which serves as the source of the beam. The purpose of this work was to develop a validated finite element model (FEM) model of a clinical triode (or gridded) electron gun, based on accurate geometric and electrical measurements, and to characterize the performance of this gun in magnetic fields. Methods: The geometry of a Varian electron gun was measured using 3D laser scanning and digital calipers. The electric potentials and emission current of these guns were measured directly from six dose matched true beam linacs for the 6X, 10X, and 15X modes of operation. Based on these measurements, a finite element model (FEM) of the gun was developed using the commercial software opera/scala. The performance of the FEM model in magnetic fields was characterized using parallel fields ranging from 0 to 200 G in the in-line direction, and 0–35 G in the perpendicular direction. Results: The FEM model matched the average measured emission current to within 5% across all three modes of operation. Different high voltage settings are used for the different modes; the 6X, 10X, and 15X modes have an average high voltage setting of 15, 10, and 11 kV. Due to these differences, different operating modes show different sensitivities in magnetic fields. For in line fields, the first current loss occurs at 40, 20, and 30 G for each mode. This is a much greater sensitivity than has previously been observed. For perpendicular fields, first beam loss occurred at 8, 5, and 5 G and total beam loss at 27, 22, and 20 G. Conclusions: A validated FEM model of a clinical triode electron gun has been developed based on accurate geometric and electrical measurements. Three different operating modes were simulated, with a maximum mean error of 5%. This gun shows greater sensitivity to in-line magnetic fields than previously presented models, and different operating modes show different sensitivity. PMID:27806583

  9. Terahertz near-field imaging using subwavelength plasmonic apertures and a quantum cascade laser source.

    PubMed

    Baragwanath, Adam J; Freeman, Joshua R; Gallant, Andrew J; Zeitler, J Axel; Beere, Harvey E; Ritchie, David A; Chamberlain, J Martyn

    2011-07-01

    The first demonstration, to our knowledge, of near-field imaging using subwavelength plasmonic apertures with a terahertz quantum cascade laser source is presented. "Bull's-eye" apertures, featuring subwavelength circular apertures flanked by periodic annular corrugations were created using a novel fabrication method. A fivefold increase in intensity was observed for plasmonic apertures over plain apertures of the same diameter. Detailed studies of the transmitted beam profiles were undertaken for apertures with both planarized and corrugated exit facets, with the former producing spatially uniform intensity profiles and subwavelength spatial resolution. Finally, a proof-of-concept imaging experiment is presented, where an inhomogeneous pharmaceutical drug coating is investigated.

  10. Finite element area and line integral transforms for generalization of aperture function and geometry in Kirchhoff scalar diffraction theory

    NASA Astrophysics Data System (ADS)

    Kraus, Hal G.

    1993-02-01

    Two finite element-based methods for calculating Fresnel region and near-field region intensities resulting from diffraction of light by two-dimensional apertures are presented. The first is derived using the Kirchhoff area diffraction integral and the second is derived using a displaced vector potential to achieve a line integral transformation. The specific form of each of these formulations is presented for incident spherical waves and for Gaussian laser beams. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define apertures of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s), which may be of continuous or discontinuous form. The finite element transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is illustrated in several examples which include secondary obstructions, secondary spider supports, multiple mirror arrays, synthetic aperture arrays, apertures covered by screens, apodization, phase plates, and off-axis apertures. Typically, the finite element line integral transform results in significant gains in computational efficiency over the finite element Kirchhoff transform method, but is also subject to some loss in generality.

  11. WE-G-204-03: Photon-Counting Hexagonal Pixel Array CdTe Detector: Optimal Resampling to Square Pixels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, S; Vedantham, S; Karellas, A

    Purpose: Detectors with hexagonal pixels require resampling to square pixels for distortion-free display of acquired images. In this work, the presampling modulation transfer function (MTF) of a hexagonal pixel array photon-counting CdTe detector for region-of-interest fluoroscopy was measured and the optimal square pixel size for resampling was determined. Methods: A 0.65mm thick CdTe Schottky sensor capable of concurrently acquiring up to 3 energy-windowed images was operated in a single energy-window mode to include ≥10 KeV photons. The detector had hexagonal pixels with apothem of 30 microns resulting in pixel spacing of 60 and 51.96 microns along the two orthogonal directions.more » Images of a tungsten edge test device acquired under IEC RQA5 conditions were double Hough transformed to identify the edge and numerically differentiated. The presampling MTF was determined from the finely sampled line spread function that accounted for the hexagonal sampling. The optimal square pixel size was determined in two ways; the square pixel size for which the aperture function evaluated at the Nyquist frequencies along the two orthogonal directions matched that from the hexagonal pixel aperture functions, and the square pixel size for which the mean absolute difference between the square and hexagonal aperture functions was minimized over all frequencies up to the Nyquist limit. Results: Evaluation of the aperture functions over the entire frequency range resulted in square pixel size of 53 microns with less than 2% difference from the hexagonal pixel. Evaluation of the aperture functions at Nyquist frequencies alone resulted in 54 microns square pixels. For the photon-counting CdTe detector and after resampling to 53 microns square pixels using quadratic interpolation, the presampling MTF at Nyquist frequency of 9.434 cycles/mm along the two directions were 0.501 and 0.507. Conclusion: Hexagonal pixel array photon-counting CdTe detector after resampling to square pixels provides high-resolution imaging suitable for fluoroscopy.« less

  12. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    NASA Astrophysics Data System (ADS)

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  13. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission

    PubMed Central

    Sapienza, Luca; Davanço, Marcelo; Badolato, Antonio; Srinivasan, Kartik

    2015-01-01

    Self-assembled, epitaxially grown InAs/GaAs quantum dots (QDs) are promising semiconductor quantum emitters that can be integrated on a chip for a variety of photonic quantum information science applications. However, self-assembled growth results in an essentially random in-plane spatial distribution of QDs, presenting a challenge in creating devices that exploit the strong interaction of single QDs with highly confined optical modes. Here, we present a photoluminescence imaging approach for locating single QDs with respect to alignment features with an average position uncertainty <30 nm (<10 nm when using a solid-immersion lens), which represents an enabling technology for the creation of optimized single QD devices. To that end, we create QD single-photon sources, based on a circular Bragg grating geometry, that simultaneously exhibit high collection efficiency (48%±5% into a 0.4 numerical aperture lens, close to the theoretically predicted value of 50%), low multiphoton probability (g(2)(0) <1%), and a significant Purcell enhancement factor (≈3). PMID:26211442

  14. A generalized method for determining radiation patterns of aperture antennas and its application to reflector antennas. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Paknys, J. R.

    1982-01-01

    The reflector antenna may be thought of as an aperture antenna. The classical solution for the radiation pattern of such an antenna is found by the aperture integration (AI) method. Success with this method depends on how accurately the aperture currents are known beforehand. In the past, geometrical optics (GO) has been employed to find the aperture currents. This approximation is suitable for calculating the main beam and possibly the first few sidelobes. A better approximation is to use aperture currents calculated from the geometrical theory of diffraction (GTD). Integration of the GTD currents over and extended aperture yields more accurate results for the radiation pattern. This approach is useful when conventional AI and GTD solutions have no common region of validity. This problem arises in reflector antennas. Two dimensional models of parabolic reflectors are studied; however, the techniques discussed can be applied to any aperture antenna.

  15. Automatic switching matrix

    DOEpatents

    Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil

    1982-01-01

    An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.

  16. Ground-to-Ground Optical Communications Demonstration

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Lee, S.

    2000-01-01

    A bidirectional horizontal-path optical link was demonstrated between Strawberry Peak (SP), Lake Arrowhead, California, and the JPL Table Mountain Facility (TMF), Wrightwood, California, during June and November of 1998. The 0.6-m telescope at TMF was used to broadcast a 4-beam 780-nm beacon to SP. The JPL-patented Optical Communications Demonstrator (OCD) at SP received the beacon, performed ne tracking to compensate for the atmosphere-induced beacon motion and retransmitted a 844-nm communications laser beam modulated at 40 to 500 Mb/s back to TMF. Characteristics of the horizontal-path atmospheric channel as well as performance of the optical communications link were evaluated. The normalized variance of the irradiance fluctuations or scintillation index delta2/I at either end was determined. At TMF where a single 844-nm beam was received by a 0.6-m aperture, the measured delta2/I covered a wide range from 0.07 to 1.08. A single 780-nm beam delta2/I measured at SP using a 0.09-m aperture yielded values ranging from 0.66 to 1.03, while a combination of four beams reduced the scintillation index due to incoherent averaging to 0.22 to 0.40. This reduction reduced the dynamic range of the fluctuations from 17 to 21 dB to 13 to 14 dB as compared with the OCD tracking sensor dynamic range of 10 dB. Predictions of these values also were made based on existing theories and are compared. Generally speaking, the theoretical bounds were reasonable. Discussions on the probability density function (PDF) of the intensity fluctuations are presented and compared with the measurements made. The lognormal PDF was found to agree for the weak scintillation regime as expected. The present measurements support evidence presented by earlier measurements made using the same horizontal path, which suggests that the aperture averaging effect is better than theoretically predicted.

  17. CALISTO - A Novel Architecture for the Single Aperture Far Infrared Observatory

    NASA Astrophysics Data System (ADS)

    Lester, Daniel F.; Goldsmith, P.; Benford, D.

    2007-12-01

    Following the success of Spitzer, and in expectation of success with JWST and Herschel, the astronomical community is looking ahead to a large aperture far infrared mission that can build on the scientific results of these missions. This expectation was formalized by the 2000 Decadal recommendation for design studies on a SAFIR - a single aperture far infrared observatory. A JWST-inspired architecture for SAFIR was considered in a Vision Mission study several years ago. We present here a exciting new architecture for this important mission that offers several advantages. This CALISTO (Cryogenic Far-Infrared/Submillimeter Observatory) architecture, originally developed by JPL, builds on the thermally optimized passive cooling design of the Vision Mission version of SAFIR, and focal plane instrument strategies as well, but is based on a 4x6m ellipsoidal primary that greatly simplifies deployment out of an ELV launch shroud. Used off-axis, this design is much less affected by scattered (e.g. galactic plane and ZODI) emission than previous architectures, providing astronomical background-limited facility over much of the sky. Technologies for such a large mirror, diffraction-limited at 20µm, are now becoming credible. Using the large focal plane to host envisioned large format sensor arrays operating with high spatial resolution, CALISTO will resolve the far infrared extragalactic background, and trace the chemical evolution of galaxies. Simple models suggest that detection of the first structure in the universe, marked by cooling primordial clouds of molecular hydrogen at high z, may be achievable with such a telescope. Further building on the work of Spitzer, CALISTO will trace the development of planetary systems, probing the inner structure of star forming disks, and reveal the structure of nearby solar systems using the structure of debris disks that surround them. We review in this paper the science goals and engineering challenges for this mission.

  18. Direct aperture optimization: a turnkey solution for step-and-shoot IMRT.

    PubMed

    Shepard, D M; Earl, M A; Li, X A; Naqvi, S; Yu, C

    2002-06-01

    IMRT treatment plans for step-and-shoot delivery have traditionally been produced through the optimization of intensity distributions (or maps) for each beam angle. The optimization step is followed by the application of a leaf-sequencing algorithm that translates each intensity map into a set of deliverable aperture shapes. In this article, we introduce an automated planning system in which we bypass the traditional intensity optimization, and instead directly optimize the shapes and the weights of the apertures. We call this approach "direct aperture optimization." This technique allows the user to specify the maximum number of apertures per beam direction, and hence provides significant control over the complexity of the treatment delivery. This is possible because the machine dependent delivery constraints imposed by the MLC are enforced within the aperture optimization algorithm rather than in a separate leaf-sequencing step. The leaf settings and the aperture intensities are optimized simultaneously using a simulated annealing algorithm. We have tested direct aperture optimization on a variety of patient cases using the EGS4/BEAM Monte Carlo package for our dose calculation engine. The results demonstrate that direct aperture optimization can produce highly conformal step-and-shoot treatment plans using only three to five apertures per beam direction. As compared with traditional optimization strategies, our studies demonstrate that direct aperture optimization can result in a significant reduction in both the number of beam segments and the number of monitor units. Direct aperture optimization therefore produces highly efficient treatment deliveries that maintain the full dosimetric benefits of IMRT.

  19. Solar tower cavity receiver aperture optimization based on transient optical and thermo-hydraulic modeling

    NASA Astrophysics Data System (ADS)

    Schöttl, Peter; Bern, Gregor; van Rooyen, De Wet; Heimsath, Anna; Fluri, Thomas; Nitz, Peter

    2017-06-01

    A transient simulation methodology for cavity receivers for Solar Tower Central Receiver Systems with molten salt as heat transfer fluid is described. Absorbed solar radiation is modeled with ray tracing and a sky discretization approach to reduce computational effort. Solar radiation re-distribution in the cavity as well as thermal radiation exchange are modeled based on view factors, which are also calculated with ray tracing. An analytical approach is used to represent convective heat transfer in the cavity. Heat transfer fluid flow is simulated with a discrete tube model, where the boundary conditions at the outer tube surface mainly depend on inputs from the previously mentioned modeling aspects. A specific focus is put on the integration of optical and thermo-hydraulic models. Furthermore, aiming point and control strategies are described, which are used during the transient performance assessment. Eventually, the developed simulation methodology is used for the optimization of the aperture opening size of a PS10-like reference scenario with cavity receiver and heliostat field. The objective function is based on the cumulative gain of one representative day. Results include optimized aperture opening size, transient receiver characteristics and benefits of the implemented aiming point strategy compared to a single aiming point approach. Future work will include annual simulations, cost assessment and optimization of a larger range of receiver parameters.

  20. The optimization of the inverted occulter of the solar orbiter/METIS coronagraph/spectrometer

    NASA Astrophysics Data System (ADS)

    Landini, F.; Vives, S.; Romoli, M.; Guillon, C.; Pancrazzi, M.; Escolle, C.; Focardi, M.; Fineschi, S.; Antonucci, E.; Nicolini, G.; Naletto, G.; Nicolosi, P.; Spadaro, D.

    2017-11-01

    The coronagraph/spectrometer METIS (Multi Element Telescope for Imaging and Spectroscopy), selected to fly aboard the Solar Orbiter ESA/NASA mission, is conceived to perform imaging (in visible, UV and EUV) and spectroscopy (in EUV) of the solar corona. It is an integrated instrument suite located on a single optical bench and sharing a unique aperture on the satellite heat shield. As every coronagraph, METIS is highly demanding in terms of stray light suppression. In order to meet the strict thermal requirements of Solar Orbiter, METIS optical design has been optimized by moving the entrance pupil at the level of the external occulter on the S/C thermal shield, thus reducing the size of the external aperture. The scheme is based on an inverted external-occulter (IEO). The IEO consists of a circular aperture on the Solar Orbiter thermal shield. A spherical mirror rejects back the disk-light through the IEO. The experience built on all the previous space coronagraphs forces designers to dedicate a particular attention to the occulter optimization. Two breadboards were manufactured to perform occulter optimization measurements: BOA (Breadboard of the Occulting Assembly) and ANACONDA (AN Alternative COnfiguration for the Occulting Native Design Assembly). A preliminary measurement campaign has been carried on at the Laboratoire d'Astrophysique de Marseille. In this paper we describe BOA and ANACONDA designs, the laboratory set-up and the preliminary results.

  1. Fluorescence particle detection using microfluidics and planar optoelectronic elements

    NASA Astrophysics Data System (ADS)

    Kettlitz, Siegfried W.; Moosmann, Carola; Valouch, Sebastian; Lemmer, Uli

    2014-05-01

    Detection of fluorescent particles is an integral part of flow cytometry for analysis of selectively stained cells. Established flow cytometer designs achieve great sensitivity and throughput but require bulky and expensive components which prohibit mass production of small single-use point-of-care devices. The use of a combination of innovative technologies such as roll-to-roll printed microuidics with integrated optoelectronic components such as printed organic light emitting diodes and printed organic photodiodes enables tremendous opportunities in cost reduction, miniaturization and new application areas. In order to harvest these benefits, the optical setup requires a redesign to eliminate the need for lenses, dichroic mirrors and lasers. We investigate the influence of geometric parameters on the performance of a thin planar design which uses a high power LED as planar light source and a PIN-photodiode as planar detector. Due to the lack of focusing optics and inferior optical filters, the device sensitivity is not yet on par with commercial state of the art flow cytometer setups. From noise measurements, electronic and optical considerations we deduce possible pathways of improving the device performance. We identify that the sensitivity is either limited by dark noise for very short apertures or by noise from background light for long apertures. We calculate the corresponding crossover length. For the device design we conclude that a low device thickness, low particle velocity and short aperture length are necessary to obtain optimal sensitivity.

  2. Quantitative model of transport-aperture coordination during reach-to-grasp movements.

    PubMed

    Rand, Miya K; Shimansky, Y P; Hossain, Abul B M I; Stelmach, George E

    2008-06-01

    It has been found in our previous studies that the initiation of aperture closure during reach-to-grasp movements occurs when the hand distance to target crosses a threshold that is a function of peak aperture amplitude, hand velocity, and hand acceleration. Thus, a stable relationship between those four movement parameters is observed at the moment of aperture closure initiation. Based on the concept of optimal control of movements (Naslin 1969) and its application for reach-to-grasp movement regulation (Hoff and Arbib 1993), it was hypothesized that the mathematical equation expressing that relationship can be generalized to describe coordination between hand transport and finger aperture during the entire reach-to-grasp movement by adding aperture velocity and acceleration to the above four movement parameters. The present study examines whether this hypothesis is supported by the data obtained in experiments in which young adults performed reach-to-grasp movements in eight combinations of two reach-amplitude conditions and four movement-speed conditions. It was found that linear approximation of the mathematical model described the relationship among the six movement parameters for the entire aperture-closure phase with very high precision for each condition, thus supporting the hypothesis for that phase. Testing whether one mathematical model could approximate the data across all the experimental conditions revealed that it was possible to achieve the same high level of data-fitting precision only by including in the model two additional, condition-encoding parameters and using a nonlinear, artificial neural network-based approximator with two hidden layers comprising three and two neurons, respectively. This result indicates that transport-aperture coordination, as a specific relationship between the parameters of hand transport and finger aperture, significantly depends on the condition-encoding variables. The data from the aperture-opening phase also fit a linear model, whose coefficients were substantially different from those identified for the aperture-closure phase. This result supports the above hypothesis for the aperture-opening phase, and consequently, for the entire reach-to-grasp movement. However, the fitting precision was considerably lower than that for the aperture-closure phase, indicating significant trial-to-trial variability of transport-aperture coordination during the aperture-opening phase. Implications for understanding the neural mechanisms employed by the CNS for controlling reach-to-grasp movements and utilization of the mathematical model of transport-aperture coordination for data analysis are discussed.

  3. Microwave waveguide manifold and method

    DOEpatents

    Staehlin, John H.

    1987-01-01

    A controllably electrically coupled, physically intersecting plural waveguide manifold assembly wherein the intersecting waveguide elements are fabricated in integral unitary relationship from a single piece of metal in order to avoid the inaccuracies and difficult-to-control fabrication steps associated with uniting separate waveguide elements into a unitary structure. An X-band aluminum airborne radar manifold example is disclosed, along with a fabrication sequence for the manifold and the electrical energy communicating apertures joining the manifold elements.

  4. The WHAT project

    NASA Astrophysics Data System (ADS)

    Shporer, A.; Mazeh, T.; Moran, A.; Bakos, G.; Kovacs, G.; Mashal, E.

    2006-02-01

    We describe WHAT, a small-aperture short focal length automated telescope with an 8.2° × 8.2° field of view, located at the Wise Observatory. The system is aimed at searching for transiting extrasolar planets and variable stars. Preliminary results of 3892 exposures of a single field are presented, where the telescope achieved already a precision of a few mmag for the brightest objects. Additional information can be found at: http://wise-obs.tau.ac.il/~what.

  5. Two-dimensional fluid droplet arrays generated using a single nozzle

    DOEpatents

    Lee, Eric R.; Perl, Martin L.

    1999-11-02

    Amplitudes of drive pulses received by a horizontally-placed dropper determine the horizontal displacements of droplets relative to an ejection aperture of the dropper. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

  6. Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum

    DTIC Science & Technology

    2014-09-30

    beaked whales , and shallow-diving mysticetes, with a focus on humpback whales . Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...obtained via large-aperture vertical array techniques (for humpback whales ). APPROACH The experimental approach used by this project uses data...m depth. The motivation behind these multiple deployments is that multiple techniques can be used to estimate humpback whale call position, and

  7. Microwave waveguide manifold and method

    DOEpatents

    Staehlin, John H.

    1987-12-01

    A controllably electrically coupled, physically intersecting plural waveguide manifold assembly wherein the intersecting waveguide elements are fabricated in integral unitary relationship from a single piece of metal in order to avoid the inaccuracies and difficult-to-control fabrication steps associated with uniting separate waveguide elements into a unitary structure. An X-band aluminum airborne radar manifold example is disclosed, along with a fabrication sequence for the manifold and the electrical energy communicating apertures joining the manifold elements.

  8. Formation and function of a new pollen aperture pattern in angiosperms: The proximal sulcus of Tillandsia leiboldiana (Bromeliaceae).

    PubMed

    Albert, Béatrice; Matamoro-Vidal, Alexis; Raquin, Christian; Nadot, Sophie

    2010-02-01

    Pollen grains are generally surrounded by an extremely resistant wall interrupted in places by apertures that play a key role in reproduction; pollen tube growth is initiated at these sites. The shift from a proximal to distal aperture location is a striking innovation in seed plant reproduction. Reversals to proximal aperture position have only very rarely been described in angiosperms. The genus Tillandsia belongs to the Bromeliaceae family, and its aperture pattern has been described as distal monosulcate, the most widespread aperture patterns recorded in monocots and basal angiosperms. Here we report developmental and functional elements to demonstrate that the sulcate aperture in Tillandsia leiboldiana is not distal as previously described but proximal. Postmeitotic tetrad observation indicates unambiguously the proximal position of the sulcus, and in vitro germination of pollen grains confirms that the aperture is functional. This is the first report of a sulcate proximal aperture with proximal germination. The observation of microsporogenesis reveals specific features in the patterns of callose thickenings in postmeiotic tetrads.

  9. Highly sensitive nonlinear luminescent ceramics for volumetric and multilayer data carriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martynovich, E F; Dresvyanskiy, V P; Voitovich, A P

    2015-10-31

    The interaction of optical ceramics based on wide-bandgap crystals with near-IR femtosecond laser radiation is studied experimentally. The formation of luminescent centres in LiF and MgF{sub 2} ceramics under the action of single laser pulses is considered. Two interaction regimes are used. In the regime of low-aperture focusing of laser radiation (800 nm, 30 fs, 0.3 mJ), multiple selffocusing and filamentation in the samples are observed. The luminescent centres are formed in thin channels induced by light filaments. The average effective self-focusing length is ∼100 μm; the formation of luminescent centres begins at this length and ceases at a wavelengthmore » of about 380 mm. The luminescent trace (spur) induced by a single laser filament was ∼30 μm long and 1.3 μm in diameter. The second regime of light interaction with the sample was based on high-aperture focusing with a simultaneous decrease in the laser pulse energy. This led to the formation of single pits with a diameter smaller than the optical diffraction limit. The luminescent centres induced by the laser radiation were aggregated colour centres. The mechanism of their creation included the highly-nonlinear generation of electron – hole pairs in the filamentation region, their recombination with the formation of anion excitons and the decay of excitons into Fresnel defects by the Lushchik – Vitol – Hersh – Pooley mechanism, as well as their recharging, migration and aggregation. (laser applications and other topics in quantum electronics)« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.

    Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less

  11. Force-controlled manipulation of single cells: from AFM to FluidFM.

    PubMed

    Guillaume-Gentil, Orane; Potthoff, Eva; Ossola, Dario; Franz, Clemens M; Zambelli, Tomaso; Vorholt, Julia A

    2014-07-01

    The ability to perturb individual cells and to obtain information at the single-cell level is of central importance for addressing numerous biological questions. Atomic force microscopy (AFM) offers great potential for this prospering field. Traditionally used as an imaging tool, more recent developments have extended the variety of cell-manipulation protocols. Fluidic force microscopy (FluidFM) combines AFM with microfluidics via microchanneled cantilevers with nano-sized apertures. The crucial element of the technology is the connection of the hollow cantilevers to a pressure controller, allowing their operation in liquid as force-controlled nanopipettes under optical control. Proof-of-concept studies demonstrated a broad spectrum of single-cell applications including isolation, deposition, adhesion and injection in a range of biological systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Design of 150W, 105-μm, 0.22NA, fiber coupled laser diode module by ZEMAX

    NASA Astrophysics Data System (ADS)

    Qi, Yunfei; Zhao, Pengfei; Chen, Qing; Wu, Yulong; Chen, Yongqi; Zou, Yonggang; Lin, Xuechun

    2016-10-01

    We represent a design of a high brightness, fiber coupled diode laser module based on 16 single emitters at 915nm. The module can produce more than 150 Watts output power from a standard fiber with core diameter of 105μm and numerical aperture (NA) of 0.22. To achieve a high power and high brightness laser beam, the spatial beam combination and polarization beam combination are used to combine output of 16 single emitters into a single beam, and then an aspheric lens is used to couple the combined beam into an optical fiber. The simulation show that the total coupling efficiency is more than 95% and the highest brightness is estimated to be 11MW/ (cm2*sr).

  13. Energy acceptance and on momentum aperture optimization for the Sirius project

    NASA Astrophysics Data System (ADS)

    Dester, P. S.; Sá, F. H.; Liu, L.

    2017-07-01

    A fast objective function to calculate Touschek lifetime and on momentum aperture is essential to explore the vast search space of strength of quadrupole and sextupole families in Sirius. Touschek lifetime is estimated by using the energy aperture (dynamic and physical), RF system parameters and driving terms. Non-linear induced betatron oscillations are considered to determine the energy aperture. On momentum aperture is estimated by using a chaos indicator and resonance crossing considerations. Touschek lifetime and on momentum aperture constitute the objective function, which was used in a multi-objective genetic algorithm to perform an optimization for Sirius.

  14. Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture

    PubMed Central

    Regmi, Raju; Al Balushi, Ahmed A.; Rigneault, Hervé; Gordon, Reuven; Wenger, Jérôme

    2015-01-01

    Diffraction ultimately limits the fluorescence collected from a single molecule, and sets an upper limit to the maximum concentration to isolate a single molecule in the detection volume. To overcome these limitations, we introduce here the use of a double nanohole structure with 25 nm gap, and report enhanced detection of single fluorescent molecules in concentrated solutions exceeding 20 micromolar. The nanometer gap concentrates the light into an apex volume down to 70 zeptoliter (10−21 L), 7000-fold below the diffraction-limited confocal volume. Using fluorescence correlation spectroscopy and time-correlated photon counting, we measure fluorescence enhancement up to 100-fold, together with local density of optical states (LDOS) enhancement of 30-fold. The distinctive features of double nanoholes combining high local field enhancement, efficient background screening and relative nanofabrication simplicity offer new strategies for real time investigation of biochemical events with single molecule resolution at high concentrations. PMID:26511149

  15. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    DOE PAGES

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; ...

    2016-01-01

    Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less

  16. A Ploidy-Sensitive Mechanism Regulates Aperture Formation on the Arabidopsis Pollen Surface and Guides Localization of the Aperture Factor INP1

    PubMed Central

    Reeder, Sarah H.; Lee, Byung Ha; Fox, Ronald; Dobritsa, Anna A.

    2016-01-01

    Pollen presents a powerful model for studying mechanisms of precise formation and deposition of extracellular structures. Deposition of the pollen wall exine leads to the generation of species-specific patterns on pollen surface. In most species, exine does not develop uniformly across the pollen surface, resulting in the formation of apertures–openings in the exine that are species-specific in number, morphology and location. A long time ago, it was proposed that number and positions of apertures might be determined by the geometry of tetrads of microspores–the precursors of pollen grains arising via meiotic cytokinesis, and by the number of last-contact points between sister microspores. We have tested this model by characterizing Arabidopsis mutants with ectopic apertures and/or abnormal geometry of meiotic products. Here we demonstrate that contact points per se do not act as aperture number determinants and that a correct geometric conformation of a tetrad is neither necessary nor sufficient to generate a correct number of apertures. A mechanism sensitive to pollen ploidy, however, is very important for aperture number and positions and for guiding the aperture factor INP1 to future aperture sites. In the mutants with ectopic apertures, the number and positions of INP1 localization sites change depending on ploidy or ploidy-related cell size and not on INP1 levels, suggesting that sites for aperture formation are specified before INP1 is brought to them. PMID:27177036

  17. A geometrical optics approach for modeling aperture averaging in free space optical communication applications

    NASA Astrophysics Data System (ADS)

    Yuksel, Heba; Davis, Christopher C.

    2006-09-01

    Intensity fluctuations at the receiver in free space optical (FSO) communication links lead to a received power variance that depends on the size of the receiver aperture. Increasing the size of the receiver aperture reduces the power variance. This effect of the receiver size on power variance is called aperture averaging. If there were no aperture size limitation at the receiver, then there would be no turbulence-induced scintillation. In practice, there is always a tradeoff between aperture size, transceiver weight, and potential transceiver agility for pointing, acquisition and tracking (PAT) of FSO communication links. We have developed a geometrical simulation model to predict the aperture averaging factor. This model is used to simulate the aperture averaging effect at given range by using a large number of rays, Gaussian as well as uniformly distributed, propagating through simulated turbulence into a circular receiver of varying aperture size. Turbulence is simulated by filling the propagation path with spherical bubbles of varying sizes and refractive index discontinuities statistically distributed according to various models. For each statistical representation of the atmosphere, the three-dimensional trajectory of each ray is analyzed using geometrical optics. These Monte Carlo techniques have proved capable of assessing the aperture averaging effect, in particular, the quantitative expected reduction in intensity fluctuations with increasing aperture diameter. In addition, beam wander results have demonstrated the range-cubed dependence of mean-squared beam wander. An effective turbulence parameter can also be determined by correlating beam wander behavior with the path length.

  18. THE USE OF ATOMIC BEAMS AS A PROBE FOR STUDYING LOW DENSITY PLASMAS. Quarterly Report for July 1, 1962-October 1, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-10-31

    A charge transfer cell was designed with the intention of minimizing space charge effects, since space charge represents a particularly serious handicap in the low energy (1 to 100 ev) region. Some cesium triode characteristice of the cell are presented in the form of curves of plate current versus plate voltage for several different voltages of grid (G1) to cathode. The potassium beamnoble gas attenuatlon studies were continued. The characteristics of a plasma source are described. The source consists of two water cooled copper spindles around which very thin tantalum, tungsten, or rhenium sheet may be wound. The cesium willmore » enter the source through a hole drilled in the face of one of the spindles. (N.W.R.)« less

  19. Vacuum field-effect transistor with a deep submicron channel fabricated by electro-forming

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Shen, Zhihua; Wu, Shengli; Zhang, Jintao

    2017-06-01

    Vacuum field-effect transistors (VFETs) with channel lengths down to 500 nm (i.e., the deep submicron scale) were fabricated with the mature technology of the surface conduction electron emitter fabrication process in our former experiments. The vacuum channel of this new VFET was generated by using the electro-forming process. During electro-forming, the joule heat cracks the conductive film and then generates the submicron scale gap that serves as the vacuum channel. The gap separates the conductive film into two plane-to-plane electrodes, which serve as a source (cathode) electrode and a drain (anode) electrode of the VFET, respectively. Experimental results reveal that the fabricated device demonstrates a clear triode behavior of the gate modulation. Fowler-Nordheim theory was used to analyze the electron emission mechanism and operating principle of the device.

  20. Neutral Beam Injection in the JET Trace Tritium Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surrey, E.; Ciric, D.; Cox, S. J.

    Operation of the JET Neutral Beam Injectors with tritium is described. Supplying the tritium feed via the special electrically grounded gas feed compromised the performance of the up-graded high current triode Positive Ion Neutral Injectors (PINI) due to gas starvation of the source and the methods adopted to ameliorate this effect are described. A total of 362 PINI beam pulses were requested, circulating a total of 4.73g tritium, of which 9.3mg was injected into the torus. Safety considerations required a continuous, cumulative total to be maintained of the mass of tritium adsorbed onto the cryo-pumping panel; a daily limit ofmore » 0.5g was adopted for the Trace Tritium Experiment (TTE). A subsequent clean up phase using 115keV deuterium beams completed the isotopic exchange of components in the beamline.« less

  1. SQUARE WAVE AMPLIFIER

    DOEpatents

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  2. Amplification of the signal in triode structures of ion detectors based on 6H-SIC epitaxial films

    NASA Astrophysics Data System (ADS)

    Lebedev, A. A.; Strokan, N. B.; Ivanov, A. M.; Davydov, D. V.; Savkina, N. S.; Bogdanova, E. V.; Kuznetsov, A. N.; Yakimova, R.

    2001-12-01

    The possibility of about 50 times the inneramplification of signals in SiC-based detectors of short-range ions is shown. The detector has an n-p-n+-like structure, where the p-type base was grown epitaxially on a 6H n+-SiC substrate. To complete the structure a Schottky barrier was made on top. Detector parameters were investigated in a "floating base" regime. Alpha particles from 244Cm were used and the augmentation of signal (E) with increasing applied voltage (U) was investigated. A superlinear increase of E was observed with a significant (tens of times) amplification of the introduced by the alpha particle nonequilibrium charge. It was also found that the nonuniformity of the diffusion-drift carrier transport parameters in the films does not exceed 10%.

  3. High Resolution Full-Aperture ISAR Processing through Modified Doppler History Based Motion Compensation

    PubMed Central

    Song, Jung-Hwan; Lee, Kee-Woong; Lee, Woo-Kyung; Jung, Chul-Ho

    2017-01-01

    A high resolution inverse synthetic aperture radar (ISAR) technique is presented using modified Doppler history based motion compensation. To this purpose, a novel wideband ISAR system is developed that accommodates parametric processing over extended aperture length. The proposed method is derived from an ISAR-to-SAR approach that makes use of high resolution spotlight SAR and sub-aperture recombination. It is dedicated to wide aperture ISAR imaging and exhibits robust performance against unstable targets having non-linear motions. We demonstrate that the Doppler histories of the full aperture ISAR echoes from disturbed targets are efficiently retrieved with good fitting models. Experiments have been conducted on real aircraft targets and the feasibility of the full aperture ISAR processing is verified through the acquisition of high resolution ISAR imagery. PMID:28555036

  4. Aperture averaging in strong oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-04-01

    Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.

  5. Multi-Aperture Digital Coherent Combining for Free-Space Optical Communication Receivers

    DTIC Science & Technology

    2016-04-21

    Distribution A: Public Release; unlimited distribution 2016 Optical Society of America OCIS codes: (060.1660) Coherent communications; (070.2025) Discrete ...Coherent combining algorithm Multi-aperture coherent combining enables using many discrete apertures together to create a large effective aperture. A

  6. Study on characteristics of the aperture-averaging factor of atmospheric scintillation in terrestrial optical wireless communication

    NASA Astrophysics Data System (ADS)

    Shen, Hong; Liu, Wen-xing; Zhou, Xue-yun; Zhou, Li-ling; Yu, Long-Kun

    2018-02-01

    In order to thoroughly understand the characteristics of the aperture-averaging effect of atmospheric scintillation in terrestrial optical wireless communication and provide references for engineering design and performance evaluation of the optics system employed in the atmosphere, we have theoretically deduced the generally analytic expression of the aperture-averaging factor of atmospheric scintillation, and numerically investigated characteristics of the apertureaveraging factor under different propagation conditions. The limitations of the current commonly used approximate calculation formula of aperture-averaging factor have been discussed, and the results showed that the current calculation formula is not applicable for the small receiving aperture under non-uniform turbulence link. Numerical calculation has showed that aperture-averaging factor of atmospheric scintillation presented an exponential decline model for the small receiving aperture under non-uniform turbulent link, and the general expression of the model was given. This model has certain guiding significance for evaluating the aperture-averaging effect in the terrestrial optical wireless communication.

  7. Preferential pathways in complex fracture systems and their influence on large scale transport

    NASA Astrophysics Data System (ADS)

    Willmann, M.; Mañé, R.; Tyukhova, A.

    2017-12-01

    Many subsurface applications in complex fracture systems require large-scale predictions. Precise predictions are difficult because of the existence of preferential pathways at different scales. The intrinsic complexity of fracture systems increases within fractured sedimentary formations, because also the coupling of fractures and matrix has to be taken into account. This interplay of fracture system and the sedimentary matrix is strongly controlled by the actual fracture aperture of an individual fracture. And an effective aperture cannot be easily be determined because of the preferential pathways along the fracture plane. We investigate the influence of these preferential pathways on large scale solute transport and upscale the aperture. By explicitly modeling flow and particle tracking in individual fractures, we develop a new effective transport aperture, which is weighted by the aperture along the preferential paths, a Lagrangian aperture. We show that this new aperture is consistently larger than existing definitions of effective flow and transport apertures. Finally, we apply our results to a fractured sedimentary formation in Northern Switzerland.

  8. Particle model of full-size ITER-relevant negative ion source.

    PubMed

    Taccogna, F; Minelli, P; Ippolito, N

    2016-02-01

    This work represents the first attempt to model the full-size ITER-relevant negative ion source including the expansion, extraction, and part of the acceleration regions keeping the mesh size fine enough to resolve every single aperture. The model consists of a 2.5D particle-in-cell Monte Carlo collision representation of the plane perpendicular to the filter field lines. Magnetic filter and electron deflection field have been included and a negative ion current density of j(H(-)) = 660 A/m(2) from the plasma grid (PG) is used as parameter for the neutral conversion. The driver is not yet included and a fixed ambipolar flux is emitted from the driver exit plane. Results show the strong asymmetry along the PG driven by the electron Hall (E × B and diamagnetic) drift perpendicular to the filter field. Such asymmetry creates an important dis-homogeneity in the electron current extracted from the different apertures. A steady state is not yet reached after 15 μs.

  9. UAVSAR Active Electronically-Scanned Array

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory; Brown, Kyle; Chamberlain, Neil; Figueroa, Harry; Fisher, Charlie; Grando, Maurio; Hamilton, Gary; Vorperian, Vatche; Zawadzki, Mark

    2010-01-01

    The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) L-band (1.2-1.3 GHz) repeat pass, interferometric synthetic aperture radar (InSAR) used for Earth science applications. Using complex radar images collected during separate passes on time scales of hours to years, changes in surface topography can be measured. The repeat-pass InSAR technique requires that the radar look angle be approximately the same on successive passes. Due to variations in aircraft attitude between passes, antenna beam steering is required to replicate the radar look angle. This paper describes an active, electronically steered array (AESA) that provides beam steering capability in the antenna azimuth plane. The array contains 24 transmit/receive modules generating 2800 W of radiated power and is capable of pulse-to-pulse beam steering and polarization agility. Designed for high reliability as well as serviceability, all array electronics are contained in single 178cm x 62cm x 12 cm air-cooled panel suitable for operation up 60,000 ft altitude.

  10. High-numerical-aperture cryogenic light microscopy for increased precision of superresolution reconstructions

    PubMed Central

    Nahmani, Marc; Lanahan, Conor; DeRosier, David; Turrigiano, Gina G.

    2017-01-01

    Superresolution microscopy has fundamentally altered our ability to resolve subcellular proteins, but improving on these techniques to study dense structures composed of single-molecule-sized elements has been a challenge. One possible approach to enhance superresolution precision is to use cryogenic fluorescent imaging, reported to reduce fluorescent protein bleaching rates, thereby increasing the precision of superresolution imaging. Here, we describe an approach to cryogenic photoactivated localization microscopy (cPALM) that permits the use of a room-temperature high-numerical-aperture objective lens to image frozen samples in their native state. We find that cPALM increases photon yields and show that this approach can be used to enhance the effective resolution of two photoactivatable/switchable fluorophore-labeled structures in the same frozen sample. This higher resolution, two-color extension of the cPALM technique will expand the accessibility of this approach to a range of laboratories interested in more precise reconstructions of complex subcellular targets. PMID:28348224

  11. Single-Pol Synthetic Aperture Radar Terrain Classification using Multiclass Confidence for One-Class Classifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Mark William; Steinbach, Ryan Matthew; Moya, Mary M

    2015-10-01

    Except in the most extreme conditions, Synthetic aperture radar (SAR) is a remote sensing technology that can operate day or night. A SAR can provide surveillance over a long time period by making multiple passes over a wide area. For object-based intelligence it is convenient to segment and classify the SAR images into objects that identify various terrains and man-made structures that we call “static features.” In this paper we introduce a novel SAR image product that captures how different regions decorrelate at different rates. Using superpixels and their first two moments we develop a series of one-class classification algorithmsmore » using a goodness-of-fit metric. P-value fusion is used to combine the results from different classes. We also show how to combine multiple one-class classifiers to get a confidence about a classification. This can be used by downstream algorithms such as a conditional random field to enforce spatial constraints.« less

  12. Tunable MOEMS Fabry-Perot interferometer for miniaturized spectral sensing in near-infrared

    NASA Astrophysics Data System (ADS)

    Rissanen, A.; Mannila, R.; Tuohiniemi, M.; Akujärvi, A.; Antila, J.

    2014-03-01

    This paper presents a novel MOEMS Fabry-Perot interferometer (FPI) process platform for the range of 800 - 1050 nm. Simulation results including design and optimization of device properties in terms of transmission peak width, tuning range and electrical properties are discussed. Process flow for the device fabrication is presented, with overall process integration and backend dicing steps resulting in successful fabrication yield. The mirrors of the FPI consist of LPCVD (low-pressure chemical vapor) deposited polySi-SiN λ/4-thin film Bragg reflectors, with the air gap formed by sacrificial SiO2 etching in HF vapor. Silicon substrate below the optical aperture is removed by inductively coupled plasma (ICP) etching to ensure transmission in the visible - near infra-red (NIR), which is below silicon transmission range. The characterized optical properties of the chips are compared to the simulated values. Achieved optical aperture diameter size enables utilization of the chips in both imaging as well as single-point spectral sensors.

  13. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    NASA Technical Reports Server (NTRS)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  14. Pollen Morphology of Caesalpinia pulcherrima (L.) Swartz in Highland and Lowland West Sumatra

    NASA Astrophysics Data System (ADS)

    Fitri, R.; Des, M.

    2018-04-01

    Determine the morphology structure of pollen on some variation colour of corolla Caesalpinia pulcherrima L. (Swartz) in highland and lowland West Sumatra has been conducted. The result reveals that topography and variation colour of corolla C. pulcherrima L. (Swartz) affects the shape of pollen. Pollen of C. pulcherrima L. (Swartz) has single grains or monad, isopolar polarity, radial symmetry, and size categories large. The length of polar axis (P) 58.16 to 74.11 μm, the length of the equatorial diameter (E) 59.86 to 75.97 μm, so that pollen can be classified into sub-spheroidal sub-oblate, spheriodal sub-spheroidal oblate, and sub-spheroidal prolate. Ornamentation of C. pulcherrima (L.) Swartz was reticulate. The pollen has aperture 3, the type pore and located in equatorial. From these data can be concluded that pollen from varying colour of corolla C. pulcherrima (L.) Swartz has same in terms of unit, polarity, symmetry, size, and type aperture, but it different in terms of shape.

  15. Equivalent-circuit model for stacked slot-based 2D periodic arrays of arbitrary geometry for broadband analysis

    NASA Astrophysics Data System (ADS)

    Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola

    2018-03-01

    The analysis of the transmission and reflection spectra of stacked slot-based 2D periodic structures of arbitrary geometry and the ability to devise and control their electromagnetic responses have been a matter of extensive research for many decades. The purpose of this paper is to develop an equivalent Π circuit model based on the transmission-line theory and Floquet harmonic interactions, for broadband and short longitudinal period analysis. The proposed circuit model overcomes the limits of identical and symmetrical configurations imposed by the even/odd excitation approach, exploiting both the circuit topology of a single 2D periodic array of apertures and the ABCD matrix formalism. The transmission spectra obtained through the equivalent-circuit model have been validated by comparison with full-wave simulations carried out with a finite-element commercial electromagnetic solver. This allowed for a physical insight into the spectral and angular responses of multilayer devices with arbitrary aperture shapes, guaranteeing a noticeable saving of computational resources.

  16. Efficient Strategies for Estimating the Spatial Coherence of Backscatter

    PubMed Central

    Hyun, Dongwoon; Crowley, Anna Lisa C.; Dahl, Jeremy J.

    2017-01-01

    The spatial coherence of ultrasound backscatter has been proposed to reduce clutter in medical imaging, to measure the anisotropy of the scattering source, and to improve the detection of blood flow. These techniques rely on correlation estimates that are obtained using computationally expensive strategies. In this study, we assess existing spatial coherence estimation methods and propose three computationally efficient modifications: a reduced kernel, a downsampled receive aperture, and the use of an ensemble correlation coefficient. The proposed methods are implemented in simulation and in vivo studies. Reducing the kernel to a single sample improved computational throughput and improved axial resolution. Downsampling the receive aperture was found to have negligible effect on estimator variance, and improved computational throughput by an order of magnitude for a downsample factor of 4. The ensemble correlation estimator demonstrated lower variance than the currently used average correlation. Combining the three methods, the throughput was improved 105-fold in simulation with a downsample factor of 4 and 20-fold in vivo with a downsample factor of 2. PMID:27913342

  17. Single-color laser ranging with a cube-corner-retroreflector array

    NASA Technical Reports Server (NTRS)

    Song, G. Hugh

    1987-01-01

    Lidar cross section of some typical types of cube-corner retroreflectors (CCRs) having a three corner mirror system is investigated for the case that the CCR is tilted from the normal illumination axis. Analytic expressions for the effective aperture area for the two typical window types (circular and hexagonal) of CCRs are obtained for the case that the CCR is tilted. The range of incidence angle in which only the total reflection occurs at all three uncoated corner mirrors has been found to vary considerably with the orientation of CCR and the refractive index of the CCR prism. The analytical expression for the far-field diffraction pattern of a tilted CCR is obtained by taking different polarization transformation of the six sectors of the effective reflecting aperture into account. This expression is essential when evaluating the lidar cross section of a moving CCR which is tilted in general. Formulas for the angles defining the six sectors have also been obtained.

  18. On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar

    PubMed Central

    Verhoest, Niko E.C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M. Susan; Mattia, Francesco

    2008-01-01

    Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale. PMID:27879932

  19. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  20. Large-area PSPMT based gamma-ray imager with edge reclamation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziock, K-P; Nakae, L

    2000-09-21

    We describe a coded aperture, gamma-ray imager which uses a CsI(Na) scintillator coupled to an Hamamatsu R3292 position-sensitive photomultiplier tube (PSPMT) as the position-sensitive detector. We have modified the normal resistor divider readout of the PSPMT to allow use of nearly the full 10 cm diameter active area of the PSPMT with a single scintillator crystal one centimeter thick. This is a significant performance improvement over that obtained with the standard readout technique where the linearity and position resolution start to degrade at radii as small as 3.5 cm with a crystal 0.75 crn thick. This represents a recovery ofmore » over 60% of the PSPMT active area. The performance increase allows the construction of an imager with a field of view 20 resolution elements in diameter with useful quantum efficiency from 60-700 keV. In this paper we describe the readout technique, its implementation in a coded aperture imager and the performance of that imager.« less

  1. Results of aperture area comparisons for exo-atmospheric total solar irradiance measurements.

    PubMed

    Johnson, B Carol; Litorja, Maritoni; Fowler, Joel B; Shirley, Eric L; Barnes, Robert A; Butler, James J

    2013-11-20

    Exo-atmospheric solar irradiance measurements made by the solar irradiance community since 1978 have incorporated limiting apertures with diameters measured by a number of metrology laboratories using a variety of techniques. Knowledge of the aperture area is a critical component in the conversion of radiant flux measurements to solar irradiance. A National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) sponsored international comparison of aperture area measurements of limiting apertures provided by solar irradiance researchers was performed, the effort being executed by the National Institute of Standards and Technology (NIST) in coordination with the EOS Project Science Office. Apertures that had institutional heritage with historical solar irradiance measurements were measured using the absolute aperture measurement facility at NIST. The measurement technique employed noncontact video microscopy using high-accuracy translation stages. We have quantified the differences between the participating institutions' aperture area measurements and find no evidence to support the hypothesis that preflight aperture area measurements were the root cause of discrepancies in long-term total solar irradiance satellite measurements. Another result is the assessment of uncertainties assigned to methods used by participants. We find that uncertainties assigned to a participant's values may be underestimated.

  2. Coded aperture solution for improving the performance of traffic enforcement cameras

    NASA Astrophysics Data System (ADS)

    Masoudifar, Mina; Pourreza, Hamid Reza

    2016-10-01

    A coded aperture camera is proposed for automatic license plate recognition (ALPR) systems. It captures images using a noncircular aperture. The aperture pattern is designed for the rapid acquisition of high-resolution images while preserving high spatial frequencies of defocused regions. It is obtained by minimizing an objective function, which computes the expected value of perceptual deblurring error. The imaging conditions and camera sensor specifications are also considered in the proposed function. The designed aperture improves the depth of field (DoF) and subsequently ALPR performance. The captured images can be directly analyzed by the ALPR software up to a specific depth, which is 13 m in our case, though it is 11 m for the circular aperture. Moreover, since the deblurring results of images captured by our aperture yield fewer artifacts than those captured by the circular aperture, images can be first deblurred and then analyzed by the ALPR software. In this way, the DoF and recognition rate can be improved at the same time. Our case study shows that the proposed camera can improve the DoF up to 17 m while it is limited to 11 m in the conventional aperture.

  3. Image quality affected by diffraction of aperture structure arrangement in transparent active-matrix organic light-emitting diode displays.

    PubMed

    Tsai, Yu-Hsiang; Huang, Mao-Hsiu; Jeng, Wei-de; Huang, Ting-Wei; Lo, Kuo-Lung; Ou-Yang, Mang

    2015-10-01

    Transparent display is one of the main technologies in next-generation displays, especially for augmented reality applications. An aperture structure is attached on each display pixel to partition them into transparent and black regions. However, diffraction blurs caused by the aperture structure typically degrade the transparent image when the light from a background object passes through finite aperture window. In this paper, the diffraction effect of an active-matrix organic light-emitting diode display (AMOLED) is studied. Several aperture structures have been proposed and implemented. Based on theoretical analysis and simulation, the appropriate aperture structure will effectively reduce the blur. The analysis data are also consistent with the experimental results. Compared with the various transparent aperture structure on AMOLED, diffraction width (zero energy position of diffraction pattern) of the optimize aperture structure can be reduced 63% and 31% in the x and y directions in CASE 3. Associated with a lenticular lens on the aperture structure, the improvement could reach to 77% and 54% of diffraction width in the x and y directions. Modulation transfer function and practical images are provided to evaluate the improvement of image blurs.

  4. Quasi-linearly polarized hybrid modes in tapered and metal-coated tips with circular apertures: understanding the functionality of aperture tips

    NASA Astrophysics Data System (ADS)

    Tugchin, B. N.; Janunts, N.; Steinert, M.; Dietrich, K.; Kley, E. B.; Tünnermann, A.; Pertsch, T.

    2017-06-01

    In this study, we investigate analytically and experimentally the roles of quasi-linearly polarized (LP), hybrid, plasmonic and photonic modes in optical detection and excitation with aperture tips in scanning near-field optical microscopy. Aperture tips are tapered and metal-coated optical fibers where small circular apertures are made at the apex. In aperture tips, there exist plasmonic modes that are bound at the interface of the metal cladding to the inner dielectric fiber and photonic modes that are guided in the area of the increased index in the dielectric fiber core. The fundamental photonic mode, although excited by the free-space Gaussian beam, experiences cutoff and turns into an evanescent mode. The photonic mode also becomes lossier than the plasmonic mode toward the tip aperture, and its power decay due to absorption and reflection is expected to be at least 10-9. In contrast, the fundamental plasmonic mode has no cutoff and thus reaches all the way to the tip aperture. Due to the non-adiabaticity of both modes’ propagations through the taper below a core radius of 600 nm, there occurs coupling between the modes. The transmission efficiency of the plasmonic mode, including the coupling efficiency and the propagation loss, is expected to be about 10-6 that is at least 3 orders of magnitude larger than that of the photonic mode. Toward the tip aperture, the longitudinal field of the photonic mode becomes stronger than the transverse ones while the transverse fields always dominate for the plasmonic mode. Experimentally, we obtain polarization resolved images of the near-field at the tip aperture and compare with the x- and y-components of the fundamental quasi-LP plasmonic and photonic modes. The results show that not only the pattern but also the intensity ratios of the x- and y-components of the aperture near-field match with that of the fundamental plasmonic mode. Consequently, we conclude that only the plasmonic mode reaches the tip aperture and thus governs the near-field interaction outside the tip aperture. Our conclusion remains valid for all aperture tips regardless of the cladding metal type that mainly influences the total transmission efficiency of the aperture tip.

  5. X-ray backscatter imaging for radiography by selective detection and snapshot: Evolution, development, and optimization

    NASA Astrophysics Data System (ADS)

    Shedlock, Daniel

    Compton backscatter imaging (CBI) is a single-sided imaging technique that uses the penetrating power of radiation and unique interaction properties of radiation with matter to image subsurface features. CBI has a variety of applications that include non-destructive interrogation, medical imaging, security and military applications. Radiography by selective detection (RSD), lateral migration radiography (LMR) and shadow aperture backscatter radiography (SABR) are different CBI techniques that are being optimized and developed. Radiography by selective detection (RSD) is a pencil beam Compton backscatter imaging technique that falls between highly collimated and uncollimated techniques. Radiography by selective detection uses a combination of single- and multiple-scatter photons from a projected area below a collimation plane to generate an image. As a result, the image has a combination of first- and multiple-scatter components. RSD techniques offer greater subsurface resolution than uncollimated techniques, at speeds at least an order of magnitude faster than highly collimated techniques. RSD scanning systems have evolved from a prototype into near market-ready scanning devices for use in a variety of single-sided imaging applications. The design has changed to incorporate state-of-the-art detectors and electronics optimized for backscatter imaging with an emphasis on versatility, efficiency and speed. The RSD system has become more stable, about 4 times faster, and 60% lighter while maintaining or improving image quality and contrast over the past 3 years. A new snapshot backscatter radiography (SBR) CBI technique, shadow aperture backscatter radiography (SABR), has been developed from concept and proof-of-principle to a functional laboratory prototype. SABR radiography uses digital detection media and shaded aperture configurations to generate near-surface Compton backscatter images without scanning, similar to how transmission radiographs are taken. Finally, a more inclusive theory of the factors affecting CBI contrast generation has tied together the past work of LMR with the more recent research in RSD. A variety of factors that induce changes in the backscatter photon field intensity (resulting in contrast changes in images) include: changes in the electron density field, attenuation changes along the entrance and exit paths, changes in the relative geometric positioning of the target, feature, illumination beam, and detectors. Understanding the interplay of how changes in each of these factors affects image contrast becomes essential to utilizing and optimizing RSD for different applications.

  6. Synthetic aperture imaging in astronomy and aerospace: introduction.

    PubMed

    Creech-Eakman, Michelle J; Carney, P Scott; Buscher, David F; Shao, Michael

    2017-05-01

    Aperture synthesis methods allow the reconstruction of images with the angular resolutions exceeding that of extremely large monolithic apertures by using arrays of smaller apertures together in combination. In this issue we present several papers with techniques relevant to amplitude interferometry, laser radar, and intensity interferometry applications.

  7. Electron microscope aperture system

    NASA Technical Reports Server (NTRS)

    Heinemann, K. (Inventor)

    1976-01-01

    An electron microscope including an electron source, a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen, and an objective lens having an annular objective aperture, for focusing electrons passing through the specimen onto an image plane are described. The invention also entails a method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques.

  8. Determination of the paraxial focal length using Zernike polynomials over different apertures

    NASA Astrophysics Data System (ADS)

    Binkele, Tobias; Hilbig, David; Henning, Thomas; Fleischmann, Friedrich

    2017-02-01

    The paraxial focal length is still the most important parameter in the design of a lens. As presented at the SPIE Optics + Photonics 2016, the measured focal length is a function of the aperture. The paraxial focal length can be found when the aperture approaches zero. In this work, we investigate the dependency of the Zernike polynomials on the aperture size with respect to 3D space. By this, conventional wavefront measurement systems that apply Zernike polynomial fitting (e.g. Shack-Hartmann-Sensor) can be used to determine the paraxial focal length, too. Since the Zernike polynomials are orthogonal over a unit circle, the aperture used in the measurement has to be normalized. By shrinking the aperture and keeping up with the normalization, the Zernike coefficients change. The relation between these changes and the paraxial focal length are investigated. The dependency of the focal length on the aperture size is derived analytically and evaluated by simulation and measurement of a strong focusing lens. The measurements are performed using experimental ray tracing and a Shack-Hartmann-Sensor. Using experimental ray tracing for the measurements, the aperture can be chosen easily. Regarding the measurements with the Shack-Hartmann- Sensor, the aperture size is fixed. Thus, the Zernike polynomials have to be adapted to use different aperture sizes by the proposed method. By doing this, the paraxial focal length can be determined from the measurements in both cases.

  9. Characterization of fracture aperture for groundwater flow and transport

    NASA Astrophysics Data System (ADS)

    Sawada, A.; Sato, H.; Tetsu, K.; Sakamoto, K.

    2007-12-01

    This paper presents experiments and numerical analyses of flow and transport carried out on natural fractures and transparent replica of fractures. The purpose of this study was to improve the understanding of the role of heterogeneous aperture patterns on channelization of groundwater flow and dispersion in solute transport. The research proceeded as follows: First, a precision plane grinder was applied perpendicular to the fracture plane to characterize the aperture distribution on a natural fracture with 1 mm of increment size. Although both time and labor were intensive, this approach provided a detailed, three dimensional picture of the pattern of fracture aperture. This information was analyzed to provide quantitative measures for the fracture aperture distribution, including JRC (Joint Roughness Coefficient) and fracture contact area ratio. These parameters were used to develop numerical models with corresponding synthetic aperture patterns. The transparent fracture replica and numerical models were then used to study how transport is affected by the aperture spatial pattern. In the transparent replica, transmitted light intensity measured by a CCD camera was used to image channeling and dispersion due to the fracture aperture spatial pattern. The CCD image data was analyzed to obtain the quantitative fracture aperture and tracer concentration data according to Lambert-Beer's law. The experimental results were analyzed using the numerical models. Comparison of the numerical models to the transparent replica provided information about the nature of channeling and dispersion due to aperture spatial patterns. These results support to develop a methodology for defining representative fracture aperture of a simplified parallel fracture model for flow and transport in heterogeneous fractures for contaminant transport analysis.

  10. An integrated structural and geochemical study of fracture aperture growth in the Campito Formation of eastern California

    NASA Astrophysics Data System (ADS)

    Doungkaew, N.; Eichhubl, P.

    2015-12-01

    Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.

  11. Design and fabrication of PZN-7%PT single crystal high frequency angled needle ultrasound transducers.

    PubMed

    Zhou, Qifa; Wu, Dawei; Jin, Jing; Hu, Chang-hong; Xu, Xiaochen; Williams, Jay; Cannata, Jonathan M; Lim, Leongchew; Shung, K Kirk

    2008-01-01

    A high-frequency angled needle ultrasound transducer with an aperture size of 0.4 x 0.56 mm2 was fabricated using a lead zinc niobate-lead titanate (PZN- 7%PT) single crystal as the active piezoelectric material. The single crystal was bonded to a conductive silver particle matching layer and a conductive epoxy backing material through direct contact curing. A parylene outer matching layer was formed by vapor deposition. Angled needle probe configuration was achieved by dicing at 45 degrees to the single crystal poling direction to satisfy a clinical request for blood flow measurement in the posterior portion of the eye. The electrical impedance magnitude and phase of the transducer were 42 Omega and -63 degrees , respectively. The measured center frequency and the fractional bandwidth at -6 dB were 43 MHz and 45%, respectively. The two-way insertion loss was approximately 17 dB. Wire phantom imaging using fabricated PZN-7%PT single crystal transducers was obtained and spatial resolutions were assessed.

  12. Using SAR Interferograms and Coherence Images for Object-Based Delineation of Unstable Slopes

    NASA Astrophysics Data System (ADS)

    Friedl, Barbara; Holbling, Daniel

    2015-05-01

    This study uses synthetic aperture radar (SAR) interferometric products for the semi-automated identification and delineation of unstable slopes and active landslides. Single-pair interferograms and coherence images are therefore segmented and classified in an object-based image analysis (OBIA) framework. The rule-based classification approach has been applied to landslide-prone areas located in Taiwan and Southern Germany. The semi-automatically obtained results were validated against landslide polygons derived from manual interpretation.

  13. Cloud Top Scanning radiometer (CTS)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A scanning radiometer to be used for measuring cloud radiances in each of three spectral regions is described. Significant features incorporated in the Cloud Top Scanner design are: (1) flexibility and growth potential through use of easily replaceable modular detectors and filters; (2) full aperture, multilevel inflight calibration; (3) inherent channel registration through employment of a single shared field stop; and (4) radiometric sensitivity margin in a compact optical design through use of Honeywell developed (Hg,Cd)Te detectors and preamplifiers.

  14. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; hide

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  15. Low Voltage, Low Power Organic Light Emitting Transistors for AMOLED Displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, M. A.; Liu, B.; Donoghue, E. P.

    2011-01-01

    Low voltage, low power dissipation, high aperture ratio organic light emitting transistors are demonstrated. The high level of performance is enabled by a carbon nanotube source electrode that permits integration of the drive transistor and the organic light emitting diode into an efficient single stacked device. Given the demonstrated performance, this technology could break the technical logjam holding back widespread deployment of active matrix organic light emitting displays at flat panel screen sizes.

  16. Technology for Large Space Systems: A Bibliography with Indexes. Supplement 17

    DTIC Science & Technology

    1987-10-01

    reduce the total primary reflector weight by a factor Lewis Research Center, Cleveland, Ohio. of 3 to 4 over competing technologies. On-orbit thermal...aperture. Weight and volume estimates are consistent with a single Proceedings of the Twenty-first ;ntersociety Energy Conversion Shuttle launch, and are...Aeronautics and Space Administration fiscal year Station. B.G. 1987 budget is examined. The impact of the loss of the Challenger and its crew on the space

  17. Multivariable Parametric Cost Model for Ground Optical Telescope Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2005-01-01

    A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.

  18. Investigation of HIV-1 infected and uninfected cells using the optical trapping technique

    NASA Astrophysics Data System (ADS)

    Ombinda-Lemboumba, S.; Malabi, R.; Lugongolo, M. Y.; Thobakgale, S. L.; Manoto, S.; Mthunzi-Kufa, P.

    2017-02-01

    Optical trapping has emerged as an essential tool for manipulating single biological material and performing sophisticated spectroscopy analysis on individual cell. The optical trapping technique has been used to grab and immobilize cells from a tightly focused laser beam emitted through a high numerical aperture objective lens. Coupling optical trapping with other technologies is possible and allows stable sample trapping, while also facilitating molecular, chemical and spectroscopic analysis. For this reason, we are exploring laser trapping combined with laser spectroscopy as a potential non-invasive method of interrogating individual cells with a high degree of specificity in terms of information generated. Thus, for the delivery of as much pathological information as possible, we use a home-build optical trapping and spectroscopy system for real time probing human immunodeficiency virus (HIV-1) infected and uninfected single cells. Briefly, our experimental rig comprises an infrared continuous wave laser at 1064 nm with power output of 1.5 W, a 100X high numerical aperture oil-immersion microscope objective used to capture and immobilise individual cell samples as well as an excitation source. Spectroscopy spectral patterns obtained by the 1064 nm laser beam excitation provide information on HIV-1 infected and uninfected cells. We present these preliminary findings which may be valuable for the development of an HIV-1 point of care detection system.

  19. Investigations on nucleation, HRXRD, optical, piezoelectric, polarizability and Z-scan analysis of L-arginine maleate dihydrate single crystals

    NASA Astrophysics Data System (ADS)

    Sakthy Priya, S.; Alexandar, A.; Surendran, P.; Lakshmanan, A.; Rameshkumar, P.; Sagayaraj, P.

    2017-04-01

    An efficient organic nonlinear optical single crystal of L-arginine maleate dihydrate (LAMD) has been grown by slow evaporation solution technique (SEST) and slow cooling technique (SCT). The crystalline perfection of the crystal was examined using high-resolution X-ray diffractometry (HRXRD) analysis. Photoluminescence study confirmed the optical properties and defects level in the crystal lattice. Electromechanical behaviour was observed using piezoelectric co-efficient (d33) analysis. The photoconductivity analysis confirmed the negative photoconducting nature of the material. The dielectric constant and loss were measured as a function of frequency with varying temperature and vice-versa. The laser damage threshold (LDT) measurement was carried out using Nd:YAG Laser with a wavelength of 1064 nm (Focal length is 35 cm) and the obtained results showed that LDT value of the crystal is high compared to KDP crystal. The high laser damage threshold of the grown crystal makes it a potential candidate for second and higher order nonlinear optical device application. The third order nonlinear optical parameters of LAMD crystal is determined by open-aperture and closed-aperture studies using Z-scan technique. The third order linear and nonlinear optical parameters such as the nonlinear refractive index (n2), two photon absorption coefficient (β), Real part (Reχ3) and imaginary part (Imχ3) of third-order nonlinear optical susceptibility are calculated.

  20. Propagation of various dark hollow beams through an apertured paraxial ABCD optical system

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; Ge, Di

    2006-08-01

    Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry through an apertured paraxial ABCD optical system is investigated. Approximate analytical formulas for various DHBs propagating through an apertured paraxial optical system are derived by expanding the hard-aperture function into a finite sum of complex Gaussian functions in terms of a tensor method. Some numerical results are given. Our formulas provide a convenient way for studying the propagation of various DHBs through an apertured paraxial optical system.

  1. Method of forming aperture plate for electron microscope

    NASA Technical Reports Server (NTRS)

    Heinemann, K. (Inventor)

    1974-01-01

    An electron microscope is described with an electron source a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen. It also has objective lens with an annular objective aperture, for focusing electrons passing through the specimen onto an image plane. A method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques is included.

  2. Design, fabrication, test and delivery of a K-band antenna breadboard model

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of a research effort to develop a Ku-Band single channel monopulse antenna with significant improvements in efficiency and bandwidth are reported. A single aperture, multimode horn, utilized in a near field Cassegrainian configuration, was the technique selected for achieving the desired efficiency and bandwidth performance. In order to provide wide polarization flexibility, a wire grid, space filter polarizer was developed. A solid state switching network with appropriate driving electronics provides the receive channel sum and difference signal interface with an existing Apollo type tracking electronics subsystem. A full scale breadboard model of the antenna was fabricated and tested. Performance of the model was well within the requirements and goals of the contract.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.J.; Warner, J.A.; LeBarron, N.

    Processes that use energetic ions for large substrates require that the time-averaged erosion effects from the ion flux be uniform across the surface. A numerical model has been developed to determine this flux and its effects on surface etching of a silica/photoresist combination. The geometry of the source and substrate is very similar to a typical deposition geometry with single or planetary substrate rotation. The model was used to tune an inert ion-etching process that used single or multiple Kaufman sources to less than 3% uniformity over a 30-cm aperture after etching 8 {micro}m of material. The same model canmore » be used to predict uniformity for ion-assisted deposition (IAD).« less

  4. Examples of current radar technology and applications, chapter 5, part B

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Basic principles and tradeoff considerations for SLAR are summarized. There are two fundamental types of SLAR sensors available to the remote sensing user: real aperture and synthetic aperture. The primary difference between the two types is that a synthetic aperture system is capable of significant improvements in target resolution but requires equally significant added complexity and cost. The advantages of real aperture SLAR include long range coverage, all-weather operation, in-flight processing and image viewing, and lower cost. The fundamental limitation of the real aperture approach is target resolution. Synthetic aperture processing is the most practical approach for remote sensing problems that require resolution higher than 30 to 40 m.

  5. Design of precise assembly equipment of large aperture optics

    NASA Astrophysics Data System (ADS)

    Pei, Guoqing; Xu, Xu; Xiong, Zhao; Yan, Han; Qin, Tinghai; Zhou, Hai; Yuan, Xiaodong

    2017-05-01

    High-energy solid-state laser is an important way to achieve laser fusion research. Laser fusion facility includes thousands of various types of large aperture optics. These large aperture optics should be assembled with high precision and high efficiency. Currently, however, the assembly of large aperture optics is by man's hand which is in low level of efficiency and labor-intensive. Here, according to the characteristics of the assembly of large aperture optics, we designed three kinds of grasping devices. Using Finite Element Method, we simulated the impact of the grasping device on the PV value and the RMS value of the large aperture optics. The structural strength of the grasping device's key part was analyzed. An experiment was performed to illustrate the reliability and precision of the grasping device. We anticipate that the grasping device would complete the assembly of large aperture optics precisely and efficiently.

  6. Nonparaxial propagation and focusing properties of azimuthal-variant vector fields diffracted by an annular aperture.

    PubMed

    Gu, Bing; Xu, Danfeng; Pan, Yang; Cui, Yiping

    2014-07-01

    Based on the vectorial Rayleigh-Sommerfeld integrals, the analytical expressions for azimuthal-variant vector fields diffracted by an annular aperture are presented. This helps us to investigate the propagation behaviors and the focusing properties of apertured azimuthal-variant vector fields under nonparaxial and paraxial approximations. The diffraction by a circular aperture, a circular disk, or propagation in free space can be treated as special cases of this general result. Simulation results show that the transverse intensity, longitudinal intensity, and far-field divergence angle of nonparaxially apertured azimuthal-variant vector fields depend strongly on the azimuthal index, the outer truncation parameter and the inner truncation parameter of the annular aperture, as well as the ratio of the waist width to the wavelength. Moreover, the multiple-ring-structured intensity pattern of the focused azimuthal-variant vector field, which originates from the diffraction effect caused by an annular aperture, is experimentally demonstrated.

  7. Measurements of pore-scale flow through apertures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chojnicki, Kirsten

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregularmore » cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.« less

  8. Design and analysis of a sub-aperture scanning machine for the transmittance measurements of large-aperture optical system

    NASA Astrophysics Data System (ADS)

    He, Yingwei; Li, Ping; Feng, Guojin; Cheng, Li; Wang, Yu; Wu, Houping; Liu, Zilong; Zheng, Chundi; Sha, Dingguo

    2010-11-01

    For measuring large-aperture optical system transmittance, a novel sub-aperture scanning machine with double-rotating arms (SSMDA) was designed to obtain sub-aperture beam spot. Optical system full-aperture transmittance measurements can be achieved by applying sub-aperture beam spot scanning technology. The mathematical model of the SSMDA based on a homogeneous coordinate transformation matrix is established to develop a detailed methodology for analyzing the beam spot scanning errors. The error analysis methodology considers two fundamental sources of scanning errors, namely (1) the length systematic errors and (2) the rotational systematic errors. As the systematic errors of the parameters are given beforehand, computational results of scanning errors are between -0.007~0.028mm while scanning radius is not lager than 400.000mm. The results offer theoretical and data basis to the research on transmission characteristics of large optical system.

  9. Aperture Shield Materials Characterized and Selected for Solar Dynamic Space Power System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The aperture shield in a solar dynamic space power system is necessary to prevent thermal damage to the heat receiver should the concentrated solar radiation be accidentally or intentionally focused outside of the heat receiver aperture opening and onto the aperture shield itself. Characterization of the optical and thermal properties of candidate aperture shield materials was needed to support the joint U.S./Russian solar dynamic space power effort for Mir. The specific objective of testing performed at the NASA Lewis Research Center was to identify a high-temperature material with a low specular reflectance, a low solar absorptance, and a high spectral emittance so that during an off-pointing event, the amount of solar energy reflecting off the aperture shield would be small, the ratio of solar absorptance to spectral emittance would provide the lowest possible equilibrium temperature, and the integrity of the aperture shield would remain intact.

  10. Feasibility of Very Large Sparse Aperture Deployable Antennas

    DTIC Science & Technology

    2014-03-27

    FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS THESIS Jason C. Heller, Captain...States. AFIT-ENY-14-M-24 FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS THESIS Presented to the Faculty...UNLIMITED AFIT-ENY-14-M-24 FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS Jason C. Heller, B.S., Aerospace

  11. Finding Optimal Apertures in Kepler Data

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey C.; Morris, Robert L.; Jenkins, Jon M.; Bryson, Stephen T.; Caldwell, Douglas A.; Girouard, Forrest R.

    2016-12-01

    With the loss of two spacecraft reaction wheels precluding further data collection for the Kepler primary mission, even greater pressure is placed on the processing pipeline to eke out every last transit signal in the data. To that end, we have developed a new method to optimize the Kepler Simple Aperture Photometry (SAP) photometric apertures for both planet detection and minimization of systematic effects. The approach uses a per cadence modeling of the raw pixel data and then performs an aperture optimization based on signal-to-noise ratio and the Kepler Combined Differential Photometric Precision (CDPP), which is a measure of the noise over the duration of a reference transit signal. We have found the new apertures to be superior to the previous Kepler apertures. We can now also find a per cadence flux fraction in aperture and crowding metric. The new approach has also been proven to be robust at finding apertures in K2 data that help mitigate the larger motion-induced systematics in the photometry. The method further allows us to identify errors in the Kepler and K2 input catalogs.

  12. The SAMI Galaxy Survey: can we trust aperture corrections to predict star formation?

    NASA Astrophysics Data System (ADS)

    Richards, S. N.; Bryant, J. J.; Croom, S. M.; Hopkins, A. M.; Schaefer, A. L.; Bland-Hawthorn, J.; Allen, J. T.; Brough, S.; Cecil, G.; Cortese, L.; Fogarty, L. M. R.; Gunawardhana, M. L. P.; Goodwin, M.; Green, A. W.; Ho, I.-T.; Kewley, L. J.; Konstantopoulos, I. S.; Lawrence, J. S.; Lorente, N. P. F.; Medling, A. M.; Owers, M. S.; Sharp, R.; Sweet, S. M.; Taylor, E. N.

    2016-01-01

    In the low-redshift Universe (z < 0.3), our view of galaxy evolution is primarily based on fibre optic spectroscopy surveys. Elaborate methods have been developed to address aperture effects when fixed aperture sizes only probe the inner regions for galaxies of ever decreasing redshift or increasing physical size. These aperture corrections rely on assumptions about the physical properties of galaxies. The adequacy of these aperture corrections can be tested with integral-field spectroscopic data. We use integral-field spectra drawn from 1212 galaxies observed as part of the SAMI Galaxy Survey to investigate the validity of two aperture correction methods that attempt to estimate a galaxy's total instantaneous star formation rate. We show that biases arise when assuming that instantaneous star formation is traced by broad-band imaging, and when the aperture correction is built only from spectra of the nuclear region of galaxies. These biases may be significant depending on the selection criteria of a survey sample. Understanding the sensitivities of these aperture corrections is essential for correct handling of systematic errors in galaxy evolution studies.

  13. A scheiner-principle vernier optometer

    NASA Astrophysics Data System (ADS)

    Cushman, William B.

    1989-06-01

    A method and optometer apparatus is disclosed for measuring the dark focus of accommodation. In a preferred embodiment, the optometer apparatus includes: a pinhole aperture plate having first and second horizontally positioned apertures disposed on opposite sides of a first optical axis; first and second orthogonally-oriented polarizing filters respectively covering the first and second horizontally positioned apertures; a positive lens having an optical axis on the first optical axis and being positioned at a distance of approximately one focal length from the pinhole aperture plate; a lens system having an optical axis on the first optical axis; a slit aperture plate having a vertical slit and being disposed on the first optical axis and between the positive lens and the lens system; third and fourth vertically positioned polarizing filters selectively disposed adjacent to the slit aperture plate to divide the slit vertically, a monochromatic light source for propagating light along the first optical axis through the lens system; and movable means attached to the slit aperture plate, the lens system and the monochromatic light source for moving the slit aperture plate.

  14. Self characterization of a coded aperture array for neutron source imaging

    NASA Astrophysics Data System (ADS)

    Volegov, P. L.; Danly, C. R.; Fittinghoff, D. N.; Guler, N.; Merrill, F. E.; Wilde, C. H.

    2014-12-01

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (˜100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.

  15. Electromagnetic Scattering from Arbitrarily Shaped Aperture Backed by Rectangular Cavity Recessed in Infinite Ground Plane

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.; Beck, Fred B.

    1997-01-01

    The electromagnetic scattering from an arbitrarily shaped aperture backed by a rectangular cavity recessed in an infinite ground plane is analyzed by the integral equation approach. In this approach, the problem is split into two parts: exterior and interior. The electromagnetic fields in the exterior part are obtained from an equivalent magnetic surface current density assumed to be flowing over the aperture and backed by an infinite ground plane. The electromagnetic fields in the interior part are obtained in terms of rectangular cavity modal expansion functions. The modal amplitudes of cavity modes are determined by enforcing the continuity of the electric field across the aperture. The integral equation with the aperture magnetic current density as an unknown is obtained by enforcing the continuity of magnetic fields across the aperture. The integral equation is then solved for the magnetic current density by the method of moments. The electromagnetic scattering properties of an aperture backed by a rectangular cavity are determined from the magnetic current density. Numerical results on the backscatter radar cross-section (RCS) patterns of rectangular apertures backed by rectangular cavities are compared with earlier published results. Also numerical results on the backscatter RCS patterns of a circular aperture backed by a rectangular cavity are presented.

  16. Sub-aperture stitching test of a cylindrical mirror with large aperture

    NASA Astrophysics Data System (ADS)

    Xue, Shuai; Chen, Shanyong; Shi, Feng; Lu, Jinfeng

    2016-09-01

    Cylindrical mirrors are key optics of high-end equipment of national defense and scientific research such as high energy laser weapons, synchrotron radiation system, etc. However, its surface error test technology develops slowly. As a result, its optical processing quality can not meet the requirements, and the developing of the associated equipment is hindered. Computer Generated-Hologram (CGH) is commonly utilized as null for testing cylindrical optics. However, since the fabrication process of CGH with large aperture is not sophisticated yet, the null test of cylindrical optics with large aperture is limited by the aperture of the CGH. Hence CGH null test combined with sub-aperture stitching method is proposed to break the limit of the aperture of CGH for testing cylindrical optics, and the design of CGH for testing cylindrical surfaces is analyzed. Besides, the misalignment aberration of cylindrical surfaces is different from that of the rotational symmetric surfaces since the special shape of cylindrical surfaces, and the existing stitching algorithm of rotational symmetric surfaces can not meet the requirements of stitching cylindrical surfaces. We therefore analyze the misalignment aberrations of cylindrical surfaces, and study the stitching algorithm for measuring cylindrical optics with large aperture. Finally we test a cylindrical mirror with large aperture to verify the validity of the proposed method.

  17. Reconfigurable metasurface aperture for security screening and microwave imaging

    NASA Astrophysics Data System (ADS)

    Sleasman, Timothy; Imani, Mohammadreza F.; Boyarsky, Michael; Pulido-Mancera, Laura; Reynolds, Matthew S.; Smith, David R.

    2017-05-01

    Microwave imaging systems have seen growing interest in recent decades for applications ranging from security screening to space/earth observation. However, hardware architectures commonly used for this purpose have not seen drastic changes. With the advent of metamaterials a wealth of opportunities have emerged for honing metasurface apertures for microwave imaging systems. Recent thrusts have introduced dynamic reconfigurability directly into the aperture layer, providing powerful capabilities from a physical layer with considerable simplicity. The waveforms generated from such dynamic metasurfaces make them suitable for application in synthetic aperture radar (SAR) and, more generally, computational imaging. In this paper, we investigate a dynamic metasurface aperture capable of performing microwave imaging in the K-band (17.5-26.5 GHz). The proposed aperture is planar and promises an inexpensive fabrication process via printed circuit board techniques. These traits are further augmented by the tunability of dynamic metasurfaces, which provides the dexterity necessary to generate field patterns ranging from a sequence of steered beams to a series of uncorrelated radiation patterns. Imaging is experimentally demonstrated with a voltage-tunable metasurface aperture. We also demonstrate the aperture's utility in real-time measurements and perform volumetric SAR imaging. The capabilities of a prototype are detailed and the future prospects of general dynamic metasurface apertures are discussed.

  18. Side information in coded aperture compressive spectral imaging

    NASA Astrophysics Data System (ADS)

    Galvis, Laura; Arguello, Henry; Lau, Daniel; Arce, Gonzalo R.

    2017-02-01

    Coded aperture compressive spectral imagers sense a three-dimensional cube by using two-dimensional projections of the coded and spectrally dispersed source. These imagers systems often rely on FPA detectors, SLMs, micromirror devices (DMDs), and dispersive elements. The use of the DMDs to implement the coded apertures facilitates the capture of multiple projections, each admitting a different coded aperture pattern. The DMD allows not only to collect the sufficient number of measurements for spectrally rich scenes or very detailed spatial scenes but to design the spatial structure of the coded apertures to maximize the information content on the compressive measurements. Although sparsity is the only signal characteristic usually assumed for reconstruction in compressing sensing, other forms of prior information such as side information have been included as a way to improve the quality of the reconstructions. This paper presents the coded aperture design in a compressive spectral imager with side information in the form of RGB images of the scene. The use of RGB images as side information of the compressive sensing architecture has two main advantages: the RGB is not only used to improve the reconstruction quality but to optimally design the coded apertures for the sensing process. The coded aperture design is based on the RGB scene and thus the coded aperture structure exploits key features such as scene edges. Real reconstructions of noisy compressed measurements demonstrate the benefit of the designed coded apertures in addition to the improvement in the reconstruction quality obtained by the use of side information.

  19. Vibration of a Singly-curved Thin Shell Reflector with a Unidirectional Tension Field

    NASA Technical Reports Server (NTRS)

    Williams, R. Brett; Klein, Kerry J.; Agnes, Gregory S.

    2006-01-01

    Increased science requirements for space-based instruments over the past few decades have lead to the increased popularity of deployable space structures constructed from thin, lightweight films. Such structures offer both low mass and the ability to be stowed inside conventional launch vehicles. The analysis in this work pertains to large, singly-curved lightweight deployable reflectors commonly used in radar antennas and space telescopes. These types of systems, which can vary a great deal in size, often have frequency requirement that must be met. This work discusses two missions that utilize this type of aperture technology, and then develops a Rayleigh-Ritz model that predicts the natural frequencies and mode shapes for a (nearly) flat and singly-curved reflector with unidirectional in-plane loading. The results are compared with NASTRAN analyses.

  20. Synthesis of a large communications aperture using small antennas

    NASA Technical Reports Server (NTRS)

    Resch, George M.; Cwik, T. W.; Jamnejad, V.; Logan, R. T.; Miller, R. B.; Rogstad, Dave H.

    1994-01-01

    In this report we compare the cost of an array of small antennas to that of a single large antenna assuming both the array and single large antenna have equal performance and availability. The single large antenna is taken to be one of the 70-m antennas of the Deep Space Network. The cost of the array is estimated as a function of the array element diameter for three different values of system noise temperature corresponding to three different packaging schemes for the first amplifier. Array elements are taken to be fully steerable paraboloids and their cost estimates were obtained from commercial vendors. Array loss mechanisms and calibration problems are discussed. For array elements in the range 3 - 35 m there is no minimum in the cost versus diameter curve for the three system temperatures that were studied.

  1. Near-Field Terahertz Transmission Imaging at 0.210 Terahertz Using a Simple Aperture Technique

    DTIC Science & Technology

    2015-10-01

    This report discusses a simple aperture useful for terahertz near-field imaging at .2010 terahertz ( lambda = 1.43 millimeters). The aperture requires...achieve a spatial resolution of lambda /7. The aperture can be scaled with the assistance of machinery found in conventional machine shops to achieve similar results using shorter terahertz wavelengths.

  2. RF verification tasks underway at the Harris Corporation for multiple aperture reflector system

    NASA Technical Reports Server (NTRS)

    Gutwein, T. A.

    1982-01-01

    Mesh effects on gain and patterns and adjacent aperture coupling effects for "pie" and circular apertures are discussed. Wire effects for Harris model with Langley scale model results included for assessing D/lamda effects, and wire effects with adjacent aperture coupling were determined. Reflector surface distortion effects (pillows and manufacturing roughness) were studied.

  3. Dual aperture dipole magnet with second harmonic component

    DOEpatents

    Praeg, Walter F.

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  4. Dual aperture dipole magnet with second harmonic component

    DOEpatents

    Praeg, W.F.

    1983-08-31

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  5. The electromagnetic modeling of thin apertures using the finite-difference time-domain technique

    NASA Technical Reports Server (NTRS)

    Demarest, Kenneth R.

    1987-01-01

    A technique which computes transient electromagnetic responses of narrow apertures in complex conducting scatterers was implemented as an extension of previously developed Finite-Difference Time-Domain (FDTD) computer codes. Although these apertures are narrow with respect to the wavelengths contained within the power spectrum of excitation, this technique does not require significantly more computer resources to attain the increased resolution at the apertures. In the report, an analytical technique which utilizes Babinet's principle to model the apertures is developed, and an FDTD computer code which utilizes this technique is described.

  6. Partially Filled Aperture Interferometric Telescopes: Achieving Large Aperture and Coronagraphic Performance

    NASA Astrophysics Data System (ADS)

    Moretto, G.; Kuhn, J.; Langlois, M.; Berdugyna, S.; Tallon, M.

    2017-09-01

    Telescopes larger than currently planned 30-m class instruments must break the mass-aperture scaling relationship of the Keck-generation of multi-segmented telescopes. Partially filled aperture, but highly redundant baseline interferometric instruments may achieve both large aperture and high dynamic range. The PLANETS FOUNDATION group has explored hybrid telescope-interferometer concepts for narrow-field optical systems that exhibit coronagraphic performance over narrow fields-of-view. This paper describes how the Colossus and Exo-Life Finder telescope designs achieve 10x lower moving masses than current Extremely Large Telescopes.

  7. Preliminary Study of Ground Movement in Prone Landslide Area by Means of MAI InSAR A Case Study: Ciloto, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Hayati, Noorlaila; Riedel, Björn; Niemeier, Wolfgang

    2016-04-01

    Ciloto is one of the most prone landslide hazard areas in Indonesia. Several landslides in 2012 and 2013 had been recorded in Ciloto and damaged infrastructure around the area. Investigating the history of ground movement along slope area before the landslide happened could support the hazard mitigation in the future. Considering to an efficient surveying method, space-borne SAR processing is the one appropriate way to monitor the phenomenon in past years. The purpose of this study is detecting ground movement using multi-temporal synthetic aperture radar images. We use 13 ALOS PALSAR images from 2007 to 2009 with combination Fine Beam Single (FBS) and Fine Beam Double (FBD) polarization to investigate the slow movement on slope topography. MAI (Multiple Aperture Interferometry) InSAR method is used to analyze the ground movement from both line-of-sight and along-track direction. We split the synthetic aperture into two-looking aperture so that along-track displacement could be created by the difference of forward-backward looking interferograms. With integration of both methods, we could more precisely detect the movement in prone landslide area and achieve two measurements produced by the same interferogram. However, InSAR requires smaller baseline and good temporal baseline between master and slave images to avoid decorellation. There are only several pairs that meet the condition of proper length and temporal baseline indeed the location is also on the agriculture area where is mostly covered by vegetation. The result for two years observation shows that there is insignificant slow movement along slope surface in Ciloto with -2 - -7 cm in range looks or line of sight and 9-40 cm in along track direction. Based on geometry SAR , the most visible detecting of displacement is on the north-west area due to utilization of ascending SAR images.

  8. Geometrical optics design of a compact range Gregorian subreflector system by the principle of the central ray

    NASA Technical Reports Server (NTRS)

    Clerici, Giancarlo; Burnside, Walter D.

    1989-01-01

    In recent years, the compact range has become very popular for measuring Radar Cross Section (RCS) and antenna patterns. The compact range, in fact, offers several advantages due to reduced size, a controlled environment, and privacy. On the other hand, it has some problems of its own, which must be solved properly in order to achieve high quality measurement results. For example, diffraction from the edges of the main reflector corrupts the plane wave in the target zone and creates spurious scattering centers in RCS measurements. While diffraction can be minimized by using rolled edges, the field of an offset single reflector compact range is corrupted by three other errors: the taper of the reflected field, the cross polarization introduced by the tilt of the feed and the aperture blockage introduced by the feed itself. These three errors can be eliminated by the use of a subreflector system. A properly designed subreflector system offers very little aperture blockage, no cross-polarization introduced and a minimization of the taper of the reflected field. A Gregorian configuration has been adopted in order to enclose the feed and the ellipsoidal subreflector in a lower chamber, which is isolated by absorbers from the upper chamber, where the main parabolic reflector and the target zone are enclosed. The coupling between the two rooms is performed through a coupling aperture. The first cut design for such a subreflector system is performed through Geometrical Optics ray tracing techniques (GO), and is greatly simplified by the use of the concept of the central ray introduced by Dragone. The purpose of the GO design is to establish the basic dimensions of the main reflector and subreflector, the size of the primary and secondary illuminating surfaces, the tilt angles of the subreflector and feed, and estimate the feed beamwidth. At the same time, the shape of the coupling aperture is initially determined.

  9. Optimization of the occulter for the Solar Orbiter/METIS coronagraph

    NASA Astrophysics Data System (ADS)

    Landini, Federico; Vivès, Sébastien; Romoli, Marco; Guillon, Christophe; Pancrazzi, Maurizio; Escolle, Clement; Focardi, Mauro; Antonucci, Ester; Fineschi, Silvano; Naletto, Giampiero; Nicolini, Gianalfredo; Nicolosi, Piergiorgio; Spadaro, Daniele

    2012-09-01

    METIS (Multi Element Telescope for Imaging and Spectroscopy investigation), selected to fly aboard the Solar Orbiter ESA/NASA mission, is conceived to perform imaging (in visible, UV and EUV) and spectroscopy (in EUV) of the solar corona, by means of an integrated instrument suite located on a single optical bench and sharing the same aperture on the satellite heat shield. As every coronagraph, METIS is highly demanding in terms of stray light suppression. Coronagraphs history teaches that a particular attention must be dedicated to the occulter optimization. The METIS occulting system is of particular interest due to its innovative concept. In order to meet the strict thermal requirements of Solar Orbiter, METIS optical design has been optimized by moving the entrance pupil at the level of the external occulter on the S/C thermal shield, thus reducing the size of the external aperture. The scheme is based on an inverted external-occulter (IEO). The IEO consists of a circular aperture on the Solar Orbiter thermal shield. A spherical mirror rejects back the disk-light through the IEO. A breadboard of the occulting assembly (BOA) has been manufactured in order to perform stray light tests in front of two solar simulators (in Marseille, France and in Torino, Italy). A first measurement campaign has been carried on at the Laboratoire d'Astrophysique de Marseille. In this paper we describe the BOA design, the laboratory set-up and the preliminary results.

  10. Design and fabrication of sub-wavelength annular apertures on fiber tip for femtosecond laser machining

    NASA Astrophysics Data System (ADS)

    Tung, Yen-Chun; Chung, Ming-Han; Sung, I.-Hui; Lee, Chih-Kung

    2014-03-01

    Adopting optical technique to pursue micromachining must make a compromise between the focal spot sizes the depth of focus. The focal spot size determines the minimum features can be fabricated. On the other hand, the depth of focus influences the ease of alignment in positioning the fabrication light beam. A typical approach to bypass the diffraction limit is to adopt the near-field approach, which has spot size in the range of the optical fiber tip. However, the depth of focus of the emitted light beam will be limited to tens of nanometers in most cases, which posts a difficult challenge to control the distance between the optical fiber tip and the sample to be machined optically. More specifically, problems remained in this machining approach, which include issues such as residue induced by laser ablation tends to deposit near the optical fiber tip and leads to loss of coupling efficiency. We proposed a method based on illuminating femtosecond laser through a sub-wavelength annular aperture on metallic film so as to produce Bessel light beam of sub-wavelength while maintaining large depth of focus first. To further advance the ease of use in one such system, producing sub-wavelength annular aperture on a single mode optical fiber head with sub-wavelength focusing ability is detailed. It is shown that this method can be applied in material machining with an emphasis to produce high aspect ratio structure. Simulations and experimental results are presented in this paper.

  11. High Field Side Lower Hybrid Current Drive Launcher Design for DIII-D

    NASA Astrophysics Data System (ADS)

    Wallace, G. M.; Leccacori, R.; Doody, J.; Vieira, R.; Shiraiwa, S.; Wukitch, S. J.; Holcomb, C.; Pinsker, R. I.

    2017-10-01

    Efficient off-axis current drive scalable to reactors is a key enabling technology for a steady-state tokamak. Simulations of DIII-D discharges have identified high performance scenarios with excellent lower hybrid (LH) wave penetration, single pass absorption and high current drive efficiency. The strategy was to adapt known launching technology utilized in previous experiments on C-Mod (poloidal splitter) and Tore Supra (bi-junction) and remain within power density limits established in JET and Tore Supra. For a 2 MW source power antenna, the launcher consists of 32 toroidal apertures and 4 poloidal rows. The aperture is 60 mm x 5 mm with 1 mm septa and the peak n| | is 2.7+/-0.2 for 90□ phasing. Eight WR187 waveguides are routed from the R-1 port down under the lower cryopump, under the existing divertor, and up the central column with the long waveguide dimension along the vacuum vessel. Above the inner strike point region, each waveguide is twisted to orient the long dimension perpendicular to the vacuum vessel and splits into 4 toroidal apertures via bi-junctions. To protect the waveguide, the inner wall radius will need to increase by 2.5 cm. RF, disruption, and thermal analysis of the latest design will be presented. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award Number DE-FC02-04ER54698 and by MIT PSFC cooperative agreement DE-SC0014264.

  12. Separation and dual detection of prostate cancer cells and protein biomarkers using a microchip device.

    PubMed

    Huang, Wanfeng; Chang, Chun-Li; Brault, Norman D; Gur, Onur; Wang, Zhe; Jalal, Shadia I; Low, Philip S; Ratliff, Timothy L; Pili, Roberto; Savran, Cagri A

    2017-01-31

    Current efforts for the detection of prostate cancer using only prostate specific antigen are not ideal and indicate a need to develop new assays - using multiple targets - that can more accurately stratify disease states. We previously introduced a device capable of the concurrent detection of cellular and molecular markers from a single sample fluid. Here, an improved design, which achieves affinity as well as size-based separation of captured targets using antibody-conjugated magnetic beads and a silicon chip containing micro-apertures, is presented. Upon injection of the sample, the integration of magnetic attraction with the micro-aperture chip permits larger cell-bead complexes to be isolated in an upper chamber with the smaller protein-bead complexes and remaining beads passing through the micro-apertures into the lower chamber. This enhances captured cell purity for on chip quantification, allows the separate retrieval of captured cells and proteins for downstream analysis, and enables higher bead concentrations for improved multiplexed ligand targeting. Using LNCaP cells and prostate specific membrane antigen (PSMA) to model prostate cancer, the device was able to detect 34 pM of spiked PSMA and achieve a cell capture efficiency of 93% from culture media. LNCaP cells and PSMA were then spiked into diluted healthy human blood to mimic a cancer patient. The device enabled the detection of spiked PSMA (relative to endogenous PSMA) while recovering 85-90% of LNCaP cells which illustrated the potential of new assays for the diagnosis of prostate cancer.

  13. Real-Time Spaceborne Synthetic Aperture Radar Float-Point Imaging System Using Optimized Mapping Methodology and a Multi-Node Parallel Accelerating Technique

    PubMed Central

    Li, Bingyi; Chen, Liang; Yu, Wenyue; Xie, Yizhuang; Bian, Mingming; Zhang, Qingjun; Pang, Long

    2018-01-01

    With the development of satellite load technology and very large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. A key goal of the on-board SAR imaging system design is to achieve high real-time processing performance under severe size, weight, and power consumption constraints. This paper presents a multi-node prototype system for real-time SAR imaging processing. We decompose the commonly used chirp scaling (CS) SAR imaging algorithm into two parts according to the computing features. The linearization and logic-memory optimum allocation methods are adopted to realize the nonlinear part in a reconfigurable structure, and the two-part bandwidth balance method is used to realize the linear part. Thus, float-point SAR imaging processing can be integrated into a single Field Programmable Gate Array (FPGA) chip instead of relying on distributed technologies. A single-processing node requires 10.6 s and consumes 17 W to focus on 25-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. The design methodology of the multi-FPGA parallel accelerating system under the real-time principle is introduced. As a proof of concept, a prototype with four processing nodes and one master node is implemented using a Xilinx xc6vlx315t FPGA. The weight and volume of one single machine are 10 kg and 32 cm × 24 cm × 20 cm, respectively, and the power consumption is under 100 W. The real-time performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging. PMID:29495637

  14. Synthesis of Creep Measurements from Strainmeters and Creepmeters along the San Andreas Fault: Implications for Seismic vs. Aseismic Partitioning

    NASA Astrophysics Data System (ADS)

    Mencin, D.; Gottlieb, M. H.; Hodgkinson, K. M.; Bilham, R. G.; Mattioli, G. S.; Johnson, W.; Van Boskirk, E.; Meertens, C. M.

    2015-12-01

    Strainmeters and creepmeters have been operated along the San Andreas Fault, observing creep events for decades. In particular, the EarthScope Plate Boundary Observatory (PBO) has added a significant number of borehole strainmeters along the San Andreas Fault (SAF) over the last decade. The geodetic data cover a significant temporal portion of the inferred earthquake cycle along this portion of the SAF. Creepmeters measure the surface displacement over time (creep) with short apertures and have the ability to capture slow slip, coseismic rupture, and afterslip. Modern creepmeters deployed by the authors have a resolution of 5 µm over a range of 10 mm and a dynamic sensor with a resolution 25 µm over a range 2.2 m. Borehole strainmeters measure local deformation some distance from the fault with a broader aperture. Borehole tensor strainmeters principally deployed as part of the PBO, measure the horizontal strain tensor at a depth of 100-200 m with a resolution of 10-11 strain and are located 4 - 10 km from the fault with the ability to image a 1 mm creep event acting on an area of ~500 m2 from over 4 km away (fault perpendicular). A single borehole tensor strainmeter is capable of providing broad constraints on the creep event asperity size, location, direction and depth of a single creep event. The synthesis of these data from all the available geodetic instruments proximal to the SAF presents a unique opportunity to constrain the partitioning between aseismic and seismic slip on the central SAF. We show that simple elastic half-space models allow us to loosely constrain the location and depth of any individual creep event on the fault, even with a single instrument, and to image the accumulation of creep with time.

  15. Dual-frequency super harmonic imaging piezoelectric transducers for transrectal ultrasound

    NASA Astrophysics Data System (ADS)

    Kim, Jinwook; Li, Sibo; Kasoji, Sandeep; Dayton, Paul A.; Jiang, Xiaoning

    2015-03-01

    In this paper, a 2/14 MHz dual-frequency single-element transducer and a 2/22 MHz sub-array (16/48-elements linear array) transducer were developed for contrast enhanced super-harmonic ultrasound imaging of prostate cancer with the low frequency ultrasound transducer as a transmitter for contrast agent (microbubble) excitation and the high frequency transducer as a receiver for detection of nonlinear responses from microbubbles. The 1-3 piezoelectric composite was used as active materials of the single-element transducers due to its low acoustic impedance and high coupling factor. A high dielectric constant PZT ceramic was used for the sub-array transducer due to its high dielectric property induced relatively low electrical impedance. The possible resonance modes of the active elements were estimated using finite element analysis (FEA). The pulse-echo response, peak-negative pressure and bubble response were tested, followed by in vitro contrast imaging tests using a graphite-gelatin tissue-mimicking phantom. The single-element dual frequency transducer (8 × 4 × 2 mm3) showed a -6 dB fractional bandwidth of 56.5% for the transmitter, and 41.8% for the receiver. A 2 MHz-transmitter (730 μm pitch and 6.5 mm elevation aperture) and a 22 MHz-receiver (240 μm pitch and 1.5 mm aperture) of the sub-array transducer exhibited -6 dB fractional bandwidth of 51.0% and 40.2%, respectively. The peak negative pressure at the far field was about -1.3 MPa with 200 Vpp, 1-cycle 2 MHz burst, which is high enough to excite microbubbles for nonlinear responses. The 7th harmonic responses from micro bubbles were successfully detected in the phantom imaging test showing a contrast-to-tissue ratio (CTR) of 16 dB.

  16. Evolution of dispersion coefficient in the single rough-walled fracture before and after circulated flow near the wall

    NASA Astrophysics Data System (ADS)

    Lee, S.; Yeo, I.; Lee, K.

    2012-12-01

    Understanding detailed solute transport mechanism in a single fracture is required to expand it to the complex fractured medium. Dispersion in the variable-aperture fractures occurs by combined effects of molecular diffusion, macro dispersion and Taylor dispersion. It has been reported that Taylor dispersion which is proportional to the square of the velocity dominates for the high velocity, while macro dispersion is proportional to the velocity. Contributions of each scheme are different as the velocity changes. To investigate relationship between Reynolds number and dispersion coefficient, single acrylic rough-walled fracture which has 20 cm length and 1.03 mm average aperture was designed. In this experiment, dispersion coefficient was calculated at the middle of the fracture and at the edge of the fracture via moment analysis using breakthrough curve (BTC) of fluorescent solute under the Reynolds number 0.08, 0.28, 2.78, 8.2 and 16.4. In the results, distinct dispersion regime was observed at the highly rough-walled fracture, which is inconsistent with the model that was suggested by previous research. In the range of Re < 2.78, the dispersion coefficient was proportional to the power of n (1 2.78. The reason of this transition zone was related to the generation of circulated flow near the wall. It can flush the trapped contaminant out to the main flow channel, which makes tailing effect diminished. Also, these circulation zones were visualized using microscope, CCD camera and fluorescent particles.

  17. Toward dynamic lumbar punctures guidance based on single element synthetic tracked aperture ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Lin, Melissa; Kim, Younsu; Paredes, Mateo; Kannan, Karun; Patel, Nisu; Moghekar, Abhay; Durr, Nicholas J.; Boctor, Emad M.

    2017-03-01

    Lumbar punctures (LPs) are interventional procedures used to collect cerebrospinal fluid (CSF), a bodily fluid needed to diagnose central nervous system disorders. Most lumbar punctures are performed blindly without imaging guidance. Because the target window is small, physicians can only accurately palpate the appropriate space about 30% of the time and perform a successful procedure after an average of three attempts. Although various forms of imaging based guidance systems have been developed to aid in this procedure, these systems complicate the procedure by including independent image modalities and requiring image-to-needle registration to guide the needle insertion. Here, we propose a simple and direct needle insertion platform utilizing a single ultrasound element within the needle through dynamic sensing and imaging. The needle-shaped ultrasound transducer can not only sense the distance between the tip and a potential obstacle such as bone, but also visually locate structures by combining transducer location tracking and back projection based tracked synthetic aperture beam-forming algorithm. The concept of the system was validated through simulation first, which revealed the tolerance to realistic error. Then, the initial prototype of the single element transducer was built into a 14G needle, and was mounted on a holster equipped with a rotation tracking encoder. We experimentally evaluated the system using a metal wire phantom mimicking high reflection bone structures and an actual spine bone phantom with both the controlled motion and freehand scanning. An ultrasound image corresponding to the model phantom structure was reconstructed using the beam-forming algorithm, and the resolution was improved compared to without beam-forming. These results demonstrated the proposed system has the potential to be used as an ultrasound imaging system for lumbar puncture procedures.

  18. Beam’s-eye-view dosimetrics (BEVD) guided rotational station parameter optimized radiation therapy (SPORT) planning based on reweighted total-variation minimization

    NASA Astrophysics Data System (ADS)

    Kim, Hojin; Li, Ruijiang; Lee, Rena; Xing, Lei

    2015-03-01

    Conventional VMAT optimizes aperture shapes and weights at uniformly sampled stations, which is a generalization of the concept of a control point. Recently, rotational station parameter optimized radiation therapy (SPORT) has been proposed to improve the plan quality by inserting beams to the regions that demand additional intensity modulations, thus formulating non-uniform beam sampling. This work presents a new rotational SPORT planning strategy based on reweighted total-variation (TV) minimization (min.), using beam’s-eye-view dosimetrics (BEVD) guided beam selection. The convex programming based reweighted TV min. assures the simplified fluence-map, which facilitates single-aperture selection at each station for single-arc delivery. For the rotational arc treatment planning and non-uniform beam angle setting, the mathematical model needs to be modified by additional penalty term describing the fluence-map similarity and by determination of appropriate angular weighting factors. The proposed algorithm with additional penalty term is capable of achieving more efficient and deliverable plans adaptive to the conventional VMAT and SPORT planning schemes by reducing the dose delivery time about 5 to 10 s in three clinical cases (one prostate and two head-and-neck (HN) cases with a single and multiple targets). The BEVD guided beam selection provides effective and yet easy calculating methodology to select angles for denser, non-uniform angular sampling in SPORT planning. Our BEVD guided SPORT treatment schemes improve the dose sparing to femoral heads in the prostate and brainstem, parotid glands and oral cavity in the two HN cases, where the mean dose reduction of those organs ranges from 0.5 to 2.5 Gy. Also, it increases the conformation number assessing the dose conformity to the target from 0.84, 0.75 and 0.74 to 0.86, 0.79 and 0.80 in the prostate and two HN cases, while preserving the delivery efficiency, relative to conventional single-arc VMAT plans.

  19. Active Correction of Aperture Discontinuities-Optimized Stroke Minimization. I. A New Adaptive Interaction Matrix Algorithm

    NASA Astrophysics Data System (ADS)

    Mazoyer, J.; Pueyo, L.; N'Diaye, M.; Fogarty, K.; Zimmerman, N.; Leboulleux, L.; St. Laurent, K. E.; Soummer, R.; Shaklan, S.; Norman, C.

    2018-01-01

    Future searches for bio-markers on habitable exoplanets will rely on telescope instruments that achieve extremely high contrast at small planet-to-star angular separations. Coronagraphy is a promising starlight suppression technique, providing excellent contrast and throughput for off-axis sources on clear apertures. However, the complexity of space- and ground-based telescope apertures goes on increasing over time, owing to the combination of primary mirror segmentation, the secondary mirror, and its support structures. These discontinuities in the telescope aperture limit the coronagraph performance. In this paper, we present ACAD-OSM, a novel active method to correct for the diffractive effects of aperture discontinuities in the final image plane of a coronagraph. Active methods use one or several deformable mirrors that are controlled with an interaction matrix to correct for the aberrations in the pupil. However, they are often limited by the amount of aberrations introduced by aperture discontinuities. This algorithm relies on the recalibration of the interaction matrix during the correction process to overcome this limitation. We first describe the ACAD-OSM technique and compare it to the previous active methods for the correction of aperture discontinuities. We then show its performance in terms of contrast and off-axis throughput for static aperture discontinuities (segmentation, struts) and for some aberrations evolving over the life of the instrument (residual phase aberrations, artifacts in the aperture, misalignments in the coronagraph design). This technique can now obtain the Earth-like planet detection threshold of {10}10 contrast on any given aperture over at least a 10% spectral bandwidth, with several coronagraph designs.

  20. UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.

    2009-01-01

    The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.

Top