Sample records for single base alterations

  1. A robust method to analyze copy number alterations of less than 100 kb in single cells using oligonucleotide array CGH.

    PubMed

    Möhlendick, Birte; Bartenhagen, Christoph; Behrens, Bianca; Honisch, Ellen; Raba, Katharina; Knoefel, Wolfram T; Stoecklein, Nikolas H

    2013-01-01

    Comprehensive genome wide analyses of single cells became increasingly important in cancer research, but remain to be a technically challenging task. Here, we provide a protocol for array comparative genomic hybridization (aCGH) of single cells. The protocol is based on an established adapter-linker PCR (WGAM) and allowed us to detect copy number alterations as small as 56 kb in single cells. In addition we report on factors influencing the success of single cell aCGH downstream of the amplification method, including the characteristics of the reference DNA, the labeling technique, the amount of input DNA, reamplification, the aCGH resolution, and data analysis. In comparison with two other commercially available non-linear single cell amplification methods, WGAM showed a very good performance in aCGH experiments. Finally, we demonstrate that cancer cells that were processed and identified by the CellSearch® System and that were subsequently isolated from the CellSearch® cartridge as single cells by fluorescence activated cell sorting (FACS) could be successfully analyzed using our WGAM-aCGH protocol. We believe that even in the era of next-generation sequencing, our single cell aCGH protocol will be a useful and (cost-) effective approach to study copy number alterations in single cells at resolution comparable to those reported currently for single cell digital karyotyping based on next generation sequencing data.

  2. Single-Event Upsets Caused by High-Energy Protons

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Nichols, D. K.; Smith, L. S.; Soli, G. A.

    1986-01-01

    Heavy secondary ions do not significantly alter device responses. Conclusion that external reaction products cause no significant alteration of single-event-upset response based on comparison of data obtained from both lidded and unlidded devices and for proton beams impinging at angles ranging from 0 degrees to 180 degrees with respect to chip face. Study also found single-event-upset cross section increases only modestly as proton energy increased to 590 MeV, characteristic of maximum energies expected in belts of trapped protons surrounding Earth and Jupiter.

  3. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    PubMed

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies. Copyright © 2015 John Wiley & Sons, Inc.

  4. Single ether group in a glycol-based ultra-thin layer prevents surface fouling from undiluted serum.

    PubMed

    Sheikh, Sonia; Yang, David Yi; Blaszykowski, Christophe; Thompson, Michael

    2012-01-30

    Through systematic structural modification, it is shown that the internal, single oxygen atom of simple monoethylene glycol-based organic films is essential for radically altering the fouling behaviour of quartz against undiluted serum, as characterized by the electromagnetic piezoelectric acoustic sensor. The synergy is strongest with distal hydroxyls.

  5. Novel Single-Base Deletional Mutation in Major Intrinsic Protein (MIP) in Autosomal Dominant Cataract

    PubMed Central

    Geyer, David D.; Spence, M. Anne; Johannes, Meriam; Flodman, Pamela; Clancy, Kevin P.; Berry, Rebecca; Sparkes, Robert S.; Jonsen, Matthew D.; Isenberg, Sherwin J.; Bateman, J. Bronwyn

    2006-01-01

    PURPOSE To further elucidate the cataract phenotype, and identify the gene and mutation for autosomal dominant cataract (ADC) in an American family of European descent (ADC2) by sequencing the major intrinsic protein gene (MIP), a candidate based on linkage to chromosome 12q13. DESIGN Observational case series and laboratory experimental study. METHODS We examined two at-risk individuals in ADC2. We PCR-amplified and sequenced all four exons and all intron-exon boundaries of the MIP gene from genomic and cloned DNA in affected members to confirm one variant as the putative mutation. RESULTS We found a novel single deletion of nucleotide (nt) 3223 (within codon 235) in exon four, causing a frameshift that alters 41 of 45 subsequent amino acids and creates a premature stop codon. CONCLUSIONS We identified a novel single base pair deletion in the MIP gene and conclude that it is a pathogenic sequence alteration. PMID:16564824

  6. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    PubMed Central

    Holt, Brian D.; Shams, Hengameh; Horst, Travis A.; Basu, Saurav; Rape, Andrew D.; Wang, Yu-Li; Rohde, Gustavo K.; Mofrad, Mohammad R. K.; Islam, Mohammad F.; Dahl, Kris Noel

    2012-01-01

    With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs) are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics. PMID:24955540

  7. Tension-dependent structural deformation alters single-molecule transition kinetics.

    PubMed

    Sudhanshu, B; Mihardja, S; Koslover, E F; Mehraeen, S; Bustamante, C; Spakowitz, A J

    2011-02-01

    We analyze the response of a single nucleosome to tension, which serves as a prototypical biophysical measurement where tension-dependent deformation alters transition kinetics. We develop a statistical-mechanics model of a nucleosome as a wormlike chain bound to a spool, incorporating fluctuations in the number of bases bound, the spool orientation, and the conformations of the unbound polymer segments. With the resulting free-energy surface, we perform dynamic simulations that permit a direct comparison with experiments. This simple approach demonstrates that the experimentally observed structural states at nonzero tension are a consequence of the tension and that these tension-induced states cease to exist at zero tension. The transitions between states exhibit substantial deformation of the unbound polymer segments. The associated deformation energy increases with tension; thus, the application of tension alters the kinetics due to tension-induced deformation of the transition states. This mechanism would arise in any system where the tether molecule is deformed in the transition state under the influence of tension.

  8. Tension-dependent structural deformation alters single-molecule transition kinetics

    PubMed Central

    Sudhanshu, B.; Mihardja, S.; Koslover, E. F.; Mehraeen, S.; Bustamante, C.; Spakowitz, A. J.

    2011-01-01

    We analyze the response of a single nucleosome to tension, which serves as a prototypical biophysical measurement where tension-dependent deformation alters transition kinetics. We develop a statistical-mechanics model of a nucleosome as a wormlike chain bound to a spool, incorporating fluctuations in the number of bases bound, the spool orientation, and the conformations of the unbound polymer segments. With the resulting free-energy surface, we perform dynamic simulations that permit a direct comparison with experiments. This simple approach demonstrates that the experimentally observed structural states at nonzero tension are a consequence of the tension and that these tension-induced states cease to exist at zero tension. The transitions between states exhibit substantial deformation of the unbound polymer segments. The associated deformation energy increases with tension; thus, the application of tension alters the kinetics due to tension-induced deformation of the transition states. This mechanism would arise in any system where the tether molecule is deformed in the transition state under the influence of tension. PMID:21245354

  9. Setting up a probe based, closed tube real-time PCR assay for focused detection of variable sequence alterations.

    PubMed

    Becságh, Péter; Szakács, Orsolya

    2014-10-01

    During diagnostic workflow when detecting sequence alterations, sometimes it is important to design an algorithm that includes screening and direct tests in combination. Normally the use of direct test, which is mainly sequencing, is limited. There is an increased need for effective screening tests, with "closed tube" during the whole process and therefore decreasing the risk of PCR product contamination. The aim of this study was to design such a closed tube, detection probe based screening assay to detect different kind of sequence alterations in the exon 11 of the human c-kit gene region. Inside this region there are variable possible deletions and single nucleotide changes. During assay setup, more probe chemistry formats were screened and tested. After some optimization steps the taqman probe format was selected.

  10. The construction phase’s influence to the moving ability of cross-sections of woven structure

    NASA Astrophysics Data System (ADS)

    Inogamdjanov, D.; Daminov, A.; Kasimov, O.

    2017-10-01

    The purpose of this study is to work out bases to predict properties for single layer flat woven fabrics depending on changes of construction phases. A structural model of cross-section of single layered fabric is described based on the Pierce’s model. Form transformation of the yarn like straight, semi-arch and arch yarn is considered according to the alteration of yarn tension under the theory of Novikov. The value contributions to movement index of warp and weft yarn and their total moving ability in cross-sections at all structure phases of fabric are summarized.

  11. Engineering Molecular Immunity Against Plant Viruses.

    PubMed

    Zaidi, Syed Shan-E-Ali; Tashkandi, Manal; Mahfouz, Magdy M

    2017-01-01

    Genomic engineering has been used to precisely alter eukaryotic genomes at the single-base level for targeted gene editing, replacement, fusion, and mutagenesis, and plant viruses such as Tobacco rattle virus have been developed into efficient vectors for delivering genome-engineering reagents. In addition to altering the host genome, these methods can target pathogens to engineer molecular immunity. Indeed, recent studies have shown that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems that target the genomes of DNA viruses can interfere with viral activity and limit viral symptoms in planta, demonstrating the utility of this system for engineering molecular immunity in plants. CRISPR/Cas9 can efficiently target single and multiple viral infections and confer plant immunity. Here, we discuss the use of site-specific nucleases to engineer molecular immunity against DNA and RNA viruses in plants. We also explore how to address the potential challenges encountered when producing plants with engineered resistance to single and mixed viral infections. © 2017 Elsevier Inc. All rights reserved.

  12. Multiple Head and Neck Tumors Frequently Originate from a Single Preneoplastic Lesion

    PubMed Central

    Tabor, Maarten P.; Brakenhoff, Ruud H.; Ruijter-Schippers, Henrique J.; van der Wal, Jacqueline E.; Snow, Gordon B.; Leemans, C. René; Braakhuis, Boudewijn J. M.

    2002-01-01

    The development of second primary tumors has a negative impact on the prognosis of head and neck squamous cell carcinoma. Previously, we detected genetically altered and tumor-related mucosal lesions in the resection margins in 25% of unselected head and neck squamous cell carcinoma patients (Tabor MP, Brakenhoff RH, van Houten VMM, Kummer JA, Snel MHJ, Snijders PJF, Snow GB, Leemans CR, Braakhuis BJM: Persistence of genetically altered fields in head and neck cancer patients: biological and clinical implications. Clin Cancer Res 2001, 7: 1523–1532). The aim of this study was to determine whether first and second primary tumors are clonally related and originate from a single genetically altered field. From 10 patients we analyzed the first tumor of the oral cavity or oropharynx, the >3-cm remote second primary tumor, and the mucosa from the tumor-free margins from both resection specimens. We compared TP53 mutations and loss of heterozygosity profiles using 19 microsatellite markers at chromosomes 3p, 9p, 13q, and 17p. In all patients, genetically altered mucosal lesions were detected in at least one resection margin from both first and second primary tumor. Evidence for a common clonal origin of the first tumor, second primary tumor, and the intervening mucosa was found for at least 6 of 10 patients. Our results indicate that a proportion of multiple primary tumors have developed within a single preneoplastic field. Based on different etiology and clinical consequences, we propose that independent second primary tumors should be distinguished from second field tumors, that arise from the same genetically altered field the first tumor has developed from. PMID:12213734

  13. Scanning the Effects of Ethyl Methanesulfonate on the Whole Genome of Lotus japonicus Using Second-Generation Sequencing Analysis

    PubMed Central

    Mohd-Yusoff, Nur Fatihah; Ruperao, Pradeep; Tomoyoshi, Nurain Emylia; Edwards, David; Gresshoff, Peter M.; Biswas, Bandana; Batley, Jacqueline

    2015-01-01

    Genetic structure can be altered by chemical mutagenesis, which is a common method applied in molecular biology and genetics. Second-generation sequencing provides a platform to reveal base alterations occurring in the whole genome due to mutagenesis. A model legume, Lotus japonicus ecotype Miyakojima, was chemically mutated with alkylating ethyl methanesulfonate (EMS) for the scanning of DNA lesions throughout the genome. Using second-generation sequencing, two individually mutated third-generation progeny (M3, named AM and AS) were sequenced and analyzed to identify single nucleotide polymorphisms and reveal the effects of EMS on nucleotide sequences in these mutant genomes. Single-nucleotide polymorphisms were found in every 208 kb (AS) and 202 kb (AM) with a bias mutation of G/C-to-A/T changes at low percentage. Most mutations were intergenic. The mutation spectrum of the genomes was comparable in their individual chromosomes; however, each mutated genome has unique alterations, which are useful to identify causal mutations for their phenotypic changes. The data obtained demonstrate that whole genomic sequencing is applicable as a high-throughput tool to investigate genomic changes due to mutagenesis. The identification of these single-point mutations will facilitate the identification of phenotypically causative mutations in EMS-mutated germplasm. PMID:25660167

  14. Sex-based differences in brain alterations across chronic pain conditions

    PubMed Central

    Gupta, Arpana; Mayer, Emeran A; Fling, Connor; Labus, Jennifer S; Naliboff, Bruce D; Hong, Jui-Yang; Kilpatrick, Lisa A

    2016-01-01

    Common brain mechanisms are thought to play a significant role across a multitude of chronic pain syndromes. In addition, there is strong evidence for the existence of sex differences in the prevalence of chronic pain and in the neurobiology of pain. Thus, it is important to consider sex when developing general principals of pain neurobiology. The goal of the current review is to evaluate what is known about sex-specific brain alterations across multiple chronic pain populations. A total of 15 sex difference and 143 single-sex manuscripts were identified out of 412 chronic pain neuroimaging manuscripts. Results from sex difference studies indicate more prominent primary sensorimotor structural and functional alterations in female chronic pain patients compared to male chronic pain patients; differences in the nature and degree of insula alterations, with greater insula reactivity in male patients; differences in the degree of anterior cingulate structural alterations; and differences in emotional-arousal reactivity. Qualitative comparisons of male-specific and female-specific studies appear to be consistent with the results from sex difference studies. Given these differences, mixed-sex studies of chronic pain risk creating biased data or missing important information and single-sex studies have limited generalizability. The advent of large scale neuroimaging databases will likely aid in building a more comprehensive understanding of sex differences and commonalities in brain mechanisms underlying chronic pain. PMID:27870423

  15. Sex-based differences in brain alterations across chronic pain conditions.

    PubMed

    Gupta, Arpana; Mayer, Emeran A; Fling, Connor; Labus, Jennifer S; Naliboff, Bruce D; Hong, Jui-Yang; Kilpatrick, Lisa A

    2017-01-02

    Common brain mechanisms are thought to play a significant role across a multitude of chronic pain syndromes. In addition, there is strong evidence for the existence of sex differences in the prevalence of chronic pain and in the neurobiology of pain. Thus, it is important to consider sex when developing general principals of pain neurobiology. The goal of the current Mini-Review is to evaluate what is known about sex-specific brain alterations across multiple chronic pain populations. A total of 15 sex difference and 143 single-sex articles were identified from among 412 chronic pain neuroimaging articles. Results from sex difference studies indicate more prominent primary sensorimotor structural and functional alterations in female chronic pain patients compared with male chronic pain patients: differences in the nature and degree of insula alterations, with greater insula reactivity in male patients; differences in the degree of anterior cingulate structural alterations; and differences in emotional-arousal reactivity. Qualitative comparisons of male-specific and female-specific studies appear to be consistent with the results from sex difference studies. Given these differences, mixed-sex studies of chronic pain risk creating biased data or missing important information and single-sex studies have limited generalizability. The advent of large-scale neuroimaging databases will likely aid in building a more comprehensive understanding of sex differences and commonalities in brain mechanisms underlying chronic pain. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California

    USGS Publications Warehouse

    Kruse, F.A.

    1988-01-01

    Three flightlines of Airborne Imaging Spectrometer (AIS) data, acquired over the northern Grapevine Mountains, Nevada, and California, were used to map minerals associated with hydrothermally altered rocks. The data were processed to remove vertical striping, normalized using an equal area normalization, and reduced to reflectance relative to an average spectrum derived from the data. An algorithm was developed to automatically calculate the absorption band parameters band position, band depth, and band width for the strongest absorption feature in each pixel. These parameters were mapped into an intensity, hue, saturation (IHS) color system to produce a single color image that summarized the absorption band information, This image was used to map areas of potential alteration based upon the predicted relationships between the color image and mineral absorption band. Individual AIS spectra for these areas were then examined to identify specific minerals. Two types of alteration were mapped with the AIS data. Areas of quartz-sericite-pyrite alteration were identified based upon a strong absorption feature near 2.21 ??m, a weak shoulder near 2.25 ??m, and a weak absorption band near 2.35 ??m caused by sericite (fine-grained muscovite). Areas of argillic alteration were defined based on the presence of montmorillonite, identified by a weak to moderate absorption feature near 2.21 ??m and the absence of the 2.35 ??m band. Montmorillonite could not be identified in mineral mixtures. Calcite and dolomite were identified based on sharp absorption features near 2.34 and 2.32 ??m, respectively. Areas of alteration identified using the AIS data corresponded well with areas mapped using field mapping, field reflectance spectra, and laboratory spectral measurements. ?? 1988.

  17. Environmental effects of hydrothermal alteration and historical mining on water and sediment quality in Central Colorado

    USGS Publications Warehouse

    Church, S.E.; Fey, D. L.; Klein, T.L.; Schmidt, T.S.; Wanty, R.B.; deWitt, E.H.; Rockwell, B.W.; San, Juan C.A.

    2009-01-01

    The U.S. Geological Survey conducted an environmental assessment of 198 catchments in a 54,000-km2 area of central Colorado, much of which is on Federal land. The Colorado Mineral Belt, a northeast-trending zone of historical base- and precious-metal mining, cuts diagonally across the study area. The investigation was intended to test the hypothesis that degraded water and sediment quality are restricted to catchments in which historical mining has occurred. Water, streambed sediment, and aquatic insects were collected from (1) catchments underlain by single lithogeochemical units, some of which were hydrothermally altered, that had not been prospected or mined; (2) catchments that contained evidence of prospecting, most of which contain hydrothermally altered rock, but no historical mining; and (3) catchments, all of which contain hydrothermally altered rock, where historical but now inactive mines occur. Geochemical data determined from catchments that did not contain hydrothermal alteration or historical mines met water quality criteria and sediment quality guidelines. Base-metal concentrations from these types of catchments showed small geochemical variations that reflect host lithology. Hydrothermal alteration and mineralization typically are associated with igneous rocks that have intruded older bedrock in a catchment. This alteration was regionally mapped and characterized primarily through the analysis of remote sensing data acquired by the ASTER satellite sensor. Base-metal concentrations among unaltered rock types showed small geochemical variations that reflect host lithology. Base-metal concentrations were elevated in sediment from catchments underlain by hydrothermally altered rock. Classification of catchments on the basis of mineral deposit types proved to be an efficient and accurate method for discriminating catchments that have degraded water and sediment quality. Only about 4.5 percent of the study area has been affected by historical mining, whereas a larger part of the study area is underlain by hydrothermally altered rock that has weathered to produce water and sediment with naturally elevated geochemical baselines. 

  18. 15 CFR Supplement No. 13 to Part 760 - Interpretation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... alters the effect of this clause. The effect is to draw the contractor into the decision-making process... service because of the presumed intrusion of boycott-based criteria into the selection process. Thus... selecting a single supplier or subcontractor for each element of the contract. The boycotting country buyer...

  19. Proposed alteration of images of molecular orbitals obtained using a scanning tunneling microscope as a probe of electron correlation.

    PubMed

    Toroz, Dimitrios; Rontani, Massimo; Corni, Stefano

    2013-01-04

    Scanning tunneling spectroscopy (STS) allows us to image single molecules decoupled from the supporting substrate. The obtained images are routinely interpreted as the square moduli of molecular orbitals, dressed by the mean-field electron-electron interaction. Here we demonstrate that the effect of electron correlation beyond the mean field qualitatively alters the uncorrelated STS images. Our evidence is based on the ab initio many-body calculation of STS images of planar molecules with metal centers. We find that many-body correlations alter significantly the image spectral weight close to the metal center of the molecules. This change is large enough to be accessed experimentally, surviving to molecule-substrate interactions.

  20. Rheumatoid cachexia and other nutritional alterations in rheumatologic diseases.

    PubMed

    Hurtado-Torres, Gilberto Fabián; González-Baranda, Lourdes Larisa; Abud-Mendoza, Carlos

    2015-01-01

    The prevalence of nutritional alterations in rheumatologic diseases ranges from 4 to 95%, depending on the detection method used. Formerly described as the single term rheumatoid cachexia, nutritional alterations can currently be grouped and subdivided based on the physiopathological mechanisms involved: chronic disease-related inflammatory conditions (cachexia), malnutrition associated to acute malnutrition inflammatory conditions (protein-caloric malnutrition) and starvation-related malnutrition. Clinical manifestations of malnutrition associated to rheumatic diseases vary from the patient with low weight or overweight and obesity; with lean body mass depletion as well as functional repercussions, and impact of quality of life as a common denominator. Additionally, the associated increase in body fat mass increases the risk for cardiovascular morbidity. A multidisciplinary approach towards rheumatic diseases should include aspects oriented towards prevention, early identification, diagnosis and correction of nutritional alterations. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  1. MetSigDis: a manually curated resource for the metabolic signatures of diseases.

    PubMed

    Cheng, Liang; Yang, Haixiu; Zhao, Hengqiang; Pei, Xiaoya; Shi, Hongbo; Sun, Jie; Zhang, Yunpeng; Wang, Zhenzhen; Zhou, Meng

    2017-08-22

    Complex diseases cannot be understood only on the basis of single gene, single mRNA transcript or single protein but the effect of their collaborations. The combination consequence in molecular level can be captured by the alterations of metabolites. With the rapidly developing of biomedical instruments and analytical platforms, a large number of metabolite signatures of complex diseases were identified and documented in the literature. Biologists' hardship in the face of this large amount of papers recorded metabolic signatures of experiments' results calls for an automated data repository. Therefore, we developed MetSigDis aiming to provide a comprehensive resource of metabolite alterations in various diseases. MetSigDis is freely available at http://www.bio-annotation.cn/MetSigDis/. By reviewing hundreds of publications, we collected 6849 curated relationships between 2420 metabolites and 129 diseases across eight species involving Homo sapiens and model organisms. All of these relationships were used in constructing a metabolite disease network (MDN). This network displayed scale-free characteristics according to the degree distribution (power-law distribution with R2 = 0.909), and the subnetwork of MDN for interesting diseases and their related metabolites can be visualized in the Web. The common alterations of metabolites reflect the metabolic similarity of diseases, which is measured using Jaccard index. We observed that metabolite-based similar diseases are inclined to share semantic associations of Disease Ontology. A human disease network was then built, where a node represents a disease, and an edge indicates similarity of pair-wise diseases. The network validated the observation that linked diseases based on metabolites should have more overlapped genes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Assessment of serum biomarkers in rats after exposure to pesticides of different chemical classes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Virginia C., E-mail: Moser.ginger@epa.gov; Stewart, Nicholas; Freeborn, Danielle L.

    There is increasing emphasis on the use of biomarkers of adverse outcomes in safety assessment and translational research. We evaluated serum biomarkers and targeted metabolite profiles after exposure to pesticides (permethrin, deltamethrin, imidacloprid, carbaryl, triadimefon, fipronil) with different neurotoxic actions. Adult male Long–Evans rats were evaluated after single exposure to vehicle or one of two doses of each pesticide at the time of peak effect. The doses were selected to produce similar magnitude of behavioral effects across chemicals. Serum or plasma was analyzed using commercial cytokine/protein panels and targeted metabolomics. Additional studies of fipronil used lower doses (lacking behavioral effects),more » singly or for 14 days, and included additional markers of exposure and biological activity. Biomarker profiles varied in the number of altered analytes and patterns of change across pesticide classes, and discriminant analysis could separate treatment groups from control. Low doses of fipronil produced greater effects when given for 14 days compared to a single dose. Changes in thyroid hormones and relative amounts of fipronil and its sulfone metabolite also differed between the dosing regimens. Most cytokine changes reflected alterations in inflammatory responses, hormone levels, and products of phospholipid, fatty acid, and amino acid metabolism. These findings demonstrate distinct blood-based analyte profiles across pesticide classes, dose levels, and exposure duration. These results show promise for detailed analyses of these biomarkers and their linkages to biological pathways. - Highlights: • Pesticides typical of different classes produced distinct patterns of change in biomarker panels. • Based on the panels used, alterations suggest impacts on immune, metabolism, and homeostasis functions. • Some changes may reflect actions on neurotransmitter systems involved in immune modulation. • Fipronil effects on thyroid and kinetics differed with acute and repeated administration.« less

  3. Detecting truly clonal alterations from multi-region profiling of tumours

    PubMed Central

    Werner, Benjamin; Traulsen, Arne; Sottoriva, Andrea; Dingli, David

    2017-01-01

    Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-antigens, and maximal treatment efficacy requires that targeted alterations are present in all tumour cells. Currently, treatment decisions are based on one or a few samples per tumour, creating uncertainty on whether alterations found in those samples are actually present in all tumour cells. The probability of classifying clonal versus sub-clonal alterations from multi-region profiling of tumours depends on the earliest phylogenetic branching event during tumour growth. By analysing 181 samples from 10 renal carcinoma and 11 colorectal cancers we demonstrate that the information gain from additional sampling falls onto a simple universal curve. We found that in colorectal cancers, 30% of alterations identified as clonal with one biopsy proved sub-clonal when 8 samples were considered. The probability to overestimate clonal alterations fell below 1% in 7/11 patients with 8 samples per tumour. In renal cell carcinoma, 8 samples reduced the list of clonal alterations by 40% with respect to a single biopsy. The probability to overestimate clonal alterations remained as high as 92% in 7/10 renal cancer patients. Furthermore, treatment was associated with more unbalanced tumour phylogenetic trees, suggesting the need of denser sampling of tumours at relapse. PMID:28344344

  4. Detecting truly clonal alterations from multi-region profiling of tumours

    NASA Astrophysics Data System (ADS)

    Werner, Benjamin; Traulsen, Arne; Sottoriva, Andrea; Dingli, David

    2017-03-01

    Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-antigens, and maximal treatment efficacy requires that targeted alterations are present in all tumour cells. Currently, treatment decisions are based on one or a few samples per tumour, creating uncertainty on whether alterations found in those samples are actually present in all tumour cells. The probability of classifying clonal versus sub-clonal alterations from multi-region profiling of tumours depends on the earliest phylogenetic branching event during tumour growth. By analysing 181 samples from 10 renal carcinoma and 11 colorectal cancers we demonstrate that the information gain from additional sampling falls onto a simple universal curve. We found that in colorectal cancers, 30% of alterations identified as clonal with one biopsy proved sub-clonal when 8 samples were considered. The probability to overestimate clonal alterations fell below 1% in 7/11 patients with 8 samples per tumour. In renal cell carcinoma, 8 samples reduced the list of clonal alterations by 40% with respect to a single biopsy. The probability to overestimate clonal alterations remained as high as 92% in 7/10 renal cancer patients. Furthermore, treatment was associated with more unbalanced tumour phylogenetic trees, suggesting the need of denser sampling of tumours at relapse.

  5. Growth, and magnetic study of Sm0.4Er0.6FeO3 single crystal grown by optical floating zone technique

    NASA Astrophysics Data System (ADS)

    Wu, Anhua; Zhao, Xiangyang; Man, Peiwen; Su, Liangbi; Kalashnikova, A. M.; Pisarev, R. V.

    2018-03-01

    Sm0.4Er0.6FeO3 single crystals were successfully grown by optical floating zone method; high quality samples with various orientations were manufactured. Based on these samples, Magnetic property of Sm0.4Er0.6FeO3 single crystals were investigated systemically by means of the temperature dependence of magnetization. It indicated that compositional variations not only alter the spin reorientation temperature, but also the compensation temperature of the orthoferrites. Unlike single rare earth orthoferrites, the reversal transition temperature point of Sm0.4Er0.6FeO3 increases as magnetic field increases, which is positive for designing novel spin switching or magnetic sensor device.

  6. Energy barriers and rates of tautomeric transitions in DNA bases: ab initio quantum chemical study.

    PubMed

    Basu, Soumalee; Majumdar, Rabi; Das, Gourab K; Bhattacharyya, Dhananjay

    2005-12-01

    Tautomeric transitions of DNA bases are proton transfer reactions, which are important in biology. These reactions are involved in spontaneous point mutations of the genetic material. In the present study, intrinsic reaction coordinates (IRC) analyses through ab initio quantum chemical calculations have been carried out for the individual DNA bases A, T, G, C and also A:T and G:C base pairs to estimate the kinetic and thermodynamic barriers using MP2/6-31G** method for tautomeric transitions. Relatively higher values of kinetic barriers (about 50-60 kcal/mol) have been observed for the single bases, indicating that tautomeric alterations of isolated single bases are quite unlikely. On the other hand, relatively lower values of the kinetic barriers (about 20-25 kcal/mol) for the DNA base pairs A:T and G:C clearly suggest that the tautomeric shifts are much more favorable in DNA base pairs than in isolated single bases. The unusual base pairing A':C, T':G, C':A or G':T in the daughter DNA molecule, resulting from a parent DNA molecule with tautomeric shifts, is found to be stable enough to result in a mutation. The transition rate constants for the single DNA bases in addition to the base pairs are also calculated by computing the free energy differences between the transition states and the reactants.

  7. Skew chicane based betatron eigenmode exchange module

    DOEpatents

    Douglas, David

    2010-12-28

    A skewed chicane eigenmode exchange module (SCEEM) that combines in a single beamline segment the separate functionalities of a skew quad eigenmode exchange module and a magnetic chicane. This module allows the exchange of independent betatron eigenmodes, alters electron beam orbit geometry, and provides longitudinal parameter control with dispersion management in a single beamline segment with stable betatron behavior. It thus reduces the spatial requirements for multiple beam dynamic functions, reduces required component counts and thus reduces costs, and allows the use of more compact accelerator configurations than prior art design methods.

  8. Success of single-balloon enteroscopy in patients with surgically altered anatomy.

    PubMed

    Kurzynske, Frank C; Romagnuolo, Joseph; Brock, Andrew S

    2015-08-01

    Single-balloon enteroscopy (SBE) was introduced in 2007 to diagnose and treat small-bowel disorders. No study to date has evaluated SBE in patients with surgically altered anatomy outside of ERCP. To evaluate the efficacy, yield, and safety of SBE in patients with surgically altered anatomy. Retrospective study. Tertiary-care academic medical center. All patients with altered surgical anatomy who underwent SBE at the Medical University of South Carolina from July 2007 to September 2013. SBE. Diagnostic yield, therapeutic yield, technical success, and adverse events. A total of 48 patients met inclusion criteria. Mean age was 56 years (77% female). Eleven patients underwent single-balloon PEG placement, 8 single-balloon ERCP, 22 non-PEG/non-ERCP anterograde SBE, and 7 retrograde SBE. Previous surgeries included Roux-en-Y gastric bypass (n=26), small-intestine resection (n=6), colon resection (n=5), Whipple procedure (n=4), choledochojejunostomy (n=3), hepaticojejunostomy (n=1), Billroth I (n=1), Billroth II (n=1), and Puestow procedure (n=1). Procedural indications were PEG tube placement (n=11), choledocholithiasis (n=2), biliary stricture (n=2), obstructive jaundice (n=1), cholangitis (n=1), ampullary mass (n=1), sphincter of Oddi dysfunction (n=1), anemia and/or bleeding (n=15), abdominal pain (n=9), radiologic evidence of obstruction (n=3), and Peutz-Jeghers syndrome (n=2). The technical success rate was 73% in single-balloon PEG placement, 88% in single-balloon ERCP, 82% in other anterograde SBEs, and 86% in retrograde SBEs. No intraprocedural or postprocedural adverse events were observed. Single center, retrospective study. SBE is safe and effective in patients with surgically altered anatomy. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  9. Formation of albitite-hosted uranium within IOCG systems: the Southern Breccia, Great Bear magmatic zone, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Montreuil, Jean-François; Corriveau, Louise; Potter, Eric G.

    2015-03-01

    Uranium and polymetallic U mineralization hosted within brecciated albitites occurs one kilometer south of the magnetite-rich Au-Co-Bi-Cu NICO deposit in the southern Great Bear magmatic zone (GBMZ), Canada. Concentrations up to 1 wt% U are distributed throughout a 3 by 0.5 km albitization corridor defined as the Southern Breccia zone. Two distinct U mineralization events are observed. Primary uraninite precipitated with or without pyrite-chalcopyrite ± molybdenite within magnetite-ilmenite-biotite-K-feldspar-altered breccias during high-temperature potassic-iron alteration. Subsequently, pitchblende precipitated in earthy hematite-specular hematite-chlorite veins associated with a low-temperature iron-magnesium alteration. The uraninite-bearing mineralization postdates sodic (albite) and more localized high-temperature potassic-iron (biotite-magnetite ± K-feldspar) alteration yet predates potassic (K-feldspar), boron (tourmaline) and potassic-iron-magnesium (hematite ± K-feldspar ± chlorite) alteration. The Southern Breccia zone shares attributes of the Valhalla (Australia) and Lagoa Real (Brazil) albitite-hosted U deposits but contains greater iron oxide contents and lower contents of riebeckite and carbonates. Potassium, Ni, and Th are also enriched whereas Zr and Sr are depleted with respect to the aforementioned albitite-hosted U deposits. Field relationships, geochemical signatures and available U-Pb dates on pre-, syn- and post-mineralization intrusions place the development of the Southern Breccia and the NICO deposit as part of a single iron oxide alkali-altered (IOAA) system. In addition, this case example illustrates that albitite-hosted U deposits can form in albitization zones that predate base and precious metal ore zones in a single IOAA system and become traps for U and multiple metals once the tectonic regime favors fluid mixing and oxidation-reduction reactions.

  10. Novel high-speed droplet-allele specific-polymerase chain reaction: application in the rapid genotyping of single nucleotide polymorphisms.

    PubMed

    Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Sueki, Akane; Koeda, Hiroshi; Takagi, Fumio; Kobayashi, Yukihiro; Sugano, Mitsutoshi; Honda, Takayuki

    2013-09-23

    Single nucleotide alterations such as single nucleotide polymorphisms (SNP) and single nucleotide mutations are associated with responses to drugs and predisposition to several diseases, and they contribute to the pathogenesis of malignancies. We developed a rapid genotyping assay based on the allele-specific polymerase chain reaction (AS-PCR) with our droplet-PCR machine (droplet-AS-PCR). Using 8 SNP loci, we evaluated the specificity and sensitivity of droplet-AS-PCR. Buccal cells were pretreated with proteinase K and subjected directly to the droplet-AS-PCR without DNA extraction. The genotypes determined using the droplet-AS-PCR were then compared with those obtained by direct sequencing. Specific PCR amplifications for the 8 SNP loci were detected, and the detection limit of the droplet-AS-PCR was found to be 0.1-5.0% by dilution experiments. Droplet-AS-PCR provided specific amplification when using buccal cells, and all the genotypes determined within 9 min were consistent with those obtained by direct sequencing. Our novel droplet-AS-PCR assay enabled high-speed amplification retaining specificity and sensitivity and provided ultra-rapid genotyping. Crude samples such as buccal cells were available for the droplet-AS-PCR assay, resulting in the reduction of the total analysis time. Droplet-AS-PCR may therefore be useful for genotyping or the detection of single nucleotide alterations. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. A streamlined workflow for single-cells genome-wide copy-number profiling by low-pass sequencing of LM-PCR whole-genome amplification products.

    PubMed

    Ferrarini, Alberto; Forcato, Claudio; Buson, Genny; Tononi, Paola; Del Monaco, Valentina; Terracciano, Mario; Bolognesi, Chiara; Fontana, Francesca; Medoro, Gianni; Neves, Rui; Möhlendick, Birte; Rihawi, Karim; Ardizzoni, Andrea; Sumanasuriya, Semini; Flohr, Penny; Lambros, Maryou; de Bono, Johann; Stoecklein, Nikolas H; Manaresi, Nicolò

    2018-01-01

    Chromosomal instability and associated chromosomal aberrations are hallmarks of cancer and play a critical role in disease progression and development of resistance to drugs. Single-cell genome analysis has gained interest in latest years as a source of biomarkers for targeted-therapy selection and drug resistance, and several methods have been developed to amplify the genomic DNA and to produce libraries suitable for Whole Genome Sequencing (WGS). However, most protocols require several enzymatic and cleanup steps, thus increasing the complexity and length of protocols, while robustness and speed are key factors for clinical applications. To tackle this issue, we developed a single-tube, single-step, streamlined protocol, exploiting ligation mediated PCR (LM-PCR) Whole Genome Amplification (WGA) method, for low-pass genome sequencing with the Ion Torrent™ platform and copy number alterations (CNAs) calling from single cells. The method was evaluated on single cells isolated from 6 aberrant cell lines of the NCI-H series. In addition, to demonstrate the feasibility of the workflow on clinical samples, we analyzed single circulating tumor cells (CTCs) and white blood cells (WBCs) isolated from the blood of patients affected by prostate cancer or lung adenocarcinoma. The results obtained show that the developed workflow generates data accurately representing whole genome absolute copy number profiles of single cell and allows alterations calling at resolutions down to 100 Kbp with as few as 200,000 reads. The presented data demonstrate the feasibility of the Ampli1™ WGA-based low-pass workflow for detection of CNAs in single tumor cells which would be of particular interest for genome-driven targeted therapy selection and for monitoring of disease progression.

  12. Direct Detection and Sequencing of Damaged DNA Bases

    PubMed Central

    2011-01-01

    Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications. PMID:22185597

  13. Direct detection and sequencing of damaged DNA bases.

    PubMed

    Clark, Tyson A; Spittle, Kristi E; Turner, Stephen W; Korlach, Jonas

    2011-12-20

    Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications.

  14. Single-indicator-based Multidimensional Sensing: Detection and Identification of Heavy Metal Ions and Understanding the Foundations from Experiment to Simulation

    PubMed Central

    Leng, Yumin; Qian, Sihua; Wang, Yuhui; Lu, Cheng; Ji, Xiaoxu; Lu, Zhiwen; Lin, Hengwei

    2016-01-01

    Multidimensional sensing offers advantages in accuracy, diversity and capability for the simultaneous detection and discrimination of multiple analytes, however, the previous reports usually require complicated synthesis/fabrication process and/or need a variety of techniques (or instruments) to acquire signals. Therefore, to take full advantages of this concept, simple designs are highly desirable. Herein, a novel concept is conceived to construct multidimensional sensing platforms based on a single indicator that has capability of showing diverse color/fluorescence responses with the addition of different analytes. Through extracting hidden information from these responses, such as red, green and blue (RGB) alterations, a triple-channel-based multidimensional sensing platform could consequently be fabricated, and the RGB alterations are further applicable to standard statistical methods. As a proof-of-concept study, a triple-channel sensing platform is fabricated solely using dithizone with assistance of cetyltrimethylammonium bromide (CTAB) for hyperchromicity and sensitization, which demonstrates superior capabilities in detection and identification of ten common heavy metal ions at their standard concentrations of wastewater-discharge of China. Moreover, this sensing platform exhibits promising applications in semi-quantitative and even quantitative analysis individuals of these heavy metal ions with high sensitivity as well. Finally, density functional theory calculations are performed to reveal the foundations for this analysis. PMID:27146105

  15. Computational analysis of molt-inhibiting hormone from selected crustaceans.

    PubMed

    C, Kumaraswamy Naidu; Y, Suneetha; P, Sreenivasula Reddy

    2013-12-01

    Molt-inhibiting hormone (MIH) is a principal endocrine hormone regulating the growth in crustaceans. In total, nine MIH peptide sequences representing members of the family Penaeidae (Penaeus monodon, Litopenaeus vannamei, Marsupenaeus japonicus), Portunidae (Portunus trituberculatus, Charybdis japonica, Charybdis feriata), Cambaridae (Procambarus bouvieri), Parastacidae (Cherax quadricarinatus) and Varunidae (Eriocheir sinensis) were selected for our study. In order to develop a structure based phylogeny, predict functionally important regions and to define stability changes upon single site mutations, the 3D structure of MIH for the crustaceans were built by using homology modeling based on the known structure of MIH from M. japonicus (1J0T). Structure based phylogeny showed a close relationship between P. bouvieri and C. japonica. ConSurf server analysis showed that the residues Cys(8), Arg(15), Cys(25), Asp(27), Cys(28), Asn(30), Arg(33), Cys(41), Cys(45), Phe(51), and Cys(54) may be functionally significant among the MIH of crustaceans. Single amino acid substitutions 'Y' and 'G' at the positions 71 and 72 of the MIH C-terminal region showed an alteration in the stability indicating that a change in this region may alter the function of MIH. In conclusion, we proposed a computational approach to analyze the structure, phylogeny and stability of MIH from crustaceans. © 2013.

  16. Sequence-specific "gene signatures" can be obtained by PCR with single specific primers at low stringency.

    PubMed Central

    Pena, S D; Barreto, G; Vago, A R; De Marco, L; Reinach, F C; Dias Neto, E; Simpson, A J

    1994-01-01

    Low-stringency single specific primer PCR (LSSP-PCR) is an extremely simple PCR-based technique that detects single or multiple mutations in gene-sized DNA fragments. A purified DNA fragment is subjected to PCR using high concentrations of a single specific oligonucleotide primer, large amounts of Taq polymerase, and a very low annealing temperature. Under these conditions the primer hybridizes specifically to its complementary region and nonspecifically to multiple sites within the fragment, in a sequence-dependent manner, producing a heterogeneous set of reaction products resolvable by electrophoresis. The complex banding pattern obtained is significantly altered by even a single-base change and thus constitutes a unique "gene signature." Therefore LSSP-PCR will have almost unlimited application in all fields of genetics and molecular medicine where rapid and sensitive detection of mutations and sequence variations is important. The usefulness of LSSP-PCR is illustrated by applications in the study of mutants of smooth muscle myosin light chain, analysis of a family with X-linked nephrogenic diabetes insipidus, and identity testing using human mitochondrial DNA. Images PMID:8127912

  17. Single-cell sequencing deciphers a convergent evolution of copy number alterations from primary to circulating tumor cells.

    PubMed

    Gao, Yan; Ni, Xiaohui; Guo, Hua; Su, Zhe; Ba, Yi; Tong, Zhongsheng; Guo, Zhi; Yao, Xin; Chen, Xixi; Yin, Jian; Yan, Zhao; Guo, Lin; Liu, Ying; Bai, Fan; Xie, X Sunney; Zhang, Ning

    2017-08-01

    Copy number alteration (CNA) is a major contributor to genome instability, a hallmark of cancer. Here, we studied genomic alterations in single primary tumor cells and circulating tumor cells (CTCs) from the same patient. Single-nucleotide variants (SNVs) in single cells from both samples occurred sporadically, whereas CNAs among primary tumor cells emerged accumulatively rather than abruptly, converging toward the CNA in CTCs. Focal CNAs affecting the MYC gene and the PTEN gene were observed only in a minor portion of primary tumor cells but were present in all CTCs, suggesting a strong selection toward metastasis. Single-cell structural variant (SV) analyses revealed a two-step mechanism, a complex rearrangement followed by gene amplification, for the simultaneous formation of anomalous CNAs in multiple chromosome regions. Integrative CNA analyses of 97 CTCs from 23 patients confirmed the convergence of CNAs and revealed single, concurrent, and mutually exclusive CNAs that could be the driving events in cancer metastasis. © 2017 Gao et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Heterogeneous alternation of fractured rock driven by preferential carbonate dissolution

    NASA Astrophysics Data System (ADS)

    Wen, H.; Zhi, W.; Li, L.

    2016-12-01

    Understanding the alternation of fractured rock induced by geochemical reactions is critical for predicting the flow, solute transport and energy production in geosystems. Most existing studies on fracture alterations focus on rocks with single minerals where reactions occur at the fracture wall resulting in fracture aperture alteration while ignoring rock matrix properties (e.g. the formation and development of altered zones). In this work, we aimed to mechanistically understand the role of preferential calcite dissolution in the long-term evolution of fracture and rock matrix. We use direct simulation of physics-based reactive transport processes in an image of fractured rock at the resolution of tens of micrometers. Three numerical experiments were carried out with the same initial physical properties however different calcite content. Simulation results show that the formation and development of altered zones in the rock matrix is highly related to the abundance of fast-dissolving calcite. Abundant calcite (50% (v/v), calcite50) leads to a localized, thick zone of large porosity increase while low calcite content (10% (v/v), calcite10) creates an extended and narrow zone of small porosity increase resulting in surprisingly larger change in effective transport property. After 300 days of dissolution, although with relatively similar dissolved calcite mass and matrix porosity increase, effective matrix diffusion coefficients increase by 9.9 and 19.6 times in calcite50 and calcite10, respectively. In turn, calcite dissolution rates are directly limited by diffusive transport in the altered matrix and the shape of the altered zone. This work sheds light on the unique characteristics of reactive transport in fractured, mineralogically complex rocks that are different from those with single minerals (Wen et al., 2016). Reference: Wen, H., Li, L., Crandall, D. and Hakala, J.A. (2016) Where Lower Calcite Abundance Creates More Alteration: Enhanced Rock Matrix Diffusivity Induced by Preferential Carbonate Dissolution. Energy & Fuels.

  19. Modulation of Ergot Alkaloids in a Grass-Endophyte Symbiosis by Alteration of mRNA Concentrations of an Ergot Alkaloid Synthesis Gene.

    PubMed

    Mulinti, Prashanthi; Florea, Simona; Schardl, Christopher L; Panaccione, Daniel G

    2016-06-22

    The profile of ergot alkaloids in perennial ryegrass (Lolium perenne) containing the endophytic fungus Epichloë typhina × festucae includes high concentrations of the early pathway metabolites ergotryptamine and chanoclavine-I in addition to the pathway end-product ergovaline. Because these alkaloids differ in activity, we investigated strategies to alter their relative concentrations. An RNAi-based approach reduced the concentration of mRNA from the gene easA, which encodes an enzyme required for a ring closure that separates ergotryptamine and chanoclavine-I from ergovaline. Lower easA mRNA concentrations correlated with lower concentrations of ergovaline and higher concentrations of ergotryptamine and chanoclavine-I. Overexpression of easA led to higher concentrations of ergovaline in leaf blades but not in pseudostems; concentrations of the early pathway metabolites were not altered in overexpression strains. The data indicate that altering the concentration of mRNA from a single gene can change alkaloid flux, but the magnitude of the change was limited and variable.

  20. Gravity Research on Plants: Use of Single-Cell Experimental Models

    PubMed Central

    Chebli, Youssef; Geitmann, Anja

    2011-01-01

    Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single-celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided. PMID:22639598

  1. DNA-barcode directed capture and electrochemical metabolic analysis of single mammalian cells on a microelectrode array.

    PubMed

    Douglas, Erik S; Hsiao, Sonny C; Onoe, Hiroaki; Bertozzi, Carolyn R; Francis, Matthew B; Mathies, Richard A

    2009-07-21

    A microdevice is developed for DNA-barcode directed capture of single cells on an array of pH-sensitive microelectrodes for metabolic analysis. Cells are modified with membrane-bound single-stranded DNA, and specific single-cell capture is directed by the complementary strand bound in the sensor area of the iridium oxide pH microelectrodes within a microfluidic channel. This bifunctional microelectrode array is demonstrated for the pH monitoring and differentiation of primary T cells and Jurkat T lymphoma cells. Single Jurkat cells exhibited an extracellular acidification rate of 11 milli-pH min(-1), while primary T cells exhibited only 2 milli-pH min(-1). This system can be used to capture non-adherent cells specifically and to discriminate between visually similar healthy and cancerous cells in a heterogeneous ensemble based on their altered metabolic properties.

  2. DNA-barcode directed capture and electrochemical metabolic analysis of single mammalian cells on a microelectrode array

    PubMed Central

    Douglas, Erik S.; Hsiao, Sonny C.; Onoe, Hiroaki; Bertozzi, Carolyn R.; Francis, Matthew B.; Mathies, Richard A.

    2010-01-01

    A microdevice is developed for DNA-barcode directed capture of single cells on an array of pH-sensitive microelectrodes for metabolic analysis. Cells are modified with membrane-bound single-stranded DNA, and specific single-cell capture is directed by the complementary strand bound in the sensor area of the iridium oxide pH microelectrodes within a microfluidic channel. This bifunctional microelectrode array is demonstrated for the pH monitoring and differentiation of primary T cells and Jurkat T lymphoma cells. Single Jurkat cells exhibited an extracellular acidification rate of 11 milli-pH min−1, while primary T cells exhibited only 2 milli-pH min−1. This system can be used to capture non-adherent cells specifically and to discriminate between visually similar healthy and cancerous cells in a heterogeneous ensemble based on their altered metabolic properties. PMID:19568668

  3. Resistance Mechanisms and the Future of Bacterial Enoyl-Acyl Carrier Protein Reductase (FabI) Antibiotics

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2016-01-01

    Missense mutations leading to clinical antibiotic resistance are a liability of single-target inhibitors. The enoyl-acyl carrier protein reductase (FabI) inhibitors have one intracellular protein target and drug resistance is increased by the acquisition of single-base-pair mutations that alter drug binding. The spectrum of resistance mechanisms to FabI inhibitors suggests criteria that should be considered during the development of single-target antibiotics that would minimize the impact of missense mutations on their clinical usefulness. These criteria include high-affinity, fast on/off kinetics, few drug contacts with residue side chains, and no toxicity. These stringent criteria are achievable by structure-guided design, but this approach will only yield pathogen-specific drugs. Single-step acquisition of resistance may limit the clinical application of broad-spectrum, single-target antibiotics, but appropriately designed pathogen-specific antibiotics have the potential to overcome this liability. PMID:26931811

  4. The DNA methylation profile of oocytes in mice with hyperinsulinaemia and hyperandrogenism as detected by single-cell level whole genome bisulphite sequencing (SC-WGBS) technology.

    PubMed

    Li, Qian-Nan; Guo, Lei; Hou, Yi; Ou, Xiang-Hong; Liu, Zhonghua; Sun, Qing-Yuan

    2018-06-22

    Polycystic ovary syndrome (PCOS), a familial aggregation disease that causes anovulation in women, has well-recognised characteristics, two of which are hyperinsulinaemia and hyperandrogenaemia. To determine whether the DNA methylation status is altered in oocytes by high insulin and androgen levels, we generated a mouse model with hyperinsulinaemia and hyperandrogenaemia by injection of insulin and human chorionic gonadotrophin and investigated DNA methylation changes through single-cell level whole genome bisulphite sequencing. Our results showed that hyperinsulinaemia and hyperandrogenaemia had no significant effects on the global DNA methylation profile and different functional regions of genes, but did alter methylation status of some genes, which were significantly enriched in 17 gene ontology (GO) terms (P<0.05) by GO analysis. Among differently methylated genes, some were related to the occurrence of PCOS. Based on our results, we suggest that hyperinsulinaemia and hyperandrogenaemia may cause changes in some DNA methylation loci in oocytes.

  5. A tunable single-polarization photonic crystal fiber filter based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Shuhuan; Li, Jianshe; Li, Shuguang; Liu, Qiang; Liu, Yingchao; Zhang, Zhen; Wang, Yujun

    2018-06-01

    A tunable single polarizing filter is proposed by selectively coating gold film on the air holes of photonic crystal fiber (PCF). The polarization properties of the PCF filter are evaluated by the finite-element method. Simulation results show that the loss of y-polarized core mode at 1250 and 1550 nm is 136.23 and 839.73 dB/cm, respectively. Furthermore, we innovatively combine stable modulation with flexible modulation. To be specific, the resonance wavelengths are slowly controlled in a small wavelength range by altering the diameter of the air-hole-coated gold film, while the resonance wavelengths are flexibly controlled in a wide wavelength range by altering the thickness of the gold film or the diameter of the small air holes. When the length of the PCF is 500 µm, the bandwidth of extinction ratio greater than - 20 dB is only 60 nm at the communication window of 1550 nm. It is beneficial to fabricate a narrow-band polarization filter.

  6. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs.

    PubMed

    Ng, Wei Long; Goh, Min Hao; Yeong, Wai Yee; Naing, May Win

    2018-02-27

    Native tissues and/or organs possess complex hierarchical porous structures that confer highly-specific cellular functions. Despite advances in fabrication processes, it is still very challenging to emulate the hierarchical porous collagen architecture found in most native tissues. Hence, the ability to recreate such hierarchical porous structures would result in biomimetic tissue-engineered constructs. Here, a single-step drop-on-demand (DOD) bioprinting strategy is proposed to fabricate hierarchical porous collagen-based hydrogels. Printable macromolecule-based bio-inks (polyvinylpyrrolidone, PVP) have been developed and printed in a DOD manner to manipulate the porosity within the multi-layered collagen-based hydrogels by altering the collagen fibrillogenesis process. The experimental results have indicated that hierarchical porous collagen structures could be achieved by controlling the number of macromolecule-based bio-ink droplets printed on each printed collagen layer. This facile single-step bioprinting process could be useful for the structural design of collagen-based hydrogels for various tissue engineering applications.

  7. One Digit Interruption: The Altered Force Patterns during Functionally Cylindrical Grasping Tasks in Patients with Trigger Digits

    PubMed Central

    Chen, Po-Tsun; Lin, Chien-Ju; Jou, I-Ming; Chieh, Hsiao-Feng; Su, Fong-Chin; Kuo, Li-Chieh

    2013-01-01

    Most trigger digit (TD) patients complain that they have problems using their hand in daily or occupational tasks due to single or multiple digits being affected. Unfortunately, clinicians do not know much about how this disease affects the subtle force coordination among digits during manipulation. Thus, this study examined the differences in force patterns during cylindrical grasp between TD and healthy subjects. Forty-two TD patients with single digit involvement were included and sorted into four groups based on the involved digits, including thumb, index, middle and ring fingers. Twelve healthy subjects volunteered as healthy controls. Two testing tasks, holding and drinking, were performed by natural grasping with minimal forces. The relations between the force of the thumb and each finger were examined by Pearson correlation coefficients. The force amount and contribution of each digit were compared between healthy controls and each TD group by the independent t test. The results showed all TD groups demonstrated altered correlation patterns of the thumb relative to each finger. Larger forces and higher contributions of the index finger were found during holding by patients with index finger involved, and also during drinking by patients with affected thumb and with affected middle finger. Although no triggering symptom occurred during grasping, the patients showed altered force patterns which may be related to the role of the affected digit in natural grasping function. In conclusion, even if only one digit was affected, the subtle force coordination of all the digits was altered during simple tasks among the TD patients. This study provides the information for the future studies to further comprehend the possible injuries secondary to the altered finger coordination and also to adopt suitable treatment strategies. PMID:24391799

  8. One digit interruption: the altered force patterns during functionally cylindrical grasping tasks in patients with trigger digits.

    PubMed

    Chen, Po-Tsun; Lin, Chien-Ju; Jou, I-Ming; Chieh, Hsiao-Feng; Su, Fong-Chin; Kuo, Li-Chieh

    2013-01-01

    Most trigger digit (TD) patients complain that they have problems using their hand in daily or occupational tasks due to single or multiple digits being affected. Unfortunately, clinicians do not know much about how this disease affects the subtle force coordination among digits during manipulation. Thus, this study examined the differences in force patterns during cylindrical grasp between TD and healthy subjects. Forty-two TD patients with single digit involvement were included and sorted into four groups based on the involved digits, including thumb, index, middle and ring fingers. Twelve healthy subjects volunteered as healthy controls. Two testing tasks, holding and drinking, were performed by natural grasping with minimal forces. The relations between the force of the thumb and each finger were examined by Pearson correlation coefficients. The force amount and contribution of each digit were compared between healthy controls and each TD group by the independent t test. The results showed all TD groups demonstrated altered correlation patterns of the thumb relative to each finger. Larger forces and higher contributions of the index finger were found during holding by patients with index finger involved, and also during drinking by patients with affected thumb and with affected middle finger. Although no triggering symptom occurred during grasping, the patients showed altered force patterns which may be related to the role of the affected digit in natural grasping function. In conclusion, even if only one digit was affected, the subtle force coordination of all the digits was altered during simple tasks among the TD patients. This study provides the information for the future studies to further comprehend the possible injuries secondary to the altered finger coordination and also to adopt suitable treatment strategies.

  9. Mutants of Arabidopsis thaliana with decreased amplitude in their phototropic response

    NASA Technical Reports Server (NTRS)

    Khurana, J. P.; Ren, Z.; Steinitz, B.; Parks, B.; Best, T. R.; Poff, K. L.

    1989-01-01

    Two mutants of Arabidopsis thaliana have been identified with decreased phototropism to 450-nanometer light. Fluence-response relationships for these strains (ZR8 and ZR19) to single and multiple flashes of light show thresholds, curve shapes, and fluence for maximum curvature in first positive' phototropism which are the same as those of the wild type. Similarly, there is no alteration from the wild type in the kinetics of curvature or in the optimum dark period separating sequential flashes in a multiple flash regimen. In addition, in both strains, gravitropism is decreased compared to the wild type by an amount which is comparable to the decrease in phototropism. Based on reciprocal backcrosses, it appears that the alteration is due to a recessive nuclear mutation. It is suggested that ZR8 and ZR19 represent alterations in some step analogous to an amplifier, downstream of the photoreceptor pigment, and common to both phototropism and gravitropism.

  10. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.

    PubMed

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L

    2008-10-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.

  11. Changing genetic information through RNA editing

    NASA Technical Reports Server (NTRS)

    Maas, S.; Rich, A.

    2000-01-01

    RNA editing, the post-transcriptional alteration of a gene-encoded sequence, is a widespread phenomenon in eukaryotes. As a consequence of RNA editing, functionally distinct proteins can be produced from a single gene. The molecular mechanisms involved include single or multiple base insertions or deletions as well as base substitutions. In mammals, one type of substitutional RNA editing, characterized by site-specific base-modification, was shown to modulate important physiological processes. The underlying reaction mechanism of substitutional RNA editing involves hydrolytic deamination of cytosine or adenosine bases to uracil or inosine, respectively. Protein factors have been characterized that are able to induce RNA editing in vitro. A supergene family of RNA-dependent deaminases has emerged with the recent addition of adenosine deaminases specific for tRNA. Here we review the developments that have substantially increased our understanding of base-modification RNA editing over the past few years, with an emphasis on mechanistic differences, evolutionary aspects and the first insights into the regulation of editing activity.

  12. A dual-porosity reactive-transport model of off-axis hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Abbot, D. S.; Archer, D. E.

    2017-12-01

    We built a dual-porosity reactive-transport 2D numerical model of off-axis pillow basalt alteration. An "outer chamber" full of porous glassy material supports significant seawater flushing, and an "inner chamber", which represents the more crystalline interior of a pillow, supports diffusive alteration. Hydrothermal fluids in the two chambers interact, and the two chambers are coupled to 2D flows. In a few million years of low-temperature alteration, the dual-porosity model predicts progressive stages of alteration that have been observed in drilled crust. A single-porosity model, with all else being equal, does not predict alteration stages as well. The dual-chamber model also does a better job than the single-chamber model at predicting the types of minerals expected in off-axis environments. We validate the model's ability to reproduce observations by configuring it to represent a thoroughly-studied transect of the Juan de Fuca Ridge eastern flank.

  13. A systematic review of palliative bone radiotherapy based on pain relief and retreatment rates.

    PubMed

    Pin, Yvan; Paix, Adrien; Le Fèvre, Clara; Antoni, Delphine; Blondet, Cyrille; Noël, Georges

    2018-03-01

    Palliative radiotherapy has been shown to have effects on Quality of Life during painful bone metastasis. This review aimed to determine equivalence in pain relief (PR) and retreatment rate (RR) using both single and multi-fraction irradiations, based on evaluation of the trial's quality. We performed a systematic review since ICRU 50 Report (1993) to June 2017, then evaluated trials for reproducibility and good methodology criteria. We found five studies that were reproducible in both dose and volume prescription. One study used three-dimensional (3D) treatment planning. Equivalence between single and multi-fraction schedules was demonstrated for PR after 3 months, but a 2-3 time RR appeared after single-fraction schedules, notably in the first year after treatment (primarily during the first four months). Reserving long course therapy for well-preserved patients would allow for better long-term efficacy with lower RR, while altered patients would suffer less from single-fraction treatments. It appears that life expectancy might not be used as a criterion for this choice. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Immersed boundary lattice Boltzmann model based on multiple relaxation times

    NASA Astrophysics Data System (ADS)

    Lu, Jianhua; Han, Haifeng; Shi, Baochang; Guo, Zhaoli

    2012-01-01

    As an alterative version of the lattice Boltzmann models, the multiple relaxation time (MRT) lattice Boltzmann model introduces much less numerical boundary slip than the single relaxation time (SRT) lattice Boltzmann model if some special relationship between the relaxation time parameters is chosen. On the other hand, most current versions of the immersed boundary lattice Boltzmann method, which was first introduced by Feng and improved by many other authors, suffer from numerical boundary slip as has been investigated by Le and Zhang. To reduce such a numerical boundary slip, an immerse boundary lattice Boltzmann model based on multiple relaxation times is proposed in this paper. A special formula is given between two relaxation time parameters in the model. A rigorous analysis and the numerical experiments carried out show that the numerical boundary slip reduces dramatically by using the present model compared to the single-relaxation-time-based model.

  15. Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity

    PubMed Central

    Zhong, Qing; Rüschoff, Jan H.; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J.; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J.; Rupp, Niels J.; Fankhauser, Christian; Buhmann, Joachim M.; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A.; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C.; Jochum, Wolfram; Wild, Peter J.

    2016-01-01

    Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility. PMID:27052161

  16. Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity.

    PubMed

    Zhong, Qing; Rüschoff, Jan H; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J; Rupp, Niels J; Fankhauser, Christian; Buhmann, Joachim M; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C; Jochum, Wolfram; Wild, Peter J

    2016-04-07

    Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility.

  17. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.

    PubMed

    Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan

    2015-01-01

    Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.

  18. ICan: An Integrated Co-Alteration Network to Identify Ovarian Cancer-Related Genes

    PubMed Central

    Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan

    2015-01-01

    Background Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. Results We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). Conclusion In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data. PMID:25803614

  19. MicroRNAs in Prostate Cancer

    DTIC Science & Technology

    2008-11-01

    microarray, gene expression, androgen 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE...Anindya Dutta; Yong Sun Lee; Hak Kyun Kim MicroRNAs are short single-stranded RNAs of 18 -22 bases length that are produced by the processing of...we hope to go to xenograft assays to demonstrate that microRNA alterations can suppress metastasis. REFERENCES: 1. Mattie, M.D., et al

  20. Automatic Traffic-Based Internet Control Message Protocol (ICMP) Model Generation for ns-3

    DTIC Science & Technology

    2015-12-01

    through visiting the inferred automata o Fuzzing of an implementation by generating altered message formats We tested with 3 versions of Netzob. First...relationships. Afterwards, we used the Automata module to generate state machines using different functions: “generateChainedStateAutomata...The “generatePTAAutomata” takes as input several communication sessions and then identifies common paths and merges these into a single automata . The

  1. Consensus statement understanding health and malnutrition through a systems approach: the ENOUGH program for early life.

    PubMed

    Kaput, Jim; van Ommen, Ben; Kremer, Bas; Priami, Corrado; Monteiro, Jacqueline Pontes; Morine, Melissa; Pepping, Fre; Diaz, Zoey; Fenech, Michael; He, Yiwu; Albers, Ruud; Drevon, Christian A; Evelo, Chris T; Hancock, Robert E W; Ijsselmuiden, Carel; Lumey, L H; Minihane, Anne-Marie; Muller, Michael; Murgia, Chiara; Radonjic, Marijana; Sobral, Bruno; West, Keith P

    2014-01-01

    Nutrition research, like most biomedical disciplines, adopted and often uses experimental approaches based on Beadle and Tatum's one gene-one polypeptide hypothesis, thereby reducing biological processes to single reactions or pathways. Systems thinking is needed to understand the complexity of health and disease processes requiring measurements of physiological processes, as well as environmental and social factors, which may alter the expression of genetic information. Analysis of physiological processes with omics technologies to assess systems' responses has only become available over the past decade and remains costly. Studies of environmental and social conditions known to alter health are often not connected to biomedical research. While these facts are widely accepted, developing and conducting comprehensive research programs for health are often beyond financial and human resources of single research groups. We propose a new research program on essential nutrients for optimal underpinning of growth and health (ENOUGH) that will use systems approaches with more comprehensive measurements and biostatistical analysis of the many biological and environmental factors that influence undernutrition. Creating a knowledge base for nutrition and health is a necessary first step toward developing solutions targeted to different populations in diverse social and physical environments for the two billion undernourished people in developed and developing economies.

  2. A Minimally Invasive Method for Retrieving Single Adherent Cells of Different Types from Cultures

    PubMed Central

    Zeng, Jia; Mohammadreza, Aida; Gao, Weimin; Merza, Saeed; Smith, Dean; Kelbauskas, Laimonas; Meldrum, Deirdre R.

    2014-01-01

    The field of single-cell analysis has gained a significant momentum over the last decade. Separation and isolation of individual cells is an indispensable step in almost all currently available single-cell analysis technologies. However, stress levels introduced by such manipulations remain largely unstudied. We present a method for minimally invasive retrieval of selected individual adherent cells of different types from cell cultures. The method is based on a combination of mechanical (shear flow) force and biochemical (trypsin digestion) treatment. We quantified alterations in the transcription levels of stress response genes in individual cells exposed to varying levels of shear flow and trypsinization. We report optimal temperature, RNA preservation reagents, shear force and trypsinization conditions necessary to minimize changes in the stress-related gene expression levels. The method and experimental findings are broadly applicable and can be used by a broad research community working in the field of single cell analysis. PMID:24957932

  3. A virus-based single-enzyme nanoreactor

    NASA Astrophysics Data System (ADS)

    Comellas-Aragonès, Marta; Engelkamp, Hans; Claessen, Victor I.; Sommerdijk, Nico A. J. M.; Rowan, Alan E.; Christianen, Peter C. M.; Maan, Jan C.; Verduin, Benedictus J. M.; Cornelissen, Jeroen J. L. M.; Nolte, Roeland J. M.

    2007-10-01

    Most enzyme studies are carried out in bulk aqueous solution, at the so-called ensemble level, but more recently studies have appeared in which enzyme activity is measured at the level of a single molecule, revealing previously unseen properties. To this end, enzymes have been chemically or physically anchored to a surface, which is often disadvantageous because it may lead to denaturation. In a natural environment, enzymes are present in a confined reaction space, which inspired us to develop a generic method to carry out single-enzyme experiments in the restricted spatial environment of a virus capsid. We report here the incorporation of individual horseradish peroxidase enzymes in the inner cavity of a virus, and describe single-molecule studies on their enzymatic behaviour. These show that the virus capsid is permeable for substrate and product and that this permeability can be altered by changing pH.

  4. Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA.

    PubMed

    Khodakov, Dmitriy A; Khodakova, Anastasia S; Huang, David M; Linacre, Adrian; Ellis, Amanda V

    2015-03-04

    Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within double-stranded DNA generated from real-life human mitochondrial DNA samples. Aside from the potential diagnostic value, the current study represents an additional way to control the strand displacement reaction rate without altering other reaction parameters and provides new insights into the influence of single nucleotide substitutions on 3- and 4-way branch migration efficiency and kinetics.

  5. Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions

    PubMed Central

    Sysoiev, Dmytro; Huhn, Thomas; Pauly, Fabian

    2017-01-01

    Diarylethene-derived molecules alter their electronic structure upon transformation between the open and closed forms of the diarylethene core, when exposed to ultraviolet (UV) or visible light. This transformation results in a significant variation of electrical conductance and vibrational properties of corresponding molecular junctions. We report here a combined experimental and theoretical analysis of charge transport through diarylethene-derived single-molecule devices, which are created using the mechanically controlled break-junction technique. Inelastic electron tunneling (IET) spectroscopy measurements performed at 4.2 K are compared with first-principles calculations in the two distinct forms of diarylethenes connected to gold electrodes. The combined approach clearly demonstrates that the IET spectra of single-molecule junctions show specific vibrational features that can be used to identify different isomeric molecular states by transport experiments. PMID:29259875

  6. Concordance of Changes in Metabolic Pathways Based on Plasma Metabolomics and Skeletal Muscle Transcriptomics in Type 1 Diabetes

    PubMed Central

    Dutta, Tumpa; Chai, High Seng; Ward, Lawrence E.; Ghosh, Aditya; Persson, Xuan-Mai T.; Ford, G. Charles; Kudva, Yogish C.; Sun, Zhifu; Asmann, Yan W.; Kocher, Jean-Pierre A.; Nair, K. Sreekumaran

    2012-01-01

    Insulin regulates many cellular processes, but the full impact of insulin deficiency on cellular functions remains to be defined. Applying a mass spectrometry–based nontargeted metabolomics approach, we report here alterations of 330 plasma metabolites representing 33 metabolic pathways during an 8-h insulin deprivation in type 1 diabetic individuals. These pathways included those known to be affected by insulin such as glucose, amino acid and lipid metabolism, Krebs cycle, and immune responses and those hitherto unknown to be altered including prostaglandin, arachidonic acid, leukotrienes, neurotransmitters, nucleotides, and anti-inflammatory responses. A significant concordance of metabolome and skeletal muscle transcriptome–based pathways supports an assumption that plasma metabolites are chemical fingerprints of cellular events. Although insulin treatment normalized plasma glucose and many other metabolites, there were 71 metabolites and 24 pathways that differed between nondiabetes and insulin-treated type 1 diabetes. Confirmation of many known pathways altered by insulin using a single blood test offers confidence in the current approach. Future research needs to be focused on newly discovered pathways affected by insulin deficiency and systemic insulin treatment to determine whether they contribute to the high morbidity and mortality in T1D despite insulin treatment. PMID:22415876

  7. Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates.

    PubMed

    Parrella, P; Xiao, Y; Fliss, M; Sanchez-Cespedes, M; Mazzarelli, P; Rinaldi, M; Nicol, T; Gabrielson, E; Cuomo, C; Cohen, D; Pandit, S; Spencer, M; Rabitti, C; Fazio, V M; Sidransky, D

    2001-10-15

    To determine the frequency and distribution of mitochondrial DNA mutations in breast cancer, 18 primary breast tumors were analyzed by direct sequencing. Twelve somatic mutations not present in matched lymphocytes and normal breast tissues were detected in 11 of the tumors screened (61%). Of these mutations, five (42%) were deletions or insertions in a homopolymeric C-stretch between nucleotides 303-315 (D310) within the D-loop. The remaining seven mutations (58%) were single-base substitutions in the coding (ND1, ND4, ND5, and cytochrome b genes) or noncoding regions (D-loop) of the mitochondrial genome. In three cases (25%), the mutations detected in coding regions led to amino acid substitutions in the protein sequence. We then screened an additional 46 primary breast tumors with a rapid PCR-based assay to identify poly-C alterations in D310, and we found seven more cancers with alterations. Using D310 mutations as clonal marker, we detected identical changes in five of five matched fine-needle aspirates and in four of four metastases-positive lymph nodes. The high frequency of D310 alterations in primary breast cancer combined with the high sensitivity of the PCR-based assays provides a new molecular tool for cancer detection.

  8. Contribution of silent mutations to thermal adaptation of RNA bacteriophage Qβ.

    PubMed

    Kashiwagi, Akiko; Sugawara, Ryu; Sano Tsushima, Fumie; Kumagai, Tomofumi; Yomo, Tetsuya

    2014-10-01

    Changes in protein function and other biological properties, such as RNA structure, are crucial for adaptation of organisms to novel or inhibitory environments. To investigate how mutations that do not alter amino acid sequence may be positively selected, we performed a thermal adaptation experiment using the single-stranded RNA bacteriophage Qβ in which the culture temperature was increased from 37.2°C to 41.2°C and finally to an inhibitory temperature of 43.6°C in a stepwise manner in three independent lines. Whole-genome analysis revealed 31 mutations, including 14 mutations that did not result in amino acid sequence alterations, in this thermal adaptation. Eight of the 31 mutations were observed in all three lines. Reconstruction and fitness analyses of Qβ strains containing only mutations observed in all three lines indicated that five mutations that did not result in amino acid sequence changes but increased the amplification ratio appeared in the course of adaptation to growth at 41.2°C. Moreover, these mutations provided a suitable genetic background for subsequent mutations, altering the fitness contribution from deleterious to beneficial. These results clearly showed that mutations that do not alter the amino acid sequence play important roles in adaptation of this single-stranded RNA virus to elevated temperature. Recent studies using whole-genome analysis technology suggested the importance of mutations that do not alter the amino acid sequence for adaptation of organisms to novel environmental conditions. It is necessary to investigate how these mutations may be positively selected and to determine to what degree such mutations that do not alter amino acid sequences contribute to adaptive evolution. Here, we report the roles of these silent mutations in thermal adaptation of RNA bacteriophage Qβ based on experimental evolution during which Qβ showed adaptation to growth at an inhibitory temperature. Intriguingly, four synonymous mutations and one mutation in the untranslated region that spread widely in the Qβ population during the adaptation process at moderately high temperature provided a suitable genetic background to alter the fitness contribution of subsequent mutations from deleterious to beneficial at a higher temperature. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Valuing hydrological alteration in multi-objective water resources management

    NASA Astrophysics Data System (ADS)

    Bizzi, Simone; Pianosi, Francesca; Soncini-Sessa, Rodolfo

    2012-11-01

    SummaryThe management of water through the impoundment of rivers by dams and reservoirs is necessary to support key human activities such as hydropower production, agriculture and flood risk mitigation. Advances in multi-objective optimization techniques and ever growing computing power make it possible to design reservoir operating policies that represent Pareto-optimal tradeoffs between multiple interests. On the one hand, such optimization methods can enhance performances of commonly targeted objectives (such as hydropower production or water supply), on the other hand they risk strongly penalizing all the interests not directly (i.e. mathematically) included in the optimization algorithm. The alteration of the downstream hydrological regime is a well established cause of ecological degradation and its evaluation and rehabilitation is commonly required by recent legislation (as the Water Framework Directive in Europe). However, it is rarely embedded in reservoir optimization routines and, even when explicitly considered, the criteria adopted for its evaluation are doubted and not commonly trusted, undermining the possibility of real implementation of environmentally friendly policies. The main challenges in defining and assessing hydrological alterations are: how to define a reference state (referencing); how to define criteria upon which to build mathematical indicators of alteration (measuring); and finally how to aggregate the indicators in a single evaluation index (valuing) that can serve as objective function in the optimization problem. This paper aims to address these issues by: (i) discussing the benefits and constrains of different approaches to referencing, measuring and valuing hydrological alteration; (ii) testing two alternative indices of hydrological alteration, one based on the established framework of Indicators of Hydrological Alteration (Richter et al., 1996), and one satisfying the mathematical properties required by widely used optimization methods based on dynamic programming; (iii) demonstrating and discussing these indices by application River Ticino, in Italy; (iv) providing a framework to effectively include hydrological alteration within reservoir operation optimization.

  10. A Database of Computer Attacks for the Evaluation of Intrusion Detection Systems

    DTIC Science & Technology

    1999-06-01

    administrator whenever a system binary file (such as the ps, login , or ls program) is modified. Normal users have no legitimate reason to alter these files...development of EMERALD [46], which combines statistical anomaly detection from NIDES with signature verification. Specification-based intrusion detection...the creation of a single host that can act as many hosts. Daemons that provide network services—including telnetd, ftpd, and login — display banners

  11. Insulin‐degrading enzyme is genetically associated with Alzheimer's disease in the Finnish population

    PubMed Central

    Vepsäläinen, Saila; Parkinson, Michele; Helisalmi, Seppo; Mannermaa, Arto; Soininen, Hilkka; Tanzi, Rudolph E; Bertram, Lars; Hiltunen, Mikko

    2007-01-01

    The gene for insulin‐degrading enzyme (IDE), which is located at chromosome 10q24, has been previously proposed as a candidate gene for late‐onset Alzheimer's disease (AD) based on its ability to degrade amyloid β‐protein. Genotyping of single nucleotide polymorphisms (SNPs) in the IDE gene in Finnish patients with AD and controls revealed SNPs rs4646953 and rs4646955 to be associated with AD, conferring an approximately two‐fold increased risk. Single locus findings were corroborated by the results obtained from haplotype analyses. This suggests that genetic alterations in or near the IDE gene may increase the risk for developing AD. PMID:17496198

  12. Atlas-Based Ventricular Shape Analysis for Understanding Congenital Heart Disease.

    PubMed

    Farrar, Genevieve; Suinesiaputra, Avan; Gilbert, Kathleen; Perry, James C; Hegde, Sanjeet; Marsden, Alison; Young, Alistair A; Omens, Jeffrey H; McCulloch, Andrew D

    2016-12-01

    Congenital heart disease is associated with abnormal ventricular shape that can affect wall mechanics and may be predictive of long-term adverse outcomes. Atlas-based parametric shape analysis was used to analyze ventricular geometries of eight adolescent or adult single-ventricle CHD patients with tricuspid atresia and Fontans. These patients were compared with an "atlas" of non-congenital asymptomatic volunteers, resulting in a set of z-scores which quantify deviations from the control population distribution on a patient-by-patient basis. We examined the potential of these scores to: (1) quantify abnormalities of ventricular geometry in single ventricle physiologies relative to the normal population; (2) comprehensively quantify wall motion in CHD patients; and (3) identify possible relationships between ventricular shape and wall motion that may reflect underlying functional defects or remodeling in CHD patients. CHD ventricular geometries at end-diastole and end-systole were individually compared with statistical shape properties of an asymptomatic population from the Cardiac Atlas Project. Shape analysis-derived model properties, and myocardial wall motions between end-diastole and end-systole, were compared with physician observations of clinical functional parameters. Relationships between altered shape and altered function were evaluated via correlations between atlas-based shape and wall motion scores. Atlas-based shape analysis identified a diverse set of specific quantifiable abnormalities in ventricular geometry or myocardial wall motion in all subjects. Moreover, this initial cohort displayed significant relationships between specific shape abnormalities such as increased ventricular sphericity and functional defects in myocardial deformation, such as decreased long-axis wall motion. These findings suggest that atlas-based ventricular shape analysis may be a useful new tool in the management of patients with CHD who are at risk of impaired ventricular wall mechanics and chamber remodeling.

  13. The genomic landscape of small intestine neuroendocrine tumors.

    PubMed

    Banck, Michaela S; Kanwar, Rahul; Kulkarni, Amit A; Boora, Ganesh K; Metge, Franziska; Kipp, Benjamin R; Zhang, Lizhi; Thorland, Erik C; Minn, Kay T; Tentu, Ramesh; Eckloff, Bruce W; Wieben, Eric D; Wu, Yanhong; Cunningham, Julie M; Nagorney, David M; Gilbert, Judith A; Ames, Matthew M; Beutler, Andreas S

    2013-06-01

    Small intestine neuroendocrine tumors (SI-NETs) are the most common malignancy of the small bowel. Several clinical trials target PI3K/Akt/mTOR signaling; however, it is unknown whether these or other genes are genetically altered in these tumors. To address the underlying genetics, we analyzed 48 SI-NETs by massively parallel exome sequencing. We detected an average of 0.1 somatic single nucleotide variants (SNVs) per 106 nucleotides (range, 0-0.59), mostly transitions (C>T and A>G), which suggests that SI-NETs are stable cancers. 197 protein-altering somatic SNVs affected a preponderance of cancer genes, including FGFR2, MEN1, HOOK3, EZH2, MLF1, CARD11, VHL, NONO, and SMAD1. Integrative analysis of SNVs and somatic copy number variations identified recurrently altered mechanisms of carcinogenesis: chromatin remodeling, DNA damage, apoptosis, RAS signaling, and axon guidance. Candidate therapeutically relevant alterations were found in 35 patients, including SRC, SMAD family genes, AURKA, EGFR, HSP90, and PDGFR. Mutually exclusive amplification of AKT1 or AKT2 was the most common event in the 16 patients with alterations of PI3K/Akt/mTOR signaling. We conclude that sequencing-based analysis may provide provisional grouping of SI-NETs by therapeutic targets or deregulated pathways.

  14. The genomic landscape of small intestine neuroendocrine tumors

    PubMed Central

    Banck, Michaela S.; Kanwar, Rahul; Kulkarni, Amit A.; Boora, Ganesh K.; Metge, Franziska; Kipp, Benjamin R.; Zhang, Lizhi; Thorland, Erik C.; Minn, Kay T.; Tentu, Ramesh; Eckloff, Bruce W.; Wieben, Eric D.; Wu, Yanhong; Cunningham, Julie M.; Nagorney, David M.; Gilbert, Judith A.; Ames, Matthew M.; Beutler, Andreas S.

    2013-01-01

    Small intestine neuroendocrine tumors (SI-NETs) are the most common malignancy of the small bowel. Several clinical trials target PI3K/Akt/mTOR signaling; however, it is unknown whether these or other genes are genetically altered in these tumors. To address the underlying genetics, we analyzed 48 SI-NETs by massively parallel exome sequencing. We detected an average of 0.1 somatic single nucleotide variants (SNVs) per 106 nucleotides (range, 0–0.59), mostly transitions (C>T and A>G), which suggests that SI-NETs are stable cancers. 197 protein-altering somatic SNVs affected a preponderance of cancer genes, including FGFR2, MEN1, HOOK3, EZH2, MLF1, CARD11, VHL, NONO, and SMAD1. Integrative analysis of SNVs and somatic copy number variations identified recurrently altered mechanisms of carcinogenesis: chromatin remodeling, DNA damage, apoptosis, RAS signaling, and axon guidance. Candidate therapeutically relevant alterations were found in 35 patients, including SRC, SMAD family genes, AURKA, EGFR, HSP90, and PDGFR. Mutually exclusive amplification of AKT1 or AKT2 was the most common event in the 16 patients with alterations of PI3K/Akt/mTOR signaling. We conclude that sequencing-based analysis may provide provisional grouping of SI-NETs by therapeutic targets or deregulated pathways. PMID:23676460

  15. Random Splicing of Several Exons Caused by a Single Base Change in the Target Exon of CRISPR/Cas9 Mediated Gene Knockout.

    PubMed

    Kapahnke, Marcel; Banning, Antje; Tikkanen, Ritva

    2016-12-14

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated sequence 9 (CRISPR/Cas9) system is widely used for genome editing purposes as it facilitates an efficient knockout of a specific gene in, e.g. cultured cells. Targeted double-strand breaks are introduced to the target sequence of the guide RNAs, which activates the cellular DNA repair mechanism for non-homologous-end-joining, resulting in unprecise repair and introduction of small deletions or insertions. Due to this, sequence alterations in the coding region of the target gene frequently cause frame-shift mutations, facilitating degradation of the mRNA. We here show that such CRISPR/Cas9-mediated alterations in the target exon may also result in altered splicing of the respective pre-mRNA, most likely due to mutations of splice-regulatory sequences. Using the human FLOT-1 gene as an example, we demonstrate that such altered splicing products also give rise to aberrant protein products. These may potentially function as dominant-negative proteins and thus interfere with the interpretation of the data generated with these cell lines. Since most researchers only control the consequences of CRISPR knockout at genomic and protein level, our data should encourage to also check the alterations at the mRNA level.

  16. Mutants of Arabidopsis thaliana with decreased amplitude in their phototropic response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khurana, J.P.; Ren, Zhangling; Steinitz, B.

    1989-10-01

    Two mutants of Arabidopsis thaliana have been identified with decreased phototropism to 450-nanometer light. Fluence-response relationships for these strains (ZR8 and ZR19) to single and multiple flashes of light show thresholds, curve shapes, and fluence for maximum curvature in first positive phototropism which are the same as those of the wild type. Similarly, there is no alteration from the wild type in the kinetics of curvature or in the optimum dark period separating sequential flashes in a multiple flash regimen. In addition, in both strains, gravitropism is decreased compared to the wild type by an amount which is comparable tomore » the decrease in phototropism. Based on reciprocal backcrosses, it appears that the alteration is due to a recessive nuclear mutation. It is suggested that ZR8 and ZR19 represent alterations in some step analogous to an amplifier, downstream of the photoreceptor pigment, and common to both phototropism and gravitropism.« less

  17. In Silico Analysis of Single Nucleotide Polymorphism (SNPs) in Human β-Globin Gene

    PubMed Central

    Alanazi, Mohammed; Abduljaleel, Zainularifeen; Khan, Wajahatullah; Warsy, Arjumand S.; Elrobh, Mohamed; Khan, Zahid; Amri, Abdullah Al; Bazzi, Mohammad D.

    2011-01-01

    Single amino acid substitutions in the globin chain are the most common forms of genetic variations that produce hemoglobinopathies- the most widespread inherited disorders worldwide. Several hemoglobinopathies result from homozygosity or compound heterozygosity to beta-globin (HBB) gene mutations, such as that producing sickle cell hemoglobin (HbS), HbC, HbD and HbE. Several of these mutations are deleterious and result in moderate to severe hemolytic anemia, with associated complications, requiring lifelong care and management. Even though many hemoglobinopathies result from single amino acid changes producing similar structural abnormalities, there are functional differences in the generated variants. Using in silico methods, we examined the genetic variations that can alter the expression and function of the HBB gene. Using a sequence homology-based Sorting Intolerant from Tolerant (SIFT) server we have searched for the SNPs, which showed that 200 (80%) non-synonymous polymorphism were found to be deleterious. The structure-based method via PolyPhen server indicated that 135 (40%) non-synonymous polymorphism may modify protein function and structure. The Pupa Suite software showed that the SNPs will have a phenotypic consequence on the structure and function of the altered protein. Structure analysis was performed on the key mutations that occur in the native protein coded by the HBB gene that causes hemoglobinopathies such as: HbC (E→K), HbD (E→Q), HbE (E→K) and HbS (E→V). Atomic Non-Local Environment Assessment (ANOLEA), Yet Another Scientific Artificial Reality Application (YASARA), CHARMM-GUI webserver for macromolecular dynamics and mechanics, and Normal Mode Analysis, Deformation and Refinement (NOMAD-Ref) of Gromacs server were used to perform molecular dynamics simulations and energy minimization calculations on β-Chain residue of the HBB gene before and after mutation. Furthermore, in the native and altered protein models, amino acid residues were determined and secondary structures were observed for solvent accessibility to confirm the protein stability. The functional study in this investigation may be a good model for additional future studies. PMID:22028795

  18. Identifying Molecular Targets For PTSD Treatment Using Single Prolonged Stress

    DTIC Science & Technology

    2014-10-01

    mRNA levels in the locus coeruleus. Based on our findings we hypothesize that SPS alters glucocorticoid and beta adrenergic receptor (β-AR) expression...recruited to join the project. This individual was a recent graduate from PhD training and came with expertise in animal behavioral tests of anxiety ...peer-reviewed journals (Biology of Mood and Anxiety Disorders, 2013, 3,22; Psychopharmacology, 2014, DOI:10.1007/s00213-014-3635-x). Dr. George has

  19. Alterations in ATR in nasal NK/T-cell lymphoma and chronic active Epstein-Barr virus infection.

    PubMed

    Liu, Angen; Takakuwa, Tetsuya; Luo, Wen-Juan; Fujita, Shigeki; Aozasa, Katsuyuki

    2006-07-01

    Nasal natural killer (NK)/T-cell lymphoma (NKTCL) and chronic active Epstein-Barr virus infection (CAEBV) are relatively frequent, especially in Asia, and are poor in prognosis. Both diseases are proliferative diseases of NK/T cells that show highly complicated karyotypes, suggesting the involvement of chromosomal instability. ATR is an important gene for DNA damage response and chromosomal stability. To evaluate the role of ATR gene alterations in the pathogenesis of NKTCL and CAEBV, the whole coding region of the ATR gene was examined in cell lines derived from NKTCL and CAEBV, as well as tumor samples from patients. ATR alterations were detected in two of eight NKTCL and in one of three CAEBV lines. Most aberrant transcripts observed were deletions resulting from aberrant splicing. ATR alterations were also detected in four of 10 NKTCL clinical samples. Both NKTCL and CAEBV cell lines with ATR alterations showed a delay or abrogation in repair of ionizing radiation-induced DNA double-strand breaks and ultraviolet-induced DNA single-strand breaks, and both exhibited a defect in p53 accumulation. These findings show that alterations in the ATR gene result in an abnormal response to DNA double-strand break and single-strand break repair, suggesting a role for ATR gene alterations in NKTCL lymphomagenesis.

  20. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.

    PubMed

    Rivera-Torres, Natalia; Banas, Kelly; Bialk, Pawel; Bloh, Kevin M; Kmiec, Eric B

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex.

  1. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides

    PubMed Central

    Rivera-Torres, Natalia; Bialk, Pawel; Bloh, Kevin M.; Kmiec, Eric B.

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex. PMID:28052104

  2. A single circularly permuted GFP sensor for inositol-1,3,4,5-tetrakisphosphate based on a split PH domain.

    PubMed

    Sakaguchi, Reiko; Endoh, Takashi; Yamamoto, Seigo; Tainaka, Kazuki; Sugimoto, Kenji; Fujieda, Nobutaka; Kiyonaka, Shigeki; Mori, Yasuo; Morii, Takashi

    2009-10-15

    A fluorescent sensor for the detection of inositol-1,3,4,5-tetrakisphosphate, Ins(1,3,4,5)P(4), was constructed from a split PH domain and a single circularly permuted GFP. A structure-based design was conducted to transduce a ligand-induced subtle structural perturbation of the split PH domain to an alteration in the population of the protonated and the deprotonated states of the GFP chromophore. Excitation of each distinct absorption band corresponding to the protonated or the deprotonated state of GFP resulted an increase and a decrease, respectively, in the intensity of emission spectra upon addition of Ins(1,3,4,5)P(4) to the split PH domain-based sensor. The Ins(1,3,4,5)P(4) sensor retained the ligand affinity and the selectivity of the parent PH domain, and realized the ratiometric fluorescence detection of Ins(1,3,4,5)P(4).

  3. A fluid membrane enhances the velocity of cargo transport by small teams of kinesin-1

    NASA Astrophysics Data System (ADS)

    Li, Qiaochu; Tseng, Kuo-Fu; King, Stephen J.; Qiu, Weihong; Xu, Jing

    2018-03-01

    Kinesin-1 (hereafter referred to as kinesin) is a major microtubule-based motor protein for plus-end-directed intracellular transport in live cells. While the single-molecule functions of kinesin are well characterized, the physiologically relevant transport of membranous cargos by small teams of kinesins remains poorly understood. A key experimental challenge remains in the quantitative control of the number of motors driving transport. Here we utilized "motile fraction" to overcome this challenge and experimentally accessed transport by a single kinesin through the physiologically relevant transport by a small team of kinesins. We used a fluid lipid bilayer to model the cellular membrane in vitro and employed optical trapping to quantify the transport of membrane-enclosed cargos versus traditional membrane-free cargos under identical conditions. We found that coupling motors via a fluid membrane significantly enhances the velocity of cargo transport by small teams of kinesins. Importantly, enclosing a cargo in a fluid lipid membrane did not impact single-kinesin transport, indicating that membrane-dependent velocity enhancement for team-based transport arises from altered interactions between kinesins. Our study demonstrates that membrane-based coupling between motors is a key determinant of kinesin-based transport. Enhanced velocity may be critical for fast delivery of cargos in live cells.

  4. The Landscape of Somatic Chromosomal Copy Number Aberrations in GEM Models of Prostate Carcinoma

    PubMed Central

    Bianchi-Frias, Daniella; Hernandez, Susana A.; Coleman, Roger; Wu, Hong; Nelson, Peter S.

    2015-01-01

    Human prostate cancer (PCa) is known to harbor recurrent genomic aberrations consisting of chromosomal losses, gains, rearrangements and mutations that involve oncogenes and tumor suppressors. Genetically engineered mouse (GEM) models have been constructed to assess the causal role of these putative oncogenic events and provide molecular insight into disease pathogenesis. While GEM models generally initiate neoplasia by manipulating a single gene, expression profiles of GEM tumors typically comprise hundreds of transcript alterations. It is unclear whether these transcriptional changes represent the pleiotropic effects of single oncogenes, and/or cooperating genomic or epigenomic events. Therefore, it was determined if structural chromosomal alterations occur in GEM models of PCa and whether the changes are concordant with human carcinomas. Whole genome array-based comparative genomic hybridization (CGH) was used to identify somatic chromosomal copy number aberrations (SCNAs) in the widely used TRAMP, Hi-Myc, Pten-null and LADY GEM models. Interestingly, very few SCNAs were identified and the genomic architecture of Hi-Myc, Pten-null and LADY tumors were essentially identical to the germline. TRAMP neuroendocrine carcinomas contained SCNAs, which comprised three recurrent aberrations including a single copy loss of chromosome 19 (encoding Pten). In contrast, cell lines derived from the TRAMP, Hi-Myc, and Pten-null tumors were notable for numerous SCNAs that included copy gains of chromosome 15 (encoding Myc) and losses of chromosome 11 (encoding p53). PMID:25298407

  5. Achieving optimal SERS through enhanced experimental design

    PubMed Central

    Fisk, Heidi; Westley, Chloe; Turner, Nicholas J.

    2016-01-01

    One of the current limitations surrounding surface‐enhanced Raman scattering (SERS) is the perceived lack of reproducibility. SERS is indeed challenging, and for analyte detection, it is vital that the analyte interacts with the metal surface. However, as this is analyte dependent, there is not a single set of SERS conditions that are universal. This means that experimental optimisation for optimum SERS response is vital. Most researchers optimise one factor at a time, where a single parameter is altered first before going onto optimise the next. This is a very inefficient way of searching the experimental landscape. In this review, we explore the use of more powerful multivariate approaches to SERS experimental optimisation based on design of experiments and evolutionary computational methods. We particularly focus on colloidal‐based SERS rather than thin film preparations as a result of their popularity. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons, Ltd. PMID:27587905

  6. Single-platelet nanomechanics measured by high-throughput cytometry

    NASA Astrophysics Data System (ADS)

    Myers, David R.; Qiu, Yongzhi; Fay, Meredith E.; Tennenbaum, Michael; Chester, Daniel; Cuadrado, Jonas; Sakurai, Yumiko; Baek, Jong; Tran, Reginald; Ciciliano, Jordan C.; Ahn, Byungwook; Mannino, Robert G.; Bunting, Silvia T.; Bennett, Carolyn; Briones, Michael; Fernandez-Nieves, Alberto; Smith, Michael L.; Brown, Ashley C.; Sulchek, Todd; Lam, Wilbur A.

    2017-02-01

    Haemostasis occurs at sites of vascular injury, where flowing blood forms a clot, a dynamic and heterogeneous fibrin-based biomaterial. Paramount in the clot's capability to stem haemorrhage are its changing mechanical properties, the major drivers of which are the contractile forces exerted by platelets against the fibrin scaffold. However, how platelets transduce microenvironmental cues to mediate contraction and alter clot mechanics is unknown. This is clinically relevant, as overly softened and stiffened clots are associated with bleeding and thrombotic disorders. Here, we report a high-throughput hydrogel-based platelet-contraction cytometer that quantifies single-platelet contraction forces in different clot microenvironments. We also show that platelets, via the Rho/ROCK pathway, synergistically couple mechanical and biochemical inputs to mediate contraction. Moreover, highly contractile platelet subpopulations present in healthy controls are conspicuously absent in a subset of patients with undiagnosed bleeding disorders, and therefore may function as a clinical diagnostic biophysical biomarker.

  7. Achieving optimal SERS through enhanced experimental design.

    PubMed

    Fisk, Heidi; Westley, Chloe; Turner, Nicholas J; Goodacre, Royston

    2016-01-01

    One of the current limitations surrounding surface-enhanced Raman scattering (SERS) is the perceived lack of reproducibility. SERS is indeed challenging, and for analyte detection, it is vital that the analyte interacts with the metal surface. However, as this is analyte dependent, there is not a single set of SERS conditions that are universal. This means that experimental optimisation for optimum SERS response is vital. Most researchers optimise one factor at a time, where a single parameter is altered first before going onto optimise the next. This is a very inefficient way of searching the experimental landscape. In this review, we explore the use of more powerful multivariate approaches to SERS experimental optimisation based on design of experiments and evolutionary computational methods. We particularly focus on colloidal-based SERS rather than thin film preparations as a result of their popularity. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons, Ltd.

  8. 75 FR 34755 - Privacy Act; Proposed Alteration to Existing Systems of Records, Single Family Mortgage Asset...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... increase in the number of records maintained by the system. These alterations do not impact the scope...-sponsored database that makes a federal debtor's delinquency and claim information available to federal...

  9. Germline Mutations and Polymorphisms in the Origins of Cancers in Women

    PubMed Central

    Hirshfield, Kim M.; Rebbeck, Timothy R.; Levine, Arnold J.

    2010-01-01

    Several female malignancies including breast, ovarian, and endometrial cancers can be characterized based on known somatic and germline mutations. Initiation and propagation of tumors reflect underlying genomic alterations such as mutations, polymorphisms, and copy number variations found in genes of multiple cellular pathways. The contributions of any single genetic variation or mutation in a population depend on its frequency and penetrance as well as tissue-specific functionality. Genome wide association studies, fluorescence in situ hybridization, comparative genomic hybridization, and candidate gene studies have enumerated genetic contributors to cancers in women. These include p53, BRCA1, BRCA2, STK11, PTEN, CHEK2, ATM, BRIP1, PALB2, FGFR2, TGFB1, MDM2, MDM4 as well as several other chromosomal loci. Based on the heterogeneity within a specific tumor type, a combination of genomic alterations defines the cancer subtype, biologic behavior, and in some cases, response to therapeutics. Consideration of tumor heterogeneity is therefore important in the critical analysis of gene associations in cancer. PMID:20111735

  10. Anomalous single-subject based morphological cortical networks in drug-naive, first-episode major depressive disorder.

    PubMed

    Chen, Taolin; Kendrick, Keith M; Wang, Jinhui; Wu, Min; Li, Kaiming; Huang, Xiaoqi; Luo, Yuejia; Lui, Su; Sweeney, John A; Gong, Qiyong

    2017-05-01

    Major depressive disorder (MDD) has been associated with disruptions in the topological organization of brain morphological networks in group-level data. Such disruptions have not yet been identified in single-patients, which is needed to show relations with symptom severity and to evaluate their potential as biomarkers for illness. To address this issue, we conducted a cross-sectional structural brain network study of 33 treatment-naive, first-episode MDD patients and 33 age-, gender-, and education-matched healthy controls (HCs). Weighted graph-theory based network models were used to characterize the topological organization of brain networks between the two groups. Compared with HCs, MDD patients exhibited lower normalized global efficiency and higher modularity in their whole-brain morphological networks, suggesting impaired integration and increased segregation of morphological brain networks in the patients. Locally, MDD patients exhibited lower efficiency in anatomic organization for transferring information predominantly in default-mode regions including the hippocampus, parahippocampal gyrus, precuneus and superior parietal lobule, and higher efficiency in the insula, calcarine and posterior cingulate cortex, and in the cerebellum. Morphological connectivity comparisons revealed two subnetworks that exhibited higher connectivity strength in MDD mainly involving neocortex-striatum-thalamus-cerebellum and thalamo-hippocampal circuitry. MDD-related alterations correlated with symptom severity and differentiated individuals with MDD from HCs with a sensitivity of 87.9% and specificity of 81.8%. Our findings indicate that single subject grey matter morphological networks are often disrupted in clinically relevant ways in treatment-naive, first episode MDD patients. Circuit-specific changes in brain anatomic network organization suggest alterations in the efficiency of information transfer within particular brain networks in MDD. Hum Brain Mapp 38:2482-2494, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Monte-Carlo Simulation for Accuracy Assessment of a Single Camera Navigation System

    NASA Astrophysics Data System (ADS)

    Bethmann, F.; Luhmann, T.

    2012-07-01

    The paper describes a simulation-based optimization of an optical tracking system that is used as a 6DOF navigation system for neurosurgery. Compared to classical system used in clinical navigation, the presented system has two unique properties: firstly, the system will be miniaturized and integrated into an operating microscope for neurosurgery; secondly, due to miniaturization a single camera approach has been designed. Single camera techniques for 6DOF measurements show a special sensitivity against weak geometric configurations between camera and object. In addition, the achievable accuracy potential depends significantly on the geometric properties of the tracked objects (locators). Besides quality and stability of the targets used on the locator, their geometric configuration is of major importance. In the following the development and investigation of a simulation program is presented which allows for the assessment and optimization of the system with respect to accuracy. Different system parameters can be altered as well as different scenarios indicating the operational use of the system. Measurement deviations are estimated based on the Monte-Carlo method. Practical measurements validate the correctness of the numerical simulation results.

  12. Microscopic observations during longitudinal compression loading of single pulp fibers

    Treesearch

    Irving B. Sachs

    1986-01-01

    Paperboard components (linerboard adn corrugating medium) fail in edgewise compression because of failure of single fibers, as well as fiber-to-fiber bonds. While fiber-to-fiber-bond failure has been studied extensively, little is known about the longitudinal compression failure of a single fiber. In this study, surface alterations on single loblolly pine kraft pulp...

  13. Fractionating choice: A study on reward discrimination, preference and relative valuation in the rat (Rattus norvegicus)

    PubMed Central

    Ricker, Joshua M.; Hatch, Justin D.; Powers, Daniel D.; Cromwell, Howard C.

    2016-01-01

    Choice behavior combines discrimination between distinctive outcomes, preference for specific outcomes and relative valuation of comparable outcomes. Previous work has focused on one component (i.e., preference) disregarding other influential processes that might provide a more complete understanding. Animal models of choice have been explored primarily utilizing extensive training, limited freedom for multiple decisions and sparse behavioral measures constrained to a single phase of motivated action. The present study used a paradigm that combines different elements of previous methods with the goal to distinguish among components of choice and explore how well components match predictions based on risk-sensitive foraging strategies. In order to analyze discrimination and relative valuation, it was necessary to have an option that shifted and an option that remained constant. Shifting outcomes among weeks included a change in single-option outcome (0 to 1 to 2 pellets) or a change in mixed-option outcome (0 or 5 to 0 or 3 to 0 or 1 pellets). Constant outcomes among weeks were also mixedoption (0 or 3 pellets) or single-option (1 pellet). Shifting single-option outcomes among weeks led to better discrimination, more robust preference and significant incentive contrast effects for the alternative outcome. Shifting multi-options altered choice components and led to dissociations among discrimination, preference, and reduced contrast effects. During extinction, all components were impacted with the greatest deficits during the shifting mixed-option outcome sessions. Results suggest choice behavior can be optimized for one component but suboptimal for others depending upon the complexity of alterations in outcome value between options. PMID:27078079

  14. Papillae alterations around single-implant restorations in the anterior maxillae: thick versus thin mucosa

    PubMed Central

    Si, Mi-Si; Zhuang, Long-Fei; Huang, Xin; Gu, Ying-Xin; Chou, Chung-Hao; Lai, Hong-Chang

    2012-01-01

    To evaluate the papilla alterations around single-implant restorations in the anterior maxillae after crown attachment and to study the influence of soft tissue thickness on the papilla fill alteration. According to the inclusion criteria, 32 patients subjected to implant-supported single-tooth restorations in anterior maxillae were included. The patients were assigned to two groups according to the mucosal thickness: (i) group 1, 1.5 mm≤mucosal thickness≤3 mm; and (ii) group 2, 3 mm

  15. Quantifying clustered DNA damage induction and repair by gel electrophoresis, electronic imaging and number average length analysis

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C.; Gewirtz, A. M. (Principal Investigator)

    2003-01-01

    Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.

  16. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity

    NASA Astrophysics Data System (ADS)

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-11-01

    The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.

  17. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity.

    PubMed

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-11-08

    The increasing number of recording electrodes enhances the capability of capturing the network's cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.

  18. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity

    PubMed Central

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-01-01

    The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity. PMID:27824075

  19. Structural basis of DNA bending and oriented heterodimer binding by the basic leucine zipper domains of Fos and Jun.

    PubMed

    Leonard, D A; Rajaram, N; Kerppola, T K

    1997-05-13

    Interactions among transcription factors that bind to separate sequence elements require bending of the intervening DNA and juxtaposition of interacting molecular surfaces in an appropriate orientation. Here, we examine the effects of single amino acid substitutions adjacent to the basic regions of Fos and Jun as well as changes in sequences flanking the AP-1 site on DNA bending. Substitution of charged amino acid residues at positions adjacent to the basic DNA-binding domains of Fos and Jun altered DNA bending. The change in DNA bending was directly proportional to the change in net charge for all heterodimeric combinations between these proteins. Fos and Jun induced distinct DNA bends at different binding sites. Exchange of a single base pair outside of the region contacted in the x-ray crystal structure altered DNA bending. Substitution of base pairs flanking the AP-1 site had converse effects on the opposite directions of DNA bending induced by homodimers and heterodimers. These results suggest that Fos and Jun induce DNA bending in part through electrostatic interactions between amino acid residues adjacent to the basic region and base pairs flanking the AP-1 site. DNA bending by Fos and Jun at inverted binding sites indicated that heterodimers bind to the AP-1 site in a preferred orientation. Mutation of a conserved arginine within the basic regions of Fos and transversion of the central C:G base pair in the AP-1 site to G:C had complementary effects on the orientation of heterodimer binding and DNA bending. The conformational variability of the Fos-Jun-AP-1 complex may contribute to its functional versatility at different promoters.

  20. Multifunctional Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains.

    PubMed

    Li, Cheng; Yu, Changshi; Lai, Wenbin; Liang, Shijie; Jiang, Xudong; Feng, Guitao; Zhang, Jianqi; Xu, Yunhua; Li, Weiwei

    2017-11-24

    Two conjugated polymers based on diketopyrrolopyrrole (DPP) in the main chain with different content of perylene bisimide (PBI) side chains are developed. The influence of PBI side chain on the photovoltaic performance of these DPP-based conjugated polymers is systematically investigated. This study suggests that the PBI side chains can not only alter the absorption spectrum and energy level but also enhance the crystallinity of conjugated polymers. As a result, such polymers can act as electron donor, electron acceptor, and single-component active layer in organic solar cells. These findings provide a new guideline for the future molecular design of multifunctional conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Influence of branding on preference-based decision making.

    PubMed

    Philiastides, Marios G; Ratcliff, Roger

    2013-07-01

    Branding has become one of the most important determinants of consumer choices. Intriguingly, the psychological mechanisms of how branding influences decision making remain elusive. In the research reported here, we used a preference-based decision-making task and computational modeling to identify which internal components of processing are affected by branding. We found that a process of noisy temporal integration of subjective value information can model preference-based choices reliably and that branding biases are explained by changes in the rate of the integration process itself. This result suggests that branding information and subjective preference are integrated into a single source of evidence in the decision-making process, thereby altering choice behavior.

  2. A large-scale perspective on stress-induced alterations in resting-state networks

    NASA Astrophysics Data System (ADS)

    Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron

    2016-02-01

    Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience.

  3. Zn nanoparticle formation in FIB irradiated single crystal ZnO

    NASA Astrophysics Data System (ADS)

    Pea, M.; Barucca, G.; Notargiacomo, A.; Di Gaspare, L.; Mussi, V.

    2018-03-01

    We report on the formation of Zn nanoparticles induced by Ga+ focused ion beam on single crystal ZnO. The irradiated materials have been studied as a function of the ion dose by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy, evidencing the presence of Zn nanoparticles with size of the order of 5-30 nm. The nanoparticles are found to be embedded in a shallow amorphous ZnO matrix few tens of nanometers thick. Results reveal that ion beam induced Zn clustering occurs producing crystalline particles with the same hexagonal lattice and orientation of the substrate, and could explain the alteration of optical and electrical properties found for FIB fabricated and processed ZnO based devices.

  4. Oncogenetic tree model of somatic mutations and DNA methylation in colon tumors.

    PubMed

    Sweeney, Carol; Boucher, Kenneth M; Samowitz, Wade S; Wolff, Roger K; Albertsen, Hans; Curtin, Karen; Caan, Bette J; Slattery, Martha L

    2009-01-01

    Our understanding of somatic alterations in colon cancer has evolved from a concept of a series of events taking place in a single sequence to a recognition of multiple pathways. An oncogenetic tree is a model intended to describe the pathways and sequence of somatic alterations in carcinogenesis without assuming that tumors will fall in mutually exclusive categories. We applied this model to data on colon tumor somatic alterations. An oncogenetic tree model was built using data on mutations of TP53, KRAS2, APC, and BRAF genes, methylation at CpG sites of MLH1 and TP16 genes, methylation in tumor (MINT) markers, and microsatellite instability (MSI) for 971 colon tumors from a population-based series. Oncogenetic tree analysis resulted in a reproducible tree with three branches. The model represents methylation of MINT markers as initiating a branch and predisposing to MSI, methylation of MHL1 and TP16, and BRAF mutation. APC mutation is the first alteration in an independent branch and is followed by TP53 mutation. KRAS2 mutation was placed a third independent branch, implying that it neither depends on, nor predisposes to, the other alterations. Individual tumors were observed to have alteration patterns representing every combination of one, two, or all three branches. The oncogenetic tree model assumptions are appropriate for the observed heterogeneity of colon tumors, and the model produces a useful visual schematic of the sequence of events in pathways of colon carcinogenesis.

  5. A Novel Mechanism of High-Level, Broad-Spectrum Antibiotic Resistance Caused by a Single Base Pair Change in Neisseria gonorrhoeae

    DTIC Science & Technology

    2011-09-20

    significantly alter the regulation of the mtrCDE operon and result in increased resistance to anti- microbials. IMPORTANCE Gonorrhea is the second most...causative agent of the sexually trans-mitted infection gonorrhea , is a Gram-negative diplococcus and is strictly a human pathogen. Clinical isolates of N...produced in response to experimental human gonorrhea . J. Infect. Dis. 172:186 –191. 34. Schmidt KA, et al. 2001. Experimental gonococcal urethritis and

  6. Enzymatically Generated CRISPR Libraries for Genome Labeling and Screening

    PubMed Central

    Lane, Andrew B.; Strzelecka, Magdalena; Ettinger, Andreas; Grenfell, Andrew W.; Wittmann, Torsten; Heald, Rebecca

    2015-01-01

    Summary CRISPR-based technologies have emerged as powerful tools to alter genomes and mark chromosomal loci, but an inexpensive method for generating large numbers of RNA guides for whole genome screening and labeling is lacking. Using a method that permits library construction from any source of DNA, we generated guide libraries that label repetitive loci or a single chromosomal locus in Xenopus egg extracts and show that a complex library can target the E. coli genome at high frequency. PMID:26212133

  7. Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance.

    PubMed

    Schmidt, Felix; Efferth, Thomas

    2016-06-16

    Tumor heterogeneity has been compared with Darwinian evolution and survival of the fittest. The evolutionary ecosystem of tumors consisting of heterogeneous tumor cell populations represents a considerable challenge to tumor therapy, since all genetically and phenotypically different subpopulations have to be efficiently killed by therapy. Otherwise, even small surviving subpopulations may cause repopulation and refractory tumors. Single-cell sequencing allows for a better understanding of the genomic principles of tumor heterogeneity and represents the basis for more successful tumor treatments. The isolation and sequencing of single tumor cells still represents a considerable technical challenge and consists of three major steps: (1) single cell isolation (e.g., by laser-capture microdissection), fluorescence-activated cell sorting, micromanipulation, whole genome amplification (e.g., with the help of Phi29 DNA polymerase), and transcriptome-wide next generation sequencing technologies (e.g., 454 pyrosequencing, Illumina sequencing, and other systems). Data demonstrating the feasibility of single-cell sequencing for monitoring the emergence of drug-resistant cell clones in patient samples are discussed herein. It is envisioned that single-cell sequencing will be a valuable asset to assist the design of regimens for personalized tumor therapies based on tumor subpopulation-specific genetic alterations in individual patients.

  8. Theoretical model for optical oximetry at the capillary level: exploring hemoglobin oxygen saturation through backscattering of single red blood cells

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Spicer, Graham; Chen, Siyu; Zhang, Hao F.; Yi, Ji; Backman, Vadim

    2017-02-01

    Oxygen saturation (sO2) of red blood cells (RBCs) in capillaries can indirectly assess local tissue oxygenation and metabolic function. For example, the altered retinal oxygenation in diabetic retinopathy and local hypoxia during tumor development in cancer are reflected by abnormal sO2 of local capillary networks. However, it is far from clear whether accurate label-free optical oximetry (i.e., measuring hemoglobin sO2) is feasible from dispersed RBCs at the single capillary level. The sO2-dependent hemoglobin absorption contrast present in optical scattering signal is complicated by geometry-dependent scattering from RBCs. We present a numerical study of backscattering spectra from single RBCs based on the first-order Born approximation, considering practical factors: RBC orientations, size variation, and deformations. We show that the oscillatory spectral behavior of RBC geometries is smoothed by variations in cell size and orientation, resulting in clear sO2-dependent spectral contrast. In addition, this spectral contrast persists with different mean cellular hemoglobin content and different deformations of RBCs. This study shows for the first time the feasibility of, and provides a theoretical model for, label-free optical oximetry at the single capillary level using backscattering-based imaging modalities, challenging the popular view that such measurements are impossible at the single capillary level.

  9. Quercetin does not alter the oral bioavailability of Atorvastatin in rats.

    PubMed

    Koritala, Rekha; Challa, Siva Reddy; Ragam, Satheesh Kumar; Geddam, Lal Babu; Venkatesh Reddy Challa, Venkatesh Reddy; Devi, Renuka; Sattenapalli, Srinu; Babu, Narendra

    2015-09-01

    The study was undertaken to evaluate the effect of Quercetin on the pharmacokinetics of Atorvastatin Calcium. In-vivo Pharmacokinetic studies were performed on rats in a single dose study and multiple dose study. Rats were treated with Quercetin (10 mg/kg) and Atorvastatin Calcium (20 mg/kg) orally and blood samples were collected at (0) pretreatment and 0.5, 1, 1.5, 2, 2.5, 3, 4, 8, 12, 24 hours post treatment. Plasma concentrations of Atorvastatin were estimated by HPLC method. Quercetin treatment did not significantly alter the pharmacokinetic parameters of atorvastatin like AUC(0-24), AUC(0-α) , T(max), C(max) and T(½) in both single dose and multiple dose studies of Atorvastatin Calcium. Quercetin does not alter the oral bioavailability of Atorvastatin Calcium in rats.

  10. Assessment of maternal smoking status during pregnancy and the associations with neonatal outcomes.

    PubMed

    Bakker, Rachel; Kruithof, Claudia; Steegers, Eric A P; Tiemeier, Henning; Mackenbach, Johan P; Hofman, Albert; Jaddoe, Vincent W V

    2011-12-01

    Single assessment of smoking during pregnancy may lead to misclassification due to underreporting or failure of smoking cessation. We examined the percentage of mothers who were misclassified in smoking status based on single assessment, as compared with repeated assessment, and whether this misclassification leads to altered effect estimates for the associations between maternal smoking and neonatal complications. This study was performed in 5,389 mothers participating in a prospective population-based cohort study in the Netherlands. Smoking status was assessed 3 times during pregnancy using questionnaires. Information on birth weight and neonatal complications was obtained from hospital records. For categorizing mothers per smoking status, Cohen's Kappa coefficient was .86 (p < .001) between single and repeated assessments. Of all mothers who reported nonsmoking or first trimester-only smoking in early pregnancy, 1.7% (70 of 4,141) and 33.7% (217 of 643), respectively, were reclassified to continued smoking based on repeated assessment. Younger, shorter lower educated mothers who had non-European ethnicity experienced more stress, consumed more alcohol, and did not use folic acid supplements had higher risk of underreporting their smoking status or failure of smoking cessation. Marginal differences were found on the associations of maternal smoking with neonatal complications between single or repeated assessment. Our results suggest that single assessment of smoking during pregnancy leads to underestimation of the continued smoking prevalence, especially among mothers who reported quitting smoking in first trimester. However, this underestimation does not materially change the effect estimates for the associations between maternal smoking and neonatal outcomes.

  11. Somatic INK4a-ARF locus mutations: a significant mechanism of gene inactivation in squamous cell carcinomas of the head and neck.

    PubMed

    Poi, M J; Yen, T; Li, J; Song, H; Lang, J C; Schuller, D E; Pearl, D K; Casto, B C; Tsai, M D; Weghorst, C M

    2001-01-01

    The INK4a-ARF locus is located on human chromosome 9p21 and is known to encode two functionally distinct tumor-suppressor genes. The p16(INK4a) (p16) tumor-suppressor gene product is a negative regulator of cyclin-dependent kinases 4 and 6, which in turn positively regulate progression of mammalian cells through the cell cycle. The p14(ARF) tumor-suppressor gene product specifically interacts with human double minute 2, leading to the subsequent stabilization of p53 and G(1) arrest. Previous investigations analyzing the p16 gene in squamous cell carcinomas of the head and neck (SCCHNs) have suggested the predominate inactivating events to be homozygous gene deletions and hypermethylation of the p16 promoter. Somatic mutational inactivation of p16 has been reported to be low (0-10%, with a combined incidence of 25 of 279, or 9%) and to play only a minor role in the development of SCCHN. The present study examined whether this particular mechanism of INK4a/ARF inactivation, specifically somatic mutation, has been underestimated in SCCHN by determining the mutational status of the p16 and p14(ARF) genes in 100 primary SCCHNs with the use of polymerase chain reaction technology and a highly sensitive, nonradioactive modification of single-stranded conformational polymorphism (SSCP) analysis termed "cold" SSCP. Exons 1alpha, 1beta, and 2 of INK4a/ARF were amplified using intron-based primers or a combination of intron- and exon-based primers. A total of 27 SCCHNs (27%) exhibited sequence alterations in this locus, 22 (22%) of which were somatic sequence alterations and five (5%) of which were a single polymorphism in codon 148. Of the 22 somatic alterations, 20 (91%) directly or indirectly involved exon 2, and two (9%) were located within exon 1alpha. No mutations were found in exon 1beta. All 22 somatic mutations would be expected to yield altered p16 proteins, but only 15 of them should affect p14(ARF) proteins. Specific somatic alterations included microdeletions or insertions (nine of 22, 41%), a microrearrangement (one of 22, 5%), and single nucleotide substitutions (12 of 22, 56%). In addition, we analyzed the functional characteristics of seven unique mutant p16 proteins identified in this study by assessing their ability to inhibit cyclin-dependent kinase 4 activity. Six of the seven mutant proteins tested exhibited reduced function compared with wild-type p16, ranging from minor decreases of function (twofold to eightfold) in four samples to total loss of function (29- to 38-fold decrease) in two other samples. Overall, somatic mutation of the INK4a/ARF tumor suppressor locus, resulting in functionally deficient p16 and possibly p14(ARF) proteins, seems to be a prevalent event in the development of SCCHN. Mol. Carcinog. 30:26-36, 2001. Copyright 2001 Wiley-Liss, Inc.

  12. 77 FR 38632 - Findings of Research Misconduct

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... counts of nigrostriatal neurons in brains of several mice and rats by copying a single data file from a... Used Herbicide, Atrazine: Altered Function and Loss of Neurons in Brain Monamine Systems.'' Environ... 2004 and 2006; Falsifying a bar graph representing brain proteasomal activity, by selectively altering...

  13. Time course based artifact identification for independent components of resting-state FMRI.

    PubMed

    Rummel, Christian; Verma, Rajeev Kumar; Schöpf, Veronika; Abela, Eugenio; Hauf, Martinus; Berruecos, José Fernando Zapata; Wiest, Roland

    2013-01-01

    In functional magnetic resonance imaging (fMRI) coherent oscillations of the blood oxygen level-dependent (BOLD) signal can be detected. These arise when brain regions respond to external stimuli or are activated by tasks. The same networks have been characterized during wakeful rest when functional connectivity of the human brain is organized in generic resting-state networks (RSN). Alterations of RSN emerge as neurobiological markers of pathological conditions such as altered mental state. In single-subject fMRI data the coherent components can be identified by blind source separation of the pre-processed BOLD data using spatial independent component analysis (ICA) and related approaches. The resulting maps may represent physiological RSNs or may be due to various artifacts. In this methodological study, we propose a conceptually simple and fully automatic time course based filtering procedure to detect obvious artifacts in the ICA output for resting-state fMRI. The filter is trained on six and tested on 29 healthy subjects, yielding mean filter accuracy, sensitivity and specificity of 0.80, 0.82, and 0.75 in out-of-sample tests. To estimate the impact of clearly artifactual single-subject components on group resting-state studies we analyze unfiltered and filtered output with a second level ICA procedure. Although the automated filter does not reach performance values of visual analysis by human raters, we propose that resting-state compatible analysis of ICA time courses could be very useful to complement the existing map or task/event oriented artifact classification algorithms.

  14. Photoelectrochemical Stability and Alteration Products of n-Type Single-Crystal ZnO Photoanodes

    DOE PAGES

    Paulauskas, I. E.; Jellison, G. E.; Boatner, L. A.; ...

    2011-01-01

    The photoelectrochemical stability and surface-alteration characteristics of doped and undoped n-type ZnO single-crystal photoanode electrodes were investigated. The single-crystal ZnO photoanode properties were analyzed using current-voltage measurements plus spectral and time-dependent quantum-yield methods. These measurements revealed a distinct anodic peak and an accompanying cathodic surface degradation process at negative potentials. The features of this peak depended on time and the NaOH concentration in the electrolyte, but were independent of the presence of electrode illumination. Current measurements performed at the peak indicate that charging and discharging effects are apparently taking place at the semiconductor/electrolyte interface. This result is consistent with themore » significant reactive degradation that takes place on the ZnO single crystal photoanode surface and that ultimately leads to the reduction of the ZnO surface to Zn metal. The resulting Zn-metal reaction products create unusual, dendrite-like, surface alteration structural features that were analyzed using x-ray diffraction, energy-dispersive analysis, and scanning electron microscopy. ZnO doping methods were found to be effective in increasing the n-type character of the crystals. Higher doping levels result in smaller depletion widths and lower quantum yields, since the minority carrier diffusion lengths are very short in these materials.« less

  15. Decreased necrotizing fasciitis capacity caused by a single nucleotide mutation that alters a multiple gene virulence axis

    PubMed Central

    Olsen, Randall J.; Sitkiewicz, Izabela; Ayeras, Ara A.; Gonulal, Vedia E.; Cantu, Concepcion; Beres, Stephen B.; Green, Nicole M.; Lei, Benfang; Humbird, Tammy; Greaver, Jamieson; Chang, Ellen; Ragasa, Willie P.; Montgomery, Charles A.; Cartwright, Joiner; McGeer, Allison; Low, Donald E.; Whitney, Adeline R.; Cagle, Philip T.; Blasdel, Terry L.; DeLeo, Frank R.; Musser, James M.

    2010-01-01

    Single-nucleotide changes are the most common cause of natural genetic variation among members of the same species, but there is remarkably little information bearing on how they alter bacterial virulence. We recently discovered a single-nucleotide mutation in the group A Streptococcus genome that is epidemiologically associated with decreased human necrotizing fasciitis (“flesh-eating disease”). Working from this clinical observation, we find that wild-type mtsR function is required for group A Streptococcus to cause necrotizing fasciitis in mice and nonhuman primates. Expression microarray analysis revealed that mtsR inactivation results in overexpression of PrsA, a chaperonin involved in posttranslational maturation of SpeB, an extracellular cysteine protease. Isogenic mutant strains that overexpress prsA or lack speB had decreased secreted protease activity in vivo and recapitulated the necrotizing fasciitis-negative phenotype of the ΔmtsR mutant strain in mice and monkeys. mtsR inactivation results in increased PrsA expression, which in turn causes decreased SpeB secreted protease activity and reduced necrotizing fasciitis capacity. Thus, a naturally occurring single-nucleotide mutation dramatically alters virulence by dysregulating a multiple gene virulence axis. Our discovery has broad implications for the confluence of population genomics and molecular pathogenesis research. PMID:20080771

  16. Decreased necrotizing fasciitis capacity caused by a single nucleotide mutation that alters a multiple gene virulence axis.

    PubMed

    Olsen, Randall J; Sitkiewicz, Izabela; Ayeras, Ara A; Gonulal, Vedia E; Cantu, Concepcion; Beres, Stephen B; Green, Nicole M; Lei, Benfang; Humbird, Tammy; Greaver, Jamieson; Chang, Ellen; Ragasa, Willie P; Montgomery, Charles A; Cartwright, Joiner; McGeer, Allison; Low, Donald E; Whitney, Adeline R; Cagle, Philip T; Blasdel, Terry L; DeLeo, Frank R; Musser, James M

    2010-01-12

    Single-nucleotide changes are the most common cause of natural genetic variation among members of the same species, but there is remarkably little information bearing on how they alter bacterial virulence. We recently discovered a single-nucleotide mutation in the group A Streptococcus genome that is epidemiologically associated with decreased human necrotizing fasciitis ("flesh-eating disease"). Working from this clinical observation, we find that wild-type mtsR function is required for group A Streptococcus to cause necrotizing fasciitis in mice and nonhuman primates. Expression microarray analysis revealed that mtsR inactivation results in overexpression of PrsA, a chaperonin involved in posttranslational maturation of SpeB, an extracellular cysteine protease. Isogenic mutant strains that overexpress prsA or lack speB had decreased secreted protease activity in vivo and recapitulated the necrotizing fasciitis-negative phenotype of the DeltamtsR mutant strain in mice and monkeys. mtsR inactivation results in increased PrsA expression, which in turn causes decreased SpeB secreted protease activity and reduced necrotizing fasciitis capacity. Thus, a naturally occurring single-nucleotide mutation dramatically alters virulence by dysregulating a multiple gene virulence axis. Our discovery has broad implications for the confluence of population genomics and molecular pathogenesis research.

  17. Valuing hydrological alteration in Multi-Objective reservoir management

    NASA Astrophysics Data System (ADS)

    Bizzi, S.; Pianosi, F.; Soncini-Sessa, R.

    2012-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation for agricultural production, and flood risk mitigation. Advances in multi-objectives (MO) optimization techniques and ever growing computing power make it possible to design reservoir operating policies that represent Pareto-optimal tradeoffs between the multiple interests analysed. These progresses if on one hand are likely to enhance performances of commonly targeted objectives (such as hydropower production or water supply), on the other risk to strongly penalize all the interests not directly (i.e. mathematically) optimized within the MO algorithm. Alteration of hydrological regime, although is a well established cause of ecological degradation and its evaluation and rehabilitation are commonly required by recent legislation (as the Water Framework Directive in Europe), is rarely embedded as an objective in MO planning of optimal releases from reservoirs. Moreover, even when it is explicitly considered, the criteria adopted for its evaluation are doubted and not commonly trusted, undermining the possibility of real implementation of environmentally friendly policies. The main challenges in defining and assessing hydrological alterations are: how to define a reference state (referencing); how to define criteria upon which to build mathematical indicators of alteration (measuring); and finally how to aggregate the indicators in a single evaluation index that can be embedded in a MO optimization problem (valuing). This paper aims to address these issues by: i) discussing benefits and constrains of different approaches to referencing, measuring and valuing hydrological alteration; ii) testing two alternative indices of hydrological alteration in the context of MO problems, one based on the established framework of Indices of Hydrological Alteration (IHA, Richter et al., 1996), and a novel satisfying the mathematical properties required by widely used optimization methods based on dynamic programming; iii) discussing the ranking provided by the proposed indices for a case study in Italy where different operating policies were designed using a MO algorithm, taking into account hydropower production, irrigation supply and flood mitigation and imposing different type of minimum environmental flow; iv) providing a framework to effectively include hydrological alteration within MO problem of reservoir management. Richter, B.D., Baumgartner, J.V., Powell, J., Braun, D.P., 1996, A Method for Assessing Hydrologic Alteration within Ecosystems, Conservation Biology, 10(4), 1163-1174.

  18. Using single cell sequencing data to model the evolutionary history of a tumor.

    PubMed

    Kim, Kyung In; Simon, Richard

    2014-01-24

    The introduction of next-generation sequencing (NGS) technology has made it possible to detect genomic alterations within tumor cells on a large scale. However, most applications of NGS show the genetic content of mixtures of cells. Recently developed single cell sequencing technology can identify variation within a single cell. Characterization of multiple samples from a tumor using single cell sequencing can potentially provide information on the evolutionary history of that tumor. This may facilitate understanding how key mutations accumulate and evolve in lineages to form a heterogeneous tumor. We provide a computational method to infer an evolutionary mutation tree based on single cell sequencing data. Our approach differs from traditional phylogenetic tree approaches in that our mutation tree directly describes temporal order relationships among mutation sites. Our method also accommodates sequencing errors. Furthermore, we provide a method for estimating the proportion of time from the earliest mutation event of the sample to the most recent common ancestor of the sample of cells. Finally, we discuss current limitations on modeling with single cell sequencing data and possible improvements under those limitations. Inferring the temporal ordering of mutational sites using current single cell sequencing data is a challenge. Our proposed method may help elucidate relationships among key mutations and their role in tumor progression.

  19. F429 Regulation of Tunnels in Cytochrome P450 2B4: A Top Down Study of Multiple Molecular Dynamics Simulations

    PubMed Central

    Mancini, Giordano; Zazza, Costantino

    2015-01-01

    The root causes of the outcomes of the single-site mutation in enzymes remain by and large not well understood. This is the case of the F429H mutant of the cytochrome P450 (CYP) 2B4 enzyme where the substitution, on the proximal surface of the active site, of a conserved phenylalanine 429 residue with histidine seems to hamper the formation of the active species, Compound I (porphyrin cation radical-Fe(IV) = O, Cpd I) from the ferric hydroperoxo (Fe(III)OOH-, Cpd 0) precursor. Here we report a study based on extensive molecular dynamic (MD) simulations of 4 CYP-2B4 point mutations compared to the WT enzyme, having the goal of better clarifying the importance of the proximal Phe429 residue on CYP 2B4 catalytic properties. To consolidate the huge amount of data coming from five simulations and extract the most distinct structural features of the five species studied we made an extensive use of cluster analysis. The results show that all studied single polymorphisms of F429, with different side chain properties: i) drastically alter the reservoir of conformations accessible by the protein, perturbing global dynamics ii) expose the thiolate group of residue Cys436 to the solvent, altering the electronic properties of Cpd0 and iii) affect the various ingress and egress channels connecting the distal sites with the bulk environment, altering the reversibility of these channels. In particular, it was observed that the wild type enzyme exhibits unique structural features as compared to all mutant species in terms of weak interactions (hydrogen bonds) that generate a completely different dynamical behavior of the complete system. Albeit not conclusive, the current computational investigation sheds some light on the subtle and critical effects that proximal single-site mutations can exert on the functional mechanisms of human microsomal CYPs which should go rather far beyond local structure characterization. PMID:26415031

  20. F429 Regulation of Tunnels in Cytochrome P450 2B4: A Top Down Study of Multiple Molecular Dynamics Simulations.

    PubMed

    Mancini, Giordano; Zazza, Costantino

    2015-01-01

    The root causes of the outcomes of the single-site mutation in enzymes remain by and large not well understood. This is the case of the F429H mutant of the cytochrome P450 (CYP) 2B4 enzyme where the substitution, on the proximal surface of the active site, of a conserved phenylalanine 429 residue with histidine seems to hamper the formation of the active species, Compound I (porphyrin cation radical-Fe(IV) = O, Cpd I) from the ferric hydroperoxo (Fe(III)OOH-, Cpd 0) precursor. Here we report a study based on extensive molecular dynamic (MD) simulations of 4 CYP-2B4 point mutations compared to the WT enzyme, having the goal of better clarifying the importance of the proximal Phe429 residue on CYP 2B4 catalytic properties. To consolidate the huge amount of data coming from five simulations and extract the most distinct structural features of the five species studied we made an extensive use of cluster analysis. The results show that all studied single polymorphisms of F429, with different side chain properties: i) drastically alter the reservoir of conformations accessible by the protein, perturbing global dynamics ii) expose the thiolate group of residue Cys436 to the solvent, altering the electronic properties of Cpd0 and iii) affect the various ingress and egress channels connecting the distal sites with the bulk environment, altering the reversibility of these channels. In particular, it was observed that the wild type enzyme exhibits unique structural features as compared to all mutant species in terms of weak interactions (hydrogen bonds) that generate a completely different dynamical behavior of the complete system. Albeit not conclusive, the current computational investigation sheds some light on the subtle and critical effects that proximal single-site mutations can exert on the functional mechanisms of human microsomal CYPs which should go rather far beyond local structure characterization.

  1. High-resolution, label-free two-photon imaging of diseased human corneas

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Breunig, Hans Georg; König, Aisada; Schindele, Andreas; Hager, Tobias; Seitz, Berthold; König, Karsten

    2018-03-01

    The diagnosis of corneal diseases may be improved by monitoring the metabolism of cells and the structural organization of the stroma using two-photon imaging (TPI). We used TPI to assess the differences between nonpathological (NP) human corneas and corneas diagnosed with either keratoconus, Acanthamoeba keratitis, or stromal corneal scars. Images were acquired using a custom-built five-dimensional laser-scanning microscope with a broadband sub-15 femtosecond near-infrared pulsed excitation laser and a 16-channel photomultiplier tube detector in combination with a time-correlated single photon counting module. Morphological alterations of epithelial cells were observed for all pathologies. Moreover, diseased corneas showed alterations to the cells' metabolism that were revealed using the NAD(P)H free to protein-bound ratios. The mean autofluorescence lifetime of the stroma and the organization of the collagen fibers were also significantly altered due to the pathologies. We demonstrate that TPI can be used to distinguish between NP and diseased human corneas, based not only on alterations of the cells' morphology, which can also be evaluated using current clinical devices, but on additional morphological and functional features such as the organization of the stroma and the cells' metabolism. Therefore, TPI could become an efficient tool for diagnosing corneal diseases and better understanding the biological processes of the diseases.

  2. A Molecular Basis of Cancer.

    ERIC Educational Resources Information Center

    Weinberg, Robert A.

    1983-01-01

    Discusses the molecular basis of cancer, focusing on genetics of the disease. Indicates that human cancers are initiated by oncogenes (altered versions of normal genes) and that in one case the critical alteration is a single point mutation that changes one amino acid in the protein encoded by the gene. (JN)

  3. Identification of constrained cancer driver genes based on mutation timing.

    PubMed

    Sakoparnig, Thomas; Fried, Patrick; Beerenwinkel, Niko

    2015-01-01

    Cancer drivers are genomic alterations that provide cells containing them with a selective advantage over their local competitors, whereas neutral passengers do not change the somatic fitness of cells. Cancer-driving mutations are usually discriminated from passenger mutations by their higher degree of recurrence in tumor samples. However, there is increasing evidence that many additional driver mutations may exist that occur at very low frequencies among tumors. This observation has prompted alternative methods for driver detection, including finding groups of mutually exclusive mutations and incorporating prior biological knowledge about gene function or network structure. Dependencies among drivers due to epistatic interactions can also result in low mutation frequencies, but this effect has been ignored in driver detection so far. Here, we present a new computational approach for identifying genomic alterations that occur at low frequencies because they depend on other events. Unlike passengers, these constrained mutations display punctuated patterns of occurrence in time. We test this driver-passenger discrimination approach based on mutation timing in extensive simulation studies, and we apply it to cross-sectional copy number alteration (CNA) data from ovarian cancer, CNA and single-nucleotide variant (SNV) data from breast tumors and SNV data from colorectal cancer. Among the top ranked predicted drivers, we find low-frequency genes that have already been shown to be involved in carcinogenesis, as well as many new candidate drivers. The mutation timing approach is orthogonal and complementary to existing driver prediction methods. It will help identifying from cancer genome data the alterations that drive tumor progression.

  4. Identification of Constrained Cancer Driver Genes Based on Mutation Timing

    PubMed Central

    Sakoparnig, Thomas; Fried, Patrick; Beerenwinkel, Niko

    2015-01-01

    Cancer drivers are genomic alterations that provide cells containing them with a selective advantage over their local competitors, whereas neutral passengers do not change the somatic fitness of cells. Cancer-driving mutations are usually discriminated from passenger mutations by their higher degree of recurrence in tumor samples. However, there is increasing evidence that many additional driver mutations may exist that occur at very low frequencies among tumors. This observation has prompted alternative methods for driver detection, including finding groups of mutually exclusive mutations and incorporating prior biological knowledge about gene function or network structure. Dependencies among drivers due to epistatic interactions can also result in low mutation frequencies, but this effect has been ignored in driver detection so far. Here, we present a new computational approach for identifying genomic alterations that occur at low frequencies because they depend on other events. Unlike passengers, these constrained mutations display punctuated patterns of occurrence in time. We test this driver–passenger discrimination approach based on mutation timing in extensive simulation studies, and we apply it to cross-sectional copy number alteration (CNA) data from ovarian cancer, CNA and single-nucleotide variant (SNV) data from breast tumors and SNV data from colorectal cancer. Among the top ranked predicted drivers, we find low-frequency genes that have already been shown to be involved in carcinogenesis, as well as many new candidate drivers. The mutation timing approach is orthogonal and complementary to existing driver prediction methods. It will help identifying from cancer genome data the alterations that drive tumor progression. PMID:25569148

  5. Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions.

    PubMed

    Son, Donghee; Park, Sung Young; Kim, Byeongju; Koh, Jun Tae; Kim, Tae Hyun; An, Sangmin; Jang, Doyoung; Kim, Gyu Tae; Jhe, Wonho; Hong, Seunghun

    2011-05-24

    We developed a nanoneedle transistor-based sensor (NTS) for the selective detection of calcium ions inside a living cell. In this work, a single-walled carbon nanotube-based field effect transistor (swCNT-FET) was first fabricated at the end of a glass nanopipette and functionalized with Fluo-4-AM probe dye. The selective binding of calcium ions onto the dye molecules altered the charge state of the dye molecules, resulting in the change of the source-drain current of the swCNT-FET as well as the fluorescence intensity from the dye. We demonstrated the electrical and fluorescence detection of the concentration change of intracellular calcium ions inside a HeLa cell using the NTS.

  6. integIRTy: a method to identify genes altered in cancer by accounting for multiple mechanisms of regulation using item response theory.

    PubMed

    Tong, Pan; Coombes, Kevin R

    2012-11-15

    Identifying genes altered in cancer plays a crucial role in both understanding the mechanism of carcinogenesis and developing novel therapeutics. It is known that there are various mechanisms of regulation that can lead to gene dysfunction, including copy number change, methylation, abnormal expression, mutation and so on. Nowadays, all these types of alterations can be simultaneously interrogated by different types of assays. Although many methods have been proposed to identify altered genes from a single assay, there is no method that can deal with multiple assays accounting for different alteration types systematically. In this article, we propose a novel method, integration using item response theory (integIRTy), to identify altered genes by using item response theory that allows integrated analysis of multiple high-throughput assays. When applied to a single assay, the proposed method is more robust and reliable than conventional methods such as Student's t-test or the Wilcoxon rank-sum test. When used to integrate multiple assays, integIRTy can identify novel-altered genes that cannot be found by looking at individual assay separately. We applied integIRTy to three public cancer datasets (ovarian carcinoma, breast cancer, glioblastoma) for cross-assay type integration which all show encouraging results. The R package integIRTy is available at the web site http://bioinformatics.mdanderson.org/main/OOMPA:Overview. kcoombes@mdanderson.org. Supplementary data are available at Bioinformatics online.

  7. Genomic analysis using high density SNP based oligonucleotide arrays and MLPA provides a comprehensive analysis of INI1/SMARCB1 in malignant rhabdoid tumors

    PubMed Central

    Jackson, Eric M.; Sievert, Angela J.; Gai, Xiaowu; Hakonarson, Hakon; Judkins, Alexander R; Tooke, Laura; Perin, Juan Carlos; Xie, Hongbo; Shaikh, Tamim H.; Biegel, Jaclyn A.

    2009-01-01

    Translational Relevance Previous reports suggested that abnormalities of INI1 could be detected in 70–75% of malignant rhabdoid tumors. The mechanism of inactivation in the other 25% remained unclear. The goal of this study was to perform a high-resolution genomic analysis of a large series of rhabdoid tumors with the expectation of identifying additional loci related to the initiation or progression of these malignancies. We also developed a comprehensive set of assays, including a new MLPA assay, to interrogate the INI1 locus in 22q11.2. Intragenic deletions could be detected using the Illumina 550K Beadchip, whereas single exon deletions could be detected using MLPA. The current study demonstrates that with a multi-platform approach, alterations at the INI1 locus can be detected in almost all cases. Thus, appropriate molecular genetic testing can be used as an aid in the diagnosis and for treatment planning for most patients. Purpose A high-resolution genomic profiling and comprehensive targeted analysis of INI1/SMARCB1 of a large series of pediatric rhabdoid tumors was performed. The aim was to identify regions of copy number change and loss of heterozygosity that might pinpoint additional loci involved in the development or progression of rhabdoid tumors, and define the spectrum of genomic alterations of INI1 in this malignancy. Experimental Design A multi-platform approach, utilizing Illumina single nucleotide polymorphism (SNP) based oligonucleotide arrays, multiplex ligation dependent probe amplification (MLPA), fluorescence in situ hybridization (FISH), and coding sequence analysis was used to characterize genome wide copy number changes, loss of heterozygosity, and genomic alterations of INI1/SMARCB1 in a series of pediatric rhabdoid tumors. Results The bi-allelic alterations of INI1 that led to inactivation were elucidated in 50 of 51 tumors. INI1 inactivation was demonstrated by a variety of mechanisms, including deletions, mutations, and loss of heterozygosity. The results from the array studies highlighted the complexity of rearrangements of chromosome 22, compared to the low frequency of alterations involving the other chromosomes. Conclusions The results from the genome wide SNP-array analysis suggest that INI1 is the primary tumor suppressor gene involved in the development of rhabdoid tumors with no second locus identified. In addition, we did not identify hot spots for the breakpoints in sporadic tumors with deletions of chromosome 22q11.2. By employing a multimodality approach, the wide spectrum of alterations of INI1 can be identified in the majority of patients, which increases the clinical utility of molecular diagnostic testing. PMID:19276269

  8. sapFinder: an R/Bioconductor package for detection of variant peptides in shotgun proteomics experiments.

    PubMed

    Wen, Bo; Xu, Shaohang; Sheynkman, Gloria M; Feng, Qiang; Lin, Liang; Wang, Quanhui; Xu, Xun; Wang, Jun; Liu, Siqi

    2014-11-01

    Single nucleotide variations (SNVs) located within a reading frame can result in single amino acid polymorphisms (SAPs), leading to alteration of the corresponding amino acid sequence as well as function of a protein. Accurate detection of SAPs is an important issue in proteomic analysis at the experimental and bioinformatic level. Herein, we present sapFinder, an R software package, for detection of the variant peptides based on tandem mass spectrometry (MS/MS)-based proteomics data. This package automates the construction of variation-associated databases from public SNV repositories or sample-specific next-generation sequencing (NGS) data and the identification of SAPs through database searching, post-processing and generation of HTML-based report with visualized interface. sapFinder is implemented as a Bioconductor package in R. The package and the vignette can be downloaded at http://bioconductor.org/packages/devel/bioc/html/sapFinder.html and are provided under a GPL-2 license. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Lymphatic filarial species differentiation using evolutionarily modified tandem repeats: generation of new genetic markers.

    PubMed

    Sakthidevi, Moorthy; Murugan, Vadivel; Hoti, Sugeerappa Laxmanappa; Kaliraj, Perumal

    2010-05-01

    Polymerase chain reaction based methods are promising tools for the monitoring and evaluation of the Global Program for the Elimination of Lymphatic Filariasis. The currently available PCR methods do not differentiate the DNA of Wuchereria bancrofti or Brugia malayi by a single PCR and hence are cumbersome. Therefore, we designed a single step PCR strategy for differentiating Bancroftian infection from Brugian infection based on a newly identified gene from the W. bancrofti genome, abundant larval transcript-2 (alt-2), which is abundantly expressed. The difference in PCR product sizes generated from the presence or absence of evolutionarily altered tandem repeats in alt-2 intron-3 differentiated W. bancrofti from B. malayi. The analysis was performed on the genomic DNA of microfilariae from a number of patient blood samples or microfilariae positive slides from different Indian geographical regions. The assay gave consistent results, differentiating the two filarial parasite species accurately. This alt-2 intron-3 based PCR assay can be a potential tool for the diagnosis and differentiation of co-infections by lymphatic filarial parasites. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  10. Reduced mechanosensitivity of duodenal vagal afferent neurons after an acute switch from milk-based to plant-based diets in anaesthetized pigs.

    PubMed

    Bligny, D; Blat, S; Chauvin, A; Guérin, S; Malbert, C-H

    2005-06-01

    Acute changes in diet composition and/or origin alter gastric emptying and gastrointestinal motility. One of the hypotheses explaining these alterations involves changes in the sensitivity of duodenal vagal sensory neurons. The aim of this study was to evaluate the characteristics of multimodal duodenal vagal sensory neurons in 20 pigs feed either with milk-based or plant-based diets of identical caloric content. Twenty duodenal vagal afferents were recorded in anesthetized animal from the cervical vagus using the single fiber method. 10 pigs were fed with a milk-based diet (MD) for one month while the diet of the 10 other pigs was changed for plant-based diet (PD) the day preceding the recording session. The behavior of the receptors was tested in basal resting conditions and after challenges with duodenal intralipid and close intra-arterial injection of CCK, 5-HT or capsaicin with and without isovolumetric duodenal distensions at 20, 40 and 60 mmHg. All receptors were slowly adapting C type fiber with a receptor field located 6-7 cm distal to the pylorus. The rate of discharge during distension (20, 40 and 60 mmHg) combined with duodenal intralipid was significantly larger for MD compared with PD. Similarly, the rate of discharge observed during distensions performed with CCK and with 5-HT were greater for MD compared with PD while CCK and 5-HT without distension were equally stimulating for MD and PD. No significant difference was found between groups during capsaicin infusion irrespective of the stimulating pressure. In conclusion, a switch to plant-based diet, when compared to a milk-based diet, results in an overall decrease in mechanical sensitivity of duodenal neurons during lipid, 5HT and CCK challenges, but not in basal conditions or after capsaicin. This reduced sensitivity to distension may explain the diet-induced alteration of gastric emptying that is controlled primarily through a vago-vagal reflex.

  11. Genotype-specific signal generation based on digestion of 3-way DNA junctions: application to KRAS variation detection.

    PubMed

    Amicarelli, Giulia; Adlerstein, Daniel; Shehi, Erlet; Wang, Fengfei; Makrigiorgos, G Mike

    2006-10-01

    Genotyping methods that reveal single-nucleotide differences are useful for a wide range of applications. We used digestion of 3-way DNA junctions in a novel technology, OneCutEventAmplificatioN (OCEAN) that allows sequence-specific signal generation and amplification. We combined OCEAN with peptide-nucleic-acid (PNA)-based variant enrichment to detect and simultaneously genotype v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) codon 12 sequence variants in human tissue specimens. We analyzed KRAS codon 12 sequence variants in 106 lung cancer surgical specimens. We conducted a PNA-PCR reaction that suppresses wild-type KRAS amplification and genotyped the product with a set of OCEAN reactions carried out in fluorescence microplate format. The isothermal OCEAN assay enabled a 3-way DNA junction to form between the specific target nucleic acid, a fluorescently labeled "amplifier", and an "anchor". The amplifier-anchor contact contains the recognition site for a restriction enzyme. Digestion produces a cleaved amplifier and generation of a fluorescent signal. The cleaved amplifier dissociates from the 3-way DNA junction, allowing a new amplifier to bind and propagate the reaction. The system detected and genotyped KRAS sequence variants down to approximately 0.3% variant-to-wild-type alleles. PNA-PCR/OCEAN had a concordance rate with PNA-PCR/sequencing of 93% to 98%, depending on the exact implementation. Concordance rate with restriction endonuclease-mediated selective-PCR/sequencing was 89%. OCEAN is a practical and low-cost novel technology for sequence-specific signal generation. Reliable analysis of KRAS sequence alterations in human specimens circumvents the requirement for sequencing. Application is expected in genotyping KRAS codon 12 sequence variants in surgical specimens or in bodily fluids, as well as single-base variations and sequence alterations in other genes.

  12. A microdot multilayer oxide device: let us tune the strain-ionic transport interaction.

    PubMed

    Schweiger, Sebastian; Kubicek, Markus; Messerschmitt, Felix; Murer, Christoph; Rupp, Jennifer L M

    2014-05-27

    In this paper, we present a strategy to use interfacial strain in multilayer heterostructures to tune their resistive response and ionic transport as active component in an oxide-based multilayer microdot device on chip. For this, fabrication of strained multilayer microdot devices with sideways attached electrodes is reported with the material system Gd0.1Ce0.9O(2-δ)/Er2O3. The fast ionic conducting Gd0.1Ce0.9O(2-δ) single layers are altered in lattice strain by the electrically insulating erbia phases of a microdot. The strain activated volume of the Gd0.1Ce0.9O(2-δ) is investigated by changing the number of individual layers from 1 to 60 while keeping the microdot at a constant thickness; i.e., the proportion of strained volume was systematically varied. Electrical measurements showed that the activation energy of the devices could be altered by Δ0.31 eV by changing the compressive strain of a microdot ceria-based phase by more than 1.16%. The electrical conductivity data is analyzed and interpreted with a strain volume model and defect thermodynamics. Additionally, an equivalent circuit model is presented for sideways contacted multilayer microdots. We give a proof-of-concept for microdot contacting to capture real strain-ionic transport effects and reveal that for classic top-electrode contacting the effect is nil, highlighting the need for sideways electric contacting on a nanoscopic scale. The near order ionic transport interaction is supported by Raman spectroscopy measurements. These were conducted and analyzed together with fully relaxed single thin film samples. Strain states are described relative to the strain activated volumes of Gd0.1Ce0.9O(2-δ) in the microdot multilayer. These findings reveal that strain engineering in microfabricated devices allows altering the ionic conduction over a wide range beyond classic doping strategies for single films. The reported fabrication route and concept of strained multilayer microdots is a promising path for applying strained multilayer oxides as active new building blocks relevant for a broad range of microelectrochemical devices, e.g., resistive switching memory prototypes, resistive or electrochemical sensors, or as active catalytic solid state surface components for microfuel cells or all-solid-state batteries.

  13. Neurons as sensors: individual and cascaded chemical sensing.

    PubMed

    Prasad, Shalini; Zhang, Xuan; Yang, Mo; Ozkan, Cengiz S; Ozkan, Mihrimah

    2004-07-15

    A single neuron sensor has been developed based on the interaction of gradient electric fields and the cell membrane. Single neurons are rapidly positioned over individual microelectrodes using positive dielectrophoretic traps. This enables the continuous extracellular electrophysiological measurements from individual neurons. The sensor developed using this technique provides the first experimental method for determining single cell sensitivity; the speed of response and the associated physiological changes to a broad spectrum of chemical agents. Binding of specific chemical agents to a specific combination of receptors induces changes to the extracellular membrane potential of a single neuron, which can be translated into unique "signature patterns" (SP), which function as identification tags. Signature patterns are derived using Fast Fourier Transformation (FFT) analysis and Wavelet Transformation (WT) analysis of the modified extracellular action potential. The validity and the sensitivity of the system are demonstrated for a variety of chemical agents ranging from behavior altering chemicals (ethanol), environmentally hazardous agents (hydrogen peroxide, EDTA) to physiologically harmful agents (pyrethroids) at pico- and femto-molar concentrations. The ability of a single neuron to selectively identify specific chemical agents when injected in a serial manner is demonstrated in "cascaded sensing".

  14. Scaleable two-component gelator from phthalic acid derivatives and primary alkyl amines: acid-base interaction in the cooperative assembly.

    PubMed

    Su, Ting; Hong, Kwon Ho; Zhang, Wannian; Li, Fei; Li, Qiang; Yu, Fang; Luo, Genxiang; Gao, Honghe; He, Yu-Peng

    2017-06-07

    A series of phthalic acid derivatives (P) with a carbon-chain tail was designed and synthesized as single-component gelators. A combination of the single-component gelator P and a non-gelling additive n-alkylamine A through acid-base interaction brought about a series of novel phase-selective two-component gelators PA. The gelation capabilities of P and PA, and the structural, morphological, thermo-dynamic and rheological properties of the corresponding gels were investigated. A molecular dynamics simulation showed that the H-bonding network in PA formed between the NH of A and the carbonyl oxygen of P altered the assembly process of gelator P. Crude PA could be synthesized through a one-step process without any purification and could selectively gel the oil phase without a typical heating-cooling process. Moreover, such a crude PA and its gelation process could be amplified to the kilogram scale with high efficiency, which offers a practical economically viable solution to marine oil-spill recovery.

  15. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy

    PubMed Central

    Valera, Alexandra; López-Guillermo, Armando; Cardesa-Salzmann, Teresa; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Espinosa, Íñigo; Novelli, Silvana; Briones, Javier; Mate, José L.; Salamero, Olga; Sancho, Juan M.; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina; Martínez, Daniel; Castillo, Paola; Rovira, Jordina; Martínez, Antonio; Campo, Elias; Colomo, Luis

    2013-01-01

    MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters. PMID:23716551

  16. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy.

    PubMed

    Valera, Alexandra; López-Guillermo, Armando; Cardesa-Salzmann, Teresa; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Espinosa, Iñigo; Novelli, Silvana; Briones, Javier; Mate, José L; Salamero, Olga; Sancho, Juan M; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina; Martínez, Daniel; Castillo, Paola; Rovira, Jordina; Martínez, Antonio; Campo, Elias; Colomo, Luis

    2013-10-01

    MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters.

  17. Characterization of Escherichia coli Type 1 Pilus Mutants with Altered Binding Specificities

    PubMed Central

    Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Hamrick, Terri S.; Horton, John R.; Orndorff, Paul E.

    2001-01-01

    PCR mutagenesis and a unique enrichment scheme were used to obtain two mutants, each with a single lesion in fimH, the chromosomal gene that encodes the adhesin protein (FimH) of Escherichia coli type 1 pili. These mutants were noteworthy in part because both were altered in the normal range of cell types bound by FimH. One mutation altered an amino acid at a site previously shown to be involved in temperature-dependent binding, and the other altered an amino acid lining the predicted FimH binding pocket. PMID:11395476

  18. Enzymatically Generated CRISPR Libraries for Genome Labeling and Screening.

    PubMed

    Lane, Andrew B; Strzelecka, Magdalena; Ettinger, Andreas; Grenfell, Andrew W; Wittmann, Torsten; Heald, Rebecca

    2015-08-10

    CRISPR-based technologies have emerged as powerful tools to alter genomes and mark chromosomal loci, but an inexpensive method for generating large numbers of RNA guides for whole genome screening and labeling is lacking. Using a method that permits library construction from any source of DNA, we generated guide libraries that label repetitive loci or a single chromosomal locus in Xenopus egg extracts and show that a complex library can target the E. coli genome at high frequency. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Single-sweep spectral analysis of contact heat evoked potentials: a novel approach to identify altered cortical processing after morphine treatment

    PubMed Central

    Hansen, Tine M; Graversen, Carina; Frøkjær, Jens B; Olesen, Anne E; Valeriani, Massimiliano; Drewes, Asbjørn M

    2015-01-01

    Aims The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single-sweep characteristics to identify alterations induced by morphine. Methods In a crossover study 15 single-sweep CHEPs were analyzed from 62 electroencephalography electrodes in 26 healthy volunteers before and after administration of morphine or placebo. Each sweep was decomposed by a continuous wavelet transform to obtain normalized spectral indices in the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–32 Hz) and gamma (32–80 Hz) bands. The average distribution over all sweeps and channels was calculated for the four recordings for each volunteer, and the two recordings before treatments were assessed for reproducibility. Baseline corrected spectral indices after morphine and placebo treatments were compared to identify alterations induced by morphine. Results Reproducibility between baseline CHEPs was demonstrated. As compared with placebo, morphine decreased the spectral indices in the delta and theta bands by 13% (P = 0.04) and 9% (P = 0.007), while the beta and gamma bands were increased by 10% (P = 0.006) and 24% (P = 0.04). Conclusion The decreases in the delta and theta band are suggested to represent a decrease in the pain specific morphology of the CHEPs, which indicates a diminished pain response after morphine administration. Hence, assessment of spectral indices in single-sweep CHEPs can be used to study cortical mechanisms induced by morphine treatment. PMID:25556985

  20. Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress.

    PubMed

    Bharwani, Aadil; Mian, M Firoz; Surette, Michael G; Bienenstock, John; Forsythe, Paul

    2017-01-11

    Stress-related disorders involve systemic alterations, including disruption of the intestinal microbial community. Given the putative connections between the microbiota, immunity, neural function, and behaviour, we investigated the potential for microbe-induced gut-to-brain signalling to modulate the impact of stress on host behaviour and immunoregulation. Male C57BL/6 mice treated orally over 28 days with either Lactobacillus rhamnosus (JB-1) ™ or vehicle were subjected to chronic social defeat and assessed for alterations in behaviour and immune cell phenotype. 16S rRNA sequencing and mass spectrometry were employed to analyse the faecal microbial community and metabolite profile. Treatment with JB-1 decreased stress-induced anxiety-like behaviour and prevented deficits in social interaction with conspecifics. However, JB-1 did not alter development of aggressor avoidance following social defeat. Microbial treatment attenuated stress-related activation of dendritic cells while increasing IL-10+ regulatory T cells. Furthermore, JB-1 modulated the effect of stress on faecal metabolites with neuroactive and immunomodulatory properties. Exposure to social defeat altered faecal microbial community composition and reduced species richness and diversity, none of which was prevented by JB-1. Stress-related microbiota disruptions persisted in vehicle-treated mice for 3 weeks following stressor cessation. These data demonstrate that despite the complexity of the gut microbiota, exposure to a single microbial strain can protect against certain stress-induced behaviours and systemic immune alterations without preventing dysbiosis. This work supports microbe-based interventions for stress-related disorders.

  1. Ocean acidification alters zooplankton communities and increases top-down pressure of a cubozoan predator.

    PubMed

    Hammill, Edd; Johnson, Ellery; Atwood, Trisha B; Harianto, Januar; Hinchliffe, Charles; Calosi, Piero; Byrne, Maria

    2018-01-01

    The composition of local ecological communities is determined by the members of the regional community that are able to survive the abiotic and biotic conditions of a local ecosystem. Anthropogenic activities since the industrial revolution have increased atmospheric CO 2 concentrations, which have in turn decreased ocean pH and altered carbonate ion concentrations: so called ocean acidification (OA). Single-species experiments have shown how OA can dramatically affect zooplankton development, physiology and skeletal mineralization status, potentially reducing their defensive function and altering their predatory and antipredatory behaviors. This means that increased OA may indirectly alter the biotic conditions by modifying trophic interactions. We investigated how OA affects the impact of a cubozoan predator on their zooplankton prey, predominantly Copepoda, Pleocyemata, Dendrobranchiata, and Amphipoda. Experimental conditions were set at either current (pCO 2 370 μatm) or end-of-the-century OA (pCO 2 1,100 μatm) scenarios, crossed in an orthogonal experimental design with the presence/absence of the cubozoan predator Carybdea rastoni. The combined effects of exposure to OA and predation by C. rastoni caused greater shifts in community structure, and greater reductions in the abundance of key taxa than would be predicted from combining the effect of each stressor in isolation. Specifically, we show that in the combined presence of OA and a cubozoan predator, populations of the most abundant member of the zooplankton community (calanoid copepods) were reduced 27% more than it would be predicted based on the effects of these stressors in isolation, suggesting that OA increases the susceptibility of plankton to predation. Our results indicate that the ecological consequences of OA may be greater than predicted from single-species experiments, and highlight the need to understand future marine global change from a community perspective. © 2017 John Wiley & Sons Ltd.

  2. Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy

    PubMed Central

    Lau, Condon; Šćepanović, Obrad; Mirkovic, Jelena; McGee, Sasha; Yu, Chung-Chieh; Fulghum, Stephen; Wallace, Michael; Tunnell, James; Bechtel, Kate; Feld, Michael

    2009-01-01

    Model-based light scattering spectroscopy (LSS) seemed a promising technique for in-vivo diagnosis of dysplasia in multiple organs. In the studies, the residual spectrum, the difference between the observed and modeled diffuse reflectance spectra, was attributed to single elastic light scattering from epithelial nuclei, and diagnostic information due to nuclear changes was extracted from it. We show that this picture is incorrect. The actual single scattering signal arising from epithelial nuclei is much smaller than the previously computed residual spectrum, and does not have the wavelength dependence characteristic of Mie scattering. Rather, the residual spectrum largely arises from assuming a uniform hemoglobin distribution. In fact, hemoglobin is packaged in blood vessels, which alters the reflectance. When we include vessel packaging, which accounts for an inhomogeneous hemoglobin distribution, in the diffuse reflectance model, the reflectance is modeled more accurately, greatly reducing the amplitude of the residual spectrum. These findings are verified via numerical estimates based on light propagation and Mie theory, tissue phantom experiments, and analysis of published data measured from Barrett’s esophagus. In future studies, vessel packaging should be included in the model of diffuse reflectance and use of model-based LSS should be discontinued. PMID:19405760

  3. Ingestion of a Multi-Ingredient Supplement Does Not Alter Exercise-Induced Satellite Cell Responses in Older Men.

    PubMed

    Snijders, Tim; Bell, Kirsten E; Nederveen, Joshua P; Saddler, Nelson I; Mazara, Nicole; Kumbhare, Dinesh A; Phillips, Stuart M; Parise, Gianni

    2018-06-01

    Nutritional supplementation can have beneficial effects on body composition, strength, and function in older adults. However, whether the response of satellite cells can be altered by nutritional supplementation in older adults remains unknown. We assessed whether a multi-ingredient protein-based supplement taken over a prolonged period of time could alter the muscle satellite cell response after exercise in older men. Twenty-seven older men [mean ± SD age: 73 ± 1 y; mean ± SD body mass index (kg/m2): 28 ± 1] participated in a randomized double-blind experiment. Participants were randomly divided into an experimental (EXP) group (n = 13) who consumed a multi-ingredient protein-based supplement [30 g whey protein, 2.5 g creatine, 500 IU vitamin D, 400 mg Ca, and 1500 mg n-3 (ω-3) polyunsaturated fatty acids] 2 times/d for 7 wk or a control (CON; 22 g maltodextrin) group (n = 14). After 7 wk of supplementation, all participants performed a single resistance exercise session, and muscle biopsy samples were taken from the vastus lateralis before and 24 and 48 h after exercise. Immunohistochemistry was used to assess the change in type I and II muscle fiber satellite cell content and activation status of the cells. In addition, mRNA expression of the myogenic regulatory factors was determined by using reverse transcriptase-polymerase chain reaction. In response to the single bout of exercise, type I muscle fiber satellite cell content was significantly increased at 24 h (0.132 ± 0.015 and 0.131 ± 0.011 satellite cells/fiber in CON and EXP groups, respectively) and 48 h (0.126 ± 0.010 and 0.120 ± 0.012 satellite cells/fiber in CON and EXP groups, respectively) compared with pre-exercise (0.092 ± 0.007 and 0.118 ± 0.017 satellite cells/fiber in CON and EXP groups, respectively) muscle biopsy samples (P < 0.01), with no difference between the 2 groups. In both groups, we observed no significant changes in type II muscle fiber satellite cell content after exercise. Ingesting a multi-ingredient protein-based supplement for 7 wk did not alter the type I or II muscle fiber satellite cell response during postexercise recovery in older men. This trial was registered at www.clinicaltrials.gov as NCT02281331.

  4. CHANGES IN THE RAT EEG SPECTRA AND CORE TEMPERATURE AFTER EXPOSURE TO DIFFERENT DOSES OF CHLORPYRIFOS.

    EPA Science Inventory

    Our previous study showed that single exposure to 25 mg/kg (p.o.) of organophsphate pesticide chlorpyrifos (CHP) led to significant alterations in all EEG frequency bands within 0.1-50 Hz range, reduction in core temperature (Tc) and motor activity (MA). The alterations in EEG pe...

  5. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers

    PubMed Central

    Blakely, Collin M.; Watkins, Thomas B.K.; Wu, Wei; Gini, Beatrice; Chabon, Jacob J.; McCoach, Caroline E.; McGranahan, Nicholas; Wilson, Gareth A.; Birkbak, Nicolai J.; Olivas, Victor R.; Rotow, Julia; Maynard, Ashley; Wang, Victoria; Gubens, Matthew A.; Banks, Kimberly C.; Lanman, Richard B.; Caulin, Aleah F.; John, John St.; Cordero, Anibal R.; Giannikopoulos, Petros; Simmons, Andrew D.; Mack, Philip C.; Gandara, David R.; Husain, Hatim; Doebele, Robert C.; Riess, Jonathan W.; Diehn, Maximilian; Swanton, Charles; Bivona, Trever G.

    2017-01-01

    A widespread approach to modern cancer therapy is to identify a single oncogenic driver gene and target its mutant protein product (e.g. EGFR inhibitor treatment in EGFR-mutant lung cancers). However, genetically-driven resistance to targeted therapy limits patient survival. Through genomic analysis of 1122 EGFR-mutant lung cancer cell-free DNA samples and whole exome analysis of seven longitudinally collected tumor samples from an EGFR-mutant lung cancer patient, we identify critical co-occurring oncogenic events present in most advanced-stage EGFR-mutant lung cancers. We define new pathways limiting EGFR inhibitor response, including WNT/β-catenin and cell cycle gene (e.g. CDK4, CDK6) alterations. Tumor genomic complexity increases with EGFR inhibitor treatment and co-occurring alterations in CTNNB1, and PIK3CA exhibit non-redundant functions that cooperatively promote tumor metastasis or limit EGFR inhibitor response. This study challenges the prevailing single-gene driver oncogene view and links clinical outcomes to co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancer patients. PMID:29106415

  6. Cell fixation and preservation for droplet-based single-cell transcriptomics.

    PubMed

    Alles, Jonathan; Karaiskos, Nikos; Praktiknjo, Samantha D; Grosswendt, Stefanie; Wahle, Philipp; Ruffault, Pierre-Louis; Ayoub, Salah; Schreyer, Luisa; Boltengagen, Anastasiya; Birchmeier, Carmen; Zinzen, Robert; Kocks, Christine; Rajewsky, Nikolaus

    2017-05-19

    Recent developments in droplet-based microfluidics allow the transcriptional profiling of thousands of individual cells in a quantitative, highly parallel and cost-effective way. A critical, often limiting step is the preparation of cells in an unperturbed state, not altered by stress or ageing. Other challenges are rare cells that need to be collected over several days or samples prepared at different times or locations. Here, we used chemical fixation to address these problems. Methanol fixation allowed us to stabilise and preserve dissociated cells for weeks without compromising single-cell RNA sequencing data. By using mixtures of fixed, cultured human and mouse cells, we first showed that individual transcriptomes could be confidently assigned to one of the two species. Single-cell gene expression from live and fixed samples correlated well with bulk mRNA-seq data. We then applied methanol fixation to transcriptionally profile primary cells from dissociated, complex tissues. Low RNA content cells from Drosophila embryos, as well as mouse hindbrain and cerebellum cells prepared by fluorescence-activated cell sorting, were successfully analysed after fixation, storage and single-cell droplet RNA-seq. We were able to identify diverse cell populations, including neuronal subtypes. As an additional resource, we provide 'dropbead', an R package for exploratory data analysis, visualization and filtering of Drop-seq data. We expect that the availability of a simple cell fixation method will open up many new opportunities in diverse biological contexts to analyse transcriptional dynamics at single-cell resolution.

  7. The Difference a Single Atom Can Make: Synthesis and Design at the Chemistry–Biology Interface

    PubMed Central

    2017-01-01

    A Perspective of work in our laboratory on the examination of biologically active compounds, especially natural products, is presented. In the context of individual programs and along with a summary of our work, selected cases are presented that illustrate the impact single atom changes can have on the biological properties of the compounds. The examples were chosen to highlight single heavy atom changes that improve activity, rather than those that involve informative alterations that reduce or abolish activity. The examples were also chosen to illustrate that the impact of such single-atom changes can originate from steric, electronic, conformational, or H-bonding effects, from changes in functional reactivity, from fundamental intermolecular interactions with a biological target, from introduction of a new or altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the structure. PMID:28945374

  8. Preserving information in neural transmission.

    PubMed

    Sincich, Lawrence C; Horton, Jonathan C; Sharpee, Tatyana O

    2009-05-13

    Along most neural pathways, the spike trains transmitted from one neuron to the next are altered. In the process, neurons can either achieve a more efficient stimulus representation, or extract some biologically important stimulus parameter, or succeed at both. We recorded the inputs from single retinal ganglion cells and the outputs from connected lateral geniculate neurons in the macaque to examine how visual signals are relayed from retina to cortex. We found that geniculate neurons re-encoded multiple temporal stimulus features to yield output spikes that carried more information about stimuli than was available in each input spike. The coding transformation of some relay neurons occurred with no decrement in information rate, despite output spike rates that averaged half the input spike rates. This preservation of transmitted information was achieved by the short-term summation of inputs that geniculate neurons require to spike. A reduced model of the retinal and geniculate visual responses, based on two stimulus features and their associated nonlinearities, could account for >85% of the total information available in the spike trains and the preserved information transmission. These results apply to neurons operating on a single time-varying input, suggesting that synaptic temporal integration can alter the temporal receptive field properties to create a more efficient representation of visual signals in the thalamus than the retina.

  9. Analysis of multiple photoreceptor pigments for phototropism in a mutant of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Konjevic, R.; Khurana, J. P.; Poff, K. L.

    1992-01-01

    The shape of the fluence-response relationship for the phototropic response of the JK224 strain of Arabidopsis thaliana depends on the fluence rate and wavelength of the actinic light. At low fluence rate (0.1 micromole m-2 s-1), the response to 450-nm light is characterized by a single maximum at about 9 micromoles m-2. At higher fluence rate (0.4 micromole m-2 s-1), the response shows two maxima, at 4.5 and 9 micromoles m-2. The response to 510-nm light shows a single maximum at 4.5 micromoles m-2. Unilateral preirradiation with high fluence rate (25 micromoles m-2 s-1) 510-nm light eliminates the maximum at 4.5 micromoles m-2 in the fluence response curve to a subsequent unilateral 450-nm irradiation, while the second maximum at 9 micromoles m-2 is unaffected. Based on these results, it is concluded that a single photoreceptor pigment has been altered in the JK224 strain of Arabidopsis thaliana.

  10. Single-Stranded γPNAs for In Vivo Site-Specific Genome Editing via Watson-Crick Recognition

    PubMed Central

    Bahal, Raman; Quijano, Elias; McNeer, Nicole Ali; Liu, Yanfeng; Bhunia, Dinesh C.; López-Giráldez, Francesco; Fields, Rachel J.; Saltzman, W. Mark; Ly, Danith H.; Glazer, Peter M.

    2014-01-01

    Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction. PMID:25174576

  11. Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition.

    PubMed

    Bahal, Raman; Quijano, Elias; McNeer, Nicole A; Liu, Yanfeng; Bhunia, Dinesh C; Lopez-Giraldez, Francesco; Fields, Rachel J; Saltzman, William M; Ly, Danith H; Glazer, Peter M

    2014-01-01

    Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction.

  12. A Fault-Tolerant Radiation-Robust Mass Storage Concept for Highly Scaled Flash Memory

    NASA Astrophysics Data System (ADS)

    Fuchs, Cristian M.; Trinitis, Carsten; Appel, Nicolas; Langer, Martin

    2015-09-01

    Future spacemissions will require vast amounts of data to be stored and processed aboard spacecraft. While satisfying operational mission requirements, storage systems must guarantee data integrity and recover damaged data throughout the mission. NAND-flash memories have become popular for space-borne high performance mass memory scenarios, though future storage concepts will rely upon highly scaled flash or other memory technologies. With modern flash memory, single bit erasure coding and RAID based concepts are insufficient. Thus, a fully run-time configurable, high performance, dependable storage concept, requiring a minimal set of logic or software. The solution is based on composite erasure coding and can be adjusted for altered mission duration or changing environmental conditions.

  13. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-02-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.

  14. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders

    PubMed Central

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  15. A theoretical model for optical oximetry at the capillary-level by optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Spicer, Graham; Chen, Siyu; Zhang, Hao F.; Yi, Ji; Backman, Vadim

    2017-02-01

    Oxygen saturation (sO2) of RBCs in capillaries can indirectly assess local tissue oxygenation and metabolic function. For example, the altered retinal oxygenation in diabetic retinopathy and local hypoxia during tumor development in cancer are reflected by abnormal sO2 of local capillary networks. However, it is far from clear whether accurate label-free optical oximetry (i.e. measuring hemoglobin sO2) is feasible from dispersed red blood cells (RBCs) at the single-capillary level. The sO2-dependent hemoglobin absorption contrast present in optical scattering signal is complicated by geometry-dependent scattering from RBCs. Here we provide a theoretical model to calculate the backscattering spectra of single RBCs based on the first-order Born approximation, considering the orientation, size variation, and deformation of RBCs. We show that the oscillatory spectral behavior of RBC geometries is smoothed by variations in cell size and orientation, resulting in clear sO2-dependent spectral contrast. In addition, this spectral contrast persists with different deformations of RBCs, allowing the sO2 of individual RBCs in capillaries to be characterized. The theoretical model is verified by Mie theory and experiments using visible light optical coherence tomography (vis-OCT). Thus, this study shows for the first time the feasibility of, and provides a theoretical model for, label-free optical oximetry at the single-capillary level by backscattering-based imaging modalities, challenging the popular view that such measurements are impossible at the single-capillary level. This is promising for in vivo backscattering-based optical oximetry at the single-capillary level, to measure local capillary sO2 for early diagnosis, progression monitoring, and treatment evaluation of diabetic retinopathy and cancer.

  16. Noncoding somatic and inherited single-nucleotide variants converge to promote ESR1 expression in breast cancer.

    PubMed

    Bailey, Swneke D; Desai, Kinjal; Kron, Ken J; Mazrooei, Parisa; Sinnott-Armstrong, Nicholas A; Treloar, Aislinn E; Dowar, Mark; Thu, Kelsie L; Cescon, David W; Silvester, Jennifer; Yang, S Y Cindy; Wu, Xue; Pezo, Rossanna C; Haibe-Kains, Benjamin; Mak, Tak W; Bedard, Philippe L; Pugh, Trevor J; Sallari, Richard C; Lupien, Mathieu

    2016-10-01

    Sustained expression of the estrogen receptor-α (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon estrogen stimulation to establish an oncogenic expression program. Somatic copy number alterations involving the ESR1 gene occur in approximately 1% of ESR1-positive breast cancers, suggesting that other mechanisms underlie the persistent expression of ESR1. We report significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by rs9383590, a functional inherited single-nucleotide variant (SNV) that accounts for several breast cancer risk-associated loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer.

  17. Central Doping of a Foreign Atom into the Silver Cluster for Catalytic Conversion of CO2 toward C-C Bond Formation.

    PubMed

    Liu, Yuanyuan; Chai, Xiaoqi; Cai, Xiao; Chen, Mingyang; Jin, Rongchao; Ding, Weiping; Zhu, Yan

    2018-06-19

    Clusters with an exact number of atoms are of particular research interest in catalysis. Their catalytic behaviors can be potentially altered with the addition or removal of a single atom. Herein we explore the effects of the single-foreign-atom (Au, Pd and Pt) doping into the core of an Ag cluster with 25-atoms on the catalytic properties, where the foreign atom is protected by 24 Ag atoms (i.e., Au@Ag24, Pd@Ag24, and Pt@Ag24). The central doping of a single atom into the Ag25 cluster is found to have a substantial influence on the catalytic performance in the carboxylation reaction of CO2 with terminal alkyne through C-C bond formation to produce propiolic acid. Our studies reveal that the catalytic properties of the cluster catalysts can be dramatically changed with the subtle alteration by a single atom away from the active sites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Balance Training Does Not Alter Reliance on Visual Information during Static Stance in Those with Chronic Ankle Instability: A Systematic Review with Meta-Analysis.

    PubMed

    Song, Kyeongtak; Rhodes, Evan; Wikstrom, Erik A

    2018-04-01

    Visual, vestibular, and somatosensory systems contribute to postural control. Chronic ankle instability (CAI) patients have been observed to have a reduced ability to dynamically shift their reliance among sources of sensory information and rely more heavily on visual information during a single-limb stance relative to uninjured controls. Balance training is proven to improve postural control but there is a lack of evidence regarding the ability of balance training programs to alter the reliance on visual information in CAI patients. Our objective was to determine if balance training alters the reliance on visual information during static stance in CAI patients. The PubMed, CINAHL, and SPORTDiscus databases were searched from their earliest available date to October 2017 using a combination of keywords. Study inclusion criteria consisted of (1) using participants with CAI; (2) use of a balance training intervention; and (3) calculation of an objective measure of static postural control during single-limb stance with eyes open and eyes closed. Sample sizes, means, and standard deviations of single-leg balance measures for eyes-open and eyes-closed testing conditions before and after balance training were extracted from the included studies. Eyes-open to eyes-closed effect sizes [Hedges' g and 95% confidence intervals (CI)] before and after balance training were calculated, and between-study variability for heterogeneity and potential risks of publication bias were examined. Six studies were identified. The overall eyes-open to eyes-closed effect size difference between pre- and post-intervention assessments was not significant (Hedges' g effect size = 0.151, 95% CI = - 0.151 to 0.453, p = 0.26). This result indicates that the utilization of visual information in individuals with CAI during the single-leg balance is not altered after balance training. Low heterogeneity (Q(5) = 2.96, p = 0.71, I 2  = 0%) of the included studies and no publication bias were found. On the basis of our systematic review with meta-analysis, it appears that traditional balance training protocols do not alter the reliance on visual information used by CAI patients during a single-leg stance.

  19. Orthotopic mouse models for the preclinical and translational study of targeted therapies against metastatic human thyroid carcinoma with BRAFV600E or wild-type BRAF

    PubMed Central

    Antonello, ZA; Nucera, C

    2015-01-01

    Molecular signature of advanced and metastatic thyroid carcinoma involves deregulation of multiple fundamental pathways activated in the tumor microenvironment. They include BRAFV600E and AKT that affect tumor initiation, progression and metastasis. Human thyroid cancer orthotopic mouse models are based on human cell lines that generally harbor genetic alterations found in human thyroid cancers. They can reproduce in vivo and in situ (into the thyroid) many features of aggressive and refractory human advanced thyroid carcinomas, including local invasion and metastasis. Humanized orthotopic mouse models seem to be ideal and commonly used for preclinical and translational studies of compounds and therapies not only because they may mimic key aspects of human diseases (e.g. metastasis), but also for their reproducibility. In addition, they might provide the possibility to evaluate systemic effects of treatments. So far, human thyroid cancer in vivo models were mainly used to test single compounds, non selective and selective. Despite the greater antitumor activity and lower toxicity obtained with different selective drugs in respect to non-selective ones, most of them are only able to delay disease progression, which ultimately could restart with similar aggressive behavior. Aggressive thyroid tumors (for example, anaplastic or poorly differentiated thyroid carcinoma) carry several complex genetic alterations that are likely cooperating to promote disease progression and might confer resistance to single-compound approaches. Orthotopic models of human thyroid cancer also hold the potential to be good models for testing novel combinatorial therapies. In this article, we will summarize results on preclinical testing of selective and nonselective single compounds in orthotopic mouse models based on validated human thyroid cancer cell lines harboring the BRAFV600E mutation or with wild-type BRAF. Furthermore, we will discuss the potential use of this model also for combinatorial approaches, which are expected to take place in the upcoming human thyroid cancer basic and clinical research. PMID:24362526

  20. Right Limbic FDG-PET Hypometabolism Correlates with Emotion Recognition and Attribution in Probable Behavioral Variant of Frontotemporal Dementia Patients

    PubMed Central

    Cerami, Chiara; Dodich, Alessandra; Iannaccone, Sandro; Marcone, Alessandra; Lettieri, Giada; Crespi, Chiara; Gianolli, Luigi; Cappa, Stefano F.; Perani, Daniela

    2015-01-01

    The behavioural variant of frontotemporal dementia (bvFTD) is a rare disease mainly affecting the social brain. FDG-PET fronto-temporal hypometabolism is a supportive feature for the diagnosis. It may also provide specific functional metabolic signatures for altered socio-emotional processing. In this study, we evaluated the emotion recognition and attribution deficits and FDG-PET cerebral metabolic patterns at the group and individual levels in a sample of sporadic bvFTD patients, exploring the cognitive-functional correlations. Seventeen probable mild bvFTD patients (10 male and 7 female; age 67.8±9.9) were administered standardized and validated version of social cognition tasks assessing the recognition of basic emotions and the attribution of emotions and intentions (i.e., Ekman 60-Faces test-Ek60F and Story-based Empathy task-SET). FDG-PET was analysed using an optimized voxel-based SPM method at the single-subject and group levels. Severe deficits of emotion recognition and processing characterized the bvFTD condition. At the group level, metabolic dysfunction in the right amygdala, temporal pole, and middle cingulate cortex was highly correlated to the emotional recognition and attribution performances. At the single-subject level, however, heterogeneous impairments of social cognition tasks emerged, and different metabolic patterns, involving limbic structures and prefrontal cortices, were also observed. The derangement of a right limbic network is associated with altered socio-emotional processing in bvFTD patients, but different hypometabolic FDG-PET patterns and heterogeneous performances on social tasks at an individual level exist. PMID:26513651

  1. Translating Music Intelligibly: Musical Paraphrase in the Long 20th Century

    ERIC Educational Resources Information Center

    Orosz, Jeremy White

    2013-01-01

    This dissertation is a study of the practice of musical paraphrase in the long 20th century. Musical paraphrase is defined as the adaptation, alteration, or embellishment of musical material, often borrowed from another source. My project is built around a single guiding question: If a composer borrows music from another source and alters it for…

  2. Biophotonic logic devices based on quantum dots and temporally-staggered Förster energy transfer relays

    NASA Astrophysics Data System (ADS)

    Claussen, Jonathan C.; Algar, W. Russ; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2013-11-01

    Integrating photonic inputs/outputs into unimolecular logic devices can provide significantly increased functional complexity and the ability to expand the repertoire of available operations. Here, we build upon a system previously utilized for biosensing to assemble and prototype several increasingly sophisticated biophotonic logic devices that function based upon multistep Förster resonance energy transfer (FRET) relays. The core system combines a central semiconductor quantum dot (QD) nanoplatform with a long-lifetime Tb complex FRET donor and a near-IR organic fluorophore acceptor; the latter acts as two unique inputs for the QD-based device. The Tb complex allows for a form of temporal memory by providing unique access to a time-delayed modality as an alternate output which significantly increases the inherent computing options. Altering the device by controlling the configuration parameters with biologically based self-assembly provides input control while monitoring changes in emission output of all participants, in both a spectral and temporal-dependent manner, gives rise to two input, single output Boolean Logic operations including OR, AND, INHIBIT, XOR, NOR, NAND, along with the possibility of gate transitions. Incorporation of an enzymatic cleavage step provides for a set-reset function that can be implemented repeatedly with the same building blocks and is demonstrated with single input, single output YES and NOT gates. Potential applications for these devices are discussed in the context of their constituent parts and the richness of available signal.

  3. Biophotonic logic devices based on quantum dots and temporally-staggered Förster energy transfer relays.

    PubMed

    Claussen, Jonathan C; Algar, W Russ; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G; Medintz, Igor L

    2013-12-21

    Integrating photonic inputs/outputs into unimolecular logic devices can provide significantly increased functional complexity and the ability to expand the repertoire of available operations. Here, we build upon a system previously utilized for biosensing to assemble and prototype several increasingly sophisticated biophotonic logic devices that function based upon multistep Förster resonance energy transfer (FRET) relays. The core system combines a central semiconductor quantum dot (QD) nanoplatform with a long-lifetime Tb complex FRET donor and a near-IR organic fluorophore acceptor; the latter acts as two unique inputs for the QD-based device. The Tb complex allows for a form of temporal memory by providing unique access to a time-delayed modality as an alternate output which significantly increases the inherent computing options. Altering the device by controlling the configuration parameters with biologically based self-assembly provides input control while monitoring changes in emission output of all participants, in both a spectral and temporal-dependent manner, gives rise to two input, single output Boolean Logic operations including OR, AND, INHIBIT, XOR, NOR, NAND, along with the possibility of gate transitions. Incorporation of an enzymatic cleavage step provides for a set-reset function that can be implemented repeatedly with the same building blocks and is demonstrated with single input, single output YES and NOT gates. Potential applications for these devices are discussed in the context of their constituent parts and the richness of available signal.

  4. Integration of perception and reasoning in fast neural modules

    NASA Technical Reports Server (NTRS)

    Fritz, David G.

    1989-01-01

    Artificial neural systems promise to integrate symbolic and sub-symbolic processing to achieve real time control of physical systems. Two potential alternatives exist. In one, neural nets can be used to front-end expert systems. The expert systems, in turn, are developed with varying degrees of parallelism, including their implementation in neural nets. In the other, rule-based reasoning and sensor data can be integrated within a single hybrid neural system. The hybrid system reacts as a unit to provide decisions (problem solutions) based on the simultaneous evaluation of data and rules. Discussed here is a model hybrid system based on the fuzzy cognitive map (FCM). The operation of the model is illustrated with the control of a hypothetical satellite that intelligently alters its attitude in space in response to an intersecting micrometeorite shower.

  5. Single or functionalized fullerenes interacting with heme group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Wallison Chaves; Diniz, Eduardo Moraes, E-mail: eduardo.diniz@ufma.br

    The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groupsmore » (−CH{sub 3}, −COOH, −NH{sub 2}, −OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.« less

  6. Dynamic optical arbitrary waveform shaping based on cascaded optical modulators of single FBG.

    PubMed

    Chen, Jingyuan; Li, Peili

    2015-08-10

    A dynamic optical arbitrary waveform generation (O-AWG) with amplitude and phase independently controlled in optical modulators of single fiber Bragg Grating (FBG) has been proposed. This novel scheme consists of several optical modulators. In the optical modulator (O-MOD), a uniform FBG is used to filter spectral component of the input signal. The amplitude is controlled by fiber stretcher (FS) in Mach-Zehnder interference (MZI) structure through interference of two MZI arms. The phase is manipulated via the second FS in the optical modulator. This scheme is investigated by simulation. Consequently, optical pulse trains with different waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width within each period are obtained through FSs adjustment to alter the phase shifts of signal in each O-MOD.

  7. GBM heterogeneity as a function of variable epidermal growth factor receptor variant III activity.

    PubMed

    Lindberg, Olle R; McKinney, Andrew; Engler, Jane R; Koshkakaryan, Gayane; Gong, Henry; Robinson, Aaron E; Ewald, Andrew J; Huillard, Emmanuelle; David James, C; Molinaro, Annette M; Shieh, Joseph T; Phillips, Joanna J

    2016-11-29

    Abnormal activation of the epidermal growth factor receptor (EGFR) due to a deletion of exons 2-7 of EGFR (EGFRvIII) is a common alteration in glioblastoma (GBM). While this alteration can drive gliomagenesis, tumors harboring EGFRvIII are heterogeneous. To investigate the role for EGFRvIII activation in tumor phenotype we used a neural progenitor cell-based murine model of GBM driven by EGFR signaling and generated tumor progenitor cells with high and low EGFRvIII activation, pEGFRHi and pEGFRLo. In vivo, ex vivo, and in vitro studies suggested a direct association between EGFRvIII activity and increased tumor cell proliferation, decreased tumor cell adhesion to the extracellular matrix, and altered progenitor cell phenotype. Time-lapse confocal imaging of tumor cells in brain slice cultures demonstrated blood vessel co-option by tumor cells and highlighted differences in invasive pattern. Inhibition of EGFR signaling in pEGFRHi promoted cell differentiation and increased cell-matrix adhesion. Conversely, increased EGFRvIII activation in pEGFRLo reduced cell-matrix adhesion. Our study using a murine model for GBM driven by a single genetic driver, suggests differences in EGFR activation contribute to tumor heterogeneity and aggressiveness.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weina; Hellinga, Homme W.; Beese, Lorena S.

    Even though high-fidelity polymerases copy DNA with remarkable accuracy, some base-pair mismatches are incorporated at low frequency, leading to spontaneous mutagenesis. Using high-resolution X-ray crystallographic analysis of a DNA polymerase that catalyzes replication in crystals, we observe that a C {center_dot} A mismatch can mimic the shape of cognate base pairs at the site of incorporation. This shape mimicry enables the mismatch to evade the error detection mechanisms of the polymerase, which would normally either prevent mismatch incorporation or promote its nucleolytic excision. Movement of a single proton on one of the mismatched bases alters the hydrogen-bonding pattern such thatmore » a base pair forms with an overall shape that is virtually indistinguishable from a canonical, Watson-Crick base pair in double-stranded DNA. These observations provide structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis, a long-standing concept that has been difficult to demonstrate directly.« less

  9. Tissue slide-based microRNA characterization of tumors: how detailed could diagnosis become for cancer medicine?

    PubMed Central

    Sempere, Lorenzo F

    2014-01-01

    miRNAs are short, non-coding, regulatory RNAs that exert cell type-dependent, context-dependent, transcriptome-wide gene expression control under physiological and pathological conditions. Tissue slide-based assays provide qualitative (tumor compartment) and semi-quantitative (expression levels) information about altered miRNA expression at single-cell resolution in clinical tumor specimens. Reviewed here are key technological advances in the last 5 years that have led to implementation of fully automated, robust and reproducible tissue slide-based assays for in situ miRNA detection on US FDA-approved instruments; recent tissue slide-based discovery studies that suggest potential clinical applications of specific miRNAs in cancer medicine are highlighted; and the challenges in bringing tissue slide-based miRNA assays into the clinic are discussed, including clinical validation, biomarker performance, biomarker space and integration with other biomarkers. PMID:25090088

  10. A genetic algorithms approach for altering the membership functions in fuzzy logic controllers

    NASA Technical Reports Server (NTRS)

    Shehadeh, Hana; Lea, Robert N.

    1992-01-01

    Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.

  11. Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Mertzman, A.

    2006-01-01

    Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.

  12. Whole genome sequencing discriminates hepatocellular carcinoma with intrahepatic metastasis from multi-centric tumors.

    PubMed

    Furuta, Mayuko; Ueno, Masaki; Fujimoto, Akihiro; Hayami, Shinya; Yasukawa, Satoru; Kojima, Fumiyoshi; Arihiro, Koji; Kawakami, Yoshiiku; Wardell, Christopher P; Shiraishi, Yuichi; Tanaka, Hiroko; Nakano, Kaoru; Maejima, Kazuhiro; Sasaki-Oku, Aya; Tokunaga, Naoki; Boroevich, Keith A; Abe, Tetsuo; Aikata, Hiroshi; Ohdan, Hideki; Gotoh, Kunihito; Kubo, Michiaki; Tsunoda, Tatsuhiko; Miyano, Satoru; Chayama, Kazuaki; Yamaue, Hiroki; Nakagawa, Hidewaki

    2017-02-01

    Patients with hepatocellular carcinoma (HCC) have a high-risk of multi-centric (MC) tumor occurrence due to a strong carcinogenic background in the liver. In addition, they have a high risk of intrahepatic metastasis (IM). Liver tumors withIM or MC are profoundly different in their development and clinical outcome. However, clinically or pathologically discriminating between IM and MC can be challenging. This study investigated whether IM or MC could be diagnosed at the molecular level. We performed whole genome and RNA sequencing analyses of 49 tumors including two extra-hepatic metastases, and one nodule-in-nodule tumor from 23 HCC patients. Sequencing-based molecular diagnosis using somatic single nucleotide variation information showed higher sensitivity compared to previous techniques due to the inclusion of a larger number of mutation events. This proved useful in cases, which showed inconsistent clinical diagnoses. In addition, whole genome sequencing offered advantages in profiling of other genetic alterations, such as structural variations, copy number alterations, and variant allele frequencies, and helped to confirm the IM/MCdiagnosis. Divergent alterations between IM tumors with sorafenib treatment, long time-intervals, or tumor-in-tumor nodules indicated high intra-tumor heterogeneity, evolution, and clonal switching of liver cancers. It is important to analyze the differences between IM tumors, in addition to IM/MC diagnosis, before selecting a therapeutic strategy for multiple tumors in the liver. Whole genome sequencing of multiple liver tumors enabled the accuratediagnosis ofmulti-centric occurrence and intrahepatic metastasis using somatic single nucleotide variation information. In addition, genetic discrepancies between tumors help us to understand the physical changes during recurrence and cancer spread. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  13. Modafinil alters decision making based on feedback history - a randomized placebo-controlled double blind study in humans.

    PubMed

    Bellebaum, Christian; Kuchinke, Lars; Roser, Patrik

    2017-02-01

    Modafinil is becoming increasingly popular as a cognitive enhancer. Research on the effects of modafinil on cognitive function have yielded mixed results, with negative findings for simple memory and attention tasks and enhancing effects for more complex tasks. In the present study we examined whether modafinil, due to its known effect on the dopamine level in the striatum, alters feedback-related choice behaviour. We applied a task that separately tests the choice of previously rewarded behaviours (approach) and avoidance of previously punished behaviours. 18 participants received a single dose of 200 mg modafinil. Their performance was compared to a group of 22 participants who received placebo in a double-blind design. Modafinil but not placebo induced a significant bias towards approach behaviour as compared to the frequency of avoidance behaviour. General attention, overall feedback-based acquisition of choice behaviour and reaction times in high vs low conflict choices were not significantly affected by modafinil. This finding suggests that modafinil has a specific effect on dopamine-mediated choice behaviour based on the history of feedback, while a contribution of noradrenaline is also conceivable. The described change in decision making cannot be considered as cognitive enhancement, but might rather have detrimental effects on decisions in everyday life.

  14. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids?

    PubMed Central

    2017-01-01

    Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events. PMID:29181193

  15. Comparison of a single-channel EEG sleep study to polysomnography

    PubMed Central

    Lucey, Brendan P.; McLeland, Jennifer S.; Toedebusch, Cristina D.; Boyd, Jill; Morris, John C.; Landsness, Eric C.; Yamada, Kelvin; Holtzman, David M.

    2016-01-01

    Summary An accurate home sleep study to assess electroencephalography (EEG)-based sleep stages and EEG power would be advantageous for both clinical and research purposes, such as for longitudinal studies measuring changes in sleep stages over time. The purpose of this study was to compare sleep scoring of a single-channel EEG recorded simultaneously on the forehead against attended polysomnography. Participants were recruited from both a clinical sleep center and a longitudinal research study investigating cognitively-normal aging and Alzheimer's disease. Analysis for overall epoch-by-epoch agreement found strong and substantial agreement between the single-channel EEG compared to polysomnography (kappa=0.67). Slow wave activity in the frontal regions was also similar when comparing the single-channel EEG device to polysomnography. As expected, stage N1 showed poor agreement (sensitivity 0.2) due to lack of occipital electrodes. Other sleep parameters such as sleep latency and REM onset latency had decreased agreement. Participants with disrupted sleep consolidation, such as from obstructive sleep apnea, also had poor agreement. We suspect that disagreement in sleep parameters between the single-channel EEG and polysomnography is partially due to altered waveform morphology and/or poorer signal quality in the single-channel derivation. Our results show that single-channel EEG provides comparable results to polysomnography in assessing REM, combined stages N2 and N3 sleep, and several other parameters including frontal slow wave activity. The data establish that single-channel EEG can be a useful research tool. PMID:27252090

  16. Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination.

    PubMed

    Surtees, Jennifer A; Alani, Eric

    2006-07-14

    Genetic studies in Saccharomyces cerevisiae predict that the mismatch repair (MMR) factor MSH2-MSH3 binds and stabilizes branched recombination intermediates that form during single strand annealing and gene conversion. To test this model, we constructed a series of DNA substrates that are predicted to form during these recombination events. We show in an electrophoretic mobility shift assay that S. cerevisiae MSH2-MSH3 specifically binds branched DNA substrates containing 3' single-stranded DNA and that ATP stimulates its release from these substrates. Chemical footprinting analyses indicate that MSH2-MSH3 specifically binds at the double-strand/single-strand junction of branched substrates, alters its conformation and opens up the junction. Therefore, MSH2-MSH3 binding to its substrates creates a unique nucleoprotein structure that may signal downstream steps in repair that include interactions with MMR and nucleotide excision repair factors.

  17. Identifying Molecular Targets for PTSD Treatment Using Single Prolonged Stress

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-1-0377 TITLE: Identifying Molecular Targets For PTSD Treatment Using Single Prolonged Stress PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0377 Identifying Molecular Targets For PTSD Treatment Using Single Prolonged Stress 5b. GRANT...brain GR and β-AR expression alters glutamatergic and GABAergic function in neural circuits that mediate SPS-induced deficits in extinction retention

  18. Copy number rather than epigenetic alterations are the major dictator of imprinted methylation in tumors.

    PubMed

    Martin-Trujillo, Alex; Vidal, Enrique; Monteagudo-Sa Nchez, Ana; Sanchez-Delgado, Marta; Moran, Sebastian; Hernandez Mora, Jose Ramon; Heyn, Holger; Guitart, Miriam; Esteller, Manel; Monk, David

    2017-09-07

    It has been postulated that imprinting aberrations are common in tumors. To understand the role of imprinting in cancer, we have characterized copy-number and methylation in over 280 cancer cell lines and confirm our observations in primary tumors. Imprinted differentially methylated regions (DMRs) regulate parent-of-origin monoallelic expression of neighboring transcripts in cis. Unlike single-copy CpG islands that may be prone to hypermethylation, imprinted DMRs can either loose or gain methylation during tumorigenesis. Here, we show that methylation profiles at imprinted DMRs often not represent genuine epigenetic changes but simply the accumulation of underlying copy-number aberrations (CNAs), which is independent of the genome methylation state inferred from cancer susceptible loci. Our results reveal that CNAs also influence allelic expression as loci with copy-number neutral loss-of-heterozygosity or amplifications may be expressed from the appropriate parental chromosomes, which is indicative of maintained imprinting, although not observed as a single expression foci by RNA FISH.Altered genomic imprinting is frequently reported in cancer. Here, the authors analyze copy number and methylation in cancer cell lines and primary tumors to show that imprinted methylation profiles represent the accumulation of copy number alteration, rather than epigenetic alterations.

  19. Alterations in cerebral metabolism observed in living rodents using fluorescence lifetime microscopy of intrinsic NADH (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Sakadžić, Sava; Sutin, Jason; Wu, Weicheng; Fu, Buyin; Boas, David A.

    2017-02-01

    Monitoring cerebral energy metabolism at a cellular level is essential to improve our understanding of healthy brain function and its pathological alterations. In this study, we resolve specific alterations in cerebral metabolism utilizing minimally-invasive 2-Photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence, collected in vivo from anesthetized rats and mice. Time-resolved lifetime measurements enables distinction of different components contributing to NADH autofluorescence. These components reportedly represent different enzyme-bound formulations of NADH. Our observations from this study confirm the hypothesis that NADH FLIM can identify specific alterations in cerebral metabolism. Using time-correlated single photon counting (TCSPC) equipment and a custom-built multimodal imaging system, 2-photon fluorescence lifetime imaging (FLIM) was performed in cerebral tissue with high spatial and temporal resolution. Multi-exponential fits for NADH fluorescence lifetimes indicate 4 distinct components, or 'species.' We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in anaerobic glycolysis and aerobic oxidative metabolism. Classification models developed with experimental data correctly predict the metabolic impairments associated with bicuculline-induced focal seizures in separate experiments. Compared to traditional intensity-based NADH measurements, lifetime imaging of NADH is less susceptible to the adverse effects of overlying blood vessels. Evaluating NADH measurements will ultimately lead to a deeper understanding of cerebral energetics and its pathology-related alterations. Such knowledge will likely aid development of therapeutic strategies for neurodegenerative diseases such as Alzheimer's Disease, Parkinson's disease, and stroke.

  20. Leaf Litter Mixtures Alter Microbial Community Development: Mechanisms for Non-Additive Effects in Litter Decomposition

    PubMed Central

    Chapman, Samantha K.; Newman, Gregory S.; Hart, Stephen C.; Schweitzer, Jennifer A.; Koch, George W.

    2013-01-01

    To what extent microbial community composition can explain variability in ecosystem processes remains an open question in ecology. Microbial decomposer communities can change during litter decomposition due to biotic interactions and shifting substrate availability. Though relative abundance of decomposers may change due to mixing leaf litter, linking these shifts to the non-additive patterns often recorded in mixed species litter decomposition rates has been elusive, and links community composition to ecosystem function. We extracted phospholipid fatty acids (PLFAs) from single species and mixed species leaf litterbags after 10 and 27 months of decomposition in a mixed conifer forest. Total PLFA concentrations were 70% higher on litter mixtures than single litter types after 10 months, but were only 20% higher after 27 months. Similarly, fungal-to-bacterial ratios differed between mixed and single litter types after 10 months of decomposition, but equalized over time. Microbial community composition, as indicated by principal components analyses, differed due to both litter mixing and stage of litter decomposition. PLFA biomarkers a15∶0 and cy17∶0, which indicate gram-positive and gram-negative bacteria respectively, in particular drove these shifts. Total PLFA correlated significantly with single litter mass loss early in decomposition but not at later stages. We conclude that litter mixing alters microbial community development, which can contribute to synergisms in litter decomposition. These findings advance our understanding of how changing forest biodiversity can alter microbial communities and the ecosystem processes they mediate. PMID:23658639

  1. Three-dimensional transesophageal echocardiography: Principles and clinical applications.

    PubMed

    Vegas, Annette

    2016-10-01

    A basic understanding of evolving 3D technology enables the echocardiographer to master the new skills necessary to acquire, manipulate, and interpret 3D datasets. Single button activation of specific 3D imaging modes for both TEE and transthoracic echocardiography (TTE) matrix array probes include (a) live, (b) zoom, (c) full volume (FV), and (d) color Doppler FV. Evaluation of regional LV wall motion by RT 3D TEE is based on a change in LV chamber subvolume over time from altered segmental myocardial contractility. Unlike standard 2D TEE, there is no direct measurement of myocardial thickening or displacement of individual segments.

  2. The fluorescently responsive 3-(naphthalen-1-ylethynyl)-3-deaza-2'-deoxyguanosine discriminates cytidine via the DNA minor groove.

    PubMed

    Suzuki, Azusa; Yanagi, Masaki; Takeda, Takuya; Hudson, Robert H E; Saito, Yoshio

    2017-09-26

    A new environmentally responsive fluorescent nucleoside, 3-(naphthalen-1-ylethynyl)-3-deaza-2'-deoxyguanosine ( 3nz G), has been synthesized. The nucleoside, 3nz G, exhibited solvatochromic properties and when introduced into ODN probes it was able to recognize 2'-deoxycytidine in target strands by a distinct change in its emission wavelength through probing microenvironmental changes in the DNA minor groove. Thus, 3nz G has the potential for use as a fluorescent probe molecule for micro-structural studies of nucleic acids including the detection of single-base alterations in target DNA sequences.

  3. Analytic few-photon scattering in waveguide QED

    NASA Astrophysics Data System (ADS)

    Hurst, David L.; Kok, Pieter

    2018-04-01

    We develop an approach to light-matter coupling in waveguide QED based upon scattering amplitudes evaluated via Dyson series. For optical states containing more than single photons, terms in this series become increasingly complex, and we provide a diagrammatic recipe for their evaluation, which is capable of yielding analytic results. Our method fully specifies a combined emitter-optical state that permits investigation of light-matter entanglement generation protocols. We use our expressions to study two-photon scattering from a Λ -system and find that the pole structure of the transition amplitude is dramatically altered as the two ground states are tuned from degeneracy.

  4. A "double hit" murine model for schizophrenia shows alterations in the structure and neurochemistry of the medial prefrontal cortex and the hippocampus.

    PubMed

    Gilabert-Juan, Javier; Belles, Maria; Saez, Ana Rosa; Carceller, Hector; Zamarbide-Fores, Sara; Moltó, Maria Dolores; Nacher, Juan

    2013-11-01

    Both alterations in neurodevelopment and aversive experiences during childhood and adolescence seem important risk factors for schizophrenia. Animal models reproducing these alterations mimic some of the symptoms, constituting a valid approach to study the etiopathology of this disorder. Among these models, the perinatal injection of N-methyl-d-aspartate receptor antagonists and the postweaning social isolation rearing are among the most widely used. Our aim is to combine them in a "double hit" model, which should produce a wider spectrum of alterations. Lister Hooded rats have been subjected to a single injection of MK-801 at postnatal day 7 and socially isolated from postweaning to adulthood. These animals presented increased body weight gain and volume reductions in their medial prefrontal cortex (mPFC) and hippocampus. They also showed an increased number of activated pyramidal neurons and alterations in the numbers of parvalbumin and calbindin expressing interneurons in the mPFC. The expressions of the polysialylated form of the neural cell adhesion molecule and GAD67 are decreased in the mPFC. The mRNA level of calbindin was decreased, while that of calretinin was increased in the mPFC. The mRNA level of ERbB4, a gene associated to schizophrenia, was also altered in this region. All these structural and neurochemical alterations, specially in cortical inhibitory circuits, are similar to those found in schizophrenic patients and are more numerous than in each of the single models. Consequently, the present "double hit" model may be a better tool to study the neurobiological basis of schizophrenia and to explore new therapeutic approaches. © 2013.

  5. AUTO-MUTE 2.0: A Portable Framework with Enhanced Capabilities for Predicting Protein Functional Consequences upon Mutation.

    PubMed

    Masso, Majid; Vaisman, Iosif I

    2014-01-01

    The AUTO-MUTE 2.0 stand-alone software package includes a collection of programs for predicting functional changes to proteins upon single residue substitutions, developed by combining structure-based features with trained statistical learning models. Three of the predictors evaluate changes to protein stability upon mutation, each complementing a distinct experimental approach. Two additional classifiers are available, one for predicting activity changes due to residue replacements and the other for determining the disease potential of mutations associated with nonsynonymous single nucleotide polymorphisms (nsSNPs) in human proteins. These five command-line driven tools, as well as all the supporting programs, complement those that run our AUTO-MUTE web-based server. Nevertheless, all the codes have been rewritten and substantially altered for the new portable software, and they incorporate several new features based on user feedback. Included among these upgrades is the ability to perform three highly requested tasks: to run "big data" batch jobs; to generate predictions using modified protein data bank (PDB) structures, and unpublished personal models prepared using standard PDB file formatting; and to utilize NMR structure files that contain multiple models.

  6. Low-dose carbon-based nanoparticle-induced effects in A549 lung cells determined by biospectroscopy are associated with increases in genomic methylation

    NASA Astrophysics Data System (ADS)

    Li, Junyi; Tian, Meiping; Cui, Li; Dwyer, John; Fullwood, Nigel J.; Shen, Heqing; Martin, Francis L.

    2016-02-01

    Nanotechnology has introduced many manufactured carbon-based nanoparticles (CNPs) into our environment, generating a debate into their risks and benefits. Numerous nanotoxicology investigations have been carried, and nanoparticle-induced toxic effects have been reported. However, there remain gaps in our knowledge, primarily regarding mechanism. Herein, we assessed the global alterations induced by CNPs in A549 lung cells using biospectroscopy techniques, including attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and surface-enhanced Raman spectroscopy (SERS). A549 cells were treated with fullerene (C60), long or short multi-walled carbon nanotubes, or single-walled carbon nanotubes at concentrations of 0.1 mg/L, 0.01 mg/L and 0.001 mg/L. Exposed cells were then analysed by ATR-FTIR spectroscopy and SERS. Spectra were pre-processed via computational analysis, and information on biochemical alterations in exposed cells were identified. Additionally, global DNA methylation levels in cells exposed to CNPs at 0.1 mg/L were determined using HPLC-MS and genetic regulators (for DNA methylation) were checked by quantitative real-time RT-PCR. It was found that CNPs exert marked effects in A549 cells and also contribute to increases in global DNA methylation. For the first time, this study highlights that real-world levels of nanoparticles can alter the methylome of exposed cells; this could have enormous implications for their regulatory assessment.

  7. Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Seoksu; Gao, Yuan; Park, Suhan

    Despite the fact that all modern diesel engines use multi-hole injectors, single-hole injectors are frequently used to understand the fundamental properties of high-pressure diesel injections due to their axisymmetric design of the injector nozzles. A multi-hole injector accommodates many holes around the nozzle axis to deliver adequate amount of fuel with small orifices. The off-axis arrangement of the multi-hole injectors significantly alters the inter- and near-nozzle flow patterns compared to those of the single-hole injectors. This study compares the transient needle motion and near-nozzle flow characteristics of the single- and multi-hole (3-hole and 6-hole) diesel injectors to understand how themore » difference in hole arrangement and number affects the initial flow development of the diesel injectors. A propagation-based X-ray phase-contrast imaging technique was applied to compare the transient needle motion and near-nozzle flow characteristics of the single- and multi-hole injectors. The comparisons were made by dividing the entire injection process by three sub-stages: opening-transient, quasi-steady and closing-transient. (C) 2015 Elsevier Ltd. All rights reserved.« less

  8. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    PubMed Central

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-01-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design. PMID:28145438

  9. Atomic force microscopy based nanoindentation study of onion abaxial epidermis walls in aqueous environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Xiaoning; Tittmann, Bernhard; Kim, Seong H.

    An atomic force microscopy based nanoindentation method was employed to study how the structure of cellulose microfibril packing and matrix polymers affect elastic modulus of fully hydrated primary plant cell walls. The isolated, single-layered abaxial epidermis cell wall of an onion bulb was used as a test system since the cellulose microfibril packing in this cell wall is known to vary systematically from inside to outside scales and the most abundant matrix polymer, pectin, can easily be altered through simple chemical treatments such as ethylenediaminetetraacetic acid and calcium ions. Experimental results showed that the pectin network variation has significant impactsmore » on the cell wall modulus, and not the cellulose microfibril packing.« less

  10. Pathway analyses and understanding disease associations

    PubMed Central

    Liu, Yu; Chance, Mark R

    2013-01-01

    High throughput technologies have been applied to investigate the underlying mechanisms of complex diseases, identify disease-associations and help to improve treatment. However it is challenging to derive biological insight from conventional single gene based analysis of “omics” data from high throughput experiments due to sample and patient heterogeneity. To address these challenges, many novel pathway and network based approaches were developed to integrate various “omics” data, such as gene expression, copy number alteration, Genome Wide Association Studies, and interaction data. This review will cover recent methodological developments in pathway analysis for the detection of dysregulated interactions and disease-associated subnetworks, prioritization of candidate disease genes, and disease classifications. For each application, we will also discuss the associated challenges and potential future directions. PMID:24319650

  11. PhotoMEA: an opto-electronic biosensor for monitoring in vitro neuronal network activity.

    PubMed

    Ghezzi, Diego; Pedrocchi, Alessandra; Menegon, Andrea; Mantero, Sara; Valtorta, Flavia; Ferrigno, Giancarlo

    2007-02-01

    PhotoMEA is a biosensor useful for the analysis of an in vitro neuronal network, fully based on optical methods. Its function is based on the stimulation of neurons with caged glutamate and the recording of neuronal activity by Voltage-Sensitive fluorescent Dyes (VSD). The main advantage is that it will be possible to stimulate even at sub-single neuron level and to record with high resolution the activity of the entire network in the culture. A large-scale view of neuronal intercommunications offers a unique opportunity for testing the ability of drugs to affect neuronal properties as well as alterations in the behaviour of the entire network. The concept and a prototype for validation is described here in detail.

  12. Mutational analysis of the antigenomic trans-acting delta ribozyme: the alterations of the middle nucleotides located on the P1 stem.

    PubMed Central

    Ananvoranich, S; Lafontaine, D A; Perreault, J P

    1999-01-01

    Our previous report on delta ribozyme cleavage using a trans -acting antigenomic delta ribozyme and a collection of short substrates showed that the middle nucleotides of the P1 stem, the substrate binding site, are essential for the cleavage activity. Here we have further investigated the effect of alterations in the P1 stem on the kinetic and thermodynamic parameters of delta ribozyme cleavage using various ribozyme variants carrying single base mutations at putative positions reported. The kinetic and thermodynamic values obtained in mutational studies of the two middle nucleotides of the P1 stem suggest that the binding and active sites of the delta ribozyme are uniquely formed. Firstly, the substrate and the ribozyme are engaged in the formation of a helix, known as the P1 stem, which may contain a weak hydrogen bond(s) or a bulge. Secondly, a tertiary interaction involving the base moieties in the middle of the P1 stem likely plays a role in defining the chemical environment. As a con-sequence, the active site might form simultaneously or subsequently to the binding site during later steps of the pathway. PMID:10037808

  13. An artificial intelligence approach to classify and analyse EEG traces.

    PubMed

    Castellaro, C; Favaro, G; Castellaro, A; Casagrande, A; Castellaro, S; Puthenparampil, D V; Salimbeni, C Fattorello

    2002-06-01

    We present a fully automatic system for the classification and analysis of adult electroencephalograms (EEGs). The system is based on an artificial neural network which classifies the single epochs of trace, and on an Expert System (ES) which studies the time and space correlation among the outputs of the neural network; compiling a final report. On the last 2000 EEGs representing different kinds of alterations according to clinical occurrences, the system was able to produce 80% good or very good final comments and 18% sufficient comments, which represent the documents delivered to the patient. In the remaining 2% the automatic comment needed some modifications prior to be presented to the patient. No clinical false-negative classifications did arise, i.e. no altered traces were classified as 'normal' by the neural network. The analysis method we describe is based on the interpretation of objective measures performed on the trace. It can improve the quality and reliability of the EEG exam and appears useful for the EEG medical reports although it cannot totally substitute the medical doctor who should now read the automatic EEG analysis in light of the patient's history and age.

  14. Changes in Brain Metallome/Metabolome Pattern due to a Single i.v. Injection of Manganese in Rats

    PubMed Central

    Neth, Katharina; Lucio, Marianna; Walker, Alesia; Zorn, Julia; Schmitt-Kopplin, Philippe; Michalke, Bernhard

    2015-01-01

    Exposure to high concentrations of Manganese (Mn) is known to potentially induce an accumulation in the brain, leading to a Parkinson related disease, called manganism. Versatile mechanisms of Mn-induced brain injury are discussed, with inactivation of mitochondrial defense against oxidative stress being a major one. So far, studies indicate that the main Mn-species entering the brain are low molecular mass (LMM) compounds such as Mn-citrate. Applying a single low dose MnCl2 injection in rats, we observed alterations in Mn-species pattern within the brain by analysis of aqueous brain extracts by size-exclusion chromatography—inductively coupled plasma mass spectrometry (SEC-ICP-MS). Additionally, electrospray ionization—ion cyclotron resonance-Fourier transform-mass spectrometry (ESI-ICR/FT-MS) measurement of methanolic brain extracts revealed a comprehensive analysis of changes in brain metabolisms after the single MnCl2 injection. Major alterations were observed for amino acid, fatty acid, glutathione, glucose and purine/pyrimidine metabolism. The power of this metabolomic approach is the broad and detailed overview of affected brain metabolisms. We also correlated results from the metallomic investigations (Mn concentrations and Mn-species in brain) with the findings from metabolomics. This strategy might help to unravel the role of different Mn-species during Mn-induced alterations in brain metabolism. PMID:26383269

  15. Herbivore species identity and composition affect soil enzymatic activity through altered plant composition in a coastal tallgrass prairie

    USDA-ARS?s Scientific Manuscript database

    Although single species of herbivores are known to affect soil microbial communities, the effects of herbivore species identity and functional composition on soil microbes is unknown. We tested the effects of single species of orthopterans and multiple species combinations on soil enzymatic activity...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiani, Samira; Chavez, Alejandro; Tuttle, Marcelle

    Here we demonstrate that by altering the length of Cas9-associated guide RNA(gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.

  17. Resistance training alters skeletal muscle structure and function in human heart failure: effects at the tissue, cellular and molecular levels

    PubMed Central

    Toth, Michael J; Miller, Mark S; VanBuren, Peter; Bedrin, Nicholas G; LeWinter, Martin M; Ades, Philip A; Palmer, Bradley M

    2012-01-01

    Reduced skeletal muscle function in heart failure (HF) patients may be partially explained by altered myofilament protein content and function. Resistance training increases muscle function, although whether these improvements are achieved by correction of myofilament deficits is not known. To address this question, we examined 10 HF patients and 14 controls prior to and following an 18 week high-intensity resistance training programme. Evaluations of whole muscle size and strength, single muscle fibre size, ultrastructure and tension and myosin–actin cross-bridge mechanics and kinetics were performed. Training improved whole muscle isometric torque in both groups, although there were no alterations in whole muscle size or single fibre cross-sectional area or isometric tension. Unexpectedly, training reduced the myofibril fractional area of muscle fibres in both groups. This structural change manifested functionally as a reduction in the number of strongly bound myosin–actin cross-bridges during Ca2+ activation. When post-training single fibre tension data were corrected for the loss of myofibril fractional area, we observed an increase in tension with resistance training. Additionally, training corrected alterations in cross-bridge kinetics (e.g. myosin attachment time) in HF patients back to levels observed in untrained controls. Collectively, our results indicate that improvements in myofilament function in sedentary elderly with and without HF may contribute to increased whole muscle function with resistance training. More broadly, these data highlight novel cellular and molecular adaptations in muscle structure and function that contribute to the resistance-trained phenotype. PMID:22199163

  18. Noncoding somatic and inherited single-nucleotide variants converge to promote ESR1 expression in breast cancer

    PubMed Central

    Bailey, Swneke D.; Desai, Kinjal; Kron, Ken J.; Mazrooei, Parisa; Sinnott-Armstrong, Nicholas A.; Treloar, Aislinn E.; Dowar, Mark; Thu, Kelsie L.; Cescon, David W.; Silvester, Jennifer; Yang, S. Y. Cindy; Wu, Xue; Pezo, Rossanna C.; Haibe-Kains, Benjamin; Mak, Tak W.; Bedard, Philippe L.; Pugh, Trevor J.; Sallari, Richard C.; Lupien, Mathieu

    2016-01-01

    Sustained expression of the oestrogen receptor alpha (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon oestrogen stimulation to establish an oncogenic expression program1. Somatic copy number alterations involving the ESR1 gene occur in approximately 1% of ESR1-positive breast cancers2–5, implying that other mechanisms underlie the persistent expression of ESR1. We report the significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by a functional inherited single nucleotide variant (SNV) rs9383590 that accounts for several breast cancer risk-loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer. PMID:27571262

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deino, A.; Potts, R.

    Single-crystal laser fusion {sup 40}Ar/{sup 39}Ar analyses and several conventional bulk fusion {sup 40}K- {sup 40}Ar dates have been used to determine the age of volcaniclastic strata within the Olorgesailie Formation and of associated volcanic and sedimentary units of the southern Kenya rift. In the principal exposures along the southern edge of the Legemunge Plain, the formation spans the interval from approximately 500 to 1,000 ka. Deposition continued to the east along the Ol Keju Nyiro river where a tuff near the top of the formation has been dated at 215 ka. In these exposures, the formation is unconformably overlainmore » by sediments dated at 49 ka. A possible source for the Olorgesailie tephra, the Ol Doinyo Nyokie volcanic complex, contains as ash flow dated at {approximately} 1 Ma, extending the known age range of this complex to encompass that of virtually the entire Olorgesailie Formation in the Legemunge Plain. These geologic examples illustrate the importance of the single-crystal {sup 40}Ar/{sup 39}Ar dating technique whereby contaminant, altered, or otherwise aberrant grains can be identified and eliminated from the determination of eruptive ages for reworked or altered pyroclastic deposits. The authors have presented a computer-modeling procedure based on an inverse-isochron analysis that promotes a more objective approach to trimming {sup 40}Ar/{sup 39}Ar isotope data sets of this type.« less

  20. Proof of Concept: A review on how network and systems biology approaches aid in the discovery of potent anticancer drug combinations

    PubMed Central

    Azmi, Asfar S.; Wang, Zhiwei; Philip, Philip A.; Mohammad, Ramzi M.; Sarkar, Fazlul H.

    2010-01-01

    Cancer therapies that target key molecules have not fulfilled expected promises for most common malignancies. Major challenges include the incomplete understanding and validation of these targets in patients, the multiplicity and complexity of genetic and epigenetic changes in the majority of cancers, and the redundancies and cross-talk found in key signaling pathways. Collectively, the uses of single-pathway targeted approaches are not effective therapies for human malignances. To overcome these barriers, it is important to understand the molecular cross-talk among key signaling pathways and how they may be altered by targeted agents. This requires innovative approaches such as understanding the global physiological environment of target proteins and the effects of modifying them without losing key molecular details. Such strategies will aid the design of novel therapeutics and their combinations against multifaceted diseases where efficacious combination therapies will focus on altering multiple pathways rather than single proteins. Integrated network modeling and systems biology has emerged as a powerful tool benefiting our understanding of drug mechanism of action in real time. This mini-review highlights the significance of the network and systems biology-based strategy and presents a “proof-of-concept” recently validated in our laboratory using the example of a combination treatment of oxaliplatin and the MDM2 inhibitor MI-219 in genetically complex and incurable pancreatic adenocarcinoma. PMID:21041384

  1. Multiple-channel guided mode resonance Brewster filter with controllable spectral separation.

    PubMed

    Ma, Jianyong; Cao, Hongchao; Zhou, Changhe

    2014-05-01

    In this work, a single-layer, multiple-channel guided mode resonance (GMR) Brewster filter with controllable spectral separation is proposed using the plane waveguide method and rigorous coupled-wave analysis. Based on the normalized eigenvalue equation, the controllability of the spectral separation is analyzed when the fill ratio of the grating layer is changed while its effective index is identical to that of the substrate. The location and the separation between resonances can be specifically controlled by modifying the fill ratio of the grating layer. In contrast to the ordinary GMR filter, where the location of the resonances is material dependent, it is demonstrated that the spectral separation for the first and second resonances can be linearly controlled by altering the fill ratio of the grating layer. In addition, the maximal shift of the second resonance is up to 5% of the first resonant wavelength using the single-layer Brewster filter.

  2. Multiplexed electronically programmable multimode ionization detector for chromatography

    DOEpatents

    Wise, M.B.; Buchanan, M.V.

    1988-05-19

    Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electronically programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity. 6 figs.

  3. Multiplexed electronically programmable multimode ionization detector for chromatography

    DOEpatents

    Wise, Marcus B.; Buchanan, Michelle V.

    1989-01-01

    Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electroncially programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity.

  4. Single-cell transcriptome conservation in cryopreserved cells and tissues.

    PubMed

    Guillaumet-Adkins, Amy; Rodríguez-Esteban, Gustavo; Mereu, Elisabetta; Mendez-Lago, Maria; Jaitin, Diego A; Villanueva, Alberto; Vidal, August; Martinez-Marti, Alex; Felip, Enriqueta; Vivancos, Ana; Keren-Shaul, Hadas; Heath, Simon; Gut, Marta; Amit, Ido; Gut, Ivo; Heyn, Holger

    2017-03-01

    A variety of single-cell RNA preparation procedures have been described. So far, protocols require fresh material, which hinders complex study designs. We describe a sample preservation method that maintains transcripts in viable single cells, allowing one to disconnect time and place of sampling from subsequent processing steps. We sequence single-cell transcriptomes from >1000 fresh and cryopreserved cells using 3'-end and full-length RNA preparation methods. Our results confirm that the conservation process did not alter transcriptional profiles. This substantially broadens the scope of applications in single-cell transcriptomics and could lead to a paradigm shift in future study designs.

  5. A model-based approach for estimation of changes in lumbar segmental kinematics associated with alterations in trunk muscle forces.

    PubMed

    Shojaei, Iman; Arjmand, Navid; Meakin, Judith R; Bazrgari, Babak

    2018-03-21

    The kinematics information from imaging, if combined with optimization-based biomechanical models, may provide a unique platform for personalized assessment of trunk muscle forces (TMFs). Such a method, however, is feasible only if differences in lumbar spine kinematics due to differences in TMFs can be captured by the current imaging techniques. A finite element model of the spine within an optimization procedure was used to estimate segmental kinematics of lumbar spine associated with five different sets of TMFs. Each set of TMFs was associated with a hypothetical trunk neuromuscular strategy that optimized one aspect of lower back biomechanics. For each set of TMFs, the segmental kinematics of lumbar spine was estimated for a single static trunk flexed posture involving, respectively, 40° and 10° of thoracic and pelvic rotations. Minimum changes in the angular and translational deformations of a motion segment with alterations in TMFs ranged from 0° to 0.7° and 0 mm to 0.04 mm, respectively. Maximum changes in the angular and translational deformations of a motion segment with alterations in TMFs ranged from 2.4° to 7.6° and 0.11 mm to 0.39 mm, respectively. The differences in kinematics of lumbar segments between each combination of two sets of TMFs in 97% of cases for angular deformation and 55% of cases for translational deformation were within the reported accuracy of current imaging techniques. Therefore, it might be possible to use image-based kinematics of lumbar segments along with computational modeling for personalized assessment of TMFs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Temporal Pattern of Changes in Serum Biomarker Levels Reveals Complex and Dynamically Changing Pathologies after Exposure to a Single Low-Intensity Blast in Mice

    PubMed Central

    Ahmed, Farid; Plantman, Stefan; Cernak, Ibolja; Agoston, Denes V.

    2015-01-01

    Time-dependent changes in blood-based protein biomarkers can help identify the ­pathological processes in blast-induced traumatic brain injury (bTBI), assess injury severity, and monitor disease progression. We obtained blood from control and injured mice (exposed to a single, low-intensity blast) at 2-h, 1-day, 1–week, and 1-month post-injury. We then determined the serum levels of biomarkers related to metabolism (4-HNE, HIF-1α, ceruloplasmin), vascular function (AQP1, AQP4, VEGF, vWF, Flk-1), inflammation (OPN, CINC1, fibrinogen, MIP-1a, OX-44, p38, MMP-8, MCP-1 CCR5, CRP, galectin-1), cell adhesion and the extracellular matrix (integrin α6, TIMP1, TIMP4, Ncad, connexin-43), and axonal (NF-H, Tau), neuronal (NSE, CK-BB) and glial damage (GFAP, S100β, MBP) at various post-injury time points. Our findings indicate that the exposure to a single, low-intensity blast results in metabolic and vascular changes, altered cell adhesion, and axonal and neuronal injury in the mouse model of bTBI. Interestingly, serum levels of several inflammatory and astroglial markers were either unchanged or elevated only during the acute and subacute phases of injury. Conversely, serum levels of the majority of biomarkers related to metabolic and vascular functions, cell adhesion, as well as neuronal and axonal damage remained elevated at the termination of the experiment (1 month), indicating long-term systemic and cerebral alterations due to blast. Our findings show that the exposure to a single, low-intensity blast induces complex pathological processes with distinct temporal profiles. Hence, monitoring serum biomarker levels at various post-injury time points may provide enhanced diagnostics in blast-related neurological and multi-system deficits. PMID:26124743

  7. Polydrug Use: An Annotated Bibliography. National Clearinghouse for Drug Abuse Information Special Bibliographies, No. 3, June 1973.

    ERIC Educational Resources Information Center

    National Inst. on Drug Abuse (DHEW/PHS), Rockville, MD. National Clearinghouse for Drug Abuse Information.

    Although most discussions of mood-altering drugs and patterns of use typically focus on a single drug or particular drug class, it is a widely acknowledged fact that the majority of drug users, from the junior high school experimenter to the hard-core narcotic addict, employ more than one legal or illegal substance to alter their subjective…

  8. Alterations of the genes involved in the PI3K and estrogen-receptor pathways influence outcome in human epidermal growth factor receptor 2-positive and hormone receptor-positive breast cancer patients treated with trastuzumab-containing neoadjuvant chemotherapy

    PubMed Central

    2013-01-01

    Background Chemotherapy with trastuzumab is widely used for patients with human epidermal growth factor receptor 2-positive (HER2+) breast cancer, but a significant number of patients with the tumor fail to respond, or relapse. The mechanisms of recurrence and biomarkers that indicate the response to the chemotherapy and outcome are not fully investigated. Methods Genomic alterations were analyzed using single-nucleotide polymorphism arrays in 46 HER2 immunohistochemistry (IHC) 3+ or 2+/fluorescent in situ hybridization (FISH)+ breast cancers that were treated with neoadjuvant chemotherapy with paclitaxel, cyclophosphamid, epirubicin, fluorouracil, and trastuzumab. Patients were classified into two groups based on presence or absence of alterations of 65 cancer-associated genes, and the two groups were further classified into four groups based on genomic HER2 copy numbers or hormone receptor status (HR+/−). Pathological complete response (pCR) and relapse-free survival (RFS) rates were compared between any two of the groups. Results and discussion The pCR rate was 54% in 37 patients, and the RFS rate at 3 years was 72% (95% CI, 0.55-0.89) in 42 patients. The analysis disclosed 8 tumors with nonamplified HER2 and 38 tumors with HER2 amplification, indicating the presence of discordance in tumors diagnosed using current HER2 testing. The 8 patients showed more difficulty in achieving pCR (P=0.019), more frequent relapse (P=0.018), and more frequent alterations of genes in the PI3K pathway (P=0.009) than the patients with HER2 amplification. The alterations of the PI3K and estrogen receptor (ER) pathway genes generally indicated worse RFS rates. The prognostic significance of the alterations was shown in patients with a HR+ tumor, but not in patients with a HR- tumor when divided. Alterations of the PI3K and ER pathway genes found in patients with a HR+ tumor with poor outcome suggested that crosstalk between the two pathways may be involved in resistance to the current chemotherapy with trastuzumab. Conclusions We recommend FISH analysis as a primary HER2 testing because patients with IHC 2+/3+ and nonamplified HER2 had poor outcome. We also support concurrent use of trastuzumab, lapatinib, and cytotoxic and anti-hormonal agents for patients having HR+ tumors with alterations of the PI3K and ER pathway genes. PMID:23679233

  9. Detection of counterfeit electronic components through ambient mass spectrometry and chemometrics.

    PubMed

    Pfeuffer, Kevin P; Caldwell, Jack; Shelley, Jake T; Ray, Steven J; Hieftje, Gary M

    2014-09-21

    In the last several years, illicit electronic components have been discovered in the inventories of several distributors and even installed in commercial and military products. Illicit or counterfeit electronic components include a broad category of devices that can range from the correct unit with a more recent date code to lower-specification or non-working systems with altered names, manufacturers and date codes. Current methodologies for identification of counterfeit electronics rely on visual microscopy by expert users and, while effective, are very time-consuming. Here, a plasma-based ambient desorption/ionization source, the flowing atmospheric pressure afterglow (FAPA) is used to generate a mass-spectral fingerprint from the surface of a variety of discrete electronic integrated circuits (ICs). Chemometric methods, specifically principal component analysis (PCA) and the bootstrapped error-adjusted single-sample technique (BEAST), are used successfully to differentiate between genuine and counterfeit ICs. In addition, chemical and physical surface-removal techniques are explored and suggest which surface-altering techniques were utilized by counterfeiters.

  10. The Role of Neurotrophins in Major Depressive Disorder.

    PubMed

    Jiang, Cheng; Salton, Stephen R

    2013-03-01

    Neurotrophins and other growth factors have been advanced as critical modulators of depressive behavior. Support for this model is based on analyses of knockout and transgenic mouse models, human genetic studies, and screens for gene products that are regulated by depressive behavior and/or antidepressants. Even subtle alteration in the regulated secretion of brain-derived neurotrophic factor (BDNF), for example, due to a single nucleotide polymorphism (SNP)-encoded Val-Met substitution in proBDNF that affects processing and sorting, impacts behavior and cognition. Alterations in growth factor expression result in changes in neurogenesis as well as structural changes in neuronal cytoarchitecture, including effects on dendritic length and spine density, in the hippocampus, nucleus accumbens, and prefrontal cortex. These changes have the potential to impact the plasticity and stability of synapses in the CNS, and the complex brain circuitry that regulates behavior. Here we review the role that neurotrophins play in the modulation of depressive behavior, and the downstream signaling targets they regulate that potentially mediate these behavioral pro-depressant and antidepressant effects.

  11. The Role of Neurotrophins in Major Depressive Disorder

    PubMed Central

    Jiang, Cheng; Salton, Stephen R.

    2013-01-01

    Neurotrophins and other growth factors have been advanced as critical modulators of depressive behavior. Support for this model is based on analyses of knockout and transgenic mouse models, human genetic studies, and screens for gene products that are regulated by depressive behavior and/or antidepressants. Even subtle alteration in the regulated secretion of brain-derived neurotrophic factor (BDNF), for example, due to a single nucleotide polymorphism (SNP)-encoded Val-Met substitution in proBDNF that affects processing and sorting, impacts behavior and cognition. Alterations in growth factor expression result in changes in neurogenesis as well as structural changes in neuronal cytoarchitecture, including effects on dendritic length and spine density, in the hippocampus, nucleus accumbens, and prefrontal cortex. These changes have the potential to impact the plasticity and stability of synapses in the CNS, and the complex brain circuitry that regulates behavior. Here we review the role that neurotrophins play in the modulation of depressive behavior, and the downstream signaling targets they regulate that potentially mediate these behavioral pro-depressant and antidepressant effects. PMID:23691270

  12. Detection and Characterization of Circulating Tumor Associated Cells in Metastatic Breast Cancer.

    PubMed

    Mu, Zhaomei; Benali-Furet, Naoual; Uzan, Georges; Znaty, Anaëlle; Ye, Zhong; Paolillo, Carmela; Wang, Chun; Austin, Laura; Rossi, Giovanna; Fortina, Paolo; Yang, Hushan; Cristofanilli, Massimo

    2016-09-30

    The availability of blood-based diagnostic testing using a non-invasive technique holds promise for real-time monitoring of disease progression and treatment selection. Circulating tumor cells (CTCs) have been used as a prognostic biomarker for the metastatic breast cancer (MBC). The molecular characterization of CTCs is fundamental to the phenotypic identification of malignant cells and description of the relevant genetic alterations that may change according to disease progression and therapy resistance. However, the molecular characterization of CTCs remains a challenge because of the rarity and heterogeneity of CTCs and technological difficulties in the enrichment, isolation and molecular characterization of CTCs. In this pilot study, we evaluated circulating tumor associated cells in one blood draw by size exclusion technology and cytological analysis. Among 30 prospectively enrolled MBC patients, CTCs, circulating tumor cell clusters (CTC clusters), CTCs of epithelial-mesenchymal transition (EMT) and cancer associated macrophage-like cells (CAMLs) were detected and analyzed. For molecular characterization of CTCs, size-exclusion method for CTC enrichment was tested in combination with DEPArray™ technology, which allows the recovery of single CTCs or pools of CTCs as a pure CTC sample for mutation analysis. Genomic mutations of TP53 and ESR1 were analyzed by targeted sequencing on isolated 7 CTCs from a patient with MBC. The results of genomic analysis showed heterozygous TP53 R248W mutation from one single CTC and pools of three CTCs, and homozygous TP53 R248W mutation from one single CTC and pools of two CTCs. Wild-type ESR1 was detected in the same isolated CTCs. The results of this study reveal that size-exclusion method can be used to enrich and identify circulating tumor associated cells, and enriched CTCs were characterized for genetic alterations in MBC patients, respectively.

  13. A Heroin Addiction Severity-Associated Intronic Single Nucleotide Polymorphism Modulates Alternative Pre-mRNA Splicing of the μ Opioid Receptor Gene OPRM1 via hnRNPH Interactions

    PubMed Central

    Xu, Jin; Lu, Zhigang; Xu, Mingming; Pan, Ling; Deng, Yi; Xie, Xiaohu; Liu, Huifen; Ding, Shixiong; Hurd, Yasmin L.; Pasternak, Gavril W.; Klein, Robert J.; Cartegni, Luca

    2014-01-01

    Single nucleotide polymorphisms (SNPs) in the OPRM1 gene have been associated with vulnerability to opioid dependence. The current study identifies an association of an intronic SNP (rs9479757) with the severity of heroin addiction among Han-Chinese male heroin addicts. Individual SNP analysis and haplotype-based analysis with additional SNPs in the OPRM1 locus showed that mild heroin addiction was associated with the AG genotype, whereas severe heroin addiction was associated with the GG genotype. In vitro studies such as electrophoretic mobility shift assay, minigene, siRNA, and antisense morpholino oligonucleotide studies have identified heterogeneous nuclear ribonucleoprotein H (hnRNPH) as the major binding partner for the G-containing SNP site. The G-to-A transition weakens hnRNPH binding and facilitates exon 2 skipping, leading to altered expressions of OPRM1 splice-variant mRNAs and hMOR-1 proteins. Similar changes in splicing and hMOR-1 proteins were observed in human postmortem prefrontal cortex with the AG genotype of this SNP when compared with the GG genotype. Interestingly, the altered splicing led to an increase in hMOR-1 protein levels despite decreased hMOR-1 mRNA levels, which is likely contributed by a concurrent increase in single transmembrane domain variants that have a chaperone-like function on MOR-1 protein stability. Our studies delineate the role of this SNP as a modifier of OPRM1 alternative splicing via hnRNPH interactions, and suggest a functional link between an SNP-containing splicing modifier and the severity of heroin addiction. PMID:25122903

  14. Random insertion and gene disruption via transposon mutagenesis of Ureaplasma parvum using a mini-transposon plasmid

    PubMed Central

    Aboklaish, Ali F.; Dordet-Frisoni, Emilie; Citti, Christine; Toleman, Mark A; Glass, John I.; Spiller, O. Brad

    2015-01-01

    While transposon mutagenesis has been successfully used for Mycoplasma spp. to disrupt and determine non-essential genes, previous attempts with Ureaplasma spp. have been unsuccessful. Using a polyethylene glycol-transformation enhancing protocol, we were able to transform three separate serovars of Ureaplasma parvum with a Tn4001-based mini-transposon plasmid containing a gentamicin resistance selection marker. Despite the large degree of homology between Ureaplasma parvum and Ureaplasma urealyticum, all attempts to transform the latter in parallel failed, with the exception of a single clinical U. urealyticum isolate. PCR probing and sequencing were used to confirm transposon insertion into the bacterial genome and identify disrupted genes. Transformation of prototype serovar 3 consistently resulted in transfer only of sequence between the mini-transposon inverted repeats, but some strains showed additional sequence transfer. Transposon insertion occurred randomly in the genome resulting in unique disruption of genes UU047, UU390, UU440, UU450, UU520, UU526, UU582 for single clones from a panel of screened clones. An intergenic insertion between genes UU187 and UU188 was also characterised. Two phenotypic alterations were observed in the mutated strains: Disruption of a DEAD-box RNA helicase (UU582) altered growth kinetics, while the U. urealyticum strain lost resistance to serum attack coincident with disruption of gene UUR10_137 and loss of expression of a 41 kDa protein. Transposon mutagenesis was used successfully to insert single copies of a mini-transposon into the genome and disrupt genes leading to phenotypic changes in Ureaplasma parvum strains. This method can now be used to deliver exogenous genes for expression and determine essential genes for Ureaplasma parvum replication in culture and experimental models. PMID:25444567

  15. Random insertion and gene disruption via transposon mutagenesis of Ureaplasma parvum using a mini-transposon plasmid.

    PubMed

    Aboklaish, Ali F; Dordet-Frisoni, Emilie; Citti, Christine; Toleman, Mark A; Glass, John I; Spiller, O Brad

    2014-11-01

    While transposon mutagenesis has been successfully used for Mycoplasma spp. to disrupt and determine non-essential genes, previous attempts with Ureaplasma spp. have been unsuccessful. Using a polyethylene glycol-transformation enhancing protocol, we were able to transform three separate serovars of Ureaplasma parvum with a Tn4001-based mini-transposon plasmid containing a gentamicin resistance selection marker. Despite the large degree of homology between Ureaplasma parvum and Ureaplasma urealyticum, all attempts to transform the latter in parallel failed, with the exception of a single clinical U. urealyticum isolate. PCR probing and sequencing were used to confirm transposon insertion into the bacterial genome and identify disrupted genes. Transformation of prototype serovar 3 consistently resulted in transfer only of sequence between the mini-transposon inverted repeats, but some strains showed additional sequence transfer. Transposon insertion occurred randomly in the genome resulting in unique disruption of genes UU047, UU390, UU440, UU450, UU520, UU526, UU582 for single clones from a panel of screened clones. An intergenic insertion between genes UU187 and UU188 was also characterised. Two phenotypic alterations were observed in the mutated strains: Disruption of a DEAD-box RNA helicase (UU582) altered growth kinetics, while the U. urealyticum strain lost resistance to serum attack coincident with disruption of gene UUR10_137 and loss of expression of a 41 kDa protein. Transposon mutagenesis was used successfully to insert single copies of a mini-transposon into the genome and disrupt genes leading to phenotypic changes in Ureaplasma parvum strains. This method can now be used to deliver exogenous genes for expression and determine essential genes for Ureaplasma parvum replication in culture and experimental models. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis.

    PubMed

    Novak, K D; Peterson, M D; Reedy, M C; Titus, M A

    1995-12-01

    The functional relationship between three Dictyostelium myosin Is, myoA, myoB, and myoC, has been examined through the creation of double mutants. Two double mutants, myoA-/B- and myoB-/C-, exhibit similar conditional defects in fluid-phase pinocytosis. Double mutants grown in suspension culture are significantly impaired in their ability to take in nutrients from the medium, whereas they are almost indistinguishable from wild-type and single mutant strains when grown on a surface. The double mutants are also found to internalize gp126, a 116-kD membrane protein, at a slower rate than either the wild-type or single mutant cells. Ultrastructural analysis reveals that both double mutants possess numerous small vesicles, in contrast to the wild-type or myosin I single mutants that exhibit several large, clear vacuoles. The alterations in fluid and membrane internalization in the suspension-grown double mutants, coupled with the altered vesicular profile, suggest that these cells may be compromised during the early stages of pinocytosis, a process that has been proposed to occur via actin-based cytoskeletal rearrangements. Scanning electron microscopy and rhodamine-phalloidin staining indicates that the myosin I double mutants appear to extend a larger number of actin-filled structures, such as filopodia and crowns, than wild-type cells. Rhodamine-phalloidin staining of the F-actin cytoskeleton of these suspension-grown cells also reveals that the double mutant cells are delayed in the rearrangement of cortical actin-rich structures upon adhesion to a substrate. We propose that myoA, myoB, and myoC play roles in controlling F-actin filled membrane projections that are required for pinosome internalization in suspension.

  17. Acquired resistance to combination treatment through loss of synergy with MEK and PI3K inhibitors in colorectal cancer

    PubMed Central

    Bhattacharya, Bhaskar; Low, Sarah Hong Hui; Chong, Mei Ling; Chia, Dilys; Koh, King Xin; Sapari, Nur Sabrina; Kaye, Stanley; Hung, Huynh; Benoukraf, Touati; Soong, Richie

    2016-01-01

    Historically, understanding of acquired resistance (AQR) to combination treatment has been based on knowledge of resistance to its component agents. To test whether an altered drug interaction could be an additional factor in AQR to combination treatment, models of AQR to combination and single agent MEK and PI3K inhibitor treatment were generated. Combination indices indicated combination treatment of PI3K and MEK inhibitors remained synergistic in cells with AQR to single agent but not combination AQR cells. Differences were also observed between the models in cellular phenotypes, pathway signaling and drug cross-resistance. Genomics implicated TGFB2-EDN1 overexpression as candidate determinants in models of AQR to combination treatment. Supplementation of endothelin in parental cells converted synergism to antagonism. Silencing of TGFB2 or EDN1 in cells with AQR conferred synergy between PI3K and MEK inhibitor. These results highlight that AQR to combination treatment may develop through alternative mechanisms to those of single agent treatment, including a change in drug interaction. PMID:27081080

  18. Hydrogel microstructure live-cell array for multiplexed analyses of cancer stem cells, tumor heterogeneity and differential drug response at single-element resolution.

    PubMed

    Afrimzon, E; Botchkina, G; Zurgil, N; Shafran, Y; Sobolev, M; Moshkov, S; Ravid-Hermesh, O; Ojima, I; Deutsch, M

    2016-03-21

    Specific phenotypic subpopulations of cancer stem cells (CSCs) are responsible for tumor development, production of heterogeneous differentiated tumor mass, metastasis, and resistance to therapies. The development of therapeutic approaches based on targeting rare CSCs has been limited partially due to the lack of appropriate experimental models and measurement approaches. The current study presents new tools and methodologies based on a hydrogel microstructure array (HMA) for identification and multiplex analyses of CSCs. Low-melt agarose integrated with type I collagen, a major component of the extracellular matrix (ECM), was used to form a solid hydrogel array with natural non-adhesive characteristics and high optical quality. The array contained thousands of individual pyramidal shaped, nanoliter-volume micro-chambers (MCs), allowing concomitant generation and measurement of large populations of free-floating CSC spheroids from single cells, each in an individual micro-chamber (MC). The optical live cell platform, based on an imaging plate patterned with HMA, was validated using CSC-enriched prostate and colon cancer cell lines. The HMA methodology and quantitative image analysis at single-element resolution clearly demonstrates several levels of tumor cell heterogeneity, including morphological and phenotypic variability, differences in proliferation capacity and in drug response. Moreover, the system facilitates real-time examination of single stem cell (SC) fate, as well as drug-induced alteration in expression of stemness markers. The technology may be applicable in personalized cancer treatment, including multiplex ex vivo analysis of heterogeneous patient-derived tumor specimens, precise detection and characterization of potentially dangerous cell phenotypes, and for representative evaluation of drug sensitivity of CSCs and other types of tumor cells.

  19. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  20. Early Social Isolation Stress and Perinatal NMDA Receptor Antagonist Treatment Induce Changes in the Structure and Neurochemistry of Inhibitory Neurons of the Adult Amygdala and Prefrontal Cortex.

    PubMed

    Castillo-Gómez, Esther; Pérez-Rando, Marta; Bellés, María; Gilabert-Juan, Javier; Llorens, José Vicente; Carceller, Héctor; Bueno-Fernández, Clara; García-Mompó, Clara; Ripoll-Martínez, Beatriz; Curto, Yasmina; Sebastiá-Ortega, Noelia; Moltó, María Dolores; Sanjuan, Julio; Nacher, Juan

    2017-01-01

    The exposure to aversive experiences during early life influences brain development and leads to altered behavior. Moreover, the combination of these experiences with subtle alterations in neurodevelopment may contribute to the emergence of psychiatric disorders, such as schizophrenia. Recent hypotheses suggest that imbalances between excitatory and inhibitory (E/I) neurotransmission, especially in the prefrontal cortex and the amygdala, may underlie their etiopathology. In order to understand better the neurobiological bases of these alterations, we studied the impact of altered neurodevelopment and chronic early-life stress on these two brain regions. Transgenic mice displaying fluorescent excitatory and inhibitory neurons, received a single injection of MK801 (NMDAR antagonist) or vehicle solution at postnatal day 7 and/or were socially isolated from the age of weaning until adulthood (3 months old). We found that anxiety-related behavior, brain volume, neuronal structure, and the expression of molecules related to plasticity and E/I neurotransmission in adult mice were importantly affected by early-life stress. Interestingly, many of these effects were potentiated when the stress paradigm was applied to mice perinatally injected with MK801 ("double-hit" model). These results clearly show the impact of early-life stress on the adult brain, especially on the structure and plasticity of inhibitory networks, and highlight the double-hit model as a valuable tool to study the contribution of early-life stress in the emergence of neurodevelopmental psychiatric disorders, such as schizophrenia.

  1. Mid-Twenty-First-Century Changes in Global Wave Energy Flux: Single-Model, Single-Forcing and Single-Scenario Ensemble Projections

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro; Lemos, Gil; Dobrynin, Mikhail; Behrens, Arno; Staneva, Joanna; Miranda, Pedro

    2017-04-01

    The knowledge of ocean surface wave energy fluxes (or wave power) is of outmost relevance since wave power has a direct impact in coastal erosion, but also in sediment transport and beach nourishment, and ship, as well as in coastal and offshore infrastructures design. Changes in the global wave energy flux pattern can alter significantly the impact of waves in continental shelf and coastal areas. Up until recently the impact of climate change in future global wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursuit under the auspices of the COWCLIP (coordinated ocean wave climate projections) project, and received some attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (fifth assessment report). In the present study the impact of a warmer climate in the near future global wave energy flux climate is investigated through a 4-member "coherent" ensemble of wave climate projections: single-model, single-forcing, and single-scenario. In this methodology model variability is reduced, leaving only room for the climate change signal. The four ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble present climate reference period (the control run) has been set for 1976 to 2005. The projected changes in the global wave energy flux climate are analyzed for the 2031-2060 period.

  2. DNA methylation regulates neurophysiological spatial representation in memory formation

    PubMed Central

    Roth, Eric D.; Roth, Tania L.; Money, Kelli M.; SenGupta, Sonda; Eason, Dawn E.; Sweatt, J. David

    2015-01-01

    Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation. PMID:25960947

  3. Altered movement patterns and muscular activity during single and double leg squats in individuals with anterior cruciate ligament injury.

    PubMed

    Trulsson, Anna; Miller, Michael; Hansson, Gert-Åke; Gummesson, Christina; Garwicz, Martin

    2015-02-13

    Individuals with Anterior Cruciate Ligament (ACL) injury often show altered movement patterns, suggested to be partly due to impaired sensorimotor control. Here, we therefore aimed to assess muscular activity during movements often used in ACL-rehabilitation and to characterize associations between deviations in muscular activity and specific altered movement patterns, using and further exploring the previously developed Test for substitution Patterns (TSP). Sixteen participants (10 women) with unilateral ACL rupture performed Single and Double Leg Squats (SLS; DLS). Altered movement patterns were scored according to TSP, and Surface Electromyography (SEMG) was recorded bilaterally in six hip, thigh and shank muscles. To quantify deviations in muscular activity, SEMG ratios were calculated between homonymous muscles on injured and non-injured sides, and between antagonistic muscles on the same side. Correlations between deviations of injured/non-injured side SEMG ratios and specific altered movement patterns were calculated. Injured/non-injured ratios were low at transition from knee flexion to extension in quadriceps in SLS, and in quadriceps and hamstrings in DLS. On injured side, the quadriceps/hamstrings ratio prior to the beginning of DLS and end of DLS and SLS, and tibialis/gastrocnemius ratio at end of DLS were lower than on non-injured side. Correlations were found between specific altered movement patterns and deviating muscular activity at transition from knee flexion to extension in SLS, indicating that the more deviating the muscular activity on injured side, the more pronounced the altered movement pattern. "Knee medial to supporting foot" correlated to lower injured/non-injured ratios in gluteus medius (rs = -0.73, p = 0.001), "lateral displacement of hip-pelvis-region" to lower injured/non-injured ratios in quadriceps (rs = -0.54, p = 0.03) and "displacement of trunk" to higher injured/non-injured ratios in gluteus medius (rs = 0.62, p = 0.01). Deviations in muscular activity between injured and non-injured sides and between antagonistic muscular activity within injured as compared to non-injured sides indicated specific alterations in sensorimotor control of the lower limb in individuals with ACL rupture. Also, correlations between deviating muscular activity and specific altered movement patterns were suggested as indications of altered sensorimotor control. We therefore advocate that quantitative assessments of altered movement patterns should be considered in ACL-rehabilitation.

  4. The long tail of molecular alterations in non-small cell lung cancer: a single-institution experience of next-generation sequencing in clinical molecular diagnostics.

    PubMed

    Fumagalli, Caterina; Vacirca, Davide; Rappa, Alessandra; Passaro, Antonio; Guarize, Juliana; Rafaniello Raviele, Paola; de Marinis, Filippo; Spaggiari, Lorenzo; Casadio, Chiara; Viale, Giuseppe; Barberis, Massimo; Guerini-Rocco, Elena

    2018-03-13

    Molecular profiling of advanced non-small cell lung cancers (NSCLC) is essential to identify patients who may benefit from targeted treatments. In the last years, the number of potentially actionable molecular alterations has rapidly increased. Next-generation sequencing allows for the analysis of multiple genes simultaneously. To evaluate the feasibility and the throughput of next-generation sequencing in clinical molecular diagnostics of advanced NSCLC. A single-institution cohort of 535 non-squamous NSCLC was profiled using a next-generation sequencing panel targeting 22 actionable and cancer-related genes. 441 non-squamous NSCLC (82.4%) harboured at least one gene alteration, including 340 cases (63.6%) with clinically relevant molecular aberrations. Mutations have been detected in all but one gene ( FGFR1 ) of the panel. Recurrent alterations were observed in KRAS , TP53 , EGFR , STK11 and MET genes, whereas the remaining genes were mutated in <5% of the cases. Concurrent mutations were detected in 183 tumours (34.2%), mostly impairing KRAS or EGFR in association with TP53 alterations. The study highlights the feasibility of targeted next-generation sequencing in clinical setting. The majority of NSCLC harboured mutations in clinically relevant genes, thus identifying patients who might benefit from different targeted therapies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state

    PubMed Central

    Galvan, Adriana; Devergnas, Annaelle; Wichmann, Thomas

    2015-01-01

    In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials (LFPs), electroencephalograms (EEGs) or electrocorticograms (ECoGs). Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation (DBS) therapy. PMID:25698937

  6. [Significance of revision of the occupational illness legislation for evaluating intervertebral disk damage].

    PubMed

    Weber, M; Morgenthaler, M

    1997-01-01

    Are there any radiological criterions which are able to indicate the profession related disease No. 2108? The medical documents and x-rays of the whole spine of 390 back pain patients who applied for a profession related disease of the spine were evaluated. Those patients who fulfilled the professional claims for acknowledgement of the profession related disease were compared to those who didn't fulfill these conditions. Concerning the segmental alterations of the cervical and the lumbal spine specific allocation frequencies were found. The dominance of L3/4 in the comparison group was conspicuous. Looking at the allocation frequencies of the cervical and lumbal disc alterations in view of affection heaviness it was obvious, that the predominating slight alterations mainly were located in the central parts of the cervical and the lumbal spine whereas bad alterations mainly were found in the lower parts. Regarding this matter test and comparison groups behaved the same way. Looking at the allocation frequencies concerning single respectively multiple alterations it was found that in the comparison group single respectively bisegmentale alterations could be recognized even in duplicate than in the test group in which the multiple alterations were dominant. The comparison of the cervical and the lumbal spine regarding chondrotic? spondylotic, slight and bad alterations in all mentioned features the next deeper located segment was affected particularly in the test group. Therefore a distal shift of the chondrotic alterations could be recognized. In case of the spondylotic affections it was the other way round: a cranial shift was conspicuous. After doing heavy labour for years only a few isolated multiple affections of the lumbal spine are found. On the strength of this fact the proof of exclusively in the lumbal spine located alterations doesn't allow the acknowledgement of a profession related disease. However, a distal shift of osteochondrotic alterations respectively a cranial shift of spondylotic affections in the lumbal spine is suspicous for being job-related. L3/4 takes a very special place in the differential diagnosis of profession related disease of the spine. In the test group this part of the lumbal spine showed bad alterations much more frequent. The affection of L3/4 pleads against a considerable participation of mechanical influences and therefore against a profession related disease. Singular or bisegmental disc affections are out of question for being a profession related disease because these alterations are seen much more frequent in the comparison than in the test group.

  7. Synapse alterations in autism: Review of animal model findings.

    PubMed

    Zatkova, Martina; Bakos, Jan; Hodosy, Julius; Ostatnikova, Daniela

    2016-06-01

    Recent research has produced an explosion of experimental data on the complex neurobiological mechanisms of developmental disorders including autism. Animal models are one approach to studying the phenotypic features and molecular basis of autism. In this review, we describe progress in understanding synaptogenesis and alterations to this process with special emphasis on the cell adhesion molecules and scaffolding proteins implicated in autism. Genetic mouse model experiments are discussed in relation to alterations to selected synaptic proteins and consequent behavioral deficits measured in animal experiments. Pubmed databases were used to search for original and review articles on animal and human clinical studies on autism. The cell adhesion molecules, neurexin, neurolignin and the Shank family of proteins are important molecular targets associated with autism. The heterogeneity of the autism spectrum of disorders limits interpretation of information acquired from any single animal model or animal test. We showed synapse-specific/ model-specific defects associated with a given genotype in these models. Characterization of mouse models with genetic variations may help study the mechanisms of autism in humans. However, it will be necessary to apply new analytic paradigms in using genetically modified mice for understanding autism etiology in humans. Further studies are needed to create animal models with mutations that match the molecular and neural bases of autism.

  8. [Prevalence of altered mismatch repair protein nuclear expression detected by immunohistochemistry on adenomas with high-grade dysplasia and features associated with this risk in a population-based study].

    PubMed

    Basterra, Marta; Gomez, Marta; Mercado, María Del Rosario; Irisarri, Rebeca; Amorena, Edurne; Arrospide, Arantzazu; Montes, Marta; Aisa, Gregorio; Cambra, Koldo Iñaki; Urman, Jesús

    2016-10-01

    Alteration of mismatch repair system protein expression detected by immunohistochemistry (IHQ) in tumoural tissue is a useful technique for Lynch Syndrome (LS) screening. A recent review proposes LS screening through immunohistochemical study not only in all diagnosed cases of colorectal cancer (CRC) but also in advanced adenomas, especially in young patients. To assess the prevalence of altered IHQ carried out in all adenomas with high-grade dysplasia (HGD) diagnosed in our community in 2011, as well as the variables associated with this alteration. We included all the cases of adenomatous polyps with HGD diagnosed in the three public pathology laboratories of Navarre during 2011 and performed a statistical study to assess the association between different patient and lesion characteristics and altered IHQ results. A total of 213 colonic adenomas with HGD were diagnosed, and 26 (12.2%) cases were excluded from the final analysis (2 known LS, 22 without IHQ study and 2 with inconclusive IHQ studies). The final number of adenomas included was 187. Pathologic results were found in 10 cases (5.35%)-6 cases in MLH1 and PMS2, 2 cases in PMS2, 1 case in MSH6 and 1 case in MSH2 and MSH6. The factors showing a statistically significant association with the presence of abnormal proteins were the synchronous presence of CRC, the presence of only one advanced adenoma, proximal location of HGD and age <50 years. The percentage of pathologic nuclear expression found in IHQ is high. Consequently, screening of all diagnosed HGD could be indicated, especially in young patients, with a single AA and proximal HGD. Copyright © 2015 Elsevier España, S.L.U. y AEEH y AEG. All rights reserved.

  9. High-resolution single-nucleotide polymorphism array-profiling in myeloproliferative neoplasms identifies novel genomic aberrations

    PubMed Central

    Stegelmann, Frank; Bullinger, Lars; Griesshammer, Martin; Holzmann, Karlheinz; Habdank, Marianne; Kuhn, Susanne; Maile, Carmen; Schauer, Stefanie; Döhner, Hartmut; Döhner, Konstanze

    2010-01-01

    Single-nucleotide polymorphism arrays allow for genome-wide profiling of copy-number alterations and copy-neutral runs of homozygosity at high resolution. To identify novel genetic lesions in myeloproliferative neoplasms, a large series of 151 clinically well characterized patients was analyzed in our study. Copy-number alterations were rare in essential thrombocythemia and polycythemia vera. In contrast, approximately one third of myelofibrosis patients exhibited small genomic losses (less than 5 Mb). In 2 secondary myelofibrosis cases the tumor suppressor gene NF1 in 17q11.2 was affected. Sequencing analyses revealed a mutation in the remaining NF1 allele of one patient. In terms of copy-neutral aberrations, no chromosomes other than 9p were recurrently affected. In conclusion, novel genomic aberrations were identified in our study, in particular in patients with myelofibrosis. Further analyses on single-gene level are necessary to uncover the mechanisms that are involved in the pathogenesis of myeloproliferative neoplasms. PMID:20015882

  10. Single Balloon Enteroscopy-Assisted Endoscopic Retrograde Cholangiopancreatography in Patients Who Underwent a Gastrectomy with Roux-en-Y Anastomosis: Six Cases from a Single Center.

    PubMed

    Soh, Jae Seung; Yang, Dong-Hoon; Lee, Sang Soo; Lee, Seohyun; Bae, Jungho; Byeon, Jeong-Sik; Myung, Seung-Jae; Yang, Suk-Kyun

    2015-09-01

    Patients with altered anatomy such as a Roux-en-Y anastomosis often present with various pancreaticobiliary problems requiring therapeutic intervention. However, a conventional endoscopic approach to the papilla is very difficult owing to the long afferent limb and acute angle of a Roux-en-Y anastomosis. Balloon-assisted enteroscopy can be used for endoscopic retrograde cholangiopancreatography (ERCP) in patients with altered anatomy. We experienced six cases of Roux-en-Y anastomosis with biliary problems, and attempted ERCP using single balloon enteroscopy (SBE). SBE insertion followed by replacement with a conventional endoscope was attempted in five of six patients. The papilla was successfully approached using SBE in all cases. However, therapeutic intervention was completed in only three cases because of poor maneuverability caused by postoperative adhesion. We conclude that in patients with Roux-en-Y anastomosis, the ampulla can be readily accessed with SBE, but longer dedicated accessories are necessary to improve this therapeutic intervention.

  11. ESS++: a C++ objected-oriented algorithm for Bayesian stochastic search model exploration

    PubMed Central

    Bottolo, Leonardo; Langley, Sarah R.; Petretto, Enrico; Tiret, Laurence; Tregouet, David; Richardson, Sylvia

    2011-01-01

    Summary: ESS++ is a C++ implementation of a fully Bayesian variable selection approach for single and multiple response linear regression. ESS++ works well both when the number of observations is larger than the number of predictors and in the ‘large p, small n’ case. In the current version, ESS++ can handle several hundred observations, thousands of predictors and a few responses simultaneously. The core engine of ESS++ for the selection of relevant predictors is based on Evolutionary Monte Carlo. Our implementation is open source, allowing community-based alterations and improvements. Availability: C++ source code and documentation including compilation instructions are available under GNU licence at http://bgx.org.uk/software/ESS.html. Contact: l.bottolo@imperial.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21233165

  12. Reconstructing the regulatory network controlling commitment and sporulation in Physarum polycephalum based on hierarchical Petri Net modelling and simulation.

    PubMed

    Marwan, Wolfgang; Sujatha, Arumugam; Starostzik, Christine

    2005-10-21

    We reconstruct the regulatory network controlling commitment and sporulation of Physarum polycephalum from experimental results using a hierarchical Petri Net-based modelling and simulation framework. The stochastic Petri Net consistently describes the structure and simulates the dynamics of the molecular network as analysed by genetic, biochemical and physiological experiments within a single coherent model. The Petri Net then is extended to simulate time-resolved somatic complementation experiments performed by mixing the cytoplasms of mutants altered in the sporulation response, to systematically explore the network structure and to probe its dynamics. This reverse engineering approach presumably can be employed to explore other molecular or genetic signalling systems where the activity of genes or their products can be experimentally controlled in a time-resolved manner.

  13. Detection of Strand Cleavage And Oxidation Damage Using Model DNA Molecules Captured in a Nanoscale Pore

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Solbrig, A.; DeGuzman, V.; Deamer, D.; Akeson, M.

    2003-01-01

    We use a biological nano-scale pore to distinguish among individual DNA hairpins that differ by a single site of oxidation or a nick in the sugar-phosphate backbone. In earlier work we showed that the protein ion channel alpha-hemolysin can be used as a detector to distinguish single-stranded from double-stranded DNA, single base pair and single nucleotide differences. This resolution is in part a result of sensitivity to structural changes that influence the molecular dynamics of nucleotides within DNA. The strand cleavage products we examined here included a 5-base-pair (5-bp) hairpin with a 5-prime five-nucleotide overhang, and a complementary five-nucleotide oligomer. These produced predictable shoulder-spike and rapid near-full blockade signatures, respectively. When combined, strand annealing was monitored in real time. The residual current level dropped to a lower discrete level in the shoulder-spike blockade signatures, and the duration lengthened. However, these blockade signatures had a shorter duration than the unmodified l0bp hairpin. To test the pore sensitivity to nucleotide oxidation, we examined a 9-bp hairpin with a terminal 8-oxo-deoxyguanosine (8-oxo-dG), or a penultimate 8-oxo-dG. Each produced blockade signatures that differed from the otherwise identical control 9bp hairpins. This study showed that DNA structure is modified sufficiently by strand cleavage or oxidation damage at a single site to alter in a predictable manner the ionic current blockade signatures produced. This technique improves the ability to assess damage to DNA, and can provide a simple means to help characterize the risks of radiation exposure. It may also provide a method to test radiation protection.

  14. Impact of Snow Grain Shape and Internal Mixing with Black Carbon Aerosol on Snow Optical Properties for use in Climate Models

    NASA Astrophysics Data System (ADS)

    He, C.; Liou, K. N.; Takano, Y.; Yang, P.; Li, Q.; Chen, F.

    2017-12-01

    A set of parameterizations is developed for spectral single-scattering properties of clean and black carbon (BC)-contaminated snow based on geometric-optic surface-wave (GOS) computations, which explicitly resolves BC-snow internal mixing and various snow grain shapes. GOS calculations show that, compared with nonspherical grains, volume-equivalent snow spheres show up to 20% larger asymmetry factors and hence stronger forward scattering, particularly at wavelengths <1 mm. In contrast, snow grain sizes have a rather small impact on the asymmetry factor at wavelengths <1 mm, whereas size effects are important at longer wavelengths. The snow asymmetry factor is parameterized as a function of effective size, aspect ratio, and shape factor, and shows excellent agreement with GOS calculations. According to GOS calculations, the single-scattering coalbedo of pure snow is predominantly affected by grain sizes, rather than grain shapes, with higher values for larger grains. The snow single-scattering coalbedo is parameterized in terms of the effective size that combines shape and size effects, with an accuracy of >99%. Based on GOS calculations, BC-snow internal mixing enhances the snow single-scattering coalbedo at wavelengths <1 mm, but it does not alter the snow asymmetry factor. The BC-induced enhancement ratio of snow single-scattering coalbedo, independent of snow grain size and shape, is parameterized as a function of BC concentration with an accuracy of >99%. Overall, in addition to snow grain size, both BC-snow internal mixing and snow grain shape play critical roles in quantifying BC effects on snow optical properties. The present parameterizations can be conveniently applied to snow, land surface, and climate models including snowpack radiative transfer processes.

  15. The Natural History of Neoplasia

    PubMed Central

    Pitot, Henry C.

    1977-01-01

    The stages of initiation and promotion in the natural history of epidermal carcinogenesis have been known for many years. Recently, experimental systems other than skin have been shown to exhibit similar, if not completely analogous, stages in the natural history of neoplasia. In particular, the demonstration by Peraino and his associates that phenobarbital may enhance the production of hepatomas by a relatively subcarcinogenic dose of acetylaminofluorene was one of the first demonstrations of stages occurring in an extraepidermal neoplasm. Studies reported in this paper have demonstrated that administration of phenobarbital (0.05% in the diet) for 6 months following a single dose of diethylnitrosamine (5 to 10 mg/kg) given within 24 hours after partial hepatectomy resulted in a marked increase in the number of enzyme-altered foci in the liver as well as in the production of hepatocellular carcinomas. This was compared to animals receiving only a single dose of diethylnitrosamine following partial hepatectomy with no further treatment, in which only a relatively small number of foci were evident in the absence of phenobarbital feeding. Using three different enzyme markers, a distinct degree of phenotypic heterogeneity of the enzyme-altered foci in liver was demonstrated. These studies have shown that liver carcinogensis can be readily divided into two stages: a) initiation by a single dose of diethylnitrosamine following partial hepatectomy and b) promotion by the continuous feeding of phenobarbital. Furthermore, the immediate progeny of the initiated cells, the enzyme-altered focus, may be recognized by suitable microscopic means prior to the formation of gross lesions as required in the skin system. These initiated cell populations exhibit a degree of biochemical heterogeneity which reflects that seen in fully developed hepatic neoplasms, suggesting that promotion and progression in this system does not significantly alter the basic biochemical characteristics of the initiated cell. PMID:21565

  16. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ERα) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice

    PubMed Central

    Lee, Junga; Scheri, Richard C.; Zhang, Yuan; Curtis, Lawrence R.

    2008-01-01

    Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [14C]CD or [14C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor α (ERα) in a concentration-dependent manner (0–50 μM). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice. PMID:18789348

  17. CoReCG: a comprehensive database of genes associated with colon-rectal cancer

    PubMed Central

    Agarwal, Rahul; Kumar, Binayak; Jayadev, Msk; Raghav, Dhwani; Singh, Ashutosh

    2016-01-01

    Cancer of large intestine is commonly referred as colorectal cancer, which is also the third most frequently prevailing neoplasm across the globe. Though, much of work is being carried out to understand the mechanism of carcinogenesis and advancement of this disease but, fewer studies has been performed to collate the scattered information of alterations in tumorigenic cells like genes, mutations, expression changes, epigenetic alteration or post translation modification, genetic heterogeneity. Earlier findings were mostly focused on understanding etiology of colorectal carcinogenesis but less emphasis were given for the comprehensive review of the existing findings of individual studies which can provide better diagnostics based on the suggested markers in discrete studies. Colon Rectal Cancer Gene Database (CoReCG), contains 2056 colon-rectal cancer genes information involved in distinct colorectal cancer stages sourced from published literature with an effective knowledge based information retrieval system. Additionally, interactive web interface enriched with various browsing sections, augmented with advance search facility for querying the database is provided for user friendly browsing, online tools for sequence similarity searches and knowledge based schema ensures a researcher friendly information retrieval mechanism. Colorectal cancer gene database (CoReCG) is expected to be a single point source for identification of colorectal cancer-related genes, thereby helping with the improvement of classification, diagnosis and treatment of human cancers. Database URL: lms.snu.edu.in/corecg PMID:27114494

  18. Plasma metabolomics profiling of maintenance hemodialysis based on capillary electrophoresis - time of flight mass spectrometry.

    PubMed

    Liu, Shuxin; Wang, Lichao; Hu, Chunxiu; Huang, Xin; Liu, Hong; Xuan, Qiuhui; Lin, Xiaohui; Peng, Xiaojun; Lu, Xin; Chang, Ming; Xu, Guowang

    2017-08-15

    Uremia has been a rapidly increasing health problem in China. Hemodialysis (HD) is the main renal replacement therapy for uremia. The results of large-scale clinical trials have shown that the HD pattern is crucial for long-term prognosis of maintenance hemodialysis (MHD) in uremic patients. Plasma metabolism is very important for revealing the biological insights linked to the therapeutic effects of the HD pattern on uremia. Alteration of plasma metabolites in uremic patients in response to HD therapy has been reported. However, HD-pattern-dependent changes in plasma metabolites remain poorly understood. To this end, a capillary electrophoresis-time of flight mass spectrometry (CE-TOF/MS)-based metabolomics method was performed to systemically study the differences between HD and high flux hemodialysis (HFD) on plasma metabolite changes in patients. Three hundred and one plasma samples from three independent human cohorts (i.e., healthy controls, patients with pre-HD/post-HD, and patients with pre-HFD/post-HFD) were used in this study. Metabolites significantly changed (p < 0.05) after a single HD or HFD process. However, 11 uremic retention solutes could be more efficiently removed by HFD. Our findings indicate that a CE-TOF/MS-based metabolomics approach is promising for providing novel insights into understanding the effects of different dialysis methods on metabolite alterations of uremia.

  19. Theranostic Profiling for Actionable Aberrations in Advanced High Risk Osteosarcoma with Aggressive Biology Reveals High Molecular Diversity: The Human Fingerprint Hypothesis.

    PubMed

    Egas-Bejar, Daniela; Anderson, Pete M; Agarwal, Rishi; Corrales-Medina, Fernando; Devarajan, Eswaran; Huh, Winston W; Brown, Robert E; Subbiah, Vivek

    2014-03-12

    The survival of patients with advanced osteosarcoma is poor with limited therapeutic options. There is an urgent need for new targeted therapies based on biomarkers. Recently, theranostic molecular profiling services for cancer patients by CLIA-certified commercial companies as well as in-house profiling in academic medical centers have expanded exponentially. We evaluated molecular profiles of patients with advanced osteosarcoma whose tumor tissue had been analyzed by one of the following methods: 1. 182-gene next-generation exome sequencing (Foundation Medicine, Boston, MA), 2. Immunohistochemistry (IHC)/PCR-based panel (CARIS Target Now, Irving, Tx), 3.Comparative genome hybridization (Oncopath, San Antonio, TX). 4. Single-gene PCR assays, PTEN IHC (MDACC CLIA), 5. UT Houston morphoproteomics (Houston, TX). The most common actionable aberrations occur in the PI3K/PTEN/mTOR pathway. No patterns in genomic alterations beyond the above are readily identifiable, and suggest both high molecular diversity in osteosarcoma and the need for more analyses to define distinct subgroups of osteosarcoma defined by genomic alterations. Based on our preliminary observations we hypothesize that the biology of aggressive and the metastatic phenotype osteosarcoma at the molecular level is similar to human fingerprints, in that no two tumors are identical. Further large scale analyses of osteosarcoma samples are warranted to test this hypothesis.

  20. Phagocytosis as a biomarker for stress responses

    NASA Astrophysics Data System (ADS)

    Huber, K.; Krotz-Fahning, M.; Hock, B.

    2005-08-01

    An in vitro test has been developed for the detection of immunotoxic events. It will be used within the project "TRIPLE LUX" on the International Space Station to investigate the effects of single and combined space flight conditions on mammalian phagocytes. The intensity of the respiratory burst during phagocytosis can be followed by the luminol-based chemiluminescence response after stimulation with zymosan. We adapted this test system for polymorphonuclear leukocytes, purified from sheep blood and stored by cryoconservation. In this report we show the immunostimulating effect of hydrocortisone and the immunosuppressive impact of cadmium as an example for alterations that can be detected by this test.

  1. Array-based DNA-methylation profiling in sarcomas with small blue round cell histology provides valuable diagnostic information.

    PubMed

    Koelsche, Christian; Hartmann, Wolfgang; Schrimpf, Daniel; Stichel, Damian; Jabar, Susanne; Ranft, Andreas; Reuss, David E; Sahm, Felix; Jones, David T W; Bewerunge-Hudler, Melanie; Trautmann, Marcel; Klingebiel, Thomas; Vokuhl, Christian; Gessler, Manfred; Wardelmann, Eva; Petersen, Iver; Baumhoer, Daniel; Flucke, Uta; Antonescu, Cristina; Esteller, Manel; Fröhling, Stefan; Kool, Marcel; Pfister, Stefan M; Mechtersheimer, Gunhild; Dirksen, Uta; von Deimling, Andreas

    2018-03-23

    Undifferentiated solid tumors with small blue round cell histology and expression of CD99 mostly resemble Ewing sarcoma. However, they also may include other tumors such as mesenchymal chondrosarcoma, synovial sarcoma, or small cell osteosarcoma. Definitive classification usually requires detection of entity-specific mutations. While this approach identifies the majority of Ewing sarcomas, a subset of lesions remains unclassified and, therefore, has been termed "Ewing-like sarcomas" or small blue round cell tumors not otherwise specified. We developed an approach for further characterization of small blue round cell tumors not otherwise specified using an array-based DNA-methylation profiling approach. Data were analyzed by unsupervised clustering and t-distributed stochastic neighbor embedding analysis and compared with a reference methylation data set of 460 well-characterized prototypical sarcomas encompassing 18 subtypes. Verification was performed by additional FISH analyses, RNA sequencing from formalin-fixed paraffin-embedded material or immunohistochemical marker analyses. In a cohort of more than 1,000 tumors assumed to represent Ewing sarcomas, 30 failed to exhibit the typical EWS translocation. These tumors were subjected to methylation profiling and could be assigned to Ewing sarcoma in 14 (47%), to small blue round cell tumors with CIC alteration in 6 (20%), to small blue round cell tumors with BCOR alteration in 4 (13%), to synovial sarcoma and to malignant rhabdoid tumor in 2 cases each. One single case each was allotted to mesenchymal chondrosarcoma and adamantinoma. 12/14 tumors classified as Ewing sarcoma could be verified by demonstrating either a canonical EWS translocation evading initial testing, by identifying rare breakpoints or fusion partners. The methylation-based assignment of the remaining small blue round cell tumors not otherwise specified also could be verified by entity-specific molecular alterations in 13/16 cases. In conclusion, array-based DNA-methylation analysis of undifferentiated tumors with small blue round cell histology is a powerful tool for precisely classifying this diagnostically challenging tumor group.

  2. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.

    PubMed

    Gregory, Shaun D; Stevens, Michael C; Pauls, Jo P; Schummy, Emma; Diab, Sara; Thomson, Bruce; Anderson, Ben; Tansley, Geoff; Salamonsen, Robert; Fraser, John F; Timms, Daniel

    2016-09-01

    Preventing ventricular suction and venous congestion through balancing flow rates and circulatory volumes with dual rotary ventricular assist devices (VADs) configured for biventricular support is clinically challenging due to their low preload and high afterload sensitivities relative to the natural heart. This study presents the in vivo evaluation of several physiological control systems, which aim to prevent ventricular suction and venous congestion. The control systems included a sensor-based, master/slave (MS) controller that altered left and right VAD speed based on pressure and flow; a sensor-less compliant inflow cannula (IC), which altered inlet resistance and, therefore, pump flow based on preload; a sensor-less compliant outflow cannula (OC) on the right VAD, which altered outlet resistance and thus pump flow based on afterload; and a combined controller, which incorporated the MS controller, compliant IC, and compliant OC. Each control system was evaluated in vivo under step increases in systemic (SVR ∼1400-2400 dyne/s/cm(5) ) and pulmonary (PVR ∼200-1000 dyne/s/cm(5) ) vascular resistances in four sheep supported by dual rotary VADs in a biventricular assist configuration. Constant speed support was also evaluated for comparison and resulted in suction events during all resistance increases and pulmonary congestion during SVR increases. The MS controller reduced suction events and prevented congestion through an initial sharp reduction in pump flow followed by a gradual return to baseline (5.0 L/min). The compliant IC prevented suction events; however, reduced pump flows and pulmonary congestion were noted during the SVR increase. The compliant OC maintained pump flow close to baseline (5.0 L/min) and prevented suction and congestion during PVR increases. The combined controller responded similarly to the MS controller to prevent suction and congestion events in all cases while providing a backup system in the event of single controller failure. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. When the Single Matters more than the Group (II): Addressing the Problem of High False Positive Rates in Single Case Voxel Based Morphometry Using Non-parametric Statistics.

    PubMed

    Scarpazza, Cristina; Nichols, Thomas E; Seramondi, Donato; Maumet, Camille; Sartori, Giuseppe; Mechelli, Andrea

    2016-01-01

    In recent years, an increasing number of studies have used Voxel Based Morphometry (VBM) to compare a single patient with a psychiatric or neurological condition of interest against a group of healthy controls. However, the validity of this approach critically relies on the assumption that the single patient is drawn from a hypothetical population with a normal distribution and variance equal to that of the control group. In a previous investigation, we demonstrated that family-wise false positive error rate (i.e., the proportion of statistical comparisons yielding at least one false positive) in single case VBM are much higher than expected (Scarpazza et al., 2013). Here, we examine whether the use of non-parametric statistics, which does not rely on the assumptions of normal distribution and equal variance, would enable the investigation of single subjects with good control of false positive risk. We empirically estimated false positive rates (FPRs) in single case non-parametric VBM, by performing 400 statistical comparisons between a single disease-free individual and a group of 100 disease-free controls. The impact of smoothing (4, 8, and 12 mm) and type of pre-processing (Modulated, Unmodulated) was also examined, as these factors have been found to influence FPRs in previous investigations using parametric statistics. The 400 statistical comparisons were repeated using two independent, freely available data sets in order to maximize the generalizability of the results. We found that the family-wise error rate was 5% for increases and 3.6% for decreases in one data set; and 5.6% for increases and 6.3% for decreases in the other data set (5% nominal). Further, these results were not dependent on the level of smoothing and modulation. Therefore, the present study provides empirical evidence that single case VBM studies with non-parametric statistics are not susceptible to high false positive rates. The critical implication of this finding is that VBM can be used to characterize neuroanatomical alterations in individual subjects as long as non-parametric statistics are employed.

  4. Tunable Microfluidic Devices for Hydrodynamic Fractionation of Cells and Beads: A Review

    PubMed Central

    Alvankarian, Jafar; Majlis, Burhanuddin Yeop

    2015-01-01

    The adjustable microfluidic devices that have been developed for hydrodynamic-based fractionation of beads and cells are important for fast performance tunability through interaction of mechanical properties of particles in fluid flow and mechanically flexible microstructures. In this review, the research works reported on fabrication and testing of the tunable elastomeric microfluidic devices for applications such as separation, filtration, isolation, and trapping of single or bulk of microbeads or cells are discussed. Such microfluidic systems for rapid performance alteration are classified in two groups of bulk deformation of microdevices using external mechanical forces, and local deformation of microstructures using flexible membrane by pneumatic pressure. The main advantage of membrane-based tunable systems has been addressed to be the high capability of integration with other microdevice components. The stretchable devices based on bulk deformation of microstructures have in common advantage of simplicity in design and fabrication process. PMID:26610519

  5. DNA nanostructure-based fluorescence thermometer with silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Bu, Congcong; Mu, Lixuan; Cao, Xingxing; Chen, Min; She, Guangwei; Shi, Wensheng

    2018-07-01

    DNA nanostructure-based fluorescence thermometers were fabricated by linking fluorescent silver nanoclusters (AgNCs) and guanine-rich(G-rich)DNA chains via a thermally sensitive DNA stem-loop at terminals 5‧ and 3‧. Variations of temperature alter the distance between the AgNCs and G-rich DNA chain, affecting the interaction between them. As a result, the intensity of fluorescence emission from the AgNCs at 636 nm can be sensitively modulated. It was found that the intensity of such red emission is more temperature sensitive than the equivalent green emission at 543 nm; sensitivity of ‑3.6%/°C was achieved. Through variation of the melting temperature of the DNA stem-loop, the response temperature range of the thermometers could be readily adjusted. Novel DNA nanostructure-based fluorescence thermometers as described in this work are anticipated to be able to measure the temperature of biological systems at small scales—even a single cell.

  6. DNA nanostructure-based fluorescence thermometer with silver nanoclusters.

    PubMed

    Bu, Congcong; Mu, Lixuan; Cao, XIngxing; Chen, Min; She, Guangwei; Shi, Wensheng

    2018-04-27

    Linking the fluorescent silver nanoclusters (AgNCs) and guanine-rich(G-rich)DNA chains by the thermal sensitive DNA stem-loop at teminal 5' and 3', DNA nanostructure-based fluorescence thermometers were fabricated. The variations of the temperature alter the distance between AgNCs and G-rich DNA chain, which could affect the interaction between them. As a result, the intensity of fluorescence emission from AgNCs at 636 nm can be sensitively modulated. It was found that such red emission is more sensitive to the temperature comparing with its intrinsic green emission at 543 nm, and sensitivity of -3.6%/℃ was achieved. Varying the melting temperature of the DNA stem-loop could readily adjust the response temperature range of thermometers. Novel DNA nanostructure-based fluorescence thermometers in this work could be anticipated to measure the temperature of biological system, even a single cell. © 2018 IOP Publishing Ltd.

  7. Transient receptor potential cation channel A1 (TRPA1) mediates decrements in cardiac mechanical function and dysrhythmia caused by a single air pollution exposure in mice

    EPA Science Inventory

    This work, which will be presented at SOT 2014, demonstrates that a single exposure to either ozone or acrolein causes decrements in cardiac function and altered electrical activity (i.e. arrhythmia). The results suggest that this effect is mediated by the airway sensor TRPA1. ...

  8. Wortmannin Attenuates Seizure-Induced Hyperactive PI3K/Akt/mTOR Signaling, Impaired Memory, and Spine Dysmorphology in Rats

    PubMed Central

    Carter, Angela N.; Born, Heather A.; Levine, Amber T.; Dao, An T.; Zhao, Amanda J.; Lee, Wai L.

    2017-01-01

    Numerous studies have shown epilepsy-associated cognitive deficits, but less is known about the effects of one single generalized seizure. Recent studies demonstrate that a single, self-limited seizure can result in memory deficits and induces hyperactive phosphoinositide 3-kinase/Akt (protein kinase B)/mechanistic target of rapamycin (PI3K/Akt/mTOR) signaling. However, the effect of a single seizure on subcellular structures such as dendritic spines and the role of aberrant PI3K/Akt/mTOR signaling in these seizure-induced changes are unclear. Using the pentylenetetrazole (PTZ) model, we induced a single generalized seizure in rats and: (1) further characterized short- and long-term hippocampal and amygdala-dependent memory deficits, (2) evaluated whether there are changes in dendritic spines, and (3) determined whether inhibiting hyperactive PI3K/Akt/mTOR signaling rescued these alterations. Using the PI3K inhibitor wortmannin (Wort), we partially rescued short- and long-term memory deficits and altered spine morphology. These studies provide evidence that pathological PI3K/Akt/mTOR signaling plays a role in seizure-induced memory deficits as well as aberrant spine morphology. PMID:28612047

  9. Intratumoral and Intertumoral Genomic Heterogeneity of Multifocal Localized Prostate Cancer Impacts Molecular Classifications and Genomic Prognosticators

    PubMed Central

    Wei, Lei; Wang, Jianmin; Lampert, Erika; Schlanger, Simon; DePriest, Adam D.; Hu, Qiang; Gomez, Eduardo Cortes; Murakam, Mitsuko; Glenn, Sean T.; Conroy, Jeffrey; Morrison, Carl; Azabdaftari, Gissou; Mohler, James L.; Liu, Song; Heemers, Hannelore V.

    2018-01-01

    Background Next-generation sequencing is revealing genomic heterogeneity in localized prostate cancer (CaP). Incomplete sampling of CaP multiclonality has limited the implications for molecular subtyping, stratification, and systemic treatment. Objective To determine the impact of genomic and transcriptomic diversity within and among intraprostatic CaP foci on CaP molecular taxonomy, predictors of progression, and actionable therapeutic targets. Design, setting, and participants Four consecutive patients with clinically localized National Comprehensive Cancer Network intermediate- or high-risk CaP who did not receive neoadjuvant therapy underwent radical prostatectomy at Roswell Park Cancer Institute in June–July 2014. Presurgical information on CaP content and a customized tissue procurement procedure were used to isolate nonmicroscopic and noncontiguous CaP foci in radical prostatectomy specimens. Three cores were obtained from the index lesion and one core from smaller lesions. RNA and DNA were extracted simultaneously from 26 cores with ≥90% CaP content and analyzed using whole-exome sequencing, single-nucleotide polymorphism arrays, and RNA sequencing. Outcome measurements and statistical analysis Somatic mutations, copy number alternations, gene expression, gene fusions, and phylogeny were defined. The impact of genomic alterations on CaP molecular classification, gene sets measured in Oncotype DX, Prolaris, and Decipher assays, and androgen receptor activity among CaP cores was determined. Results and limitations There was considerable variability in genomic alterations among CaP cores, and between RNA- and DNA-based platforms. Heterogeneity was found in molecular grouping of individual CaP foci and the activity of gene sets underlying the assays for risk stratification and androgen receptor activity, and was validated in independent genomic data sets. Determination of the implications for clinical decision-making requires follow-up studies. Conclusions Genomic make-up varies widely among CaP foci, so care should be taken when making treatment decisions based on a single biopsy or index lesions. Patient summary We examined the molecular composition of individual cancers in a patient’s prostate. We found a lot of genetic diversity among these cancers, and concluded that information from a single cancer biopsy is not sufficient to guide treatment decisions. PMID:27451135

  10. Stress-induced alteration of left ventricular eccentricity: An additional marker of multivessel CAD.

    PubMed

    Gimelli, Alessia; Liga, Riccardo; Giorgetti, Assuero; Casagranda, Mirta; Marzullo, Paolo

    2017-03-28

    Abnormal left ventricular (LV) eccentricity index (EI) is a marker of adverse cardiac remodeling. However, the interaction between stress-induced alterations of EI and major cardiac parameters has not been explored. We sought to evaluate the relationship between LV EI and coronary artery disease (CAD) burden in patients submitted to myocardial perfusion imaging (MPI). Three-hundred and forty-three patients underwent MPI and coronary angiography. LV ejection fraction (EF) and EI were computed from gated stress images as measures of stress-induced functional impairment. One-hundred and thirty-six (40%), 122 (35%), and 85 (25%) patients had normal coronary arteries, single-vessel CAD, and multivessel CAD, respectively. Post-stress EI was lower in patients with multivessel CAD than in those with normal coronary arteries and single-vessel CAD (P = 0.001). This relationship was confirmed only in patients undergoing exercise stress test, where a lower post-stress EI predicted the presence of multivessel CAD (P = 0.039). Post-stress alterations of LV EI on MPI may unmask the presence of multivessel CAD.

  11. Interaction of HIV-1 Gag protein components with single DNA molecules

    NASA Astrophysics Data System (ADS)

    Cruceanu, Margareta; Gorelick, Robert J.; Williams, Mark C.

    2003-03-01

    The Gag protein of the HIV-1 retrovirus is cleaved into three major proteins as part of viral maturation: nucleocapsid (NC), capsid, and matrix. NC is the first of these proteins to be cleaved, and it is cleaved in three stages into NCp15, followed by NCp9, and finally NCp7. In this study, we use optical tweezers to investigate the capability of these NC proteins to alter the helix-coil transition of single DNA molecules. We have previously shown that the capability to alter the DNA helix-coil transition is an excellent probe of the nucleic acid chaperone activity of NC proteins, in which the secondary structure of nucleic acids is rearranged to facilitate reverse transcription. By examining the capability of NCp15, NCp9, and NCp7 to alter DNA stretching, the current studies will test the role of proteolytic cleavage of Gag in regulating the nucleic acid chaperone activity of NC. Whereas binding studies suggest that NCp9 and NCp15 bind more strongly to DNA than NCp7, our DNA stretching results indicate that these proteins all have similar effects on DNA stretching.

  12. Single-Cell Analysis Reveals Early Manifestation of Cancerous Phenotype in Pre-Malignant Esophageal Cells

    PubMed Central

    Wang, Jiangxin; Shi, Xu; Johnson, Roger H.; Kelbauskas, Laimonas; Zhang, Weiwen; Meldrum, Deirdre R.

    2013-01-01

    Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the single-cell level. We present a study on changes in cellular heterogeneity in the context of pre-malignant progression in response to hypoxic stress. Utilizing pre-malignant progression of Barrett’s esophagus (BE) as a disease model system we studied molecular mechanisms underlying the progression from metaplastic to dysplastic (pre-cancerous) stage. We used newly developed methods enabling measurements of cell-to-cell differences in copy numbers of mitochondrial DNA, expression levels of a set of mitochondrial and nuclear genes involved in hypoxia response pathways, and mitochondrial membrane potential. In contrast to bulk cell studies reported earlier, our study shows significant differences between metaplastic and dysplastic BE cells in both average values and single-cell parameter distributions of mtDNA copy numbers, mitochondrial function, and mRNA expression levels of studied genes. Based on single-cell data analysis, we propose that mitochondria may be one of the key factors in pre-malignant progression in BE. PMID:24116039

  13. How do messenger RNA splicing alterations drive myelodysplasia?

    PubMed Central

    2017-01-01

    Mutations in RNA splicing factors are the single most common class of genetic alterations in myelodysplastic syndrome (MDS) patients. Although much has been learned about how these mutations affect splicing at a global- and transcript-specific level, critical questions about the role of these mutations in MDS development and maintenance remain. Here we present the questions to be addressed in order to understand the unique enrichment of these mutations in MDS. PMID:28348147

  14. Synthesis and anti-HBV activity of α-stereoisomer of aristeromycin based analogs.

    PubMed

    Kasula, Mohan; Toyama, Masaaki; Samunuri, Ramakrishnamraju; Rozy, Farhana; Yadav, Monika; Bal, Chandralata; Jha, Ashok Kumar; Baba, Masanori; Sharon, Ashoke

    2016-08-15

    The potential antiviral activity of aristeromycin type of derivatives (I) is limited by associated toxicity due to its possible 5'-O-phosphorylation and S-adenosyl-l-homocysteine hydrolase (SAHase) inhibitory activity. Aristeromycin structure has major pharmacophoric motif as 5'-OH and adenosine base, which may have significant role in enzyme binding followed by activity and or toxicity. Thus, the structural optimization to alter this major motif by replacing with its bioisostere and changing the 5'-O conformation through stereochemistry reversal was of interest. Thus, the inverted stereochemistry at 4'-position coupled with bioisostere of adenosine base in the target compounds (6-7) to access antiviral potential. The stereoselective formation of a key stereoisomer (2a) was achieved exclusively from neplanocin sugar (1a) by reduction in a single step. The novel target molecules (6-7) were synthesized in 4 steps with 55-62% yield. Compound 6 was analyzed by single crystal X-ray diffraction, which confirms the stereoselective formation of α-analogs with highly puckered cyclopentane ring and 2'-endo conformation. The compound 6 shown significant anti-hepatitis B virus activity of 6.5μM with CC50>100μM and yielded a promising lead with novel structural feature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dynamic variable selection in SNP genotype autocalling from APEX microarray data.

    PubMed

    Podder, Mohua; Welch, William J; Zamar, Ruben H; Tebbutt, Scott J

    2006-11-30

    Single nucleotide polymorphisms (SNPs) are DNA sequence variations, occurring when a single nucleotide--adenine (A), thymine (T), cytosine (C) or guanine (G)--is altered. Arguably, SNPs account for more than 90% of human genetic variation. Our laboratory has developed a highly redundant SNP genotyping assay consisting of multiple probes with signals from multiple channels for a single SNP, based on arrayed primer extension (APEX). This mini-sequencing method is a powerful combination of a highly parallel microarray with distinctive Sanger-based dideoxy terminator sequencing chemistry. Using this microarray platform, our current genotype calling system (known as SNP Chart) is capable of calling single SNP genotypes by manual inspection of the APEX data, which is time-consuming and exposed to user subjectivity bias. Using a set of 32 Coriell DNA samples plus three negative PCR controls as a training data set, we have developed a fully-automated genotyping algorithm based on simple linear discriminant analysis (LDA) using dynamic variable selection. The algorithm combines separate analyses based on the multiple probe sets to give a final posterior probability for each candidate genotype. We have tested our algorithm on a completely independent data set of 270 DNA samples, with validated genotypes, from patients admitted to the intensive care unit (ICU) of St. Paul's Hospital (plus one negative PCR control sample). Our method achieves a concordance rate of 98.9% with a 99.6% call rate for a set of 96 SNPs. By adjusting the threshold value for the final posterior probability of the called genotype, the call rate reduces to 94.9% with a higher concordance rate of 99.6%. We also reversed the two independent data sets in their training and testing roles, achieving a concordance rate up to 99.8%. The strength of this APEX chemistry-based platform is its unique redundancy having multiple probes for a single SNP. Our model-based genotype calling algorithm captures the redundancy in the system considering all the underlying probe features of a particular SNP, automatically down-weighting any 'bad data' corresponding to image artifacts on the microarray slide or failure of a specific chemistry. In this regard, our method is able to automatically select the probes which work well and reduce the effect of other so-called bad performing probes in a sample-specific manner, for any number of SNPs.

  16. Adapt or Die on the Highway To Hell: Metagenomic Insights into Altered Genomes of Firmicutes from the Deep Biosphere

    NASA Astrophysics Data System (ADS)

    Briggs, B. R.; Colwell, F. S.

    2014-12-01

    The ability of a microbe to persist in low-nutrient environments requires adaptive mechanisms to survive. These microorganisms must reduce metabolic energy and increase catabolic efficiency. For example, Escherichia coli surviving in low-nutrient extended stationary phase have mutations that confer a growth advantage in stationary phase (GASP) phenotype, thus allowing for persistence for years in low-nutrient environments. Based on the fact that subseafloor environments are characterized by energy flux decrease with time of burial we hypothesize that cells from older (deeper) sediment layers will have more altered genomes compared to sequenced surface relatives and that these differences reflect adaptations to a low-energy flux environment. To test this hypothesis, sediment samples were collected from the Andaman Sea from the depths of 21, 40 and 554 meters below seafloor, with the ages of 0.34, 0.66, and 8.76 million years, respectively. A single operational taxonomic unit within Firmicutes, based on full-length 16S rDNA, dominated these low diversity samples. This unique feature allowed for metagenomic sequencing using the Illumina HiSeq to identify nucleotide variations (NV) between the subsurface Firmicutes and the closest sequenced representative, Bacillus subtilis BEST7613. NVs were present at all depths in genes that code for proteins used in energy-dependent proteolysis, cell division, sporulation, and (similar to the GASP mutants) biosynthetic pathways for amino acids, nucleotides, and fatty acids. Conserved genes such as 16S rDNA did not contain NVs. More NVs were found in genes from deeper depths. These NV may be beneficial or harmful allowing them to survive for millions of years in the deep biosphere or may be latent deleterious gene alterations that are masked by the minimal-growth status of these deep microbes. Either way these results show that microbes present in the deep biosphere experience environmental forcing that alters the genome.

  17. Genetic spell-checking: gene editing using single-stranded DNA oligonucleotides.

    PubMed

    Rivera-Torres, Natalia; Kmiec, Eric B

    2016-02-01

    Single-stranded oligonucleotides (ssODNs) can be used to direct the exchange of a single nucleotide or the repair of a single base within the coding region of a gene in a process that is known, generically, as gene editing. These molecules are composed of either all DNA residues or a mixture of RNA and DNA bases and utilize inherent metabolic functions to execute the genetic alteration within the context of a chromosome. The mechanism of action of gene editing is now being elucidated as well as an understanding of its regulatory circuitry, work that has been particularly important in establishing a foundation for designing effective gene editing strategies in plants. Double-strand DNA breakage and the activation of the DNA damage response pathway play key roles in determining the frequency with which gene editing activity takes place. Cellular regulators respond to such damage and their action impacts the success or failure of a particular nucleotide exchange reaction. A consequence of such activation is the natural slowing of replication fork progression, which naturally creates a more open chromatin configuration, thereby increasing access of the oligonucleotide to the DNA template. Herein, how critical reaction parameters influence the effectiveness of gene editing is discussed. Functional interrelationships between DNA damage, the activation of DNA response pathways and the stalling of replication forks are presented in detail as potential targets for increasing the frequency of gene editing by ssODNs in plants and plant cells. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton

    DOE PAGES

    Labonté, Jessica M.; Swan, Brandon K.; Poulos, Bonnie; ...

    2015-04-07

    Viral infections dynamically alter the composition and metabolic potential of marine microbial communities and the evolutionary trajectories of host populations with resulting feedback on biogeochemical cycles. It is quite possible that all microbial populations in the ocean are impacted by viral infections. Our knowledge of virus–host relationships, however, has been limited to a minute fraction of cultivated host groups. Here, we utilized single-cell sequencing to obtain genomic blueprints of viruses inside or attached to individual bacterial and archaeal cells captured in their native environment, circumventing the need for host and virus cultivation. Furthermore, a combination of comparative genomics, metagenomic fragmentmore » recruitment, sequence anomalies and irregularities in sequence coverage depth and genome recovery were utilized to detect viruses and to decipher modes of virus–host interactions. Members of all three tailed phage families were identified in 20 out of 58 phylogenetically and geographically diverse single amplified genomes (SAGs) of marine bacteria and archaea. At least four phage–host interactions had the characteristics of late lytic infections, all of which were found in metabolically active cells. One virus had genetic potential for lysogeny. Our findings include first known viruses of Thaumarchaeota, Marinimicrobia, Verrucomicrobia and Gammaproteobacteria clusters SAR86 and SAR92. Viruses were also found in SAGs of Alphaproteobacteria and Bacteroidetes. A high fragment recruitment of viral metagenomic reads confirmed that most of the SAG-associated viruses are abundant in the ocean. This study demonstrates that single-cell genomics, in conjunction with sequence-based computational tools, enable in situ, cultivation-independent insights into host–virus interactions in complex microbial communities.« less

  19. Investigating shape representation using sensitivity to part- and axis-based transformations.

    PubMed

    Denisova, Kristina; Feldman, Jacob; Su, Xiaotao; Singh, Manish

    2016-09-01

    Part- and axis-based approaches organize shape representations in terms of simple parts and their spatial relationships. Shape transformations that alter qualitative part structure have been shown to be more detectable than those that preserve it. We compared sensitivity to various transformations that change quantitative properties of parts and their spatial relationships, while preserving qualitative part structure. Shape transformations involving changes in length, width, curvature, orientation and location were applied to a small part attached to a larger base of a two-part shape. Increment thresholds were estimated for each transformation using a 2IFC procedure. Thresholds were converted into common units of shape difference to enable comparisons across transformations. Higher sensitivity was consistently found for transformations involving a parameter of a single part (length, width, curvature) than those involving spatial relations between two parts (relative orientation and location), suggesting a single-part superiority effect. Moreover, sensitivity to shifts in part location - a biomechanically implausible shape transformation - was consistently poorest. The influence of region-based geometry was investigated via stereoscopic manipulation of figure and ground. Sensitivity was compared across positive parts (protrusions) and negative parts (indentations) for transformations involving a change in orientation or location. For changes in part orientation (biomechanically plausible), sensitivity was better for positive than negative parts; whereas for changes in part location (biomechanically implausible), no systematic difference was observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. INVESTIGATING SHAPE REPRESENTATION USING SENSITIVITY TO PART- AND AXIS-BASED TRANSFORMATIONS

    PubMed Central

    Denisova, Kristina; Feldman, Jacob; Su, Xiaotao; Singh, Manish

    2015-01-01

    Part -and axis-based approaches organize shape representations in terms of simple parts and their spatial relationships. Shape transformations that alter qualitative part structure have been shown to be more detectable than those that preserve it. We compared sensitivity to various transformations that change quantitative properties of parts and their spatial relationships, while preserving qualitative part structure. Shape transformations involving changes in length, width, curvature, orientation and location were applied to a small part attached to a larger base of a two-part shape. Increment thresholds were estimated for each transformation using a 2IFC procedure. Thresholds were converted into common units of shape difference to enable comparisons across transformations. Higher sensitivity was consistently found for transformations involving a parameter of a single part (length, width, curvature) than those involving spatial relations between two parts (relative orientation and location), suggesting a single-part superiority effect. Moreover, sensitivity to shifts in part location—a biomechanically implausible shape transformation—was consistently poorest. The influence of region-based geometry was investigated via stereoscopic manipulation of figure and ground. Sensitivity was compared across positive parts (protrusions) and negative parts (indentations) for transformations involving a change in orientation or location. For changes in part orientation (biomechanically plausible), sensitivity was better for positive than negative parts; whereas for changes in part location (biomechanically implausible), no systematic difference was observed. PMID:26325393

  1. Current dichotomy between traditional molecular biological and omic research in cancer biology and pharmacology.

    PubMed

    Reinhold, William C

    2015-12-10

    There is currently a split within the cancer research community between traditional molecular biological hypothesis-driven and the more recent "omic" forms or research. While the molecular biological approach employs the tried and true single alteration-single response formulations of experimentation, the omic employs broad-based assay or sample collection approaches that generate large volumes of data. How to integrate the benefits of these two approaches in an efficient and productive fashion remains an outstanding issue. Ideally, one would merge the understandability, exactness, simplicity, and testability of the molecular biological approach, with the larger amounts of data, simultaneous consideration of multiple alterations, consideration of genes both of known interest along with the novel, cross-sample comparisons among cell lines and patient samples, and consideration of directed questions while simultaneously gaining exposure to the novel provided by the omic approach. While at the current time integration of the two disciplines remains problematic, attempts to do so are ongoing, and will be necessary for the understanding of the large cell line screens including the Developmental Therapeutics Program's NCI-60, the Broad Institute's Cancer Cell Line Encyclopedia, and the Wellcome Trust Sanger Institute's Cancer Genome Project, as well as the the Cancer Genome Atlas clinical samples project. Going forward there is significant benefit to be had from the integration of the molecular biological and the omic forms or research, with the desired goal being improved translational understanding and application.

  2. Transmission electron microscope analyses of alteration phases in martian meteorite MIL 090032

    NASA Astrophysics Data System (ADS)

    Hallis, L. J.; Ishii, H. A.; Bradley, J. P.; Taylor, G. J.

    2014-06-01

    The nakhlite group of martian meteorites found in the Antarctic contain varying abundances of both martian and terrestrial secondary alteration phases. The aim of this study was to use transmission electron microscopy (TEM) to compare martian and terrestrial alteration embodied within a single nakhlite martian meteorite find - MIL 090032. Martian alteration veins in MIL 090032 are composed of poorly ordered Fe-smectite phyllosilicate. This poorly-ordered smectite appears to be equivalent to the nanocrystalline phyllosilicate/hydrated amorphous gel phase previously described in the martian alteration veins of other nakhlites. Chemical differences in this nanocrystalline phyllosilicate between different nakhlites imply localised alteration, which occurred close to the martian surface in MIL 090032. Both structurally and compositionally the nakhlite nanocrystalline phyllosilicate shows similarities to the amorphous/poorly ordered phase recently discovered in martian soil by the Mars Curiosity Rover at Rocknest, Gale Crater. Terrestrially derived alteration phases in MIL 090032 include jarosite and gypsum, amorphous silicates, and Fe-oxides and hydroxides. Similarities between the mineralogy and chemistry of the MIL 090032 terrestrial and martian alteration phases suggest the alteration conditions on Mars were similar to those in the Antarctic. At both sites a small amount of fluid at low temperatures infiltrated the rock and became acidic as a result of the conversion of Fe2+ to Fe3+ under oxidising conditions.

  3. Yeast prions: structure, biology, and prion-handling systems.

    PubMed

    Wickner, Reed B; Shewmaker, Frank P; Bateman, David A; Edskes, Herman K; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E

    2015-03-01

    A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Yeast Prions: Structure, Biology, and Prion-Handling Systems

    PubMed Central

    Shewmaker, Frank P.; Bateman, David A.; Edskes, Herman K.; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E.

    2015-01-01

    SUMMARY A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants. PMID:25631286

  5. Alterations in amino acid levels in mouse brain regions after adjunctive treatment of brexpiprazole with fluoxetine: comparison with (R)-ketamine.

    PubMed

    Ma, Min; Ren, Qian; Fujita, Yuko; Yang, Chun; Dong, Chao; Ohgi, Yuta; Futamura, Takashi; Hashimoto, Kenji

    2017-11-01

    Brexpiprazole, a serotonin-dopamine activity modulator, is approved in the USA as an adjunctive therapy to antidepressants for treating major depressive disorders. Similar to the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine, the combination of brexpiprazole and fluoxetine has demonstrated antidepressant-like effects in animal models of depression. The present study was conducted to examine whether the combination of brexpiprazole and fluoxetine could affect the tissue levels of amino acids [glutamate, glutamine, γ-aminobutyric acid (GABA), D-serine, L-serine, and glycine] that are associated with NMDAR neurotransmission. The tissue levels of amino acids in the frontal cortex, striatum, hippocampus, and cerebellum were measured after a single [or repeated (14 days)] oral administration of vehicle, fluoxetine (10 mg/kg), brexpiprazole (0.1 mg/kg), or a combination of the two drugs. Furthermore, we measured the tissue levels of amino acids after a single administration of the NMDAR antagonist (R)-ketamine. A single injection of the combination of fluoxetine and brexpiprazole significantly increased GABA levels in the striatum, the D-serine/L-serine ratio in the frontal cortex, and the glycine/L-serine ratio in the hippocampus. A repeated administration of the combination significantly altered the tissue levels of amino acids in all regions. Interestingly, a repeated administration of the combination significantly decreased the D-serine/L-serine ratio in the frontal cortex, striatum, and hippocampus. In contrast, a single administration of (R)-ketamine significantly increased the D-serine/L-serine ratio in the frontal cortex. These results suggested that alterations in the tissue levels of these amino acids may be involved in the antidepressant-like effects of the combination of brexpiprazole and fluoxetine.

  6. The nature and nurture of cell heterogeneity: accounting for macrophage gene-environment interactions with single-cell RNA-Seq.

    PubMed

    Wills, Quin F; Mellado-Gomez, Esther; Nolan, Rory; Warner, Damien; Sharma, Eshita; Broxholme, John; Wright, Benjamin; Lockstone, Helen; James, William; Lynch, Mark; Gonzales, Michael; West, Jay; Leyrat, Anne; Padilla-Parra, Sergi; Filippi, Sarah; Holmes, Chris; Moore, Michael D; Bowden, Rory

    2017-01-07

    Single-cell RNA-Seq can be a valuable and unbiased tool to dissect cellular heterogeneity, despite the transcriptome's limitations in describing higher functional phenotypes and protein events. Perhaps the most important shortfall with transcriptomic 'snapshots' of cell populations is that they risk being descriptive, only cataloging heterogeneity at one point in time, and without microenvironmental context. Studying the genetic ('nature') and environmental ('nurture') modifiers of heterogeneity, and how cell population dynamics unfold over time in response to these modifiers is key when studying highly plastic cells such as macrophages. We introduce the programmable Polaris™ microfluidic lab-on-chip for single-cell sequencing, which performs live-cell imaging while controlling for the culture microenvironment of each cell. Using gene-edited macrophages we demonstrate how previously unappreciated knockout effects of SAMHD1, such as an altered oxidative stress response, have a large paracrine signaling component. Furthermore, we demonstrate single-cell pathway enrichments for cell cycle arrest and APOBEC3G degradation, both associated with the oxidative stress response and altered proteostasis. Interestingly, SAMHD1 and APOBEC3G are both HIV-1 inhibitors ('restriction factors'), with no known co-regulation. As single-cell methods continue to mature, so will the ability to move beyond simple 'snapshots' of cell populations towards studying the determinants of population dynamics. By combining single-cell culture, live-cell imaging, and single-cell sequencing, we have demonstrated the ability to study cell phenotypes and microenvironmental influences. It's these microenvironmental components - ignored by standard single-cell workflows - that likely determine how macrophages, for example, react to inflammation and form treatment resistant HIV reservoirs.

  7. Does drought legacy alter the recovery of grassland carbon dynamics from drought?

    NASA Astrophysics Data System (ADS)

    Bahn, M.; Hasibeder, R.; Fuchslueger, L.; Ingrisch, J.; Ladreiter-Knauss, T.; Lair, G.; Reinthaler, D.; Richter, A.; Kaufmann, R.

    2016-12-01

    Climate projections suggest an increase in the frequency and the severity of extreme climatic events, such as droughts, with consequences for the carbon cycle and its feedbacks to the climate system. An important implication of increasing drought frequency is that possible legacies of previous droughts may increasingly affect ecosystem responses to new drought events, though this has been rarely tested. Based on a series of severe experimental droughts performed during nine subsequent years on a mountain grassland in the Austrian Alps, we present evidence of effects of drought legacies on the recovery of grassland carbon dynamics from drought and analyse the underlying mechanisms. Both single and recurrent droughts led to increased aboveground productivity during drought recovery relative to control plots, favoring the biomass production and leaf area of grass species more strongly than of forbs. Belowground productivity was significantly increased during recovery. This led to higher total root length, even though specific root length was strongly reduced during recovery, particularly after recurrent drought events. Following rewetting, the temperature dependence of soil respiration was increasingly diminished and the Birch effect declined with progressive recurrence of droughts. This was paralleled by a change in soil aggregate stability and soil porosity in plots repeatedly exposed to drought. Pulse-labelling experiments revealed effects of drought legacy on plant carbon uptake and belowground allocation and altered microbial turnover of recent plant-derived carbon during and after a subsequent drought. Shifts in tissue nitrogen concentration indicate that drought effects on soil nitrogen turnover and availability could play an important role in the recovery of grassland carbon dynamics following both single and recurrent droughts. In conclusion, drought legacies can alter the recovery of grassland carbon dynamics from drought, the effects increasing with increasing drought frequency and involving changes in both plant functional composition and soil structure and processes.

  8. Does drought legacy alter the recovery of grassland carbon dynamics from drought?

    NASA Astrophysics Data System (ADS)

    Bahn, Michael; Hasibeder, Roland; Fuchslueger, Lucia; Ingrisch, Johannes; Ladreiter-Knauss, Thomas; Lair, Georg; Reinthaler, David; Richter, Andreas; Kaufmann, Rüdiger

    2017-04-01

    Climate projections suggest an increase in the frequency and the severity of extreme climatic events, such as droughts, with consequences for the carbon cycle and its feedbacks to the climate system. An important implication of increasing drought frequency is that possible legacies of previous droughts may increasingly affect ecosystem responses to new drought events, though this has been rarely tested. Based on a series of severe experimental droughts performed during nine subsequent years on a mountain grassland in the Austrian Alps, we present evidence of effects of drought legacies on the recovery of grassland carbon dynamics from drought and analyse the underlying mechanisms. Both single and recurrent droughts led to increased aboveground productivity during drought recovery relative to control plots, favoring the biomass production and leaf area of grass species more strongly than of forbs. Belowground productivity was significantly increased during recovery. This led to higher total root length, even though specific root length was strongly reduced during recovery, particularly after recurrent drought events. Following rewetting, the temperature dependence of soil respiration was increasingly diminished and the Birch effect declined with progressive recurrence of droughts. This was paralleled by a change in soil aggregate stability and soil porosity in plots repeatedly exposed to drought. Isotopic pulse-labelling experiments revealed effects of drought legacy on plant carbon uptake and belowground allocation and altered microbial turnover of recent plant-derived carbon during and after a subsequent drought. Shifts in tissue nitrogen concentration indicate that drought effects on soil nitrogen turnover and availability could play an important role in the recovery of grassland carbon dynamics following both single and recurrent droughts. In conclusion, drought legacies can alter the recovery of grassland carbon dynamics from drought, the effects increasing with increasing drought frequency and involving changes in both plant functional composition and soil structure and processes.

  9. Alteration of intraaneurysmal hemodynamics by placement of a self-expandable stent. Laboratory investigation.

    PubMed

    Tateshima, Satoshi; Tanishita, Kazuo; Hakata, Yasuhiro; Tanoue, Shin-ya; Viñuela, Fernando

    2009-07-01

    Development of a flexible self-expanding stent system and stent-assisted coiling technique facilitates endovascular treatment of wide-necked brain aneurysms. The hemodynamic effect of self-expandable stent placement across the neck of a brain aneurysm has not been well documented in patient-specific aneurysm models. Three patient-specific silicone aneurysm models based on clinical images were used in this study. Model 1 was constructed from a wide-necked internal carotid artery-ophthalmic artery aneurysm, and Models 2 and 3 were constructed from small wide-necked middle cerebral artery aneurysms. Neuroform stents were placed in the in vitro aneurysm models, and flow structures were compared before and after the stent placements. Flow velocity fields were acquired with particle imaging velocimetry. In Model 1, a clockwise, single-vortex flow pattern was observed in the aneurysm dome before stenting was performed. There were multiple vortices, and a very small fast flow stream was newly formed in the aneurysm dome after stenting. The mean intraaneurysmal flow velocity was reduced by approximately 23-40%. In Model 2, there was a clockwise vortex flow in the aneurysm dome and another small counterclockwise vortex in the tip of the aneurysm dome before stenting. The small vortex area disappeared after stenting, and the mean flow velocity in the aneurysm dome was reduced by 43-64%. In Model 3, a large, counterclockwise, single vortex was seen in the aneurysm dome before stenting. Multiple small vortices appeared in the aneurysm dome after stenting, and the mean flow velocity became slower by 22-51%. The flexible self-expandable stents significantly altered flow velocity and also flow structure in these aneurysms. Overall flow alterations by the stent appeared favorable for the long-term durability of aneurysm embolization. The possibility that the placement of a low-profile self-expandable stent might induce unfavorable flow patterns such as a fast flow stream in the aneurysm dome cannot be excluded.

  10. Cas9 gRNA engineering for genome editing, activation and repression

    DOE PAGES

    Kiani, Samira; Chavez, Alejandro; Tuttle, Marcelle; ...

    2015-09-07

    Here we demonstrate that by altering the length of Cas9-associated guide RNA(gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.

  11. Pain in chronic pancreatitis: managing beyond the pancreatic duct.

    PubMed

    Talukdar, Rupjyoti; Reddy, D Nageshwar

    2013-10-14

    Chronic pancreatitis (CP) continues to be a clinical challenge. Persistent or recurrent abdominal pain is the most compelling symptom that drives patients to seek medical care. Unfortunately, in spite of using several treatment approaches in the clinical setting, there is no single specific treatment modality that can be earmarked as a cure for this disease. Traditionally, ductal hypertension has been associated with causation of pain in CP; and patients are often subjected to endotherapy and surgery with a goal to decompress the pancreatic duct. Recent studies on humans (clinical and laboratory based) and experimental models have put forward several mechanisms, including neuroimmune alterations, which could be responsible for pain. This might explain the partial or no response to single modality treatment in a significant proportion of patients. The current review discusses the recent concepts of pain generation in CP and evidence based therapeutic approaches (other than ductal decompression) to handle persistent or recurrent pain. We focus primarily on parenchymal and neural components; and discuss the role of antioxidants and the existing controversies, drugs that interfere with neural transmission, pancreatic enzyme supplementation, celiac neurolysis, and pancreatic resection procedures. The review concludes with the treatment approach that we follow at our institute.

  12. CRISPR-Cas9-modified pfmdr1 protects Plasmodium falciparum asexual blood stages and gametocytes against a class of piperazine-containing compounds but potentiates artemisinin-based combination therapy partner drugs.

    PubMed

    Ng, Caroline L; Siciliano, Giulia; Lee, Marcus C S; de Almeida, Mariana J; Corey, Victoria C; Bopp, Selina E; Bertuccini, Lucia; Wittlin, Sergio; Kasdin, Rachel G; Le Bihan, Amélie; Clozel, Martine; Winzeler, Elizabeth A; Alano, Pietro; Fidock, David A

    2016-08-01

    Emerging resistance to first-line antimalarial combination therapies threatens malaria treatment and the global elimination campaign. Improved therapeutic strategies are required to protect existing drugs and enhance treatment efficacy. We report that the piperazine-containing compound ACT-451840 exhibits single-digit nanomolar inhibition of the Plasmodium falciparum asexual blood stages and transmissible gametocyte forms. Genome sequence analyses of in vitro-derived ACT-451840-resistant parasites revealed single nucleotide polymorphisms in pfmdr1, which encodes a digestive vacuole membrane-bound ATP-binding cassette transporter known to alter P. falciparum susceptibility to multiple first-line antimalarials. CRISPR-Cas9 based gene editing confirmed that PfMDR1 point mutations mediated ACT-451840 resistance. Resistant parasites demonstrated increased susceptibility to the clinical drugs lumefantrine, mefloquine, quinine and amodiaquine. Stage V gametocytes harboring Cas9-introduced pfmdr1 mutations also acquired ACT-451840 resistance. These findings reveal that PfMDR1 mutations can impart resistance to compounds active against asexual blood stages and mature gametocytes. Exploiting PfMDR1 resistance mechanisms provides new opportunities for developing disease-relieving and transmission-blocking antimalarials. © 2016 John Wiley & Sons Ltd.

  13. Convergent and divergent pathways decoding hierarchical additive mechanisms in treating cerebral ischemia-reperfusion injury.

    PubMed

    Zhang, Ying-Ying; Li, Hai-Xia; Chen, Yin-Ying; Fang, Hong; Yu, Ya-Nan; Liu, Jun; Jing, Zhi-Wei; Wang, Zhong; Wang, Yong-Yan

    2014-03-01

    Cerebral ischemia is considered to be a highly complex disease resulting from the complicated interplay of multiple pathways. Disappointedly, most of the previous studies were limited to a single gene or a single pathway. The extent to which all involved pathways are translated into fusing mechanisms of a combination therapy is of fundamental importance. We report an integrative strategy to reveal the additive mechanism that a combination (BJ) of compound baicalin (BA) and jasminoidin (JA) fights against cerebral ischemia based on variation of pathways and functional communities. We identified six pathways of BJ group that shared diverse additive index from 0.09 to 1, which assembled broad cross talks from seven pathways of BA and 16 pathways of JA both at horizontal and vertical levels. Besides a total of 60 overlapping functions as a robust integration background among the three groups based on significantly differential subnetworks, additive mechanism with strong confidence by networks altered functions. These results provide strong evidence that the additive mechanism is more complex than previously appreciated, and an integrative analysis of pathways may suggest an important paradigm for revealing pharmacological mechanisms underlying drug combinations. © 2013 John Wiley & Sons Ltd.

  14. Early Social Isolation Stress and Perinatal NMDA Receptor Antagonist Treatment Induce Changes in the Structure and Neurochemistry of Inhibitory Neurons of the Adult Amygdala and Prefrontal Cortex

    PubMed Central

    Bellés, María; Gilabert-Juan, Javier; Llorens, José Vicente; Bueno-Fernández, Clara; Ripoll-Martínez, Beatriz; Curto, Yasmina; Sebastiá-Ortega, Noelia; Sanjuan, Julio

    2017-01-01

    Abstract The exposure to aversive experiences during early life influences brain development and leads to altered behavior. Moreover, the combination of these experiences with subtle alterations in neurodevelopment may contribute to the emergence of psychiatric disorders, such as schizophrenia. Recent hypotheses suggest that imbalances between excitatory and inhibitory (E/I) neurotransmission, especially in the prefrontal cortex and the amygdala, may underlie their etiopathology. In order to understand better the neurobiological bases of these alterations, we studied the impact of altered neurodevelopment and chronic early-life stress on these two brain regions. Transgenic mice displaying fluorescent excitatory and inhibitory neurons, received a single injection of MK801 (NMDAR antagonist) or vehicle solution at postnatal day 7 and/or were socially isolated from the age of weaning until adulthood (3 months old). We found that anxiety-related behavior, brain volume, neuronal structure, and the expression of molecules related to plasticity and E/I neurotransmission in adult mice were importantly affected by early-life stress. Interestingly, many of these effects were potentiated when the stress paradigm was applied to mice perinatally injected with MK801 ("double-hit" model). These results clearly show the impact of early-life stress on the adult brain, especially on the structure and plasticity of inhibitory networks, and highlight the double-hit model as a valuable tool to study the contribution of early-life stress in the emergence of neurodevelopmental psychiatric disorders, such as schizophrenia. PMID:28466069

  15. A new generation of cancer genome diagnostics for routine clinical use: overcoming the roadblocks to personalized cancer medicine.

    PubMed

    Heuckmann, J M; Thomas, R K

    2015-09-01

    The identification of 'druggable' kinase gene alterations has revolutionized cancer treatment in the last decade by providing new and successfully targetable drug targets. Thus, genotyping tumors for matching the right patients with the right drugs have become a clinical routine. Today, advances in sequencing technology and computational genome analyses enable the discovery of a constantly growing number of genome alterations relevant for clinical decision making. As a consequence, several technological approaches have emerged in order to deal with these rapidly increasing demands for clinical cancer genome analyses. Here, we describe challenges on the path to the broad introduction of diagnostic cancer genome analyses and the technologies that can be applied to overcome them. We define three generations of molecular diagnostics that are in clinical use. The latest generation of these approaches involves deep and thus, highly sensitive sequencing of all therapeutically relevant types of genome alterations-mutations, copy number alterations and rearrangements/fusions-in a single assay. Such approaches therefore have substantial advantages (less time and less tissue required) over PCR-based methods that typically have to be combined with fluorescence in situ hybridization for detection of gene amplifications and fusions. Since these new technologies work reliably on routine diagnostic formalin-fixed, paraffin-embedded specimens, they can help expedite the broad introduction of personalized cancer therapy into the clinic by providing comprehensive, sensitive and accurate cancer genome diagnoses in 'real-time'. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Identification of possible genetic alterations in the breast cancer cell line MCF-7 using high-density SNP genotyping microarray

    PubMed Central

    Wang, Hui-Yun; Greenawalt, Danielle; Cui, Xiangfeng; Tereshchenko, Irina V; Luo, Minjie; Yang, Qifeng; Azaro, Marco A; Hu, Guohong; Chu, Yi; Li, James Y; Shen, Li; Lin, Yong; Zhang, Lianjun

    2009-01-01

    Context: Cancer cell lines are used extensively in various research. Knowledge of genetic alterations in these lines is important for understanding mechanisms underlying their biology. However, since paired normal tissues are usually unavailable for comparison, precisely determining genetic alterations in cancer cell lines is difficult. To address this issue, a highly efficient and reliable method is developed. Aims: Establishing a highly efficient and reliable experimental system for genetic profiling of cell lines. Materials and Methods: A widely used breast cancer cell line, MCF-7, was genetically profiled with 4,396 single nucleotide polymorphisms (SNPs) spanning 11 whole chromosomes and two other small regions using a newly developed high-throughput multiplex genotyping approach. Results: The fractions of homozygous SNPs in MCF-7 (13.3%) were significantly lower than those in the control cell line and in 24 normal human individuals (25.1% and 27.4%, respectively). Homozygous SNPs in MCF-7 were found in clusters. The sizes of these clusters were significantly larger than the expected based on random allelic combination. Fourteen such regions were found on chromosomes 1p, 1q, 2q, 6q, 13, 15q, 16q, 17q and 18p in MCF-7 and two in the small regions. Conclusions: These results are generally concordant with those obtained using different approaches but are better in defining their chromosomal positions. The used approach provides a reliable way to detecting possible genetic alterations in cancer cell lines without paired normal tissues. PMID:19439911

  17. Human papillomavirus infection in women attended at a cervical cancer screening service in Natal, Brazil

    PubMed Central

    de Medeiros Fernandes, Thales Allyrio Araújo; de Vasconcellos Meissner, Rosely; Bezerra, Laelson Freire; de Azevedo, Paulo Roberto Medeiros; Fernandes, José Veríssimo

    2008-01-01

    We analyzed cervical specimens of 202 women, aged 15 to 64 years, attended at Luis Antonio Hospital, Natal, Brazil, to determine the prevalence of HPV and identify the more frequent genotypes and risk factors for HPV infection in women attended at a cervical cancer screening service. Two specimens were collected from each patient: one for cytological examination and the other to detect HPV DNA by PCR, and typing by dot blot hybridization. A total of 54.5% of the sample had normal cytology and 45.5% had cytological alterations. HPV was detected in 24.5% of the cytologically normal women and in 59.8% of those with altered cytology. Both single and double HPV infection increased the likelihood of cytological alterations. Thirteen types of HPV were identified, most of which were high risk. HPV 16 was the most prevalent single-type infection, followed by HPV 58. The most frequent double infection was the association between HPV 56 and 57. The prevalence of HPV in cytologically normal women was greater than that reported for countries on all the continents except Africa. The inverse was observed in women with cytological alterations. The distribution of HPV types was similar to that described for the Americas, with some differences. Multiple sexual partners was the only risk factor showing an association with the presence of HPV infection. PMID:24031268

  18. Methamphetamine Induces Anhedonic-Like Behavior and Impairs Frontal Cortical Energetics in Mice.

    PubMed

    Fonseca, Raquel; Carvalho, Rui A; Lemos, Cristina; Sequeira, Ana C; Pita, Inês R; Carvalho, Fábio; Silva, Carlos D; Prediger, Rui D S; Jarak, Ivana; Cunha, Rodrigo A; Fontes Ribeiro, Carlos A; Köfalvi, Attila; Pereira, Frederico C

    2017-02-01

    We recently showed that a single high dose of methamphetamine (METH) induces a persistent frontal cortical monoamine depletion that is accompanied by helpless-like behavior in mice. However, brain metabolic alterations underlying both neurochemical and mood alterations remain unknown. Herein, we aimed at characterizing frontal cortical metabolic alterations associated with early negative mood behavior triggered by METH. Adult C57BL/6 mice were injected with METH (30 mg/kg, i.p.), and their frontal cortical metabolic status was characterized after probing their mood and anxiety-related phenotypes 3 days postinjection. Methamphetamine induced depressive-like behavior, as indicated by the decreased grooming time in the splash test and by a transient decrease in sucrose preference. At this time, METH did not alter anxiety-like behavior or motor functions. Depolarization-induced glucose uptake was reduced in frontocortical slices from METH-treated mice compared to controls. Consistently, astrocytic glucose transporter (GluT1) density was lower in the METH group. A proton high rotation magic angle spinning (HRMAS) spectroscopic approach revealed that METH induced a significant decrease in N-acetyl aspartate (NAA) and glutamate levels, suggesting that METH decreased neuronal glutamatergic function in frontal cortex. We report, for the first time, that a single METH injection triggers early self-care and hedonic deficits and impairs frontal cortical energetics in mice. © 2016 John Wiley & Sons Ltd.

  19. Picoliter DNA Sequencing Chemistry on an Electrowetting-based Digital Microfluidic Platform

    PubMed Central

    Ferguson Welch, Erin R.; Lin, Yan-You; Madison, Andrew; Fair, R.B.

    2011-01-01

    The results of investigations into performing DNA sequencing chemistry on a picoliter-scale electrowetting digital microfluidic platform are reported. Pyrosequencing utilizes pyrophosphate produced during nucleotide base addition to initiate a process ending with detection through a chemiluminescence reaction using firefly luciferase. The intensity of light produced during the reaction can be quantified to determine the number of bases added to the DNA strand. The logic-based control and discrete fluid droplets of a digital microfluidic device lend themselves well to the pyrosequencing process. Bead-bound DNA is magnetically held in a single location, and wash or reagent droplets added or split from it to circumvent product dilution. Here we discuss the dispensing, control, and magnetic manipulation of the paramagnetic beads used to hold target DNA. We also demonstrate and characterize the picoliter-scale reaction of luciferase with adenosine triphosphate to represent the detection steps of pyrosequencing and all necessary alterations for working on this scale. PMID:21298802

  20. An approach for assessing the sensitivity of floods to regional climate change

    NASA Astrophysics Data System (ADS)

    Hughes, James P.; Lettenmaier, Dennis P.; Wood, Eric F.

    1992-06-01

    A high visibility afforded climate change issues is recent years has led to conflicts between and among decision makers and scientists. Decision makers inevitably feel pressure to assess the effect of climate change on the public welfare, while most climate modelers are, to a greater or lesser degree, concerned about the extent to which known inaccuracies in their models limit or preclude the use of modeling results for policy making. The water resources sector affords a good example of the limitations of the use of alternative climate scenarios derived from GCMs for decision making. GCM simulations of precipitation agree poorly between GCMs, and GCM predictions of runoff and evapotranspiration are even more uncertain. Further, water resources managers must be concerned about hydrologic extremes (floods and droughts) which are much more difficult to predict than ``average'' conditions. Most studies of the sensitivity of water resource systems and operating policies to climate change to data have been based on simple perturbations of historic hydroclimatological time series to reflect the difference between large area GCM simulations for an altered climate (e.g., CO2 doubling) and a GCM simulation of present climate. Such approaches are especially limited for assessment of the sensitivity of water resources systems under extreme conditions, conditions, since the distribution of storm inter-arrival times, for instance, is kept identical to that observed in the historic past. Further, such approaches have generally been based on the difference between the GCM altered and present climates for a single grid cell, primarily because the GCM spatial scale is often much larger than the scale at which climate interpretations are desired. The use of single grid cell GCM results is considered inadvisable by many GCM modelers, who feel the spatial scale for which interpretation of GCM results is most reasonable is on the order of several grid cells. In this paper, we demonstrate an alternative approach to assessing the implications of altered climates as predicted by GCMs for extreme (flooding) conditions. The approach is based on the characterization of regional atmospheric circulation patterns through a weather typing procedure, from which a stochastic model of the weather class occurrences is formulated. Weather types are identified through a CART (Classification and Regression Tree) approach. Precipitation occurence/non-occurence at multiple precipitation station is then predicted through a second stage stochastic model. Precipitation amounts are predicted conditional on the weather class identified from the large area circulation information.

  1. Nonlinear distortion analysis for single heterojunction GaAs HEMT with frequency and temperature

    NASA Astrophysics Data System (ADS)

    Alim, Mohammad A.; Ali, Mayahsa M.; Rezazadeh, Ali A.

    2018-07-01

    Nonlinearity analysis using two-tone intermodulation distortion (IMD) technique for 0.5 μm gate-length AlGaAs/GaAs based high electron mobility transistor have been investigated based on biasing conditions, input power, frequency and temperature. The outcomes indicate a significant modification on the output IMD power and as well as the minimum distortion level. The input IMD power effects the output current and subsequently the threshold voltage reduces, resulting to an increment in the output IMD power. Both frequency and temperature reduces the magnitude of the output IMDs. In addition, the threshold voltage response with temperature alters the notch point of the nonlinear output IMD’s accordingly. The aforementioned investigation will help the circuit designers to evaluate the best biasing option in terms of minimum distortion, maximum gain for future design optimizations.

  2. Development and implementation of an independence rating scale and evaluation process for nursing orientation of new graduates.

    PubMed

    Durkin, Gregory J

    2010-01-01

    A wide variety of evaluation formats are available for new graduate nurses, but most of them are single-point evaluation tools that do not provide a clear picture of progress for orientee or educator. This article describes the development of a Web-based evaluation tool that combines learning taxonomies with the Synergy model into a rating scale based on independent performance. The evaluation tool and process provides open 24/7 access to evaluation documentation for members of the orientation team, demystifying the process and clarifying expectations. The implementation of the tool has proven to be transformative in the perceptions of evaluation and performance expectations of new graduates. This tool has been successful at monitoring progress, altering education, and opening dialogue about performance for over 125 new graduate nurses since inception.

  3. Spatial dynamics of action potentials estimated by dendritic Ca(2+) signals in insect projection neurons.

    PubMed

    Ogawa, Hiroto; Mitani, Ruriko

    2015-11-13

    The spatial dynamics of action potentials, including their propagation and the location of spike initiation zone (SIZ), are crucial for the computation of a single neuron. Compared with mammalian central neurons, the spike dynamics of invertebrate neurons remain relatively unknown. Thus, we examined the spike dynamics based on single spike-induced Ca(2+) signals in the dendrites of cricket mechanosensory projection neurons, known as giant interneurons (GIs). The Ca(2+) transients induced by a synaptically evoked single spike were larger than those induced by an antidromic spike, whereas subthreshold synaptic potentials caused no elevation of Ca(2+). These results indicate that synaptic activity enhances the dendritic Ca(2+) influx through voltage-gated Ca(2+) channels. Stimulation of the presynaptic sensory afferents ipsilateral to the recording site evoked a dendritic spike with higher amplitude than contralateral stimulation, thereby suggesting that alteration of the spike waveform resulted in synaptic enhancement of the dendritic Ca(2+) transients. The SIZ estimated from the spatial distribution of the difference in the Ca(2+) amplitude was distributed throughout the right and left dendritic branches across the primary neurite connecting them in GIs. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A novel mutation causing complete thyroxine-binding globulin deficiency (TBG-CD-Negev) among the Bedouins in southern Israel.

    PubMed

    Miura, Y; Hershkovitz, E; Inagaki, A; Parvari, R; Oiso, Y; Phillip, M

    2000-10-01

    T4-binding globulin (TBG) is the major thyroid hormone transport protein in human serum. Inherited TBG abnormalities do not usually alter the metabolic status and are transmitted in X-linked inheritance. A high prevalence of complete TBG deficiency (TBG-CD) has been reported among the Bedouin population in the Negev (southern Israel). In this study we report a novel single mutation causing complete TBG deficiency due to a deletion of the last base of codon 38 (exon 1), which led to a frame shift resulting in a premature stop at codon 51 and a presumed truncated peptide of 50 residues. This new variant of TBG (TBG-CD-Negev) was found among all of the patients studied. We conclude that a single mutation may account for TBG deficiency among the Bedouins in the Negev. This report is the first to describe a mutation in a population with an unusually high prevalence of TBG-CD.

  5. Bone metabolism in oxalosis: a single-center study using new imaging techniques and biomarkers.

    PubMed

    Bacchetta, Justine; Fargue, Sonia; Boutroy, Stéphanie; Basmaison, Odile; Vilayphiou, Nicolas; Plotton, Ingrid; Guebre-Egziabher, Fitsum; Dohin, Bruno; Kohler, Rémi; Cochat, Pierre

    2010-06-01

    The deposition of calcium oxalate crystals in the kidney and bone is a hallmark of primary hyperoxaluria type 1 (PH1). We report here an evaluation of the bone status of 12 PH1 children based on bone biomarkers [parathyroid hormone, vitamin D, fibroblast growth factor 23 (FGF23)] and radiological assessments (skeletal age, three-dimensional high-resolution peripheral quantitative computed tomography, HR-pQCT) carried out within the framework of a cross-sectional single-center study. The controls consisted of healthy and children with chronic kidney disease already enrolled in local bone and mineral metabolism studies. The mean age (+ or - standard deviation) age of the patients was 99 (+ or - 63) months. Six children suffered from fracture. Bone maturation was accelerated in five patients, four of whom were <5 years. The combination of new imaging techniques and biomarkers highlighted new and unexplained features of PH1: advanced skeletal age in young PH1 patients, increased FGF23 levels and decreased total volumetric bone mineral density with bone microarchitecture alteration.

  6. Effect of Single-dose Rifampin on the Pharmacokinetics of Warfarin in Healthy Volunteers

    PubMed Central

    Frymoyer, A; Shugarts, S; Browne, M; Wu, AHB; Frassetto, L; Benet, LZ

    2011-01-01

    Based on in vitro rat and human hepatocyte uptake studies showing inhibition of warfarin uptake in the presence of the non-specific organic anion transporting polypeptide (OATP) inhibitor rifampin, a clinical study was conducted in 10 healthy volunteers. In a randomized, single-dose, two-period, crossover design, subjects received a 7.5 mg dose of warfarin alone or immediately following a 600 mg intravenous dose of rifampin. Rifampin did not significantly alter R- or S- warfarin area under the concentration-time curve (AUC) from 0–12 hours (period of hepatic OATP inhibition by rifampin) or Cmax (maximum plasma concentration). AUC0–∞ was decreased on rifampin days for both R- (25% reduction; p < 0.001) and S-warfarin (15% reduction; p < 0.05). No differences were seen on the area under the INR-time curve. Our study suggests hepatic uptake via OATPs may not be clinically important in the pharmacokinetics of warfarin. PMID:20703222

  7. Remarks on the Particular Behavior in Martensitic Phase Transition in Cu-Based and Ni-Ti Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Torra, Vicenç; Martorell, Ferran; Lovey, Francisco C.; Sade, Marcos

    2018-05-01

    Many macroscopic behaviors of the martensitic transformations are difficult to explain in the frame of the classical first-order phase transformations, without including the role of point and crystallographic defects (dislocations, stacking faults, interfaces, precipitates). A few major examples are outlined in the present study. First, the elementary reason for thermoelasticity and pseudoelasticity in single crystals of Cu-Zn-Al (β-18R transformation) arises from the interaction of a growing martensite plate with the existing dislocations in the material. Secondly, in Cu-Al-Ni, the twinned hexagonal (γ') martensite produces dislocations inhibiting this transformation and favoring the appearance of 18R in subsequent transformation cycles. Thirdly, single crystals of Cu-Al-Be visualize, via enhanced stress, a transformation primarily to 18R, a structural distortion of the 18R structure, and an additional transformation to another martensitic phase (i.e., 6R) with an increased strain. A dynamic behavior in Ni-Ti is also analyzed, where defects alter the pseudoelastic behavior after cycling.

  8. Sensitivity analysis of discharge patterns of subthalamic nucleus in the model of basal ganglia in Parkinson disease.

    PubMed

    Singh, Jyotsna; Singh, Phool; Malik, Vikas

    2017-01-01

    Parkinson disease alters the information patterns in movement related pathways in brain. Experimental results performed on rats show that the activity patterns changes from single spike activity to mixed burst mode in Parkinson disease. However the cause of this change in activity pattern is not yet completely understood. Subthalamic nucleus is one of the main nuclei involved in the origin of motor dysfunction in Parkinson disease. In this paper, a single compartment conductance based model is considered which focuses on subthalamic nucleus and synaptic input from globus pallidus (external). This model shows highly nonlinear behavior with respect to various intrinsic parameters. Behavior of model has been presented with the help of activity patterns generated in healthy and Parkinson condition. These patterns have been compared by calculating their correlation coefficient for different values of intrinsic parameters. Results display that the activity patterns are very sensitive to various intrinsic parameters and calcium shows some promising results which provide insights into the motor dysfunction.

  9. Cellular and molecular alterations in human epithelial cells transformed by high let radiation

    NASA Astrophysics Data System (ADS)

    Hei, T. K.; Piao, C. Q.; Sutter, T.; Willey, J. C.; Suzuki, K.

    An understanding of the radiobiological effects of high LET radiation is essential for human risk estimation and radiation protection. In the present study, we show that a single, 30 cGy dose of 150 keV/mum ^4He ions can malignantly transform human papillomavirus immortalized human bronchial epithelial [BEP2D] cells. Transformed cells produce progressively growing tumors in nude mice. The transformation frequency by the single dose of alpha particles is estimated to be approximately 4 x 10^-7. Based on the average cross-sectional area of BEP2D cells, it can be calculated that a mean traversal of 1.4 particles per cell is sufficient to induce tumorigenic conversion of these cells 3 to 4 months post-irradiation. Tumorigenic BEP2D cells overexpress mutated p53 tumor suppressor oncoproteins in addition to the cell cycle control gene cyclin D1 and D2. This model provides an opportunity to study the cellular and molecular changes at the various stages in radiation carcinogenesis involving human cells.

  10. Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle

    PubMed Central

    Ahuja, Ishita; de Vos, Ric C. H.; Rohloff, Jens; Stoopen, Geert M.; Halle, Kari K.; Ahmad, Samina Jam Nazeer; Hoang, Linh; Hall, Robert D.; Bones, Atle M.

    2016-01-01

    Both physical barriers and reactive phytochemicals represent two important components of a plant’s defence system against environmental stress. However, these two defence systems have generally been studied independently. Here, we have taken an exclusive opportunity to investigate the connection between a chemical-based plant defence system, represented by the glucosinolate-myrosinase system, and a physical barrier, represented by the cuticle, using Arabidopsis myrosinase (thioglucosidase; TGG) mutants. The tgg1, single and tgg1 tgg2 double mutants showed morphological changes compared to wild-type plants visible as changes in pavement cells, stomatal cells and the ultrastructure of the cuticle. Extensive metabolite analyses of leaves from tgg mutants and wild-type Arabidopsis plants showed altered levels of cuticular fatty acids, fatty acid phytyl esters, glucosinolates, and indole compounds in tgg single and double mutants as compared to wild-type plants. These results point to a close and novel association between chemical defence systems and physical defence barriers. PMID:27976683

  11. Mutational analysis of the transcriptional activator VirG of Agrobacterium tumefaciens.

    PubMed Central

    Scheeren-Groot, E P; Rodenburg, K W; den Dulk-Ras, A; Turk, S C; Hooykaas, P J

    1994-01-01

    To find VirG proteins with altered properties, the virG gene was mutagenized. Random chemical mutagenesis of single-stranded DNA containing the Agrobacterium tumefaciens virG gene led with high frequency to the inactivation of the gene. Sequence analysis showed that 29% of the mutants contained a virG gene with one single-base-pair substitution somewhere in the open reading frame. Thirty-nine different mutations that rendered the VirG protein inactive were mapped. Besides these inactive mutants, two mutants in which the vir genes were active even in the absence of acetosyringone were found on indicator plates. A VirG protein with an N54D substitution turned out to be able to induce a virB-lacZ reporter gene to a high level even in the absence of the inducer acetosyringone. A VirG protein with an I77V substitution exhibited almost no induction in the absence of acetosyringone but showed a maximum induction level already at low concentrations of acetosyringone. Images PMID:7961391

  12. Vector-averaged gravity does not alter acetylcholine receptor single channel properties

    NASA Technical Reports Server (NTRS)

    Reitstetter, R.; Gruener, R.

    1994-01-01

    To examine the physiological sensitivity of membrane receptors to altered gravity, we examined the single channel properties of the acetylcholine receptor (AChR), in co-cultures of Xenopus myocytes and neurons, to vector-averaged gravity in the clinostat. This experimental paradigm produces an environment in which, from the cell's perspective, the gravitational vector is "nulled" by continuous averaging. In that respect, the clinostat simulates one aspect of space microgravity where the gravity force is greatly reduced. After clinorotation, the AChR channel mean open-time and conductance were statistically not different from control values but showed a rotation-dependent trend that suggests a process of cellular adaptation to clinorotation. These findings therefore suggest that the ACHR channel function may not be affected in the microgravity of space despite changes in the receptor's cellular organization.

  13. Nucleotides with altered hydrogen bonding capacities impede human DNA polymerase η by reducing synthesis in the presence of the major cisplatin DNA adduct.

    PubMed

    Nilforoushan, Arman; Furrer, Antonia; Wyss, Laura A; van Loon, Barbara; Sturla, Shana J

    2015-04-15

    Human DNA polymerase η (hPol η) contributes to anticancer drug resistance by catalyzing the replicative bypass of DNA adducts formed by the widely used chemotherapeutic agent cis-diamminedichloroplatinum (cisplatin). A chemical basis for overcoming bypass-associated resistance requires greater knowledge of how small molecules influence the hPol η-catalyzed bypass of DNA adducts. In this study, we demonstrated how synthetic nucleoside triphosphates act as hPol η substrates and characterized their influence on hPol η-mediated DNA synthesis over unmodified and platinated DNA. The single nucleotide incorporation efficiency of the altered nucleotides varied by more than 10-fold and the higher incorporation rates appeared to be attributable to the presence of an additional hydrogen bond between incoming dNTP and templating base. Finally, full-length DNA synthesis in the presence of increasing concentrations of synthetic nucleotides reduced the amount of DNA product independent of the template, representing the first example of hPol η inhibition in the presence of a platinated DNA template.

  14. Engineering integrated digital circuits with allosteric ribozymes for scaling up molecular computation and diagnostics.

    PubMed

    Penchovsky, Robert

    2012-10-19

    Here we describe molecular implementations of integrated digital circuits, including a three-input AND logic gate, a two-input multiplexer, and 1-to-2 decoder using allosteric ribozymes. Furthermore, we demonstrate a multiplexer-decoder circuit. The ribozymes are designed to seek-and-destroy specific RNAs with a certain length by a fully computerized procedure. The algorithm can accurately predict one base substitution that alters the ribozyme's logic function. The ability to sense the length of RNA molecules enables single ribozymes to be used as platforms for multiple interactions. These ribozymes can work as integrated circuits with the functionality of up to five logic gates. The ribozyme design is universal since the allosteric and substrate domains can be altered to sense different RNAs. In addition, the ribozymes can specifically cleave RNA molecules with triplet-repeat expansions observed in genetic disorders such as oculopharyngeal muscular dystrophy. Therefore, the designer ribozymes can be employed for scaling up computing and diagnostic networks in the fields of molecular computing and diagnostics and RNA synthetic biology.

  15. Quintinite-1 M from the Mariinsky Deposit, Ural Emerald Mines, Central Urals, Russia

    NASA Astrophysics Data System (ADS)

    Zhitova, E. S.; Popov, M. P.; Krivovichev, S. V.; Zaitsev, A. N.; Vlasenko, N. S.

    2017-12-01

    The paper describes the first finding of quintinite [Mg4Al2(OH)12][(CO3)(H2O)3] at the Mariinsky deposit in the Central Urals, Russia. The mineral occurs as white tabular crystals in cavities within altered gabbro in association with prehnite, calcite, and a chlorite-group mineral. Quintinite is the probable result of late hydrothermal alteration of primary mafic and ultramafic rocks hosting emerald-bearing glimmerite. According to electron microprobe data, the Mg: Al ratio is 2: 1. IR spectroscopy has revealed hydroxyl and carbonate groups and H2O molecules in the mineral. According to single crystal XRD data, quintinite is monoclinic, space group C2/ m, a =5.233(1), b = 9.051(2), c = 7.711(2) Å, β = 103.09(3)°, V = 355.7(2) Å3. Based on structure refinement, the polytype of quintinite should be denoted as 1M. This is the third approved occurrence of quintinite-1M in the world after the Kovdor complex and Bazhenovsky chrysotile-asbestos deposit.

  16. From the Psychiatrist’s Couch to Induced Pluripotent Stem Cells: Bipolar Disease in a Dish

    PubMed Central

    Hoffmann, Anke; Sportelli, Vincenza; Ziller, Michael; Spengler, Dietmar

    2018-01-01

    Bipolar disease (BD) is one of the major public health burdens worldwide and more people are affected every year. Comprehensive genetic studies have associated thousands of single nucleotide polymorphisms (SNPs) with BD risk; yet, very little is known about their functional roles. Induced pluripotent stem cells (iPSCs) are powerful tools for investigating the relationship between genotype and phenotype in disease-relevant tissues and cell types. Neural cells generated from BD-specific iPSCs are thought to capture associated genetic risk factors, known and unknown, and to allow the analysis of their effects on cellular and molecular phenotypes. Interestingly, an increasing number of studies on BD-derived iPSCs report distinct alterations in neural patterning, postmitotic calcium signaling, and neuronal excitability. Importantly, these alterations are partly normalized by lithium, a first line treatment in BD. In light of these exciting findings, we discuss current challenges to the field of iPSC-based disease modelling and future steps to be taken in order to fully exploit the potential of this approach for the investigation of BD and the development of new therapies. PMID:29517996

  17. Germline Mutations of Inhibins in Early-Onset Ovarian Epithelial Tumors

    PubMed Central

    Tournier, Isabelle; Marlin, Régine; Walton, Kelly; Charbonnier, Françoise; Coutant, Sophie; Théry, Jean-Christophe; Charbonnier, Camille; Spurrell, Cailyn; Vezain, Myriam; Ippolito, Lorena; Bougeard, Gaëlle; Roman, Horace; Tinat, Julie; Sabourin, Jean-Christophe; Stoppa-Lyonnet, Dominique; Caron, Olivier; Bressac-de Paillerets, Brigitte; Vaur, Dominique; King, Mary-Claire; Harrison, Craig; Frebourg, Thierry

    2014-01-01

    To identify novel genetic bases of early-onset epithelial ovarian tumors, we used the trio exome sequencing strategy in a patient without familial history of cancer who presented metastatic serous ovarian adenocarcinomas at 21 years of age. We identified a single de novo mutation (c.1157A>G/p.Asn386Ser) within the INHBA gene encoding the βA-subunit of inhibins/activins, which play a key role in ovarian development. In vitro, this mutation alters the ratio of secreted activins and inhibins. In a second patient with early-onset serous borderline papillary cystadenoma, we identified an unreported germline mutation (c.179G>T/p.Arg60Leu) of the INHA gene encoding the α-subunit, the partner of the βA-subunit. This mutation also alters the secreted activin/inhibin ratio, by disrupting both inhibin A and inhibin B biosynthesis. In a cohort of 62 cases, we detected an additional unreported germline mutation of the INHBA gene (c.839G>A/p.Gly280Glu). Our results strongly suggest that inhibin mutations contribute to the genetic determinism of epithelial ovarian tumors. PMID:24302632

  18. Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data.

    PubMed

    Fan, Jean; Lee, Hae-Ock; Lee, Soohyun; Ryu, Da-Eun; Lee, Semin; Xue, Catherine; Kim, Seok Jin; Kim, Kihyun; Barkas, Nikolas; Park, Peter J; Park, Woong-Yang; Kharchenko, Peter V

    2018-06-13

    Characterization of intratumoral heterogeneity is critical to cancer therapy, as presence of phenotypically diverse cell populations commonly fuels relapse and resistance to treatment. Although genetic variation is a well-studied source of intratumoral heterogeneity, the functional impact of most genetic alterations remains unclear. Even less understood is the relative importance of other factors influencing heterogeneity, such as epigenetic state or tumor microenvironment. To investigate the relationship between genetic and transcriptional heterogeneity in a context of cancer progression, we devised a computational approach called HoneyBADGER to identify copy number variation and loss-of-heterozygosity in individual cells from single-cell RNA-sequencing data. By integrating allele and normalized expression information, HoneyBADGER is able to identify and infer the presence of subclone-specific alterations in individual cells and reconstruct underlying subclonal architecture. Examining several tumor types, we show that HoneyBADGER is effective at identifying deletion, amplifications, and copy-neutral loss-of-heterozygosity events, and is capable of robustly identifying subclonal focal alterations as small as 10 megabases. We further apply HoneyBADGER to analyze single cells from a progressive multiple myeloma patient to identify major genetic subclones that exhibit distinct transcriptional signatures relevant to cancer progression. Surprisingly, other prominent transcriptional subpopulations within these tumors did not line up with the genetic subclonal structure, and were likely driven by alternative, non-clonal mechanisms. These results highlight the need for integrative analysis to understand the molecular and phenotypic heterogeneity in cancer. Published by Cold Spring Harbor Laboratory Press.

  19. Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells.

    PubMed

    Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L; Han, Jessica H; Helland, Stephanie; Hernandez, Kathryn; Senechal, Patti; Johnson, Roger H; Bussey, Kimberly J; Meldrum, Deirdre R

    2016-08-09

    The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an 'epigenetic' drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat's differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action.

  20. Motion detection using extended fractional Fourier transform and digital speckle photography.

    PubMed

    Bhaduri, Basanta; Tay, C J; Quan, C; Sheppard, Colin J R

    2010-05-24

    Digital speckle photography is a useful tool for measuring the motion of optically rough surfaces from the speckle shift that takes place at the recording plane. A simple correlation based digital speckle photographic system has been proposed that implements two simultaneous optical extended fractional Fourier transforms (EFRTs) of different orders using only a single lens and detector to simultaneously detect both the magnitude and direction of translation and tilt by capturing only two frames: one before and another after the object motion. The dynamic range and sensitivity of the measurement can be varied readily by altering the position of the mirror/s used in the optical setup. Theoretical analysis and experiment results are presented.

  1. Phylogenetic analysis of Dengue virus 1 isolated from South Minas Gerais, Brazil

    PubMed Central

    Drumond, Betania Paiva; da Silva Fagundes, Luiz Gustavo; Rocha, Raissa Prado; Fumagalli, Marcilio Jorge; Araki, Carlos Shigueru; Colombo, Tatiana Elisa; Nogueira, Mauricio Lacerda; Castilho, Thiago Elias; da Silveira, Nelson José Freitas; Malaquias, Luiz Cosme Cotta; Coelho, Luiz Felipe Leomil

    2016-01-01

    Dengue is a major worldwide public health problem, especially in the tropical and subtropical regions of the world. Primary infection with a single Dengue virus serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients who experience secondary infection with a different serotype can progress to a more severe form of the disease, called dengue hemorrhagic fever. The four Dengue virus serotypes (1–4) are antigenically and genetically distinct and each serotype is composed of multiple genotypes. In this study we isolated one Dengue virus 1 serotype, named BR/Alfenas/2012, from a patient with dengue hemorrhagic fever in Alfenas, South Minas Gerais, Brazil and molecular identification was performed based on the analysis of NS5 gene. Swiss mice were infected with this isolate to verify its potential to induce histopathological alterations characteristic of dengue. Liver histopathological analysis of infected animals showed the presence of inflammatory infiltrates, hepatic steatosis, as well as edema, hemorrhage and necrosis focal points. Phylogenetic and evolutionary analyses based on the envelope gene provided evidence that the isolate BR/Alfenas/2012 belongs to genotype V, lineage I and it is probably derived from isolates of Rio de Janeiro, Brazil. The isolate BR/Alfenas/2012 showed two unique amino acids substitutions (SER222THRE and PHE306SER) when compared to other Brazilian isolates from the same genotype/lineage. Molecular models were generated for the envelope protein indicating that the amino acid alteration PHE 306 SER could contribute to a different folding in this region located within the domain III. Further genetic and animal model studies using BR/Alfenas/2012 and other isolates belonging to the same lineage/genotype could help determine the relation of these genetic alterations and dengue hemorrhagic fever in a susceptible population. PMID:26887252

  2. Prospective PET image quality gain calculation method by optimizing detector parameters.

    PubMed

    Theodorakis, Lampros; Loudos, George; Prassopoulos, Vasilios; Kappas, Constantine; Tsougos, Ioannis; Georgoulias, Panagiotis

    2015-12-01

    Lutetium-based scintillators with high-performance electronics introduced time-of-flight (TOF) reconstruction in the clinical setting. Let G' be the total signal to noise ratio gain in a reconstructed image using the TOF kernel compared with conventional reconstruction modes. G' is then the product of G1 gain arising from the reconstruction process itself and (n-1) other gain factors (G2, G3, … Gn) arising from the inherent properties of the detector. We calculated G2 and G3 gains resulting from the optimization of the coincidence and energy window width for prompts and singles, respectively. Both quantitative and image-based validated Monte Carlo models of Lu2SiO5 (LSO) TOF-permitting and Bi4Ge3O12 (BGO) TOF-nonpermitting detectors were used for the calculations. G2 and G3 values were 1.05 and 1.08 for the BGO detector and G3 was 1.07 for the LSO. A value of almost unity for G2 of the LSO detector indicated a nonsignificant optimization by altering the energy window setting. G' was found to be ∼1.4 times higher for the TOF-permitting detector after reconstruction and optimization of the coincidence and energy windows. The method described could potentially predict image noise variations by altering detector acquisition parameters. It could also further contribute toward a long-lasting debate related to cost-efficiency issues of TOF scanners versus the non-TOF ones. Some vendors re-engage nowadays to non-TOF product line designs in an effort to reduce crystal costs. Therefore, exploring the limits of image quality gain by altering the parameters of these detectors remains a topical issue.

  3. Multimodal imaging-based therapeutic fingerprints for optimizing personalized interventions: Application to neurodegeneration.

    PubMed

    Iturria-Medina, Yasser; Carbonell, Félix M; Evans, Alan C

    2018-06-14

    Personalized Medicine (PM) seeks to assist the patients according to their specific treatment needs and potential intervention responses. However, in the neurological context, this approach is limited by crucial methodological challenges, such as the requirement for an understanding of the causal disease mechanisms and the inability to predict the brain's response to therapeutic interventions. Here, we introduce and validate the concept of the personalized Therapeutic Intervention Fingerprint (pTIF), which predicts the effectiveness of potential interventions for controlling a patient's disease evolution. Each subject's pTIF can be inferred from multimodal longitudinal imaging (e.g. amyloid-β, metabolic and tau PET; vascular, functional and structural MRI). We studied an aging population (N = 331) comprising cognitively normal and neurodegenerative patients, longitudinally scanned using six different neuroimaging modalities. We found that the resulting pTIF vastly outperforms cognitive and clinical evaluations on predicting individual variability in gene expression (GE) profiles. Furthermore, after regrouping the patients according to their predicted primary single-target interventions, we observed that these pTIF-based subgroups present distinctively altered molecular pathway signatures, supporting the across-population identification of dissimilar pathological stages, in active correspondence with different therapeutic needs. The results further evidence the imprecision of using broad clinical categories for understanding individual molecular alterations and selecting appropriate therapeutic needs. To our knowledge, this is the first study highlighting the direct link between multifactorial brain dynamics, predicted treatment responses, and molecular alterations at the patient level. Inspired by the principles of PM, the proposed pTIF framework is a promising step towards biomarker-driven assisted therapeutic interventions, with additional important implications for selective enrollment of patients in clinical trials. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Extracting genetic alteration information for personalized cancer therapy from ClinicalTrials.gov

    PubMed Central

    Xu, Jun; Lee, Hee-Jin; Zeng, Jia; Wu, Yonghui; Zhang, Yaoyun; Huang, Liang-Chin; Johnson, Amber; Holla, Vijaykumar; Bailey, Ann M; Cohen, Trevor; Meric-Bernstam, Funda; Bernstam, Elmer V

    2016-01-01

    Objective: Clinical trials investigating drugs that target specific genetic alterations in tumors are important for promoting personalized cancer therapy. The goal of this project is to create a knowledge base of cancer treatment trials with annotations about genetic alterations from ClinicalTrials.gov. Methods: We developed a semi-automatic framework that combines advanced text-processing techniques with manual review to curate genetic alteration information in cancer trials. The framework consists of a document classification system to identify cancer treatment trials from ClinicalTrials.gov and an information extraction system to extract gene and alteration pairs from the Title and Eligibility Criteria sections of clinical trials. By applying the framework to trials at ClinicalTrials.gov, we created a knowledge base of cancer treatment trials with genetic alteration annotations. We then evaluated each component of the framework against manually reviewed sets of clinical trials and generated descriptive statistics of the knowledge base. Results and Discussion: The automated cancer treatment trial identification system achieved a high precision of 0.9944. Together with the manual review process, it identified 20 193 cancer treatment trials from ClinicalTrials.gov. The automated gene-alteration extraction system achieved a precision of 0.8300 and a recall of 0.6803. After validation by manual review, we generated a knowledge base of 2024 cancer trials that are labeled with specific genetic alteration information. Analysis of the knowledge base revealed the trend of increased use of targeted therapy for cancer, as well as top frequent gene-alteration pairs of interest. We expect this knowledge base to be a valuable resource for physicians and patients who are seeking information about personalized cancer therapy. PMID:27013523

  5. Extracting genetic alteration information for personalized cancer therapy from ClinicalTrials.gov.

    PubMed

    Xu, Jun; Lee, Hee-Jin; Zeng, Jia; Wu, Yonghui; Zhang, Yaoyun; Huang, Liang-Chin; Johnson, Amber; Holla, Vijaykumar; Bailey, Ann M; Cohen, Trevor; Meric-Bernstam, Funda; Bernstam, Elmer V; Xu, Hua

    2016-07-01

    Clinical trials investigating drugs that target specific genetic alterations in tumors are important for promoting personalized cancer therapy. The goal of this project is to create a knowledge base of cancer treatment trials with annotations about genetic alterations from ClinicalTrials.gov. We developed a semi-automatic framework that combines advanced text-processing techniques with manual review to curate genetic alteration information in cancer trials. The framework consists of a document classification system to identify cancer treatment trials from ClinicalTrials.gov and an information extraction system to extract gene and alteration pairs from the Title and Eligibility Criteria sections of clinical trials. By applying the framework to trials at ClinicalTrials.gov, we created a knowledge base of cancer treatment trials with genetic alteration annotations. We then evaluated each component of the framework against manually reviewed sets of clinical trials and generated descriptive statistics of the knowledge base. The automated cancer treatment trial identification system achieved a high precision of 0.9944. Together with the manual review process, it identified 20 193 cancer treatment trials from ClinicalTrials.gov. The automated gene-alteration extraction system achieved a precision of 0.8300 and a recall of 0.6803. After validation by manual review, we generated a knowledge base of 2024 cancer trials that are labeled with specific genetic alteration information. Analysis of the knowledge base revealed the trend of increased use of targeted therapy for cancer, as well as top frequent gene-alteration pairs of interest. We expect this knowledge base to be a valuable resource for physicians and patients who are seeking information about personalized cancer therapy. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Markers of Decompression Stress of Mass Stranded/Live Caught and Released vs. Single Stranded Marine Mammals

    DTIC Science & Technology

    2014-09-30

    Caught and Released vs. Single Stranded Marine Mammals Michael Moore Biology Department Woods Hole Oceanographic Institution Woods Hole, MA 02543...analyze blood samples from captive, wild-caught, and stranded marine mammals in order to compare concentrations of Microparticles (MPs). If confirmed...military sonar or during seismic exploration, may harm marine animals. It has been suggested that alteration in physiology or diving behavior may

  7. The application of single-tree selection compared to diameter-limit cutting in an upland oak-hickory forest on the Cumberland Plateau in Jackson County, Alabama

    Treesearch

    Callie Jo Schweitzer; Greg Janzen

    2012-01-01

    Cumberland Plateau region upland oak forests have undergone a myriad of disturbances (including periods of few and minor disturbances). Traditional timber harvesting practices such as diameter-limit cutting have negatively altered species composition and skewed stand structure, especially on medium-quality sites. We assessed the ability of single-tree selection to...

  8. Enhancing Aluminum Reactivity by Exploiting Surface Chemistry and Mechanical Properties

    DTIC Science & Technology

    2015-06-01

    alter its mechanical properties . In bulk material processing , annealing and quenching metals such as Al can relieve residual stress and improve...increasing  Al  reactivity is to alter its mechanical  properties .  In bulk material  processing , annealing and quenching metals such as  Al  can relieve...mechanical properties . On a single particle level, affecting mechanical properties may also affect Al particle reactivity. Aluminum particles underwent

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Mainul, E-mail: mainul.husain@hc-sc.gc.ca; Kyjovska, Zdenka O., E-mail: zky@nrcwe.dk; Bourdon-Lacombe, Julie, E-mail: julie.bourdon-lacombe@hc-sc.gc.ca

    Inhalation of carbon black nanoparticles (CBNPs) causes pulmonary inflammation; however, time course data to evaluate the detailed evolution of lung inflammatory responses are lacking. Here we establish a time-series of lung inflammatory response to CBNPs. Female C57BL/6 mice were intratracheally instilled with 162 μg CBNPs alongside vehicle controls. Lung tissues were examined 3 h, and 1, 2, 3, 4, 5, 14, and 42 days (d) post-exposure. Global gene expression and pulmonary inflammation were assessed. DNA damage was evaluated in bronchoalveolar lavage (BAL) cells and lung tissue using the comet assay. Increased neutrophil influx was observed at all time-points. DNA strandmore » breaks were increased in BAL cells 3 h post-exposure, and in lung tissues 2–5 d post-exposure. Approximately 2600 genes were differentially expressed (± 1.5 fold; p ≤ 0.05) across all time-points in the lungs of exposed mice. Altered transcript levels were associated with immune-inflammatory response and acute phase response pathways, consistent with the BAL profiles and expression changes found in common respiratory infectious diseases. Genes involved in DNA repair, apoptosis, cell cycle regulation, and muscle contraction were also differentially expressed. Gene expression changes associated with inflammatory response followed a biphasic pattern, with initial changes at 3 h post-exposure declining to base-levels by 3 d, increasing again at 14 d, and then persisting to 42 d post-exposure. Thus, this single CBNP exposure that was equivalent to nine 8-h working days at the current Danish occupational exposure limit induced biphasic inflammatory response in gene expression that lasted until 42 d post-exposure, raising concern over the chronic effects of CBNP exposure. - Highlights: • A single exposure to CBNPs induced expression changes in over 2600 genes in mouse lungs. • Altered genes were associated with immune-inflammatory and acute phase responses. • Several genes were involved in DNA repair, apoptosis, and muscle contraction. • Effects of a single exposure to CBNPs lasted until 42 d post-exposure. • A single exposure to CBNPs induced a biphasic inflammatory response in gene expression.« less

  10. Altered Knee and Ankle Kinematics During Squatting in Those With Limited Weight-Bearing–Lunge Ankle-Dorsiflexion Range of Motion

    PubMed Central

    Dill, Karli E.; Begalle, Rebecca L.; Frank, Barnett S.; Zinder, Steven M.; Padua, Darin A.

    2014-01-01

    Context: Ankle-dorsiflexion (DF) range of motion (ROM) may influence movement variables that are known to affect anterior cruciate ligament loading, such as knee valgus and knee flexion. To our knowledge, researchers have not studied individuals with limited or normal ankle DF-ROM to investigate the relationship between those factors and the lower extremity movement patterns associated with anterior cruciate ligament injury. Objective: To determine, using 2 different measurement techniques, whether knee- and ankle-joint kinematics differ between participants with limited and normal ankle DF-ROM. Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: Forty physically active adults (20 with limited ankle DF-ROM, 20 with normal ankle DF-ROM). Main Outcome Measure(s): Ankle DF-ROM was assessed using 2 techniques: (1) nonweight-bearing ankle DF-ROM with the knee straight, and (2) weight-bearing lunge (WBL). Knee flexion, knee valgus-varus, knee internal-external rotation, and ankle DF displacements were assessed during the overhead-squat, single-legged squat, and jump-landing tasks. Separate 1-way analyses of variance were performed to determine whether differences in knee- and ankle-joint kinematics existed between the normal and limited groups for each assessment. Results: We observed no differences between the normal and limited groups when classifying groups based on nonweight-bearing passive-ankle DF-ROM. However, individuals with greater ankle DF-ROM during the WBL displayed greater knee-flexion and ankle-DF displacement and peak knee flexion during the overhead-squat and single-legged squat tasks. In addition, those individuals also demonstrated greater knee-varus displacement during the single-legged squat. Conclusions: Greater ankle DF-ROM assessed during the WBL was associated with greater knee-flexion and ankle-DF displacement during both squatting tasks as well as greater knee-varus displacement during the single-legged squat. Assessment of ankle DF-ROM using the WBL provided important insight into compensatory movement patterns during squatting, whereas nonweight-bearing passive ankle DF-ROM did not. Improving ankle DF-ROM during the WBL may be an important intervention for altering high-risk movement patterns commonly associated with noncontact anterior cruciate ligament injury. PMID:25144599

  11. Altered knee and ankle kinematics during squatting in those with limited weight-bearing-lunge ankle-dorsiflexion range of motion.

    PubMed

    Dill, Karli E; Begalle, Rebecca L; Frank, Barnett S; Zinder, Steven M; Padua, Darin A

    2014-01-01

    Ankle-dorsiflexion (DF) range of motion (ROM) may influence movement variables that are known to affect anterior cruciate ligament loading, such as knee valgus and knee flexion. To our knowledge, researchers have not studied individuals with limited or normal ankle DF-ROM to investigate the relationship between those factors and the lower extremity movement patterns associated with anterior cruciate ligament injury. To determine, using 2 different measurement techniques, whether knee- and ankle-joint kinematics differ between participants with limited and normal ankle DF-ROM. Cross-sectional study. Sports medicine research laboratory. Forty physically active adults (20 with limited ankle DF-ROM, 20 with normal ankle DF-ROM). Ankle DF-ROM was assessed using 2 techniques: (1) nonweight-bearing ankle DF-ROM with the knee straight, and (2) weight-bearing lunge (WBL). Knee flexion, knee valgus-varus, knee internal-external rotation, and ankle DF displacements were assessed during the overhead-squat, single-legged squat, and jump-landing tasks. Separate 1-way analyses of variance were performed to determine whether differences in knee- and ankle-joint kinematics existed between the normal and limited groups for each assessment. We observed no differences between the normal and limited groups when classifying groups based on nonweight-bearing passive-ankle DF-ROM. However, individuals with greater ankle DF-ROM during the WBL displayed greater knee-flexion and ankle-DF displacement and peak knee flexion during the overhead-squat and single-legged squat tasks. In addition, those individuals also demonstrated greater knee-varus displacement during the single-legged squat. Greater ankle DF-ROM assessed during the WBL was associated with greater knee-flexion and ankle-DF displacement during both squatting tasks as well as greater knee-varus displacement during the single-legged squat. Assessment of ankle DF-ROM using the WBL provided important insight into compensatory movement patterns during squatting, whereas nonweight-bearing passive ankle DF-ROM did not. Improving ankle DF-ROM during the WBL may be an important intervention for altering high-risk movement patterns commonly associated with noncontact anterior cruciate ligament injury.

  12. Non-conscious visual cues related to affect and action alter perception of effort and endurance performance

    PubMed Central

    Blanchfield, Anthony; Hardy, James; Marcora, Samuele

    2014-01-01

    The psychobiological model of endurance performance proposes that endurance performance is determined by a decision-making process based on perception of effort and potential motivation. Recent research has reported that effort-based decision-making during cognitive tasks can be altered by non-conscious visual cues relating to affect and action. The effects of these non-conscious visual cues on effort and performance during physical tasks are however unknown. We report two experiments investigating the effects of subliminal priming with visual cues related to affect and action on perception of effort and endurance performance. In Experiment 1 thirteen individuals were subliminally primed with happy or sad faces as they cycled to exhaustion in a counterbalanced and randomized crossover design. A paired t-test (happy vs. sad faces) revealed that individuals cycled significantly longer (178 s, p = 0.04) when subliminally primed with happy faces. A 2 × 5 (condition × iso-time) ANOVA also revealed a significant main effect of condition on rating of perceived exertion (RPE) during the time to exhaustion (TTE) test with lower RPE when subjects were subliminally primed with happy faces (p = 0.04). In Experiment 2, a single-subject randomization tests design found that subliminal priming with action words facilitated a significantly longer TTE (399 s, p = 0.04) in comparison to inaction words. Like Experiment 1, this greater TTE was accompanied by a significantly lower RPE (p = 0.03). These experiments are the first to show that subliminal visual cues relating to affect and action can alter perception of effort and endurance performance. Non-conscious visual cues may therefore influence the effort-based decision-making process that is proposed to determine endurance performance. Accordingly, the findings raise notable implications for individuals who may encounter such visual cues during endurance competitions, training, or health related exercise. PMID:25566014

  13. SNPs Altering Ammonium Transport Activity of Human Rhesus Factors Characterized by a Yeast-Based Functional Assay

    PubMed Central

    Deschuyteneer, Aude; Boeckstaens, Mélanie; De Mees, Christelle; Van Vooren, Pascale; Wintjens, René; Marini, Anna Maria

    2013-01-01

    Proteins of the conserved Mep-Amt-Rh family, including mammalian Rhesus factors, mediate transmembrane ammonium transport. Ammonium is an important nitrogen source for the biosynthesis of amino acids but is also a metabolic waste product. Its disposal in urine plays a critical role in the regulation of the acid/base homeostasis, especially with an acid diet, a trait of Western countries. Ammonium accumulation above a certain concentration is however pathologic, the cytotoxicity causing fatal cerebral paralysis in acute cases. Alteration in ammonium transport via human Rh proteins could have clinical outcomes. We used a yeast-based expression assay to characterize human Rh variants resulting from non synonymous single nucleotide polymorphisms (nsSNPs) with known or unknown clinical phenotypes and assessed their ammonium transport efficiency, protein level, localization and potential trans-dominant impact. The HsRhAG variants (I61R, F65S) associated to overhydrated hereditary stomatocytosis (OHSt), a disease affecting erythrocytes, proved affected in intrinsic bidirectional ammonium transport. Moreover, this study reveals that the R202C variant of HsRhCG, the orthologue of mouse MmRhcg required for optimal urinary ammonium excretion and blood pH control, shows an impaired inherent ammonium transport activity. Urinary ammonium excretion was RHcg gene-dose dependent in mouse, highlighting MmRhcg as a limiting factor. HsRhCGR202C may confer susceptibility to disorders leading to metabolic acidosis for instance. Finally, the analogous R211C mutation in the yeast ScMep2 homologue also impaired intrinsic activity consistent with a conserved functional role of the preserved arginine residue. The yeast expression assay used here constitutes an inexpensive, fast and easy tool to screen nsSNPs reported by high throughput sequencing or individual cases for functional alterations in Rh factors revealing potential causal variants. PMID:23967154

  14. The effect of a histone deacetylase inhibitor - valproic acid - on nucleoli in human leukaemic myeloblasts.

    PubMed

    Smetana, K; Zápotocký, M

    2010-01-01

    The present study was undertaken to provide more information on nucleolar changes induced by a histone deacetylase inhibitor such as valproic acid in leukaemic myeloblasts at the single-cell level. For this study, RNA in nucleoli was visualized by a simple but sensitive cytochemical procedure in unfixed cytospins of short-term bone marrow cultures from patients suffering from acute myeloid leukaemia. Valproic acid in leukaemic myeloblasts markedly reduced the nucleolar size and also produced significant transformation of "active" to "resting" and "inactive" nucleoli that reflected the alteration of the nucleolar transcription in sensitive myeloblasts. On this occasion it should be added that valproic acid significantly increased the incidence of altered myeloblasts that changed to apoptotic cells or apoptotic bodies and cell ghosts. In contrast to the above-mentioned decreased nucleolar size, the nucleolar RNA concentration, expressed by computerassisted RNA image densitometry in valproic acidtreated myeloblasts, was not significantly changed. The results of the present study clearly indicated that the nucleolar size and transformation of "active" to "sleeping" or "inactive" nucleoli are convenient markers of the sensitivity and alteration of leukaemic myeloblasts produced by a histone deacetylase inhibitor, valproic acid, at the single-cell level.

  15. Sparse Regression Based Structure Learning of Stochastic Reaction Networks from Single Cell Snapshot Time Series.

    PubMed

    Klimovskaia, Anna; Ganscha, Stefan; Claassen, Manfred

    2016-12-01

    Stochastic chemical reaction networks constitute a model class to quantitatively describe dynamics and cell-to-cell variability in biological systems. The topology of these networks typically is only partially characterized due to experimental limitations. Current approaches for refining network topology are based on the explicit enumeration of alternative topologies and are therefore restricted to small problem instances with almost complete knowledge. We propose the reactionet lasso, a computational procedure that derives a stepwise sparse regression approach on the basis of the Chemical Master Equation, enabling large-scale structure learning for reaction networks by implicitly accounting for billions of topology variants. We have assessed the structure learning capabilities of the reactionet lasso on synthetic data for the complete TRAIL induced apoptosis signaling cascade comprising 70 reactions. We find that the reactionet lasso is able to efficiently recover the structure of these reaction systems, ab initio, with high sensitivity and specificity. With only < 1% false discoveries, the reactionet lasso is able to recover 45% of all true reactions ab initio among > 6000 possible reactions and over 102000 network topologies. In conjunction with information rich single cell technologies such as single cell RNA sequencing or mass cytometry, the reactionet lasso will enable large-scale structure learning, particularly in areas with partial network structure knowledge, such as cancer biology, and thereby enable the detection of pathological alterations of reaction networks. We provide software to allow for wide applicability of the reactionet lasso.

  16. Accurate quantification of microRNA via single strand displacement reaction on DNA origami motif.

    PubMed

    Zhu, Jie; Feng, Xiaolu; Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs.

  17. Refactoring the Genetic Code for Increased Evolvability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pines, Gur; Winkler, James D.; Pines, Assaf

    ABSTRACT The standard genetic code is robust to mutations during transcription and translation. Point mutations are likely to be synonymous or to preserve the chemical properties of the original amino acid. Saturation mutagenesis experiments suggest that in some cases the best-performing mutant requires replacement of more than a single nucleotide within a codon. These replacements are essentially inaccessible to common error-based laboratory engineering techniques that alter a single nucleotide per mutation event, due to the extreme rarity of adjacent mutations. In this theoretical study, we suggest a radical reordering of the genetic code that maximizes the mutagenic potential of singlemore » nucleotide replacements. We explore several possible genetic codes that allow a greater degree of accessibility to the mutational landscape and may result in a hyperevolvable organism that could serve as an ideal platform for directed evolution experiments. We then conclude by evaluating the challenges of constructing such recoded organisms and their potential applications within the field of synthetic biology. IMPORTANCE The conservative nature of the genetic code prevents bioengineers from efficiently accessing the full mutational landscape of a gene via common error-prone methods. Here, we present two computational approaches to generate alternative genetic codes with increased accessibility. These new codes allow mutational transitions to a larger pool of amino acids and with a greater extent of chemical differences, based on a single nucleotide replacement within the codon, thus increasing evolvability both at the single-gene and at the genome levels. Given the widespread use of these techniques for strain and protein improvement, along with more fundamental evolutionary biology questions, the use of recoded organisms that maximize evolvability should significantly improve the efficiency of directed evolution, library generation, and fitness maximization.« less

  18. Refactoring the Genetic Code for Increased Evolvability

    DOE PAGES

    Pines, Gur; Winkler, James D.; Pines, Assaf; ...

    2017-11-14

    ABSTRACT The standard genetic code is robust to mutations during transcription and translation. Point mutations are likely to be synonymous or to preserve the chemical properties of the original amino acid. Saturation mutagenesis experiments suggest that in some cases the best-performing mutant requires replacement of more than a single nucleotide within a codon. These replacements are essentially inaccessible to common error-based laboratory engineering techniques that alter a single nucleotide per mutation event, due to the extreme rarity of adjacent mutations. In this theoretical study, we suggest a radical reordering of the genetic code that maximizes the mutagenic potential of singlemore » nucleotide replacements. We explore several possible genetic codes that allow a greater degree of accessibility to the mutational landscape and may result in a hyperevolvable organism that could serve as an ideal platform for directed evolution experiments. We then conclude by evaluating the challenges of constructing such recoded organisms and their potential applications within the field of synthetic biology. IMPORTANCE The conservative nature of the genetic code prevents bioengineers from efficiently accessing the full mutational landscape of a gene via common error-prone methods. Here, we present two computational approaches to generate alternative genetic codes with increased accessibility. These new codes allow mutational transitions to a larger pool of amino acids and with a greater extent of chemical differences, based on a single nucleotide replacement within the codon, thus increasing evolvability both at the single-gene and at the genome levels. Given the widespread use of these techniques for strain and protein improvement, along with more fundamental evolutionary biology questions, the use of recoded organisms that maximize evolvability should significantly improve the efficiency of directed evolution, library generation, and fitness maximization.« less

  19. Enhanced water purification: a single atom makes a difference.

    PubMed

    Stewart, Tom A; Trudell, Daniel E; Alam, Todd M; Ohlin, C André; Lawler, Christian; Casey, William H; Jett, Stephen; Nyman, May

    2009-07-15

    The aluminum Keggin polycation (Al13) has been identified as an effective specie for neutralization and coagulation of anionic contaminants in water. In this study, we compare efficacy of the aluminum Keggin-ion to the analogues containing a single Ga-atom or single Ge-atom (GaAl12 and GeAl12, respectively) substituted into the center of the polycation in water-treatment studies. We investigated removal of bacteriophage (model viruses), Cryptosporidium, dissolved organic carbon (DOC), and turbidity. In every study, the order of contaminant removal efficacy trends GaAl12 > Al13 > GeAl12. By ESI MS (electrospray ionization mass spectrometry), we noted the GaAl12 deprotonates least of the three aluminum polycations, and thus probably carries the highest charge, and also optimal contaminant-neutralization ability. The ESI MS studies of the aluminum polycation solutions, as well as solid-state characterization of their resulting precipitates both reveal some conversion of Al13 to larger polycations, Al30 for instance. The GaAl12 does not show any evidence for this alteration that is responsible for poor shelf life of commercial prehydrolyzed aluminum coagulants such as polyaluminum chloride. Based on these studies, we conclude that substitution of a single Ga-atom in the center of the aluminum Keggin polycation produces an optimal water-treatment product due to enhanced shelf life and efficacy in neutralization of anionic contaminants.

  20. Acute agmatine administration, similar to ketamine, reverses depressive-like behavior induced by chronic unpredictable stress in mice.

    PubMed

    Neis, Vivian B; Bettio, Luis E B; Moretti, Morgana; Rosa, Priscila B; Ribeiro, Camille M; Freitas, Andiara E; Gonçalves, Filipe M; Leal, Rodrigo B; Rodrigues, Ana Lúcia S

    Agmatine is an endogenous neuromodulator that has been shown to have antidepressant-like properties. We have previously demonstrated that it can induce a rapid increase in BDNF levels after acute administration, suggesting that agmatine may be a fast-acting antidepressant. To investigate this hypothesis, the present study evaluated the effects of a single administration of agmatine in mice subjected to chronic unpredictable stress (CUS), a model of depression responsive only to chronic treatment with conventional antidepressants. The ability of agmatine to reverse CUS-induced behavioral and biochemical alterations was evaluated and compared with those elicited by the fast-acting antidepressant (ketamine) and the conventional antidepressant (fluoxetine). After exposed to CUS for 14days, mice received a single oral dose of agmatine (0.1mg/kg), ketamine (1mg/kg) or fluoxetine (10mg/kg), and were submitted to behavioral evaluation after 24h. The exposure to CUS caused an increased immobility time in the tail suspension test (TST) but did not change anhedonic-related parameters in the splash test. Our findings provided evidence that, similarly to ketamine, agmatine is able to reverse CUS-induced depressive-like behavior in the TST. Western blot analyses of prefrontal cortex (PFC) demonstrated that mice exposed to CUS and/or treated with agmatine, fluoxetine or ketamine did not present alterations in the immunocontent of synaptic proteins [i.e. GluA1, postsynaptic density protein 95 (PSD-95) and synapsin]. Altogether, our findings indicate that a single administration of agmatine is able to reverse behavioral alterations induced by CUS in the TST, suggesting that this compound may have fast-acting antidepressant-like properties. However, there was no alteration in the levels of synaptic proteins in the PFC, a result that need to be further investigated in other time points. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. [Psychomotor development in offspring of mothers with post partum depression].

    PubMed

    Podestá L, Loreto; Alarcón, Ana María; Muñoz, Sergio; Legüe C, Marcela; Bustos, Luis; Barría P, Mauricio

    2013-04-01

    Postpartum depression (PPD) has adverse effects on psychomotor development of the offspring. To evaluate the relationship between PPD and psychomotor development in children aged 18 months, consulting in primary care. Cross-sectional study with 360 infants and their mothers. Children had their psychomotor evaluation at l8 months and mothers completed the Edinburgh Postnatal Depression Scale at 4 and 12 weeks postpartum. The prevalence of both PPD and psychomotor alteration was estimated. The association between PPD and psychomotor alteration, including confounding variables, was estimated through logistic multiple regression analysis. The prevalence of PPD and psychomotor alteration was 29 and 16%, respectively Mothers with PPD had twice the probability of having an offspring with psychomotor alteration (Odds ratio = 2.0, confidence intervals = 1.07-3.68). This probability was significantly higher among single mothers or those with an unstable partner. PPD has a detrimental impact on psychomotor development of children.

  2. The Effect of Technology-Based Altered Readability Levels on Struggling Readers' Science Comprehension

    ERIC Educational Resources Information Center

    Marino, Matthew T.; Coyne, Michael; Dunn, Michael

    2010-01-01

    This article reports findings from a study examining how altered readability levels affected struggling readers' (N = 288) comprehension of scientific concepts and vocabulary. Specifically, the researchers were interested in learning what effect altered readability levels have when low ability readers participate in a technology-based science…

  3. The future distribution of the savannah biome: model-based and biogeographic contingency

    PubMed Central

    Scheiter, Simon; Langan, Liam; Trabucco, Antonio; Higgins, Steven I.

    2016-01-01

    The extent of the savannah biome is expected to be profoundly altered by climatic change and increasing atmospheric CO2 concentrations. Contrasting projections are given when using different modelling approaches to estimate future distributions. Furthermore, biogeographic variation within savannahs in plant function and structure is expected to lead to divergent responses to global change. Hence the use of a single model with a single savannah tree type will likely lead to biased projections. Here we compare and contrast projections of South American, African and Australian savannah distributions from the physiologically based Thornley transport resistance statistical distribution model (TTR-SDM)—and three versions of a dynamic vegetation model (DVM) designed and parametrized separately for specific continents. We show that attempting to extrapolate any continent-specific model globally biases projections. By 2070, all DVMs generally project a decrease in the extent of savannahs at their boundary with forests, whereas the TTR-SDM projects a decrease in savannahs at their boundary with aridlands and grasslands. This difference is driven by forest and woodland expansion in response to rising atmospheric CO2 concentrations in DVMs, unaccounted for by the TTR-SDM. We suggest that the most suitable models of the savannah biome for future development are individual-based dynamic vegetation models designed for specific biogeographic regions. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502376

  4. The future distribution of the savannah biome: model-based and biogeographic contingency.

    PubMed

    Moncrieff, Glenn R; Scheiter, Simon; Langan, Liam; Trabucco, Antonio; Higgins, Steven I

    2016-09-19

    The extent of the savannah biome is expected to be profoundly altered by climatic change and increasing atmospheric CO2 concentrations. Contrasting projections are given when using different modelling approaches to estimate future distributions. Furthermore, biogeographic variation within savannahs in plant function and structure is expected to lead to divergent responses to global change. Hence the use of a single model with a single savannah tree type will likely lead to biased projections. Here we compare and contrast projections of South American, African and Australian savannah distributions from the physiologically based Thornley transport resistance statistical distribution model (TTR-SDM)-and three versions of a dynamic vegetation model (DVM) designed and parametrized separately for specific continents. We show that attempting to extrapolate any continent-specific model globally biases projections. By 2070, all DVMs generally project a decrease in the extent of savannahs at their boundary with forests, whereas the TTR-SDM projects a decrease in savannahs at their boundary with aridlands and grasslands. This difference is driven by forest and woodland expansion in response to rising atmospheric CO2 concentrations in DVMs, unaccounted for by the TTR-SDM. We suggest that the most suitable models of the savannah biome for future development are individual-based dynamic vegetation models designed for specific biogeographic regions.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  5. Carbon Nanotubes and Human Cells?

    ERIC Educational Resources Information Center

    King, G. Angela

    2005-01-01

    Single-walled carbon nanotubes that were chemically altered to be water soluble are shown to enter fibroblasts, T cells, and HL60 cells. Nanoparticles adversely affect immortalized HaCaT human keratinocyte cultures, indicating that they may enter cells.

  6. Regional cerebral blood flow assessed by single photon emission computed tomography (SPECT) in dogs with congenital portosystemic shunt and hepatic encephalopathy.

    PubMed

    Or, Matan; Peremans, Kathelijne; Martlé, Valentine; Vandermeulen, Eva; Bosmans, Tim; Devriendt, Nausikaa; de Rooster, Hilde

    2017-02-01

    Regional cerebral blood flow (rCBF) in eight dogs with congenital portosystemic shunt (PSS) and hepatic encephalopathy (HE) was compared with rCBF in eight healthy control dogs using single photon emission computed tomography (SPECT) with a 99m technetium-hexamethylpropylene amine oxime ( 99m Tc-HMPAO) tracer. SPECT scans were abnormal in all PSS dogs. Compared to the control group, rCBF in PSS dogs was significantly decreased in the temporal lobes and increased in the subcortical (thalamic and striatal) area. Brain perfusion imaging alterations observed in the dogs with PSS and HE are similar to those in human patients with HE. These findings suggest that dogs with HE and PSS have altered perfusion of mainly the subcortical and the temporal regions of the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Detritus in K/T boundary clays of western North America - Evidence against a single oceanic impact

    NASA Technical Reports Server (NTRS)

    Sharpton, V. L.; Schuraytz, B. C.; Burke, K.; Murali, A. V.; Ryder, G.

    1990-01-01

    Understanding the crustal signature of impact ejecta contained in the Cretaceous/Tertiary (K/T) boundary layer is crucial to constraining the possible site(s) of the postulated K/T impact event. The relatively unaltered clastic constituents of the boundary layer at widely separated outcrops within the western interior of North America are not compatible with a single oceanic impact but require instead an impact site on a continent or continental margin. On the other hand, chemical compositions of highly altered K/T boundary layer components in some marine sections have suggested to others an impact into oceanic crust. We suspect that post-depositional alteration within the marine setting accounts for this apparent oceanic affinity. If, however, this is not the case, multiple simultaneous impacts, striking continent as well as ocean floor, would seem to be required.

  8. Teaching veterinary radiography by e-learning versus structured tutorial: a randomized, single-blinded controlled trial.

    PubMed

    Vandeweerd, Jean-Michel E F; Davies, John C; Pinchbeck, Gina L; Cotton, Jo C

    2007-01-01

    Case-based e-learning may allow effective teaching of veterinary radiology in the field of equine orthopedics. The objective of this study was to investigate the effectiveness of a new case-based e-learning tool, compared with a standard structured tutorial, in altering students' knowledge and skills about interpretation of radiographs of the digit in the horse. It was also designed to assess students' attitudes toward the two educational interventions. A randomized, single-blinded, controlled trial of 96 fourth-year undergraduate veterinary students, involving an educational intervention of either structured tutorial or case-based e-learning, was performed. A multiple-choice examination based on six learning outcomes was carried out in each group after the session, followed by an evaluation of students' attitudes toward their session on a seven-point scale. Text blanks were available to students to allow them to comment on the educational interventions and on their learning outcomes. Students also rated, on a Likert scale from 1 to 7, their performance for each specific learning outcome and their general ability to use a systematic approach in interpreting radiographs. Data were analyzed using the Mann-Whitney test, the t-test, and the equivalence test. There was no significant difference in student achievement on course tests. The results of the survey suggest positive student attitudes toward the e-learning tool and illustrate the difference between objective ratings and subjective assessments by students in testing a new educational intervention.

  9. Time delay spectrum conditioner

    DOEpatents

    Greiner, Norman R.

    1980-01-01

    A device for delaying specified frequencies of a multiple frequency laser beam. The device separates the multiple frequency beam into a series of spatially separated single frequency beams. The propagation distance of the single frequency beam is subsequently altered to provide the desired delay for each specific frequency. Focusing reflectors can be utilized to provide a simple but nonadjustable system or, flat reflectors with collimating and focusing optics can be utilized to provide an adjustable system.

  10. A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance.

    PubMed

    Ali, Akhtar; Raddatz, Natalia; Aman, Rashid; Kim, Songmi; Park, Hyeong Cheol; Jan, Masood; Baek, Dongwon; Khan, Irfan Ullah; Oh, Dong-Ha; Lee, Sang Yeol; Bressan, Ray A; Lee, Keun Woo; Maggio, Albino; Pardo, Jose M; Bohnert, Hans J; Yun, Dae-Jin

    2016-07-01

    A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K(+) TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na(+) from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K(+) transporter in the presence of Na(+) in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1(N-D)) complemented K(+)-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1(N) (-) (D) and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1 Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na(+) and K(+) based on the n/d variance in the pore region. This change also dictated inward-rectification for Na(+) transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Genome and transcriptome adaptation accompanying emergence of the definitive type 2 host-restricted Salmonella enterica serovar Typhimurium pathovar.

    PubMed

    Kingsley, Robert A; Kay, Sally; Connor, Thomas; Barquist, Lars; Sait, Leanne; Holt, Kathryn E; Sivaraman, Karthi; Wileman, Thomas; Goulding, David; Clare, Simon; Hale, Christine; Seshasayee, Aswin; Harris, Simon; Thomson, Nicholas R; Gardner, Paul; Rabsch, Wolfgang; Wigley, Paul; Humphrey, Tom; Parkhill, Julian; Dougan, Gordon

    2013-08-27

    Salmonella enterica serovar Typhimurium definitive type 2 (DT2) is host restricted to Columba livia (rock or feral pigeon) but is also closely related to S. Typhimurium isolates that circulate in livestock and cause a zoonosis characterized by gastroenteritis in humans. DT2 isolates formed a distinct phylogenetic cluster within S. Typhimurium based on whole-genome-sequence polymorphisms. Comparative genome analysis of DT2 94-213 and S. Typhimurium SL1344, DT104, and D23580 identified few differences in gene content with the exception of variations within prophages. However, DT2 94-213 harbored 22 pseudogenes that were intact in other closely related S. Typhimurium strains. We report a novel in silico approach to identify single amino acid substitutions in proteins that have a high probability of a functional impact. One polymorphism identified using this method, a single-residue deletion in the Tar protein, abrogated chemotaxis to aspartate in vitro. DT2 94-213 also exhibited an altered transcriptional profile in response to culture at 42°C compared to that of SL1344. Such differentially regulated genes included a number involved in flagellum biosynthesis and motility. IMPORTANCE Whereas Salmonella enterica serovar Typhimurium can infect a wide range of animal species, some variants within this serovar exhibit a more limited host range and altered disease potential. Phylogenetic analysis based on whole-genome sequences can identify lineages associated with specific virulence traits, including host adaptation. This study represents one of the first to link pathogen-specific genetic signatures, including coding capacity, genome degradation, and transcriptional responses to host adaptation within a Salmonella serovar. We performed comparative genome analysis of reference and pigeon-adapted definitive type 2 (DT2) S. Typhimurium isolates alongside phenotypic and transcriptome analyses, to identify genetic signatures linked to host adaptation within the DT2 lineage.

  12. Possible secondary apatite fission track age standard from altered volcanic ash beds in the middle Jurassic Carmel Formation, Southwestern Utah

    USGS Publications Warehouse

    Kowallis, B.J.; Christiansen, E.H.; Everett, B.H.; Crowley, K.D.; Naeser, C.W.; Miller, D.S.; Deino, A.L.

    1993-01-01

    Secondary age standards are valuable in intra- and interlaboratory calibration. At present very few such standards are available for fission track dating that is older than Tertiary. Several altered volcanic ash beds occur in the Middle Jurassic Carmel Formation in southwestern Utah. The formation was deposited in a shallow marine/sabhka environment. Near Gunlock, Utah, eight ash beds have been identified. Sanidines from one of the ash beds (GUN-F) give a single-crystal laser-probe 40Ar/39Ar age of 166.3??0.8 Ma (2??). Apatite and zircon fission track ages range from 152-185 Ma with typically 15-20 Ma errors (2??). Track densities in zircons are high and most grains are not countable. Apatites are fairly common in most of the ash beds and have reasonable track densities ranging between 1.2-1.5 ?? 106 tracks/cm2. Track length distributions in apatites are unimodal, have standard deviations <1??m, and mean track lengths of about 14-14.5 ??m. High Cl apatites (F:Cl:OH ratio of 39:33:28) are particularly abundant and large in ash GUN-F, and are fairly easy to concentrate, but the concentrates contain some siderite, most of which can be removed by sieving. GUN-F shows evidence of some reworking and detriaal contamination based on older single grain 40Ar/39Ar analyses and some rounding of grains, but the apatite population appears to be largely uncontaminated. At present BJK has approximately 12 of apatite separate from GUN-F. ?? 1993.

  13. Amorphous Phases on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.

    2014-01-01

    Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made up of mixed phases (e.g., palagonite) and synthetic single phases to determine their short-range order structures and calculate their XRD patterns to use in models of CheMin data. Finally, to address the timing of the alteration, we need to study rocks on the martian surface of different ages that may contain glass (volcanic or impact) with MSL and future rovers to better understand how glass alters on the martian surface, if that alteration mechanism is universal, and if alteration spans across long periods of time or if there is a time past which unaltered glass remains.

  14. DNA Damage Response and Repair Gene Alterations Are Associated with Improved Survival in Patients with Platinum-Treated Advanced Urothelial Carcinoma.

    PubMed

    Teo, Min Yuen; Bambury, Richard M; Zabor, Emily C; Jordan, Emmet; Al-Ahmadie, Hikmat; Boyd, Mariel E; Bouvier, Nancy; Mullane, Stephanie A; Cha, Eugene K; Roper, Nitin; Ostrovnaya, Irina; Hyman, David M; Bochner, Bernard H; Arcila, Maria E; Solit, David B; Berger, Michael F; Bajorin, Dean F; Bellmunt, Joaquim; Iyer, Gopakumar; Rosenberg, Jonathan E

    2017-07-15

    Purpose: Platinum-based chemotherapy remains the standard treatment for advanced urothelial carcinoma by inducing DNA damage. We hypothesize that somatic alterations in DNA damage response and repair (DDR) genes are associated with improved sensitivity to platinum-based chemotherapy. Experimental Design: Patients with diagnosis of locally advanced and metastatic urothelial carcinoma treated with platinum-based chemotherapy who had exon sequencing with the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) assay were identified. Patients were dichotomized based on the presence/absence of alterations in a panel of 34 DDR genes. DDR alteration status was correlated with clinical outcomes and disease features. Results: One hundred patients were identified, of which 47 harbored alterations in DDR genes. Patients with DDR alterations had improved progression-free survival (9.3 vs. 6.0 months, log-rank P = 0.007) and overall survival (23.7 vs. 13.0 months, log-rank P = 0.006). DDR alterations were also associated with higher number mutations and copy-number alterations. A trend toward positive correlation between DDR status and nodal metastases and inverse correlation with visceral metastases were observed. Different DDR pathways also suggested variable impact on clinical outcomes. Conclusions: Somatic DDR alteration is associated with improved clinical outcomes in platinum-treated patients with advanced urothelial carcinoma. Once validated, it can improve patient selection for clinical practice and future study enrollment. Clin Cancer Res; 23(14); 3610-8. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Characterization of a splicing mutation in group A xeroderma pigmentosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satokata, Ichiro; Tanaka, Kiyoji; Miura, Naoyuki

    1990-12-01

    The molecular basis of group A xeroderma pigmentosum (WP) was investigated by comparison of the nucleotide sequences of multiple clones of the XP group A complementing gene (XPAC) from a patient with group A XP with that of a normal gene. The clones showed a G {r arrow} C substitution at the 3{prime} splice acceptor site of intron 3, which altered the obligatory AG acceptor dinucleotide to AC. Nucleotide sequencing of cDNAs amplified by the polymerase chain reaction revealed that this single base substitution abolishes the canonical 3{prime} splice site, thus creating two abnormally spliced mRNA forms. The larger formmore » is identical with normal mRNA except for a dinucleotide deletion at the 5{prime} end of exon 4. This deletion results in a frameshift with premature translation termination in exon 4. The smaller form has a deletion of the entire exon 3 and the dinucleotide at the 5{prime} end of exon 4. The result of a transfection study provided additional evidence that this single base substitution is the disease-causing mutation. This single base substitution creates a new cleavage site for the restriction nuclease AlwNI. Analysis of AlwNI restriction fragment length polymorphism showed a high frequency of this mutation in Japanese patients with group A XP: 16 of 21 unrelated Japanese patients were homozygous and 4 were heterozygous for this mutation. However, 11 Caucasians and 2 Blacks with group A XP did not have this mutant allele. The polymorphic AlwNI restriction fragments are concluded to be useful for diagnosis of group A XP in Japanese subjects, including prenatal cases and carriers.« less

  16. Single-Atom Pt as Co-Catalyst for Enhanced Photocatalytic H2 Evolution.

    PubMed

    Li, Xiaogang; Bi, Wentuan; Zhang, Lei; Tao, Shi; Chu, Wangsheng; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2016-03-23

    Isolated single-atom platinum (Pt) embedded in the sub-nanoporosity of 2D g-C3 N4 as a new form of co-catalyst is reported. The highly stable single-atom co-catalyst maximizes the atom efficiency and alters the surface trap states of g-C3 N4 , leading to significantly enhanced photocatalytic H2 evolution activity, 8.6 times higher than that of Pt nanoparticles and up to 50 times that for bare g-C3 N4 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Detection of target staphylococcal enterotoxin B antigen in orange juice and popular carbonated beverages using antibody-dependent antigen-capture assays.

    PubMed

    Principato, MaryAnn; Njoroge, Joyce M; Perlloni, Andrei; O' Donnell, Michael; Boyle, Thomas; Jones, Robert L

    2010-10-01

    There is a critical need for qualitative and quantitative methodologies that provide the rapid and accurate detection of food contaminants in complex food matrices. However, the sensitivity of the assay can be affected when antigen-capture is applied to certain foods or beverages that are extremely acidic. This study was undertaken to assess the effects of orange juice and popular carbonated soft drink upon the fidelity of antibody-based antigen-capture assays and to develop simple approaches that could rescue assay performance without the introduction of additional or extensive extraction procedures. We examined the effects of orange juice and a variety of popular carbonated soft drink beverages upon a quantitative Interleukin-2 (IL-2) enzyme-linked immunosorbent assay (ELISA) assay system and a lateral flow device (LFD) adapted for the detection of staphylococcal enterotoxin B (SEB) in foods. Alterations in the performance and sensitivity of the assay were directly attributable to the food matrix, and alterations in pH were especially critical. The results demonstrate that approaches such as an alteration of pH and the use of milk as a blocking agent, either singly or in combination, will partially rescue ELISA performance. The same approaches permit lateral flow to efficiently detect antigen. Practical Application: The authors present ways to rescue an ELISA assay compromised by acidity in beverages and show that either the alteration of pH, or the use of milk as a blocking agent are not always capable of restoring the assay to its intended efficiency. However, the same methods, when employed with lateral flow technology, are rapid and extremely successful.

  18. Piezoelectric energy harvester interface with real-time MPPT

    NASA Astrophysics Data System (ADS)

    Elliott, A. D. T.; Mitcheson, P. D.

    2014-11-01

    Power of resonant piezoelectric harvesters can be severely limited if the damping force cannot be dynamically altered as the mechanical excitation level changes. The singlesupply pre-biasing (SSPB) technique enables the Coulomb damping force to be set by a single voltage and so by varying that voltage, real-time adaptation to variations in the mechanical force can be implemented. Similarly the conduction angle of a diode bridge rectifier circuit can be altered by changing the biasing voltage applied. This paper presents a method of achieving this by altering the amount of energy transferred from the pre-biasing capacitor used in SSPB and the diode bridge rectifier to a storage battery via a buck converter. The control system was implemented on a FPGA and consumed 50 μW.

  19. Sleep alterations and iron deficiency anemia in infancy

    PubMed Central

    Peirano, Patricio D.; Algarín, Cecilia R.; Chamorro, Rodrigo A.; Reyes, Sussanne C.; Durán, Samuel A.; Garrido, Marcelo I.; Lozoff, Betsy

    2013-01-01

    Iron-deficiency anemia (IDA) continues to be the most common single nutrient deficiency in the world. An estimated 20-25% of the world’s infants have IDA, with at least as many having iron deficiency without anemia. Infants are at particular risk due to rapid growth and limited dietary sources of iron. We found that infants with IDA showed different motor activity patterning in all sleep-waking states and several differences in sleep states organization. Sleep alterations were still apparent years after correction of anemia with iron treatment in the absence of subsequent IDA. We suggest that altered sleep patterns may represent an underlying mechanism that interferes with optimal brain functioning during sleep and wakefulness in former IDA children. PMID:20620103

  20. Different approaches in the molecular analysis of the SHOX gene dysfunctions.

    PubMed

    Stuppia, L; Gatta, V; Antonucci, I; Giuliani, R; Palka, G

    2010-06-01

    Deficit of the short stature homeobox containing gene (SHOX) accounts for 2.15% of cases of idiopathic short stature (ISS) and 50-100% of cases of Leri-Weill dyschondrosteosis (LWD). It has been demonstrated that patients with SHOX deficit show a good response to treatment with GH. Thus, the early identification of SHOX alterations is a crucial point in order to choose the best treatment for ISS and LWD patients. In this study, we analyze the most commonly used molecular techniques for the detection of SHOX gene alterations. multiple ligation-dependent probe amplification analysis appears to represent the gold standard for the detection of deletion involving the SHOX gene or the enhancer region, being able to show both alterations in a single assay.

  1. Multispectral imaging for biometrics

    NASA Astrophysics Data System (ADS)

    Rowe, Robert K.; Corcoran, Stephen P.; Nixon, Kristin A.; Ostrom, Robert E.

    2005-03-01

    Automated identification systems based on fingerprint images are subject to two significant types of error: an incorrect decision about the identity of a person due to a poor quality fingerprint image and incorrectly accepting a fingerprint image generated from an artificial sample or altered finger. This paper discusses the use of multispectral sensing as a means to collect additional information about a finger that significantly augments the information collected using a conventional fingerprint imager based on total internal reflectance. In the context of this paper, "multispectral sensing" is used broadly to denote a collection of images taken under different polarization conditions and illumination configurations, as well as using multiple wavelengths. Background information is provided on conventional fingerprint imaging. A multispectral imager for fingerprint imaging is then described and a means to combine the two imaging systems into a single unit is discussed. Results from an early-stage prototype of such a system are shown.

  2. Detection of influenza A virus using carbon nanotubes field effect transistor based DNA sensor

    NASA Astrophysics Data System (ADS)

    Tran, Thi Luyen; Nguyen, Thi Thuy; Huyen Tran, Thi Thu; Chu, Van Tuan; Thinh Tran, Quang; Tuan Mai, Anh

    2017-09-01

    The carbon nanotubes field effect transistor (CNTFET) based DNA sensor was developed, in this paper, for detection of influenza A virus DNA. Number of factors that influence the output signal and analytical results were investigated. The initial probe DNA, decides the available DNA strands on CNTs, was 10 μM. The hybridization time for defined single helix was 120 min. The hybridization temperature was set at 30 °C to get a net change in drain current of the DNA sensor without altering properties of any biological compounds. The response time of the DNA sensor was less than one minute with a high reproducibility. In addition, the DNA sensor has a wide linear detection range from 1 pM to 10 nM, and a very low detection limit of 1 pM. Finally, after 7-month storage in 7.4 pH buffer, the output signal of DNA sensor recovered 97%.

  3. Thrombin mediated transcriptional regulation using DNA aptamers in DNA based cell free protein synthesis

    PubMed Central

    Iyer, Sukanya

    2013-01-01

    Realizing the potential of cell free systems will require development of ligand sensitive gene promoters that control gene expression in response to a ligand of interest. Here, we describe an approach to designing ligand sensitive transcriptional control in cell free systems that is based on the combination of a DNA aptamer that binds thrombin and the T7 bacteriophage promoter. Placement of the aptamer near the T7 promoter, and using a primarily single stranded template, results in up to a five-fold change in gene expression in a ligand concentration dependent manner. We further demonstrate that the sensitivity to thrombin concentration and the fold change in expression can be tuned by altering the position of the aptamer. The results described here pave the way for the use of DNA aptamers to achieve modular regulation of transcription in response to a wide variety of ligands in cell free systems. PMID:24059754

  4. Extreme sensitivity of graphene photoconductivity to environmental gases.

    PubMed

    Docherty, Callum J; Lin, Cheng-Te; Joyce, Hannah J; Nicholas, Robin J; Herz, Laura M; Li, Lain-Jong; Johnston, Michael B

    2012-01-01

    Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices.

  5. Reliable method for generating double-stranded DNA vectors containing site-specific base modifications.

    PubMed

    Brégeon, Damien; Doetsch, Paul W

    2004-11-01

    Cells of all living organisms are continuously exposed to physical and chemical agents that damage DNA and alter the integrity of their genomes. Despite the relatively high efficiency of the different repair pathways, some lesions remain in DNA when it is replicated or transcribed. Lesion bypass by DNA and RNA polymerases has been the subject of numerous investigations. However, knowledge of the in vivo mechanism of transcription lesion bypass is very limited because no robust methodology is available. Here we describe a protocol based on the synthesis of a complementary strand of a circular, single-stranded DNA molecule, which allows for the production of large amounts of double-stranded DNA containing a lesion at a specific position in a transcribed sequence. Such constructs can subsequently be used for lesion bypass studies in vivo by RNA polymerase and to ascertain how these events can be affected by the genetic background of the cells.

  6. Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays

    PubMed Central

    2014-01-01

    Background Agrobacterium tumefaciens-based transient assays have become a common tool for answering questions related to protein localization and gene expression in a cellular context. The use of these assays assumes that the transiently transformed cells are observed under relatively authentic physiological conditions and maintain ‘normal’ sub-cellular behaviour. Although this premise is widely accepted, the question of whether cellular organization and organelle morphology is altered in Agrobacterium-infiltrated cells has not been examined in detail. The first indications of an altered sub-cellular environment came from our observation that a common laboratory strain, GV3101(pMP90), caused a drastic increase in stromule frequency. Stromules, or ‘stroma-filled-tubules’ emanate from the surface of plastids and are sensitive to a variety of biotic and abiotic stresses. Starting from this observation, the goal of our experiments was to further characterize the changes to the cell resulting from short-term bacterial infestation, and to identify the factor responsible for eliciting these changes. Results Using a protocol typical of transient assays we evaluated the impact of GV3101(pMP90) infiltration on chloroplast behaviour and morphology in Nicotiana benthamiana. Our experiments confirmed that GV3101(pMP90) consistently induces stromules and alters plastid position relative to the nucleus. These effects were found to be the result of strain-dependant secretion of cytokinin and its accumulation in the plant tissue. Bacterial production of the hormone was found to be dependant on the presence of a trans-zeatin synthase gene (tzs) located on the Ti plasmid of GV3101(pMP90). Bacteria-derived cytokinins were also correlated with changes to both soluble sugar level and starch accumulation. Conclusion Although we have chosen to focus on how transient Agrobacterium infestation alters plastid based parameters, these changes to the morphology and position of a single organelle, combined with the measured increases in sugar and starch content, suggest global changes to cell physiology. This indicates that cells visualized during transient assays may not be as ‘normal’ as was previously assumed. Our results suggest that the impact of the bacteria can be minimized by choosing Agrobacterium strains devoid of the tzs gene, but that the alterations to sub-cellular organization and cell carbohydrate status cannot be completely avoided using this strategy. PMID:24886417

  7. A mass spectrometry-based method for comprehensive quantitative determination of post-transcriptional RNA modifications: the complete chemical structure of Schizosaccharomyces pombe ribosomal RNAs

    PubMed Central

    Taoka, Masato; Nobe, Yuko; Hori, Masayuki; Takeuchi, Aiko; Masaki, Shunpei; Yamauchi, Yoshio; Nakayama, Hiroshi; Takahashi, Nobuhiro; Isobe, Toshiaki

    2015-01-01

    We present a liquid chromatography–mass spectrometry (LC-MS)-based method for comprehensive quantitative identification of post-transcriptional modifications (PTMs) of RNA. We incorporated an in vitro-transcribed, heavy isotope-labeled reference RNA into a sample RNA solution, digested the mixture with a number of RNases and detected the post-transcriptionally modified oligonucleotides quantitatively based on shifts in retention time and the MS signal in subsequent LC-MS. This allowed the determination and quantitation of all PTMs in Schizosaccharomyces pombe ribosomal (r)RNAs and generated the first complete PTM maps of eukaryotic rRNAs at single-nucleotide resolution. There were 122 modified sites, most of which appear to locate at the interface of ribosomal subunits where translation takes place. We also identified PTMs at specific locations in rRNAs that were altered in response to growth conditions of yeast cells, suggesting that the cells coordinately regulate the modification levels of RNA. PMID:26013808

  8. Measuring the Social Recreation Per-Day Net Benefit of the Wildlife Amenities of a National Park: A Count-Data Travel-Cost Approach

    NASA Astrophysics Data System (ADS)

    Mendes, Isabel; Proença, Isabel

    2011-11-01

    In this article, we apply count-data travel-cost methods to a truncated sample of visitors to estimate the Peneda-Gerês National Park (PGNP) average consumer surplus (CS) for each day of visit. The measurement of recreation demand is highly specific because it is calculated by number of days of stay per visit. We therefore propose the application of altered truncated count-data models or truncated count-data models on grouped data to estimate a single, on-site individual recreation demand function, with the price (cost) of each recreation day per trip equal to out-of-pocket and time travel plus out-of-pocket and on-site time costs. We further check the sensitivity of coefficient estimations to alternative models and analyse the welfare measure precision by using the delta and simulation methods by Creel and Loomis. With simulated limits, CS is estimated to be €194 (range €116 to €448). This information is of use in the quest to improve government policy and PNPG management and conservation as well as promote nature-based tourism. To our knowledge, this is the first attempt to measure the average recreation net benefits of each day of stay generated by a national park by using truncated altered and truncated grouped count-data travel-cost models based on observing the individual number of days of stay.

  9. Variation of p53 mutational spectra between carcinoma of the upper and lower respiratory tract.

    PubMed

    Law, J C; Whiteside, T L; Gollin, S M; Weissfeld, J; El-Ashmawy, L; Srivastava, S; Landreneau, R J; Johnson, J T; Ferrell, R E

    1995-07-01

    Mutations of the p53 tumor suppressor gene are the most common genetic alterations associated with human cancer. Tumor-associated p53 mutations often show characteristic tissue-specific profiles which may infer environmentally induced mutational mechanisms. The p53 mutational frequency and spectrum were determined for 95 carcinomas of the upper and lower respiratory tract (32 lung and 63 upper respiratory tract). Mutations were identified at a frequency of 30% in upper respiratory tract (URT) tumors and 31% in lung tumors. All 29 identified mutations were single-base substitutions. Comparison of the frequency of specific base substitutions between lung and URT showed a striking difference. Transitions occurred at a frequency of 68% in URT, but only 30% in lung. Mutations involving G:C-->A:T transitions, which are commonly reported in gastric and esophageal tumors, were the most frequently identified alteration in URT (11/19). Mutations involving G:C-->T:A transversions, which were relatively common in lung tumors (3/10) and are representative of tobacco smoke-induced mutations were rare in URT tumors (1/19). Interestingly, G:C-->A:T mutations at CpG sites, which are characteristic of endogenous processes, were observed frequently in URT tumors (9/19) but only rarely in lung tumors (1/10), suggesting that both endogenous and exogenous factors are responsible for the observed differences in mutational spectra between the upper and lower respiratory systems.

  10. Measuring the social recreation per-day net benefit of the wildlife amenities of a national park: a count-data travel-cost approach.

    PubMed

    Mendes, Isabel; Proença, Isabel

    2011-11-01

    In this article, we apply count-data travel-cost methods to a truncated sample of visitors to estimate the Peneda-Gerês National Park (PGNP) average consumer surplus (CS) for each day of visit. The measurement of recreation demand is highly specific because it is calculated by number of days of stay per visit. We therefore propose the application of altered truncated count-data models or truncated count-data models on grouped data to estimate a single, on-site individual recreation demand function, with the price (cost) of each recreation day per trip equal to out-of-pocket and time travel plus out-of-pocket and on-site time costs. We further check the sensitivity of coefficient estimations to alternative models and analyse the welfare measure precision by using the delta and simulation methods by Creel and Loomis. With simulated limits, CS is estimated to be 194 (range 116 to 448). This information is of use in the quest to improve government policy and PNPG management and conservation as well as promote nature-based tourism. To our knowledge, this is the first attempt to measure the average recreation net benefits of each day of stay generated by a national park by using truncated altered and truncated grouped count-data travel-cost models based on observing the individual number of days of stay.

  11. A Single Dose of LSD Does Not Alter Gene Expression of the Serotonin 2A Receptor Gene (HTR2A) or Early Growth Response Genes (EGR1-3) in Healthy Subjects

    PubMed Central

    Dolder, Patrick C.; Grünblatt, Edna; Müller, Felix; Borgwardt, Stefan J.; Liechti, Matthias E.

    2017-01-01

    Rationale: Renewed interest has been seen in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. The repeated use of LSD leads to tolerance that is believed to result from serotonin (5-HT) 5-HT2A receptor downregulation. In rats, daily LSD administration for 4 days decreased frontal cortex 5-HT2A receptor binding. Additionally, a single dose of LSD acutely increased expression of the early growth response genes EGR1 and EGR2 in rat and mouse brains through 5-HT2A receptor stimulation. No human data on the effects of LSD on gene expression has been reported. Therefore, we investigated the effects of single-dose LSD administration on the expression of the 5-HT2A receptor gene (HTR2A) and EGR1-3 genes. Methods: mRNA expression levels were analyzed in whole blood as a peripheral biomarker in 15 healthy subjects before and 1.5 and 24 h after the administration of LSD (100 μg) and placebo in a randomized, double-blind, placebo-controlled, cross-over study. Results: LSD did not alter the expression of the HTR2A or EGR1-3 genes 1.5 and 24 h after administration compared with placebo. Conclusion: No changes were observed in the gene expression of LSD’s primary target receptor gene or genes that are implicated in its downstream effects. Remaining unclear is whether chronic LSD administration alters gene expression in humans. PMID:28701958

  12. Exercise and the Regulation of Immune Functions.

    PubMed

    Simpson, Richard J; Kunz, Hawley; Agha, Nadia; Graff, Rachel

    2015-01-01

    Exercise has a profound effect on the normal functioning of the immune system. It is generally accepted that prolonged periods of intensive exercise training can depress immunity, while regular moderate intensity exercise is beneficial. Single bouts of exercise evoke a striking leukocytosis and a redistribution of effector cells between the blood compartment and the lymphoid and peripheral tissues, a response that is mediated by increased hemodynamics and the release of catecholamines and glucocorticoids following the activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. Single bouts of prolonged exercise may impair T-cell, NK-cell, and neutrophil function, alter the Type I and Type II cytokine balance, and blunt immune responses to primary and recall antigens in vivo. Elite athletes frequently report symptoms associated with upper respiratory tract infections (URTI) during periods of heavy training and competition that may be due to alterations in mucosal immunity, particularly reductions in secretory immunoglobulin A. In contrast, single bouts of moderate intensity exercise are "immuno-enhancing" and have been used to effectively increase vaccine responses in "at-risk" patients. Improvements in immunity due to regular exercise of moderate intensity may be due to reductions in inflammation, maintenance of thymic mass, alterations in the composition of "older" and "younger" immune cells, enhanced immunosurveillance, and/or the amelioration of psychological stress. Indeed, exercise is a powerful behavioral intervention that has the potential to improve immune and health outcomes in the elderly, the obese, and patients living with cancer and chronic viral infections such as HIV. © 2015 Elsevier Inc. All rights reserved.

  13. Textural, mineralogical and stable isotope studies of hydrothermal alteration in the main sulfide zone of the Great Dyke, Zimbabwe and the precious metals zone of the Sonju Lake Intrusion, Minnesota, USA

    USGS Publications Warehouse

    Li, C.; Ripley, E.M.; Oberthur, T.; Miller, J.D.; Joslin, G.D.

    2008-01-01

    Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type. ?? Springer-Verlag 2007.

  14. ORMDL3 expression levels have no influence on the activity of serine palmitoyltransferase.

    PubMed

    Zhakupova, Assem; Debeuf, Nincy; Krols, Michiel; Toussaint, Wendy; Vanhoutte, Leen; Alecu, Irina; Kutalik, Zoltán; Vollenweider, Peter; Ernst, Daniela; von Eckardstein, Arnold; Lambrecht, Bart N; Janssens, Sophie; Hornemann, Thorsten

    2016-12-01

    ORMDL proteins are believed to be negative regulators of serine palmitoyltransferase (SPT), which catalyzes the first and rate limiting step in sphingolipid (SL) de novo synthesis. Several single-nucleotide polymorphisms (SNPs) that are close to the ORMDL3 locus have been reported to increase ORMDL3 expression and to be associated with an elevated risk for early childhood asthma; however, the direct effect of ORMDL3 expression on SPT activity and its link to asthma remains elusive. In this study, we investigated whether ORMDL3 expression is associated with changes in SPT activity and total SL levels. Ormdl3-knockout (Ormdl3 -/- ) and transgenic (Ormdl3 Tg/wt ) mice were generated to study the effect of ORMDL3 on total SL levels in plasma and tissues. Cellular SPT activity was measured in mouse embryonic fibroblasts from Ormdl3 -/- mice, as well as in HEK293 cells in which ORMDL3 was overexpressed and silenced. Furthermore, we analyzed the association of the reported ORMDL3 asthma SNPs with plasma sphingoid bases in a population-based cohort of 971 individuals. Total C 18 -long chain bases were not significantly altered in the plasma and tissues of Ormdl3 -/- mice, whereas C 18 -sphinganine showed a small and significant increase in plasma, lung, and liver tissues. Mouse embryonic fibroblast cells from Ormdl3 -/- mice did not show an altered SPT activity compared with Ormdl3 +/- and Ormdl3 +/+ mice. Overexpression or knockdown of ORMDL3 in HEK293 cells did not alter SPT activity; however, parallel knockdown of all 3 ORMDL isoforms increased enzyme activity significantly. A significant association of the annotated ORMDL3 asthma SNPs with plasma long-chain sphingoid base levels could not be confirmed. ORMDL3 expression levels seem not to be directly associated with changes in SPT activity. ORMDL3 might influence de novo sphingolipid metabolism downstream of SPT.-Zhakupova, A., Debeuf, N., Krols, M., Toussaint, W., Vanhoutte, L., Alecu, I., Kutalik, Z., Vollenweider, P., Ernst, D., von Eckardstein, A., Lambrecht, B. N., Janssens, S., Hornemann, T. ORMDL3 expression levels have no influence on the activity of serine palmitoyltransferase. © FASEB.

  15. Impact of single annual treatment and four-monthly treatment for hookworm and Ascaris lumbricoides, and factors associated with residual infection among Kenyan school children.

    PubMed

    Kepha, Stella; Mwandawiro, Charles S; Anderson, Roy M; Pullan, Rachel L; Nuwaha, Fred; Cano, Jorge; Njenga, Sammy M; Odiere, Maurice R; Allen, Elizabeth; Brooker, Simon J; Nikolay, Birgit

    2017-02-09

    School-based deworming is widely implemented in various countries to reduce the burden of soil-transmitted helminths (STHs), however, the frequency of drug administration varies in different settings. In this study, we compared the impact of a single annual treatment and 4-monthly treatment over a follow-up among Kenyan school children, and investigated the factors associated with residual infection. We performed a secondary analysis of data from a randomized trial investigating whether deworming for STHs alters risk of acquiring malaria. Children received either a single treatment or 4-monthly albendazole treatments were followed longitudinally from February 2014 to October 2014. The relative impact of treatment and factors associated with residual infections were investigated using mixed-effects regression models. Predisposition to infection was assessed based on Spearman's rank and Kendall's Tau correlation coefficients. In the 4-monthly treatment group, the proportion of children infected with hookworm decreased from 59.9 to 5.7%, while Ascaris lumbricoides infections dropped from 55.7 to 6.2%. In the single treatment group, hookworm infections decreased over the same time period from 58.7 to 18.3% (12.6% absolute difference in reduction, 95% CI: 8.9-16.3%), and A. lumbricoides from 56.7 to 23.3% (17.1% absolute difference in reduction, 95% CI: 13.1-21.1%). There was strong evidence for predisposition to both STH types. Residual hookworm infection among children on 4-monthly treatment were associated with male sex and baseline nutritional status, whereas A. lumbricoides infection was associated with individual and school-level infection at baseline, latrine cleanliness at schools. This study found that 4-monthly treatment w more effective than single annual treatment. Repeated treatments led to dramatic reductions in the intensities of STHs, but did not completely clear infections among school children in Kenya, a presumed reflection of reinfection in a setting where there is ongoing transmission.

  16. Real-time Molecular Study of Bystander Effects of Low dose Low LET radiation Using Living Cell Imaging and Nanoparticale Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natarajan, Mohan; Xu, Nancy R; Mohan, Sumathy

    2013-06-03

    In this study two novel approaches are proposed to investigate precisely the low dose low LET radiation damage and its effect on bystander cells in real time. First, a flow shear model system, which would provide us a near in vivo situation where endothelial cells in the presence of extra cellular matrix experiencing continuous flow shear stress, will be used. Endothelial cells on matri-gel (simulated extra cellular matrix) will be subjected to physiological flow shear (that occurs in normal blood vessels). Second, a unique tool (Single nano particle/single live cell/single molecule microscopy and spectroscopy; Figure A) will be used tomore » track the molecular trafficking by single live cell imaging. Single molecule chemical microscopy allows one to single out and study rare events that otherwise might be lost in assembled average measurement, and monitor many target single molecules simultaneously in real-time. Multi color single novel metal nanoparticle probes allow one to prepare multicolor probes (Figure B) to monitor many single components (events) simultaneously and perform multi-complex analysis in real-time. These nano-particles resist to photo bleaching and hence serve as probes for unlimited timeframe of analysis. Single live cell microscopy allows one to image many single cells simultaneously in real-time. With the combination of these unique tools, we will be able to study under near-physiological conditions the cellular and sub-cellular responses (even subtle changes at one molecule level) to low and very low doses of low LET radiation in real time (milli-second or nano-second) at sub-10 nanometer spatial resolution. This would allow us to precisely identify, at least in part, the molecular mediators that are responsible of radiation damage in the irradiated cells and the mediators that are responsible for initiating the signaling in the neighboring cells. Endothelial cells subjected to flow shear (2 dynes/cm2 or 16 dynes/cm2) and exposed to 0.1, 1 and 10 cGy on coverslips will be examined for (a) low LET radiation-induced alterations of cellular function and its physiological relevance in real time; and (b) radiation damage triggered bystander effect on the neighboring unirradiated cells. First, to determine the low LET radiation induced alteration of cellular function we will examine: (i) the real time transformation of single membrane transporters in single living cells; (ii) the pump efficiency of membrane efflux pump of live cells in real time at the molecular level; (iii) the kinetics of single-ligand receptor interaction on single live cell surface (Figure C); and (iv) alteration in chromosome replication in living cell. Second, to study the radiation triggered bystander responses, we will examine one of the key signaling pathway i.e. TNF- alpha/NF-kappa B mediated signaling. TNF-alpha specific nano particle sensors (green) will be developed to detect the releasing dynamics, transport mechanisms and ligand-receptor binding on live cell surface in real time. A second sensor (blue) will be developed to simultaneously monitor the track of NF-kB inside the cell. The proposed nano-particle optics approach would complement our DOE funded study on biochemical mechanisms of TNF-alpha- NF-kappa B-mediated bystander effect.« less

  17. Effects of gravity reduction on phase equilibria. Part 1: Unary and binary isostructural solids

    NASA Technical Reports Server (NTRS)

    Larson, D. J., Jr.

    1975-01-01

    Analysis of the Skylab II M553 Experiment samples resulted in the hypothesis that the reduced gravity environment was altering the melting and solidification reactions. A theoretical study was conducted to define the conditions under which such alteration of phase relations is feasible, determine whether it is restricted to space processing, and, if so, ascertain which alloy systems or phase reactions are most likely to demonstrate such effects. Phase equilibria of unary and binary systems with a single solid phase (unary and isomorphous) were considered.

  18. Inflammatory and apoptotic alterations in serum and injured tissue after experimental polytrauma in mice: distinct early response compared with single trauma or "double-hit" injury.

    PubMed

    Weckbach, Sebastian; Hohmann, Christoph; Braumueller, Sonja; Denk, Stephanie; Klohs, Bettina; Stahel, Philip F; Gebhard, Florian; Huber-Lang, Markus S; Perl, Mario

    2013-02-01

    The exact alterations of the immune system after polytrauma leading to sepsis and multiple-organ failure are poorly understood. Thus, the early local and systemic inflammatory and apoptotic response was characterized in a new polytrauma model and compared with the alterations seen after single or combined injuries. Anesthetized C57BL/6 mice were subjected to either blunt bilateral chest trauma (Tx), closed head injury, right femur fracture including contralateral soft tissue injury, or a combination of injuries (PTx). After 2 hours or 6 hours, animals were sacrificed, and the systemic as well as the local pulmonary immune response (bronchoalveolar lavage [BAL]/plasma cytokines, lung myeloperoxidase [MPO] activity, and alveolocapillary barrier dysfunction) were evaluated along with lung/brain apoptosis (lung caspase 3 Western blotting, immunohistochemistry, and polymorphonuclear leukocytes [PMN] Annexin V). Hemoglobin, PO2 saturation, and pH did not differ between the experimental groups. Local BAL cytokines/chemokines were significantly increased in almost all groups, which included Tx. There was no further enhancement of this local inflammatory response in the lungs in case of PTx. At 2 hours, all groups except sham and closed head injury alone revealed an increased activity of lung MPO. However, 6 hours after injury, lung MPO remained increased only in the PTx group. Increased BAL protein levels were found, reflecting enhanced lung leakage in all groups with Tx 6 hours after trauma. Only after PTx was neutrophil apoptosis significantly decreased, whereas lung caspase 3 and plasma interleukin 6/keratinocyte chemoattractant (KC) were substantially increased. The combination of different injuries leads to an earlier systemic inflammatory response when compared with the single insults. Interestingly, only after PTx but not after single or double hits was lung apoptosis increased, and PMN apoptosis was decreased along with a prolonged presence of neutrophils in the lungs, which may therefore represent a possible pathomechanism for lung injury after polytrauma.

  19. Single nucleotide primer extension to detect genetic diseases: Experimental application to hemophilia B (factor IX) and cystic fibrosis genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuppuswamy, M.N.; Hoffmann, J.W.; Spitzer, S.G.

    1991-02-15

    In this report, the authors describe an approach to detect the presence of abnormal alleles in those genetic diseases in which frequency of occurrence of the same mutation is high (e.g., hemophilia B). Initially, from each subject, the DNA fragment containing the putative mutation site is amplified by the polymerase chain reaction. For each fragment two reaction mixtures are then prepared. Each contains the amplified fragment, a primer (18-mer or longer) whose sequence is identical to the coding sequence of the normal gene immediately flanking the 5{prime} end of the mutation site, and either an {alpha}-{sup 32}P-labeled nucleotide corresponding tomore » the normal coding sequence at the mutation site or an {alpha}-{sup 32}P-labeled nucleotide corresponding to the mutant sequence. An essential feature of the present methodology is that the base immediately 3{prime} to the template-bound primer is one of those altered in the mutant, since in this way an extension of the primer by a single base will give an extended molecule characteristic of either the mutant or the wild type. The method is rapid and should be useful in carrier detection and prenatal diagnosis of every genetic disease with a known sequence variation.« less

  20. Development of the Complex General Linear Model in the Fourier Domain: Application to fMRI Multiple Input-Output Evoked Responses for Single Subjects

    PubMed Central

    Rio, Daniel E.; Rawlings, Robert R.; Woltz, Lawrence A.; Gilman, Jodi; Hommer, Daniel W.

    2013-01-01

    A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function. PMID:23840281

  1. Development of the complex general linear model in the Fourier domain: application to fMRI multiple input-output evoked responses for single subjects.

    PubMed

    Rio, Daniel E; Rawlings, Robert R; Woltz, Lawrence A; Gilman, Jodi; Hommer, Daniel W

    2013-01-01

    A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function.

  2. Dynamic neural networking as a basis for plasticity in the control of heart rate.

    PubMed

    Kember, G; Armour, J A; Zamir, M

    2013-01-21

    A model is proposed in which the relationship between individual neurons within a neural network is dynamically changing to the effect of providing a measure of "plasticity" in the control of heart rate. The neural network on which the model is based consists of three populations of neurons residing in the central nervous system, the intrathoracic extracardiac nervous system, and the intrinsic cardiac nervous system. This hierarchy of neural centers is used to challenge the classical view that the control of heart rate, a key clinical index, resides entirely in central neuronal command (spinal cord, medulla oblongata, and higher centers). Our results indicate that dynamic networking allows for the possibility of an interplay among the three populations of neurons to the effect of altering the order of control of heart rate among them. This interplay among the three levels of control allows for different neural pathways for the control of heart rate to emerge under different blood flow demands or disease conditions and, as such, it has significant clinical implications because current understanding and treatment of heart rate anomalies are based largely on a single level of control and on neurons acting in unison as a single entity rather than individually within a (plastically) interconnected network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. [Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].

    PubMed

    Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V

    2014-01-01

    Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.

  4. Clinically relevant behavioral endpoints in a recurrent nitroglycerin migraine model in rats.

    PubMed

    Sufka, Kenneth J; Staszko, Stephanie M; Johnson, Ainslee P; Davis, Morgan E; Davis, Rachel E; Smitherman, Todd A

    2016-01-01

    This research sought to further validate the rat nitroglycerin (NTG) migraine model by comparing the effects of single versus recurrent NTG episodes on behavioral endpoints that mirror ICHD-3 diagnostic criteria for migraine, and to determine if the altered behavioral endpoints are reduced after administration of sumatriptan. Separate cohorts of rats were administered NTG (10 mg/kg/2 ml) or saline (Experiment 1: single injection; Experiment 2: repeated injections; Experiment 3: repeated injections with sumatriptan [0.0, 0.3 and 1.0 mg/kg/ml] rescue. Behavioral endpoints were assessed 2 h after final NTG administration and included time in light/dark chambers for photophobia and activity, pain facial ratings, and cool (5 °C) and warm (46 °C) tail dip. The first two experiments demonstrated that repeated (n = 5) but not single NTG injections produced photophobia, decreased activity, and yielded less weight gain than saline injections. Experiment 3 showed that sumatriptan attenuated hypoactivity, reduced facial expressions of pain, and reversed weight alterations in a dose-dependent manner. These findings identify numerous clinical homologies of a recurrent NTG rat migraine model that may be useful for screening novel pharmacotherapies.

  5. Comparison of light and x-ray sensitometric responses of double-emulsion films for different processing conditions.

    PubMed

    Blendl, C; Buhr, E

    2001-12-01

    The effects of different film processing conditions on light and x-ray sensitometric responses were compared for a variety of double-emulsion x-ray films. The processing conditions were altered by changes of the developer temperature. Three different exposure variants were applied: x-ray sensitometry using two stepped neutral density attenuators between film and screens, simultaneous double-sided light sensitometry, and single-sided light sensitometry. 13 different types of double-emulsion x-ray films were investigated, among them three asymmetric films. In the special case of exposing the asymmetric films with the single-sided light sensitometer, a method was investigated where each side of the film is exposed at different locations and the sum effect is analyzed. From each sensitometric curve shape two parameters, the logarithmic speed (logS) and the average gradient (G), were evaluated. The results of this study can be summarized as follows: (1) Single-sided and double-sided light sensitometers revealed almost equal changes of logS when the processing conditions are altered. Thus, single-sided light sensitometers can serve as a substitute for double-sided light sensitometers provided that suited exposure methods are used and appropriate sensitometric parameters are evaluated. (2) Light sensitometry quantitatively indicated changes of the film processing that affect the x-ray speed. Hence, light sensitometry is a useful method to monitor changes in film processing.

  6. The effects of a high-fat meal on single-dose vemurafenib pharmacokinetics.

    PubMed

    Ribas, Antoni; Zhang, Weijiang; Chang, Ilsung; Shirai, Keisuke; Ernstoff, Marc S; Daud, Adil; Cowey, C Lance; Daniels, Gregory; Seja, Elizabeth; O'Laco, Elizabeth; Glaspy, John A; Chmielowski, Bartosz; Hill, Todd; Joe, Andrew K; Grippo, Joseph F

    2014-04-01

    Vemurafenib is an orally bioavailable BRAF inhibitor approved for the treatment of BRAF(V600) -mutant metastatic melanoma. It is important to understand the effects of a high-fat meal on the pharmacokinetics (PK) of vemurafenib in humans because it is a Biopharmaceutics Classification System Class IV drug and its PK can be altered by food. An open-label, multicenter, randomized, 2-period crossover study was performed to evaluate the effect of food (high-fat meal) on the PK of a single oral dose of vemurafenib. Secondary objectives were safety and tolerability, efficacy with best overall response rate, and overall survival during the treatment period. The concomitant intake of food (high-fat meal) increased mean Cmax 3.5 to 7.5 µg/mL and mean AUC0-∞ 119 to 360 µg·h/mL after a single 960 mg dose of vemurafenib (N = 13-15 patients). An effect of food on single-dose exposure is suggested by point estimates and 90% CI of geometric mean ratios for vemurafenib plasma AUC0-∞ (4.7) and Cmax (2.5). Toxicity and response rate of vemurafenib in this study were consistent with prior experience in patients with BRAF(V600) -mutant metastatic melanoma. A high-fat meal increased the exposure to vemurafenib without altering the mean terminal half-life. © 2014, The American College of Clinical Pharmacology.

  7. Comparison of EpCAMhighCD44+ cancer stem cells with EpCAMhighCD44- tumor cells in colon cancer by single-cell sequencing.

    PubMed

    Liu, Mingshan; Di, Jiabo; Liu, Yang; Su, Zhe; Jiang, Beihai; Wang, Zaozao; Su, Xiangqian

    2018-03-26

    Cancer stem cells (CSCs) are considered to be responsible for tumorigenesis and cancer relapse. EpCAM high CD44 + tumor cells are putative colorectal CSCs that express high levels of stem cell genes, while the EpCAM high CD44 - population mostly contains differentiated tumor cells (DTCs). This study aims to determine whether single CSC (EpCAM high CD44 + ) and DTC (EpCAM high CD44 - ) can be distinguished in terms of somatic copy number alterations (SCNAs). We applied fluorescence-activated cell sorting to isolate the CD45 - EpCAM high CD44 + and CD45 - EpCAM high CD44 - populations from two primary colon tumors, on which low-coverage single-cell whole-genome sequencing (WGS) was then performed ∼0.1x depth. We compared the SCNAs of the CSCs and DTCs at single-cell resolution. In total, 47 qualified single cells of the two populations underwent WGS. The single-cell SCNA profiles showed that there were obvious SCNAs in both the CSCs and DTCs of each patient, and each patient had a specific copy number alteration pattern. Hierarchical clustering and correlation analysis both showed that the SCNA profiles of CSCs and DTCs from the same patient had similar SCNA pattern, while there were regional differences in the CSCs and DTCs in certain patient. SCNAs of CSCs in the same patient were highly reproducible. Our data suggest that major SCNAs occurred at an early stage and were inherited steadily. The similarity of ubiquitous SCNAs between the CSCs and DTCs might have arisen from lineage differentiation. CSCs from the same patient had reproducible SCNA profiles, indicating that gain or loss in certain chromosome is required for colon cancer development.

  8. DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break

    PubMed Central

    Harmsen, Tim; Klaasen, Sjoerd; van de Vrugt, Henri; te Riele, Hein

    2018-01-01

    Abstract Single-stranded oligodeoxyribonucleotide (ssODN)-mediated repair of CRISPR/Cas9-induced DNA double-strand breaks (DSB) can effectively be used to introduce small genomic alterations in a defined locus. Here, we reveal DNA mismatch repair (MMR) activity is crucial for efficient nucleotide substitution distal from the Cas9-induced DNA break when the substitution is instructed by the 3′ half of the ssODN. Furthermore, protecting the ssODN 3′ end with phosphorothioate linkages enhances MMR-dependent gene editing events. Our findings can be exploited to optimize efficiencies of nucleotide substitutions distal from the DSB and imply that oligonucleotide-mediated gene editing is effectuated by templated break repair. PMID:29447381

  9. A novel decision tree approach based on transcranial Doppler sonography to screen for blunt cervical vascular injuries.

    PubMed

    Purvis, Dianna; Aldaghlas, Tayseer; Trickey, Amber W; Rizzo, Anne; Sikdar, Siddhartha

    2013-06-01

    Early detection and treatment of blunt cervical vascular injuries prevent adverse neurologic sequelae. Current screening criteria can miss up to 22% of these injuries. The study objective was to investigate bedside transcranial Doppler sonography for detecting blunt cervical vascular injuries in trauma patients using a novel decision tree approach. This prospective pilot study was conducted at a level I trauma center. Patients undergoing computed tomographic angiography for suspected blunt cervical vascular injuries were studied with transcranial Doppler sonography. Extracranial and intracranial vasculatures were examined with a portable power M-mode transcranial Doppler unit. The middle cerebral artery mean flow velocity, pulsatility index, and their asymmetries were used to quantify flow patterns and develop an injury decision tree screening protocol. Student t tests validated associations between injuries and transcranial Doppler predictive measures. We evaluated 27 trauma patients with 13 injuries. Single vertebral artery injuries were most common (38.5%), followed by single internal carotid artery injuries (30%). Compared to patients without injuries, mean flow velocity asymmetry was higher for single internal carotid artery (P = .003) and single vertebral artery (P = .004) injuries. Similarly, pulsatility index asymmetry was higher in single internal carotid artery (P = .015) and single vertebral artery (P = .042) injuries, whereas the lowest pulsatility index was elevated for bilateral vertebral artery injuries (P = .006). The decision tree yielded 92% specificity, 93% sensitivity, and 93% correct classifications. In this pilot feasibility study, transcranial Doppler measures were significantly associated with the blunt cervical vascular injury status, suggesting that transcranial Doppler sonography might be a viable bedside screening tool for trauma. Patient-specific hemodynamic information from transcranial Doppler assessment has the potential to alter patient care pathways to improve outcomes.

  10. ALTERATION OF GENE CONVERSION PATTERNS IN Sordaria fimicola BY SUPPLEMENTATION WITH DNA BASES*

    PubMed Central

    Kitani, Y.; Olive, Lindsay S.

    1970-01-01

    Supplementation with DNA bases in crosses of Sordaria fimicola heterozygous for spore color markers (g1, h2) within the gray-spore (g) locus has been found to cause significant alterations in patterns of gene conversion at the two mutant sites. Each base had its own characteristic effect in altering the conversion pattern, and responses of the two mutant sites to the four bases were different in several ways. Also, the responses of the two involved chromatids of the meiotic bivalent were different. PMID:5273454

  11. Alteration of gene conversion patterns in Sordaria fimicola by supplementation with DNA bases.

    PubMed

    Kitani, Y; Olive, L S

    1970-08-01

    Supplementation with DNA bases in crosses of Sordaria fimicola heterozygous for spore color markers (g(1), h(2)) within the gray-spore (g) locus has been found to cause significant alterations in patterns of gene conversion at the two mutant sites. Each base had its own characteristic effect in altering the conversion pattern, and responses of the two mutant sites to the four bases were different in several ways. Also, the responses of the two involved chromatids of the meiotic bivalent were different.

  12. Strategy selection in cue-based decision making.

    PubMed

    Bryant, David J

    2014-06-01

    People can make use of a range of heuristic and rational, compensatory strategies to perform a multiple-cue judgment task. It has been proposed that people are sensitive to the amount of cognitive effort required to employ decision strategies. Experiment 1 employed a dual-task methodology to investigate whether participants' preference for heuristic versus compensatory decision strategies can be altered by increasing the cognitive demands of the task. As indicated by participants' decision times, a secondary task interfered more with the performance of a heuristic than compensatory decision strategy but did not affect the proportions of participants using either type of strategy. A stimulus set effect suggested that the conjunction of cue salience and cue validity might play a determining role in strategy selection. The results of Experiment 2 indicated that when a perceptually salient cue was also the most valid, the majority of participants preferred a single-cue heuristic strategy. Overall, the results contradict the view that heuristics are more likely to be adopted when a task is made more cognitively demanding. It is argued that people employ 2 learning processes during training, one an associative learning process in which cue-outcome associations are developed by sampling multiple cues, and another that involves the sequential examination of single cues to serve as a basis for a single-cue heuristic.

  13. Contentious relationships in phylogenomic studies can be driven by a handful of genes

    PubMed Central

    Shen, Xing-Xing; Hittinger, Chris Todd; Rokas, Antonis

    2017-01-01

    Phylogenomic studies have resolved countless branches of the tree of life (ToL), but remain strongly contradictory on certain, contentious relationships. Here, we employ a maximum likelihood framework to quantify the distribution of phylogenetic signal among genes and sites for 17 contentious branches and 6 well-established control branches in plant, animal, and fungal phylogenomic data matrices. We find that resolution in some of these 17 branches rests on a single gene or a few sites, and that removal of a single gene in concatenation analyses or a single site from every gene in coalescence-based analyses diminishes support and can alter the inferred topology. These results suggest that tiny subsets of very large data matrices drive the resolution of specific internodes, providing a dissection of the distribution of support and observed incongruence in phylogenomic analyses. We submit that quantifying the distribution of phylogenetic signal in phylogenomic data is essential for evaluating whether branches, especially contentious ones, are truly resolved. Finally, we offer one detailed example of such an evaluation for the controversy regarding the earliest-branching metazoan phylum, where examination of the distributions of gene-wise and site-wise phylogenetic signal across 8 data matrices consistently supports ctenophores as sister group to all other metazoans. PMID:28812701

  14. Systemic Metabolic Impairment and Lung Injury Following Acrolein Inhalation

    EPA Science Inventory

    A single ozone exposure causes pulmonary injury and systemic metabolic alterations through neuronal and hypothalamus pituitary adrenal axis activation. Metabolically impaired Goto Kakizaki (GK) rats with non-obese type-2 diabetes are more sensitive to ozone induced changes than h...

  15. Spermatotoxicity of dichloroacetic acid

    EPA Science Inventory

    The testicular toxicity of dichloroacetic acid (DCA), a disinfection byproduct of drinking water, was evaluated in adult male rats given both single and multiple (up to 14 d) oral doses. Delayed spermiation and altered resorption of residual bodies were observed in rats given sin...

  16. Development of Assays for Detecting Significant Prostate Cancer Based on Molecular Alterations Associated with Cancer in Non-Neoplastic Prostate Tissue

    DTIC Science & Technology

    2016-12-01

    Award Number: W81XWH-11-1-0744 TITLE: Development of Assays for Detecting Significant Prostate Cancer Based on Molecular Alterations Associated...Significant Prostate Cancer Based on Molecular Alterations Associated with Cancer in Non- Neoplastic Prostate Tissue 5b. GRANT NUMBER 10623678 5c...Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project was to develop molecular models to

  17. Monitoring Single-channel Water Permeability in Polarized Cells*

    PubMed Central

    Erokhova, Liudmila; Horner, Andreas; Kügler, Philipp; Pohl, Peter

    2011-01-01

    So far the determination of unitary permeability (pf) of water channels that are expressed in polarized cells is subject to large errors because the opening of a single water channel does not noticeably increase the water permeability of a membrane patch above the background. That is, in contrast to the patch clamp technique, where the single ion channel conductance may be derived from a single experiment, two experiments separated in time and/or space are required to obtain the single-channel water permeability pf as a function of the incremental water permeability (Pf,c) and the number (n) of water channels that contributed to Pf,c. Although the unitary conductance of ion channels is measured in the native environment of the channel, pf is so far derived from reconstituted channels or channels expressed in oocytes. To determine the pf of channels from live epithelial monolayers, we exploit the fact that osmotic volume flow alters the concentration of aqueous reporter dyes adjacent to the epithelia. We measure these changes by fluorescence correlation spectroscopy, which allows the calculation of both Pf,c and osmolyte dilution within the unstirred layer. Shifting the focus of the laser from the aqueous solution to the apical and basolateral membranes allowed the FCS-based determination of n. Here we validate the new technique by determining the pf of aquaporin 5 in Madin-Darby canine kidney cell monolayers. Because inhibition and subsequent activity rescue are monitored on the same sample, drug effects on exocytosis or endocytosis can be dissected from those on pf. PMID:21940624

  18. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism

    PubMed Central

    Sychev, Zoi E.; Hu, Alex; Lagunoff, Michael

    2017-01-01

    Kaposi’s Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi’s Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells. PMID:28257516

  19. Multifactorial causal model of brain (dis)organization and therapeutic intervention: Application to Alzheimer's disease.

    PubMed

    Iturria-Medina, Yasser; Carbonell, Félix M; Sotero, Roberto C; Chouinard-Decorte, Francois; Evans, Alan C

    2017-05-15

    Generative models focused on multifactorial causal mechanisms in brain disorders are scarce and generally based on limited data. Despite the biological importance of the multiple interacting processes, their effects remain poorly characterized from an integrative analytic perspective. Here, we propose a spatiotemporal multifactorial causal model (MCM) of brain (dis)organization and therapeutic intervention that accounts for local causal interactions, effects propagation via physical brain networks, cognitive alterations, and identification of optimum therapeutic interventions. In this article, we focus on describing the model and applying it at the population-based level for studying late onset Alzheimer's disease (LOAD). By interrelating six different neuroimaging modalities and cognitive measurements, this model accurately predicts spatiotemporal alterations in brain amyloid-β (Aβ) burden, glucose metabolism, vascular flow, resting state functional activity, structural properties, and cognitive integrity. The results suggest that a vascular dysregulation may be the most-likely initial pathologic event leading to LOAD. Nevertheless, they also suggest that LOAD it is not caused by a unique dominant biological factor (e.g. vascular or Aβ) but by the complex interplay among multiple relevant direct interactions. Furthermore, using theoretical control analysis of the identified population-based multifactorial causal network, we show the crucial advantage of using combinatorial over single-target treatments, explain why one-target Aβ based therapies might fail to improve clinical outcomes, and propose an efficiency ranking of possible LOAD interventions. Although still requiring further validation at the individual level, this work presents the first analytic framework for dynamic multifactorial brain (dis)organization that may explain both the pathologic evolution of progressive neurological disorders and operationalize the influence of multiple interventional strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Aquacultured Rainbow Trout (Oncorhynchus mykiss) Possess a Large Core Intestinal Microbiota That Is Resistant to Variation in Diet and Rearing Density

    PubMed Central

    Wong, Sandi; Waldrop, Thomas; Summerfelt, Steven; Davidson, John; Barrows, Frederic; Kenney, P. Brett; Welch, Timothy; Wiens, Gregory D.; Snekvik, Kevin

    2013-01-01

    As global aquaculture fish production continues to expand, an improved understanding of how environmental factors interact in fish health and production is needed. Significant advances have been made toward economical alternatives to costly fishmeal-based diets, such as grain-based formulations, and toward defining the effect of rearing density on fish health and production. Little research, however, has examined the effects of fishmeal- and grain-based diets in combination with alterations in rearing density. Moreover, it is unknown whether interactions between rearing density and diet impact the composition of the fish intestinal microbiota, which might in turn impact fish health and production. We fed aquacultured adult rainbow trout (Oncorhynchus mykiss) fishmeal- or grain-based diets, reared them under high- or low-density conditions for 10 months in a single aquaculture facility, and evaluated individual fish growth, production, fin indices, and intestinal microbiota composition using 16S rRNA gene sequencing. We found that the intestinal microbiotas were dominated by a shared core microbiota consisting of 52 bacterial lineages observed across all individuals, diets, and rearing densities. Variations in diet and rearing density resulted in only minor changes in intestinal microbiota composition despite significant effects of these variables on fish growth, performance, fillet quality, and welfare. Significant interactions between diet and rearing density were observed only in evaluations of fin indices and the relative abundance of the bacterial genus Staphylococcus. These results demonstrate that aquacultured rainbow trout can achieve remarkable consistency in intestinal microbiota composition and suggest the possibility of developing novel aquaculture strategies without overtly altering intestinal microbiota composition. PMID:23770898

  1. Hydrothermal alteration of felsic volcanic rocks at the Helen Siderite Deposit, Wawa, Ontario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, R.L.; Nebel, M.L.

    1984-09-01

    Felsic lavas and pyroclastic rocks, underlying the Archean Helen iron-formation, have been variably altered by hydrothermal solutions which, when discharged onto the sea floor, formed the Helen siderite deposit. Within the footwall volcanic sequence five chemically and mineralogically distinct alteration types have been defined: least altered, sericite, chlorite chloritoid, and ankerite. Based on mineralogy and chemistry of the altered rocks and on the geometry of the alteration zones, an alteration model is proposed.

  2. In silico prediction of splice-altering single nucleotide variants in the human genome.

    PubMed

    Jian, Xueqiu; Boerwinkle, Eric; Liu, Xiaoming

    2014-12-16

    In silico tools have been developed to predict variants that may have an impact on pre-mRNA splicing. The major limitation of the application of these tools to basic research and clinical practice is the difficulty in interpreting the output. Most tools only predict potential splice sites given a DNA sequence without measuring splicing signal changes caused by a variant. Another limitation is the lack of large-scale evaluation studies of these tools. We compared eight in silico tools on 2959 single nucleotide variants within splicing consensus regions (scSNVs) using receiver operating characteristic analysis. The Position Weight Matrix model and MaxEntScan outperformed other methods. Two ensemble learning methods, adaptive boosting and random forests, were used to construct models that take advantage of individual methods. Both models further improved prediction, with outputs of directly interpretable prediction scores. We applied our ensemble scores to scSNVs from the Catalogue of Somatic Mutations in Cancer database. Analysis showed that predicted splice-altering scSNVs are enriched in recurrent scSNVs and known cancer genes. We pre-computed our ensemble scores for all potential scSNVs across the human genome, providing a whole genome level resource for identifying splice-altering scSNVs discovered from large-scale sequencing studies.

  3. The Effects of Hallucinogens on Gene Expression.

    PubMed

    Martin, David A; Nichols, Charles D

    2018-01-01

    The classic serotonergic hallucinogens, or psychedelics, have the ability to profoundly alter perception and behavior. These can include visual distortions, hallucinations, detachment from reality, and mystical experiences. Some psychedelics, like LSD, are able to produce these effects with remarkably low doses of drug. Others, like psilocybin, have recently been demonstrated to have significant clinical efficacy in the treatment of depression, anxiety, and addiction that persist for at least several months after only a single therapeutic session. How does this occur? Much work has recently been published from imaging studies showing that psychedelics alter brain network connectivity. They facilitate a disintegration of the default mode network, producing a hyperconnectivity between brain regions that allow centers that do not normally communicate with each other to do so. The immediate and acute effects on both behaviors and network connectivity are likely mediated by effector pathways downstream of serotonin 5-HT2A receptor activation. These acute molecular processes also influence gene expression changes, which likely influence synaptic plasticity and facilitate more long-term changes in brain neurochemistry ultimately underlying the therapeutic efficacy of a single administration to achieve long-lasting effects. In this review, we summarize what is currently known about the molecular genetic responses to psychedelics within the brain and discuss how gene expression changes may contribute to altered cellular physiology and behaviors.

  4. Narrow band imaging combined with water immersion technique in the diagnosis of celiac disease.

    PubMed

    Valitutti, Francesco; Oliva, Salvatore; Iorfida, Donatella; Aloi, Marina; Gatti, Silvia; Trovato, Chiara Maria; Montuori, Monica; Tiberti, Antonio; Cucchiara, Salvatore; Di Nardo, Giovanni

    2014-12-01

    The "multiple-biopsy" approach both in duodenum and bulb is the best strategy to confirm the diagnosis of celiac disease; however, this increases the invasiveness of the procedure itself and is time-consuming. To evaluate the diagnostic yield of a single biopsy guided by narrow-band imaging combined with water immersion technique in paediatric patients. Prospective assessment of the diagnostic accuracy of narrow-band imaging/water immersion technique-driven biopsy approach versus standard protocol in suspected celiac disease. The experimental approach correctly diagnosed 35/40 children with celiac disease, with an overall diagnostic sensitivity of 87.5% (95% CI: 77.3-97.7). An altered pattern of narrow-band imaging/water immersion technique endoscopic visualization was significantly associated with villous atrophy at guided biopsy (Spearman Rho 0.637, p<0.001). Concordance of narrow-band imaging/water immersion technique endoscopic assessments was high between two operators (K: 0.884). The experimental protocol was highly timesaving compared to the standard protocol. An altered narrow-band imaging/water immersion technique pattern coupled with high anti-transglutaminase antibodies could allow a single guided biopsy to diagnose celiac disease. When no altered mucosal pattern is visible even by narrow-band imaging/water immersion technique, multiple bulbar and duodenal biopsies should be obtained. Copyright © 2014. Published by Elsevier Ltd.

  5. Verbal working memory-related functional connectivity alterations in boys with attention-deficit/hyperactivity disorder and the effects of methylphenidate.

    PubMed

    Wu, Zhao-Min; Bralten, Janita; An, Li; Cao, Qing-Jiu; Cao, Xiao-Hua; Sun, Li; Liu, Lu; Yang, Li; Mennes, Maarten; Zang, Yu-Feng; Franke, Barbara; Hoogman, Martine; Wang, Yu-Feng

    2017-08-01

    Few studies have investigated verbal working memory-related functional connectivity patterns in participants with attention-deficit/hyperactivity disorder (ADHD). Thus, we aimed to compare working memory-related functional connectivity patterns in healthy children and those with ADHD, and study effects of methylphenidate (MPH). Twenty-two boys with ADHD were scanned twice, under either MPH (single dose, 10 mg) or placebo, in a randomised, cross-over, counterbalanced placebo-controlled design. Thirty healthy boys were scanned once. We used fMRI during a numerical n-back task to examine functional connectivity patterns in case-control and MPH-placebo comparisons, using independent component analysis. There was no significant difference in behavioural performance between children with ADHD, treated with MPH or placebo, and healthy controls. Compared with controls, participants with ADHD under placebo showed increased functional connectivity within fronto-parietal and auditory networks, and decreased functional connectivity within the executive control network. MPH normalized the altered functional connectivity pattern and significantly enhanced functional connectivity within the executive control network, though in non-overlapping areas. Our study contributes to the identification of the neural substrates of working memory. Single dose of MPH normalized the altered brain functional connectivity network, but had no enhancing effect on (non-impaired) behavioural performance.

  6. Altered Exocytosis in Chromaffin Cells from Mouse Models of Neurodegenerative Diseases.

    PubMed

    de Diego, Antonio M G; García, Antonio G

    2018-05-09

    Chromaffin cells from the adrenal gland (CCs) have extensively been used to explore the molecular structure and function of the exocytotic machinery, neurotransmitter release and synaptic transmission. The CC is integrated in the sympathoadrenal axis that helps the body maintain homeostasis during both routine life and in acute stress conditions. This function is exquisitely controlled by the cerebral cortex and the hypothalamus. We propose the hypothesis that damage undergone by the brain during neurodegenerative diseases is also affecting the neurosecretory function of adrenal medullary CCs. In this context we review here the following themes: (i) how the discharge of catecholamines is centrally and peripherally regulated at the sympatho-adrenal axis; (ii) which are the intricacies of the amperometric techniques used to study the quantal release of single-vesicle exocytotic events; (iii) which are the alterations of the exocytotic fusion pore so far reported, in CCs of mouse models of neurodegenerative diseases; (iv) how some proteins linked to neurodegenerative pathologies affects the kinetics of exocytotic events; (v) finally we try to integrate available data into a hypothesis to explain how the centrally originated neurodegenerative diseases may alter the kinetics of single-vesicle exocytotic events in peripheral adrenal medullary CCs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain

    NASA Astrophysics Data System (ADS)

    Godin, Antoine G.; Varela, Juan A.; Gao, Zhenghong; Danné, Noémie; Dupuis, Julien P.; Lounis, Brahim; Groc, Laurent; Cognet, Laurent

    2017-03-01

    The brain is a dynamic structure with the extracellular space (ECS) taking up almost a quarter of its volume. Signalling molecules, neurotransmitters and nutrients transit via the ECS, which constitutes a key microenvironment for cellular communication and the clearance of toxic metabolites. The spatial organization of the ECS varies during sleep, development and aging and is probably altered in neuropsychiatric and degenerative diseases, as inferred from electron microscopy and macroscopic biophysical investigations. Here we show an approach to directly observe the local ECS structures and rheology in brain tissue using super-resolution imaging. We inject single-walled carbon nanotubes into rat cerebroventricles and follow the near-infrared emission of individual nanotubes as they diffuse inside the ECS for tens of minutes in acute slices. Because of the interplay between the nanotube geometry and the ECS local environment, we can extract information about the dimensions and local viscosity of the ECS. We find a striking diversity of ECS dimensions down to 40 nm, and as well as of local viscosity values. Moreover, by chemically altering the extracellular matrix of the brains of live animals before nanotube injection, we reveal that the rheological properties of the ECS are affected, but these alterations are local and inhomogeneous at the nanoscale.

  8. Brain-computer interface based on intermodulation frequency

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Chen, Zhikai; Gao, Shangkai; Gao, Xiaorong

    2013-12-01

    Objective. Most recent steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems have used a single frequency for each target, so that a large number of targets require a large number of stimulus frequencies and therefore a wider frequency band. However, human beings show good SSVEP responses only in a limited range of frequencies. Furthermore, this issue is especially problematic if the SSVEP-based BCI takes a PC monitor as a stimulator, which is only capable of generating a limited range of frequencies. To mitigate this issue, this study presents an innovative coding method for SSVEP-based BCI by means of intermodulation frequencies. Approach. Simultaneous modulations of stimulus luminance and color at different frequencies were utilized to induce intermodulation frequencies. Luminance flickered at relatively large frequency (10, 12, 15 Hz), while color alternated at low frequency (0.5, 1 Hz). An attractive feature of the proposed method was that it would substantially increase the number of targets at a single flickering frequency by altering color modulated frequencies. Based on this method, the BCI system presented in this study realized eight targets merely using three flickering frequencies. Main results. The online results obtained from 15 subjects (14 healthy and 1 with stroke) revealed that an average classification accuracy of 93.83% and information transfer rate (ITR) of 33.80 bit min-1 were achieved using our proposed SSVEP-based BCI system. Specifically, 5 out of the 15 subjects exhibited an ITR of 40.00 bit min-1 with a classification accuracy of 100%. Significance. These results suggested that intermodulation frequencies could be adopted as steady responses in BCI, for which our system could be used as a practical BCI system.

  9. Identification of altered pathways in breast cancer based on individualized pathway aberrance score.

    PubMed

    Shi, Sheng-Hong; Zhang, Wei; Jiang, Jing; Sun, Long

    2017-08-01

    The objective of the present study was to identify altered pathways in breast cancer based on the individualized pathway aberrance score (iPAS) method combined with the normal reference (nRef). There were 4 steps to identify altered pathways using the iPAS method: Data preprocessing conducted by the robust multi-array average (RMA) algorithm; gene-level statistics based on average Z ; pathway-level statistics according to iPAS; and a significance test dependent on 1 sample Wilcoxon test. The altered pathways were validated by calculating the changed percentage of each pathway in tumor samples and comparing them with pathways from differentially expressed genes (DEGs). A total of 688 altered pathways with P<0.01 were identified, including kinesin (KIF)- and polo-like kinase (PLK)-mediated events. When the percentage of change reached 50%, 310 pathways were involved in the total 688 altered pathways, which may validate the present results. In addition, there were 324 DEGs and 155 common genes between DEGs and pathway genes. DEGs and common genes were enriched in the same 9 significant terms, which also were members of altered pathways. The iPAS method was suitable for identifying altered pathways in breast cancer. Altered pathways (such as KIF and PLK mediated events) were important for understanding breast cancer mechanisms and for the future application of customized therapeutic decisions.

  10. Concurrent validity of single-item measures of emotional exhaustion and depersonalization in burnout assessment.

    PubMed

    West, Colin P; Dyrbye, Liselotte N; Satele, Daniel V; Sloan, Jeff A; Shanafelt, Tait D

    2012-11-01

    Burnout is a common problem among physicians and physicians-in-training. The Maslach Burnout Inventory (MBI) is the gold standard for burnout assessment, but the length of this well-validated 22-item instrument can limit its feasibility for survey research. To evaluate the concurrent validity of two questions relative to the full MBI for measuring the association of burnout with published outcomes. DESIGN, PARTICIPANTS, AND MAIN MEASURES: The single questions "I feel burned out from my work" and "I have become more callous toward people since I took this job," representing the emotional exhaustion and depersonalization domains of burnout, respectively, were evaluated in published studies of medical students, internal medicine residents, and practicing surgeons. We compared predictive models for the association of each question, versus the full MBI, using longitudinal data on burnout and suicidality from 2006 and 2007 for 858 medical students at five United States medical schools, cross-sectional data on burnout and serious thoughts of dropping out of medical school from 2007 for 2222 medical students at seven United States medical schools, and cross-sectional data on burnout and unprofessional attitudes and behaviors from 2009 for 2566 medical students at seven United States medical schools. We also assessed results for longitudinal data on burnout and perceived major medical errors from 2003 to 2009 for 321 Mayo Clinic Rochester internal medicine residents and cross-sectional data on burnout and both perceived major medical errors and suicidality from 2008 for 7,905 respondents to a national survey of members of the American College of Surgeons. Point estimates of effect for models based on the single-item measures were uniformly consistent with those reported for models based on the full MBI. The single-item measures of emotional exhaustion and depersonalization exhibited strong associations with each published outcome (all p ≤ 0.008). No conclusion regarding the relationship between burnout and any outcome variable was altered by the use of the single-item measures rather than the full MBI. Relative to the full MBI, single-item measures of emotional exhaustion and depersonalization exhibit strong and consistent associations with key outcomes in medical students, internal medicine residents, and practicing surgeons.

  11. Intermediate-type vancomycin resistance (VISA) in genetically-distinct Staphylococcus aureus isolates is linked to specific, reversible metabolic alterations.

    PubMed

    Alexander, Elizabeth L; Gardete, Susana; Bar, Haim Y; Wells, Martin T; Tomasz, Alexander; Rhee, Kyu Y

    2014-01-01

    Intermediate (VISA-type) vancomycin resistance in Staphylococcus aureus has been associated with a range of physiologic and genetic alterations. Previous work described the emergence of VISA-type resistance in two clonally-distinct series of isolates. In both series (the first belonging to MRSA clone ST8-USA300, and the second to ST5-USA100), resistance was conferred by a single mutation in yvqF (a negative regulator of the vraSR two-component system associated with vancomycin resistance). In the USA300 series, resistance was reversed by a secondary mutation in vraSR. In this study, we combined systems-level metabolomic profiling with statistical modeling techniques to discover specific, reversible metabolic alterations associated with the VISA phenotype.

  12. Symmetry of initial cell divisions among primitive hematopoietic progenitors is independent of ontogenic age and regulatory molecules.

    PubMed

    Huang, S; Law, P; Francis, K; Palsson, B O; Ho, A D

    1999-10-15

    We have developed a time-lapse camera system to follow the replication history and the fate of hematopoietic stem cells (HSC) at a single-cell level. Combined with single-cell culture, we correlated the early replication behavior with colony development after 14 days. The membrane dye PKH26 was used to monitor cell division. In addition to multiple, synchronous, and symmetric divisions, single-sorted CD34(+)/CD38(-) cells derived from fetal liver (FLV) also gave rise to a daughter cell that remained quiescent for up to 8 days, whereas the other daughter cell proliferated exponentially. Upon separation and replating as single cells onto medium containing a cytokine cocktail, 60.6% +/- 9.8% of the initially quiescent cells (PKH26 bright) gave rise again to colonies and 15.8% +/- 7.8% to blast colonies that could be replated. We have then determined the effects of various regulatory molecules on symmetry of initial cell divisions. After single-cell sorting, the CD34(+)/CD38(-) cells derived from FLV were exposed to flt3-ligand, thrombopoietin, stem cell factor (SCF), or medium containing a cytokine cocktail (with SCF, interleukin-3, interleukin-6, granulocyte-macrophage colony-stimulating factor, and erythropoietin). Whereas mitotic rate, colony efficiency, and asymmetric divisions could be altered using various regulatory molecules, the asymmetric division index, defined as the number of asymmetric divisions versus the number of dividing cells, was not altered significantly. This observation suggests that, although lineage commitment and cell proliferation can be skewed by extrinsic signaling, symmetry of early divisions is probably under the control of intrinsic factors.

  13. Multimodal gain control at the hippocampal Schaffer collateral-CA1 synapse.

    PubMed

    Lange-Asschenfeldt, Christian; Schipke, Carola G; Riepe, Matthias W

    2007-04-06

    Information processing at central nervous system synapses is shaped by long-lasting modifications, such as long-term potentiation and short-lived and putatively synapse-specific modifications by various forms of short-term plasticity, such as facilitation, potentiation, and depression. Using an extracellular paired-pulse facilitation (PPF) protocol at the Schaffer collateral-CA1 (SC) connection in acute hippocampal slices in mice, we extend previous reports of optimal signal gain at intermediate interpulse intervals obtained at single SC synapses to the network level. Moreover, maximum signal gain changed when the input intensity was altered. We found further that facilitation decreased with increasing stimulus amplitude and duration in an exact exponential fashion when varied at a fixed interpulse interval. Variation of these intensity parameters accounted for significant changes in PPF adding a spatial dimension to time-based synaptic filter characteristics. Thus, this synapse functions as an amplitude window discriminator with a low-level aperture in combination with a band-pass frequency filter. By providing mathematical functions for the characteristic presynaptic parameters frequency, stimulus amplitude, and pulse duration at the network level our results lay ground for future studies on pharmacologically, genetically, or otherwise altered animal models.

  14. Activation and reactivation of the RNA polymerase II trigger loop for intrinsic RNA cleavage and catalysis

    PubMed Central

    Čabart, Pavel; Jin, Huiyan; Li, Liangtao; Kaplan, Craig D

    2014-01-01

    In addition to RNA synthesis, multisubunit RNA polymerases (msRNAPs) support enzymatic reactions such as intrinsic transcript cleavage. msRNAP active sites from different species appear to exhibit differential intrinsic transcript cleavage efficiency and have likely evolved to allow fine-tuning of the transcription process. Here we show that a single amino-acid substitution in the trigger loop (TL) of Saccharomyces RNAP II, Rpb1 H1085Y, engenders a gain of intrinsic cleavage activity where the substituted tyrosine appears to participate in acid-base chemistry at alkaline pH for both intrinsic cleavage and nucleotidyl transfer. We extensively characterize this TL substitution for each of these reactions by examining the responses RNAP II enzymes to catalytic metals, altered pH, and factor inputs. We demonstrate that TFIIF stimulation of the first phosphodiester bond formation by RNAP II requires wild type TL function and that H1085Y substitution within the TL compromises or alters RNAP II responsiveness to both TFIIB and TFIIF. Finally, Mn2+ stimulation of H1085Y RNAP II reveals possible allosteric effects of TFIIB on the active center and cooperation between TFIIB and TFIIF. PMID:25764335

  15. Dyslexia and Voxel-Based Morphometry: Correlations between Five Behavioural Measures of Dyslexia and Gray and White Matter Volumes

    ERIC Educational Resources Information Center

    Tamboer, Peter; Scholte, H. Steven; Vorst, Harrie C. M.

    2015-01-01

    In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics…

  16. Smoke-induced microRNA and related proteome alterations. Modulation by chemopreventive agents.

    PubMed

    De Flora, Silvio; Balansky, Roumen; D'Agostini, Francesco; Cartiglia, Cristina; Longobardi, Mariagrazia; Steele, Vernon E; Izzotti, Alberto

    2012-12-15

    Dysregulation of microRNAs (miRNAs) has important consequences on gene and protein expression since a single miRNA targets a number of genes simultaneously. This article provides a review of published data and ongoing studies regarding the effects of cigarette smoke (CS), either mainstream (MCS) or environmental (ECS), on the expression of miRNAs and related proteins. The results generated in mice, rats, and humans provided evidence that exposure to CS results in an intense dysregulation of miRNA expression in the respiratory tract, which is mainly oriented in the sense of downregulation. In parallel, there was an upregulation of proteins targeted by the downregulated miRNAs. These trends reflect an attempt to defend the respiratory tract by means of antioxidant mechanisms, detoxification of carcinogens, DNA repair, anti-inflammatory pathways, apoptosis, etc. However, a long-lasting exposure to CS causes irreversible miRNA alterations that activate carcinogenic mechanisms, such as modulation of oncogenes and oncosuppressor genes, cell proliferation, recruitment of undifferentiated stem cells, inflammation, inhibition of intercellular communications, angiogenesis, invasion, and metastasis. The miRNA alterations induced by CS in the lung of mice and rats are similar to those observed in the human respiratory tract. Since a number of miRNAs that are modulated by CS and/or chemopreventive agents are subjected to single nucleotide polymorphisms in humans, they can be evaluated according to toxicogenomic/pharmacogenomics approaches. A variety of cancer chemopreventive agents tested in our laboratory modulated both baseline and CS-related miRNA and proteome alterations, thus contributing to evaluate both safety and efficacy of dietary and pharmacological agents. Copyright © 2012 UICC.

  17. Using human brain imaging studies as a guide towards animal models of schizophrenia

    PubMed Central

    BOLKAN, Scott S.; DE CARVALHO, Fernanda D.; KELLENDONK, Christoph

    2015-01-01

    Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points towards the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients. PMID:26037801

  18. Calling Chromosome Alterations, DNA Methylation Statuses, and Mutations in Tumors by Simple Targeted Next-Generation Sequencing: A Solution for Transferring Integrated Pangenomic Studies into Routine Practice?

    PubMed

    Garinet, Simon; Néou, Mario; de La Villéon, Bruno; Faillot, Simon; Sakat, Julien; Da Fonseca, Juliana P; Jouinot, Anne; Le Tourneau, Christophe; Kamal, Maud; Luscap-Rondof, Windy; Boeva, Valentina; Gaujoux, Sebastien; Vidaud, Michel; Pasmant, Eric; Letourneur, Franck; Bertherat, Jérôme; Assié, Guillaume

    2017-09-01

    Pangenomic studies identified distinct molecular classes for many cancers, with major clinical applications. However, routine use requires cost-effective assays. We assessed whether targeted next-generation sequencing (NGS) could call chromosomal alterations and DNA methylation status. A training set of 77 tumors and a validation set of 449 (43 tumor types) were analyzed by targeted NGS and single-nucleotide polymorphism (SNP) arrays. Thirty-two tumors were analyzed by NGS after bisulfite conversion, and compared to methylation array or methylation-specific multiplex ligation-dependent probe amplification. Considering allelic ratios, correlation was strong between targeted NGS and SNP arrays (r = 0.88). In contrast, considering DNA copy number, for variations of one DNA copy, correlation was weaker between read counts and SNP array (r = 0.49). Thus, we generated TARGOMICs, optimized for detecting chromosome alterations by combining allelic ratios and read counts generated by targeted NGS. Sensitivity for calling normal, lost, and gained chromosomes was 89%, 72%, and 31%, respectively. Specificity was 81%, 93%, and 98%, respectively. These results were confirmed in the validation set. Finally, TARGOMICs could efficiently align and compute proportions of methylated cytosines from bisulfite-converted DNA from targeted NGS. In conclusion, beyond calling mutations, targeted NGS efficiently calls chromosome alterations and methylation status in tumors. A single run and minor design/protocol adaptations are sufficient. Optimizing targeted NGS should expand translation of genomics to clinical routine. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  19. Towards Understanding Soil Forming in Santa Clotilde Critical Zone Observatory: Modelling Soil Mixing Processes in a Hillslope using Luminescence Techniques

    NASA Astrophysics Data System (ADS)

    Sanchez, A. R.; Laguna, A.; Reimann, T.; Giráldez, J. V.; Peña, A.; Wallinga, J.; Vanwalleghem, T.

    2017-12-01

    Different geomorphological processes such as bioturbation and erosion-deposition intervene in soil formation and landscape evolution. The latter processes produce the alteration and degradation of the materials that compose the rocks. The degree to which the bedrock is weathered is estimated through the fraction of the bedrock which is mixing in the soil either vertically or laterally. This study presents an analytical solution for the diffusion-advection equation to quantify bioturbation and erosion-depositions rates in profiles along a catena. The model is calibrated with age-depth data obtained from profiles using the luminescence dating based on single grain Infrared Stimulated Luminescence (IRSL). Luminescence techniques contribute to a direct measurement of the bioturbation and erosion-deposition processes. Single-grain IRSL techniques is applied to feldspar minerals of fifteen samples which were collected from four soil profiles at different depths along a catena in Santa Clotilde Critical Zone Observatory, Cordoba province, SE Spain. A sensitivity analysis is studied to know the importance of the parameters in the analytical model. An uncertainty analysis is carried out to stablish the better fit of the parameters to the measured age-depth data. The results indicate a diffusion constant at 20 cm in depth of 47 (mm2/year) in the hill-base profile and 4.8 (mm2/year) in the hilltop profile. The model has high uncertainty in the estimation of erosion and deposition rates. This study reveals the potential of luminescence single-grain techniques to quantify pedoturbation processes.

  20. Accurate Quantification of microRNA via Single Strand Displacement Reaction on DNA Origami Motif

    PubMed Central

    Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs. PMID:23990889

  1. Limitations on work and attendance rates after employees with cancer returned to work at a single manufacturing company in Japan.

    PubMed

    Ohguri, Takayuki; Narai, Rie; Funahashi, Atsushi; Nishiura, Chihiro; Yamashita, Tsuyoshi; Yarita, Keiichiro; Korogi, Yukunori

    2009-01-01

    The purpose of this study was to evaluate the work limitations and attendance rates after employees diagnosed with cancer returned to work from sick leave, and to identify the related factors for the limitations and attendance rates at a single manufacturing company in Japan. This study retrospectively analyzed 129 men and 4 women, employed in a single manufacturing industry, who returned to work after sick leave due to newly diagnosis of cancer. Limitations on work after the return to work were enforced in the workplace based on an industrial physician's evaluation. All the employees who needed measures for work were examined by the industrial physicians every 1-6 months until the termination of such work limitations. Limitations on work after the return to work were enforced for 79 (59%) employees (36 employees with alteration of work, 31 with prohibition of shift work and 55 with prohibition of overtime work). A higher degree of work limitations was significantly correlated with work-related factors before sick leave (i.e. shift work, production line) as well as disease/treatment-related factors (i.e. chemotherapy, recurrence/metastasis), while the attendance rates after the return to work were not correlated with adverse work-related factors before sick leave. The enforcement of work limitations for employees with cancer was relatively common and was based on both disease/treatment- and work-related factors, and this phenomenon may play an important role in the return to work as well as the successful continuation of work after cancer survivors return to work.

  2. Measurement and control of detailed electronic properties in a single molecule break junction.

    PubMed

    Wang, Kun; Hamill, Joseph; Zhou, Jianfeng; Guo, Cunlan; Xu, Bingqian

    2014-01-01

    The lack of detailed experimental controls has been one of the major obstacles hindering progress in molecular electronics. While large fluctuations have been occurring in the experimental data, specific details, related mechanisms, and data analysis techniques are in high demand to promote our physical understanding at the single-molecule level. A series of modulations we recently developed, based on traditional scanning probe microscopy break junctions (SPMBJs), have helped to discover significant properties in detail which are hidden in the contact interfaces of a single-molecule break junction (SMBJ). For example, in the past we have shown that the correlated force and conductance changes under the saw tooth modulation and stretch-hold mode of PZT movement revealed inherent differences in the contact geometries of a molecular junction. In this paper, using a bias-modulated SPMBJ and utilizing emerging data analysis techniques, we report on the measurement of the altered alignment of the HOMO of benzene molecules with changing the anchoring group which coupled the molecule to metal electrodes. Further calculations based on Landauer fitting and transition voltage spectroscopy (TVS) demonstrated the effects of modulated bias on the location of the frontier molecular orbitals. Understanding the alignment of the molecular orbitals with the Fermi level of the electrodes is essential for understanding the behaviour of SMBJs and for the future design of more complex devices. With these modulations and analysis techniques, fruitful information has been found about the nature of the metal-molecule junction, providing us insightful clues towards the next step for in-depth study.

  3. Radiation incident on tilted collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, P.J.

    1981-12-01

    For solar energy system design purposes, observations of solar radiation on a horizontal surface must be converted to values on a tilted energy collector. An empirical conversion relationship, introduced by Liu and Jordan (1960) and based on short-term data for a single station, and has been widely adopted throughout the nation. The spatial variations of the coefficients of this relationship and their stability with record length on North Carolina. Minor variations in coefficients result from changes in record length, but the differences have little impact on the design or performance of a solar energy system. Similarly, minor variations occur betweenmore » coastal and inland sites but are insufficient to alter system designs. Hence a single relationship is appropriate for the area investigated. These SOLMET results indicate a greater proportion of direct radiation for a given total horizontal radiation amount than do Collares-Pereira and Rabl (1979), who used short period records from a few widely scattered stations to refine the original national relationship. The difference may reflect variations in data quality or regional differences in atmospheric transmission characteristics.« less

  4. The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics.

    PubMed

    Menna-Barreto, Rubem Figueiredo Sadok; de Castro, Solange Lisboa

    2014-01-01

    The pathogenic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are the causative agents of African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. These diseases are considered to be neglected tropical illnesses that persist under conditions of poverty and are concentrated in impoverished populations in the developing world. Novel efficient and nontoxic drugs are urgently needed as substitutes for the currently limited chemotherapy. Trypanosomatids display a single mitochondrion with several peculiar features, such as the presence of different energetic and antioxidant enzymes and a specific arrangement of mitochondrial DNA (kinetoplast DNA). Due to mitochondrial differences between mammals and trypanosomatids, this organelle is an excellent candidate for drug intervention. Additionally, during trypanosomatids' life cycle, the shape and functional plasticity of their single mitochondrion undergo profound alterations, reflecting adaptation to different environments. In an uncoupling situation, the organelle produces high amounts of reactive oxygen species. However, these species role in parasite biology is still controversial, involving parasite death, cell signalling, or even proliferation. Novel perspectives on trypanosomatid-targeting chemotherapy could be developed based on better comprehension of mitochondrial oxidative regulation processes.

  5. Rapid in situ generation of two patterned chemoselective surface chemistries from a single hydroxy-terminated surface using controlled microfluidic oxidation.

    PubMed

    Pulsipher, Abigail; Westcott, Nathan P; Luo, Wei; Yousaf, Muhammad N

    2009-06-10

    In this work, we develop a new, rapid and inexpensive method to generate spatially controlled aldehyde and carboxylic acid surface groups by microfluidic oxidation of 11-hydroxyundecylphosphonic acid self-assembled monolayers (SAMs) on indium tin oxide (ITO) surfaces. SAMs are activated and patterned using a reversibly sealable, elastomeric polydimethylsiloxane cassette, fabricated with preformed micropatterns by soft lithography. By flowing the mild oxidant pyridinium chlorochromate through the microchannels, only selected areas of the SAM are chemically altered. This microfluidic oxidation strategy allows for ligand immobilization by two chemistries originating from a single SAM composition. ITO is robust, conductive, and transparent, making it an ideal platform for studying interfacial interactions. We display spatial control over the immobilization of a variety of ligands on ITO and characterize the resulting oxime and amide linkages by electrochemistry, X-ray photoelectron spectroscopy, contact angle, fluorescence microscopy, and atomic force microscopy. This general method may be used with many other materials to rapidly generate patterned and tailored surfaces for studies ranging from molecular electronics to biospecific cell-based assays and biomolecular microarrays.

  6. Toxicity of an α-Pore-forming Toxin Depends on the Assembly Mechanism on the Target Membrane as Revealed by Single Molecule Imaging*

    PubMed Central

    Subburaj, Yamunadevi; Ros, Uris; Hermann, Eduard; Tong, Rudi; García-Sáez, Ana J.

    2015-01-01

    α-Pore-forming toxins (α-PFTs) are ubiquitous defense tools that kill cells by opening pores in the target cell membrane. Despite their relevance in host/pathogen interactions, very little is known about the pore stoichiometry and assembly pathway leading to membrane permeabilization. Equinatoxin II (EqtII) is a model α-PFT from sea anemone that oligomerizes and forms pores in sphingomyelin-containing membranes. Here, we determined the spatiotemporal organization of EqtII in living cells by single molecule imaging. Surprisingly, we found that on the cell surface EqtII did not organize into a unique oligomeric form. Instead, it existed as a mixture of oligomeric species mostly including monomers, dimers, tetramers, and hexamers. Mathematical modeling based on our data supported a new model in which toxin clustering happened in seconds and proceeded via condensation of EqtII dimer units formed upon monomer association. Furthermore, altering the pathway of EqtII assembly strongly affected its toxic activity, which highlights the relevance of the assembly mechanism on toxicity. PMID:25525270

  7. The initial establishment and epithelial morphogenesis of the esophagus: a new model of tracheal–esophageal separation and transition of simple columnar into stratified squamous epithelium in the developing esophagus

    PubMed Central

    Que, Jianwen

    2016-01-01

    The esophagus and trachea are tubular organs that initially share a single common lumen in the anterior foregut. Several models have been proposed to explain how this single-lumen developmental intermediate generates two tubular organs. However, new evidence suggests that these models are not comprehensive. I will first briefly review these models and then propose a novel ‘splitting and extension’ model based on our in vitro modeling of the foregut separation process. Signaling molecules (e.g., SHHs, WNTs, BMPs) and transcription factors (e.g., NKX2.1 and SOX2) are critical for the separation of the foregut. Intriguingly, some of these molecules continue to play essential roles during the transition of simple columnar into stratified squamous epithelium in the developing esophagus, and they are also closely involved in epithelial maintenance in the adults. Alterations in the levels of these molecules have been associated with the initiation and progression of several esophageal diseases and cancer in adults. PMID:25727889

  8. Single nucleotide polymorphism array karyotyping: a diagnostic and prognostic tool in myelodysplastic syndromes with unsuccessful conventional cytogenetic testing.

    PubMed

    Arenillas, Leonor; Mallo, Mar; Ramos, Fernando; Guinta, Kathryn; Barragán, Eva; Lumbreras, Eva; Larráyoz, María-José; De Paz, Raquel; Tormo, Mar; Abáigar, María; Pedro, Carme; Cervera, José; Such, Esperanza; José Calasanz, María; Díez-Campelo, María; Sanz, Guillermo F; Hernández, Jesús María; Luño, Elisa; Saumell, Sílvia; Maciejewski, Jaroslaw; Florensa, Lourdes; Solé, Francesc

    2013-12-01

    Cytogenetic aberrations identified by metaphase cytogenetics (MC) have diagnostic, prognostic, and therapeutic implications in myelodysplastic syndromes (MDS). However, in some MDS patients MC study is unsuccesful. Single nucleotide polymorphism array (SNP-A) based karyotyping could be helpful in these cases. We performed SNP-A in 62 samples from bone marrow or peripheral blood of primary MDS with an unsuccessful MC study. SNP-A analysis enabled the detection of aberrations in 31 (50%) patients. We used the copy number alteration information to apply the International Prognostic Scoring System (IPSS) and we observed differences in survival between the low/intermediate-1 and intermediate-2/high risk patients. We also saw differences in survival between very low/low/intermediate and the high/very high patients when we applied the revised IPSS (IPSS-R). In conclusion, SNP-A can be used successfully in PB samples and the identification of CNA by SNP-A improve the diagnostic and prognostic evaluation of this group of MDS patients. Copyright © 2013 Wiley Periodicals, Inc.

  9. Single-domain epitaxial silicene on diboride thin films

    DOE PAGES

    Fleurence, A.; Gill, T. G.; Friedlein, R.; ...

    2016-04-12

    Epitaxial silicene, which forms spontaneously on ZrB 2(0001) thin films grown on Si(111) wafers, has a periodic stripe domain structure. By adsorbing additional Si atoms on this surface, we find that the domain boundaries vanish, and a single-domain silicene sheet can be prepared without altering its buckled honeycomb structure. The amount of Si required to induce this change suggests that the domain boundaries are made of a local distortion of the silicene honeycomb lattice. LastlThe realization of a single domain sheet with structural and electronic properties close to those of the original striped state demonstrates the high structural flexibility ofmore » silicene.« less

  10. The relative effects on math performance of single- versus multiple-ratio schedules: a case study1

    PubMed Central

    Lovitt, Tom C.; Esveldt, Karen A.

    1970-01-01

    This series of four experiments sought to assess the comparative effects of multiple- versus single-ratio schedules on a pupil's responding to mathematics materials. Experiment I, which alternated between single- and multiple-ratio contingencies, revealed that during the latter phase the subject responded at a higher rate. Similar findings were revealed by Exp. II. The third experiment, which manipulated frequency of reinforcement rather than multiple ratios, revealed that the alteration had a minimal effect on the subject's response rate. A final experiment, conducted to assess further the effects of multiple ratios, provided data similar to those of Exp. I and II. PMID:16795267

  11. Single-domain epitaxial silicene on diboride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleurence, A., E-mail: antoine@jaist.ac.jp; Friedlein, R.; Aoyagi, K.

    2016-04-11

    Epitaxial silicene, which forms spontaneously on ZrB{sub 2}(0001) thin films grown on Si(111) wafers, has a periodic stripe domain structure. By adsorbing additional Si atoms on this surface, we find that the domain boundaries vanish, and a single-domain silicene sheet can be prepared without altering its buckled honeycomb structure. The amount of Si required to induce this change suggests that the domain boundaries are made of a local distortion of the silicene honeycomb lattice. The realization of a single domain sheet with structural and electronic properties close to those of the original striped state demonstrates the high structural flexibility ofmore » silicene.« less

  12. APPLICATION OF GENOMICS TO REPRODUCTIVE TOXICOLOGY: WORKING FROM RESEARCH TOWARDS RISK ASSESSMENT

    EPA Science Inventory

    Genomic technologies are available to examine the expression of thousands of genes simultaneously. These technologies represent a paradigm shift from single-gene approaches fundamentally altering the practice of toxicology. The goal of toxicogenomic studies is to improve human ...

  13. Identification of differentially methylated sites with weak methylation effect

    USDA-ARS?s Scientific Manuscript database

    DNA methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect dif...

  14. Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W

    PubMed Central

    Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Qiu, Jianrong; Chen, Danping

    2015-01-01

    Single-mode ytterbium-doped phosphate all-solid photonic crystal fiber (AS-PCF) with 13.8 W output power and 32% slope efficiency was reported. By altering the diameter of the rods around the doped core and thus breaking the symmetry of the fiber, a polarization-maintaining AS-PCF with degree of polarization of >85% was also achieved, for the first time to knowledge, in a phosphate PCF. PMID:25684731

  15. Absolute Paleointensity Techniques: Developments in the Last 10 Years (Invited)

    NASA Astrophysics Data System (ADS)

    Bowles, J. A.; Brown, M. C.

    2009-12-01

    The ability to determine variations in absolute intensity of the Earth’s paleomagnetic field has greatly enhanced our understanding of geodynamo processes, including secular variation and field reversals. Igneous rocks and baked clay artifacts that carry a thermal remanence (TRM) have allowed us to study field variations over timescales ranging from decades to billions of years. All absolute paleointensity techniques are fundamentally based on repeating the natural process by which the sample acquired its magnetization, i.e. a laboratory TRM is acquired in a controlled field, and the ratio of the natural TRM to that acquired in the laboratory is directly proportional to the ancient field. Techniques for recovering paleointensity have evolved since the 1930s from relatively unsophisticated (but revolutionary for their time) single step remagnetizations to the various complicated, multi-step procedures in use today. These procedures can be broadly grouped into two categories: 1) “Thellier-type” experiments that step-wise heat samples at a series of temperatures up to the maximum unblocking temperature of the sample, progressively removing the natural remanence (NRM) and acquiring a laboratory-induced TRM; and 2) “Shaw-type” experiments that combine alternating field demagnetization of the NRM and laboratory TRM with a single heating to a temperature above the sample’s Curie temperature, acquiring a total TRM in one step. Many modifications to these techniques have been developed over the years with the goal of identifying and/or accommodating non-ideal behavior, such as alteration and multi-domain (MD) remanence, which may lead to inaccurate paleofield estimates. From a technological standpoint, perhaps the most significant development in the last decade is the use of microwave (de)magnetization in both Thellier-type and Shaw-type experiments. By using microwaves to directly generate spin waves within the magnetic grains (rather than using phonons generated by heating, which then exchange energy with the magnetic system), a TRM can be acquired with minimal heating of the bulk sample, thus potentially minimizing sample alteration. The theory of TRM acquisition is best developed for single-domain (SD) grains, and most paleointensity techniques are predicated on the assumption that the remanence is carried predominantly by SD material. Because the vast majority of geological materials are characterized by a larger magnetic grain size, efforts to expand paleointensity studies over the past decade have focused on developing TRM theories and paleointensity methods for pseudo-single-domain (PSD) and MD samples. Other workers have been exploring the potential of SD materials that were not traditionally used in paleointensity studies, such as ash flow tuffs, submarine basaltic glass, and single silicate crystals with magnetite inclusions. The latter has the potential to shed light on early Earth processes, given that the fine-grained inclusions may be resistant to alteration over long time scales. We will review the major paleointensity techniques in use today, with special attention paid to the advantages and disadvantages of each. Techniques will be illustrated with examples highlighting new paleointensity applications to geologic processes at a variety of timescales.

  16. TLR9 Polymorphisms Are Associated with Altered IFN-γ Levels in Children with Cerebral Malaria

    PubMed Central

    Sam-Agudu, Nadia A.; Greene, Jennifer A.; Opoka, Robert O.; Kazura, James W.; Boivin, Michael J.; Zimmerman, Peter A.; Riedesel, Melissa A.; Bergemann, Tracy L.; Schimmenti, Lisa A.; John, Chandy C.

    2010-01-01

    Toll-like receptor (TLR) polymorphisms have been associated with disease severity in malaria infection, but mechanisms for this association have not been characterized. The TLR2, 4, and 9 single nucleotide polymorphism (SNP) frequencies and serum interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) levels were assessed in Ugandan children with cerebral malaria (CM, N = 65) and uncomplicated malaria (UM, N = 52). The TLR9 C allele at −1237 and G allele at 1174 were strongly linked, and among children with CM, those with the C allele at −1237 or the G allele at 1174 had higher levels of IFN-γ than those without these alleles (P = 0.03 and 0.008, respectively). The TLR9 SNPs were not associated with altered IFN-γ levels in children with UM or altered TNF-α levels in either group. We present the first human data that TLR SNPs are associated with altered cytokine production in parasitic infection. PMID:20348497

  17. Altered Neuronal and Circuit Excitability in Fragile X Syndrome.

    PubMed

    Contractor, Anis; Klyachko, Vitaly A; Portera-Cailliau, Carlos

    2015-08-19

    Fragile X syndrome (FXS) results from a genetic mutation in a single gene yet produces a phenotypically complex disorder with a range of neurological and psychiatric problems. Efforts to decipher how perturbations in signaling pathways lead to the myriad alterations in synaptic and cellular functions have provided insights into the molecular underpinnings of this disorder. From this large body of data, the theme of circuit hyperexcitability has emerged as a potential explanation for many of the neurological and psychiatric symptoms in FXS. The mechanisms for hyperexcitability range from alterations in the expression or activity of ion channels to changes in neurotransmitters and receptors. Contributions of these processes are often brain region and cell type specific, resulting in complex effects on circuit function that manifest as altered excitability. Here, we review the current state of knowledge of the molecular, synaptic, and circuit-level mechanisms underlying hyperexcitability and their contributions to the FXS phenotypes. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma

    PubMed Central

    Jones, David T.W.; Hutter, Barbara; Jäger, Natalie; Korshunov, Andrey; Kool, Marcel; Warnatz, Hans-Jörg; Zichner, Thomas; Lambert, Sally R.; Ryzhova, Marina; Quang, Dong Anh Khuong; Fontebasso, Adam M.; Stütz, Adrian M.; Hutter, Sonja; Zuckermann, Marc; Sturm, Dominik; Gronych, Jan; Lasitschka, Bärbel; Schmidt, Sabine; Şeker-Cin, Huriye; Witt, Hendrik; Sultan, Marc; Ralser, Meryem; Northcott, Paul A.; Hovestadt, Volker; Bender, Sebastian; Pfaff, Elke; Stark, Sebastian; Faury, Damien; Schwartzentruber, Jeremy; Majewski, Jacek; Weber, Ursula D.; Zapatka, Marc; Raeder, Benjamin; Schlesner, Matthias; Worth, Catherine L.; Bartholomae, Cynthia C.; von Kalle, Christof; Imbusch, Charles D.; Radomski, Sylwester; Lawerenz, Chris; van Sluis, Peter; Koster, Jan; Volckmann, Richard; Versteeg, Rogier; Lehrach, Hans; Monoranu, Camelia; Winkler, Beate; Unterberg, Andreas; Herold-Mende, Christel; Milde, Till; Kulozik, Andreas E.; Ebinger, Martin; Schuhmann, Martin U.; Cho, Yoon-Jae; Pomeroy, Scott L.; von Deimling, Andreas; Witt, Olaf; Taylor, Michael D.; Wolf, Stephan; Karajannis, Matthias A.; Eberhart, Charles G.; Scheurlen, Wolfram; Hasselblatt, Martin; Ligon, Keith L.; Kieran, Mark W.; Korbel, Jan O.; Yaspo, Marie-Laure; Brors, Benedikt; Felsberg, Jörg; Reifenberger, Guido; Collins, V. Peter; Jabado, Nada; Eils, Roland; Lichter, Peter; Pfister, Stefan M.

    2014-01-01

    Pilocytic astrocytoma, the most common childhood brain tumor1, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations2. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression3 and often becoming a chronic disease with substantial morbidities4. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n=73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and novel NTRK2 fusion genes in non-cerebellar tumors. New BRAF activating changes were also observed. MAPK pathway alterations affected 100% of tumors analyzed, with no other significant mutations, indicating pilocytic astrocytoma as predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in NF15. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma. PMID:23817572

  19. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes

    PubMed Central

    Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo

    2016-01-01

    Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941

  20. Connectivity-based parcellation reveals distinct cortico-striatal connectivity fingerprints in Autism Spectrum Disorder.

    PubMed

    Balsters, Joshua H; Mantini, Dante; Wenderoth, Nicole

    2018-04-15

    Autism Spectrum Disorder (ASD) has been associated with abnormal synaptic development causing a breakdown in functional connectivity. However, when measured at the macro scale using resting state fMRI, these alterations are subtle and often difficult to detect due to the large heterogeneity of the pathology. Recently, we outlined a novel approach for generating robust biomarkers of resting state functional magnetic resonance imaging (RS-fMRI) using connectivity based parcellation of gross morphological structures to improve single-subject reproducibility and generate more robust connectivity fingerprints. Here we apply this novel approach to investigating the organization and connectivity strength of the cortico-striatal system in a large sample of ASD individuals and typically developed (TD) controls (N=130 per group). Our results showed differences in the parcellation of the striatum in ASD. Specifically, the putamen was found to be one single structure in ASD, whereas this was split into anterior and posterior segments in an age, IQ, and head movement matched TD group. An analysis of the connectivity fingerprints revealed that the group differences in clustering were driven by differential connectivity between striatum and the supplementary motor area, posterior cingulate cortex, and posterior insula. Our approach for analysing RS-fMRI in clinical populations has provided clear evidence that cortico-striatal circuits are organized differently in ASD. Based on previous task-based segmentations of the striatum, we believe that the anterior putamen cluster present in TD, but not in ASD, likely contributes to social and language processes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Real-time CT-video registration for continuous endoscopic guidance

    NASA Astrophysics Data System (ADS)

    Merritt, Scott A.; Rai, Lav; Higgins, William E.

    2006-03-01

    Previous research has shown that CT-image-based guidance could be useful for the bronchoscopic assessment of lung cancer. This research drew upon the registration of bronchoscopic video images to CT-based endoluminal renderings of the airway tree. The proposed methods either were restricted to discrete single-frame registration, which took several seconds to complete, or required non-real-time buffering and processing of video sequences. We have devised a fast 2D/3D image registration method that performs single-frame CT-Video registration in under 1/15th of a second. This allows the method to be used for real-time registration at full video frame rates without significantly altering the physician's behavior. The method achieves its speed through a gradient-based optimization method that allows most of the computation to be performed off-line. During live registration, the optimization iteratively steps toward the locally optimal viewpoint at which a CT-based endoluminal view is most similar to a current bronchoscopic video frame. After an initial registration to begin the process (generally done in the trachea for bronchoscopy), subsequent registrations are performed in real-time on each incoming video frame. As each new bronchoscopic video frame becomes available, the current optimization is initialized using the previous frame's optimization result, allowing continuous guidance to proceed without manual re-initialization. Tests were performed using both synthetic and pre-recorded bronchoscopic video. The results show that the method is robust to initialization errors, that registration accuracy is high, and that continuous registration can proceed on real-time video at >15 frames per sec. with minimal user-intervention.

  2. Cooperative genomic alteration network reveals molecular classification across 12 major cancer types

    PubMed Central

    Zhang, Hongyi; Deng, Yulan; Zhang, Yong; Ping, Yanyan; Zhao, Hongying; Pang, Lin; Zhang, Xinxin; Wang, Li; Xu, Chaohan; Xiao, Yun; Li, Xia

    2017-01-01

    The accumulation of somatic genomic alterations that enables cells to gradually acquire growth advantage contributes to tumor development. This has the important implication of the widespread existence of cooperative genomic alterations in the accumulation process. Here, we proposed a computational method HCOC that simultaneously consider genetic context and downstream functional effects on cancer hallmarks to uncover somatic cooperative events in human cancers. Applying our method to 12 TCGA cancer types, we totally identified 1199 cooperative events with high heterogeneity across human cancers, and then constructed a pan-cancer cooperative alteration network. These cooperative events are associated with genomic alterations of some high-confident cancer drivers, and can trigger the dysfunction of hallmark associated pathways in a co-defect way rather than single alterations. We found that these cooperative events can be used to produce a prognostic classification that can provide complementary information with tissue-of-origin. In a further case study of glioblastoma, using 23 cooperative events identified, we stratified patients into molecularly relevant subtypes with a prognostic significance independent of the Glioma-CpG Island Methylator Phenotype (GCIMP). In summary, our method can be effectively used to discover cancer-driving cooperative events that can be valuable clinical markers for patient stratification. PMID:27899621

  3. Chloroquine uptake, altered partitioning and the basis of drug resistance: evidence for chloride-dependent ionic regulation.

    PubMed

    Martiney, J A; Ferrer, A S; Cerami, A; Dzekunov, S; Roepe, P

    1999-01-01

    The biochemical mechanism of chloroquine resistance in Plasmodium falciparum remains unknown. We postulated that chloroquine-resistant strains could alter ion fluxes that then indirectly control drug accumulation within the parasite by affecting pH and/or membrane potential ('altered partitioning mechanism'). Two principal intracellular pH-regulating systems in many cell types are the amiloride-sensitive Na+/H+ exchanger (NHE), and the sodium-independent, stilbene-sensitive Cl-/HCO3- antiporter (AE). We report that under physiological conditions (balanced CO2 and HCO3-) chloroquine uptake and susceptibility are not altered by amiloride analogues. We also do not detect a significant difference in NHE activity between chloroquine-sensitive and chloroquine-resistant strains via single cell photometry methods. AE activity is dependent on the intracellular and extracellular concentrations of Cl- and HCO3- ions. Chloroquine-resistant strains differentially respond to experimental modifications in chloride-dependent homeostasis, including growth, cytoplasmic pH and pH regulation. Chloroquine susceptibility is altered by stilbene DIDS only on chloroquine-resistant strains. Our results suggest that a Cl(-)-dependent system (perhaps AE) has a significant effect on the uptake of chloroquine by the infected erythrocyte, and that alterations of this biophysical parameter may be part of the mechanism of chloroquine resistance in P. falciparum.

  4. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly

    PubMed Central

    Schneider, Valerie A.; Graves-Lindsay, Tina; Howe, Kerstin; Bouk, Nathan; Chen, Hsiu-Chuan; Kitts, Paul A.; Murphy, Terence D.; Pruitt, Kim D.; Thibaud-Nissen, Françoise; Albracht, Derek; Fulton, Robert S.; Kremitzki, Milinn; Magrini, Vincent; Markovic, Chris; McGrath, Sean; Steinberg, Karyn Meltz; Auger, Kate; Chow, William; Collins, Joanna; Harden, Glenn; Hubbard, Timothy; Pelan, Sarah; Simpson, Jared T.; Threadgold, Glen; Torrance, James; Wood, Jonathan M.; Clarke, Laura; Koren, Sergey; Boitano, Matthew; Peluso, Paul; Li, Heng; Chin, Chen-Shan; Phillippy, Adam M.; Durbin, Richard; Wilson, Richard K.; Flicek, Paul; Eichler, Evan E.; Church, Deanna M.

    2017-01-01

    The human reference genome assembly plays a central role in nearly all aspects of today's basic and clinical research. GRCh38 is the first coordinate-changing assembly update since 2009; it reflects the resolution of roughly 1000 issues and encompasses modifications ranging from thousands of single base changes to megabase-scale path reorganizations, gap closures, and localization of previously orphaned sequences. We developed a new approach to sequence generation for targeted base updates and used data from new genome mapping technologies and single haplotype resources to identify and resolve larger assembly issues. For the first time, the reference assembly contains sequence-based representations for the centromeres. We also expanded the number of alternate loci to create a reference that provides a more robust representation of human population variation. We demonstrate that the updates render the reference an improved annotation substrate, alter read alignments in unchanged regions, and impact variant interpretation at clinically relevant loci. We additionally evaluated a collection of new de novo long-read haploid assemblies and conclude that although the new assemblies compare favorably to the reference with respect to continuity, error rate, and gene completeness, the reference still provides the best representation for complex genomic regions and coding sequences. We assert that the collected updates in GRCh38 make the newer assembly a more robust substrate for comprehensive analyses that will promote our understanding of human biology and advance our efforts to improve health. PMID:28396521

  5. Anti-spoof touchless 3D fingerprint recognition system using single shot fringe projection and biospeckle analysis

    NASA Astrophysics Data System (ADS)

    Chatterjee, Amit; Bhatia, Vimal; Prakash, Shashi

    2017-08-01

    Fingerprint is a unique, un-alterable and easily collected biometric of a human being. Although it is a 3D biological characteristic, traditional methods are designed to provide only a 2D image. This touch based mapping of 3D shape to 2D image losses information and leads to nonlinear distortions. Moreover, as only topographic details are captured, conventional systems are potentially vulnerable to spoofing materials (e.g. artificial fingers, dead fingers, false prints, etc.). In this work, we demonstrate an anti-spoof touchless 3D fingerprint detection system using a combination of single shot fringe projection and biospeckle analysis. For fingerprint detection using fringe projection, light from a low power LED source illuminates a finger through a sinusoidal grating. The fringe pattern modulated because of features on the fingertip is captured using a CCD camera. Fourier transform method based frequency filtering is used for the reconstruction of 3D fingerprint from the captured fringe pattern. In the next step, for spoof detection using biospeckle analysis a visuo-numeric algorithm based on modified structural function and non-normalized histogram is proposed. High activity biospeckle patterns are generated because of interaction of collimated laser light with internal fluid flow of the real finger sample. This activity reduces abruptly in case of layered fake prints, and is almost absent in dead or fake fingers. Furthermore, the proposed setup is fast, low-cost, involves non-mechanical scanning and is highly stable.

  6. Genome constraint through sexual reproduction: application of 4D-Genomics in reproductive biology.

    PubMed

    Horne, Steven D; Abdallah, Batoul Y; Stevens, Joshua B; Liu, Guo; Ye, Karen J; Bremer, Steven W; Heng, Henry H Q

    2013-06-01

    Assisted reproductive technologies have been used to achieve pregnancies since the first successful test tube baby was born in 1978. Infertile couples are at an increased risk for multiple miscarriages and the application of current protocols are associated with high first-trimester miscarriage rates. Among the contributing factors of these higher rates is a high incidence of fetal aneuploidy. Numerous studies support that protocols including ovulation-induction, sperm cryostorage, density-gradient centrifugation, and embryo culture can induce genome instability, but the general mechanism is less clear. Application of the genome theory and 4D-Genomics recently led to the establishment of a new paradigm for sexual reproduction; sex primarily constrains genome integrity that defines the biological system rather than just providing genetic diversity at the gene level. We therefore propose that application of assisted reproductive technologies can bypass this sexual reproduction filter as well as potentially induce additional system instability. We have previously demonstrated that a single-cell resolution genomic approach, such as spectral karyotyping to trace stochastic genome level alterations, is effective for pre- and post-natal analysis. We propose that monitoring overall genome alteration at the karyotype level alongside the application of assisted reproductive technologies will improve the efficacy of the techniques while limiting stress-induced genome instability. The development of more single-cell based cytogenomic technologies are needed in order to better understand the system dynamics associated with infertility and the potential impact that assisted reproductive technologies have on genome instability. Importantly, this approach will be useful in studying the potential for diseases to arise as a result of bypassing the filter of sexual reproduction.

  7. A Potential Yeast Actin Allosteric Conduit Dependent on Hydrophobic Core Residues Val-76 and Trp-79*

    PubMed Central

    Wen, Kuo-Kuang; McKane, Melissa; Stokasimov, Ema; Fields, Jonathon; Rubenstein, Peter A.

    2010-01-01

    Intramolecular allosteric interactions responsible for actin conformational regulation are largely unknown. Previous work demonstrated that replacing yeast actin Val-76 with muscle actin Ile caused decreased nucleotide exchange. Residue 76 abuts Trp-79 in a six-residue linear array beginning with Lys-118 on the surface and ending with His-73 in the nucleotide cleft. To test if altering the degree of packing of these two residues would affect actin dynamics, we constructed V76I, W79F, and W79Y single mutants as well as the Ile-76/Phe-79 and Ile-76/Tyr-79 double mutants. Tyr or Phe should decrease crowding and increase protein flexibility. Subsequent introduction of Ile should restore packing and dampen changes. All mutants showed decreased growth in liquid medium. W79Y alone was severely osmosensitive and exhibited vacuole abnormalities. Both properties were rescued by Ile-76. Phe-79 or Tyr decreased the thermostability of actin and increased its nucleotide exchange rate. These effects, generally greater for Tyr than for Phe, were reversed by introduction of Ile-76. HD exchange showed that the mutations caused propagated conformational changes to all four subdomains. Based on results from phosphate release and light-scattering assays, single mutations affected polymerization in the order of Ile, Phe, and Tyr from least to most. Introduction of Ile-76 partially rescued the polymerization defects caused by either Tyr-79 or Phe-79. Thus, alterations in crowding of the 76–79 residue pair can strongly affect actin conformation and behavior, and these results support the theory that the amino acid array in which they are located may play a central role in actin regulation. PMID:20442407

  8. Performance of hybrid and single-frequency impulse GPR antennas on USGA sporting greens

    USDA-ARS?s Scientific Manuscript database

    The utility of employing ground-penetrating radar (GPR) technologies for environmental surveys can vary, depending upon the physical properties of the site. Environmental conditions can fluctuate, altering soil properties. Operator proficiency and survey methodology will also influence GPR findings....

  9. Pulmonary and Hematological Effects in Rats Following a Single Inhalation Exposure to Ce02 Nanoparticles

    EPA Science Inventory

    Engineered nanomaterials have unknown environmental and health implications due to their novel properties and/or by-products associated with their applications. Combustion studies have shown nanoCe-enabled fuel additives alter the physicochemical properties of diesel emissions (D...

  10. Shared Governance and Regional Accreditation: Institutional Processes and Perceptions

    ERIC Educational Resources Information Center

    McGrane, Wendy L.

    2013-01-01

    This qualitative single-case research study was conducted to gain deeper understanding of the institutional processes to address shared governance accreditation criteria and to determine whether institutional processes altered stakeholder perceptions of shared governance. The data collection strategies were archival records and personal…

  11. Photochemically Altered Air Pollution Mixtures and Contractile Parameters in Isolated Murine Hearts before and after Ischemia.

    EPA Science Inventory

    Background: Epidemiological and toxicological studies support a causative link between ambient air pollution exposure and increased cardiovascular morbidity and mortality. While the adverse health effects of single pollutants are documented, little is known of the health effects...

  12. Spermatozoa quality assessment: a combined holographic and Raman microscopy approach

    NASA Astrophysics Data System (ADS)

    De Angelis, Annalisa; Ferrara, Maria A.; Di Caprio, Giuseppe; Managò, Stefano; Sirleto, Luigi; Coppola, Giuseppe; De Luca, Anna Chiara

    2015-05-01

    Semen analysis is widely used as diagnostic tool for assessing male fertility, controlling and managing the animal reproduction. The most important parameters measured in a semen analysis are the morphology and biochemical alterations. For obtaining such information, non-invasive, label-free and non-destructive techniques have to be used. Digital Holography (DH) combined with Raman Spectroscopy (RS) could represent the perfect candidate for a rapid, non-destructive and high-sensitive morphological and biochemical sperm cell analysis. In this study, DH-RS combined approach is used for a complete analysis of single bovine spermatozoa. High-resolution images of bovine sperm have been obtained by DH microscopy from the reconstruction of a single acquired hologram, highlighting in some cases morphological alterations. Quantitative 3D reconstructions of sperm head, both normal and anomalous, have been studied and an unexpected structure of the post-acrosomal region of the head has been detected. Such anomalies have been also confirmed by Raman imaging analysis, suggesting the protein vibrations as associated Raman marker of the defect.

  13. Val66Met Polymorphism of BDNF Alters Prodomain Structure to Induce Neuronal Growth Cone Retraction

    PubMed Central

    Anastasia, Agustin; Deinhardt, Katrin; Chao, Moses V.; Will, Nathan E.; Irmady, Krithi; Lee, Francis S.; Hempstead, Barbara L.; Bracken, Clay

    2013-01-01

    A common single-nucleotide polymorphism in the human brain-derived neurotrophic factor (BDNF) gene results in a Val66Met substitution in the BDNF prodomain region. This single-nucleotide polymorphism is associated with alterations in memory and with enhanced risk to develop depression and anxiety disorders in humans. Here we show that the isolated BDNF prodomain is detected in the hippocampus and that it can be secreted from neurons in an activity-dependent manner. Using nuclear magnetic resonance spectroscopy and circular dichroism we find that the prodomain is intrinsically disordered, and the Val66Met substitution induces structural changes. Surprisingly, application of Met66 (but not Val66) BDNF prodomain induces acute growth cone retraction and a decrease in Rac activity in hippocampal neurons. Expression of p75NTR and differential engagement of the Met66 prodomain to the SorCS2 receptor are required for this effect. These results identify the Met66 prodomain as a new active ligand which modulates neuronal morphology. PMID:24048383

  14. Mapping Brain Metals to Evaluate Therapies for Neurodegenerative Disease

    PubMed Central

    Popescu, Bogdan Florin Gh; Nichol, Helen

    2013-01-01

    The brain is rich in metals and has a high metabolic rate, making it acutely vulnerable to the toxic effects of endogenously produced free radicals. The abundant metals, iron and copper, transfer single electrons as they cycle between their reduced (Fe2+, Cu1+) and oxidized (Fe3+, Cu2+) states making them powerful catalysts of reactive oxygen species (ROS) production. Even redox inert zinc, if present in excess, can trigger ROS production indirectly by altering mitochondrial function. While metal chelators seem to improve the clinical outcome of several neurodegenerative diseases, their mechanisms of action remain obscure and the effects of long-term use are largely unknown. Most chelators are not specific to a single metal and could alter the distribution of multiple metals in the brain, leading to unexpected consequences over the long-term. We show here how X-ray fluorescence will be a valuable tool to examine the effect of chelators on the distribution and amount of metals in the brain. PMID:20553312

  15. Motion in partially and fully cross-linked F-actin networks

    NASA Astrophysics Data System (ADS)

    Morris, Eliza; Ehrlicher, Allen; Weitz, David

    2012-02-01

    Single molecule experiments have measured stall forces and procession rates of molecular motors on isolated cytoskeletal fibers in Newtonian fluids. But in the cell, these motors are transporting cargo through a highly complex cytoskeletal network. To compare these single molecule results to the forces exerted by motors within the cell, an evaluation of the response of the cytoskeletal network is needed. Using magnetic tweezers and fluorescence confocal microscopy we observe and quantify the relationship between bead motion and filament response in F-actin networks both partially and fully cross-linked with filamin We find that when the transition from full to partial cross-linking is brought about by a decrease in cross-linker concentration there is a simultaneous decline in the elasticity of the network, but the response of the bead remains qualitatively similar. However, when the cross-linking is reduced through a shortening of the F-actin filaments the bead response is completely altered. The characteristics of the altered bead response will be discussed here.

  16. CHARACTERIZATION OF SANDSTONE RESERVOIRS FOR ENHANCED OIL RECOVERY: THE PERMIAN UPPER MINNELUSA FORMATION, POWDER RIVER BASIN, WYOMING.

    USGS Publications Warehouse

    Schenk, C.J.; Schmoker, J.W.; Scheffler, J.M.

    1986-01-01

    Upper Minnelusa sandstones form a complex group of reservoirs because of variations in regional setting, sedimentology, and diagenetic alteration. Structural lineaments separate the reservoirs into northern and southern zones. Production in the north is from a single pay sand, and in the south from multi-pay sands due to differential erosion on top of the Upper Minnelusa. The intercalation of eolian dune, interdune, and sabkha sandstones with marine sandstones, carbonates, and anhydrites results in significant reservoir heterogeneity. Diagenetic alterations further enhance heterogeneity, because the degree of cementation and dissolution is partly facies-related.

  17. Behavioral effects of ketamine and toxic interactions with psychostimulants

    PubMed Central

    Hayase, Tamaki; Yamamoto, Yoshiko; Yamamoto, Keiichi

    2006-01-01

    Background The anesthetic drug ketamine (KT) has been reported to be an abused drug and fatal cases have been observed in polydrug users. In the present study, considering the possibility of KT-enhanced toxic effects of other drugs, and KT-induced promotion of an overdose without making the subject aware of the danger due to the attenuation of several painful subjective symptoms, the intraperitoneal (i.p.) KT-induced alterations in behaviors and toxic interactions with popular co-abused drugs, the psychostimulants cocaine (COC) and methamphetamine (MA), were examined in ICR mice. Results A single dose of KT caused hyperlocomotion in a low (30 mg/kg, i.p.) dose group, and hypolocomotion followed by hyperlocomotion in a high (100 mg/kg, i.p.) dose group. However, no behavioral alterations derived from enhanced stress-related depression or anxiety were observed in the forced swimming or the elevated plus-maze test. A single non-fatal dose of COC (30 mg/kg, i.p.) or MA (4 mg/kg, i.p.) caused hyperlocomotion, stress-related depression in swimming behaviors in the forced swimming test, and anxiety-related behavioral changes (preference for closed arms) in the elevated plus-maze test. For the COC (30 mg/kg) or MA (4 mg/kg) groups of mice simultaneously co-treated with KT, the psychostimulant-induced hyperlocomotion was suppressed by the high dose KT, and the psychostimulant-induced behavioral alterations in the above tests were reversed by both low and high doses of KT. For the toxic dose COC (70 mg/kg, i.p.)- or MA (15 mg/kg, i.p.)-only group, mortality and severe seizures were observed in some animals. In the toxic dose psychostimulant-KT groups, KT attenuated the severity of seizures dose-dependently. Nevertheless, the mortality rate was significantly increased by co-treatment with the high dose KT. Conclusion Our results demonstrated that, in spite of the absence of stress-related depressive and anxiety-related behavioral alterations following a single dose of KT treatment, and in spite of the KT-induced anticonvulsant effects and attenuation of stress- and anxiety-related behaviors caused by COC or MA, the lethal effects of these psychostimulants were increased by KT. PMID:16542420

  18. [Altered states of consciousness].

    PubMed

    Gora, E P

    2005-01-01

    The review of modern ideas concerning the altered states of consciousness is presented in this article. Various methods of entry into the altered states of consciousness are looked over. It is shown that the altered states of consciousness are insufficiently known, but important aspects of human being existence. The role of investigation of the altered states of consciousness for the creation of integrative scientific conception base is discussed.

  19. Scaling of the flow-stiffness relationship in weakly correlated single fractures

    NASA Astrophysics Data System (ADS)

    Petrovitch, Christopher L.

    The remote characterization of the hydraulic properties of fractures in rocks is important in many subsurface projects. Fractures create uncertainty in the hydraulic properties of the subsurface in that their topology controls the amount of flow that can occur in addition to that from the matrix. In turn, the fracture topology is also affected by stress which alters the topology as the stress changes directly. This alteration of fracture topology with stress is captured by fracture specific stiffness. The specific stiffness of a single fracture can be remotely probed from the attenuation and velocity of seismic waves. The hydromechanical coupling of single fractures, i.e. the relationship between flow and stiffness, holds the key to finding a method to remotely characterize a fractures hydraulic properties. This thesis is separated into two parts: (1) a description of the hydromechanical coupling of fractures based on numerical models used to generate synthetic fractures, compute the flow through a fracture, and deform fracture topologies to unravel the scaling function that is fundamental to the hydromechanical coupling of single fractures; (2) a Discontinuous Galerkin (DG) method was developed to accurately simulate the scattered seismic waves from realistic fracture topologies. The scaling regimes of fluid flow and specific stiffness in weakly correlated fractures are identified by using techniques from Percolation Theory and initially treating the two processes separately. The fixed points associated with fluid flow were found to display critical scaling while the fixed points for specific stiffness were trivial. The two processes could be indirectly related because the trivial scaling of the mechanical properties allowed the specific stiffness to be used as surrogate to the void area fraction. The dynamic transport exponent was extracted at threshold by deforming fracture geometries within the effective medium regime (near the ``cubic law'' regime) to the critical regime. From this, a scaling function was defined for the hydromechanical coupling. This scaling function provides the link between fluid flow and fracture specific stiffness so that seismic waves may be used to remotely probe the hydraulic properties of fractures. Then, the DG method is shown to be capable of measuring such fracture specific stiffnesses by numerically measuring the velocity of interface waves when propagated across laboratory measured fracture geometries of Austin Chalk.

  20. Structural and thermodynamic analysis of modified nucleosides in self-assembled DNA cross-tiles.

    PubMed

    Hakker, Lauren; Marchi, Alexandria N; Harris, Kimberly A; LaBean, Thomas H; Agris, Paul F

    2014-01-01

    DNA Holliday junctions are important natural strand-exchange structures that form during homologous recombination. Immobile four-arm junctions, analogs to Holliday junctions, have been designed to self-assemble into cross-tile structures by maximizing Watson-Crick base pairing and fixed crossover points. The cross-tiles, self-assembled from base pair recognition between designed single-stranded DNAs, form higher order lattice structures through cohesion of self-associating sticky ends. These cross-tiles have 16 unpaired nucleosides in the central loop at the junction of the four duplex stems. The importance of the centralized unpaired nucleosides to the structure's thermodynamic stability and self-assembly is unknown. Cross-tile DNA nanostructures were designed and constructed from nine single-stranded DNAs with four shell strands, four arms, and a central loop containing 16 unpaired bases. The 16 unpaired bases were either 2'-deoxyribothymidines, 2'-O-methylribouridines, or abasic 1',2'-dideoxyribonucleosides. Thermodynamic profiles and structural base-stacking contributions were assessed using UV absorption spectroscopy during thermal denaturation and circular dichroism spectroscopy, respectively, and the resulting structures were observed by atomic force microscopy. There were surprisingly significant changes in the thermodynamic and structural properties of lattice formation as a result of altering only the 16 unpaired, centralized nucleosides. The 16 unpaired 2'-O-methyluridines were stabilizing and produced uniform tubular structures. In contrast, the abasic nucleosides were destabilizing producing a mixture of structures. These results strongly indicate the importance of a small number of centrally located unpaired nucleosides within the structures. Since minor modifications lead to palpable changes in lattice formation, DNA cross-tiles present an easily manipulated structure convenient for applications in biomedical and biosensing devices.

  1. Evolutionary consequences of multidriver environmental change in an aquatic primary producer.

    PubMed

    Brennan, Georgina L; Colegrave, Nick; Collins, Sinéad

    2017-09-12

    Climate change is altering aquatic environments in a complex way, and simultaneous shifts in many properties will drive evolutionary responses in primary producers at the base of both freshwater and marine ecosystems. So far, evolutionary studies have shown how changes in environmental drivers, either alone or in pairs, affect the evolution of growth and other traits in primary producers. Here, we evolve a primary producer in 96 unique environments with different combinations of between one and eight environmental drivers to understand how evolutionary responses to environmental change depend on the identity and number of drivers. Even in multidriver environments, only a few dominant drivers explain most of the evolutionary changes in population growth rates. Most populations converge on the same growth rate by the end of the evolution experiment. However, populations adapt more when these dominant drivers occur in the presence of other drivers. This is due to an increase in the intensity of selection in environments with more drivers, which are more likely to include dominant drivers. Concurrently, many of the trait changes that occur during the initial short-term response to both single and multidriver environmental change revert after about 450 generations of evolution. In future aquatic environments, populations will encounter differing combinations of drivers and intensities of selection, which will alter the adaptive potential of primary producers. Accurately gauging the intensity of selection on key primary producers will help in predicting population size and trait evolution at the base of aquatic food webs.

  2. The effects of context and musical training on auditory temporal-interval discrimination.

    PubMed

    Banai, Karen; Fisher, Shirley; Ganot, Ron

    2012-02-01

    Non sensory factors such as stimulus context and musical experience are known to influence auditory frequency discrimination, but whether the context effect extends to auditory temporal processing remains unknown. Whether individual experiences such as musical training alter the context effect is also unknown. The goal of the present study was therefore to investigate the effects of stimulus context and musical experience on auditory temporal-interval discrimination. In experiment 1, temporal-interval discrimination was compared between fixed context conditions in which a single base temporal interval was presented repeatedly across all trials and variable context conditions in which one of two base intervals was randomly presented on each trial. Discrimination was significantly better in the fixed than in the variable context conditions. In experiment 2 temporal discrimination thresholds of musicians and non-musicians were compared across 3 conditions: a fixed context condition in which the target interval was presented repeatedly across trials, and two variable context conditions differing in the frequencies used for the tones marking the temporal intervals. Musicians outperformed non-musicians on all 3 conditions, but the effects of context were similar for the two groups. Overall, it appears that, like frequency discrimination, temporal-interval discrimination benefits from having a fixed reference. Musical experience, while improving performance, did not alter the context effect, suggesting that improved discrimination skills among musicians are probably not an outcome of more sensitive contextual facilitation or predictive coding mechanisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. [Assessment of sexual function in men with idiopathic Parkinson's disease using the International Index of Erectile Dysfunction (IIEF-15)].

    PubMed

    Roumiguié, M; Guillotreau, J; Castel-Lacanal, E; Malavaud, B; De Boissezon, X; Marque, P; Rischmann, P; Gamé, X

    2011-01-01

    to assess the sexual function in men with idiopathic Parkinson's disease. a cross-sectional study was performed in 35 men, mean age 68 ± 9 years, with idiopathic Parkinson's disease followed in a single urological department. The 15 questions International Index of the Erectile Function was sent by postal mail. the answer's rate was 42.9% (15 patients). The mean age of the responders was 68.7 ± 10.0 years. Mean duration of the disease was 10.4 ± 6.8 years. Sexual dysfunction was the second cause for consultation in urology. Despite a sustained sexual desire, patients had an altered sexual function with low erectile function, orgasmic function, intercourse satisfaction and total satisfaction scores. According to the Cappelleri's classification, the erectile dysfunction was severe in 54% of the cases and moderate in 26.6%. Age, institutionalization and overactive bladder symptoms were associated with erectile, orgasmic function and intercourse satisfaction alteration, sexual desire alteration, intercourse and global satisfaction alteration, respectively. men with idiopathic Parkinson's disease had a severe sexual dysfunction. The sexual desire was usually maintained but all the other domains were severely altered. 2010 Elsevier Masson SAS. All rights reserved.

  4. Neuro- and sensoriphysiological Adaptations to Microgravity using Fish as Model System

    NASA Astrophysics Data System (ADS)

    Anken, R.

    The phylogenetic development of all organisms took place under constant gravity conditions, against which they achieved specific countermeasures for compensation and adaptation. On this background, it is still an open question to which extent altered gravity such as hyper- or microgravity (centrifuge/spaceflight) affects the normal individual development, either on the systemic level of the whole organism or on the level of individual organs or even single cells. The present review provides information on this topic, focusing on the effects of altered gravity on developing fish as model systems even for higher vertebrates including humans, with special emphasis on the effect of altered gravity on behaviour and particularly on the developing brain and vestibular system. Overall, the results speak in favour of the following concept: Short-term altered gravity (˜ 1 day) can induce transient sensorimotor disorders (kinetoses) due to malfunctions of the inner ear, originating from asymmetric otoliths. The regain of normal postural control is likely due to a reweighing of sensory inputs. During long-term altered gravity (several days and more), complex adptations on the level of the central and peripheral vestibular system occur. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).

  5. Cancer type-dependent genetic interactions between cancer driver alterations indicate plasticity of epistasis across cell types

    PubMed Central

    Park, Solip; Lehner, Ben

    2015-01-01

    Cancers, like many diseases, are normally caused by combinations of genetic alterations rather than by changes affecting single genes. It is well established that the genetic alterations that drive cancer often interact epistatically, having greater or weaker consequences in combination than expected from their individual effects. In a stringent statistical analysis of data from > 3,000 tumors, we find that the co-occurrence and mutual exclusivity relationships between cancer driver alterations change quite extensively in different types of cancer. This cannot be accounted for by variation in tumor heterogeneity or unrecognized cancer subtypes. Rather, it suggests that how genomic alterations interact cooperatively or partially redundantly to driver cancer changes in different types of cancers. This re-wiring of epistasis across cell types is likely to be a basic feature of genetic architecture, with important implications for understanding the evolution of multicellularity and human genetic diseases. In addition, if this plasticity of epistasis across cell types is also true for synthetic lethal interactions, a synthetic lethal strategy to kill cancer cells may frequently work in one type of cancer but prove ineffective in another. PMID:26227665

  6. Evidence of femtosecond-laser pulse induced cell membrane nanosurgery

    NASA Astrophysics Data System (ADS)

    Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y.

    2017-02-01

    The mechanism of femtosecond laser nanosurgical attachment is investigated in the following article. Using sub-10 femtosecond laser pulses with 800 nm central wavelength were used to attach retinoblastoma cells. During the attachment process the cell membrane phospholipid bilayers hemifuse into one shared phospholipid bilayer, at the location of attachment. Transmission electron microscopy was used in order to verify the above hypothesis. Based on the imaging results, it was concluded that the two cell membrane coalesce to form one single shared membrane. The technique of cell-cell attachment via femtosecond laser pulses could potentially serve as a platform for precise cell membrane manipulation. Manipulation of the cellular membrane is valuable for studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.

  7. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Homan; Mintri, Shrutika; Menon, Archita Venugopal; Lee, Hea Yeon; Choi, Hak Soo; Kim, Jonghan

    2015-11-01

    Nanoparticles (NPs) are considered a promising tool in both diagnosis and therapeutics. Theranostic NPs possess the combined properties of targeted imaging and drug delivery within a single entity. While the categorization of theranostic NPs is based on their structure and composition, the pharmacokinetics of NPs are significantly influenced by the physicochemical properties of theranostic NPs as well as the routes of administration. Consequently, altered pharmacokinetics modify the pharmacodynamic efficacy and toxicity of NPs. Although theranostic NPs hold great promise in nanomedicine and biomedical applications, a lack of understanding persists on the mechanisms of the biodistribution and adverse effects of NPs. To better understand the diagnostic and therapeutic functions of NPs, this review discusses the factors that influence the pharmacokinetics, pharmacodynamics and toxicology of theranostic NPs, along with several strategies for developing novel diagnostic and therapeutic modalities.

  8. Bone mineral density and metabolic indices in hyperthyroidism.

    PubMed

    Al-Nuaim, A; El-Desouki, M; Sulimani, R; Mohammadiah, M

    1991-09-01

    Hyperthyroidism can alter bone metabolism by increasing both bone resorption and formation. The increase in bone resorption predominates, leading to a decrease in bone mass. To assess the effect of hyperthyroidism on bone and mineral metabolism, we measured bone density using single photon absorptiometry in 30 untreated hyperthyroid patients. Patients were categorized into three groups based on sex and alkaline phosphatase levels: 44 sex- and age-matched subjects were used as controls. Bone densities were significanlty lower in all patient groups compared with controls. Alkaline phosphatase was found to be a useful marker for assessing severity of bone disease in hyperthyroid patients as there is significant bone density among patients with higher alkaline phosphatase value. Hyperthyroidism should be considered in the differential diagnosis of unexplained alkaline phophatase activity.

  9. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis.

    PubMed

    Kärkäs, Markus D; Porco, John A; Stephenson, Corey R J

    2016-09-14

    The use of photochemical transformations is a powerful strategy that allows for the formation of a high degree of molecular complexity from relatively simple building blocks in a single step. A central feature of all light-promoted transformations is the involvement of electronically excited states, generated upon absorption of photons. This produces transient reactive intermediates and significantly alters the reactivity of a chemical compound. The input of energy provided by light thus offers a means to produce strained and unique target compounds that cannot be assembled using thermal protocols. This review aims at highlighting photochemical transformations as a tool for rapidly accessing structurally and stereochemically diverse scaffolds. Synthetic designs based on photochemical transformations have the potential to afford complex polycyclic carbon skeletons with impressive efficiency, which are of high value in total synthesis.

  10. Endodontic Management of Maxillary First Molar With Two Palatal Canals Aided With Cone Beam Computed Tomography: A Case Report.

    PubMed

    Pamboo, Jaya; Hans, Manoj Kumar; Chander, Subhas; Sharma, Kapil

    2017-04-01

    The success of endodontic therapy is based on having sufficient endodontic access, correct cleaning and shaping, and adequate root canal obturation. However, endodontic treatment is also dependent on having a sound knowledge of the internal anatomy of human teeth, especially when anatomic variations are present. Reporting these alterations is important for improving the understanding and expertise of endodontists. The aim of this case report is to describe a unique case of maxillary first molar with 2 palatal canals within a single root, as confirmed by cone-beam computed tomography (CBCT) scans. This article also reviews recent case reports of extra palatal root canals in the maxillary first molars and the role of CBCT analysis in successfully diagnosing them.

  11. Humidity Sensor Based on Bragg Gratings Developed on the End Facet of an Optical Fiber by Sputtering of One Single Material.

    PubMed

    Ascorbe, Joaquin; Corres, Jesus M; Arregui, Francisco J; Matias, Ignacio R

    2017-04-29

    The refractive index of sputtered indium oxide nanocoatings has been altered just by changing the sputtering parameters, such as pressure. These induced changes have been exploited for the generation of a grating on the end facet of an optical fiber towards the development of wavelength-modulated optical fiber humidity sensors. A theoretical analysis has also been performed in order to study the different parameters involved in the fabrication of this optical structure and how they would affect the sensitivity of these devices. Experimental and theoretical results are in good agreement. A sensitivity of 150 pm/%RH was obtained for relative humidity changes from 20% to 60%. This kind of humidity sensors shows a maximum hysteresis of 1.3% relative humidity.

  12. Background music genre can modulate flavor pleasantness and overall impression of food stimuli.

    PubMed

    Fiegel, Alexandra; Meullenet, Jean-François; Harrington, Robert J; Humble, Rachel; Seo, Han-Seok

    2014-05-01

    This study aimed to determine whether background music genre can alter food perception and acceptance, but also to determine how the effect of background music can vary as a function of type of food (emotional versus non-emotional foods) and source of music performer (single versus multiple performers). The music piece was edited into four genres: classical, jazz, hip-hop, and rock, by either a single or multiple performers. Following consumption of emotional (milk chocolate) or non-emotional food (bell peppers) with the four musical stimuli, participants were asked to rate sensory perception and impression of food stimuli. Participants liked food stimuli significantly more while listening to the jazz stimulus than the hip-hop stimulus. Further, the influence of background music on overall impression was present in the emotional food, but not in the non-emotional food. In addition, flavor pleasantness and overall impression of food stimuli differed between music genres arranged by a single performer, but not between those by multiple performers. In conclusion, our findings demonstrate that music genre can alter flavor pleasantness and overall impression of food stimuli. Furthermore, the influence of music genre on food acceptance varies as a function of the type of served food and the source of music performer. Published by Elsevier Ltd.

  13. Coordinated disintegration reactions mediated by Moloney murine leukemia virus integrase.

    PubMed Central

    Donzella, G A; Jonsson, C B; Roth, M J

    1996-01-01

    The protein-DNA and protein-protein interactions important for function of the integrase (IN) protein of Moloney murine leukemia virus (M-MuLV) were investigated by using a coordinated-disintegration assay. A panel of M-MuLV IN mutants and substrate alterations highlighted distinctions between the intermolecular and intramolecular reactions of coordinated disintegration. Mispairing of the crossbone single-strand region and altered long terminal repeat (LTR) positioning affected the intermolecular, but not the intramolecular, reactions of coordinated disintegration. Partial components of the crossbone substrate were coordinated by M-MuLV IN, indicating a reliance on both LTR and target DNA determinants for substrate assembly. The intramolecular reaction was dependent on the presence of either the HHCC domain or a crossbone LTR 5' single-stranded tail. An M-MuLV IN mutant without the HHCC domain (Ndelta105) catalyzed reduced levels of double disintegration but not single disintegration. A separately purified HHCC domain protein (Cdelta232) stimulated double disintegration mediated by Ndelta105, suggesting a role of the N-terminal HHCC domain in stable IN-IN and IN-DNA interactions. Significantly, crossbone substrates lacking the LTR 5' tails were not recognized by the fingerless Ndelta105 protein. Collectively, these data suggest similar roles of the HHCC domain and 5' LTR tail in substrate recognition and modulation of IN activity. PMID:8648728

  14. ULTRAFINE PARTICULATE MATTER EXPOSURE ATTENUATES MOUSE AORTIC RELAXATIONS

    EPA Science Inventory

    Particulate air pollution (PM) contributes to adverse cardiovascular events by yet unknown mechanisms. We tested the hypothesis that PM exposure altered endothelial regulation of systemic vascular tone. 6-10 week old male ICR mice were exposed to a single dose of 10, 30 or 100 'g...

  15. Study shows colon and rectal tumors constitute a single type of cancer

    Cancer.gov

    The pattern of genomic alterations in colon and rectal tissues is the same regardless of anatomic location or origin within the colon or the rectum, leading researchers to conclude that these two cancer types can be grouped as one, according to The Cancer

  16. ATRAZINE STIMULATES THE RELEASE OF ACTH AND ADRENAL STEROIDS IN MALE WISTAR RATS

    EPA Science Inventory

    Previously, we reported that atrazine (ATR) alters steroidogenesis in male Wistar rats resulting in increased serum corticosterone (C), progesterone (P), androgens and estrogens. The observation of increased C following single or multiple doses of ATR (up to 21 days of dosing) su...

  17. Gaseous losses of nitrogen other than through denitrification

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) losses from human activities are the major reason behind the growing concerns about the enrichment of the biosphere with reactive N. The single largest cause of human alteration of the global N cycle is crop production. Reactive atmospheric N trace gases resulting from agricultural acti...

  18. Gaseous Losses of Nitrogen Other Than Through Denitrification

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) losses from human activities are the major reason behind the growing concerns about the enrichment of the biosphere with reactive N. The single largest cause of human alteration of the global N cycle is crop production. Reactive atmospheric N trace gases resulting from agricultural acti...

  19. Phylogenetic analysis of Dengue virus 1 isolated from South Minas Gerais, Brazil.

    PubMed

    Drumond, Betania Paiva; Fagundes, Luiz Gustavo da Silva; Rocha, Raissa Prado; Fumagalli, Marcilio Jorge; Araki, Carlos Shigueru; Colombo, Tatiana Elisa; Nogueira, Mauricio Lacerda; Castilho, Thiago Elias; da Silveira, Nelson José Freitas; Malaquias, Luiz Cosme Cotta; Coelho, Luiz Felipe Leomil

    2016-01-01

    Dengue is a major worldwide public health problem, especially in the tropical and subtropical regions of the world. Primary infection with a single Dengue virus serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients who experience secondary infection with a different serotype can progress to a more severe form of the disease, called dengue hemorrhagic fever. The four Dengue virus serotypes (1-4) are antigenically and genetically distinct and each serotype is composed of multiple genotypes. In this study we isolated one Dengue virus 1 serotype, named BR/Alfenas/2012, from a patient with dengue hemorrhagic fever in Alfenas, South Minas Gerais, Brazil and molecular identification was performed based on the analysis of NS5 gene. Swiss mice were infected with this isolate to verify its potential to induce histopathological alterations characteristic of dengue. Liver histopathological analysis of infected animals showed the presence of inflammatory infiltrates, hepatic steatosis, as well as edema, hemorrhage and necrosis focal points. Phylogenetic and evolutionary analyses based on the envelope gene provided evidence that the isolate BR/Alfenas/2012 belongs to genotype V, lineage I and it is probably derived from isolates of Rio de Janeiro, Brazil. The isolate BR/Alfenas/2012 showed two unique amino acids substitutions (SER222THRE and PHE306SER) when compared to other Brazilian isolates from the same genotype/lineage. Molecular models were generated for the envelope protein indicating that the amino acid alteration PHE 306 SER could contribute to a different folding in this region located within the domain III. Further genetic and animal model studies using BR/Alfenas/2012 and other isolates belonging to the same lineage/genotype could help determine the relation of these genetic alterations and dengue hemorrhagic fever in a susceptible population. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. Flaws in the LNT single-hit model for cancer risk: An historical assessment.

    PubMed

    Calabrese, Edward J

    2017-10-01

    The LNT single-hit model was derived from the Nobel Prize-winning research of Herman J. Muller who showed that x-rays could induce gene mutations in Drosophila and that the dose response for these so-called mutational events was linear. Lewis J. Stadler, another well-known and respected geneticist at the time, strongly disagreed with and challenged Muller's claims. Detailed evaluations by Stadler over a prolonged series of investigations revealed that Muller's experiments had induced gross heritable chromosomal damage instead of specific gene mutations as had been claimed by Muller at his Nobel Lecture. These X-ray-induced alterations became progressively more frequent and were of larger magnitude (more destructive) with increasing doses. Thus, Muller's claim of having induced discrete gene mutations represented a substantial speculative overreach and was, in fact, without proof. The post hoc arguments of Muller to support his gene mutation hypothesis were significantly challenged and weakened by a series of new findings in the areas of cytogenetics, reverse mutation, adaptive and repair processes, and modern molecular methods for estimating induced genetic damage. These findings represented critical and substantial limitations to Muller's hypothesis of X-ray-induced gene mutations. Furthermore, they challenged the scientific foundations used in support of the LNT single-hit model by severing the logical nexus between Muller's data on radiation-induced inheritable alterations and the LNT single-hit model. These findings exposed fundamental scientific flaws that undermined not only the seminal recommendation of the 1956 BEAR I Genetics Panel to adopt the LNT single-hit Model for risk assessment but also any rationale for its continued use in the present day. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Acute experimental hip muscle pain alters single-leg squat balance in healthy young adults.

    PubMed

    Hatton, Anna L; Crossley, Kay M; Hug, François; Bouma, James; Ha, Bonnie; Spaulding, Kara L; Tucker, Kylie

    2015-05-01

    Clinical musculoskeletal pain commonly accompanies hip pathology and can impact balance performance. Due to the cross-sectional designs of previous studies, and the multifactorial nature of musculoskeletal pain conditions, it is difficult to determine whether pain is a driver of balance impairments in this population. This study explored the effects of experimentally induced hip muscle pain on static and dynamic balance. Twelve healthy adults (4 women, mean[SD]: 27.1[3] years) performed three balance tasks on each leg, separately: single-leg standing (eyes closed), single-leg squat (eyes open), forward step (eyes open); before and after hypertonic saline injection (1ml, 5% NaCl) into the right gluteus medius. Range, standard deviation (SD), and velocity of the centre of pressure (CoP) in medio-lateral (ML) and anterior-posterior (AP) directions were considered. During the single-leg squat task, experimental hip pain was associated with significantly reduced ML range (-4[13]%, P=0.028), AP range (-14[21]%, P=0.005), APSD (-15[28]%, P=0.009), and AP velocity (-6[13]%, P=0.032), relative to the control condition, in both legs. No effect of pain was observed during single-leg standing and forward stepping. Significant between-leg differences in ML velocity were observed during the forward stepping task (P=0.034). Pain is a potentially modifiable patient-reported outcome in individuals with hip problems. This study demonstrates that acute hip muscle pain alone, without interference of musculoskeletal pathology, does not lead to the same impairments in balance as exhibited in clinical populations with hip pathologies. This is the first step in understanding how and why balance is altered in painful hip pathologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Single-beam, dark toroidal optical traps for cold atoms

    NASA Astrophysics Data System (ADS)

    Fatemi, Fredrik K.; Olson, Spencer E.; Bashkansky, Mark; Dutton, Zachary; Terraciano, Matthew

    2007-02-01

    We demonstrate the generation of single-beam dark toroidal optical intensity distributions, which are of interest for neutral atom storage and atom interferometry. We demonstrate experimentally and numerically optical potentials that contain a ring-shaped intensity minimum, bounded in all directions by higher intensity. We use a spatial light modulator to alter the phase of an incident laser beam, and analyze the resulting optical propagation characteristics. For small toroidal traps (< 50 μm diameter), we find an optimal superposition of Laguerre-Gaussian modes that allows the formation of single-beam toroidal traps. We generate larger toroidal bottle traps by focusing hollow beams with toroidal lenses imprinted onto the spatial light modulator.

  3. Pharmacokinetics of Intravenous Sildenafil in Children with Palliated Single Ventricle Heart Defects: Effect of Elevated Hepatic Pressures

    PubMed Central

    Hill, Kevin D.; Sampson, Mario R.; Li, Jennifer S.; Tunks, Robert D.; Schulman, Scott R.; Cohen-Wolkowiez, Michael

    2015-01-01

    Aims Sildenafil is frequently prescribed to children with single ventricle heart defects. These children have unique hepatic physiology with elevated hepatic pressures which may alter drug pharmacokinetics. We sought to determine the impact of hepatic pressure on sildenafil pharmacokinetics in children with single ventricle heart defects. Methods A population pharmacokinetic model was developed using data from 20 single ventricle children receiving single dose intravenous sildenafil during cardiac catheterization. Nonlinear mixed effect modeling was used for model development and covariate effects were evaluated based on estimated precision and clinical significance. Results The analysis included a median (range) of 4 (2–5) pharmacokinetic samples per child. The final structural model was a two-compartment model for sildenafil with a one-compartment model for des-methyl-sildenafil (active metabolite), with assumed 100% sildenafil to des-methyl-sildenafil conversion. Sildenafil clearance was unaffected by hepatic pressure (clearance = 0.62 L/H/kg); however, clearance of des-methyl-sildenafil (1.94 × (hepatic pressure/9)−1.33 L/h/kg) was predicted to decrease ~7 fold as hepatic pressure increased from 4 to 18 mm Hg. Predicted drug exposure was increased by ~1.5 fold in subjects with hepatic pressures ≥ 10 mm Hg versus < 10 mm Hg (median area under the curve = 533 μg*h/L versus 792 μg*h/L). Discussion Elevated hepatic pressure delays clearance of the sildenafil metabolite, des-methyl-sildenafil and increases drug exposure. We speculate that this results from impaired biliary clearance. Hepatic pressure should be considered when prescribing sildenafil to children. These data demonstrate the importance of pharmacokinetic assessment in patients with unique cardiovascular physiology that may affect drug metabolism. PMID:26197839

  4. Structure-Based Systematic Isolation of Conditional-Lethal Mutations in the Single Yeast Calmodulin Gene

    PubMed Central

    Ohya, Y.; Botstein, D.

    1994-01-01

    Conditional-lethal mutations of the single calmodulin gene in Saccharomyces cerevisiae have been very difficult to isolate by random and systematic methods, despite the fact that deletions cause recessive lethality. We report here the isolation of numerous conditional-lethal mutants that were recovered by systematically altering phenylalanine residues. The phenylalanine residues of calmodulin were implicated in function both by structural studies of calmodulin bound to target peptides and by their extraordinary conservation in evolution. Seven single and 26 multiple Phe -> Ala mutations were constructed. Mutant phenotypes were examined in a haploid cmd1 disrupted strain under three conditions: single copy, low copy, and overexpressed. Whereas all but one of the single mutations caused no obvious phenotype, most of the multiple mutations caused obvious growth phenotypes. Five were lethal, 6 were lethal only in synthetic medium, 13 were temperature-sensitive lethal and 2 had no discernible phenotypic consequences. Overexpression of some of the mutant genes restored the phenotype to nearly wild type. Several temperature-sensitive calmodulin mutations were suppressed by elevated concentration of CaCl(2) in the medium. Mutant calmodulin protein was detected at normal levels in extracts of most of the lethal mutant cells, suggesting that the deleterious phenotypes were due to loss of the calmodulin function and not protein instability. Analysis of diploid strains heterozygous for all combinations of cmd1-ts alleles revealed four intragenic complementation groups. The contributions of individual phe->ala changes to mutant phenotypes support the idea of internal functional redundancy in the symmetrical calmodulin protein molecule. These results suggest that the several phenylalanine residues in calmodulin are required to different extents in different combinations in order to carry out each of the several essential tasks. PMID:7896089

  5. Prevalence of plasmid-mediated qnr determinants and gyrase alteration in Klebsiella pneumoniae isolated from a university teaching hospital in Malaysia.

    PubMed

    Saiful Anuar, A S; Mohd Yusof, M Y; Tay, S T

    2013-07-01

    The ciprofloxacin resistance of Klebsiella (K.) pneumoniae is mediated primarily through alterations in type II topoisomerase (gyrA) gene and plasmid-mediated quinolone resistance-conferring genes (qnr). This study aimed to define the prevalence of plasmid-mediated quinolone resistance-conferring genes (qnr) and type II topoisomerase (gyrA) alterations of a population of ciprofloxacin-resistant (n = 21), intermediate (n = 8), and sensitive (n = 18) K. pneumoniae isolates obtained from a teaching hospital at Kuala Lumpur, Malaysia. A multiplex PCR assay was performed for simultaneous detection of qnrA, qnrB and qnrS. Sequence analysis of the amplified gyrA and gyrB regions of the isolates were performed. The findings in this study revealed the emergence of a high prevalence (48.9%) of qnr determinants in our isolates. Four variants of plasmid-mediated qnr determinants (qnrB1, qnrB6, qnrB10 and qnrS1) were detected from 11 (52.4%) ciprofloxacin-resistant, 5 (62.5%) intermediate and 7 (38.9%) sensitive isolates. gyrA alterations were detected from 18 (85.7%) ciprofloxacin-resistant isolates. Single gyrA alterations, Ser83→Tyr, Ser83→Ile, and Asp87→Gly, and double alterations, Ser83→Phe plus Asp87→Ala and Ser83→Tyr plus Asp87→Asn were detected. While ciprofloxacin resistance was significantly associated with gyrA alteration (Ser83, p = 0.003; Asp87, p = 0.005; double alteration, p = 0.016), no significant association of ciprofloxacin resistance was noted with the presence of qnr determinants (p = 0.283). The findings in this study demonstrate the emergence of qnr determinants and gyrA alterations contributed to the development and spread of fluoroquinolone resistance in the Malaysian isolates.

  6. Diminished A-type potassium current and altered firing properties in presympathetic PVN neurones in renovascular hypertensive rats

    PubMed Central

    Sonner, Patrick M; Filosa, Jessica A; Stern, Javier E

    2008-01-01

    Accumulating evidence supports a contribution of the hypothalamic paraventricular nucleus (PVN) to sympathoexcitation and elevated blood pressure in renovascular hypertension. However, the underlying mechanisms resulting in altered neuronal function in hypertensive rats remain largely unknown. Here, we aimed to address whether the transient outward potassium current (IA) in identified rostral ventrolateral medulla (RVLM)-projecting PVN neurones is altered in hypertensive rats, and whether such changes affected single and repetitive action potential properties and associated changes in intracellular Ca2+ levels. Patch-clamp recordings obtained from PVN-RVLM neurons showed a reduction in IA current magnitude and single channel conductance, and an enhanced steady-state current inactivation in hypertensive rats. Morphometric reconstructions of intracellularly labelled PVN-RVLM neurons showed a diminished dendritic surface area in hypertensive rats. Consistent with a diminished IA availability, action potentials in PVN-RVLM neurons in hypertensive rats were broader, decayed more slowly, and were less sensitive to the K+ channel blocker 4-aminopyridine. Simultaneous patch clamp recordings and confocal Ca2+ imaging demonstrated enhanced action potential-evoked intracellular Ca2+ transients in hypertensive rats. Finally, spike broadening during repetitive firing discharge was enhanced in PVN-RVLM neurons from hypertensive rats. Altogether, our results indicate that diminished IA availability constitutes a contributing mechanism underlying aberrant central neuronal function in renovascular hypertension. PMID:18238809

  7. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome

    PubMed Central

    Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki

    2015-01-01

    Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions. PMID:26544948

  8. A Tocotrienol-Enriched Formulation Protects against Radiation-Induced Changes in Cardiac Mitochondria without Modifying Late Cardiac Function or Structure

    PubMed Central

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Aykin-Burns, Nukhet; Krager, Kimberly J; Sharma, Sunil K.; Moros, Eduardo G.; Melnyk, Stepan B.; Pavliv, Oleksandra; Hauer-Jensen, Martin; Boerma, Marjan

    2015-01-01

    Radiation-induced heart disease (RIHD) is a common and sometimes severe late side effect of radiation therapy for intrathoracic and chest wall tumors. We have previously shown that local heart irradiation in a rat model caused prolonged changes in mitochondrial respiration and increased susceptibility to mitochondrial permeability transition pore (mPTP) opening. Because tocotrienols are known to protect against oxidative stress-induced mitochondrial dysfunction, in this study, we examined the effects of tocotrienols on radiation-induced alterations in mitochondria, and structural and functional manifestations of RIHD. Male Sprague-Dawley rats received image-guided localized X irradiation to the heart to a total dose of 21 Gy. Twenty-four hours before irradiation, rats received a tocotrienol-enriched formulation or vehicle by oral gavage. Mitochondrial function and mitochondrial membrane parameters were studied at 2 weeks and 28 weeks after irradiation. In addition, cardiac function and histology were examined at 28 weeks. A single oral dose of the tocotrienol-enriched formulation preserved Bax/Bcl2 ratios and prevented mPTP opening and radiation-induced alterations in succinate-driven mitochondrial respiration. Nevertheless, the late effects of local heart irradiation pertaining to myocardial function and structure were not modified. Our studies suggest that a single dose of tocotrienols protects against radiation-induced mitochondrial changes, but these effects are not sufficient against long-term alterations in cardiac function or remodeling. PMID:25710576

  9. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome.

    PubMed

    Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki

    2015-01-01

    Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions.

  10. Alterations of p53 in tumorigenic human bronchial epithelial cells correlate with metastatic potential

    NASA Technical Reports Server (NTRS)

    Piao, C. Q.; Willey, J. C.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    1999-01-01

    The cellular and molecular mechanisms of radiation-induced lung cancer are not known. In the present study, alterations of p53 in tumorigenic human papillomavirus-immortalized human bronchial epithelial (BEP2D) cells induced by a single low dose of either alpha-particles or 1 GeV/nucleon (56)Fe were analyzed by PCR-single-stranded conformation polymorphism (SSCP) coupled with sequencing analysis and immunoprecipitation assay. A total of nine primary and four secondary tumor cell lines, three of which were metastatic, together with the parental BEP2D and primary human bronchial epithelial (NHBE) cells were studied. The immunoprecipitation assay showed overexpression of mutant p53 proteins in all the tumor lines but not in NHBE and BEP2D cells. PCR-SSCP and sequencing analysis found band shifts and gene mutations in all four of the secondary tumors. A G-->T transversion in codon 139 in exon 5 that replaced Lys with Asn was detected in two tumor lines. One mutation each, involving a G-->T transversion in codon 215 in exon 6 (Ser-->lle) and a G-->A transition in codon 373 in exon 8 (Arg-->His), was identified in the remaining two secondary tumors. These results suggest that p53 alterations correlate with tumorigenesis in the BEP2D cell model and that mutations in the p53 gene may be indicative of metastatic potential.

  11. A tocotrienol-enriched formulation protects against radiation-induced changes in cardiac mitochondria without modifying late cardiac function or structure.

    PubMed

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Aykin-Burns, Nukhet; Krager, Kimberly J; Sharma, Sunil K; Moros, Eduardo G; Melnyk, Stepan B; Pavliv, Oleksandra; Hauer-Jensen, Martin; Boerma, Marjan

    2015-03-01

    Radiation-induced heart disease (RIHD) is a common and sometimes severe late side effect of radiation therapy for intrathoracic and chest wall tumors. We have previously shown that local heart irradiation in a rat model caused prolonged changes in mitochondrial respiration and increased susceptibility to mitochondrial permeability transition pore (mPTP) opening. Because tocotrienols are known to protect against oxidative stress-induced mitochondrial dysfunction, in this study, we examined the effects of tocotrienols on radiation-induced alterations in mitochondria, and structural and functional manifestations of RIHD. Male Sprague-Dawley rats received image-guided localized X irradiation to the heart to a total dose of 21 Gy. Twenty-four hours before irradiation, rats received a tocotrienol-enriched formulation or vehicle by oral gavage. Mitochondrial function and mitochondrial membrane parameters were studied at 2 weeks and 28 weeks after irradiation. In addition, cardiac function and histology were examined at 28 weeks. A single oral dose of the tocotrienol-enriched formulation preserved Bax/Bcl2 ratios and prevented mPTP opening and radiation-induced alterations in succinate-driven mitochondrial respiration. Nevertheless, the late effects of local heart irradiation pertaining to myocardial function and structure were not modified. Our studies suggest that a single dose of tocotrienols protects against radiation-induced mitochondrial changes, but these effects are not sufficient against long-term alterations in cardiac function or remodeling.

  12. Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study.

    PubMed

    Rafati, A; Rahimi, S; Talebi, A; Soleimani, A; Haghani, M; Mortazavi, S M J

    2015-09-01

    The rapid growth of wireless communication technologies has caused public concerns regarding the biological effects of electromagnetic radiations on human health. Some early reports indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians such as the alterations of the pattern of muscle extractions. This study is aimed at investigating the effects of exposure to radiofrequency (RF) radiation emitted from mobile phone jammers on the pulse height of contractions, the time interval between two subsequent contractions and the latency period of frog's isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz). Frogs were kept in plastic containers in a room. Animals in the jammer group were exposed to radiofrequency (RF) radiation emitted from a common Jammer at a distance of 1m from the jammer's antenna for 2 hours while the control frogs were only sham exposed. Then animals were sacrificed and isolated gastrocnemius muscles were exposed to on/off jammer radiation for 3 subsequent 10 minute intervals. Isolated gastrocnemius muscles were attached to the force transducer with a string. Using a PowerLab device (26-T), the pattern of muscular contractions was monitored after applying single square pulses of 1V (1 Hz) as stimuli. The findings of this study showed that the pulse height of muscle contractions could not be affected by the exposure to electromagnetic fields. However, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions.

  13. Structural alterations in a component of cytochrome c oxidase and molecular evolution of pathogenic Neisseria in humans.

    PubMed

    Aspholm, Marina; Aas, Finn Erik; Harrison, Odile B; Quinn, Diana; Vik, Ashild; Viburiene, Raimonda; Tønjum, Tone; Moir, James; Maiden, Martin C J; Koomey, Michael

    2010-08-19

    Three closely related bacterial species within the genus Neisseria are of importance to human disease and health. Neisseria meningitidis is a major cause of meningitis, while Neisseria gonorrhoeae is the agent of the sexually transmitted disease gonorrhea and Neisseria lactamica is a common, harmless commensal of children. Comparative genomics have yet to yield clear insights into which factors dictate the unique host-parasite relationships exhibited by each since, as a group, they display remarkable conservation at the levels of nucleotide sequence, gene content and synteny. Here, we discovered two rare alterations in the gene encoding the CcoP protein component of cytochrome cbb(3) oxidase that are phylogenetically informative. One is a single nucleotide polymorphism resulting in CcoP truncation that acts as a molecular signature for the species N. meningitidis. We go on to show that the ancestral ccoP gene arose by a unique gene duplication and fusion event and is specifically and completely distributed within species of the genus Neisseria. Surprisingly, we found that strains engineered to express either of the two CcoP forms conditionally differed in their capacity to support nitrite-dependent, microaerobic growth mediated by NirK, a nitrite reductase. Thus, we propose that changes in CcoP domain architecture and ensuing alterations in function are key traits in successive, adaptive radiations within these metapopulations. These findings provide a dramatic example of how rare changes in core metabolic proteins can be connected to significant macroevolutionary shifts. They also show how evolutionary change at the molecular level can be linked to metabolic innovation and its reversal as well as demonstrating how genotype can be used to infer alterations of the fitness landscape within a single host.

  14. Alterations and Abnormal Mitosis of Wheat Chromosomes Induced by Wheat-Rye Monosomic Addition Lines

    PubMed Central

    Fu, Shulan; Yang, Manyu; Fei, Yunyan; Tan, Feiquan; Ren, Zhenglong; Yan, Benju; Zhang, Huaiyu; Tang, Zongxiang

    2013-01-01

    Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat. PMID:23936213

  15. Mechanisms of diminished natural killer cell activity in pregnant women and neonates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baley, J.E.; Schacter, B.Z.

    1985-05-01

    Because alterations in natural killer (NK) activity in the perinatal period may be important in the maintenance of a healthy pregnancy, the mechanisms by which these alterations are mediated in neonates and in pregnant and postpartum women was examined. NK activity, as measured in a 4-hr /sup 51/Cr-release assay and compared with adult controls, is significantly diminished in all three trimesters of pregnancy and in immediately postpartum women. In postpartum women, NK activity appears to be higher than in pregnant women, although this does not reach statistical significance. Pregnant and postpartum women have normal numbers of large granular lymphocytes andmore » normal target cell binding in an agarose single cell assay but decreased lysis of the bound target cells. NK activity of mononuclear cells from postpartum women, in addition, demonstrate a shift in distribution to higher levels of resistance to gamma-irradiation. Further, sera from postpartum women cause a similar shift to increased radioresistance in mononuclear cells from adult controls. Because radioresistance is a property of interleukin 2-stimulated NK, the shift to radioresistance may represent lymphokine-mediated stimulation occurring during parturition. In contrast, cord blood cells have a more profound decrease in NK activity as determined by /sup 51/Cr-release assay and decreases in both binding and lysis of bound target cells in the single cell assay. The resistance of NK activity in cord cells to gamma-irradiation is also increased, as seen in postpartum women. Cord blood serum, however, did not alter radioresistance or inhibit NK activity. The results suggest that the observed diminished NK activity in pregnant women and neonates arise by different mechanisms: an absence of mature NK cells in the neonate and an alteration of the NK cell in pregnancy leading to decreased killing.« less

  16. Systematic review and meta-analysis of single-balloon enteroscopy-assisted ERCP in patients with surgically altered GI anatomy.

    PubMed

    Inamdar, Sumant; Slattery, Eoin; Sejpal, Divyesh V; Miller, Larry S; Pleskow, Douglas K; Berzin, Tyler M; Trindade, Arvind J

    2015-07-01

    Surgically altered pancreaticobiliary anatomy increases the difficulty of performing ERCP. Single-balloon enteroscopy (SBE) is a relatively new technique that can be used for ERCP in patients with surgically altered anatomy. To evaluate the therapeutic and diagnostic success of SBE-ERCP among patients with surgically altered anatomy. Systematic review and meta-analysis of studies involving SBE-ERCP in patients with Roux-en-Y gastric bypass, hepaticojejunostomy, or Whipple procedure. Enteroscopy success was defined as success in reaching the papilla and/or biliary anastomosis by using SBE. Diagnostic success was defined as obtaining a cholangiogram. Procedural success was defined as the ability to provide successful intervention, if appropriate. A random-effects model was used. A total of 461 patients underwent SBE-ERCP from 15 trials. The pooled enteroscopy, diagnostic, and procedural success rates were 80.9% (95% confidence interval [CI], 75.3%-86.4%), 69.4% (95% CI, 61.0%-77.9%), and 61.7% (95% CI, 52.9%-70.5%), respectively. There was statistical large heterogeneity for enteroscopy, diagnostic, and therapeutic success (P < .001 for all). Adverse events occurred in 6.5% (95% CI, 4.7%-9.1%) of patients. There was no evidence of publication bias in this meta-analysis. Our findings and interpretations are limited by the quantity and heterogeneity of the studies included in the analysis. SBE-ERCP has high diagnostic and procedural success rates in this challenging patient population. It should be considered a first-line intervention when biliary access is required after Roux-en-Y gastric bypass, hepaticojejunostomy, or Whipple procedure. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  17. Treatment of dyslipidemia in HIV-infected patients.

    PubMed

    Sekhar, Rajagopal V; Balasubramanyam, Ashok

    2010-08-01

    Patients infected with HIV are at high risk for dyslipidemia, insulin resistance and cardiovascular disease. Therapies to reverse these risks are complex, sometimes controversial, and not uniformly effective. Pathophysiology of the lipid abnormalities in HIV is discussed, including the causes of alterations in triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and insulin resistance. We discuss the therapy of dyslipidemia in HIV using a combination of available clinical evidence and expert opinion based on extensive clinical experience, with discussions of lifestyle intervention and diet, conventional pharmacotherapy with lipid-lowering medications including statins, fibrates, niacin and thiazolidinediones for dyslipidemia, and newer therapeutic approaches including omega fatty acids, acipimox, growth hormone and leptin. A detailed understanding of the pathophysiology and rational or evidence-based approach to therapy of lipid abnormalities in patients infected with HIV. Treatment of dyslipidemia in patients with HIV is challenging and complicated by the risk of drug interactions. Appropriate therapy requires a sound understanding of pathophysiology and the principles of pharmacological and nonpharmacological therapeutic interventions. An evidence-based approach that combines lifestyle changes and drugs that are both safe and effective, singly and in combination, is described.

  18. Targeted therapy according to next generation sequencing-based panel sequencing.

    PubMed

    Saito, Motonobu; Momma, Tomoyuki; Kono, Koji

    2018-04-17

    Targeted therapy against actionable gene mutations shows a significantly higher response rate as well as longer survival compared to conventional chemotherapy, and has become a standard therapy for many cancers. Recent progress in next-generation sequencing (NGS) has enabled to identify huge number of genetic aberrations. Based on sequencing results, patients recommend to undergo targeted therapy or immunotherapy. In cases where there are no available approved drugs for the genetic mutations detected in the patients, it is recommended to be facilitate the registration for the clinical trials. For that purpose, a NGS-based sequencing panel that can simultaneously target multiple genes in a single investigation has been used in daily clinical practice. To date, various types of sequencing panels have been developed to investigate genetic aberrations with tumor somatic genome variants (gain-of-function or loss-of-function mutations, high-level copy number alterations, and gene fusions) through comprehensive bioinformatics. Because sequencing panels are efficient and cost-effective, they are quickly being adopted outside the lab, in hospitals and clinics, in order to identify personal targeted therapy for individual cancer patients.

  19. Smartphone-based assessment of blood alteration severity

    NASA Astrophysics Data System (ADS)

    Li, Xianglin; Xue, Jiaxin; Li, Wei; Li, Ting

    2018-02-01

    Blood quality and safety management is a critical issue for cold chain transportation of blood or blood-based biological reagent. The conventional methods of blood alteration severity assessment mainly rely on kit test or blood-gas analysis required opening the blood package to get samples, which cause possible blood pollution and are complicate, timeconsuming, and expensive. Here we proposed to develop a portable, real-time, safety, easy-operated and low cost method aimed at assessing blood alteration severity. Color images of the blood in transparent blood bags were collected with a smartphone and the alteration severity of the blood was assessed by the smartphone app offered analysis of RGB color values of the blood. The algorithm is based on a large number sample of RGB values of blood at different alteration degree. The blood quality results evaluated by the smartphone are in accordance with the actual data. This study indicates the potential of smart phone in real time, convenient, and reliable blood quality assessment.

  20. The pharmacokinetics of ketoconazole and its effects on the pharmacokinetics of midazolam and fentanyl in dogs.

    PubMed

    KuKanich, B; Hubin, M

    2010-02-01

    Ketoconazole inhibits the Cytochrome P450 3A12 (CYP3A12) metabolizing enzyme as well as the p-glycoprotein efflux pump. The extent and clinical consequence of these effects are poorly understood in dogs. The objective was to assess the pharmacokinetics of ketoconazole after single and multiple doses and the effect of multiple doses of ketoconazole on midazolam (a known CYP3A12 substrate) and the opioid fentanyl. Six greyhound dogs were studied. The study consisted of three phases. Phase 1 consisted of i.v. midazolam (0.23 mg/kg base) and fentanyl (15.71 microg/kg base). Phase 2 consisted of a single oral dose of ketoconazole (mean dose 12.34 mg/kg). Phase 3 consisted of i.v. midazolam (0.23 mg/kg) and fentanyl (10 microg/kg) after 5 days of oral ketoconazole (12.25 mg/kg/day). Ketoconazole significantly inhibited its own elimination with the mean residence time (MRT) increasing from 6.24 h in Phase 1 to 12.54 h in Phase 3. Ketoconazole significantly decreased the elimination of midazolam, as expected, with the MRT increasing from 0.81 to 1.49 h. The elimination of fentanyl was not significantly altered by co-administration of ketoconazole with the MRT being 3.90 and 6.35 h. The MRT was the most robust estimate of decreased drug elimination.

  1. Systems-Based Analysis of the Sarcocystis neurona Genome Identifies Pathways That Contribute to a Heteroxenous Life Cycle

    PubMed Central

    Blazejewski, Tomasz; Nursimulu, Nirvana; Pszenny, Viviana; Dangoudoubiyam, Sriveny; Namasivayam, Sivaranjani; Chiasson, Melissa A.; Chessman, Kyle; Tonkin, Michelle; Swapna, Lakshmipuram S.; Hung, Stacy S.; Bridgers, Joshua; Ricklefs, Stacy M.; Boulanger, Martin J.; Dubey, Jitender P.; Porcella, Stephen F.; Kissinger, Jessica C.; Howe, Daniel K.

    2015-01-01

    ABSTRACT Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. PMID:25670772

  2. Optical Properties of Aerosol Types from Satellite and Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Lin, Tang-Huang; Liu, Gin-Rong; Liu, Chian-Yi

    2014-05-01

    In this study, the properties of aerosol types are characterized from the aspects of remote sensing and in situ measurements. Particles of dust, smoke and anthropogenic pollutant are selected as the principal types in the study. The measurements of AERONET sites and MODIS data, during the dust storm and biomass burning events in the period from 2002 to 2008, suggest that the aerosol species can be discriminated sufficiently based on the dissimilarity of AE (Ångström exponent) and SSA (single scattering albedo) properties. However, the physicochemical characteristics of source aerosols can be altered after the external/internal combination along the pathway of transportation, thus induce error to the satellite retrievals. In order to eliminate from this kind of errors, the optical properties of mixed aerosols (external) are also simulated with the database of dust and soot aggregates in this study. The preliminary results show that SSA value (at 470 nm) of mineral dust may decay 5-11 % when external mixed with 15-30 % soot aggregates, then result in 11-22 % variation of reflectance observed from satellite which could lead to sufficiently large uncertainty on the retrieval of aerosol optical thickness. As a result, the effect of heterogeneous mixture should be taken into account for more accurate retrieval of aerosol properties, especially after the long-range transport. Keywords: Aerosol type, Ångström exponent, Single scattering albedo, AERONET, MODIS, External mixture

  3. High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies.

    PubMed

    Goudey, Benjamin; Abedini, Mani; Hopper, John L; Inouye, Michael; Makalic, Enes; Schmidt, Daniel F; Wagner, John; Zhou, Zeyu; Zobel, Justin; Reumann, Matthias

    2015-01-01

    Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly employed may miss important SNP associations that only appear through multivariate analysis in complex diseases. However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full "Avoca" IBM Blue Gene/Q installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q supercomputer "Sequoia" at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as our results suggest. Given that the implementation used in this study can be further optimised, this runtime means it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS.

  4. Ocean acidification increases copper toxicity differentially in two key marine invertebrates with distinct acid-base responses

    PubMed Central

    Lewis, Ceri; Ellis, Robert P.; Vernon, Emily; Elliot, Katie; Newbatt, Sam; Wilson, Rod W.

    2016-01-01

    Ocean acidification (OA) is expected to indirectly impact biota living in contaminated coastal environments by altering the bioavailability and potentially toxicity of many pH-sensitive metals. Here, we show that OA (pH 7.71; pCO2 1480 μatm) significantly increases the toxicity responses to a global coastal contaminant (copper ~0.1 μM) in two keystone benthic species; mussels (Mytilus edulis) and purple sea urchins (Paracentrotus lividus). Mussels showed an extracellular acidosis in response to OA and copper individually which was enhanced during combined exposure. In contrast, urchins maintained extracellular fluid pH under OA by accumulating bicarbonate but exhibited a slight alkalosis in response to copper either alone or with OA. Importantly, copper-induced damage to DNA and lipids was significantly greater under OA compared to control conditions (pH 8.14; pCO2 470 μatm) for both species. However, this increase in DNA-damage was four times lower in urchins than mussels, suggesting that internal acid-base regulation in urchins may substantially moderate the magnitude of this OA-induced copper toxicity effect. Thus, changes in metal toxicity under OA may not purely be driven by metal speciation in seawater and may be far more diverse than either single-stressor or single-species studies indicate. This has important implications for future environmental management strategies. PMID:26899803

  5. A normal genetic variation modulates synaptic MMP-9 protein levels and the severity of schizophrenia symptoms.

    PubMed

    Lepeta, Katarzyna; Purzycka, Katarzyna J; Pachulska-Wieczorek, Katarzyna; Mitjans, Marina; Begemann, Martin; Vafadari, Behnam; Bijata, Krystian; Adamiak, Ryszard W; Ehrenreich, Hannelore; Dziembowska, Magdalena; Kaczmarek, Leszek

    2017-08-01

    Matrix metalloproteinase 9 (MMP-9) has recently emerged as a molecule that contributes to pathological synaptic plasticity in schizophrenia, but explanation of the underlying mechanisms has been missing. In the present study, we performed a phenotype-based genetic association study (PGAS) in > 1,000 schizophrenia patients from the Göttingen Research Association for Schizophrenia (GRAS) data collection and found an association between the MMP-9 rs20544 C/T single-nucleotide polymorphism (SNP) located in the 3'untranslated region (UTR) and the severity of a chronic delusional syndrome. In cultured neurons, the rs20544 SNP influenced synaptic MMP-9 activity and the morphology of dendritic spines. We demonstrated that Fragile X mental retardation protein (FMRP) bound the MMP-9 3'UTR We also found dramatic changes in RNA structure folding and alterations in the affinity of FMRP for MMP-9 RNA, depending on the SNP variant. Finally, we observed greater sensitivity to psychosis-related locomotor hyperactivity in Mmp-9 heterozygous mice. We propose a novel mechanism that involves MMP-9-dependent changes in dendritic spine morphology and the pathophysiology of schizophrenia, providing the first mechanistic insights into the way in which the single base change in the MMP-9 gene (rs20544) influences gene function and results in phenotypic changes observed in schizophrenia patients. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  6. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hui

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitablymore » designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.« less

  7. The sequence specificity of UV-induced DNA damage in a systematically altered DNA sequence.

    PubMed

    Khoe, Clairine V; Chung, Long H; Murray, Vincent

    2018-06-01

    The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  8. Noninvasive metabolic profiling using microfluidics for analysis of single preimplantation embryos.

    PubMed

    Urbanski, John Paul; Johnson, Mark T; Craig, David D; Potter, David L; Gardner, David K; Thorsen, Todd

    2008-09-01

    Noninvasive analysis of metabolism at the single cell level will have many applications in evaluating cellular physiology. One clinically relevant application would be to determine the metabolic activities of embryos produced through assisted reproduction. There is increasing evidence that embryos with greater developmental capacity have distinct metabolic profiles. One of the standard techniques for evaluating embryonic metabolism has been to evaluate consumption and production of several key energetic substrates (glucose, pyruvate, and lactate) using microfluorometric enzymatic assays. These assays are performed manually using constriction pipets, which greatly limits the utility of this system. Through multilayer soft-lithography, we have designed a microfluidic device that can perform these assays in an automated fashion. Following manual loading of samples and enzyme cocktail reagents, this system performs sample and enzyme cocktail aliquotting, mixing of reagents, data acquisition, and data analysis without operator intervention. Optimization of design and operating regimens has resulted in the ability to perform serial measurements of glucose, pyruvate, and lactate in triplicate with submicroliter sample volumes within 5 min. The current architecture allows for automated analysis of 10 samples and intermittent calibration over a 3 h period. Standard curves generated for each metabolite have correlation coefficients that routinely exceed 0.99. With the use of a standard epifluorescent microscope and CCD camera, linearity is obtained with metabolite concentrations in the low micromolar range (low femtomoles of total analyte). This system is inherently flexible, being easily adapted for any NAD(P)H-based assay and scaled up in terms of sample ports. Open source JAVA-based software allows for simple alterations in routine algorithms. Furthermore, this device can be used as a standalone device in which media samples are loaded or be integrated into microfluidic culture systems for in line, real time metabolic evaluation. With the improved throughput and flexibility of this system, many barriers to evaluating metabolism of embryos and single cells are eliminated. As a proof of principle, metabolic activities of single murine embryos were evaluated using this device.

  9. Micro-evolution of toxicant tolerance: from single genes to the genome's tangled bank.

    PubMed

    van Straalen, Nico M; Janssens, Thierry K S; Roelofs, Dick

    2011-05-01

    Two case-studies published 55 years ago became textbook examples of evolution in action: DDT resistance in houseflies (Busvine) and the rise of melanic forms of the peppered moth (Kettlewell). Now, many years later, molecular studies have elucidated in detail the mechanisms conferring resistance. In this paper we focus on the case of metal tolerance in a soil-living arthropod, Orchesella cincta, and provide new evidence on the transcriptional regulation of a gene involved in stress tolerance, metallothionein. Evolution of resistance is often ascribed to cis-regulatory change of such stress-combatting genes. For example, DDT resistance in the housefly is due to insertion of a mobile element into the promoter of Cyp6g1, and overexpression of this gene allows rapid metabolism of DDT. The discovery of these mechanisms has promoted the idea that resistance to environmental toxicants can be brought about by relatively simple genetic changes, involving up-regulation, duplication or structural alteration of a single-gene. Similarly, the work on O. cincta shows that populations from metal-polluted mining sites have a higher constitutive expression of the cadmium-induced metallothionein (Mt) gene. Moreover, its promoter appears to include a large degree of polymorphism; Mt promoter alleles conferring high expression in cell-based bioreporter assays were shown to occur at higher frequency in populations living at polluted sites. The case is consistent with classical examples of micro-evolution through altered cis-regulation of a key gene. However, new data on qPCR analysis of gene expression in homozygous genotypes with both reference and metal-tolerant genetic backgrounds, show that Mt expression of the same pMt homozygotes depends on the origin of the population. This suggests that trans-acting factors are also important in the regulation of Mt expression and its evolution. So the idea that metal tolerance in Orchesella can be viewed as a single-gene adaptation must be abandoned. These data, added to a genome-wide gene expression profiling study reported earlier shows that evolution of tolerance takes place in a complicated molecular network, not unlike an internal tangled bank. © The Author(s) 2011. This article is published with open access at Springerlink.com

  10. Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing.

    PubMed

    Euskirchen, Philipp; Bielle, Franck; Labreche, Karim; Kloosterman, Wigard P; Rosenberg, Shai; Daniau, Mailys; Schmitt, Charlotte; Masliah-Planchon, Julien; Bourdeaut, Franck; Dehais, Caroline; Marie, Yannick; Delattre, Jean-Yves; Idbaih, Ahmed

    2017-11-01

    Molecular classification of cancer has entered clinical routine to inform diagnosis, prognosis, and treatment decisions. At the same time, new tumor entities have been identified that cannot be defined histologically. For central nervous system tumors, the current World Health Organization classification explicitly demands molecular testing, e.g., for 1p/19q-codeletion or IDH mutations, to make an integrated histomolecular diagnosis. However, a plethora of sophisticated technologies is currently needed to assess different genomic and epigenomic alterations and turnaround times are in the range of weeks, which makes standardized and widespread implementation difficult and hinders timely decision making. Here, we explored the potential of a pocket-size nanopore sequencing device for multimodal and rapid molecular diagnostics of cancer. Low-pass whole genome sequencing was used to simultaneously generate copy number (CN) and methylation profiles from native tumor DNA in the same sequencing run. Single nucleotide variants in IDH1, IDH2, TP53, H3F3A, and the TERT promoter region were identified using deep amplicon sequencing. Nanopore sequencing yielded ~0.1X genome coverage within 6 h and resulting CN and epigenetic profiles correlated well with matched microarray data. Diagnostically relevant alterations, such as 1p/19q codeletion, and focal amplifications could be recapitulated. Using ad hoc random forests, we could perform supervised pan-cancer classification to distinguish gliomas, medulloblastomas, and brain metastases of different primary sites. Single nucleotide variants in IDH1, IDH2, and H3F3A were identified using deep amplicon sequencing within minutes of sequencing. Detection of TP53 and TERT promoter mutations shows that sequencing of entire genes and GC-rich regions is feasible. Nanopore sequencing allows same-day detection of structural variants, point mutations, and methylation profiling using a single device with negligible capital cost. It outperforms hybridization-based and current sequencing technologies with respect to time to diagnosis and required laboratory equipment and expertise, aiming to make precision medicine possible for every cancer patient, even in resource-restricted settings.

  11. Potentials of single-cell biology in identification and validation of disease biomarkers.

    PubMed

    Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong

    2016-09-01

    Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. Both the constitutive Cauliflower Mosaic Virus 35S and tissue-specific AGAMOUS enhancers activate transcription autonomously in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    The presence of multiple enhancers and promoters within a single vector often provokes complicated mutual interaction and crosstalk, thereby, altering promoter specificity, which causes serious problems for precisely engineering gene function and agronomic traits in transgenic plants. Enhancer elem...

  13. Single or group housing altered hormonal physiology and affected pituitary and interstitial cell kinetics

    EPA Science Inventory

    A significant negative correlation between testicular interstitial cell tumors and pituitary tumors in control male F344 rats has been reported associated with the number of animals per cage. Change in numbers of animals per cage may cause stress and increased serum corticosteroi...

  14. Representing Black Culture: Racial Conflict and Cultural Politics in the United States.

    ERIC Educational Resources Information Center

    Merelman, Richard M.

    Recent instances of cultural conflict represent a single, broad, novel cultural tendency with real capacities to effect change. This tendency is labeled "black cultural projection." By altering American culture, black cultural projection questions entrenched patterns of political and economic domination in the United States, even though…

  15. Brief Report: Altered Horizontal Binding of Single Dots to Coherent Motion in Autism

    ERIC Educational Resources Information Center

    David, Nicole; Rose, Michael; Schneider, Till R.; Vogeley, Kai; Engel, Andreas K.

    2010-01-01

    Individuals with autism often show a fragmented way of perceiving their environment, suggesting a disorder of information integration, possibly due to disrupted communication between brain areas. We investigated thirteen individuals with high-functioning autism (HFA) and thirteen healthy controls using the metastable motion quartet, a stimulus…

  16. Lateralization of Motor Excitability during Observation of Bimanual Signs

    ERIC Educational Resources Information Center

    Mottonen, Riikka; Farmer, Harry; Watkins, Kate E.

    2010-01-01

    Viewing another person's hand actions enhances excitability in an observer's left and right primary motor (M1) cortex. We aimed to determine whether viewing communicative hand actions alters this bilateral sensorimotor resonance. Using single-pulse transcranial magnetic stimulation (TMS), we measured excitability in the left and right M1 while…

  17. Leadership in the '80s: Essays on Higher Education.

    ERIC Educational Resources Information Center

    Argyris, Chris; Cyert, Richard M.

    Two essays and two commentaries on leadership in higher education in the 1980s are presented. In "Education Administrators and Professionals," Chris Argyris considers the decline of public confidence in institutions and professionals by elaborating the concepts of single-loop (detecting and correcting error without altering underlying…

  18. Gut transcription in Helicoverpa zea is dynamically altered in response to baculovirus infection

    USDA-ARS?s Scientific Manuscript database

    The Helicoverpa zea transcriptome was analyzed 24 hours after H. zea larvae fed on artificial diet laced with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). Significant differential regulation of 1,139 putative genes (P<0.05 T-test with Benjamini and Hochberg False Discovery Rate) was detect...

  19. Technical Communications in OSS Content Management Systems: An Academic Institutional Case Study

    ERIC Educational Resources Information Center

    Cripps, Michael J.

    2011-01-01

    Single sourcing through a content management system (CMS) is altering technical communication practices in many organizations, including institutions of higher education. Open source software (OSS) solutions are currently among the most popular content management platforms adopted by colleges and universities in the United States and abroad. The…

  20. Reduced Anterior Cingulate Glutamatergic Concentrations in Childhood Ocd and Major Depression Versus Healthy Controls

    ERIC Educational Resources Information Center

    Rosenberg, David R.; Mirza, Yousha; Russell, Aileen; Tang, Jennifer; Smith, Janet M.; Banerjee, Preeya S.; Bhandari, Rashmi; Rose, Michelle; Ivey, Jennifer; Boyd, Courtney; Moore, Gregory J.

    2004-01-01

    Objective: To examine in vivo glutamatergic neurochemical alterations in the anterior cingulate cortex of pediatric patients with obsessive-compulsive disorder (OCD) without major depressive disorder (MDD) versus pediatric patients with MDD without OCD and healthy controls. Method: Single-voxel proton magnetic resonance spectroscopic examinations…

Top