NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, R.
1996-01-01
This guide describes the input data required for using MSAP2D (Multi Stage Aeroelastic analysis Program - Two Dimensional) computer code. MSAP2D can be used for steady, unsteady aerodynamic, and aeroelastic (flutter and forced response) analysis of bladed disks arranged in multiple blade rows such as those found in compressors, turbines, counter rotating propellers or propfans. The code can also be run for single blade row. MSAP2D code is an extension of the original NPHASE code for multiblade row aerodynamic and aeroelastic analysis. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The aeroelastic equations are solved in time domain. For single blade row analysis, frequency domain analysis is also provided to obtain unsteady aerodynamic coefficients required in an eigen analysis for flutter. In this manual, sample input and output are provided for a single blade row example, two blade row example with equal and unequal number of blades in the blade rows.
Detecting Unsteady Blade Row Interaction in a Francis Turbine using a Phase-Lag Boundary Condition
NASA Astrophysics Data System (ADS)
Wouden, Alex; Cimbala, John; Lewis, Bryan
2013-11-01
For CFD simulations in turbomachinery, methods are typically used to reduce the computational cost. For example, the standard periodic assumption reduces the underlying mesh to a single blade passage in axisymmetric applications. If the simulation includes only a single array of blades with an uniform inlet condition, this assumption is adequate. However, to compute the interaction between successive blade rows of differing periodicity in an unsteady simulation, the periodic assumption breaks down and may produce inaccurate results. As a viable alternative the phase-lag boundary condition assumes that the periodicity includes a temporal component which, if considered, allows for a single passage to be modeled per blade row irrespective of differing periodicity. Prominently used in compressible CFD codes for the analysis of gas turbines/compressors, the phase-lag boundary condition is adapted to analyze the interaction between the guide vanes and rotor blades in an incompressible simulation of the 1989 GAMM Workshop Francis turbine using OpenFOAM. The implementation is based on the ``direct-storage'' method proposed in 1977 by Erdos and Alzner. The phase-lag simulation is compared with available data from the GAMM workshop as well as a full-wheel simulation. Funding provided by DOE Award number: DE-EE0002667.
Blade row interaction effects on flutter and forced response
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.
1993-01-01
In the flutter or forced response analysis of a turbomachine blade row, the blade row in question is commonly treated as if it is isolated from the neigboring blade rows. Disturbances created by vibrating blades are then free to propagate away from this blade row without being disturbed. In reality, neighboring blade rows will reflect some portion of this wave energy back toward the vibrating blades, causing additional unsteady forces on them. It is of fundamental importance to determine whether or not these reflected waves can have a significant effect on the aeroelastic stability or forced response of a blade row. Therefore, a procedure to calculate intra-blade-row unsteady aerodynamic interactions was developed which relies upon results available from isolated blade row unsteady aerodynamic analyses. In addition, an unsteady aerodynamic influence coefficient technique is used to obtain a model for the vibratory response in which the neighboring blade rows are also flexible. The flutter analysis shows that interaction effects can be destabilizing, and the forced response analysis shows that interaction effects can result in a significant increase in the resonant response of a blade row.
Casing for a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiebe, David J.; Little, David A.; Charron, Richard C.
2016-07-12
A casing for a can annular gas turbine engine, including: a compressed air section (40) spanning between a last row of compressor blades (26) and a first row of turbine blades (28), the compressed air section (40) having a plurality of openings (50) there through, wherein a single combustor/advanced duct assembly (64) extends through each opening (50); and one top hat (68) associated with each opening (50) configured to enclose the associated combustor/advanced duct assembly (64) and seal the opening (50). A volume enclosed by the compressed air section (40) is not greater than a volume of a frustum (54)more » defined at an upstream end (56) by an inner diameter of the casing at the last row of compressor blades (26) and at a downstream end (60) by an inner diameter of the casing at the first row of turbine blades (28).« less
Counterrotatable booster compressor assembly for a gas turbine engine
NASA Technical Reports Server (NTRS)
Moniz, Thomas Ory (Inventor); Orlando, Robert Joseph (Inventor)
2004-01-01
A counterrotatable booster compressor assembly for a gas turbine engine having a counterrotatable fan section with a first fan blade row connected to a first drive shaft and a second fan blade row axially spaced from the first fan blade row and connected to a second drive shaft, the counterrotatable booster compressor assembly including a first compressor blade row connected to the first drive shaft and a second compressor blade row interdigitated with the first compressor blade row and connected to the second drive shaft. A portion of each fan blade of the second fan blade row extends through a flowpath of the counterrotatable booster compressor so as to function as a compressor blade in the second compressor blade row. The counterrotatable booster compressor further includes a first platform member integral with each fan blade of the second fan blade row at a first location so as to form an inner flowpath for the counterrotatable booster compressor and a second platform member integral with each fan blade of the second fan blade row at a second location so as to form an outer flowpath for the counterrotatable booster compressor.
Estimation of the energy loss at the blades in rowing: common assumptions revisited.
Hofmijster, Mathijs; De Koning, Jos; Van Soest, A J
2010-08-01
In rowing, power is inevitably lost as kinetic energy is imparted to the water during push-off with the blades. Power loss is estimated from reconstructed blade kinetics and kinematics. Traditionally, it is assumed that the oar is completely rigid and that force acts strictly perpendicular to the blade. The aim of the present study was to evaluate how reconstructed blade kinematics, kinetics, and average power loss are affected by these assumptions. A calibration experiment with instrumented oars and oarlocks was performed to establish relations between measured signals and oar deformation and blade force. Next, an on-water experiment was performed with a single female world-class rower rowing at constant racing pace in an instrumented scull. Blade kinematics, kinetics, and power loss under different assumptions (rigid versus deformable oars; absence or presence of a blade force component parallel to the oar) were reconstructed. Estimated power losses at the blades are 18% higher when parallel blade force is incorporated. Incorporating oar deformation affects reconstructed blade kinematics and instantaneous power loss, but has no effect on estimation of power losses at the blades. Assumptions on oar deformation and blade force direction have implications for the reconstructed blade kinetics and kinematics. Neglecting parallel blade forces leads to a substantial underestimation of power losses at the blades.
Numerical study of aero-excitation of steam-turbine rotor blade self-oscillations
NASA Astrophysics Data System (ADS)
Galaev, S. A.; Makhnov, V. Yu.; Ris, V. V.; Smirnov, E. M.
2018-05-01
Blade aero-excitation increment is evaluated by numerical solution of the full 3D unsteady Reynolds-averaged Navier-Stokes equations governing wet steam flow in a powerful steam-turbine last stage. The equilibrium wet steam model was adopted. Blade surfaces oscillations are defined by eigen-modes of a row of blades bounded by a shroud. Grid dependency study was performed with a reduced model being a set of blades multiple an eigen-mode nodal diameter. All other computations were carried out for the entire blade row. Two cases are considered, with an original-blade row and with a row of modified (reinforced) blades. Influence of eigen-mode nodal diameter and blade reinforcing on aero-excitation increment is analyzed. It has been established, in particular, that maximum value of the aero-excitation increment for the reinforced-blade row is two times less as compared with the original-blade row. Generally, results of the study point definitely to less probability of occurrence of blade self-oscillations in case of the reinforced blade-row.
Mean-line Modeling of an Axial Turbine
NASA Astrophysics Data System (ADS)
Tkachenko, A. Yu; Ostapyuk, Ya A.; Filinov, E. P.
2018-01-01
The article describes the approach for axial turbine modeling along the mean line. It bases on the developed model of an axial turbine blade row. This model is suitable for both nozzle vanes and rotor blades simulations. Consequently, it allows the simulation of the single axial turbine stage as well as a multistage turbine. The turbine stage model can take into account the cooling air flow before and after a throat of each blade row, outlet straightener vanes existence and stagger angle controlling of nozzle vanes. The axial turbine estimation method includes the loss estimation and thermogasdynamic analysis. The single stage axial turbine was calculated with the developed model. The obtained results deviation was within 3% when comparing with the results of CFD modeling.
NASA Technical Reports Server (NTRS)
Moffitt, T. P.; Prust, H. W., Jr.; Bartlett, W. M.
1974-01-01
The effect of film coolant ejection from the pressure side of a stator blade was determined in a two-dimensional cascade. Stator exit surveys were made for each of six rows of coolant holes. Successive multirow tests were made with two, three, four, five, and six rows of coolant holes open. The results of the multirow tests are compared with the predicted multirow performance obtained by adding the single-row data. Results are presented in terms of stator primary-air efficiency as a function of coolant fraction.
NASA Astrophysics Data System (ADS)
Lee, Daniel H.
The impact blade row interactions can have on the performance of compressor rotors has been well documented. It is also well known that rotor tip clearance flows can have a large effect on compressor performance and stall margin and recent research has shown that tip leakage flows can exhibit self-excited unsteadiness at near stall conditions. However, the impact of tip leakage flow on the performance and operating range of a compressor rotor, relative to other important flow features such as upstream stator wakes or downstream potential effects, has not been explored. To this end, a numerical investigation has been conducted to determine the effects of self-excited tip flow unsteadiness, upstream stator wakes, and downstream blade row interactions on the performance prediction of low speed and transonic compressor rotors. Calculations included a single blade-row rotor configuration as well as two multi-blade row configurations: one where the rotor was modeled with an upstream stator and a second where the rotor was modeled with a downstream stator. Steady-state and time accurate calculations were performed using a RANS solver and the results were compared with detailed experimental data obtained in the GE Low Speed Research Compressor and the Notre Dame Transonic Rig at several operating conditions including near stall. Differences in the performance predictions between the three configurations were then used to determine the effect of the upstream stator wakes and the downstream blade row interactions. Results obtained show that for both the low speed and transonic research compressors used in this investigation time-accurate RANS analysis is necessary to accurately predict the stalling character of the rotor. Additionally, for the first time it is demonstrated that capturing the unsteady tip flow can have a larger impact on rotor performance predictions than adjacent blade row interactions.
Unducted, counterrotating gearless front fan engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, J.B.
This patent describes a high bypass ratio gas turbine engine. It comprises a core engine effective for generating combustion gases passing through a main flow path; a power turbine aft of the core engine and including first and second counter rotatable interdigitated turbine blade rows, effective for counterrotating first and second drive shafts, respectively; an unducted fan section forward of the core engine including a first fan blade row connected to the first drive shaft and a second fan blade row axially spaced aftward from the first fan blade row and connected to the second drive shaft; and a boostermore » compressor axially positioned between the first and second fan blade rows and including first compressor blade rows connected to the first drive shaft and second compressor blade rows connected to the second drive shaft.« less
NASA Technical Reports Server (NTRS)
Wuerker, R. F.; Kobayashi, R. J.; Heflinger, L. O.; Ware, T. C.
1974-01-01
Two holographic interblade row flow visualization systems were designed to determine the three-dimensional shock patterns and velocity distributions within the rotating blade row of a transonic fan rotor, utilizing the techniques of pulsed laser transmission holography. Both single- and double-exposure bright field holograms and dark field scattered-light holograms were successfully recorded. Two plastic windows were installed in the rotor tip casing and outer casing forward of the rotor to view the rotor blade passage. The viewing angle allowed detailed investigation of the leading edge shocks and shocks in the midspan damper area; limited details of the trailing edge shocks also were visible. A technique was devised for interpreting the reconstructed holograms by constructing three dimensional models that allowed identification of the major shock systems. The models compared favorably with theoretical predictions and results of the overall and blade element data. Most of the holograms were made using the rapid double-pulse technique.
Parallel 3D Multi-Stage Simulation of a Turbofan Engine
NASA Technical Reports Server (NTRS)
Turner, Mark G.; Topp, David A.
1998-01-01
A 3D multistage simulation of each component of a modern GE Turbofan engine has been made. An axisymmetric view of this engine is presented in the document. This includes a fan, booster rig, high pressure compressor rig, high pressure turbine rig and a low pressure turbine rig. In the near future, all components will be run in a single calculation for a solution of 49 blade rows. The simulation exploits the use of parallel computations by using two levels of parallelism. Each blade row is run in parallel and each blade row grid is decomposed into several domains and run in parallel. 20 processors are used for the 4 blade row analysis. The average passage approach developed by John Adamczyk at NASA Lewis Research Center has been further developed and parallelized. This is APNASA Version A. It is a Navier-Stokes solver using a 4-stage explicit Runge-Kutta time marching scheme with variable time steps and residual smoothing for convergence acceleration. It has an implicit K-E turbulence model which uses an ADI solver to factor the matrix. Between 50 and 100 explicit time steps are solved before a blade row body force is calculated and exchanged with the other blade rows. This outer iteration has been coined a "flip." Efforts have been made to make the solver linearly scaleable with the number of blade rows. Enough flips are run (between 50 and 200) so the solution in the entire machine is not changing. The K-E equations are generally solved every other explicit time step. One of the key requirements in the development of the parallel code was to make the parallel solution exactly (bit for bit) match the serial solution. This has helped isolate many small parallel bugs and guarantee the parallelization was done correctly. The domain decomposition is done only in the axial direction since the number of points axially is much larger than the other two directions. This code uses MPI for message passing. The parallel speed up of the solver portion (no 1/0 or body force calculation) for a grid which has 227 points axially.
NASA Astrophysics Data System (ADS)
van de Wall, Allan George
The unsteady process resulting from the interaction of upstream vortical structures with a downstream blade row in turbomachines can have a significant impact on the machine efficiency. A transport model assuming incompressible flow and using linear theory was developed to take this process into account in the computation of time-average multistage turbomachinery flows. The upstream vortical structures are transported by the mean flow of the downstream blade row, redistributing the time-average unsteady kinetic energy (Uke ) associated with the incoming disturbance. The model was applied to compressor and turbine geometry. For compressors, the Uke associated with upstream 2-D wakes and 3-D tip clearance flows is reduced as a result of the interaction with a downstream blade row. This reduction results from inviscid effects as well as viscous effects and reduces the loss associated with the upstream disturbance. Any disturbance passing through a compressor blade row results in a smaller loss than if the disturbance was mixed-out prior to entering the blade row. For turbines, the Uke associated with upstream 2-D wakes and 3-D tip clearance flows are significantly amplified by inviscid effects as a result of the interaction with a downstream turbine blade row. Viscous effects act to reduce the amplification of the Uke by inviscid effects but results in a substantial loss. Any disturbance passing through a turbine blade row results in a larger loss than if the disturbance was mixedout prior to entering the blade row.
Development of a linearized unsteady Euler analysis for turbomachinery blade rows
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Montgomery, Matthew D.; Kousen, Kenneth A.
1995-01-01
A linearized unsteady aerodynamic analysis for axial-flow turbomachinery blading is described in this report. The linearization is based on the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade rows. The field equations and surface conditions required for inviscid, nonlinear and linearized, unsteady aerodynamic analyses of three-dimensional flow through a single, blade row operating within a cylindrical duct, are derived. An existing numerical algorithm for determining time-accurate solutions of the nonlinear unsteady flow problem is described, and a numerical model, based upon this nonlinear flow solver, is formulated for the first-harmonic linear unsteady problem. The linearized aerodynamic and numerical models have been implemented into a first-harmonic unsteady flow code, called LINFLUX. At present this code applies only to two-dimensional flows, but an extension to three-dimensions is planned as future work. The three-dimensional aerodynamic and numerical formulations are described in this report. Numerical results for two-dimensional unsteady cascade flows, excited by prescribed blade motions and prescribed aerodynamic disturbances at inlet and exit, are also provided to illustrate the present capabilities of the LINFLUX analysis.
Unsteady Blade Row Interaction in a Transonic Turbine
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.
1996-01-01
Experimental data from jet-engine tests have indicated that unsteady blade row interaction effects can have a significant impact on the performance of multiple-stage turbines. The magnitude of blade row interaction is a function of both blade-count ratio and axial spacing. In the current research program, numerical simulations have been used to quantify the effects of blade count ratio on the performance of an advanced turbine geometries.
1976-03-01
frequency noise transmission through turbine blade rows and addition of engine and component data to the prediction method for core noise. " Phase VI...lower turbine blade row attenuation for this low bypass engine . When the blade row attenuation is accounted for by means of a turbine work extrac...component and engine data. Currently, an in-depth program to investigate turbine blade row attenuation is underway (NAS3-19435 and DOT-FA75WA-3688). The
Wingtip mounted, counter-rotating proprotor for tiltwing aircraft
NASA Technical Reports Server (NTRS)
Wechsler, James K. (Inventor); Rutherford, John W. (Inventor)
1995-01-01
A tiltwing aircraft, capable of in-flight conversion between a hover and forward cruise mode, employs a counter-rotating proprotor arrangement which permits a significantly increased cruise efficiency without sacrificing either the size of the conversion envelope or the wing efficiency. A benefit in hover is also provided because of the lower effective disk loading for the counter-rotating proprotor, as opposed to a single rotation proprotor of the same diameter. At least one proprotor is provided on each wing section, preferably mounted on the wingtip, with each proprotor having two counter-rotating blade rows. Each blade row has a plurality of blades which are relatively stiff-in-plane and are mounted such that cyclic pitch adjustments may be made for hover control during flight.
NASA Astrophysics Data System (ADS)
Heberling, Brian
Computational fluid dynamics (CFD) simulations can offer a detailed view of the complex flow fields within an axial compressor and greatly aid the design process. However, the desire for quick turnaround times raises the question of how exact the model must be. At design conditions, steady CFD simulating an isolated blade row can accurately predict the performance of a rotor. However, as a compressor is throttled and mass flow rate decreased, axial flow becomes weaker making the capturing of unsteadiness, wakes, or other flow features more important. The unsteadiness of the tip clearance flow and upstream blade wake can have a significant impact on a rotor. At off-design conditions, time-accurate simulations or modeling multiple blade rows can become necessary in order to receive accurate performance predictions. Unsteady and multi- bladerow simulations are computationally expensive, especially when used in conjunction. It is important to understand which features are important to model in order to accurately capture a compressor's performance. CFD simulations of a transonic axial compressor throttling from the design point to stall are presented. The importance of capturing the unsteadiness of the rotor tip clearance flow versus capturing upstream blade-row interactions is examined through steady and unsteady, single- and multi-bladerow computations. It is shown that there are significant differences at near stall conditions between the different types of simulations.
A review of turbomachinery blade-row interaction research
NASA Technical Reports Server (NTRS)
Smith, Todd E.
1988-01-01
Analytical and experimental research in the area of unsteady aerodynamics of turbomachinery has conventionally been applied to blading which oscillates when placed in a uniformly flowing fluid. Comparatively less effort has been offered for the study of blading which is subjected to nonuniformities within the flow field. The fluid dynamic environment of a blade-row embedded within multi-stage turbomachines is dominated by such highly unsteady fluid flow conditions. The production of wakes and circumferential pressure variations from adjacent blade-rows causes large unsteady energy transfers between the fluid and the blades. Determination of the forced response of a blade requires the ability to predict the unsteady loads which are induced by these aerodynamic sources. A review of research publications was done to determine recent investigations of the response of turbomachinery blading subjected to aerodynamic excitations. Such excitations are a direct result of the blade-row aerodynamic interaction which occurs between adjacent cascades of blades. The reports and papers reviewed have been organized into areas emphasizing experimental or analytical efforts.
A Numerical Simulator for Three-Dimensional Flows Through Vibrating Blade Rows
NASA Technical Reports Server (NTRS)
Chuang, H. Andrew; Verdon, Joseph M.
1998-01-01
The three-dimensional, multi-stage, unsteady, turbomachinery analysis, TURBO, has been extended to predict the aeroelastic and aeroacoustic response behaviors of a single blade row operating within a cylindrical annular duct. In particular, a blade vibration capability has been incorporated so that the TURBO analysis can be applied over a solution domain that deforms with a vibratory blade motion. Also, unsteady far-field conditions have been implemented to render the computational boundaries at inlet and exit transparent to outgoing unsteady disturbances. The modified TURBO analysis is applied herein to predict unsteady subsonic and transonic flows. The intent is to partially validate this nonlinear analysis for blade flutter applications, via numerical results for benchmark unsteady flows, and to demonstrate the analysis for a realistic fan rotor. For these purposes, we have considered unsteady subsonic flows through a 3D version of the 10th Standard Cascade, and unsteady transonic flows through the first stage rotor of the NASA Lewis, Rotor 67, two-stage fan.
Smith, Moya Meredith
2016-01-01
The squaliform sharks represent one of the most speciose shark clades. Many adult squaliforms have blade-like teeth, either on both jaws or restricted to the lower jaw, forming a continuous, serrated blade along the jaw margin. These teeth are replaced as a single unit and successor teeth lack the alternate arrangement present in other elasmobranchs. Micro-CT scans of embryos of squaliforms and a related outgroup (Pristiophoridae) revealed that the squaliform dentition pattern represents a highly modified version of tooth replacement seen in other clades. Teeth of Squalus embryos are arranged in an alternate pattern, with successive tooth rows containing additional teeth added proximally. Asynchronous timing of tooth production along the jaw and tooth loss prior to birth cause teeth to align in oblique sets containing teeth from subsequent rows; these become parallel to the jaw margin during ontogeny, so that adult Squalus has functional tooth rows comprising obliquely stacked teeth of consecutive developmental rows. In more strongly heterodont squaliforms, initial embryonic lower teeth develop into the oblique functional sets seen in adult Squalus, with no requirement to form, and subsequently lose, teeth arranged in an initial alternate pattern. PMID:28018617
NASA Astrophysics Data System (ADS)
Underwood, Charlie; Johanson, Zerina; Smith, Moya Meredith
2016-11-01
The squaliform sharks represent one of the most speciose shark clades. Many adult squaliforms have blade-like teeth, either on both jaws or restricted to the lower jaw, forming a continuous, serrated blade along the jaw margin. These teeth are replaced as a single unit and successor teeth lack the alternate arrangement present in other elasmobranchs. Micro-CT scans of embryos of squaliforms and a related outgroup (Pristiophoridae) revealed that the squaliform dentition pattern represents a highly modified version of tooth replacement seen in other clades. Teeth of Squalus embryos are arranged in an alternate pattern, with successive tooth rows containing additional teeth added proximally. Asynchronous timing of tooth production along the jaw and tooth loss prior to birth cause teeth to align in oblique sets containing teeth from subsequent rows; these become parallel to the jaw margin during ontogeny, so that adult Squalus has functional tooth rows comprising obliquely stacked teeth of consecutive developmental rows. In more strongly heterodont squaliforms, initial embryonic lower teeth develop into the oblique functional sets seen in adult Squalus, with no requirement to form, and subsequently lose, teeth arranged in an initial alternate pattern.
Three-dimensional analysis of the Pratt and Whitney alternate design SSME fuel turbine
NASA Technical Reports Server (NTRS)
Kirtley, K. R.; Beach, T. A.; Adamczyk, J. J.
1991-01-01
The three dimensional viscous time-mean flow in the Pratt and Whitney alternate design space shuttle main engine fuel turbine is simulated using the average passage Navier-Stokes equations. The migration of secondary flows generated by upstream blade rows and their effect on the performance of downstream blade rows is studied. The present simulation confirms that the flow in this two stage turbine is highly three dimensional and dominated by the tip leakage flow. The tip leakage vortex generated by the first blade persists through the second blade and adversely affects its performance. The greatest mixing of the inlet total temperature distortion occurs in the second vane and is due to the large leakage vortex generated by the upstream rotor. It is assumed that the predominant spanwise mixing mechanism in this low aspect ratio turbine is the radial transport due to the deterministically unsteady vortical flow generated by upstream blade rows. A by-product of the analysis is accurate pressure and heat loads for all blade rows under the influence of neighboring blade rows. These aero loads are useful for advanced structural analysis of the vanes and blades.
Cooling arrangement for a tapered turbine blade
Liang, George
2010-07-27
A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.
NASA Astrophysics Data System (ADS)
Wouden, Alex; Cimbala, John; Lewis, Bryan
2014-11-01
While the periodic boundary condition is useful for handling rotational symmetry in many axisymmetric geometries, its application fails for analysis of rotor-stator interaction (RSI) in multi-stage turbomachinery flow. The inadequacy arises from the underlying geometry where the blade counts per row differ, since the blade counts are crafted to deter the destructive harmonic forces of synchronous blade passing. Therefore, to achieve the computational advantage of modeling a single blade passage per row while preserving the integrity of the RSI, a phase-lag boundary condition is adapted to OpenFOAM® software's incompressible pressure-based solver. The phase-lag construct is accomplished through restating the implicit periodic boundary condition as a constant boundary condition that is updated at each time step with phase-shifted data from the coupled cells adjacent to the boundary. Its effectiveness is demonstrated using a typical Francis hydroturbine modeled as single- and double-passages with phase-lag boundary conditions. The evaluation of the phase-lag condition is based on the correspondence of the overall computational performance and the calculated flow parameters of the phase-lag simulations with those of a baseline full-wheel simulation. Funded in part by DOE Award Number: DE-EE0002667.
NASA Technical Reports Server (NTRS)
Brent, J. A.; Clemmons, D. R.
1974-01-01
An experimental investigation was conducted with an 0.8 hub/tip ratio, single-stage, axial flow compressor to determine the potential of tandem-airfoil blading for improving the efficiency and stable operating range of compressor stages. The investigation included testing of a baseline stage with single-airfoil blading and two tandem-blade stages. The overall performance of the baseline stage and the tandem-blade stage with a 20-80% loading split was considerably below the design prediction. The other tandem-blade stage, which had a rotor with a 50-50% loading split, came within 4.5% of the design pressure rise (delta P(bar)/P(bar) sub 1) and matched the design stage efficiency. The baseline stage with single-airfoil blading, which was designed to account for the actual rotor inlet velocity profile and the effects of axial velocity ratio and secondary flow, achieved the design predicted performance. The corresponding tandem-blade stage (50-50% loading split in both blade rows) slightly exceeded the design pressure rise but was 1.5 percentage points low in efficiency. The tandem rotors tested during both phases demonstrated higher pressure rise and efficiency than the corresponding single-airfoil rotor, with identical inlet and exit airfoil angles.
NASA Technical Reports Server (NTRS)
Sandercock, D. M.; Sanger, N. L.
1974-01-01
A single rotating blade row was tested with two magnitudes of tip radial distortion and two magnitudes of hub radial distortion imposed on the inlet flow. The rotor was about 50 centimeters (20 in.) in diameter and had a design operating tip speed of approximately 420 meters per second (1380 ft/sec). Overall performance at 60, 80, and 100 percent of equivalent design speed generally showed a decrease (compared to undistorted flow) in rotor stall margin with tip radial distortion but no change, or a slight increase, in rotor stall margin with hub radial distortion. At design speed there was a decrease in rotor overall total pressure ratio and choke flow with all inlet flow distortions. Radial distributions of blade element parameters are presented for selected operating conditions at design speed.
NASA Technical Reports Server (NTRS)
Mahoney, John J; Dugan, Paul D; Budinger, Raymond E; Goelzer, H Fred
1950-01-01
A 30-inch tip-diameter axial-flow compressor stage was investigated with and without rotor to determine individual blade-row performance, interblade-row effects, and outer-wall boundary-layer conditions. Velocity gradients at guide-vane outlet without rotor approximated design assumptions, when the measured variation of leaving angle was considered. With rotor in operation, Mach number and rotor-blade effects changed flow distribution leaving guide vanes and invalidated design assumption of radial equilibrium. Rotor-blade performance correlated interpolated two-dimensional results within 2 degrees, although tip stall was indicated in experimental and not two-dimensional results. Boundary-displacement thickness was less than 1.0 and 1.5 percent of passage height after guide vanes and after rotor, respectively, but increased rapidly after rotor when tip stall occurred.
Probabilistic Aeroelastic Analysis of Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, S. K.; Stefko, G. L.
2004-01-01
A probabilistic approach is described for aeroelastic analysis of turbomachinery blade rows. Blade rows with subsonic flow and blade rows with supersonic flow with subsonic leading edge are considered. To demonstrate the probabilistic approach, the flutter frequency, damping and forced response of a blade row representing a compressor geometry is considered. The analysis accounts for uncertainties in structural and aerodynamic design variables. The results are presented in the form of probabilistic density function (PDF) and sensitivity factors. For subsonic flow cascade, comparisons are also made with different probabilistic distributions, probabilistic methods, and Monte-Carlo simulation. The approach shows that the probabilistic approach provides a more realistic and systematic way to assess the effect of uncertainties in design variables on the aeroelastic instabilities and response.
Computational fluid dynamics simulation of sound propagation through a blade row.
Zhao, Lei; Qiao, Weiyang; Ji, Liang
2012-10-01
The propagation of sound waves through a blade row is investigated numerically. A wave splitting method in a two-dimensional duct with arbitrary mean flow is presented, based on which pressure amplitude of different wave mode can be extracted at an axial plane. The propagation of sound wave through a flat plate blade row has been simulated by solving the unsteady Reynolds average Navier-Stokes equations (URANS). The transmission and reflection coefficients obtained by Computational Fluid Dynamics (CFD) are compared with semi-analytical results. It indicates that the low order URANS scheme will cause large errors if the sound pressure level is lower than -100 dB (with as reference pressure the product of density, main flow velocity, and speed of sound). The CFD code has sufficient precision when solving the interaction of sound wave and blade row providing the boundary reflections have no substantial influence. Finally, the effects of flow Mach number, blade thickness, and blade turning angle on sound propagation are studied.
NASA Technical Reports Server (NTRS)
Prust, H. W., Jr.
1972-01-01
Demonstration that the change in output of a cooled turbine blade row relative to the specific output of the uncooled blade row can be positive, negative, or zero, depending on the velocity, injection location, injection angle, and temperature of the coolant. Comparisons between the analytical results and experimental results for four different cases of coolant discharge, all at a coolant temperature ratio of unity, show good agreement for three cases, and rather poor agreement for the other.
Active control of turbomachine discrete tones
NASA Technical Reports Server (NTRS)
Fleeter, Sanford
1994-01-01
This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.
Active control of turbomachine discrete tones
NASA Astrophysics Data System (ADS)
Fleeter, Sanford
This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.
Aeroelastic Computations of a Compressor Stage Using the Harmonic Balance Method
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.
2010-01-01
The aeroelastic characteristics of a compressor stage were analyzed using a computational fluid dynamic (CFD) solver that uses the harmonic balance method to solve the governing equations. The three dimensional solver models the unsteady flow field due to blade vibration using the Reynolds-Averaged Navier-Stokes equations. The formulation enables the study of the effect of blade row interaction through the inclusion of coupling modes between blade rows. It also enables the study of nonlinear effects of high amplitude blade vibration by the inclusion of higher harmonics of the fundamental blade vibration frequency. In the present work, the solver is applied to study in detail the aeroelastic characteristics of a transonic compressor stage. Various parameters were included in the study: number of coupling modes, blade row axial spacing, and operating speeds. Only the first vibration mode is considered with amplitude of oscillation in the linear range. Both aeroelastic stability (flutter) of rotor blade and unsteady loading on the stator are calculated. The study showed that for the stage considered, the rotor aerodynamic damping is not influenced by the presence of the stator even when the axial spacing is reduced by nearly 25 percent. However, the study showed that blade row interaction effects become important for the unsteady loading on the stator when the axial spacing is reduced by the same amount.
SSME Turbopump Turbine Computations
NASA Technical Reports Server (NTRS)
Jorgenson, P. G. E.
1985-01-01
A two-dimensional viscous code was developed to be used in the prediction of the flow in the SSME high-pressure turbopump blade passages. The rotor viscous code (RVC) employs a four-step Runge-Kutta scheme to solve the two-dimensional, thin-layer Navier-Stokes equations. The Baldwin-Lomax eddy-viscosity model is used for these turbulent flow calculations. A viable method was developed to use the relative exit conditions from an upstream blade row as the inlet conditions to the next blade row. The blade loading diagrams are compared with the meridional values obtained from an in-house quasithree-dimensional inviscid code. Periodic boundary conditions are imposed on a body-fitted C-grid computed by using the GRAPE GRids about Airfoils using Poisson's Equation (GRAPE) code. Total pressure, total temperature, and flow angle are specified at the inlet. The upstream-running Riemann invariant is extrapolated from the interior. Static pressure is specified at the exit such that mass flow is conserved from blade row to blade row, and the conservative variables are extrapolated from the interior. For viscous flows the noslip condition is imposed at the wall. The normal momentum equation gives the pressure at the wall. The density at the wall is obtained from the wall total temperature.
NASA Technical Reports Server (NTRS)
Lakshminarayana, B.; Davino, R.
1979-01-01
Pure tone noise, blade row vibrations, and aerodynamic losses are phenomena which are influenced by stator and IGV (inlet guide vane) blade wake production, decay, and interaction in an axial-flow compressor. The objective of this investigation is to develop a better understanding of the nature of stator and IGV blade wakes that are influenced by the presence of centrifugal forces due to flow curvature. A single sensor hot wire probe was employed to determine the three mean velocity components of stator and IGV wakes of a single stage compressor. These wake profiles indicated a varying decay rate of the tangential and axial wake velocity components and a wake profile similarity. An analysis, which predicts this trend, has been developed. The radial velocities are found to be appreciable in both IGV and the stator wakes.
NASA Technical Reports Server (NTRS)
Cheatham, J. G.
1974-01-01
An axial flow compressor stage, having tandem airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor has an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of single-airfoil blading designed for the same vector diagrams and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design.
Linearized Unsteady Aerodynamic Analysis of the Acoustic Response to Wake/Blade-Row Interaction
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Huff, Dennis L. (Technical Monitor)
2001-01-01
The three-dimensional, linearized Euler analysis, LINFLUX, is being developed to provide a comprehensive and efficient unsteady aerodynamic scheme for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. LINFLUX couples a near-field, implicit, wave-split, finite-volume solution to far-field acoustic eigensolutions, to predict the aerodynamic responses of a blade row to prescribed structural and aerodynamic excitations. It is applied herein to predict the acoustic responses of a fan exit guide vane (FEGV) to rotor wake excitations. The intent is to demonstrate and assess the LINFLUX analysis via application to realistic wake/blade-row interactions. Numerical results are given for the unsteady pressure responses of the FEGV, including the modal pressure responses at inlet and exit. In addition, predictions for the modal and total acoustic power levels at the FEGV exit are compared with measurements. The present results indicate that the LINFLUX analysis should be useful in the aeroacoustic design process, and for understanding the three-dimensional flow physics relevant to blade-row noise generation and propagation.
Predicting Flutter and Forced Response in Turbomachinery
NASA Technical Reports Server (NTRS)
VanZante, Dale E.; Adamczyk, John J.; Srivastava, Rakesh; Bakhle, Milind A.; Shabbir, Aamir; Chen, Jen-Ping; Janus, J. Mark; To, Wai-Ming; Barter, John
2005-01-01
TURBO-AE is a computer code that enables detailed, high-fidelity modeling of aeroelastic and unsteady aerodynamic characteristics for prediction of flutter, forced response, and blade-row interaction effects in turbomachinery. Flow regimes that can be modeled include subsonic, transonic, and supersonic, with attached and/or separated flow fields. The three-dimensional Reynolds-averaged Navier-Stokes equations are solved numerically to obtain extremely accurate descriptions of unsteady flow fields in multistage turbomachinery configurations. Blade vibration is simulated by use of a dynamic-grid-deformation technique to calculate the energy exchange for determining the aerodynamic damping of vibrations of blades. The aerodynamic damping can be used to assess the stability of a blade row. TURBO-AE also calculates the unsteady blade loading attributable to such external sources of excitation as incoming gusts and blade-row interactions. These blade loadings, along with aerodynamic damping, are used to calculate the forced responses of blades to predict their fatigue lives. Phase-lagged boundary conditions based on the direct-store method are used to calculate nonzero interblade phase-angle oscillations; this practice eliminates the need to model multiple blade passages, and, hence, enables large savings in computational resources.
NASA Astrophysics Data System (ADS)
Aziz, A. M. Y.; Harun, M. N.; Syahrom, Ardiyansyah; Omar, A. H.
2017-04-01
This paper presents a study of the hydrodynamics of several rowing blade designs. The study was done using Computational Fluid Dynamics (CFD) which enabled the investigation to be done similar to the experimental study, but with additional hydrodynamic visualization for further analysis and understanding. The CFD method was validated using quasi-static experimental data from Caplan (2007). Besides that, the proposed CFD analyses have improved the precious CFD results with the percentage of error of 6.58 percent of lift and 0.69 percent of drag force compared to 33.65 and 18.75 percent obtained by Coppel (2010). Consequent to the successful validation, the study then proceeded with the real size of Macon, Big balde and Fat blade. It was found that the hydrodynamic performance of the Fat blade was the highest due to the area, aspect ratio and the shape of the blade. Besides that, distribution of pressure for all models were also investigated which deepened the understanding of the blade fluid mechanics of rowing.
AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS
NASA Technical Reports Server (NTRS)
Crouse, J. E.
1994-01-01
The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified with fourth-degree polynomial functions of path distance from the maximum thickness point. Input to the aerodynamic and blading design program includes the annulus profile, the overall compressor mass flow, the pressure ratio, and the rotative speed. A number of input parameters are also used to specify and control the blade row aerodynamics and geometry. The output from the aerodynamic solution has an overall blade row and compressor performance summary followed by blade element parameters for the individual blade rows. If desired, the blade coordinates in the streamwise direction for internal flow analysis codes and the coordinates on plane sections through blades for fabrication drawings may be stored and printed. The aerodynamic and blading design program for multistage axial-flow compressors is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 470K of 8 bit bytes. This program was developed in 1981.
Unsteady flows in rotor-stator cascades
NASA Astrophysics Data System (ADS)
Lee, Yu-Tai; Bein, Thomas W.; Feng, Jin Z.; Merkle, Charles L.
1991-03-01
A time-accurate potential-flow calculation method has been developed for unsteady incompressible flows through two-dimensional multi-blade-row linear cascades. The method represents the boundary surfaces by distributing piecewise linear-vortex and constant-source singularities on discrete panels. A local coordinate is assigned to each independently moving object. Blade-shed vorticity is traced at each time step. The unsteady Kutta condition applied is nonlinear and requires zero blade trailing-edge loading at each time. Its influence on the solutions depends on the blade trailing-edge shapes. Steady biplane and cascade solutions are presented and compared to exact solutions and experimental data. Unsteady solutions are validated with the Wagner function for an airfoil moving impulsively from rest and the Theodorsen function for an oscillating airfoil. The shed vortex motion and its interaction with blades are calculated and compared to an analytic solution. For multi-blade-row cascade, the potential effect between blade rows is predicted using steady and quasi unsteady calculations. The accuracy of the predictions is demonstrated using experimental results for a one-stage turbine stator-rotor.
Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Gallagher, Edward J. (Inventor); Monzon, Byron R. (Inventor); Bugaj, Shari L. (Inventor)
2018-01-01
A gas turbine engine includes a core flow passage, a bypass flow passage, and a propulsor arranged at an inlet of the bypass flow passage and the core flow passage. The propulsor includes a row of propulsor blades. The row includes no more than 20 of the propulsor blades. The propulsor has a pressure ratio between about 1.2 and about 1.7 across the propulsor blades.
NASA Technical Reports Server (NTRS)
Tan, Choon-Sooi; Suder, Kenneth (Technical Monitor)
2003-01-01
A framework for an effective computational methodology for characterizing the stability and the impact of distortion in high-speed multi-stage compressor is being developed. The methodology consists of using a few isolated-blade row Navier-Stokes solutions for each blade row to construct a body force database. The purpose of the body force database is to replace each blade row in a multi-stage compressor by a body force distribution to produce same pressure rise and flow turning. To do this, each body force database is generated in such a way that it can respond to the changes in local flow conditions. Once the database is generated, no hrther Navier-Stokes computations are necessary. The process is repeated for every blade row in the multi-stage compressor. The body forces are then embedded as source terms in an Euler solver. The method is developed to have the capability to compute the performance in a flow that has radial as well as circumferential non-uniformity with a length scale larger than a blade pitch; thus it can potentially be used to characterize the stability of a compressor under design. It is these two latter features as well as the accompanying procedure to obtain the body force representation that distinguish the present methodology from the streamline curvature method. The overall computational procedures have been developed. A dimensional analysis was carried out to determine the local flow conditions for parameterizing the magnitudes of the local body force representation of blade rows. An Euler solver was modified to embed the body forces as source terms. The results from the dimensional analysis show that the body forces can be parameterized in terms of the two relative flow angles, the relative Mach number, and the Reynolds number. For flow in a high-speed transonic blade row, they can be parameterized in terms of the local relative Mach number alone.
NASA Technical Reports Server (NTRS)
Prust, H. W., Jr.
1971-01-01
The results of an analytical study to determine the effect of changes in the amount, velocity, injection location, injection angle, and temperature of coolant flow on blade row performance are presented. The results show that the change in output of a cooled turbine blade row relative to the specific output of the uncooled blade row can be positive, negative, or zero. Comparisons between the analytical results and experimental results for four different cases of coolant discharge, all at a coolant temperature ratio of unity, show good agreement for three cases and rather poor agreement for the other. To further test the validity of the method, more experimental data is needed, particularly at different coolant temperature ratios.
NASA Technical Reports Server (NTRS)
Crook, Andrew J.; Delaney, Robert A.
1992-01-01
The computer program user's manual for the ADPACAPES (Advanced Ducted Propfan Analysis Code-Average Passage Engine Simulation) program is included. The objective of the computer program is development of a three-dimensional Euler/Navier-Stokes flow analysis for fan section/engine geometries containing multiple blade rows and multiple spanwise flow splitters. An existing procedure developed by Dr. J. J. Adamczyk and associates at the NASA Lewis Research Center was modified to accept multiple spanwise splitter geometries and simulate engine core conditions. The numerical solution is based upon a finite volume technique with a four stage Runge-Kutta time marching procedure. Multiple blade row solutions are based upon the average-passage system of equations. The numerical solutions are performed on an H-type grid system, with meshes meeting the requirement of maintaining a common axisymmetric mesh for each blade row grid. The analysis was run on several geometry configurations ranging from one to five blade rows and from one to four radial flow splitters. The efficiency of the solution procedure was shown to be the same as the original analysis.
Modeling of Unsteady Three-dimensional Flows in Multistage Machines
NASA Technical Reports Server (NTRS)
Hall, Kenneth C.; Pratt, Edmund T., Jr.; Kurkov, Anatole (Technical Monitor)
2003-01-01
Despite many years of development, the accurate and reliable prediction of unsteady aerodynamic forces acting on turbomachinery blades remains less than satisfactory, especially when viewed next to the great success investigators have had in predicting steady flows. Hall and Silkowski (1997) have proposed that one of the main reasons for the discrepancy between theory and experiment and/or industrial experience is that many of the current unsteady aerodynamic theories model a single blade row in an infinitely long duct, ignoring potentially important multistage effects. However, unsteady flows are made up of acoustic, vortical, and entropic waves. These waves provide a mechanism for the rotors and stators of multistage machines to communicate with one another. In other words, wave behavior makes unsteady flows fundamentally a multistage (and three-dimensional) phenomenon. In this research program, we have has as goals (1) the development of computationally efficient computer models of the unsteady aerodynamic response of blade rows embedded in a multistage machine (these models will ultimately be capable of analyzing three-dimensional viscous transonic flows), and (2) the use of these computer codes to study a number of important multistage phenomena.
Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H
2013-02-19
A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.
Optimization of a Centrifugal Impeller Design Through CFD Analysis
NASA Technical Reports Server (NTRS)
Chen, W. C.; Eastland, A. H.; Chan, D. C.; Garcia, Roberto
1993-01-01
This paper discusses the procedure, approach and Rocketdyne CFD results for the optimization of the NASA consortium impeller design. Two different approaches have been investigated. The first one is to use a tandem blade arrangement, the main impeller blade is split into two separate rows with the second blade row offset circumferentially with respect to the first row. The second approach is to control the high losses related to secondary flows within the impeller passage. Many key parameters have been identified and each consortium team member involved will optimize a specific parameter using 3-D CFD analysis. Rocketdyne has provided a series of CFD grids for the consortium team members. SECA will complete the tandem blade study, SRA will study the effect of the splitter blade solidity change, NASA LeRC will evaluate the effect of circumferential position of the splitter blade, VPI will work on the hub to shroud blade loading distribution, NASA Ames will examine the impeller discharge leakage flow impacts and Rocketdyne will continue to work on the meridional contour and the blade leading to trailing edge work distribution. This paper will also present Rocketdyne results from the tandem blade study and from the blade loading distribution study. It is the ultimate goal of this consortium team to integrate the available CFD analysis to design an advanced technology impeller that is suitable for use in the NASA Space Transportation Main Engine (STME) fuel turbopump.
Calculation of Multistage Turbomachinery Using Steady Characteristic Boundary Conditions
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.
1998-01-01
A multiblock Navier-Stokes analysis code for turbomachinery has been modified to allow analysis of multistage turbomachines. A steady averaging-plane approach was used to pass information between blade rows. Characteristic boundary conditions written in terms of perturbations about the mean flow from the neighboring blade row were used to allow close spacing between the blade rows without forcing the flow to be axisymmetric. In this report the multiblock code is described briefly and the characteristic boundary conditions and the averaging-plane implementation are described in detail. Two approaches for averaging the flow properties are also described. A two-dimensional turbine stator case was used to compare the characteristic boundary conditions with standard axisymmetric boundary conditions. Differences were apparent but small in this low-speed case. The two-stage fuel turbine used on the space shuttle main engines was then analyzed using a three-dimensional averaging-plane approach. Computed surface pressure distributions on the stator blades and endwalls and computed distributions of blade surface heat transfer coefficient on three blades showed very good agreement with experimental data from two tests.
NASA Astrophysics Data System (ADS)
Espinal, Daniel
The objective of this research is to investigate and confirm the periodicity of the Non-Synchronous Vibration (NSV) mechanism of a GE axial compressor with a full-annulus simulation. A second objective is to develop a high fidelity single-passage tool with time-accurate unsteady capabilities able to capture rotor-stator interactions and NSV excitation response. A high fidelity methodology for axial turbomachinery simulation is developed using the low diffusion shock-capturing Riemann solver with high order schemes, the Spalart-Allmaras turbulence closure model, the fully conservative unsteady sliding BC for rotor-stator interaction with extension to full-annulus and single-passage configurations, and the phase lag boundary conditions applied to rotor-stator interface and circumferential BC. A URANS solver is used and captures the NSV flow excitation frequency of 2439 Hz, which agrees reasonably well with the measured NSV frequency of 2600 Hz from strain gage test data. It is observed that the circumferentially traveling vortex formed in the vicinity of the rotor tip propagates at the speed of a non-engine order frequency and causes the NSV. The vortex travels along the suction surface of the blade and crosses the passage outlet near blade trailing edge. Such a vortex motion trajectory repeats in each blade passage and generates two low pressure regions due to the vortex core positions, one at the leading edge and one at the trailing edge, both are oscillating due to the vortex coming and leaving. These two low pressure regions create a pair of coupling forces that generates a torsion moment causing NSV. The full-annulus simulation shows that the circumferentially traveling vortex has fairly periodical behavior and is a full annulus structure. Also, frequencies below the NSV excitation frequency of 2439 Hz with large amplitudes in response to flow-separation related phenomena are present. This behavior is consistent with experimental measurements. For circumferentially averaged parameters like total pressure ratio, NSV is observed to have an effect, particularly at radial locations above 70% span. Therefore, to achieve similar or better total pressure ratio a design with a smaller loading of the upper blade span and a higher loading of the mid blade spans should be considered. A fully-conservative sliding interface boundary condition (BC) is implemented with phase-lag capabilities using the Direct Store method for single-passage simulations. Also Direct Store phase-lag was applied to the circumferential BCs to enforce longer disturbance wavelengths. The unsteady simulation using single-blade-passage with periodic BC for an inlet guide vane (IGV)-rotor configuration captures a 2291 Hz NSV excitation frequency and an IGV-rotor-stator configuration predicts a 2365 Hz NSV excitation frequency with a significantly higher amplitude above 90% span. This correlates closely to the predicted NSV excitation frequency of 2439 Hz for the full-annulus configuration. The two-blade-row configuration exhibits the same vortex structures captured in the full-annulus study. The three-blade-row configuration only captures a tip vortex shedding at the leading edge, which can be attributed to the reflective nature of the BCs causing IGV-rotor-stator interactions to be augmented, becoming dominant and shifting NSV excitation response to engine order regime. Phase-lag simulations with a Nodal Diameter (ND) of 5 is enforced for the circumferential BCs for the three-blade-row configuration, and the results exactly matched the frequency response and flow structures of the periodic simulation, illustrating the small effect that phase-lag has on strongly periodic flow disturbances. A ND of 7 is enforced at the sliding interface, however the NSV excitation completely disappears and only the wake propagation from IGV-Rotor-Stator interactions are captured. Rotor blade passage exhibits a circumferentially travelling vortex similar to those observed in the full-annulus and two-blade-row simulations. This can occur when the rotating instability responsible for the NSV no longer maintains a pressure variation with a characteristic frequency signature as it rotates relative to the rotor rotation, and now has become the beginning of a spike-type stall cell. In this scenario the travelling vortex has become evidence of part-stall of the upper spans of the rotor blade, but stalling is contained maintaining stable operation. In conclusion, an efficient method of capturing NSV excitation has been proposed in a high-fidelity manner, where only 2% of the computational resources used in a full-annulus simulation are required for an accurate single-blade-passage multi-stage simulation.
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
1994-01-01
Typical analytical models for interaction between rotor and stator in a turbofan analyze the effect of wakes from the rotor impinging on the stator, producing unsteady loading, and thereby generating noise. Reflection/transmission characteristics of the rotor are sometimes added in a separate calculation. In those models, there is a one-to-one relationship between wake harmonics and noise harmonics; that is, the BPF (blade passing frequency) wake harmonic causes only the BPF noise harmonic, etc. This report presents a more complete model in which flow tangency boundary conditions are satisfied on two cascades in relative motion for several harmonics simultaneously. By an extension of S.N. Smith's code for two dimensional flat plate cascades, the noise generation/frequency scattering/blade row reflection problem is solved in a single matrix inversion. It is found that the BPF harmonic excitation of the stator scatters considerable energy in the higher BPF harmonics due to relative motion between the blade rows. Furthermore, when swirl between the rotor and stator is modeled, a 'mode trapping' effect occurs which explains observations on fans operating at rotational speeds below BFP cuton: the BPF mode amplifies between blade rows by multiple reflections but cannot escape to the inlet and exit ducts. However, energy scattered into higher harmonics does propagate and dominates the spectrum at two and three times BPF. This report presents the complete derivation of the theory, comparison with a previous (more limited) coupled rotor/stator interaction theory due to Kaji and Okazaki, exploration of the mode trapping phenomenon, and parametric studies showing the effects of vane/blade ratio and rotor/stator interaction. For generality, the analysis applies to stages where the rotor is either upstream or downstream of the stator and to counter rotation stages. The theory has been coded in a FORTRAN program called CUP2D, documented in Volume 2 of this report. It is concluded that the new features of this analysis - unsteady coupling, frequency scattering, and flow turning between rotor and stator - have a profound effect on noise generation caused by rotor/stator interaction. Treating rotors and stators as isolated cascades is not adequate for noise analysis and prediction.
Turbine blade unsteady aerodynamic loading and heat transfer
NASA Astrophysics Data System (ADS)
Johnston, David Alan
Stator indexing to minimize the unsteady aerodynamic loading of closely spaced airfoil rows in turbomachinery is a new technique for the passive control of flow-induced vibrations. This technique, along with the effects of steady blade loading, were studied by means of experiments performed in a two-stage low-speed research turbine. With the second vane row fixed, the inlet vane row was indexed to six positions over one vane-pitch cycle for a range of stage loadings. The aerodynamic forcing function to the first-stage rotor was measured in the rotating reference frame, with the resulting rotor blade unsteady aerodynamic response quantified by rotor blades instrumented with dynamic pressure transducers. Reductions in the unsteady lift magnitude were achieved at all turbine operating conditions, with attenuation ranging from 37% to 74% of the maximum unsteady lift. Additionally, in complementary experiments, the effects of stator indexing and steady blade loading on the unsteady heat transfer of the first- and second-stage rotors was studied for the design and highest blade loading conditions using platinum-film heat gages. The attenuation of unsteady heat transfer coefficient was blade-loading dependent and location dependent along the chord and span, ranging 10% to 90% of maximum. Due to the high degree of location dependence of attenuation, stator indexing is therefore best suited to minimize unsteady heat transfer in local hot spots of the blade rather than the blade as a whole.
Development of a Linearized Unsteady Euler Analysis with Application to Wake/Blade-Row Interactions
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Montgomery, Matthew D.; Chuang, H. Andrew
1999-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide a comprehensive and efficient unsteady aerodynamic analysis for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. The mathematical models needed to describe nonlinear and linearized, inviscid, unsteady flows through a blade row operating within a cylindrical annular duct are presented in this report. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to far-field eigen analyses, is also described. The linearized aerodynamic and numerical models have been implemented into the three-dimensional unsteady flow code, LINFLUX. This code is applied herein to predict unsteady subsonic flows driven by wake or vortical excitations. The intent is to validate the LINFLUX analysis via numerical results for simple benchmark unsteady flows and to demonstrate this analysis via application to a realistic wake/blade-row interaction. Detailed numerical results for a three-dimensional version of the 10th Standard Cascade and a fan exit guide vane indicate that LINFLUX is becoming a reliable and useful unsteady aerodynamic prediction capability that can be applied, in the future, to assess the three-dimensional flow physics important to blade-row, aeroacoustic and aeroelastic responses.
A CFD analysis of blade row interactions within a high-speed axial compressor
NASA Astrophysics Data System (ADS)
Richman, Michael Scott
Aircraft engine design provides many technical and financial hurdles. In an effort to streamline the design process, save money, and improve reliability and performance, many manufacturers are relying on computational fluid dynamic simulations. An overarching goal of the design process for military aircraft engines is to reduce size and weight while maintaining (or improving) reliability. Designers often turn to the compression system to accomplish this goal. As pressure ratios increase and the number of compression stages decrease, many problems arise, for example stability and high cycle fatigue (HCF) become significant as individual stage loading is increased. CFD simulations have recently been employed to assist in the understanding of the aeroelastic problems. For accurate multistage blade row HCF prediction, it is imperative that advanced three-dimensional blade row unsteady aerodynamic interaction codes be validated with appropriate benchmark data. This research addresses this required validation process for TURBO, an advanced three-dimensional multi-blade row turbomachinery CFD code. The solution/prediction accuracy is characterized, identifying key flow field parameters driving the inlet guide vane (IGV) and stator response to the rotor generated forcing functions. The result is a quantified evaluation of the ability of TURBO to predict not only the fundamental flow field characteristics but the three dimensional blade loading.
Computational fluid dynamics study of the variable-pitch split-blade fan concept
NASA Technical Reports Server (NTRS)
Kepler, C. E.; Elmquist, A. R.; Davis, R. L.
1992-01-01
A computational fluid dynamics study was conducted to evaluate the feasibility of the variable-pitch split-blade supersonic fan concept. This fan configuration was conceived as a means to enable a supersonic fan to switch from the supersonic through-flow type of operation at high speeds to a conventional fan with subsonic inflow and outflow at low speeds. During this off-design, low-speed mode of operation, the fan would operate with a substantial static pressure rise across the blade row like a conventional transonic fan; the front (variable-pitch) blade would be aligned with the incoming flow, and the aft blade would remain fixed in the position set by the supersonic design conditions. Because of these geometrical features, this low speed configuration would inherently have a large amount of turning and, thereby, would have the potential for a large total pressure increase in a single stage. Such a high-turning blade configuration is prone to flow separation; it was hoped that the channeling of the flow between the blades would act like a slotted wing and help alleviate this problem. A total of 20 blade configurations representing various supersonic and transonic configurations were evaluated using a Navier Stokes CFD program called ADAPTNS because of its adaptive grid features. The flow fields generated by this computational procedure were processed by another data reduction program which calculated average flow properties and simulated fan performance. These results were employed to make quantitative comparisons and evaluations of blade performance. The supersonic split-blade configurations generated performance comparable to a single-blade supersonic, through-flow fan configuration. Simulated rotor total pressure ratios of the order of 2.5 or better were achieved for Mach 2.0 inflow conditions. The corresponding fan efficiencies were approximately 75 percent or better. The transonic split-blade configurations having large amounts of turning were able to generate large amounts of total turning and achieve simulated total pressure ratios of 3.0 or better with subsonic inflow conditions. These configurations had large losses and low fan efficiencies in the 70's percent. They had large separated regions and low velocity wakes. Additional turning and diffusion of this flow in a subsequent stator row would probably be very inefficient. The high total pressure ratios indicated by the rotor performance would be substantially reduced by the stators, and the stage efficiency would be substantially lower. Such performance leaves this dual-mode fan concept less attractive than originally postulated.
Forcing function modeling for flow induced vibration
NASA Technical Reports Server (NTRS)
Fleeter, Sanford
1993-01-01
The fundamental forcing function unsteady aerodynamics for application to turbomachine blade row forced response are considered, accomplished through a series of experiments performed in a rotating annular cascade and a research axial flow turbine. In particular, the unsteady periodic flowfields downstream of rotating rows of perforated plates, airfoils and turbine blade rows are measured with a cross hot-wire and an unsteady total pressure probe. The unsteady velocity and static pressure fields were then analyzed harmonically and split into vortical and potential gusts, accomplished by developing a gust splitting analysis which includes both gust unsteady static pressure and velocity data. The perforated plate gusts closely were found to be linear theory vortical gusts, satisfying the vortical gust constraints. The airfoil and turbine blade row generated velocity perturbations did not satisfy the vortical gust constraints. However, the decomposition of the unsteady flow field separated the data into a propagating vortical component which satisfied these vortical gust constraints and a decaying potential component.
Channel flow analysis. [velocity distribution throughout blade flow field
NASA Technical Reports Server (NTRS)
Katsanis, T.
1973-01-01
The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.
Computer program for aerodynamic and blading design of multistage axial-flow compressors
NASA Technical Reports Server (NTRS)
Crouse, J. E.; Gorrell, W. T.
1981-01-01
A code for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis codes is presented. Compressible flow, which is assumed to be steady and axisymmetric, is the basis for a two-dimensional solution in the meridional plane with viscous effects modeled by pressure loss coefficients and boundary layer blockage. The radial equation of motion and the continuity equation are solved with the streamline curvature method on calculation stations outside the blade rows. The annulus profile, mass flow, pressure ratio, and rotative speed are input. A number of other input parameters specify and control the blade row aerodynamics and geometry. In particular, blade element centerlines and thicknesses can be specified with fourth degree polynomials for two segments. The output includes a detailed aerodynamic solution and, if desired, blading coordinates that can be used for internal flow analysis codes.
NASA Technical Reports Server (NTRS)
Miser, James W; Stewart, Warner L
1957-01-01
A blade design study is presented for a two-stage air-cooled turbine suitable for flight at a Mach number of 2.5 for which velocity diagrams have been previously obtained. The detailed procedure used in the design of the blades is given. In addition, the design blade shapes, surface velocity distributions, inner and outer wall contours, and other design data are presented. Of all the blade rows, the first-stage rotor has the highest solidity, with a value of 2.289 at the mean section. The second-stage stator also had a high mean-section solidity of 1.927, mainly because of its high inlet whirl. The second-stage rotor has the highest value of the suction-surface diffusion parameter, with a value of 0.151. All other blade rows have values for this parameter under 0.100.
Estimation of Efficiency of the Cooling Channel of the Nozzle Blade of Gas-Turbine Engines
NASA Astrophysics Data System (ADS)
Vikulin, A. V.; Yaroslavtsev, N. L.; Zemlyanaya, V. A.
2018-02-01
The main direction of improvement of gas-turbine plants (GTP) and gas-turbine engines (GTE) is increasing the gas temperature at the turbine inlet. For the solution of this problem, promising systems of intensification of heat exchange in cooled turbine blades are developed. With this purpose, studies of the efficiency of the cooling channel of the nozzle blade in the basic modification and of the channel after constructive measures for improvement of the cooling system by the method of calorimetry in a liquid-metal thermostat were conducted. The combined system of heat-exchange intensification with the complicated scheme of branched channels is developed; it consists of a vortex matrix and three rows of inclined intermittent trip strips. The maximum value of hydraulic resistance ξ is observed at the first row of the trip strips, which is connected with the effect of dynamic impact of airflow on the channel walls, its turbulence, and rotation by 117° at the inlet to the channels formed by the trip strips. These factors explain the high value of hydraulic resistance equal to 3.7-3.4 for the first row of the trip strips. The obtained effect was also confirmed by the results of thermal tests, i.e., the unevenness of heat transfer on the back and on the trough of the blade is observed at the first row of the trip strips, which amounts 8-12%. This unevenness has a fading character; at the second row of the trip strips, it amounts to 3-7%, and it is almost absent at the third row. At the area of vortex matrix, the intensity of heat exchange on the blade back is higher as compared to the trough, which is explained by the different height of the matrix ribs on its opposite sides. The design changes in the nozzle blade of basic modification made it possible to increase the intensity of heat exchange by 20-50% in the area of the vortex matrix and by 15-30% on the section of inclined intermittent trip strips. As a result of research, new criteria dependences for the complicated systems of heat exchange intensification were obtained. The design of nozzle blades can be used when developing the promising high-temperature gas turbines.
NASA Astrophysics Data System (ADS)
van Rooij, Michael P. C.
Current turbomachinery design systems increasingly rely on multistage Computational Fluid Dynamics (CFD) as a means to assess performance of designs. However, design weaknesses attributed to improper stage matching are addressed using often ineffective strategies involving a costly iterative loop between blading modification, revision of design intent, and evaluation of aerodynamic performance. A design methodology is presented which greatly improves the process of achieving design-point aerodynamic matching. It is based on a three-dimensional viscous inverse design method which generates the blade camber surface based on prescribed pressure loading, thickness distribution and stacking line. This inverse design method has been extended to allow blading analysis and design in a multi-blade row environment. Blade row coupling was achieved through a mixing plane approximation. Parallel computing capability in the form of MPI has been implemented to reduce the computational time for multistage calculations. Improvements have been made to the flow solver to reach the level of accuracy required for multistage calculations. These include inclusion of heat flux, temperature-dependent treatment of viscosity, and improved calculation of stress components and artificial dissipation near solid walls. A validation study confirmed that the obtained accuracy is satisfactory at design point conditions. Improvements have also been made to the inverse method to increase robustness and design fidelity. These include the possibility to exclude spanwise sections of the blade near the endwalls from the design process, and a scheme that adjusts the specified loading area for changes resulting from the leading and trailing edge treatment. Furthermore, a pressure loading manager has been developed. Its function is to automatically adjust the pressure loading area distribution during the design calculation in order to achieve a specified design objective. Possible objectives are overall mass flow and compression ratio, and radial distribution of exit flow angle. To supplement the loading manager, mass flow inlet and exit boundary conditions have been implemented. Through appropriate combination of pressure or mass flow inflow/outflow boundary conditions and loading manager objectives, increased control over the design intent can be obtained. The three-dimensional multistage inverse design method with pressure loading manager was demonstrated to offer greatly enhanced blade row matching capabilities. Multistage design allows for simultaneous design of blade rows in a mutually interacting environment, which permits the redesigned blading to adapt to changing aerodynamic conditions resulting from the redesign. This ensures that the obtained blading geometry and performance implied by the prescribed pressure loading distribution are consistent with operation in the multi-blade row environment. The developed methodology offers high aerodynamic design quality and productivity, and constitutes a significant improvement over existing approaches used to address design-point aerodynamic matching.
NASA Technical Reports Server (NTRS)
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
The temporal frequency content of the dynamic pressure predicted by a 360 degree computational fluid dynamics (CFD) analysis of a turbine flow field provides indicators of forcing function excitation frequencies (e.g., multiples of blade pass frequency) for turbine components. For the Pratt and Whitney Rocketdyne J-2X engine turbopumps, Campbell diagrams generated using these forcing function frequencies and the results of NASTRAN modal analyses show a number of components with modes in the engine operating range. As a consequence, forced response and static analyses are required for the prediction of combined stress, high cycle fatigue safety factors (HCFSF). Cyclically symmetric structural models have been used to analyze turbine vane and blade rows, not only in modal analyses, but also in forced response and static analyses. Due to the tortuous flow pattern in the turbine, dynamic pressure loading is not cyclically symmetric. Furthermore, CFD analyses predict dynamic pressure waves caused by adjacent and non-adjacent blade/vane rows upstream and downstream of the row analyzed. A MATLAB script has been written to calculate displacements due to the complex cyclically asymmetric dynamic pressure components predicted by CFD analysis, for all grids in a blade/vane row, at a chosen turbopump running speed. The MATLAB displacements are then read into NASTRAN, and dynamic stresses are calculated, including an adjustment for possible mistuning. In a cyclically symmetric NASTRAN static analysis, static stresses due to centrifugal, thermal, and pressure loading at the mode running speed are calculated. MATLAB is used to generate the HCFSF at each grid in the blade/vane row. When compared to an approach assuming cyclic symmetry in the dynamic flow field, the current approach provides better assurance that the worst case safety factor has been identified. An extended example for a J-2X turbopump component is provided.
NASA Technical Reports Server (NTRS)
Thorp, Scott A.; Downey, Kevin M.
1992-01-01
One of the propulsion concepts being investigated for future cruise missiles is advanced unducted propfans. To support the evaluation of this technology applied to the cruise missile, a joint DOD and NASA test project was conducted to design and then test the characteristics of the propfans on a 0.55-scale, cruise missile model in a NASA wind tunnel. The configuration selected for study is a counterrotating rearward swept propfan. The forward blade row, having six blades, rotates in a counterclockwise direction, and the aft blade row, having six blades, rotates in a clockwise direction, as viewed from aft of the test model. Figures show the overall cruise missile and propfan blade configurations. The objective of this test was to evaluate propfan performance and suitability as a viable propulsion option for next generation of cruise missiles. This paper details the concurrent computer aided design, engineering, and manufacturing of the carbon fiber/epoxy propfan blades as the NASA Lewis Research Center.
NASA Technical Reports Server (NTRS)
Dunn, M. G.; Kim, J.
1992-01-01
Time averaged Stanton number and surface pressure distributions are reported for the first stage vane row, the first stage blade row, and the second stage vane row of the Rocketdyne Space Shuttle Main Engine (SSME) two-stage fuel-side turbine. Unsteady pressure envelope measurements for the first blade are also reported. These measurements were made at 10 percent, 50 percent, and 90 percent span on both the pressure and suction surfaces of the first stage components. Additional Stanton number measurements were made on the first stage blade platform, blade tip, and shroud, and at 50 percent span on the second vane. A shock tube was used as a short duration source of heated and pressurized air to which the turbine was subjected. Platinum thin film heat flux gages were used to obtain the heat flux measurements, while miniature silicon diaphragm flush-mounted pressure transducers were used to obtain the pressure measurements. The first stage vane Stanton number distributions are compared with predictions obtained using a version of STAN5 and quasi-3D Navier-Stokes solution. This same quasi-3D N-S code was also used to obtain predictions for the first blade and the second vane.
Characterization of Aeromechanics Response and Instability in Fans, Compressors, and Turbine Blades
NASA Technical Reports Server (NTRS)
Tan, Choon S.
2003-01-01
This study investigated the effect of interaction between tip clearance flow, steady and unsteady upstream wakes in rotor and stator blade rows in terms of blade forced response. In a stator blade row, the interaction of steady wakes in the upstream rotor frame with the stator imply a blade forced response whose spectrum contains the Blade passing frequency (BPF) and its harmonics, with a decaying amplitude as the frequency increases. When the incoming wakes are unsteady, however, the spectrum of blade excitation exhibits unexpectedly amplified high frequencies due to the modulation of BPF with the fluctuation frequency. In a rotor blade row, a tip flow instability has been demonstrated with a frequency (TVF) equal to 0.45 times the Blade Passing frequency corresponding to a reduced frequency (F(sub c) (sup +)) of 0.7. Under uniform inlet flow conditions, the frequency and spatial content of the tip flow region have been characterized. The disturbance TVF was the dominant disturbance in the flow field and was found to imply variations of the pressure coefficient of more than 30% on the blade tip (between 35% to 90% chord) and in the rotor-generated wake (from 75% to 100% hub-to-tip position). In an attempt to better understand the origin of the instability, the structure of the tip flow has also been analyzed. The interface between the tip flow region and the core flow has been found to have periodical wave-like flow patterns which proceed downstream at a speed of approximately 0.42 times the core flow speed at a frequency corresponding to TVF. A list of conclusions derived from these interactions is presented.
On the transonic aerodynamics of a compressor blade row
NASA Technical Reports Server (NTRS)
Erickson, J. C., Jr.; Lordi, J. A.; Rae, W. J.
1971-01-01
Linearized analyses have been carried out for the induced velocity and pressure fields within a compressor blade row operating in an infinite annulus at transonic Mach numbers of the flow relative to the blades. In addition, the relationship between the induced velocity and the shape of the mean blade surface has been determined. A computational scheme has been developed for evaluating the blade mean surface ordinates and surface pressure distributions. The separation of the effects of a specified blade thickness distribution from the effects of a specified distribution of the blade lift has been established. In this way, blade mean surface shapes that are necessary for the blades to be locally nonlifting have been computed and are presented for two examples of blades with biconvex parabolic arc sections of radially tapering thickness. Blade shapes that are required to achieve a zero thickness, uniform chordwise loading, constant work spanwise loading are also presented for two examples. In addition, corresponding surface pressure distributions are given. The flow relative to the blade tips has a high subsonic Mach number in the examples that have been computed. The results suggest that at near-sonic relative tip speeds the effective blade shape is dominated by the thickness distribution, with the lift distribution playing only a minor role.
The Supersonic Axial-Flow Compressor
NASA Technical Reports Server (NTRS)
Kantrowitz, Arthur
1950-01-01
An investigation has been made to explore the possibilities of axial-flow compressors operating with supersonic velocities into the blade rows. Preliminary calculations showed that very high pressure ratios across a stage, together with somewhat increased mass flows, were apparently possible with compressors which decelerated air through the speed of sound in their blading. The first phase of the investigation was the development of efficient supersonic diffusers to decelerate air through the speed of sound. The present report is largely a general discussion of some of the essential aerodynamics of single-stage supersonic axial-flow compressors. As an approach to the study of supersonic compressors, three possible velocity diagrams are discussed briefly. Because of the encouraging results of this study, an experimental single-stage supersonic compressor has been constructed and tested in Freon-12. In this compressor, air decelerates through the speed of sound in the rotor blading and enters the stators at subsonic speeds. A pressure ratio of about 1.8 at an efficiency of about 80 percent has been obtained.
NASA Technical Reports Server (NTRS)
1994-01-01
Time averaged Stanton number and surface-pressure distributions are reported for the first-stage vane row, the first stage blade row, and the second stage vane row of the Rocketdyne Space Shuttle Main Engine two-stage fuel-side turbine. Unsteady pressure envelope measurements for the first blade are also reported. These measurements were made at 10 percent, 50 percent, and 90 percent span on both the pressure and suction surfaces of the first stage components. Additional Stanton number measurements were made on the first stage blade platform blade tip, and shroud, and at 50 percent span on the second vane. A shock tube was used as a short duration source of heated and pressurized air to which the turbine was subjected. Platinum thin-film heat flux gages were used to obtain the heat flux measurements, while miniature silicon-diaphragm flush-mounted pressure transducers were used to obtain the pressure measurements. The first stage vane Stanton number distributions are compared with predictions obtained using a version of STAN5 and a quasi-3D Navier-Stokes solution. This same quasi-3D N-S code was also used to obtain predictions for the first blade and the second vane.
Assembly for directing combustion gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charron, Richard C.; Little, David A.; Snyder, Gary D.
2016-04-12
An arrangement is provided for delivering gases from a plurality of combustors of a can-annular gas turbine combustion engine to a first row of turbine blades including a first row of turbine blades. The arrangement includes a gas path cylinder, a cone and an integrated exit piece (IEP) for each combustor. Each IEP comprises an inlet chamber for receiving a gas flow from a respective combustor, and includes a connection segment. The IEPs are connected together to define an annular chamber extending circumferentially and concentric to an engine longitudinal axis, for delivering the gas flow to the first row ofmore » blades. A radiused joint extends radially inward from a radially outer side of the inlet chamber to an outer boundary of the annular chamber, and a flared fillet extends radially inward from a radially inner side of the inlet chamber to an inner boundary of the annular chamber.« less
NASA Technical Reports Server (NTRS)
Tesch, W. A.; Steenken, W. G.
1976-01-01
The results are presented of a one-dimensional dynamic digital blade row compressor model study of a J85-13 engine operating with uniform and with circumferentially distorted inlet flow. Details of the geometry and the derived blade row characteristics used to simulate the clean inlet performance are given. A stability criterion based upon the self developing unsteady internal flows near surge provided an accurate determination of the clean inlet surge line. The basic model was modified to include an arbitrary extent multi-sector parallel compressor configuration for investigating 180 deg 1/rev total pressure, total temperature, and combined total pressure and total temperature distortions. The combined distortions included opposed, coincident, and 90 deg overlapped patterns. The predicted losses in surge pressure ratio matched the measured data trends at all speeds and gave accurate predictions at high corrected speeds where the slope of the speed lines approached the vertical.
NASA Technical Reports Server (NTRS)
VanZante, Dale E.; To, Wai-Ming; Chen, Jen-Ping
2003-01-01
Blade row interaction effects on loss generation in compressors have received increased attention as compressor work-per-stage and blade loading have increased. Two dimensional Laser Doppler Velocimeter measurements of the velocity field in a NASA transonic compressor stage show the magnitude of interactions in the velocity field at the peak efficiency and near stall operating conditions. The experimental data are presented along with an assessment of the velocity field interactions. In the present study the experimental data are used to confirm the fidelity of a three-dimensional, time-accurate, Navier Stokes calculation of the stage using the MSU-TURBO code at the peak efficiency and near stall operating conditions. The simulations are used to quantify the loss generation associated with interaction phenomena. At the design point the stator pressure field has minimal effect on the rotor performance. The rotor wakes do have an impact on loss production in the stator passage at both operating conditions. A method for determining the potential importance of blade row interactions on performance is presented.
Magnetic particle testing of turbine blades mounted on the turbine rotor shaft
NASA Astrophysics Data System (ADS)
Imbert, Clement; Rampersad, Krishna
1992-07-01
An outline is presented of the general technique of magnetic particle inspection (MPI) of turbine blades mounted on the turbine rotor shaft with specific reference to the placement of the magnetizing coils. In particular, this study reports on the use of MPI in the examination of martensitic stainless steel turbine blades in power plants in Trinidad and Tobago in order to establish procedures for the detection of discontinuities. The techniques described are applicable to ferromagnetic turbine blades in general. The two practical techniques mentioned are the method of placing a preformed coil over a number of blades in one row and the method of wrapping the coil around the rotor shaft across an entire row of blades. Of the two methods, the former is preferred to the latter one, because there is greater uniformity of magnetic flux induced and lower current required to induce adequate flux density with the preformed coil. However, both methods provide satisfactory magnetic flux, and either can be used.
NASA Technical Reports Server (NTRS)
Crook, Andrew J.; Delaney, Robert A.
1992-01-01
The purpose of this study is the development of a three-dimensional Euler/Navier-Stokes flow analysis for fan section/engine geometries containing multiple blade rows and multiple spanwise flow splitters. An existing procedure developed by Dr. J. J. Adamczyk and associates and the NASA Lewis Research Center was modified to accept multiple spanwise splitter geometries and simulate engine core conditions. The procedure was also modified to allow coarse parallelization of the solution algorithm. This document is a final report outlining the development and techniques used in the procedure. The numerical solution is based upon a finite volume technique with a four stage Runge-Kutta time marching procedure. Numerical dissipation is used to gain solution stability but is reduced in viscous dominated flow regions. Local time stepping and implicit residual smoothing are used to increase the rate of convergence. Multiple blade row solutions are based upon the average-passage system of equations. The numerical solutions are performed on an H-type grid system, with meshes being generated by the system (TIGG3D) developed earlier under this contract. The grid generation scheme meets the average-passage requirement of maintaining a common axisymmetric mesh for each blade row grid. The analysis was run on several geometry configurations ranging from one to five blade rows and from one to four radial flow splitters. Pure internal flow solutions were obtained as well as solutions with flow about the cowl/nacelle and various engine core flow conditions. The efficiency of the solution procedure was shown to be the same as the original analysis.
Effects of stroke resistance on rowing economy in club rowers post-season.
Kane, D A; Mackenzie, S J; Jensen, R L; Watts, P B
2013-02-01
In the sport of rowing, increasing the impulse applied to the oar handle during the stroke can result in greater boat velocities; this may be facilitated by increasing the surface area of the oar blade and/or increasing the length of the oars. The purpose of this study was to compare the effects of different rowing resistances on the physiological response to rowing. 5 male and 7 female club rowers completed progressive, incremental exercise tests on an air-braked rowing ergometer, using either low (LO; 100) or high (HI; 150) resistance (values are according to the adjustable "drag factor" setting on the ergometer). Expired air, blood lactate concentration, heart rate, rowing cadence, and ergometer power output were monitored during the tests. LO rowing elicited significantly greater cadences (P<0.01) and heart rates (P<0.05), whereas rowing economy (J · L O(2) equivalents(-1)) was significantly greater during HI rowing (P<0.05). These results suggest that economically, rowing with a greater resistance may be advantageous for performance. Moreover, biomechanical analysis of ergometer rowing support the notion that the impulse generated during the stroke increases positively as a function of rowing resistance. We conclude that an aerobic advantage associated with greater resistance parallels the empirical trend toward larger oar blades in competitive rowing. This may be explained by a greater stroke impulse at the higher resistance. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Technical Reports Server (NTRS)
VanZante, Dale; Envia, Edmane
2008-01-01
A CFD-based simulation of single-stage turbine was done using the TURBO code to assess its viability for determining acoustic transmission through blade rows. Temporal and spectral analysis of the unsteady pressure data from the numerical simulations showed the allowable Tyler-Sofrin modes that are consistent with expectations. This indicated that high-fidelity acoustic transmission calculations are feasible with TURBO.
NASA Technical Reports Server (NTRS)
Newman, Frederick A.
1988-01-01
Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynanmic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall performance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.
NASA Technical Reports Server (NTRS)
Newman, Frederick A.
1988-01-01
Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynamic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall preformance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.
Development of an Aeroelastic Analysis Including a Viscous Flow Model
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Bakhle, Milind A.
2001-01-01
Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.
Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Gallagher, Edward J. (Inventor); Monzon, Byron R. (Inventor)
2015-01-01
A gas turbine engine includes a spool, a turbine coupled to drive the spool, and a propulsor that is coupled to be driven by the turbine through the spool. A gear assembly is coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extends from the hub. The row includes no more than 20 of the propulsor blades.
Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Monzon, Byron R. (Inventor); Gallagher, Edward J. (Inventor)
2016-01-01
A gas turbine engine includes a spool, a turbine coupled to drive the spool, and a propulsor that is coupled to be driven by the turbine through the spool. A gear assembly is coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extends from the hub. The row includes no more than 20 of the propulsor blades.
Ramírez Hernández, Adriana; Hernández-Alcántara, Pablo; Solís-Weiss, Vivianne
2015-09-02
A new species of polychaete, Nereis alacranensis n. sp., was found in dead coral rocks in the intertidal zone of Alacranes reef, southern Gulf of Mexico. N. alacranensis n. sp. can be included in a group of nereidids characterized by the absence of paragnaths in areas I and V of the pharynx, the presence of cones in a single row or absent in areas VII-VIII, and short blades in notopodial homogomph falcigers. The new species can be separated from the other species of the group by the presence of 3-7 cones in area VI and 7 cones arranged in a row in areas VII-VIII, finely dentate blades in notopodial homogomph falcigers, but most of all, by the presence of an unusual brown coarse arc shaped plate on the external ventral region of the peristomium. This structure has not yet been reported, at least in this genus. A taxonomic key of the species of Nereis recorded from the Grand Caribbean region is included.
Bending mode flutter in a transonic linear cascade
NASA Astrophysics Data System (ADS)
Govardhan, Raghuraman; Jutur, Prahallada
2017-11-01
Vibration related issues like flutter pose a serious challenge to aircraft engine designers. The phenomenon has gained relevance for modern engines that employ thin and long fan blade rows to satisfy the growing need for compact and powerful engines. The tip regions of such blade rows operate with transonic relative flow velocities, and are susceptible to bending mode flutter. In such cases, the flow field around individual blades of the cascade is dominated by shock motions generated by the blade motions. In the present work, a new transonic linear cascade facility with the ability to oscillate a blade at realistic reduced frequencies has been developed. The facility operates at a Mach number of 1.3, with the central blade being oscillated in heave corresponding to the bending mode of the rotor. The susceptibility of the blade to undergo flutter at different reduced frequencies is quantified by the cycle-averaged power transfer to the blade calculated using the measured unsteady load on the oscillating blade. These measurements show fluid excitation (flutter) at low reduced frequencies and fluid damping (no flutter) at higher reduced frequencies. Simultaneous measurements of the unsteady shock motions are done with high speed shadowgraphy to elucidate the differences in shock motions between the excitation and damping cases.
Changes in Blade Configuration Improve Turbopump
NASA Technical Reports Server (NTRS)
Meng, S. Y.; Bache, G. E.
1987-01-01
Cavitation reduced while suction increased. Tests conducted with model liquid-oxygen turbopump using water as pumped fluid confirms performance improved by "tandem" arrangement of blades. Findings expected to apply to other pumps having two adjacent rotor rows.
Design of an Object-Oriented Turbomachinery Analysis Code: Initial Results
NASA Technical Reports Server (NTRS)
Jones, Scott
2015-01-01
Performance prediction of turbomachines is a significant part of aircraft propulsion design. In the conceptual design stage, there is an important need to quantify compressor and turbine aerodynamic performance and develop initial geometry parameters at the 2-D level prior to more extensive Computational Fluid Dynamics (CFD) analyses. The Object-oriented Turbomachinery Analysis Code (OTAC) is being developed to perform 2-D meridional flowthrough analysis of turbomachines using an implicit formulation of the governing equations to solve for the conditions at the exit of each blade row. OTAC is designed to perform meanline or streamline calculations; for streamline analyses simple radial equilibrium is used as a governing equation to solve for spanwise property variations. While the goal for OTAC is to allow simulation of physical effects and architectural features unavailable in other existing codes, it must first prove capable of performing calculations for conventional turbomachines.OTAC is being developed using the interpreted language features available in the Numerical Propulsion System Simulation (NPSS) code described by Claus et al (1991). Using the NPSS framework came with several distinct advantages, including access to the pre-existing NPSS thermodynamic property packages and the NPSS Newton-Raphson solver. The remaining objects necessary for OTAC were written in the NPSS framework interpreted language. These new objects form the core of OTAC and are the BladeRow, BladeSegment, TransitionSection, Expander, Reducer, and OTACstart Elements. The BladeRow and BladeSegment consumed the initial bulk of the development effort and required determining the equations applicable to flow through turbomachinery blade rows given specific assumptions about the nature of that flow. Once these objects were completed, OTAC was tested and found to agree with existing solutions from other codes; these tests included various meanline and streamline comparisons of axial compressors and turbines at design and off-design conditions.
Design of an Object-Oriented Turbomachinery Analysis Code: Initial Results
NASA Technical Reports Server (NTRS)
Jones, Scott M.
2015-01-01
Performance prediction of turbomachines is a significant part of aircraft propulsion design. In the conceptual design stage, there is an important need to quantify compressor and turbine aerodynamic performance and develop initial geometry parameters at the 2-D level prior to more extensive Computational Fluid Dynamics (CFD) analyses. The Object-oriented Turbomachinery Analysis Code (OTAC) is being developed to perform 2-D meridional flowthrough analysis of turbomachines using an implicit formulation of the governing equations to solve for the conditions at the exit of each blade row. OTAC is designed to perform meanline or streamline calculations; for streamline analyses simple radial equilibrium is used as a governing equation to solve for spanwise property variations. While the goal for OTAC is to allow simulation of physical effects and architectural features unavailable in other existing codes, it must first prove capable of performing calculations for conventional turbomachines. OTAC is being developed using the interpreted language features available in the Numerical Propulsion System Simulation (NPSS) code described by Claus et al (1991). Using the NPSS framework came with several distinct advantages, including access to the pre-existing NPSS thermodynamic property packages and the NPSS Newton-Raphson solver. The remaining objects necessary for OTAC were written in the NPSS framework interpreted language. These new objects form the core of OTAC and are the BladeRow, BladeSegment, TransitionSection, Expander, Reducer, and OTACstart Elements. The BladeRow and BladeSegment consumed the initial bulk of the development effort and required determining the equations applicable to flow through turbomachinery blade rows given specific assumptions about the nature of that flow. Once these objects were completed, OTAC was tested and found to agree with existing solutions from other codes; these tests included various meanline and streamline comparisons of axial compressors and turbines at design and off-design conditions.
NASA Astrophysics Data System (ADS)
Groeneweg, John F.; Sofrin, Thomas G.; Rice, Edward J.; Gliebe, Phillip R.
1991-08-01
Summarized here are key advances in experimental techniques and theoretical applications which point the way to a broad understanding and control of turbomachinery noise. On the experimental side, the development of effective inflow control techniques makes it possible to conduct, in ground based facilities, definitive experiments in internally controlled blade row interactions. Results can now be valid indicators of flight behavior and can provide a firm base for comparison with analytical results. Inflow control coupled with detailed diagnostic tools such as blade pressure measurements can be used to uncover the more subtle mechanisms such as rotor strut interaction, which can set tone levels for some engine configurations. Initial mappings of rotor wake-vortex flow fields have provided a data base for a first generation semiempirical flow disturbance model. Laser velocimetry offers a nonintrusive method for validating and improving the model. Digital data systems and signal processing algorithms are bringing mode measurement closer to a working tool that can be frequently applied to a real machine such as a turbofan engine. On the analytical side, models of most of the links in the chain from turbomachine blade source to far field observation point have been formulated. Three dimensional lifting surface theory for blade rows, including source noncompactness and cascade effects, blade row transmission models incorporating mode and frequency scattering, and modal radiation calculations, including hybrid numerical-analytical approaches, are tools which await further application.
In-service inspection of steam turbine blades without disassembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhart, E.R.
1987-01-01
Loss of utility plant availability as a result of failure-causing cracks in steam turbine blades makes early detection of this problem critical. An Electric Power Research Institute survey, conducted as part of project RP 1266-24, indicated that 72% of turbine blade failures in fossil power plants occur in low-pressure (LP) turbines with half of all blade failures occurring in the last two blade stages (L-0 and L-1 rows). Failures are generally associated with blade tailing edges and root areas. Project RP 1266-24 also found that 79% of the blade problems in LP turbines were cracks. A turbine design of particularmore » concern has been the Westinghouse Building Block (B.B.) 73. Reinhart and Associates has successfully inspected seven in-place B.B. 73 units for six utilities during the past 3 yr, as well as several disassembled turbines of other manufacturers and designs. These examinations consisted of visual and eddy-current examinations of the blade roots and trailing edges. The in-place inspections were performed using prototype manipulation devices to gain access to the blades through the hand holes. The only disassembly required to gain access for the examinations was the removal of the man-way covers on the main shell and the hand-hole covers on the outer cylinder covering the L-0 and L-1 blade rows.« less
NASA Technical Reports Server (NTRS)
Thompkins, W. T., Jr.
1982-01-01
A FORTRAN-IV computer program was developed for the calculation of the inviscid transonic/supersonic flow field in a fully three dimensional blade passage of an axial compressor rotor or stator. Rotors may have dampers (part span shrouds). MacCormack's explicit time marching method is used to solve the unsteady Euler equations on a finite difference mesh. This technique captures shocks and smears them over several grid points. Input quantities are blade row geometry, operating conditions and thermodynamic quanities. Output quantities are three velocity components, density and internal energy at each mesh point. Other flow quanities are calculated from these variables. A short graphics package is included with the code, and may be used to display the finite difference grid, blade geometry and static pressure contour plots on blade to blade calculation surfaces or blade suction and pressure surfaces. The flow in a low aspect ratio transonic compressor was analyzed and compared with high response total pressure probe measurements and gas fluorescence static density measurements made in the MIT blowdown wind tunnel. These comparisons show that the computed flow fields accurately model the measured shock wave locations and overall aerodynamic performance.
Design of Multistage Axial-Flow Compressors
NASA Technical Reports Server (NTRS)
Crouse, J. E.; Gorrell, W. T.
1983-01-01
Program developed for computing aerodynamic design of multistage axialflow compressor and associated blading geometry input for internal flow analysis. Aerodynamic solution gives velocity diagrams on selected streamlines of revolution at blade row edges. Program written in FORTRAN IV.
Experimental and Numerical Investigation of Losses in Low-Pressure Turbine Blade Rows
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Lake, James P.; King, Paul I.; Ashpis, David E.
2000-01-01
Experimental data and numerical simulations of low-pressure turbines have shown that unsteady blade row interactions and separation can have a significant impact on the turbine efficiency. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Several recent studies have revealed that the performance of low-pressure turbine blades is a strong function of the Reynolds number. In the current investigation, experiments and simulations have been performed to study the behavior of a low-pressure turbine blade at several Reynolds numbers. Both the predicted and experimental results indicate increased cascade losses as the Reynolds number is reduced to the values associated with aircraft cruise conditions. In addition, both sets of data show that tripping the boundary layer helps reduce the losses at lower Reynolds numbers. Overall, the predicted aerodynamic and performance results exhibit fair agreement with experimental data.
A Visualization Study of Secondary Flows in Cascades
NASA Technical Reports Server (NTRS)
Herzig, Howard Z; Hansen, Arthur G; Costello, George R
1954-01-01
Flow-visualization techniques are employed to ascertain the streamline patterns of the nonpotential secondary flows in the boundary layers of cascades, and thereby to provide a basis for more extended analyses in turbomachines. The three-dimensional deflection of the end-wall boundary layer results in the formation of a vortex within each cascade passage. The size and tightness of the vortex generated depend upon the main-flow turning in the cascade passage. Once formed, a vortex resists turning in subsequent blade rows, with consequent unfavorable angles of attack and possible flow disturbances on the pressure surfaces of subsequent blade rows when the vortices impinge on these surfaces. Two major tip-clearance effects are observed, the formation of a tip-clearance vortex and the scraping effect of a blade with relative motion past the wall boundary layer. The flow patterns indicate methods for improving the blade tip-loading characteristics of compressors and of low- and high-speed turbulence.
Solid particle dynamic behavior through twisted blade rows
NASA Technical Reports Server (NTRS)
Hamed, A.
1982-01-01
The particle trajectory calculations provide the essential information which is required for predicting the pattern and intensity of turbomachinery erosion. Consequently, the evaluation of the machine performance deterioration due to erosion is extremely sensitive to the accuracy of the flow field and blade geometry representation in the trajectory computational model. A model is presented that is simple and efficient yet versatile and general to be applicable to axial, radial and mixed flow machines, and to inlets, nozzles, return passages and separators. The results of the computations are presented for the particle trajectories through a row of twisted vanes in the inlet flow field. The effect of the particle size on their trajectories, blade impacts, and on their redistribution and separation are discussed.
Two stage low noise advanced technology fan. 1: Aerodynamic, structural, and acoustic design
NASA Technical Reports Server (NTRS)
Messenger, H. E.; Ruschak, J. T.; Sofrin, T. G.
1974-01-01
A two-stage fan was designed to reduce noise 20 db below current requirements. The first-stage rotor has a design tip speed of 365.8 m/sec and a hub/tip ratio of 0.4. The fan was designed to deliver a pressure ratio of 1.9 with an adiabatic efficiency of 85.3 percent at a specific inlet corrected flow of 209.2kg/sec/sq m. Noise reduction devices include acoustically treated casing walls, a flowpath exit acoustic splitter, a translating centerbody sonic inlet device, widely spaced blade rows, and the proper ratio of blades and vanes. Multiple-circular-arc rotor airfoils, resettable stators, split outer casings, and capability to go to close blade-row spacing are also included.
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.
1986-01-01
Measurements of the unsteady velocity field within the stator row of a transonic axial-flow fan were acquired using a laser anemometer. Measurements were obtained on axisymmetric surfaces located at 10 and 50 percent span from the shroud, with the fan operating at maximum efficiency at design speed. The ensemble-average and variance of the measured velocities are used to identify rotor-wake-generated (deterministic) unsteadiness and turbulence, respectively. Correlations of both deterministic and turbulent velocity fluctuations provide information on the characteristics of unsteady interactions within the stator row. These correlations are derived from the Navier-Stokes equation in a manner similar to deriving the Reynolds stress terms, whereby various averaging operators are used to average the aperiodic, deterministic, and turbulent velocity fluctuations which are known to be present in multistage turbomachines. The correlations of deterministic and turbulent velocity fluctuations throughout the axial fan stator row are presented. In particular, amplification and attenuation of both types of unsteadiness are shown to occur within the stator blade passage.
Validated biomechanical model for efficiency and speed of rowing.
Pelz, Peter F; Vergé, Angela
2014-10-17
The speed of a competitive rowing crew depends on the number of crew members, their body mass, sex and the type of rowing-sweep rowing or sculling. The time-averaged speed is proportional to the rower's body mass to the 1/36th power, to the number of crew members to the 1/9th power and to the physiological efficiency (accounted for by the rower's sex) to the 1/3rd power. The quality of the rowing shell and propulsion system is captured by one dimensionless parameter that takes the mechanical efficiency, the shape and drag coefficient of the shell and the Froude propulsion efficiency into account. We derive the biomechanical equation for the speed of rowing by two independent methods and further validate it by successfully predicting race times. We derive the theoretical upper limit of the Froude propulsion efficiency for low viscous flows. This upper limit is shown to be a function solely of the velocity ratio of blade to boat speed (i.e., it is completely independent of the blade shape), a result that may also be of interest for other repetitive propulsion systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Coupled-Flow Simulation of HP-LP Turbines Has Resulted in Significant Fuel Savings
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2001-01-01
Our objective was to create a high-fidelity Navier-Stokes computer simulation of the flow through the turbines of a modern high-bypass-ratio turbofan engine. The simulation would have to capture the aerodynamic interactions between closely coupled high- and low-pressure turbines. A computer simulation of the flow in the GE90 turbofan engine's high-pressure (HP) and low-pressure (LP) turbines was created at GE Aircraft Engines under contract with the NASA Glenn Research Center. The three-dimensional steady-state computer simulation was performed using Glenn's average-passage approach named APNASA. The areas upstream and downstream of each blade row mutually interact with each other during engine operation. The embedded blade row operating conditions are modeled since the average passage equations in APNASA actively include the effects of the adjacent blade rows. The turbine airfoils, platforms, and casing are actively cooled by compressor bleed air. Hot gas leaks around the tips of rotors through labyrinth seals. The flow exiting the high work HP turbines is partially transonic and, therefore, has a strong shock system in the transition region. The simulation was done using 121 processors of a Silicon Graphics Origin 2000 (NAS 02K) cluster at the NASA Ames Research Center, with a parallel efficiency of 87 percent in 15 hr. The typical average-passage analysis mesh size per blade row was 280 by 45 by 55, or approx.700,000 grid points. The total number of blade rows was 18 for a combined HP and LP turbine system including the struts in the transition duct and exit guide vane, which contain 12.6 million grid points. Design cycle turnaround time requirements ran typically from 24 to 48 hr of wall clock time. The number of iterations for convergence was 10,000 at 8.03x10(exp -5) sec/iteration/grid point (NAS O2K). Parallel processing by up to 40 processors is required to meet the design cycle time constraints. This is the first-ever flow simulation of an HP and LP turbine. In addition, it includes the struts in the transition duct and exit guide vanes.
Heat Transfer on a Film-Cooled Rotating Blade
NASA Technical Reports Server (NTRS)
Garg, Vijay K.
1999-01-01
A multi-block, three-dimensional Navier-Stokes code has been used to compute heat transfer coefficient on the blade, hub and shroud for a rotating high-pressure turbine blade with 172 film-cooling holes in eight rows. Film cooling effectiveness is also computed on the adiabatic blade. Wilcox's k-omega model is used for modeling the turbulence. Of the eight rows of holes, three are staggered on the shower-head with compound-angled holes. With so many holes on the blade it was somewhat of a challenge to get a good quality grid on and around the blade and in the tip clearance region. The final multi-block grid consists of 4784 elementary blocks which were merged into 276 super blocks. The viscous grid has over 2.2 million cells. Each hole exit, in its true oval shape, has 80 cells within it so that coolant velocity, temperature, k and omega distributions can be specified at these hole exits. It is found that for the given parameters, heat transfer coefficient on the cooled, isothermal blade is highest in the leading edge region and in the tip region. Also, the effectiveness over the cooled, adiabatic blade is the lowest in these regions. Results for an uncooled blade are also shown, providing a direct comparison with those for the cooled blade. Also, the heat transfer coefficient is much higher on the shroud as compared to that on the hub for both the cooled and the uncooled cases.
Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Monzon, Byron R. (Inventor); Gallagher, Edward J. (Inventor)
2018-01-01
A gas turbine engine includes a bypass flow passage that has an inlet and defines a bypass ratio in a range of approximately 8.5 to 13.5. A fan is arranged within the bypass flow passage. A first turbine is a 5-stage turbine and is coupled with a first shaft, which is coupled with the fan. A first compressor is coupled with the first shaft and is a 3-stage compressor. A second turbine is coupled with a second shaft and is a 2-stage turbine. The fan includes a row of fan blades that extend from a hub. The row includes a number (N) of the fan blades, a solidity value (R) at tips of the fab blades, and a ratio of N/R that is from 14 to 16.
NASA Technical Reports Server (NTRS)
Newman, Frederick A.
1988-01-01
Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gauge output power spectra. The combined damping consists of aerodynamic and structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given equivalent speed, equivalent mass flow, and pressure ratio while structural and mechanical damping are assumed to be constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third stage rotor blade aerodynamic damping is presented and discussed for 70, 80, 90, and 100 percent design equivalent speed. The compressor overall performance and experimental Campbell diagrams for the third stage rotor blade row are also presented.
Extension of Useful Operating Range of Axial-Flow Compressors by Use of Adjustable Stator Blades
1948-01-01
wmprcssor. AIRCRAFT ENGINE RESEARCH LABORATORY, NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS , CLEVELAND, OHIO, December%9, 1944. APPENDIX A ENTRANCE...ADVISORYCOMbl_E FOR AERONAUTICS either stator blades m rotor bIades can be prevented by the adjustment of the proper row of stator blades : in the first...section, Reynokls number, solidity, blade -a@e setting, and degree of turbulence. Experiments on- airfoil cascades with retarded flow (reference 6, p. 75, and
Stagnation region gas film cooling for turbine blade leading edge applications
NASA Technical Reports Server (NTRS)
Luckey, D. W.; Winstanley, D. K.; Hanus, G. J.; Lecuyer, M. R.
1976-01-01
An experimental investigation was conducted to model the film-cooling performance for a turbine-vane leading edge using the stagnation region of a cylinder in cross flow. Experiments were conducted with a single row of spanwise-angled coolant holes for a range of the coolant blowing ratio with a freestream-to-wall temperature ratio of about 2.1 and a Reynolds number of 170,000, characteristic of the gas-turbine environment. Data from local heat-flux measurements are presented for coolant-hole injection angles of 25, 35, and 45 deg with the row of holes located at three positions relative to the stagnation line on the cylinder. Results show the spanwise (hole-to-hole) variation of heat-flux reduction due to film cooling and indicate conditions for the optimum film-cooling performance.
Unsteady Cascade Aerodynamic Response Using a Multiphysics Simulation Code
NASA Technical Reports Server (NTRS)
Lawrence, C.; Reddy, T. S. R.; Spyropoulos, E.
2000-01-01
The multiphysics code Spectrum(TM) is applied to calculate the unsteady aerodynamic pressures of oscillating cascade of airfoils representing a blade row of a turbomachinery component. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena, in the present case being between fluids and structures. Interaction constraints are enforced in a fully coupled manner using the augmented-Lagrangian method. The arbitrary Lagrangian-Eulerian method is utilized to account for deformable fluid domains resulting from blade motions. Unsteady pressures are calculated for a cascade designated as the tenth standard, and undergoing plunging and pitching oscillations. The predicted unsteady pressures are compared with those obtained from an unsteady Euler co-de refer-red in the literature. The Spectrum(TM) code predictions showed good correlation for the cases considered.
Measurement and Analysis of the Noise Radiated by Low Mach Number Centrifugal Blowers.
NASA Astrophysics Data System (ADS)
Yeager, David Marvin
An investigation was performed of the broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices. An interdisciplinary experimental approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Results showed that the centrifugal blower is a distributed, random noise source, unlike an axial fan which exhibited the effects of a coherent, interacting source distribution. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. Both circumferential and spanwise mean flow nonuniformities were identified along with a region of increased turbulence just downstream of the scroll cutoff. The fluid incidence angle, normally taken as an indicator of blower performance, was estimated from mean flow data as deviating considerably from an ideal impeller design. An investigation of the noise radiated from the single, isolated airfoil was performed using modern correlation and spectral analysis techniques. Radiation from the single blade in flow was characterized using newly developed expressions for the correlation area and the dipole source strength per unit area, and from the relationship between the blade surface pressure and the incident turbulent flow field. Results showed that radiation from the single blade was dominated by the effects of the incident turbulence. Normalized correlations areas of approximately 25% were measured at low frequencies. While the noise generation was more efficient at the trailing edge of the isolated blade, more noise was radiated from the region near the leading edge.
Heat transfer and pressure measurements for the SSME fuel turbine
NASA Technical Reports Server (NTRS)
Dunn, Michael G.; Kim, Jungho
1991-01-01
A measurement program is underway using the Rocketdyne two-stage Space Shuttle Main Engine (SSME) fuel turbine. The measurements use a very large shock tunnel to produce a short-duration source of heated and pressurized gas which is subsequently passed through the turbine. Within this environment, the turbine is operated at the design values of flow function, stage pressure ratio, stage temperature ratio, and corrected speed. The first stage vane row and the first stage blade row are instrumented in both the spanwise and chordwise directions with pressure transducers and heat flux gages. The specific measurements to be taken include time averaged surface pressure and heat flux distributions on the vane and blade, flow passage static pressure, flow passage total pressure and total temperature distributions, and phase resolved surface pressure and heat flux on the blade.
Measurement and analysis of the noise radiated by low Mach numbers centrifugal blowers
NASA Astrophysics Data System (ADS)
Yeager, D. M.; Lauchle, G. C.
1987-11-01
The broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices is investigated. An interdisciplinary approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller which was placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. New frequency-domain expressions for the correlation area and dipole source strength per unit area on a surface immersed in turbulence were developed which can be used to characterize the noise generation process over a rigid surface immersed in turbulence. An investigation of the noise radiated from the single, isolated airfoil (impeller blade) was performed using modern correlation and spectral analysis techniques.
NASA Technical Reports Server (NTRS)
Clemmons, D. R.
1973-01-01
An axial flow compressor stage, having single-airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor had an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were: (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of tandem-airfoil blading designed for the same vector diagrams; and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design. With uniform inlet flow, the rotor achieved a maximum adiabatic efficiency of 90.1% at design equivalent rotor speed and a pressure ratio of 1.281. The stage maximum adiabatic efficiency at design equivalent rotor speed with uniform inlet flow was 86.1% at a pressure ratio of 1.266. Hub radial, tip radial, and circumferential distortion of the inlet flow caused reductions in surge pressure ratio of approximately 2, 10 and 5%, respectively, at design rotor speed.
Experimental analysis of the aerodynamic performance of an innovative low pressure turbine rotor
NASA Astrophysics Data System (ADS)
Infantino, Daniele; Satta, Francesca; Simoni, Daniele; Ubaldi, Marina; Zunino, Pietro; Bertini, Francesco
2016-02-01
In the present work the aerodynamic performances of an innovative rotor blade row have been experimentally investigated. Measurements have been carried out in a large scale low speed single stage cold flow facility at a Reynolds number typical of aeroengine cruise, under nominal and off-design conditions. The time-mean blade aerodynamic loadings have been measured at three radial positions along the blade height through a pressure transducer installed inside the hollow shaft, by delivering the signal to the stationary frame with a slip ring. The time mean aerodynamic flow fields upstream and downstream of the rotor have been measured by means of a five-hole probe to investigate the losses associated with the rotor. The investigations in the single stage research turbine allow the reproduction of both wake-boundary layer interaction as well as vortex-vortex interaction. The detail of the present results clearly highlights the strong dissipative effects induced by the blade tip vortex and by the momentum defect as well as the turbulence production, which is generated during the migration of the stator wake in the rotor passage. Phase-locked hot-wire investigations have been also performed to analyze the time-varying flow during the wake passing period. In particular the interaction between stator and rotor structures has been investigated also under off-design conditions to further explain the mechanisms contributing to the loss generation for the different conditions.
An Experimental Investigation of Steady and Unsteady Flow Field in an Axial Flow Turbine
NASA Technical Reports Server (NTRS)
Zaccaria, M.; Lakshminarayana, B.
1997-01-01
Measurements were made in a large scale single stage turbine facility. Within the nozzle passage measurements were made using a five hole probe, a two-component Laser Doppler Velocimeter (LDV), and a single sensor hot wire probe. These measurements showed weak secondary flows at midchord, and two secondary flow loss cores at the nozzle exit. The casing vortex loss core was the larger of the two. At the exit radial inward flow was found over the entire passage, and was more pronounced in the wake. Nozzle wake decay was found to be more rapid than for an isolated vane row due to the rotor's presence. The midspan rotor flow field was measured using a two-component LDV. Measurements were made from upstream of the rotor to a chord behind the rotor. The distortion of the nozzle wake as it passed through the rotor blade row was determined. The unsteadiness in the rotor flow field was determined. The decay of the rotor wake was also characterized.
The use of optimization techniques to design controlled diffusion compressor blading
NASA Technical Reports Server (NTRS)
Sanger, N. L.
1982-01-01
A method for automating compressor blade design using numerical optimization, and applied to the design of a controlled diffusion stator blade row is presented. A general purpose optimization procedure is employed, based on conjugate directions for locally unconstrained problems and on feasible directions for locally constrained problems. Coupled to the optimizer is an analysis package consisting of three analysis programs which calculate blade geometry, inviscid flow, and blade surface boundary layers. The optimizing concepts and selection of design objective and constraints are described. The procedure for automating the design of a two dimensional blade section is discussed, and design results are presented.
Unsteady Flowfield in a High-Pressure Turbine Modeled by TURBO
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Mehmed, Oral
2003-01-01
Forced response, or resonant vibrations, in turbomachinery components can cause blades to crack or fail because of the large vibratory blade stresses and subsequent high-cycle fatigue. Forced-response vibrations occur when turbomachinery blades are subjected to periodic excitation at a frequency close to their natural frequency. Rotor blades in a turbine are constantly subjected to periodic excitations when they pass through the spatially nonuniform flowfield created by upstream vanes. Accurate numerical prediction of the unsteady aerodynamics phenomena that cause forced-response vibrations can lead to an improved understanding of the problem and offer potential approaches to reduce or eliminate specific forced-response problems. The objective of the current work was to validate an unsteady aerodynamics code (named TURBO) for the modeling of the unsteady blade row interactions that can cause forced response vibrations. The three-dimensional, unsteady, multi-blade-row, Reynolds-averaged Navier-Stokes turbomachinery code named TURBO was used to model a high-pressure turbine stage for which benchmark data were recently acquired under a NASA contract by researchers at the Ohio State University. The test article was an initial design for a high-pressure turbine stage that experienced forced-response vibrations which were eliminated by increasing the axial gap. The data, acquired in a short duration or shock tunnel test facility, included unsteady blade surface pressures and vibratory strains.
Unsteady Force Calculations in Turbomachinery
1991-07-01
Engineering for Gas Turbines and Power, Vol. 107, pp. 945-952, October 1985. Lefcort, M. P., "An Investigation into Unsteady Blade Forces in...generated unsteady flow around a rotating turbine blade row .. ..... 43 7 The rotating coordinate system with skew, 0, and rake, zr, defined at midchord...while Kerrebrock and Mikolajczak [19701 5 proved it experimentally. For a turbine blade passage, the wake fluid moves from the pressure 3 surface to the
NASA Technical Reports Server (NTRS)
Crouse, J. E.
1974-01-01
A method is presented for designing axial-flow compressor blading from blade elements defined on cones which pass through the blade-edge streamline locations. Each blade-element centerline is composed of two segments which are tangent to each other. The centerline and surfaces of each segment have constant change of angle with path distance. The stacking line for the blade elements can be leaned in both the axial and tangential directions. The output of the computer program gives coordinates for fabrication and properties for aeroelastic analysis for planar blade sections. These coordinates and properties are obtained by interpolation across conical blade elements. The program is structured to be coupled with an aerodynamic design program.
Efficient Fourier-based algorithms for time-periodic unsteady problems
NASA Astrophysics Data System (ADS)
Gopinath, Arathi Kamath
2007-12-01
This dissertation work proposes two algorithms for the simulation of time-periodic unsteady problems via the solution of Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. These algorithms use a Fourier representation in time and hence solve for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). In contrast to conventional Fourier-based techniques which solve the governing equations in frequency space, the new algorithms perform all the calculations in the time domain, and hence require minimal modifications to an existing solver. The complete space-time solution is obtained by iterating in a fifth pseudo-time dimension. Various time-periodic problems such as helicopter rotors, wind turbines, turbomachinery and flapping-wings can be simulated using the Time Spectral method. The algorithm is first validated using pitching airfoil/wing test cases. The method is further extended to turbomachinery problems, and computational results verified by comparison with a time-accurate calculation. The technique can be very memory intensive for large problems, since the solution is computed (and hence stored) simultaneously at all time levels. Often, the blade counts of a turbomachine are rescaled such that a periodic fraction of the annulus can be solved. This approximation enables the solution to be obtained at a fraction of the cost of a full-scale time-accurate solution. For a viscous computation over a three-dimensional single-stage rescaled compressor, an order of magnitude savings is achieved. The second algorithm, the reduced-order Harmonic Balance method is applicable only to turbomachinery flows, and offers even larger computational savings than the Time Spectral method. It simulates the true geometry of the turbomachine using only one blade passage per blade row as the computational domain. In each blade row of the turbomachine, only the dominant frequencies are resolved, namely, combinations of neighbor's blade passing. An appropriate set of frequencies can be chosen by the analyst/designer based on a trade-off between accuracy and computational resources available. A cost comparison with a time-accurate computation for an Euler calculation on a two-dimensional multi-stage compressor obtained an order of magnitude savings, and a RANS calculation on a three-dimensional single-stage compressor achieved two orders of magnitude savings, with comparable accuracy.
NASA Astrophysics Data System (ADS)
Smith, Natalie Rochelle
While the gas turbine engine has existed for nearly 80 years, much of the complex aerodynamics which governs compressor performance is still not well understood. The unsteady flow field consists of periodic blade row interactions from the wakes and potential fields of each blade and vane. Vane clocking is the relative circumferential indexing of adjacent vane rows with the same vane count, and it is one method to change blade row interactions. Though the potential of performance benefits with vane clocking is known, the driving flow physics have yet to be identified. This research examines the effects of blade row interactions on embedded stator total pressure loss and boundary layer transition in the Purdue 3-stage axial compressor. The inlet guide vane, Stator 1, and Stator 2 all have 44 vanes which enable vane clocking of the embedded stage, while the rotors have different blade counts producing amplitude modulation of the unsteady interactions. A detailed investigation of corrected conditions is presented to establish repeatable, compressor performance year-round in a facility utilizing ambient inlet conditions. Without proper humidity accounting of compressor corrected conditions and an understanding of the potential for inlet temperature changes to affect clearances due to thermal growth, measurements of small performance changes in detailed research studies could be indiscernible. The methodology and implementation of a powder-paint flow visualization technique along with the illuminated flow physics are presented in detail. This method assists in understanding the loss development in the compressor by highlighting stator corner separations and endwall flow patterns. Effects of loading condition, rotor tip clearance height, and stator wake and rotor tip leakage interactions are shown with this technique. Vane clocking effects on compressor performance were quantified for nine loading conditions and six clocking configurations - the largest vane clocking dataset in the open literature. These data show that vane clocking effects are small at low loading conditions, including peak efficiency operation, but become stronger as loading increases, and then eventually lessen at near stall operation. Additionally, stator wake profiles and flow visualization reveal that total pressure loss changes are due to a corner separation modulation between clocking configurations. To further address these clocking trends, high-frequency response data were acquired at the Stator 2 inlet and along the Stator 2 surface. The unsteadiness at the Stator 2 inlet was quantified with detailed radial traverses for the different clocking configurations. These data show the effects of interactions between the Stator 1 wake and Rotor 2 tip leakage flow, which result in significantly different inlet flow conditions for Stator 2. The high unsteadiness and blockage region formed by the rotor tip leakage flow changes in size and shape between clocking configurations. Finally, measurements of the Stator 2 surface flows were acquired to investigate the vane clocking effects on unsteady surface pressures and boundary layer transition. These data reveal that Stator 2 performance is influenced by blade row interactions including rotor-rotor interactions, stator wake-rotor tip leakage flow interactions, and vane clocking.
A three-dimensional Navier-Stokes stage analysis of the flow through a compact radial turbine
NASA Technical Reports Server (NTRS)
Heidmann, James D.
1991-01-01
A steady, three dimensional Navier-Stokes average passage computer code is used to analyze the flow through a compact radial turbine stage. The code is based upon the average passage set of equations for turbomachinery, whereby the flow fields for all passages in a given blade row are assumed to be identical while retaining their three-dimensionality. A stage solution is achieved by alternating between stator and rotor calculations, while coupling the two solutions by means of a set of axisymmetric body forces which model the absent blade row. Results from the stage calculation are compared with experimental data and with results from an isolated rotor solution having axisymmetric inlet flow quantities upstream of the vacated stator space. Although the mass-averaged loss through the rotor is comparable for both solutions, the details of the loss distribution differ due to stator effects. The stage calculation predicts smaller spanwise variations in efficiency, in closer agreement with the data. The results of the study indicate that stage analyses hold promise for improved prediction of loss mechanisms in multi-blade row turbomachinery, which could lead to improved designs through the reduction of these losses.
A three-dimensional Navier-Stokes stage analysis of the flow through a compact radial turbine
NASA Technical Reports Server (NTRS)
Heidmann, James D.
1991-01-01
A steady, three-dimensional Navier-Stokes average passage computer code is used to analyze the flow through a compact radial turbine stage. The code is based upon the average passage set of equations for turbomachinery, whereby the flow fields for all passages in a given blade row are assumed to be identical while retaining their three-dimensionality. A stage solution is achieved by alternating between stator and rotor calculations, while coupling the two solutions by means of a set of axisymmetric body forces which model the absent blade row. Results from the stage calculation are compared with experimental data and with results from an isolated rotor solution having axisymmetric inlet flow quantities upstream of the vacated stator space. Although the mass-averaged loss through the rotor is comparable for both solutions, the details of the loss distribution differ due to stator effects. The stage calculation predicts smaller spanwise variations in efficiency, in closer agreement with the data. The results of the study indicate that stage analyses hold promise for improved prediction of loss mechanisms in multi-blade row turbomachinery, which could lead to improved designs through the reduction of these losses.
A Three-Dimensional Unsteady CFD Model of Compressor Stability
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.
2006-01-01
A three-dimensional unsteady CFD code called CSTALL has been developed and used to investigate compressor stability. The code solved the Euler equations through the entire annulus and all blade rows. Blade row turning, losses, and deviation were modeled using body force terms which required input data at stations between blade rows. The input data was calculated using a separate Navier-Stokes turbomachinery analysis code run at one operating point near stall, and was scaled to other operating points using overall characteristic maps. No information about the stalled characteristic was used. CSTALL was run in a 2-D throughflow mode for very fast calculations of operating maps and estimation of stall points. Calculated pressure ratio characteristics for NASA stage 35 agreed well with experimental data, and results with inlet radial distortion showed the expected loss of range. CSTALL was also run in a 3-D mode to investigate inlet circumferential distortion. Calculated operating maps for stage 35 with 120 degree distortion screens showed a loss in range and pressure rise. Unsteady calculations showed rotating stall with two part-span stall cells. The paper describes the body force formulation in detail, examines the computed results, and concludes with observations about the code.
Nonlinear dynamic simulation of single- and multi-spool core engines
NASA Technical Reports Server (NTRS)
Schobeiri, T.; Lippke, C.; Abouelkheir, M.
1993-01-01
In this paper a new computational method for accurate simulation of the nonlinear dynamic behavior of single- and multi-spool core engines, turbofan engines, and power generation gas turbine engines is presented. In order to perform the simulation, a modularly structured computer code has been developed which includes individual mathematical modules representing various engine components. The generic structure of the code enables the dynamic simulation of arbitrary engine configurations ranging from single-spool thrust generation to multi-spool thrust/power generation engines under adverse dynamic operating conditions. For precise simulation of turbine and compressor components, row-by-row calculation procedures were implemented that account for the specific turbine and compressor cascade and blade geometry and characteristics. The dynamic behavior of the subject engine is calculated by solving a number of systems of partial differential equations, which describe the unsteady behavior of the individual components. In order to ensure the capability, accuracy, robustness, and reliability of the code, comprehensive critical performance assessment and validation tests were performed. As representatives, three different transient cases with single- and multi-spool thrust and power generation engines were simulated. The transient cases range from operating with a prescribed fuel schedule, to extreme load changes, to generator and turbine shut down.
Deterministic blade row interactions in a centrifugal compressor stage
NASA Technical Reports Server (NTRS)
Kirtley, K. R.; Beach, T. A.
1991-01-01
The three-dimensional viscous flow in a low speed centrifugal compressor stage is simulated using an average passage Navier-Stokes analysis. The impeller discharge flow is of the jet/wake type with low momentum fluid in the shroud-pressure side corner coincident with the tip leakage vortex. This nonuniformity introduces periodic unsteadiness in the vane frame of reference. The effect of such deterministic unsteadiness on the time-mean is included in the analysis through the average passage stress, which allows the analysis of blade row interactions. The magnitude of the divergence of the deterministic unsteady stress is of the order of the divergence of the Reynolds stress over most of the span, from the impeller trailing edge to the vane throat. Although the potential effects on the blade trailing edge from the diffuser vane are small, strong secondary flows generated by the impeller degrade the performance of the diffuser vanes.
NASA Technical Reports Server (NTRS)
Gelder, Thomas F.; Schmidt, James F.; Suder, Kenneth L.; Hathaway, Michael D.
1987-01-01
The capabilities of two stators, one with controlled-diffusion (CD) blade sections and one with double-circular-arc (DCA) blade sections, were compared. A CD stator was designed and tested that had the same chord length but half the blades of the DCA stator. The same fan rotor (tip speed, 429 m/sec; pressure ratio, 1.65) was used with each stator row. The design and analysis system is briefly described. The overall stage and rotor performances with each stator are compared, as are selected blade element data. The minimum overall efficiency decrement across the stator was approximately 1 percentage point greater with the CD blade sections than with the DCA blade sections.
Computer program for definition of transonic axial-flow compressor blade rows
NASA Technical Reports Server (NTRS)
Crouse, J. E.
1975-01-01
Particular type of blade element used has two segments which have centerlines and surfaces described by constant change of angle with path distance on cone. Program is result of rework of earlier program to give major gains in accuracy, reliability and speed. It also covers more steps of overall compressor design procedure.
Simulation of 3-D viscous compressible flow in multistage turbomachinery by finite element methods
NASA Astrophysics Data System (ADS)
Sleiman, Mohamad
1999-11-01
The flow in a multistage turbomachinery blade row is compressible, viscous, and unsteady. Complex flow features such as boundary layers, wake migration from upstream blade rows, shocks, tip leakage jets, and vortices interact together as the flow convects through the stages. These interactions contribute significantly to the aerodynamic losses of the system and degrade the performance of the machine. The unsteadiness also leads to blade vibration and a shortening of its life. It is therefore difficult to optimize the design of a blade row, whether aerodynamically or structurally, in isolation, without accounting for the effects of the upstream and downstream rows. The effects of axial spacing, blade count, clocking (relative position of follow-up rotors with respect to wakes shed by upstream ones), and levels of unsteadiness may have a significance on performance and durability. In this Thesis, finite element formulations for the simulation of multistage turbomachinery are presented in terms of the Reynolds-averaged Navier-Stokes equations for three-dimensional steady or unsteady, viscous, compressible, turbulent flows. Three methodologies are presented and compared. First, a steady multistage analysis using a a-mixing- plane model has been implemented and has been validated against engine data. For axial machines, it has been found that the mixing plane simulation methods match very well the experimental data. However, the results for a centrifugal stage, consisting of an impeller followed by a vane diffuser of equal pitch, show flagrant inconsistency with engine performance data, indicating that the mixing plane method has been found to be inappropriate for centrifugal machines. Following these findings, a more complete unsteady multistage model has been devised for a configuration with equal number of rotor and stator blades (equal pitches). Non-matching grids are used at the rotor-stator interface and an implicit interpolation procedure devised to ensure continuity of fluxes across. This permits the rotor and stator equations to be solved in a fully- coupled manner, allowing larger time steps in attaining a time-periodic solution. This equal pitch approach has been validated on the complex geometry of a centrifugal stage. Finally, for a stage configuration with unequal pitches, the time-inclined method, developed by Giles (1991) for 2-D viscous compressible flow, has been extended to 3-D and formulated in terms of the physical solution vector U, rather than Q, a non-physical one. The method has been evaluated for unsteady flow through a rotor blade passage of the power turbine of a turboprop.
Study of Low Reynolds Number Effects on the Losses in Low-Pressure Turbine Blade Rows
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Dorney, Daniel J.
1998-01-01
Experimental data from jet-engine tests have indicated that unsteady blade row interactions and separation can have a significant impact on the efficiency of low-pressure turbine stages. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Several recent studies have revealed that Reynolds number effects may contribute to the lower efficiencies at cruise conditions. In the current study numerical experiments have been performed to study the models available for low Reynolds number flows, and to quantify the Reynolds number dependence of low-pressure turbine cascades and stages. The predicted aerodynamic results exhibit good agreement with design data.
Gas flow path for a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Matthew D.; Charron, Richard C.; Snyder, Gary D.
A duct arrangement in a can annular gas turbine engine. The gas turbine engine has a gas delivery structure for delivering gases from a plurality of combustors to an annular chamber that extends circumferentially and is oriented concentric to a gas turbine engine longitudinal axis for delivering the gas flow to a first row of blades A gas flow path is formed by the duct arrangement between a respective combustor and the annular chamber for conveying gases from each combustor to the first row of turbine blades The duct arrangement includes at least one straight section having a centerline thatmore » is misaligned with a centerline of the combustor.« less
Highly Loaded Low-Pressure Turbine: Design, Numerical and Experimental Analysis (Preprint)
2010-06-01
can be up 30 percent of the total weight of an aircraft engine [2], and may contain as many as 1 Copyright c⃝ 2010 by ASME 2000 individual airfoils ...reduction in stage count in a gas turbine engine and a de- crease in the part count of an individual airfoil row. The test data presented here provide...the vane row having modest design goals. So, while the Zweifel coefficient of the blade row was set Figure 1. Turbine design loop used to define the
NASA Technical Reports Server (NTRS)
Hauser, Cavour H; Plohr, Henry W
1951-01-01
The nature of the flow at the exit of a row of turbine blades for the range of conditions represented by four different blade configurations was evaluated by the conservation-of-momentum principle using static-pressure surveys and by analysis of Schlieren photographs of the flow. It was found that for blades of the type investigated, the maximum exit tangential-velocity component is a function of the blade geometry only and can be accurately predicted by the method of characteristics. A maximum value of exit velocity coefficient is obtained at a pressure ratio immediately below that required for maximum blade loading followed by a sharp drop after maximum blade loading occurs.
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Delaney, Robert A.
1993-01-01
The primary objective of this study was the development of a time-marching three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict steady and unsteady compressible transonic flows about ducted and unducted propfan propulsion systems employing multiple blade rows. The computer codes resulting from this study are referred to as ADPAC-AOAR\\CR (Advanced Ducted Propfan Analysis Codes-Angle of Attack Coupled Row). This document is the final report describing the theoretical basis and analytical results from the ADPAC-AOACR codes developed under task 5 of NASA Contract NAS3-25270, Unsteady Counterrotating Ducted Propfan Analysis. The ADPAC-AOACR Program is based on a flexible multiple blocked grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. For convenience, several standard mesh block structures are described for turbomachinery applications. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Numerical calculations are compared with experimental data for several test cases to demonstrate the utility of this approach for predicting the aerodynamics of modern turbomachinery configurations employing multiple blade rows.
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Delaney, Robert A.; Adamczyk, John J.; Miller, Christopher J.; Arnone, Andrea; Swanson, Charles
1993-01-01
The primary objective of this study was the development of a time-marching three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict steady and unsteady compressible transonic flows about ducted and unducted propfan propulsion systems employing multiple blade rows. The computer codes resulting from this study are referred to as ADPAC-AOACR (Advanced Ducted Propfan Analysis Codes-Angle of Attack Coupled Row). This report is intended to serve as a computer program user's manual for the ADPAC-AOACR codes developed under Task 5 of NASA Contract NAS3-25270, Unsteady Counterrotating Ducted Propfan Analysis. The ADPAC-AOACR program is based on a flexible multiple blocked grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. For convenience, several standard mesh block structures are described for turbomachinery applications. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Numerical calculations are compared with experimental data for several test cases to demonstrate the utility of this approach for predicting the aerodynamics of modern turbomachinery configurations employing multiple blade rows.
NASA Technical Reports Server (NTRS)
Tesch, W. A.; Moszee, R. H.; Steenken, W. G.
1976-01-01
NASA developed stability and frequency response analysis techniques were applied to a dynamic blade row compression component stability model to provide a more economic approach to surge line and frequency response determination than that provided by time-dependent methods. This blade row model was linearized and the Jacobian matrix was formed. The clean-inlet-flow stability characteristics of the compressors of two J85-13 engines were predicted by applying the alternate Routh-Hurwitz stability criterion to the Jacobian matrix. The predicted surge line agreed with the clean-inlet-flow surge line predicted by the time-dependent method to a high degree except for one engine at 94% corrected speed. No satisfactory explanation of this discrepancy was found. The frequency response of the linearized system was determined by evaluating its Laplace transfer function. The results of the linearized-frequency-response analysis agree with the time-dependent results when the time-dependent inlet total-pressure and exit-flow function amplitude boundary conditions are less than 1 percent and 3 percent, respectively. The stability analysis technique was extended to a two-sector parallel compressor model with and without interstage crossflow and predictions were carried out for total-pressure distortion extents of 180 deg, 90 deg, 60 deg, and 30 deg.
Time-Shifted Boundary Conditions Used for Navier-Stokes Aeroelastic Solver
NASA Technical Reports Server (NTRS)
Srivastava, Rakesh
1999-01-01
Under the Advanced Subsonic Technology (AST) Program, an aeroelastic analysis code (TURBO-AE) based on Navier-Stokes equations is currently under development at NASA Lewis Research Center s Machine Dynamics Branch. For a blade row, aeroelastic instability can occur in any of the possible interblade phase angles (IBPA s). Analyzing small IBPA s is very computationally expensive because a large number of blade passages must be simulated. To reduce the computational cost of these analyses, we used time shifted, or phase-lagged, boundary conditions in the TURBO-AE code. These conditions can be used to reduce the computational domain to a single blade passage by requiring the boundary conditions across the passage to be lagged depending on the IBPA being analyzed. The time-shifted boundary conditions currently implemented are based on the direct-store method. This method requires large amounts of data to be stored over a period of the oscillation cycle. On CRAY computers this is not a major problem because solid-state devices can be used for fast input and output to read and write the data onto a disk instead of storing it in core memory.
NASA Technical Reports Server (NTRS)
Gelder, Thomas F.; Schmidt, James F.; Suder, Kenneth L.; Hathaway, Michael D.
1987-01-01
The capabilities of two stators, one with controlled-diffusion (CD) blade sections and one with double-circular-arc (DCA) blade sections, were compared. A CD stator was designed and tested that had the same chord length but half the blades of the DCA stator. The same fan rotor (tip speed, 429 m/sec; pressure ratio, 1.65) was used with each stator row. The design and analysis system is briefly described. The overall stage and rotor performances with each stator are compared, as are selected blade element data. The minimum overall efficiency decrement across the stator was approximately 1 percentage point greater with the CD balde sections than with the DCA blade sections.
Theoretical Studies of Three Dimensional Transonic Flow through a Compressor Blade Row.
1980-11-30
Row", Calspan Report No. AB-5487-A-l, AFOSR-TR-76- 1082 , AD-A031234, (August 1976). 2 Rae, W.J., "Relaxation Solutions for Three-Dimensional Transonic...S487-A-1, AFOSR-TR-76- 1082 , AD-A031234, (August 1976). 2. Rae, W.J., "Relaxation Solutions for Three-Dimensional Transonic Flow Through a Compressor
Computation of flow in radial- and mixed-flow cascades by an inviscid-viscous interaction method
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Hansen, E. C.
1980-01-01
The use of inviscid-viscous interaction methods for the case of radial or mixed-flow cascade diffusers is discussed. A literature review of investigations considering cascade flow-field prediction by inviscid-viscous iterative computation is given. Cascade aerodynamics in the third blade row of a multiple-row radial cascade diffuser are specifically investigated.
Turbofan gas turbine engine with variable fan outlet guide vanes
NASA Technical Reports Server (NTRS)
Wood, Peter John (Inventor); LaChapelle, Donald George (Inventor); Grant, Carl (Inventor); Zenon, Ruby Lasandra (Inventor); Mielke, Mark Joseph (Inventor)
2010-01-01
A turbofan gas turbine engine includes a forward fan section with a row of fan rotor blades, a core engine, and a fan bypass duct downstream of the forward fan section and radially outwardly of the core engine. The forward fan section has only a single stage of variable fan guide vanes which are variable fan outlet guide vanes downstream of the forward fan rotor blades. An exemplary embodiment of the engine includes an afterburner downstream of the fan bypass duct between the core engine and an exhaust nozzle. The variable fan outlet guide vanes are operable to pivot from a nominal OGV position at take-off to an open OGV position at a high flight Mach Number which may be in a range of between about 2.5-4+. Struts extend radially across a radially inwardly curved portion of a flowpath of the engine between the forward fan section and the core engine.
Calculation and Correlation of the Unsteady Flowfield in a High Pressure Turbine
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Liu, Jong S.; Panovsky, Josef; Keith, Theo G., Jr.; Mehmed, Oral
2002-01-01
Forced vibrations in turbomachinery components can cause blades to crack or fail due to high-cycle fatigue. Such forced response problems will become more pronounced in newer engines with higher pressure ratios and smaller axial gap between blade rows. An accurate numerical prediction of the unsteady aerodynamics phenomena that cause resonant forced vibrations is increasingly important to designers. Validation of the computational fluid dynamics (CFD) codes used to model the unsteady aerodynamic excitations is necessary before these codes can be used with confidence. Recently published benchmark data, including unsteady pressures and vibratory strains, for a high-pressure turbine stage makes such code validation possible. In the present work, a three dimensional, unsteady, multi blade-row, Reynolds-Averaged Navier Stokes code is applied to a turbine stage that was recently tested in a short duration test facility. Two configurations with three operating conditions corresponding to modes 2, 3, and 4 crossings on the Campbell diagram are analyzed. Unsteady pressures on the rotor surface are compared with data.
NASA Technical Reports Server (NTRS)
Farrell, C. A.
1982-01-01
A fast, reliable computer code is described for calculating the flow field about a cascade of arbitrary two dimensional airfoils. The method approximates the three dimensional flow in a turbomachinery blade row by correcting for stream tube convergence and radius change in the throughflow direction. A fully conservative solution of the full potential equation is combined with the finite volume technique on a body-fitted periodic mesh, with an artificial density imposed in the transonic region to insure stability and the capture of shock waves. The instructions required to set up and use the code are included. The name of the code is QSONIC. A numerical example is also given to illustrate the output of the program.
NASA Astrophysics Data System (ADS)
Zhou, Di; Lu, Zhiliang; Guo, Tongqing; Shen, Ennan
2016-06-01
In this paper, the research on two types of unsteady flow problems in turbomachinery including blade flutter and rotor-stator interaction is made by means of numerical simulation. For the former, the energy method is often used to predict the aeroelastic stability by calculating the aerodynamic work per vibration cycle. The inter-blade phase angle (IBPA) is an important parameter in computation and may have significant effects on aeroelastic behavior. For the latter, the numbers of blades in each row are usually not equal and the unsteady rotor-stator interactions could be strong. An effective way to perform multi-row calculations is the domain scaling method (DSM). These two cases share a common point that the computational domain has to be extended to multi passages (MP) considering their respective features. The present work is aimed at modeling these two issues with the developed MP model. Computational fluid dynamics (CFD) technique is applied to resolve the unsteady Reynolds-averaged Navier-Stokes (RANS) equations and simulate the flow fields. With the parallel technique, the additional time cost due to modeling more passages can be largely decreased. Results are presented on two test cases including a vibrating rotor blade and a turbine stage.
Numerical study of a high-speed miniature centrifugal compressor
NASA Astrophysics Data System (ADS)
Li, Xiaoyi
A miniature centrifugal compressor is a key component of reverse Brayton cycle cryogenic cooling system. The system is commonly used to generate a low cryogenic temperature environment for electronics to increase their efficiency, or generate, store and transport cryogenic liquids, such as liquid hydrogen and oxygen, where space limit is also an issue. Because of space limitation, the compressor is composed of a radial IGV, a radial impeller and an axial-direction diffuser (which reduces the radial size because of smaller diameter). As a result of reduction in size, rotating speed of the impeller is as high as 313,000 rpm, and Helium is used as the working fluid, in order to obtain the required static pressure ratio/rise. Two main characteristics of the compressor---miniature and high-speed, make it distinct from conventional compressors. Higher compressor efficiency is required to obtain a higher COP (coefficient of performance) system. Even though miniature centrifugal compressors start to draw researchers' attention in recent years, understanding of the performance and loss mechanism is still lacking. Since current experimental techniques are not advanced enough to capture details of flow at miniature scale, numerical methods dominate miniature turbomachinery study. This work numerically studied a high speed miniature centrifugal compressor with commercial CFD code. The overall performance of the compressor was predicted with consideration of interaction between blade rows by using sliding mesh model. The law of similarity of turbomachinery was validated for small scale machines. It was found that the specific ratio effect needs to be considered when similarity law is applied. But Reynolds number effect can be neglected. The loss mechanism of each component was analyzed. Loss due to turning bend was significant in each component. Tip leakage loss of small scale turbomachines has more impact on the impeller performance than that of large scale ones. Because the splitter was located at downstream of the impeller leading edge, any incidence at the impeller leading edge could deteriorate the splitter performance. Therefore, the impeller with twenty blades had, higher isentropic efficiency than the impeller with ten blades and ten splitters. Based on numerical study, a four-row vaned diffuser replaced a two-row vaned diffuser. It was found that the four-row vaned diffuser had much higher pressure recovery coefficient than the two-row vaned diffuser. However, most of pressure numerically is found to be recovered at the first two rows of diffuser vanes. Consequently, the following suggestions were given to further improve the performance of the miniature centrifugal compressor. (1) Redesign inlet guide vane based on the numerical simulation and experimental results. (2) Add de-swirl vanes in front of the diffuser and before the bend. (3) Replace the current impeller with a twenty-blade impeller. (4) Remove the last two rows of diffuser.
Gas Dynamic Modernization of Axial Uncooled Turbine by Means of CFD and Optimization Software
NASA Astrophysics Data System (ADS)
Marchukov, E. Yu; Egorov, I. N.
2018-01-01
The results of multicriteria optimization of three-stage low-pressure turbine are described in the paper. The aim of the optimization is to improve turbine operation process by three criteria: turbine outlet flow angle, value of residual swirl at the turbine outlet, and turbine efficiency. Full reprofiling of all blade rows is carried out while solving optimization problem. Reprofiling includes a change in both shape of flat blade sections (profiles) and three-dimensional shape of the blades. The study is carried out with 3D numerical models of turbines.
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
2001-01-01
This report examines the effects on broadband noise generation of unsteady coupling between a rotor and stator in the fan stage of a turbofan engine. Whereas previous acoustic analyses treated the blade rows as isolated cascades, the present work accounts for reflection and transmission effects at both blade rows by tracking the mode and frequency scattering of pressure and vortical waves. The fan stage is modeled in rectilinear geometry to take advantage of a previously existing unsteady cascade theory for 3D perturbation waves and thereby use a realistic 3D turbulence spectrum. In the analysis, it was found that the set of participating modes divides itself naturally into "independent mode subsets" that couple only among themselves and not to the other such subsets. This principle is the basis for the analysis and considerably reduces computational effort. It also provides a simple, accurate scheme for modal averaging for further efficiency. Computed results for a coupled fan stage are compared with calculations for isolated blade rows. It is found that coupling increases downstream noise by 2 to 4 dB. Upstream noise is lower for isolated cascades and is further reduced by including coupling effects. In comparison with test data, the increase in the upstream/downstream differential indicates that broadband noise from turbulent inflow at the stator dominates downstream noise but is not a significant contributor to upstream noise.
Solution of plane cascade flow using improved surface singularity methods
NASA Technical Reports Server (NTRS)
Mcfarland, E. R.
1981-01-01
A solution method has been developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those found in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.
NASA Technical Reports Server (NTRS)
Katsanis, T.
1994-01-01
This computer program was developed for calculating the subsonic or transonic flow on the hub-shroud mid-channel stream surface of a single blade row of a turbomachine. The design and analysis of blades for compressors and turbines ideally requires methods for analyzing unsteady, three-dimensional, turbulent viscous flow through a turbomachine. Since an exact solution is impossible at present, solutions on two-dimensional surfaces are calculated to obtain a quasi-three dimensional solution. When three-dimensional effects are important, significant information can be obtained from a solution on a cross-sectional surface of the passage normal to the flow. With this program, a solution to the equations of flow on the meridional surface can be carried out. This solution is chosen when the turbomachine under consideration has significant variation in flow properties in the hubshroud direction, especially when input is needed for use in blade-to-blade calculations. The program can also perform flow calculations for annular ducts without blades. This program should prove very useful in the design and analysis of any turbomachine. This program calculates a solution for two-dimensional, adiabatic shockfree flow. The flow must be essentially subsonic, but there may be local areas of supersonic flow. To obtain the solution, this program uses both the finite difference and the quasi-orthogonal (velocity gradient) methods combined in a way that takes maximum advantage of both. The finite-difference method solves a finite-difference equation along the meridional stream surface in a very efficient manner but is limited to subsonic velocities. This approach must be used in cases where the blade aspect ratios are above one, cases where the passage is curved, and cases with low hub-tip-ratio blades. The quasi-orthogonal method solves the velocity gradient equation on the meridional surface and is used if it is necessary to extend the range of solutions into the transonic regime. In general the blade row may be fixed or rotating and the blades may be twisted and leaned. The flow may be axial, radial, or mixed. The upstream and downstream flow conditions can vary from hub to shroud with provisions made for an approximate correction for loss of stagnation pressure. Also, viscous forces are neglected along solution mesh lines running from hub to tip. The capabilities of this program include handling of nonaxial flows without restriction, annular ducts without blades, and specified streamwise loss distributions. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 700K of 8 bit bytes. This core requirement can be reduced depending on the size of the problem and the desired solution accuracy. This program was developed in 1977.
Calculation of gas turbine characteristic
NASA Astrophysics Data System (ADS)
Mamaev, B. I.; Murashko, V. L.
2016-04-01
The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.
Stator Indexing in Multistage Compressors
NASA Technical Reports Server (NTRS)
Barankiewicz, Wendy S.
1997-01-01
The relative circumferential location of stator rows (stator indexing) is an aspect of multistage compressor design that has not yet been explored for its potential impact on compressor aerodynamic performance. Although the inlet stages of multistage compressors usually have differing stator blade counts, the aft stages of core compressors can often have stage blocks with equal stator blade counts in successive stages. The potential impact of stator indexing is likely greatest in these stages. To assess the performance impact of stator indexing, researchers at the NASA Lewis Research Center used the 4 ft diameter, four-stage NASA Low Speed Axial Compressor for detailed experiments. This compressor has geometrically identical stages that can circumferentially index stator rows relative to each other in a controlled manner; thus it is an ideal test rig for such investigations.
Quasi-three-dimensional flow solution by meridional plane analysis
NASA Technical Reports Server (NTRS)
Katsanis, T.; Mcnally, W. D.
1974-01-01
A computer program has been developed to obtain subsonic or shockfree transonic, nonviscous flow analysis on the hub-shroud mid-channel flow surface of a turbomachine. The analysis may be for any annular passage, with or without blades. The blades may be fixed or rotating and may be twisted and leaned. The flow may be axial, radial or mixed. Blade surface velocities over the entire blade are approximated based on the rate of change of angular momentum. This gives a 3-D flow picture based on a 2-D analysis. The paper discusses the method used for the program and shows examples of the type of passages and blade rows which can be analyzed. Also, some numerical examples are given to show how the program can be used for practical assistance in design of blading, annular passages, and annular diffusers.
Active control of wake/blade-row interaction noise through the use of blade surface actuators
NASA Technical Reports Server (NTRS)
Kousen, Kenneth A.; Verdon, Joseph M.
1993-01-01
A combined analytical/computational approach for controlling of the noise generated by wake/blade-row interaction through the use of anti-sound actuators on the blade surfaces is described. A representative two-dimensional section of a fan stage, composed of an upstream fan rotor and a downstream fan exit guide vane (FEGV), is examined. An existing model for the wakes generated by the rotor is analyzed to provide realistic magnitudes for the vortical excitations imposed at the inlet to the FEGV. The acoustic response of the FEGV is determined at multiples of the blade passing frequency (BPF) by using the linearized unsteady flow analysis, LINFLO. Acoustic field contours are presented at each multiple of BPF illustrating the generated acoustic response disturbances. Anti-sound is then provided by placing oscillating control surfaces, whose lengths and locations are specified arbitrarily, on the blades. An analysis is then conducted to determine the complex amplitudes required for the control surface motions to best reduce the noise. It is demonstrated that if the number of acoustic response modes to be controlled is equal to the number of available independent control surfaces, complete noise cancellation can be achieved. A weighted least squares minimization procedure for the control equations is given for cases in which the number of acoustic modes exceeds the number of available control surfaces. The effectiveness of the control is measured by the magnitude of a propagating acoustic response vector, which is related to the circumferentially averaged sound pressure level (SPL), and is minimized by a standard least-squares minimization procedure.
Active control of wake/blade-row interaction noise through the use of blade surface actuators
NASA Astrophysics Data System (ADS)
Kousen, Kenneth A.; Verdon, Joseph M.
1993-12-01
A combined analytical/computational approach for controlling of the noise generated by wake/blade-row interaction through the use of anti-sound actuators on the blade surfaces is described. A representative two-dimensional section of a fan stage, composed of an upstream fan rotor and a downstream fan exit guide vane (FEGV), is examined. An existing model for the wakes generated by the rotor is analyzed to provide realistic magnitudes for the vortical excitations imposed at the inlet to the FEGV. The acoustic response of the FEGV is determined at multiples of the blade passing frequency (BPF) by using the linearized unsteady flow analysis, LINFLO. Acoustic field contours are presented at each multiple of BPF illustrating the generated acoustic response disturbances. Anti-sound is then provided by placing oscillating control surfaces, whose lengths and locations are specified arbitrarily, on the blades. An analysis is then conducted to determine the complex amplitudes required for the control surface motions to best reduce the noise. It is demonstrated that if the number of acoustic response modes to be controlled is equal to the number of available independent control surfaces, complete noise cancellation can be achieved. A weighted least squares minimization procedure for the control equations is given for cases in which the number of acoustic modes exceeds the number of available control surfaces. The effectiveness of the control is measured by the magnitude of a propagating acoustic response vector, which is related to the circumferentially averaged sound pressure level (SPL), and is minimized by a standard least-squares minimization procedure.
End-wall boundary layer measurements in a two-stage fan
NASA Technical Reports Server (NTRS)
Ball, C. L.; Reid, L.; Schmidt, J. F.
1983-01-01
Detailed flow measurements made in the casing boundary layer of a two-stage transonic fan are summarized. These measurements were taken at a station upstream of the fan, between all blade rows, and downstream of the last row. Conventional boundary layer parameters were calculated from the measured data. A classical two dimensional casing boundary layer was measured at the fan inlet and extended inward to approximately 15 percent of span. A highly three dimensional boundary layer was measured at the exit of each blade row and extended inward to approximately 10 percent of span. The steep radial gradient of axial velocity noted at the exit of the rotors was reduced substantially as the flow passed through the stators. This reduced gradient is attributed to flow mixing. The amount of flow mixing was reflected in the radial redistribution of total temperature as the flow passed through the stators. The blockage factors calculated from the measured data show an increase in blockage across the rotors and a decrease across the stators. For this fan the calculated blockages for the second stage were essentially the same as those for the first stage.
Department of Defense High Performance Computing Modernization Program. 2007 Annual Report
2008-03-01
Directorate, Kirtland AFB, NM Applications of Time-Accurate CFD in Order to Account for Blade -Row Interactions and Distortion Transfer in the Design of...Patterson AFB, OH Direct Numerical Simulations of Active Control for Low- Pressure Turbine Blades Herman Fasel, University of Arizona, Tucson, AZ (Air Force...interactions with the rotor wake . These HI-ARMS computations compare favorably with available wind tunnel test measurements of surface and flowfield
NASA Technical Reports Server (NTRS)
Mcfarland, E. R.
1981-01-01
A solution method was developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.
Fundamental mechanisms that influence the estimate of heat transfer to gas turbine blades
NASA Technical Reports Server (NTRS)
Graham, R. W.
1979-01-01
Estimates of the heat transfer from the gas to stationary (vanes) or rotating blades poses a major uncertainty due to the complexity of the heat transfer processes. The gas flow through these blade rows is three dimensional with complex secondary viscous flow patterns that interact with the endwalls and blade surfaces. In addition, upstream disturbances, stagnation flow, curvature effects, and flow acceleration complicate the thermal transport mechanisms in the boundary layers. Some of these fundamental heat transfer effects are discussed. The chief purpose of the discussion is to acquaint those in the heat transfer community, not directly involved in gas turbines, of the seriousness of the problem and to recommend some basic research that would improve the capability for predicting gas-side heat transfer on turbine blades and vanes.
An interactive grid generation procedure for axial and radial flow turbomachinery
NASA Technical Reports Server (NTRS)
Beach, Timothy A.
1989-01-01
A combination algebraic/elliptic technique is presented for the generation of three dimensional grids about turbo-machinery blade rows for both axial and radial flow machinery. The technique is built around use of an advanced engineering workstation to construct several two dimensional grids interactively on predetermined blade-to-blade surfaces. A three dimensional grid is generated by interpolating these surface grids onto an axisymmetric grid. On each blade-to-blade surface, a grid is created using algebraic techniques near the blade to control orthogonality within the boundary layer region and elliptic techniques in the mid-passage to achieve smoothness. The interactive definition of bezier curves as internal boundaries is the key to simple construction. This procedure lends itself well to zonal grid construction, an important example being the tip clearance region. Calculations done to date include a space shuttle main engine turbopump blade, a radial inflow turbine blade, and the first stator of the United Technologies Research Center large scale rotating rig. A finite Navier-Stokes solver was used in each case.
MPT Prediction of Aircraft-Engine Fan Noise
NASA Technical Reports Server (NTRS)
Connell, Stuart D.
2004-01-01
A collection of computer programs has been developed that implements a procedure for predicting multiple-pure-tone (MPT) noise generated by fan blades of an aircraft engine (e.g., a turbofan engine). MPT noise arises when the fan is operating with supersonic relative tip Mach No. Under this flow condition, there is a strong upstream running shock. The strength and position of this shock are very sensitive to blade geometry variations. For a fan where all the blades are identical, the primary tone observed upstream of the fan will be the blade passing frequency. If there are small variations in geometry between blades, then tones below the blade passing frequency arise MPTs. Stagger angle differences as small as 0.1 can give rise to significant MPT. It is also noted that MPT noise is more pronounced when the fan is operating in an unstarted mode. Computational results using a three-dimensional flow solver to compute the complete annulus flow with non-uniform fans indicate that MPT noise can be estimated in a relatively simple way. Hence, once the effect of a typical geometry variation of one blade in an otherwise uniform blade row is known, the effect of all the blades being different can be quickly computed via superposition. Two computer programs that were developed as part of this work are used in conjunction with a user s computational fluid dynamics (CFD) code to predict MPT spectra for a fan with a specified set of geometric variations: (1) The first program ROTBLD reads the users CFD solution files for a single blade passage via an API (Application Program Interface). There are options to replicate and perturb the geometry with typical variations stagger, camber, thickness, and pitch. The multi-passage CFD solution files are then written in the user s file format using the API. (2) The second program SUPERPOSE requires two input files: the first is the circumferential upstream pressure distribution extracted from the CFD solution on the multi-passage mesh, the second file defines the geometry variations of each blade in a complete fan. Superposition is used to predict the spectra resulting from the geometric variations.
NASA Technical Reports Server (NTRS)
VanZante, Dale; Envia, Edmane
2008-01-01
Understanding the relative importance of the various turbine noise generation mechanisms and the characteristics of the turbine acoustic transmission loss are essential ingredients in developing robust reduced-order models for predicting the turbine noise signature. A computationally based investigation has been undertaken to help guide the development of a turbine noise prediction capability that does not rely on empiricism. The investigation relies on highly detailed numerical simulations of the unsteady flowfield inside a modern high-pressure turbine (HPT). The simulations are developed using TURBO, which is an unsteady Reynolds-averaged Navier-Stokes (URANS) code capable of multi-stage simulations. The purpose of this study is twofold. First, to determine an estimate of the relative importance of the contributions to the coherent part of the acoustic signature of a turbine from the three potential sources of turbine noise generation, namely, blade-row viscous interaction, potential field interaction, and entropic source associated with the interaction of the blade rows with the temperature nonuniformities caused by the incomplete mixing of the hot fluid and the cooling flow. Second, to develop an understanding of the turbine acoustic transmission characteristics and to assess the applicability of existing empirical and analytical transmission loss models to realistic geometries and flow conditions for modern turbine designs. The investigation so far has concentrated on two simulations: (1) a single-stage HPT and (2) a two-stage HPT and the associated inter-turbine duct/strut segment. The simulations are designed to resolve up to the second harmonic of the blade passing frequency tone in accordance with accepted rules for second order solvers like TURBO. The calculations include blade and vane cooling flows and a radial profile of pressure and temperature at the turbine inlet. The calculation can be modified later to include the combustor pattern factor at the turbine inlet to include that contribution to turbine noise. We shall present preliminary analysis of the results obtained so far in order to assess the validity of such an approach and to seek feedback on improving the approach. This work addresses both Area 1 (Turbine Tone Noise) and Area 5 (Influence of the Turbine on Combustor Noise) topics.
Potential disturbance interactions with a single IGV in an F109 turbofan engine
NASA Astrophysics Data System (ADS)
Kirk, Joel F.
A common cause of aircraft engine failure is the high cycle fatigue of engine blades and stators. One of the primary causes of these failures is due to blade row interactions, which cause an aerodynamic excitation to be resonant with a mechanical natural frequency. Traditionally, the primary source of such aerodynamic excitations has been practically limited to viscous wakes from upstream components. However, more advanced designs require that blade rows be very highly loaded and closely spaced. This results in aerodynamic excitation from potential fields of down stream engine components, in addition to the known wake excitations. An experimental investigation of the potential field from the fan of a Honeywell F109 turbofan engine has been completed. The investigation included velocity measurements upstream of the fan, addition of an airfoil shaped probe upstream of the fan on which surface pressure measurements were acquired, and measurement of the velocity in the interaction region between the probe and the fan. This investigation sought to characterize the response on the upstream probe due to the fan potential field and the interaction between a viscous wake and the potential field; as such, all test conditions were for subsonic fan speeds. The results from the collected data show that fan-induced potential disturbances propagate upstream at acoustic velocities, to produce vane surface-pressure amplitudes as high as 40 percent Joel F. Kirk of the inlet, mean total pressure. Further, these fan-induced pressure amplitudes display large variations between the two vane surfaces. An argument is made that the structure of the pressure response is consistent with the presence of two distinct sources of unsteady forcing disturbances. The disturbances on the incoming-rotation-facing surface of the IGV propagated upstream at a different speed than those on the outgoing-rotation-facing surface, indicating that one originated from a rotating source and the other from a stationary source. An argument is made to suggest that the stationary source is due to the rotor blades cutting through the wake of the IGV.
NASA Subsonic Jet Transport Noise Reduction Research
2000-09-01
optical and acoustical interference. Figure 7 shows the concept and data from the installation of arrays of Herschel- Quincke tubes in the duct...tube row 16 tube row Herschel- Quincke Tube Tube length 12.5cm d = 3.8cm L = 9.2cm 2250 2350 2450 2500...Blade passage frequency, Hz R el at iv e p o w er , d B JT15D Turbofan Engine 4 d B Figure 7. Application of Herschel- Quincke tubes for
Navier-Stokes turbine heat transfer predictions using two-equation turbulence closures
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Arnone, Andrea
1992-01-01
Navier-Stokes calculations were carried out in order to predict the heat-transfer rates on turbine blades. The calculations were performed using TRAF2D which is a k-epsilon, explicit, finite volume mass-averaged Navier-Stokes solver. Turbulence was modeled using Coakley's q-omega and Chien's k-epsilon two-equation models and the Baldwin-Lomax algebraic model. The model equations along with the flow equations were solved explicitly on a nonperiodic C grid. Implicit residual smoothing (IRS) or a combination of multigrid technique and IRS was applied to enhance convergence rates. Calculations were performed to predict the Stanton number distributions on the first stage vane and blade row as well as the second stage vane row of the SSME high-pressure fuel turbine. The comparison serves to highlight the weaknesses of the turbulence models for use in turbomachinery heat-transfer calculations.
Supersonic Stall Flutter of High Speed Fans. [in turbofan engines
NASA Technical Reports Server (NTRS)
Adamczyk, J. J.; Stevens, W.; Jutras, R.
1981-01-01
An analytical model is developed for predicting the onset of supersonic stall bending flutter in axial flow compressors. The analysis is based on a modified two dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils whose geometry and dynamic response coincide with those of a rotor blade element at 85 percent of the span height (measured from the hub). The rotor blades are assumed to be unshrouded (i.e., free standing) and to vibrate in their first flexural mode. The effects of shock waves and flow separation are included in the model through quasi-steady, empirical, rotor total-pressure-loss and deviation-angle correlations. The actuator disk model predicts the unsteady aerodynamic force acting on the cascade blading as a function of the steady flow field entering the cascade and the geometry and dynamic response of the cascade. Calculations show that the present model predicts the existence of a bending flutter mode at supersonic inlet Mach numbers. This flutter mode is suppressed by increasing the reduced frequency of the system or by reducing the steady state aerodynamic loading on the cascade. The validity of the model for predicting flutter is demonstrated by correlating the measured flutter boundary of a high speed fan stage with its predicted boundary. This correlation uses a level of damping for the blade row (i.e., the log decrement of the rotor system) that is estimated from the experimental flutter data. The predicted flutter boundary is shown to be in good agreement with the measured boundary.
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
NASA Technical Reports Server (NTRS)
Montgomery, Matthew D.; Verdon, Joseph M.
1996-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic response characteristics of axial-flow turbomachinery blading. The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. In addition, a numerical model for linearized inviscid unsteady flow, which is based upon an existing nonlinear, implicit, wave-split, finite volume analysis, is described. These aerodynamic and numerical models have been implemented into an unsteady flow code, called LINFLUX. A preliminary version of the LINFLUX code is applied herein to selected, benchmark three-dimensional, subsonic, unsteady flows, to illustrate its current capabilities and to uncover existing problems and deficiencies. The numerical results indicate that good progress has been made toward developing a reliable and useful three-dimensional prediction capability. However, some problems, associated with the implementation of an unsteady displacement field and numerical errors near solid boundaries, still exist. Also, accurate far-field conditions must be incorporated into the FINFLUX analysis, so that this analysis can be applied to unsteady flows driven be external aerodynamic excitations.
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
NASA Technical Reports Server (NTRS)
Montgomery, Matthew D.; Verdon, Joseph M.
1997-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic responses of axial-flow turbo-machinery blading.The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to a far-field eigenanalysis, is also described. The linearized aerodynamic and numerical models have been implemented into a three-dimensional linearized unsteady flow code, called LINFLUX. This code has been applied to selected, benchmark, unsteady, subsonic flows to establish its accuracy and to demonstrate its current capabilities. The unsteady flows considered, have been chosen to allow convenient comparisons between the LINFLUX results and those of well-known, two-dimensional, unsteady flow codes. Detailed numerical results for a helical fan and a three-dimensional version of the 10th Standard Cascade indicate that important progress has been made towards the development of a reliable and useful, three-dimensional, prediction capability that can be used in aeroelastic and aeroacoustic design studies.
NASA Technical Reports Server (NTRS)
Creagh, John W. R.
1950-01-01
The compressor from the XT-46 turbine-propeller engine was revised by removing the last two rows of stator blades and by eliminating the interstage leakage paths described in a previous report. With the revised compressor, the flow choking point shifted upstream into the last rotor-blade row but the maximum weight flow was not increased over that of the original compressor. The flow range of the revised compressor was reduced to about two-thirds that obtained with the original compressor. The later stages of the compressor did not produce the design static-pressure increase probably because of excessive boundary-layer build-up in this region. Measurements obtained in the ninth-stage stator showed that the performance up to this station was promising but that the last three stages of the compressor were limiting the useful operating range of the preceding stages. Some modifications in flow-passage geometry and blade settings are believed to be necessary, however, before any major improvements in over-all compressor performance can be obtained.
Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blades
NASA Technical Reports Server (NTRS)
Garg, Vijay K.; Gaugler, Raymond E.
1997-01-01
A three-dimensional Navier Stokes code has been used to study the effect of coolant temperature, and coolant to mainstream mass flow ratio on the adiabatic effectiveness of a film-cooled turbine blade. The blade chosen is the VKI rotor with six rows of cooling holes including three rows on the shower head. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. Generally, the adiabatic effectiveness is lower for a higher coolant temperature due to nonlinear effects via the compressibility of air. However, over the suction side of shower-head holes, the effectiveness is higher for a higher coolant temperature than that for a lower coolant temperature when the coolant to mainstream mass flow ratio is 5% or more. For a fixed coolant temperature, the effectiveness passes through a minima on the suction side of shower-head holes as the coolant to mainstream mass flow, ratio increases, while on the pressure side of shower-head holes, the effectiveness decreases with increase in coolant mass flow due to coolant jet lift-off. In all cases, the adiabatic effectiveness is highly three-dimensional.
Holographic studies of shock waves within transonic fan rotors
NASA Technical Reports Server (NTRS)
Benser, W. A.; Bailey, E. E.; Gelder, T. F.
1974-01-01
NASA has funded two separate contracts to apply pulsed laser holographic interferometry to the detection of shock patterns in the outer span regions of high tip speed transonic rotors. The first holographic approach used ruby laser light reflected from a portion of the centerbody just ahead of the rotor. These holograms showed the bow wave patterns upstream of the rotor and the shock patterns just inside the blade row near the tip. The second holographic approach, on a different rotor, used light transmitted diagonally across the inlet annulus past the centerbody. This approach gave a more extensive view of the region bounded by the blade leading and trailing edges, by the part span shroud and by the blade tip. These holograms showed the passage shock emanating from the blade leading edge and a moderately strong conical shock originating at the intersection of the part span shroud leading edge and the blade suction surface.
NASA Astrophysics Data System (ADS)
Khalatov, A. A.; Panchenko, N. A.; Severin, S. D.
2017-09-01
Film cooling is among the basic methods used for thermal protection of blades in modern high-temperature gas turbines. Results of computer simulation of film cooling with coolant injection via a row of conventional inclined holes or a row of holes in a trench are presented in this paper. The ANSYS CFX 14 commercial software package was used for CFD-modeling. The effect is studied of the mainstream turbulence on the film cooling efficiency for the blowing ratio range between 0.6 and 2.3 and three different turbulence intensities of 1, 5, and 10%. The mainstream velocity was 150 and 400 m/s, while the temperatures of the mainstream and the injected coolant were 1100 and 500°C, respectively. It is demonstrated that, for the coolant injection via one row of trenched holes, an increase in the mainstream turbulence intensity reduces the film cooling efficiency in the entire investigated range of blowing ratios. It was revealed that freestream turbulence had varied effects on the film cooling efficiency depending on the blowing ratio and mainstream velocity in a blade channel. Thus, an increase in the mainstream turbulence intensity from 1 to 10% decreases the surface-averaged film cooling efficiency by 3-10% at a high mainstream velocity (400 m/s) in the blade channel and by 12-23% at a moderate velocity (of 150 m/s). Here, lower film cooling efficiencies correspond to higher blowing ratios. The effect of mainstream turbulence intensity on the film cooling efficiency decreases with increasing the mainstream velocity in the modeled channel for both investigated configurations.
Double-row vs single-row rotator cuff repair: a review of the biomechanical evidence.
Wall, Lindley B; Keener, Jay D; Brophy, Robert H
2009-01-01
A review of the current literature will show a difference between the biomechanical properties of double-row and single-row rotator cuff repairs. Rotator cuff tears commonly necessitate surgical repair; however, the optimal technique for repair continues to be investigated. Recently, double-row repairs have been considered an alternative to single-row repair, allowing a greater coverage area for healing and a possibly stronger repair. We reviewed the literature of all biomechanical studies comparing double-row vs single-row repair techniques. Inclusion criteria included studies using cadaveric, animal, or human models that directly compared double-row vs single-row repair techniques, written in the English language, and published in peer reviewed journals. Identified articles were reviewed to provide a comprehensive conclusion of the biomechanical strength and integrity of the repair techniques. Fifteen studies were identified and reviewed. Nine studies showed a statistically significant advantage to a double-row repair with regards to biomechanical strength, failure, and gap formation. Three studies produced results that did not show any statistical advantage. Five studies that directly compared footprint reconstruction all demonstrated that the double-row repair was superior to a single-row repair in restoring anatomy. The current literature reveals that the biomechanical properties of a double-row rotator cuff repair are superior to a single-row repair. Basic Science Study, SRH = Single vs. Double Row RCR.
Pump CFD code validation tests
NASA Technical Reports Server (NTRS)
Brozowski, L. A.
1993-01-01
Pump CFD code validation tests were accomplished by obtaining nonintrusive flow characteristic data at key locations in generic current liquid rocket engine turbopump configurations. Data were obtained with a laser two-focus (L2F) velocimeter at scaled design flow. Three components were surveyed: a 1970's-designed impeller, a 1990's-designed impeller, and a four-bladed unshrouded inducer. Two-dimensional velocities were measured upstream and downstream of the two impellers. Three-dimensional velocities were measured upstream, downstream, and within the blade row of the unshrouded inducer.
Turbomachinery CFD on parallel computers
NASA Technical Reports Server (NTRS)
Blech, Richard A.; Milner, Edward J.; Quealy, Angela; Townsend, Scott E.
1992-01-01
The role of multistage turbomachinery simulation in the development of propulsion system models is discussed. Particularly, the need for simulations with higher fidelity and faster turnaround time is highlighted. It is shown how such fast simulations can be used in engineering-oriented environments. The use of parallel processing to achieve the required turnaround times is discussed. Current work by several researchers in this area is summarized. Parallel turbomachinery CFD research at the NASA Lewis Research Center is then highlighted. These efforts are focused on implementing the average-passage turbomachinery model on MIMD, distributed memory parallel computers. Performance results are given for inviscid, single blade row and viscous, multistage applications on several parallel computers, including networked workstations.
DeHaan, Alexander M; Axelrad, Thomas W; Kaye, Elizabeth; Silvestri, Lorenzo; Puskas, Brian; Foster, Timothy E
2012-05-01
The advantage of single-row versus double-row arthroscopic rotator cuff repair techniques has been a controversial issue in sports medicine and shoulder surgery. There is biomechanical evidence that double-row techniques are superior to single-row techniques; however, there is no clinical evidence that the double-row technique provides an improved functional outcome. When compared with single-row rotator cuff repair, double-row fixation, although biomechanically superior, has no clinical benefit with respect to retear rate or improved functional outcome. Systematic review. The authors reviewed prospective studies of level I or II clinical evidence that compared the efficacy of single- and double-row rotator cuff repairs. Functional outcome scores included the American Shoulder and Elbow Surgeons (ASES) shoulder scale, the Constant shoulder score, and the University of California, Los Angeles (UCLA) shoulder rating scale. Radiographic failures and complications were also analyzed. A test of heterogeneity for patient demographics was also performed to determine if there were differences in the patient profiles across the included studies. Seven studies fulfilled our inclusion criteria. The test of heterogeneity across these studies showed no differences. The functional ASES, Constant, and UCLA outcome scores revealed no difference between single- and double-row rotator cuff repairs. The total retear rate, which included both complete and partial retears, was 43.1% for the single-row repair and 27.2% for the double-row repair (P = .057), representing a trend toward higher failures in the single-row group. Through a comprehensive literature search and meta-analysis of current arthroscopic rotator cuff repairs, we found that the single-row repairs did not differ from the double-row repairs in functional outcome scores. The double-row repairs revealed a trend toward a lower radiographic proven retear rate, although the data did not reach statistical significance. There may be a concerning trend toward higher retear rates in patients undergoing a single-row repair, but further studies are required.
Application of local indentations for film cooling of gas turbine blade leading edge
NASA Astrophysics Data System (ADS)
Petelchyts, V. Yu.; Khalatov, A. A.; Pysmennyi, D. N.; Dashevskyy, Yu. Ya.
2016-09-01
The paper presents results of computer simulation of the film cooling on the turbine blade leading edge model where the air coolant is supplied through radial holes and row of cylindrical inclined holes placed inside hemispherical dimples or trench. The blowing factor was varied from 0.5 to 2.0. The model size and key initial parameters for simulation were taken as for a real blade of a high-pressure high-performance gas turbine. Simulation was performed using commercial software code ANSYS CFX. The simulation results were compared with reference variant (no dimples or trench) both for the leading edge area and for the flat plate downstream of the leading edge.
NASA Technical Reports Server (NTRS)
Katsanis, T.; Mcnally, W. D.
1977-01-01
A FORTRAN IV computer program has been developed that obtains a detailed subsonic or shock free transonic flow solution on the hub-shroud midchannel stream surface of a turbomachine. The blade row may be fixed or rotating, and the blades may be twisted and leaned. Flow may be axial, mixed, or radial. Upstream and downstream flow variables may vary from hub to shroud, and provisions are made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the stream surface and approximate blade surface velocities.
Ingestion resistant seal assembly
Little, David A [Chuluota, FL
2011-12-13
A seal assembly limits gas leakage from a hot gas path to one or more disc cavities in a gas turbine engine. The seal assembly includes a seal apparatus associated with a blade structure including a row of airfoils. The seal apparatus includes an annular inner shroud associated with adjacent stationary components, a wing member, and a first wing flange. The wing member extends axially from the blade structure toward the annular inner shroud. The first wing flange extends radially outwardly from the wing member toward the annular inner shroud. A plurality of regions including one or more recirculation zones are defined between the blade structure and the annular inner shroud that recirculate working gas therein back toward the hot gas path.
Tip cap for a turbine rotor blade
Kimmel, Keith D
2014-03-25
A turbine rotor blade with a spar and shell construction, and a tip cap that includes a row of lugs extending from a bottom side that form dovetail grooves that engage with similar shaped lugs and grooves on a tip end of the spar to secure the tip cap to the spar against radial displacement. The lug on the trailing edge end of the tip cap is aligned perpendicular to a chordwise line of the blade in the trailing edge region in order to minimize stress due to the lugs wanting to bend under high centrifugal loads. A two piece tip cap with lugs at different angles will reduce the bending stress even more.
NASA Technical Reports Server (NTRS)
Gelder, T. F.; Schmidt, J. F.; Esgar, G. M.
1980-01-01
A hub-to-shroud and a blade-to-blade internal-flow analysis code, both inviscid and basically subsonic, were used to calculate the flow parameters within four stator-blade rows. The produced ratios of maximum suction-surface velocity to trailing-edge velocity correlated well in the midspan region, with the measured total-parameters over the minimum-loss to near stall operating range for all stators and speeds studied. The potential benefits of a blade designed with the aid of these flow analysis codes are illustrated by a proposed redesign of one of the four stators studied. An overall efficiency improvement of 1.6 points above the peak measured for that stator is predicted for the redesign.
Analysis of internal flow of J85-13 multistage compressor
NASA Technical Reports Server (NTRS)
Hager, R. D.
1977-01-01
Interstage data recorded on a J85-13 engine were used to analyze the internal flow of the compressor. Measured pressures and temperatures were used as input to a streamline analysis program to calculate the velocity diagrams at the inlet and outlet of each blade row. From the velocity diagrams and blade geometry, selected blade-element performance parameters were calculated. From the detailed analysis it is concluded that the compressor is probably hub critical (stall initiates at the hub) in the latter stages for the design speed conditions. As a result, the casing treatment over the blade tips has little or no effect on stall margin at design speed. Radial inlet distortion did not appear to change the flow in the stages that control stall because of the rapid attenuation of the distortion within the compressor.
NASA Astrophysics Data System (ADS)
Hamilton, Nicholas; Cal, Raúl Bayoán
2015-01-01
A 4 × 3 wind turbine array in a Cartesian arrangement was constructed in a wind tunnel setting with four configurations based on the rotational sense of the rotor blades. The fourth row of devices is considered to be in the fully developed turbine canopy for a Cartesian arrangement. Measurements of the flow field were made with stereo particle-image velocimetry immediately upstream and downstream of the selected model turbines. Rotational sense of the turbine blades is evident in the mean spanwise velocity W and the Reynolds shear stress - v w ¯ . The flux of kinetic energy is shown to be of greater magnitude following turbines in arrays where direction of rotation of the blades varies. Invariants of the normalized Reynolds stress anisotropy tensor (η and ξ) are plotted in the Lumley triangle and indicate that distinct characters of turbulence exist in regions of the wake following the nacelle and the rotor blade tips. Eigendecomposition of the tensor yields principle components and corresponding coordinate system transformations. Characteristic spheroids representing the balance of components in the normalized anisotropy tensor are composed with the eigenvalues yielding shapes predicted by the Lumley triangle. Rotation of the coordinate system defined by the eigenvectors demonstrates trends in the streamwise coordinate following the rotors, especially trailing the top-tip of the rotor and below the hub. Direction of rotation of rotor blades is shown by the orientation of characteristic spheroids according to principle axes. In the inflows of exit row turbines, the normalized Reynolds stress anisotropy tensor shows cumulative effects of the upstream turbines, tending toward prolate shapes for uniform rotational sense, oblate spheroids for streamwise organization of rotational senses, and a mixture of characteristic shapes when the rotation varies by row. Comparison between the invariants of the Reynolds stress anisotropy tensor and terms from the mean mechanical energy equation indicate correlation between the degree of anisotropy and the regions of the wind turbine wakes where turbulence kinetic energy is produced. The flux of kinetic energy into the momentum-deficit area of the wake from above the canopy is associated with prolate characteristic spheroids. Flux upward into the wake from below the rotor area is associated with oblate characteristic spheroids. Turbulence in the region of the flow directly following the nacelle of the wind turbines demonstrates greater isotropy than regions following the rotor blades. The power and power coefficients for wind turbines indicate that flow structures on the order of magnitude of the spanwise turbine spacing that increase turbine efficiency depending on particular array configuration.
Kim, Doo-Sup; Yoon, Yeo-Seung; Chung, Hoi-Jeong
2011-07-01
Despite the attention that has been paid to restoration of the capsulolabral complex anatomic insertion onto the glenoid, studies comparing the pressurized contact area and mean interface pressure at the anatomic insertion site between a single-row repair and a double-row labral repair have been uncommon. The purpose of our study was to compare the mean interface pressure and pressurized contact area at the anatomic insertion site of the capsulolabral complex between a single-row repair and a double-row repair technique. Controlled laboratory study. Thirty fresh-frozen cadaveric shoulders (mean age, 61 ± 8 years; range, 48-71 years) were used for this study. Two types of repair were performed on each specimen: (1) a single-row repair and (2) a double-row repair. Using pressure-sensitive films, we examined the interface contact area and contact pressure. The mean interface pressure was greater for the double-row repair technique (0.29 ± 0.04 MPa) when compared with the single-row repair technique (0.21 ± 0.03 MPa) (P = .003). The mean pressurized contact area was also significantly greater for the double-row repair technique (211.8 ± 18.6 mm(2), 78.4% footprint) compared with the single-row repair technique (106.4 ± 16.8 mm(2), 39.4% footprint) (P = .001). The double-row repair has significantly greater mean interface pressure and pressurized contact area at the insertion site of the capsulolabral complex than the single-row repair. The double-row repair may be advantageous compared with the single-row repair in restoring the native footprint area of the capsulolabral complex.
A biomechanical comparison of single and double-row fixation in arthroscopic rotator cuff repair.
Smith, Christopher D; Alexander, Susan; Hill, Adam M; Huijsmans, Pol E; Bull, Anthony M J; Amis, Andrew A; De Beer, Joe F; Wallace, Andrew L
2006-11-01
The optimal method for arthroscopic rotator cuff repair is not yet known. The hypothesis of the present study was that a double-row repair would demonstrate superior static and cyclic mechanical behavior when compared with a single-row repair. The specific aims were to measure gap formation at the bone-tendon interface under static creep loading and the ultimate strength and mode of failure of both methods of repair under cyclic loading. A standardized tear of the supraspinatus tendon was created in sixteen fresh cadaveric shoulders. Arthroscopic rotator cuff repairs were performed with use of either a double-row technique (eight specimens) or a single-row technique (eight specimens) with nonabsorbable sutures that were double-loaded on a titanium suture anchor. The repairs were loaded statically for one hour, and the gap formation was measured. Cyclic loading to failure was then performed. Gap formation during static loading was significantly greater in the single-row group than in the double-row group (mean and standard deviation, 5.0 +/- 1.2 mm compared with 3.8 +/- 1.4 mm; p < 0.05). Under cyclic loading, the double-row repairs failed at a mean of 320 +/- 96.9 N whereas the single-row repairs failed at a mean of 224 +/- 147.9 N (p = 0.058). Three single-row repairs and three double-row repairs failed as a result of suture cut-through. Four single-row repairs and one double-row repair failed as a result of anchor or suture failure. The remaining five repairs did not fail, and a midsubstance tear of the tendon occurred. Although more technically demanding, the double-row technique demonstrates superior resistance to gap formation under static loading as compared with the single-row technique. A double-row reconstruction of the supraspinatus tendon insertion may provide a more reliable construct than a single-row repair and could be used as an alternative to open reconstruction for the treatment of isolated tears.
NASA Technical Reports Server (NTRS)
Hantman, R. G.; Burr, R. J.; Alwang, W. G.; Williams, M. C.
1973-01-01
The double-pulse, double-exposure holography technique was applied to visualize the flow field within a transonic compressor rotor with a tip speed of 1800 ft/sec. The principal objective was to visualize the shock waves created in the flow field which was supersonic relative to the rotating blade row. The upstream rotor blade bow shocks and, at high speed, the outermost portion of the leading edge passage shock were successfully observed in the holograms. Techniques were devised for locating these shocks in three dimensions, and the results were compared with theoretical predictions. Density changes between the two pulses due to motion of the shocks were large and, therefore, it was not possible to resolve the fringe systems in detail for the 100% speed conditions. However, gross features of the shocks were easily observed, and the upstream shocks were well displayed. In all cases the shock angles were somewhat larger than predicted by theory, and a distinct increase in angle near the outer wall was observed, which may be attributed to endwall boundary layer effects. The location and orientation of the observed leading edge passage shocks were in good agreement with static pressure contours obtained from measurements in the outer casing over the rotor tip.
NASA Technical Reports Server (NTRS)
Flegel, Ashlie Brynn; Giel, Paul W.; Welch, Gerard E.
2014-01-01
The effects of inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The high turbulence study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Downstream total pressure and exit angle data were acquired for ten incidence angles ranging from +15.8 to 51.0. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12105 to 2.12106 and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 0.25 - 0.4 for the low Tu tests and 8- 15 for the high Tu study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitchyaw probe located in a survey plane 7 axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At the extreme positive and negative incidence angles, the data show substantial differences in the exit flow field. These differences are attributable to both the higher inlet Tu directly and to the thinner inlet endwall boundary layer that the turbulence grid imposes.
Holographic studies of shock waves within transonic fan rotors
NASA Technical Reports Server (NTRS)
Benser, W. A.; Bailey, E. E.; Gelder, T. F.
1973-01-01
Pulsed laser holographic interferometry has been applied to the detection of shock patterns in the outer span regions of high tip speed transonic rotors. The first holographic approach used ruby laser light reflected from a portion of the centerbody just ahead of the rotor. These holograms showed the bow wave patterns upstream of the rotor and the shock patterns just inside the blade row near the tip. Much of the region of interest was in the shadow of the blade leading edge and could not be visualized. The second holographic approach, on a different rotor, used light transmitted diagonally across the inlet annulus past the centerbody. This approach gave a more extensive view of the region bounded by the blade leading and trailing edges, by the part span shroud and by the blade tip. These holograms showed the passage shock emanating from the blade leading edge and a moderately strong conical shock originating at the intersection of the part span shroud leading edge and the blade suction surface. Reasonable details of the shock patterns were obtained from holograms which were made without extensive rig modifications.
Forced response analysis of an aerodynamically detuned supersonic turbomachine rotor
NASA Technical Reports Server (NTRS)
Hoyniak, D.; Fleeter, S.
1985-01-01
High performance aircraft-engine fan and compressor blades are vulnerable to aerodynamically forced vibrations generated by inlet flow distortions due to wakes from upstream blade and vane rows, atmospheric gusts, and maldistributions in inlet ducts. In this report, an analysis is developed to predict the flow-induced forced response of an aerodynamically detuned rotor operating in a supersonic flow with a subsonic axial component. The aerodynamic detuning is achieved by alternating the circumferential spacing of adjacent rotor blades. The total unsteady aerodynamic loading acting on the blading, as a result of the convection of the transverse gust past the airfoil cascade and the resulting motion of the cascade, is developed in terms of influence coefficients. This analysis is used to investigate the effect of aerodynamic detuning on the forced response of a 12-blade rotor, with Verdon's Cascade B flow geometry as a uniformly spaced baseline configuration. The results of this study indicate that, for forward traveling wave gust excitations, aerodynamic detuning is very beneficial, resulting in significantly decreased maximum-amplitude blade responses for many interblade phase angles.
Counter-rotating propeller noise directivity and trends
NASA Technical Reports Server (NTRS)
Block, P. J. W.; Klatte, R. J.; Druez, P. M.
1986-01-01
The effects of power loading on the far field noise spectra and directivity of counter-rotating propellers (CRP) were studied using a model scale SR-2 propeller in a low-speed anechoic wind tunnel. Approximately 264 far field noise measurements were obtained for each CRP configuration (pusher and tractor) and operating conditions covering from 30 to 140 deg to the flight direction and up to 340 deg circumferentially. Data indicated that the CRP tractor produced higher levels in the second and third harmonics which propagated axially; in effect, the noise exposure time increased over that of a single single-rotation propeller. The effects of pylon-to-propeller spacing, type of pylon attachment and reduced rear-blade row radius are considered and it is found that the 0.3 chord radial pylon produces less additional noise than the 0.1 chord radial pylon and that the 0.2 chord tangential pylon is the quietest pusher configuration.
Holographic testing of composite propfans for a cruise missile wind tunnel model
NASA Technical Reports Server (NTRS)
Miller, Christopher J.
1994-01-01
Each of the approximately 90 composite propfan blades constructed for a 55 percent scale cruise missile wind tunnel model were holographically tested to obtain natural frequencies and mode shapes. These data were used not only for quality assurance, but also to select sets of similar blades for each blade row. Presented along with the natural frequency data is a description of a computer-based image processing system developed to supplement the photographic based system for holographic image analysis and storage. The new system is quicker and cheaper, the holograms are indexed better, and several engineers can access the data simultaneously. The only negative effect is a slight reduction in image resolution, which does not influence the end use.
NASA Technical Reports Server (NTRS)
Gallagher, Edward J. (Inventor); Rogers, Thomas H. (Inventor)
2017-01-01
A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be driven at a at a design speed by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool. Rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades includes an airfoil body. The leading edge of the airfoil body has a swept profile such that, at the design speed, a component of a relative velocity vector of a working gas that is normal to the leading edge is subsonic along the entire radial span.
NASA Astrophysics Data System (ADS)
Matveev, V. N.; Baturin, O. V.; Kolmakova, D. A.; Popov, G. M.
2017-01-01
Circumferential nonuniformity of gas flow is one of the main problems in the gas turbine engine. Usually, the flow circumferential nonuniformity appears near the annular frame located in the flow passage of the engine. The presence of circumferential nonuniformity leads to the increased dynamic stresses in the blade rows and the blade damage. The goal of this research was to find the ways of the flow non-uniformity reduction, which would not require a fundamental changing of the engine design. A new method for reducing the circumferential nonuniformity of the gas flow was proposed that allows the prediction of the pressure peak values of the rotor blades without computationally expensive CFD calculations.
Design and Analysis of Bionic Cutting Blades Using Finite Element Method.
Li, Mo; Yang, Yuwang; Guo, Li; Chen, Donghui; Sun, Hongliang; Tong, Jin
2015-01-01
Praying mantis is one of the most efficient predators in insect world, which has a pair of powerful tools, two sharp and strong forelegs. Its femur and tibia are both armed with a double row of strong spines along their posterior edges which can firmly grasp the prey, when the femur and tibia fold on each other in capturing. These spines are so sharp that they can easily and quickly cut into the prey. The geometrical characteristic of the praying mantis's foreleg, especially its tibia, has important reference value for the design of agricultural soil-cutting tools. Learning from the profile and arrangement of these spines, cutting blades with tooth profile were designed in this work. Two different sizes of tooth structure and arrangement were utilized in the design on the cutting edge. A conventional smooth-edge blade was used to compare with the bionic serrate-edge blades. To compare the working efficiency of conventional blade and bionic blades, 3D finite element simulation analysis and experimental measurement were operated in present work. Both the simulation and experimental results indicated that the bionic serrate-edge blades showed better performance in cutting efficiency.
Design and Analysis of Bionic Cutting Blades Using Finite Element Method
Li, Mo; Yang, Yuwang; Guo, Li; Chen, Donghui; Sun, Hongliang; Tong, Jin
2015-01-01
Praying mantis is one of the most efficient predators in insect world, which has a pair of powerful tools, two sharp and strong forelegs. Its femur and tibia are both armed with a double row of strong spines along their posterior edges which can firmly grasp the prey, when the femur and tibia fold on each other in capturing. These spines are so sharp that they can easily and quickly cut into the prey. The geometrical characteristic of the praying mantis's foreleg, especially its tibia, has important reference value for the design of agricultural soil-cutting tools. Learning from the profile and arrangement of these spines, cutting blades with tooth profile were designed in this work. Two different sizes of tooth structure and arrangement were utilized in the design on the cutting edge. A conventional smooth-edge blade was used to compare with the bionic serrate-edge blades. To compare the working efficiency of conventional blade and bionic blades, 3D finite element simulation analysis and experimental measurement were operated in present work. Both the simulation and experimental results indicated that the bionic serrate-edge blades showed better performance in cutting efficiency. PMID:27019583
Double-Row Capsulolabral Repair Increases Load to Failure and Decreases Excessive Motion.
McDonald, Lucas S; Thompson, Matthew; Altchek, David W; McGarry, Michelle H; Lee, Thay Q; Rocchi, Vanna J; Dines, Joshua S
2016-11-01
Using a cadaver shoulder instability model and load-testing device, we compared biomechanical characteristics of double-row and single-row capsulolabral repairs. We hypothesized a greater reduction in glenohumeral motion and translation and a higher load to failure in a mattress double-row capsulolabral repair than in a single-row repair. In 6 matched pairs of cadaveric shoulders, a capsulolabral injury was created. One shoulder was repaired with a single-row technique, and the other with a double-row mattress technique. Rotational range of motion, anterior-inferior translation, and humeral head kinematics were measured. Load-to-failure testing measured stiffness, yield load, deformation at yield load, energy absorbed at yield load, load to failure, deformation at ultimate load, and energy absorbed at ultimate load. Double-row repair significantly decreased external rotation and total range of motion compared with single-row repair. Both repairs decreased anterior-inferior translation compared with the capsulolabral-injured condition, however, no differences existed between repair types. Yield load in the single-row group was 171.3 ± 110.1 N, and in the double-row group it was 216.1 ± 83.1 N (P = .02). Ultimate load to failure in the single-row group was 224.5 ± 121.0 N, and in the double-row group it was 373.9 ± 172.0 N (P = .05). Energy absorbed at ultimate load in the single-row group was 1,745.4 ± 1,462.9 N-mm, and in the double-row group it was 4,649.8 ± 1,930.8 N-mm (P = .02). In cases of capsulolabral disruption, double-row repair techniques may result in decreased shoulder rotational range of motion and improved load-to-failure characteristics. In cases of capsulolabral disruption, repair techniques with double-row mattress repair may provide more secure fixation. Double-row capsulolabral repair decreases shoulder motion and increases load to failure, yield load, and energy absorbed at yield load more than single-row repair. Published by Elsevier Inc.
Two- and three-dimensional turbine blade row flow field simulations
NASA Technical Reports Server (NTRS)
Buggeln, R. C.; Briley, W. R.; Mcdonald, H.; Shamroth, S. J.; Weinberg, B. C.
1987-01-01
Work performed in the numerical simulation of turbine passage flows via a Navier-Stokes approach is discussed. Both laminar and turbulent simulations in both two and three dimensions are discussed. An outline of the approach, background, and an overview of the results are given.
Yousif, Matthew John; Bicos, James
2017-12-01
The glenohumeral joint is the most commonly dislocated joint in the body. Failure rates of capsulolabral repair have been reported to be approximately 8%. Recent focus has been on restoration of the capsulolabral complex by a double-row capsulolabral repair technique in an effort to decrease redislocation rates after arthroscopic capsulolabral repair. To present a review of the biomechanical literature comparing single- versus double-row capsulolabral repairs and discuss the previous case series of double-row fixation. Narrative review. A simple review of the literature was performed by PubMed search. Only biomechanical studies comparing single- versus double-row capsulolabral repair were included for review. Only those case series and descriptive techniques with clinical results for double-row repair were included in the discussion. Biomechanical comparisons evaluating the native footprint of the labrum demonstrated significantly superior restoration of the footprint through double-row capsulolabral repair compared with single-row repair. Biomechanical comparisons of contact pressure at the repair interface, fracture displacement in bony Bankart lesion, load to failure, and decreased external rotation (suggestive of increased load to failure) were also significantly in favor of double- versus single-row repair. Recent descriptive techniques and case series of double-row fixation have demonstrated good clinical outcomes; however, no comparative clinical studies between single- and double-row repair have assessed functional outcomes. The superiority of double-row capsulolabral repair versus single-row repair remains uncertain because comparative studies assessing clinical outcomes have yet to be performed.
Single-row versus double-row rotator cuff repair: techniques and outcomes.
Dines, Joshua S; Bedi, Asheesh; ElAttrache, Neal S; Dines, David M
2010-02-01
Double-row rotator cuff repair techniques incorporate a medial and lateral row of suture anchors in the repair configuration. Biomechanical studies of double-row repair have shown increased load to failure, improved contact areas and pressures, and decreased gap formation at the healing enthesis, findings that have provided impetus for clinical studies comparing single-row with double-row repair. Clinical studies, however, have not yet demonstrated a substantial improvement over single-row repair with regard to either the degree of structural healing or functional outcomes. Although double-row repair may provide an improved mechanical environment for the healing enthesis, several confounding variables have complicated attempts to establish a definitive relationship with improved rates of healing. Appropriately powered rigorous level I studies that directly compare single-row with double-row techniques in matched tear patterns are necessary to further address these questions. These studies are needed to justify the potentially increased implant costs and surgical times associated with double-row rotator cuff repair.
Research on the nonintrusive measurement of the turbine blade vibration
NASA Astrophysics Data System (ADS)
Zhang, Shi hai; Li, Lu-ping; Rao, Hong-de
2008-11-01
It's one of the important ways to monitor the change of dynamic characteristic of turbine blades for ensuring safety operation of turbine unit. Traditional measurement systems for monitoring blade vibration generally use strain gauges attached to the surface of turbine blades, each strain gauge gives out an analogue signal related to blade deformation, it's maximal defect is only a few blades could be monitored which are attached by strain gauge. But the noncontact vibration measurement will be discussed would solve this problem. This paper deals with noncontact vibration measurement on the rotor blades of turbine through experiments. In this paper, the noncontact vibration measurement - Tip Timing Measurement will be presented, and will be improved. The statistics and DFT will be used in the improved measurement. The main advantage of the improved measurement is that only two sensors over the top of blades and one synchronous sensor of the rotor are used to get the exact vibration characteristics of the each blade in a row. In our experiment, we adopt NI Company's DAQ equipment: SCXI1001 and PCI 6221, three optical sensors, base on the graphics program soft LabVIEW to develop the turbine blade monitor system. At the different rotational speed of the rotor (1000r/m and 1200r/m) we do several experiments on the bench of the Turbine characteristic. Its results indicated that the vibration of turbine blade could be real-time monitored and accurately measured by the improved Tip Timing Measurement.
Research on inverse methods and optimization in Italy
NASA Technical Reports Server (NTRS)
Larocca, Francesco
1991-01-01
The research activities in Italy on inverse design and optimization are reviewed. The review is focused on aerodynamic aspects in turbomachinery and wing section design. Inverse design of blade rows and ducts of turbomachinery in subsonic and transonic regime are illustrated by the Politecnico di Torino and turbomachinery industry (FIAT AVIO).
Yousif, Matthew John; Bicos, James
2017-01-01
Background: The glenohumeral joint is the most commonly dislocated joint in the body. Failure rates of capsulolabral repair have been reported to be approximately 8%. Recent focus has been on restoration of the capsulolabral complex by a double-row capsulolabral repair technique in an effort to decrease redislocation rates after arthroscopic capsulolabral repair. Purpose: To present a review of the biomechanical literature comparing single- versus double-row capsulolabral repairs and discuss the previous case series of double-row fixation. Study Design: Narrative review. Methods: A simple review of the literature was performed by PubMed search. Only biomechanical studies comparing single- versus double-row capsulolabral repair were included for review. Only those case series and descriptive techniques with clinical results for double-row repair were included in the discussion. Results: Biomechanical comparisons evaluating the native footprint of the labrum demonstrated significantly superior restoration of the footprint through double-row capsulolabral repair compared with single-row repair. Biomechanical comparisons of contact pressure at the repair interface, fracture displacement in bony Bankart lesion, load to failure, and decreased external rotation (suggestive of increased load to failure) were also significantly in favor of double- versus single-row repair. Recent descriptive techniques and case series of double-row fixation have demonstrated good clinical outcomes; however, no comparative clinical studies between single- and double-row repair have assessed functional outcomes. Conclusion: The superiority of double-row capsulolabral repair versus single-row repair remains uncertain because comparative studies assessing clinical outcomes have yet to be performed. PMID:29230427
Experimental analysis of the flow in a two stage axial compressor at off-design conditions
NASA Astrophysics Data System (ADS)
Massardo, Aristide; Satta, Antonio
1987-05-01
The experimental analysis of the flow that develops in a two-stage axial flow compressor at off-design conditions is presented. The measurements are performed upstream, between, and downstream of the four blade rows of the compressor. The analysis shows the off-design effects on the local conditions of the flow field. Low-energy flow zones are identified, and the development of annulus-boundary-layer, secondary, and tip-clearance flows is shown. The tip-clearance flows are also present in the stator rows with various outlying conditions (stationary or rotating hub).
Incidence of retear with double-row versus single-row rotator cuff repair.
Shen, Chong; Tang, Zhi-Hong; Hu, Jun-Zu; Zou, Guo-Yao; Xiao, Rong-Chi
2014-11-01
Rotator cuff tears have a high recurrence rate, even after arthroscopic rotator cuff repair. Although some biomechanical evidence suggests the superiority of the double-row vs the single-row technique, clinical findings regarding these methods have been controversial. The purpose of this study was to determine whether the double-row repair method results in a lower incidence of recurrent tearing compared with the single-row method. Electronic databases were systematically searched to identify reports of randomized, controlled trials (RCTs) comparing single-row with double-row rotator cuff repair. The primary outcome assessed was retear of the repaired cuff. Secondary outcome measures were the American Shoulder and Elbow Surgeons (ASES) shoulder score, the Constant shoulder score, and the University of California, Los Angeles (UCLA) score. Heterogeneity between the included studies was assessed. Six studies involving 428 patients were included in the review. Compared with single-row repair, double-row repair demonstrated a lower retear incidence (risk ratio [RR]=1.71 [95% confidence interval (CI), 1.18-2.49]; P=.005; I(2)=0%) and a reduced incidence of partial-thickness retears (RR=2.16 [95% CI, 1.26-3.71]; P=.005; I(2)=26%). Functional ASES, Constant, and UCLA scores showed no difference between single- and double-row cuff repairs. Use of the double-row technique decreased the incidence of retears, especially partial-thickness retears, compared with the single-row technique. The functional outcome was not significantly different between the 2 techniques. To improve the structural outcome of the repaired rotator cuff, surgeons should use the double-row technique. However, further long-term RCTs on this topic are needed. Copyright 2014, SLACK Incorporated.
Single-row versus double-row arthroscopic rotator cuff repair in small- to medium-sized tears.
Aydin, Nuri; Kocaoglu, Baris; Guven, Osman
2010-07-01
Double-row rotator cuff repair leads to superior cuff integrity and clinical results compared with single-row repair. The study enrolled 68 patients with a full-thickness rotator cuff tear who were divided into 2 groups of 34 patients according to repair technique. The patients were followed-up for at least 2 years. The results were evaluated by Constant score. Despite the biomechanical studies and cadaver studies that proved the superiority of double-row fixation over single-row fixation, our clinical results show no difference in functional outcome between the two methods. It is evident that double-row repair is more technically demanding, expensive, and time-consuming than single-row repair, without providing a significant improvement in clinical results. Comparison between groups did not show significant differences. At the final follow-up, the Constant score was 82.2 in the single-row group and 78.8 in the double-row group. Functional outcome was improved in both groups after surgery, but the difference between the 2 groups was not significant. At long-term follow-up, arthroscopic rotator cuff repair with the double-row technique showed no significant difference in clinical outcome compared with single-row repair in small to medium tears. 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system
NASA Astrophysics Data System (ADS)
Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham
2013-10-01
According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.
Buess, Eduard; Waibl, Bernhard; Vogel, Roger; Seidner, Robert
2009-10-01
Cadaveric studies and commercial pressure have initiated a strong trend towards double-row repair in arthroscopic cuff surgery. The objective of this study was to evaluate if the biomechanical advantages of a double-row supraspinatus tendon repair would result in superior clinical outcome and higher abduction strength. A retrospective study of two groups of 32 single-row and 33 double-row repairs of small to medium cuff tears was performed. The Simple Shoulder Test (SST) and a visual analog scale for pain were used to evaluate the outcome. The participation rate was 100%. A subset of patients was further investigated with the Constant Score (CS) including electronic strength measurement. The double-row repair patients had significantly more (p = 0.01) yes answers in the SST than the single-row group, and pain reduction was slightly better (p = 0.03). No difference was found for the relative CS (p = 0.86) and abduction strength (p = 0.74). Patient satisfaction was 100% for double-row and 97% for single-row repair. Single- and double-row repairs both achieved excellent clinical results. Evidence of superiority of double-row repair is still scarce and has to be balanced against the added complexity of the procedure and higher costs.
Biomechanical factors contributing to self-organization in seagrass landscapes
Fonseca, M.S.; Koehl, M.A.R.; Kopp, B.S.
2007-01-01
Field observations have revealed that when water flow is consistently from one direction, seagrass shoots align in rows perpendicular to the primary axis of flow direction. In this study, live Zostera marina shoots were arranged either randomly or in rows perpendicular to the flow direction and tested in a seawater flume under unidirectional flow and waves to determine if shoot arrangement: a) influenced flow-induced force on individual shoots, b) differentially altered water flow through the canopy, and c) influenced light interception by the canopy. In addition, blade breaking strength was compared with flow-induced force to determine if changes in shoot arrangement might reduce the potential for damage to shoots. Under unidirectional flow, both current velocity in the canopy and force on shoots were significantly decreased when shoots were arranged in rows as compared to randomly. However, force on shoots was nearly constant with downstream distance, arising from the trade-off of shoot bending and in-canopy flow reduction. The coefficient of drag was higher for randomly-arranged shoots at low velocities (< 30 cm s- 1) but converged rapidly among the two shoot arrangements at higher velocities. Shoots arranged in rows tended to intercept slightly more light than those arranged randomly. Effects of shoot arrangement under waves were less clear, potentially because we did not achieve the proper plant size?row spacing ratio. At this point, we may only suggest that water motion, as opposed to light capture, is the dominant physical mechanism responsible for these shoot arrangements. Following a computation of the Environmental Stress Factor, we concluded that even photosynthetically active blades may be damaged or broken under frequently encountered storm conditions, irrespective of shoot arrangement. We hypothesize that when flow is generally from one direction, seagrass bed patterns over multiple scales of consideration may arise as a cumulative effect of individual shoot self-organization driven by reduced force and drag on the shoots and somewhat improved light capture.
Single-row versus double-row repair of the distal Achilles tendon: a biomechanical comparison.
Pilson, Holly; Brown, Philip; Stitzel, Joel; Scott, Aaron
2012-01-01
Surgery for recalcitrant insertional Achilles tendinopathy often consists of partial or total release of the insertion site, debridement of the diseased portion of the tendon, calcaneal ostectomy, and reattachment of the Achilles to the calcaneus. Although single-row and double-row techniques exist for repair of the detached Achilles tendon, biomechanical data are lacking to support one technique over the other. Based on data extrapolated from the study of rotator cuff repairs, we hypothesized that a double-row construct would provide superior fixation strength over a single-row repair. Eighteen human cadaveric Achilles tendons (9 matched pairs) with attached calcanei were repaired with single-row or double-row techniques. Specimens were mounted in a servohydraulic materials testing machine, subjected to a preconditioning cycle, and loaded to failure. Failure was defined as suture breakage or pullout, midsubstance tendon rupture, or anchor pullout. Among the failures were 12 suture failures, 5 proximal-row anchor failures, and 1 distal-row anchor failure. No midsubstance tendon ruptures or testing apparatus failures were observed. There were no statistically significant differences in the peak load to failure between the single-row and double-row repairs (p = .46). Similarly, no significant differences were observed with regards to mean energy expenditure to failure (p = .069). The present study demonstrated no biomechanical advantages of the double-row repair over a single-row repair. Despite the lack of a clear biomechanical advantage, there may exist clinical advantages of a double-row repair, such as reduction in knot prominence and restoration of the Achilles footprint. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Cunnan, W. S.; Stevans, W.; Urasek, D. C.
1978-01-01
The aerodynamic design and the overall and blade-element performances are presented of a 427-meter-per-second-tip-speed two-stage fan designed with axially spaced blade rows to reduce noise transmitted upstream of the fan. At design speed the highest recorded adiabatic efficiency was 0.796 at a pressure of 2.30. Peak efficiency was not established at design speed because of a damper failure which terminated testing prematurely. The overall efficiencies, at 60 and 80 percent of design speed, peaked at approximately 0.83.
FPCAS3D User's guide: A three dimensional full potential aeroelastic program, version 1
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.
1995-01-01
The FPCAS3D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady three-dimensional full potential equation which is solved for a blade row. The structural analysis is based on a finite-element model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS3D code. A complete description of the input data is provided in this report. In addition, six examples, including inputs and outputs, are provided.
Takeishi, K; Aoki, S
2001-05-01
The improvement of the heat transfer coefficient of the 1st row blades in high temperature industrial gas turbines is one of the most important issues to ensure reliable performance of these components and to attain high thermal efficiency of the facility. This paper deals with the contribution of heat transfer to increase the turbine inlet temperature of such gas turbines in order to attain efficient and environmentally benign engines. Following the experiments described in Part 1, a set of trials was conducted to clarify the influence of the blade's rotating motion on the heat transfer coefficient for internal serpentine flow passages with turbulence promoters. Test results are shown and discussed in this second part of the contribution.
Fan Stagger Angle for Dirt Rejection
NASA Technical Reports Server (NTRS)
Gallagher, Edward J. (Inventor); Rose, Becky E. (Inventor); Brilliant, Lisa I. (Inventor)
2015-01-01
A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be rotated about an axis by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades has a span between a root at the hub and a tip, and a chord between a leading edge and a trailing edge. The chord forms a stagger angle alpha with the axis, and the stagger angle alpha is less than 15 deg. at a position along the propulsor blade that is within an inboard 20% of the span.
Streamwise vorticity in a turbine rotor with conical endwalls
NASA Astrophysics Data System (ADS)
Kost, Friedrich
1993-04-01
To investigate the spatial flow structure caused by sweep and dihedral effects in turbomachinery blade rows, detailed measurements were conducted in a windtunnel for rotating annular cascades. The special configuration consisted of a turbine rotor equipped with straight blades, a conical hub, and a conical casing with a cone half angle of 30 deg. Numerous flow data were obtained from surface pressure distributions at seven radial blade sections and from laser velocimetry upstream, downstream, and inside the rotor. It is shown that large deviations from an axisymmetric surface exist in conical flow. The conical flow gives rise to the production of streamwise vorticity which results in increased flow losses. It is furthermore shown that the secondary flow structure is mainly determined by the rotation of the turbine.
Barber, F Alan
2016-05-01
To compare the structural healing and clinical outcomes of triple-loaded single-row with suture-bridging double-row repairs of full-thickness rotator cuff tendons when both repair constructs are augmented with platelet-rich plasma fibrin membrane. A prospective, randomized, consecutive series of patients diagnosed with full-thickness rotator cuff tears no greater than 3 cm in anteroposterior length were treated with a triple-loaded single-row (20) or suture-bridging double-row (20) repair augmented with platelet-rich plasma fibrin membrane. The primary outcome measure was cuff integrity by magnetic resonance imaging (MRI) at 12 months postoperatively. Secondary clinical outcome measures were American Shoulder and Elbow Surgeons, Rowe, Simple Shoulder Test, Constant, and Single Assessment Numeric Evaluation scores. The mean MRI interval was 12.6 months (range, 12-17 months). A total of 3 of 20 single-row repairs and 3 of 20 double-row repairs (15%) had tears at follow-up MRI. The single-row group had re-tears in 1 single tendon repair and 2 double tendon repairs. All 3 tears failed at the original attachment site (Cho type 1). In the double-row group, re-tears were found in 3 double tendon repairs. All 3 tears failed medial to the medial row near the musculotendinous junction (Cho type 2). All clinical outcome measures were significantly improved from the preoperative level (P < .0001), but there was no statistical difference between groups postoperatively. There is no MRI difference in rotator cuff tendon re-tear rate at 12 months postsurgery between a triple-loaded single-row repair or a suture-bridging double-row repair when both are augmented with platelet-rich plasma fibrin membrane. No difference could be demonstrated between these repairs on clinical outcome scores. I, Prospective randomized study. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.
NASA Technical Reports Server (NTRS)
Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi
2003-01-01
A computational model is presented for simulating axial compressor stall inception and development via disturbances with length scales on the order of several (typically about three) blade pitches. The model was designed for multi-stage compressors in which stall is initiated by these short wavelength disturbances, also referred to as spikes. The inception process described is fundamentally nonlinear, in contrast to the essentially linear behavior seen in so-called modal stall inception . The model was able to capture the following experimentally observed phenomena: (1) development of rotating stall via short wavelength disturbances, (2) formation and evolution of localized short wavelength stall cells in the first stage of a mismatched compressor, (3) the switch from long to short wavelength stall inception resulting from the re-staggering of the inlet guide vane, (4) the occurrence of rotating stall inception on the negatively sloped portion of the compressor characteristic. Parametric investigations indicated that (1) short wavelength disturbances were supported by the rotor blade row, (2) the disturbance strength was attenuated within the stators, and (3) the reduction of inter-blade row gaps can suppress the growth of short wavelength disturbances. It is argued that each local component group (rotor plus neighboring stators) has its own instability point (i.e. conditions at which disturbances are sustained) for short wavelength disturbances, with the instability point for the compressor set by the most unstable component group.
Axial and Centrifugal Compressor Mean Line Flow Analysis Method
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2009-01-01
This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.
Comparison between single-row and double-row rotator cuff repair: a biomechanical study.
Milano, Giuseppe; Grasso, Andrea; Zarelli, Donatella; Deriu, Laura; Cillo, Mario; Fabbriciani, Carlo
2008-01-01
The aim of this study was to compare the mechanical behavior under cyclic loading test of single-row and double-row rotator cuff repair with suture anchors in an ex-vivo animal model. For the present study, 50 fresh porcine shoulders were used. On each shoulder, a crescent-shaped full-thickness tear of the infraspinatus was performed. Width of the tendon tear was 2 cm. The lesion was repaired using metal suture anchors. Shoulders were divided in four groups, according the type of repair: single-row tension-free repair (Group 1); single-row tension repair (Group 2); double-row tension-free repair (Group 3); double-row tension repair (Group 4); and a control group. Specimens were subjected to a cyclic loading test. Number of cycles at 5 mm of elongation and at failure, and total elongation were calculated. Single-row tension repair showed significantly poorest results for all the variables considered, when compared with the other groups. Regarding the mean number of cycles at 5 mm of elongation and at failure, there was a nonsignificant difference between Groups 3 and 4, and both of them were significantly greater than Group 1. For mean total elongation, the difference between Groups 1, 3, and 4 was not significant, but all of them were significantly lower than the control group. A single-row repair is particularly weak when performed under tension. Double-row repair is significantly more resistant to cyclic displacement than single-row repair in both tension-free and tension repair. Double-row repair technique can be primarily considered for large, unstable rotator cuff tears to improve mechanical strength of primary fixation of tendons to bone.
Trikha, V; Saini, P; Mathur, P; Agarwal, A; Kumar, S V; Choudhary, B
2016-04-01
To compare blade cultures in surgery for closed fracture using a single or double blade technique to determine whether the current practice of double blade technique is justified. 155 men and 29 women aged 20 to 60 (mean, 35) years who underwent surgery for closed fracture with healthy skin at the incision site were included. Patients were block randomised to the single (n=92) or double (n=92) blade technique. Blades were sent for bacteriological analysis. Outcome measures were early surgical site infection (SSI) within 30 days and cultures from the blades. The 2 groups were comparable in baseline characteristics. In the single blade group, 6 surgical blades and 2 control blades showed positive cultures; 4 patients developed SSI, but only one had a positive culture from the surgical blade (with different organism isolated from the wound culture). In the double blade group, 6 skin blades, 7 deep blades, and 0 control blade showed positive culture; only 2 patients had the same bacteria grown from both skin and deep blade. Five patients developed SSI, but only one patient had a positive culture from the deep blade (with different organism isolated from the wound culture). The difference in incidence of culture-positive blade or SSI between the 2 groups was not significant. The relative risk of SSI in the single blade group was 0.8. Positive blade culture was not associated with SSI in the single or double blade group. The practice of changing blade following skin incision has no effect on reducing early SSI in surgery for closed fracture in healthy patients with healthy skin.
Lorbach, Olaf; Bachelier, Felix; Vees, Jochen; Kohn, Dieter; Pape, Dietrich
2008-08-01
Double-row repair is suggested to have superior biomechanical properties in rotator cuff reconstruction compared with single-row repair. However, double-row rotator cuff repair is frequently compared with simple suture repair and not with modified suture configurations. Single-row rotator cuff repairs with modified suture configurations have similar failure loads and gap formations as double-row reconstructions. Controlled laboratory study. We created 1 x 2-cm defects in 48 porcine infraspinatus tendons. Reconstructions were then performed with 4 single-row repairs and 2 double-row repairs. The single-row repairs included transosseous simple sutures; double-loaded corkscrew anchors in either a double mattress or modified Mason-Allen suture repair; and the Magnum Knotless Fixation Implant with an inclined mattress. Double-row repairs were either with Bio-Corkscrew FT using modified Mason-Allen stitches or a combination of Bio-Corkscrew FT and PushLock anchors using the SutureBridge Technique. During cyclic load (10 N to 60-200 N), gap formation was measured, and finally, ultimate load to failure and type of failure were recorded. Double-row double-corkscrew anchor fixation had the highest ultimate tensile strength (398 +/- 98 N) compared to simple sutures (105 +/- 21 N; P < .0001), single-row corkscrews using a modified Mason-Allen stitch (256 +/- 73 N; P = .003) or double mattress repair (290 +/- 56 N; P = .043), the Magnum Implant (163 +/- 13 N; P < .0001), and double-row repair with PushLock and Bio-Corkscrew FT anchors (163 +/- 59 N; P < .0001). Single-row double mattress repair was superior to transosseous sutures (P < .0001), the Magnum Implant (P = .009), and double-row repair with PushLock and Bio-Corkscrew FT anchors (P = .009). Lowest gap formation was found for double-row double-corkscrew repair (3.1 +/- 0.1 mm) compared to simple sutures (8.7 +/- 0.2 mm; P < .0001), the Magnum Implant (6.2 +/- 2.2 mm; P = .002), double-row repair with PushLock and Bio-Corkscrew FT anchors (5.9 +/- 0.9 mm; P = .008), and corkscrews with modified Mason-Allen sutures (6.4 +/- 1.3 mm; P = .001). Double-row double-corkscrew anchor rotator cuff repair offered the highest failure load and smallest gap formation and provided the most secure fixation of all tested configurations. Double-loaded suture anchors using modified suture configurations achieved superior results in failure load and gap formation compared to simple suture repair and showed similar loads and gap formation with double-row repair using PushLock and Bio-Corkscrew FT anchors. Single-row repair with modified suture configurations may lead to results comparable to several double-row fixations. If double-row repair is used, modified stitches might further minimize gap formation and increase failure load.
Baums, M H; Schminke, B; Posmyk, A; Miosge, N; Klinger, H-M; Lakemeier, S
2015-01-01
The clinical superiority of the double-row technique is still a subject of controversial debate in rotator cuff repair. We hypothesised that the expression of different collagen types will differ between double-row and single-row rotator cuff repair indicating a faster healing response by the double-row technique. Twenty-four mature female sheep were randomly assembled to two different groups in which a surgically created acute infraspinatus tendon tear was fixed using either a modified single- or double-row repair technique. Shoulder joints from female sheep cadavers of identical age, bone maturity, and weight served as untreated control cluster. Expression of type I, II, and III collagen was observed in the tendon-to-bone junction along with recovering changes in the fibrocartilage zone after immunohistological tissue staining at 1, 2, 3, 6, 12, and 26 weeks postoperatively. Expression of type III collagen remained positive until 6 weeks after surgery in the double-row group, whereas it was detectable for 12 weeks in the single-row group. In both groups, type I collagen expression increased after 12 weeks. Type II collagen expression was increased after 12 weeks in the double-row versus single-row group. Clusters of chondrocytes were only visible between week 6 and 12 in the double-row group. The study demonstrates differences regarding the expression of type I and type III collagen in the tendon-to-bone junction following double-row rotator cuff repair compared to single-row repair. The healing response in this acute repair model is faster in the double-row group during the investigated healing period.
Heat Transfer on a Film-Cooled Blade - Effect of Hole Physics
NASA Technical Reports Server (NTRS)
Garg, Vijay K.; Rigby, David L.
1998-01-01
A multi-block, three-dimensional Navier-Stokes code has been used to study the within-hole and near-hole physics in relation to heat transfer on a film-cooled blade. The flow domain consists of the coolant flow through the plenum and hole-pipes for the three staggered rows of shower-head holes on the VK1 rotor, and the main flow over the blade. A multi-block grid is generated that is nearly orthogonal to the various surfaces. It may be noted that for the VK1 rotor the shower-head holes are inclined at 30 deg. to the spanwise direction, and are normal to the streamwise direction on the blade. Wilcox's k-omega turbulence model is used. The present study provides a much better comparison for the heat transfer coefficient at the blade mid-span with the experimental data than an earlier analysis wherein coolant velocity and temperature distributions were specified at the hole exits rather than extending the computational domain into the hole-pipe and plenum. Details of the distributions of coolant velocity, temperature, k and omega at the hole exits are also presented.
Design of 9.271-pressure-ratio 5-stage core compressor and overall performance for first 3 stages
NASA Technical Reports Server (NTRS)
Steinke, Ronald J.
1986-01-01
Overall aerodynamic design information is given for all five stages of an axial flow core compressor (74A) having a 9.271 pressure ratio and 29.710 kg/sec flow. For the inlet stage group (first three stages), detailed blade element design information and experimental overall performance are given. At rotor 1 inlet tip speed was 430.291 m/sec, and hub to tip radius ratio was 0.488. A low number of blades per row was achieved by the use of low-aspect-ratio blading of moderate solidity. The high reaction stages have about equal energy addition. Radial energy varied to give constant total pressure at the rotor exit. The blade element profile and shock losses and the incidence and deviation angles were based on relevant experimental data. Blade shapes are mostly double circular arc. Analysis by a three-dimensional Euler code verified the experimentally measured high flow at design speed and IGV-stator setting angles. An optimization code gave an optimal IGV-stator reset schedule for higher measured efficiency at all speeds.
NASA Technical Reports Server (NTRS)
Schum, Harold J.; Davison, Elmer H.; Petrash, Donald A.
1955-01-01
The over-all component performance characteristics of the J71 Type IIA three-stage turbine were experimentally determined over a range of speed and over-all turbine total-pressure ratio at inlet-air conditions af 35 inches of mercury absolute and 700 deg. R. The results are compared with those obtained for the J71 Type IIF turbine, which was previously investigated, the two turbines being designed for the same engine application. Geometrically the two turbines were much alike, having the same variation of annular flow area and the same number of blades for corresponding stator and rotor rows. However, the blade throat areas downstream of the first stator of the IIA turbine were smaller than those of the IIF; and the IIA blade profiles were curve-backed, whereas those of the IIF were straight-backed. The IIA turbine passed the equivalent design weight flow and had a brake internal efficiency of 0.880 at design equivalent speed and work output. A maximum efficiency of 0.896 occurred at 130 percent of design equivalent speed and a pressure ratio of 4.0. The turbine had a wide range of efficient operation. The IIA turbine had slightly higher efficiencies than the IIF turbine at comparable operating conditions. The fact that the IIA turbine obtained the design equivalent weight flow at the design equivalent operating point was probably a result of the decrease in the blading throat areas downstream of the first stator from those of the IIF turbine, which passed 105 percent of design weight flow at the corresponding operating point. The third stator row of blades of the IIA turbine choked at the design equivalent speed and at an over-all pressure ratio of 4.2; the third rotor choked at a pressure ratio of approximately 4.9
Perser, Karen; Godfrey, David; Bisson, Leslie
2011-01-01
Context: Double-row rotator cuff repair methods have improved biomechanical performance when compared with single-row repairs. Objective: To review clinical outcomes of single-row versus double-row rotator cuff repair with the hypothesis that double-row rotator cuff repair will result in better clinical and radiographic outcomes. Data Sources: Published literature from January 1980 to April 2010. Key terms included rotator cuff, prospective studies, outcomes, and suture techniques. Study Selection: The literature was systematically searched, and 5 level I and II studies were found comparing clinical outcomes of single-row and double-row rotator cuff repair. Coleman methodology scores were calculated for each article. Data Extraction: Meta-analysis was performed, with treatment effect between single row and double row for clinical outcomes and with odds ratios for radiographic results. The sample size necessary to detect a given difference in clinical outcome between the 2 methods was calculated. Results: Three level I studies had Coleman scores of 80, 74, and 81, and two level II studies had scores of 78 and 73. There were 156 patients with single-row repairs and 147 patients with double-row repairs, both with an average follow-up of 23 months (range, 12-40 months). Double-row repairs resulted in a greater treatment effect for each validated outcome measure in 4 studies, but the differences were not clinically or statistically significant (range, 0.4-2.2 points; 95% confidence interval, –0.19, 4.68 points). Double-row repairs had better radiographic results, but the differences were also not statistically significant (P = 0.13). Two studies had adequate power to detect a 10-point difference between repair methods using the Constant score, and 1 study had power to detect a 5-point difference using the UCLA (University of California, Los Angeles) score. Conclusions: Double-row rotator cuff repair does not show a statistically significant improvement in clinical outcome or radiographic healing with short-term follow-up. PMID:23016017
Perser, Karen; Godfrey, David; Bisson, Leslie
2011-05-01
Double-row rotator cuff repair methods have improved biomechanical performance when compared with single-row repairs. To review clinical outcomes of single-row versus double-row rotator cuff repair with the hypothesis that double-row rotator cuff repair will result in better clinical and radiographic outcomes. Published literature from January 1980 to April 2010. Key terms included rotator cuff, prospective studies, outcomes, and suture techniques. The literature was systematically searched, and 5 level I and II studies were found comparing clinical outcomes of single-row and double-row rotator cuff repair. Coleman methodology scores were calculated for each article. Meta-analysis was performed, with treatment effect between single row and double row for clinical outcomes and with odds ratios for radiographic results. The sample size necessary to detect a given difference in clinical outcome between the 2 methods was calculated. Three level I studies had Coleman scores of 80, 74, and 81, and two level II studies had scores of 78 and 73. There were 156 patients with single-row repairs and 147 patients with double-row repairs, both with an average follow-up of 23 months (range, 12-40 months). Double-row repairs resulted in a greater treatment effect for each validated outcome measure in 4 studies, but the differences were not clinically or statistically significant (range, 0.4-2.2 points; 95% confidence interval, -0.19, 4.68 points). Double-row repairs had better radiographic results, but the differences were also not statistically significant (P = 0.13). Two studies had adequate power to detect a 10-point difference between repair methods using the Constant score, and 1 study had power to detect a 5-point difference using the UCLA (University of California, Los Angeles) score. Double-row rotator cuff repair does not show a statistically significant improvement in clinical outcome or radiographic healing with short-term follow-up.
NASA contributions to radial turbine aerodynamic analyses
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1980-01-01
A brief description of the radial turbine and its analysis needs is followed by discussions of five analytical areas; design geometry and performance, off design performance, blade row flow, scroll flow, and duct flow. The functions of the programs, areas of applicability, and limitations and uncertainties are emphasized. Both past contributions and current activities are discussed.
2017-10-01
June 16, 2000, Gotebörg, Sweden. (podium) 6. Wolf JM; Weiss APC; Akelman E: Mini-open carpal tunnel release using a new protective guide and blade ...Hartford, Connecticut. PERSONAL Married to Douglas S. Wolf 2 children Hobbies: rowing, hiking, running , travel, exploring restaurants Volunteer
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
2012-01-01
The design-point and off-design performance of an embedded 1.5-stage portion of a variable-speed power turbine (VSPT) was assessed using Reynolds-Averaged Navier-Stokes (RANS) analyses with mixing-planes and sector-periodic, unsteady RANS analyses. The VSPT provides one means by which to effect the nearly 50 percent main-rotor speed change required for the NASA Large Civil Tilt-Rotor (LCTR) application. The change in VSPT shaft-speed during the LCTR mission results in blade-row incidence angle changes of as high as 55 . Negative incidence levels of this magnitude at takeoff operation give rise to a vortical flow structure in the pressure-side cove of a high-turn rotor that transports low-momentum flow toward the casing endwall. The intent of the effort was to assess the impact of unsteadiness of blade-row interaction on the time-mean flow and, specifically, to identify potential departure from the predicted trend of efficiency with shaft-speed change of meanline and 3-D RANS/mixing-plane analyses used for design.
Zhang, Chun-Gang; Zhao, De-Wei; Wang, Wei-Ming; Ren, Ming-Fa; Li, Rui-Xin; Yang, Sheng; Liu, Yu-Peng
2010-11-01
For partial-thickness tears of the rotator cuff, double-row fixation and transtendon single-row fixation restore insertion site anatomy, with excellent results. We compared the biomechanical properties of double-row and transtendon single-row suture anchor techniques for repair of grade III partial articular-sided rotator cuff tears. In 10 matched pairs of fresh-frozen sheep shoulders, the infraspinatus tendon from 1 shoulder was repaired with a double-row suture anchor technique. This comprised placement of 2 medial anchors with horizontal mattress sutures at an angle of ≤ 45° into the medial margin of the infraspinatus footprint, just lateral to the articular surface, and 2 lateral anchors with horizontal mattress sutures. Standardized, 50% partial, articular-sided infraspinatus lesions were created in the contralateral shoulder. The infraspinatus tendon from the contralateral shoulder was repaired using two anchors with transtendon single-row mattress sutures. Each specimen underwent cyclic loading from 10 to 100 N for 50 cycles, followed by tensile testing to failure. Gap formation and strain over the footprint area were measured using a motion capture system; stiffness and failure load were determined from testing data. Gap formation for the transtendon single-row repair was significantly smaller (P < 0.05) when compared with the double-row repair for the first cycle ((1.74 ± 0.38) mm vs. (2.86 ± 0.46) mm, respectively) and the last cycle ((3.77 ± 0.45) mm vs. (5.89 ± 0.61) mm, respectively). The strain over the footprint area for the transtendon single-row repair was significantly smaller (P < 0.05) when compared with the double-row repair. Also, it had a higher mean ultimate tensile load and stiffness. For grade III partial articular-sided rotator cuff tears, transtendon single-row fixation exhibited superior biomechanical properties when compared with double-row fixation.
Single- and double-row repair for rotator cuff tears - biology and mechanics.
Papalia, Rocco; Franceschi, Francesco; Vasta, Sebastiano; Zampogna, Biagio; Maffulli, Nicola; Denaro, Vincenzo
2012-01-01
We critically review the existing studies comparing the features of single- and double-row repair, and discuss suggestions about the surgical indications for the two repair techniques. All currently available studies comparing the biomechanical, clinical and the biological features of single and double row. Biomechanically, the double-row repair has greater performances in terms of higher initial fixation strength, greater footprint coverage, improved contact area and pressure, decreased gap formation, and higher load to failure. Results of clinical studies demonstrate no significantly better outcomes for double-row compared to single-row repair. Better results are achieved by double-row repair for larger lesions (tear size 2.5-3.5 cm). Considering the lack of statistically significant differences between the two techniques and that the double row is a high cost and a high surgical skill-dependent technique, we suggest using the double-row technique only in strictly selected patients. Copyright © 2012 S. Karger AG, Basel.
Biomechanical evaluation of a single-row versus double-row repair for complete subscapularis tears.
Wellmann, Mathias; Wiebringhaus, Philipp; Lodde, Ina; Waizy, Hazibullah; Becher, Christoph; Raschke, Michael J; Petersen, Wolf
2009-12-01
The purpose of the study was to compare a single-row repair and a double-row repair technique for the specific characteristics of a complete subscapularis lesion. Ten pairs of human cadaveric shoulder human shoulder specimens were tested for stiffness and ultimate tensile strength of the intact tendons in a load to failure protocol. After a complete subscapularis tear was provoked, the specimens were assigned to two treatment groups: single-row repair (1) and a double-row repair using a "suture bridge" technique (2). After repair cyclic loading a subsequent load to failure protocol was performed to determine the ultimate tensile load, the stiffness and the elongation behaviour of the reconstructions. The intact subscapularis tendons had a mean stiffness of 115 N/mm and a mean ultimate load of 720 N. The predominant failure mode of the intact tendons was a tear at the humeral insertion site (65%). The double-row technique restored 48% of the ultimate load of the intact tendons (332 N), while the single-row technique revealed a significantly lower ultimate load of 244 N (P = 0.001). In terms of the stiffness, the double-row technique showed a mean stiffness of 81 N/mm which is significantly higher compared to the stiffness of the single-row repairs of 55 N/mm (P = 0.001). The double-row technique has been shown to be stronger and stiffer when compared to a conventional single-row repair. Therefore, this technique is recommended from a biomechanical point of view irrespectively if performed by an open or arthroscopic approach.
NASA Technical Reports Server (NTRS)
Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2014-01-01
The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At the extreme positive and negative incidence angles, the data show substantial differences in the exit flow field. These differences are attributable to both the higher inlet Tu directly and to the thinner inlet endwall boundary layer that the turbulence grid imposes.
NASA Technical Reports Server (NTRS)
Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2014-01-01
The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At the extreme positive and negative incidence angles, the data show substantial differences in the exit flow field. These differences are attributable to both the higher inlet Tu directly and to the thinner inlet endwall boundary layer that the turbulence grid imposes.
A proposed through-flow inverse method for the design of mixed-flow pumps
NASA Technical Reports Server (NTRS)
Borges, Joao Eduardo
1991-01-01
A through-flow (hub-to-shroud) truly inverse method is proposed and described. It uses an imposition of mean swirl, i.e., radius times mean tangential velocity, given throughout the meridional section of the turbomachine as an initial design specification. In the present implementation, it is assumed that the fluid is inviscid, incompressible, and irrotational at inlet and that the blades are supposed to have zero thickness. Only blade rows that impart to the fluid a constant work along the space are considered. An application of this procedure to design the rotor of a mixed-flow pump is described in detail. The strategy used to find a suitable mean swirl distribution and the other design inputs is also described. The final blade shape and pressure distributions on the blade surface are presented, showing that it is possible to obtain feasible designs using this technique. Another advantage of this technique is the fact that it does not require large amounts of CPU time.
A comparison of measured wind park load histories with the WISPER and WISPERX load spectra
NASA Astrophysics Data System (ADS)
Kelley, N. D.
1995-01-01
The blade-loading histories from two adjacent Micon 65/13 wind turbines are compared with the variable-amplitude test-loading histories known as the WISPER and WISPERX spectra. These standardized loading sequences were developed from blade flapwise load histories taken from nine different horizontal-axis wind turbines operating under a wide range of conditions in Europe. The subject turbines covered a broad spectrum of rotor diameters, materials, and operating environments. The final loading sequences were developed as a joint effort of thirteen different European organizations. The goal was to develop a meaningful loading standard for horizontal-axis wind turbine blades that represents common interaction effects seen in service. In 1990, NREL made extensive load measurements on two adjacent Micon 65/13 wind turbines in simultaneous operation in the very turbulent environment of a large wind park. Further, before and during the collection of the loads data, comprehensive measurements of the statistics of the turbulent environment were obtained at both the turbines under test and at two other locations within the park. The trend to larger but lighter wind turbine structures has made an understanding of the expected lifetime loading history of paramount importance. Experience in the US has shown that the turbulence-induced loads associated with multi-row wind parks in general are much more severe than for turbines operating individually or within widely spaced environments. Multi-row wind parks are much more common in the US than in Europe. In this paper we report on our results in applying the methodology utilized to develop the WISPER and WISPERX standardized loading sequences using the available data from the Micon turbines. While the intended purpose of the WISPER sequences were not to represent a specific operating environment, we believe the exercise is useful, especially when a turbine design is likely to be installed in a multi-row wind park.
Lorbach, Olaf; Kieb, Matthias; Raber, Florian; Busch, Lüder C; Kohn, Dieter M; Pape, Dietrich
2013-01-01
The double-row suture bridge repair was recently introduced and has demonstrated superior biomechanical results and higher yield load compared with the traditional double-row technique. It therefore seemed reasonable to compare this second generation of double-row constructs to the modified single-row double mattress reconstruction. The repair technique, initial tear size, and tendon subregion will have a significant effect on 3-dimensional (3D) cyclic displacement under additional static external rotation of a modified single-row compared with a double-row rotator cuff repair. Controlled laboratory study. Rotator cuff tears (small to medium: 25 mm; medium to large: 35 mm) were created in 24 human cadaveric shoulders. Rotator cuff repairs were performed as modified single-row or double-row repairs, and cyclic loading (10-60 N, 10-100 N) was applied under 20° of external rotation. Radiostereometric analysis was used to calculate cyclic displacement in the anteroposterior (x), craniocaudal (y), and mediolateral (z) planes with a focus on the repair constructs and the initial tear size. Moreover, differences in cyclic displacement of the anterior compared with the posterior tendon subregions were calculated. Significantly lower cyclic displacement was seen in small to medium tears for the single-row compared with double-row repair at 60 and 100 N in the x plane (P = .001) and y plane (P = .001). The results were similar in medium to large tears at 100 N in the x plane (P = .004). Comparison of 25-mm versus 35-mm tears did not show any statistically significant differences for the single-row repairs. In the double-row repairs, lower gap formation was found for the 35-mm tears (P ≤ .05). Comparison of the anterior versus posterior tendon subregions revealed a trend toward higher anterior gap formation, although this was statistically not significant. The tested single-row reconstruction achieved superior results in 3D cyclic displacement to the tested double-row repair. Extension of the initial rupture size did not have a negative effect on the biomechanical results of the tested constructs. Single-row repairs with modified suture configurations provide comparable biomechanical strength to double-row repairs. Furthermore, as increased gap formation in the early postoperative period might lead to failure of the construct, a strong anterior fixation and restricted external rotation protocol might be considered in rotator cuff repairs to avoid this problem.
Incompressible lifting-surface aerodynamics for a rotor-stator combination
NASA Technical Reports Server (NTRS)
Ramachandra, S. M.
1984-01-01
Current literature on the three dimensional flow through compressor cascades deals with a row of rotor blades in isolation. Since the distance between the rotor and stator is usually 10 to 20 percent of the blade chord, the aerodynamic interference between them has to be considered for a proper evaluation of the aerothermodynamic performance of the stage. A unified approach to the aerodynamics of the incompressible flow through a stage is presented that uses the lifting surface theory for a compressor cascade of arbitrary camber and thickness distribution. The effects of rotor stator interference are represented as a linear function of the rotor and stator flows separately. The loading distribution on the rotor and stator flows separately. The loading distribution on the rotor and stator blades and the interference factor are determined concurrently through a matrix iteration process.
Pauly, Stephan; Gerhardt, Christian; Chen, Jianhai; Scheibel, Markus
2010-12-01
Several techniques for arthroscopic repair of rotator cuff defects have been introduced over the past years. Besides established techniques such as single-row repairs, new techniques such as double-row reconstructions have gained increasing interest. The present article therefore provides an overview of the currently available literature on both repair techniques with respect to several anatomical, biomechanical, clinical and structural endpoints. Systematic literature review of biomechanical, clinical and radiographic studies investigating or comparing single- and double-row techniques. These results were evaluated and compared to provide an overview on benefits and drawbacks of the respective repair type. Reconstructions of the tendon-to-bone unit for full-thickness tears in either single- or double-row technique differ with respect to several endpoints. Double-row repair techniques provide more anatomical reconstructions of the footprint and superior initial biomechanical characteristics when compared to single-row repair. With regard to clinical results, no significant differences were found while radiological data suggest a better structural tendon integrity following double-row fixation. Presently published clinical studies cannot emphasize a clearly superior technique at this time. Available biomechanical studies are in favour of double-row repair. Radiographic studies suggest a beneficial effect of double-row reconstruction on structural integrity of the reattached tendon or reduced recurrent defect rates, respectively.
Single-Versus Double-Row Arthroscopic Rotator Cuff Repair in Massive Tears
Wang, EnZhi; Wang, Liang; Gao, Peng; Li, ZhongJi; Zhou, Xiao; Wang, SongGang
2015-01-01
Background It is a challenge for orthopaedic surgeons to treat massive rotator cuff tears. The optimal management of massive rotator cuff tears remains controversial. Therefore, the goal of this study was to compare arthroscopic single- versus double-row rotator cuff repair with a larger sample size. Material/Methods Of the subjects with massive rotator cuff tears, 146 were treated using single-row repair, and 102 were treated using double-row repair. Pre- and postoperative functional outcomes and radiographic images were collected. The clinical outcomes were evaluated for a minimum of 2 years. Results No significant differences were shown between the groups in terms of functional outcomes. Regarding the integrity of the tendon, a lower rate of post-treatment retear was observed in patients who underwent double-row repair compared with single-row repair. Conclusions The results suggest that double-row repair is relatively superior in shoulder ROM and the strength of tendon compared with single-row repair. Future studies involving more patients in better-designed randomized controlled trials will be required. PMID:26017641
Outcomes of single-row and double-row arthroscopic rotator cuff repair: a systematic review.
Saridakis, Paul; Jones, Grant
2010-03-01
Arthroscopic rotator cuff repair is a common procedure that is gaining wide acceptance among orthopaedic surgeons because it is less invasive than open repair techniques. However, there is little consensus on whether to employ single-row or double-row fixation. The purpose of the present study was to systematically review the English-language literature to see if there is a difference between single-row and double-row fixation techniques in terms of clinical outcomes and radiographic healing. PubMed, the Cochrane Central Register of Controlled Trials, and EMBASE were reviewed with the terms "arthroscopic rotator cuff," "single row repair," and "double row repair." The inclusion criteria were a level of evidence of III (or better), an in vivo human clinical study on arthroscopic rotator cuff repair, and direct comparison of single-row and double-row fixation. Excluded were technique reports, review articles, biomechanical studies, and studies with no direct comparison of arthroscopic rotator cuff repair techniques. On the basis of these criteria, ten articles were found, and a review of the full-text articles identified six articles for final review. Data regarding demographic characteristics, rotator cuff pathology, surgical techniques, biases, sample sizes, postoperative rehabilitation regimens, American Shoulder and Elbow Surgeons scores, University of California at Los Angeles scores, Constant scores, and the prevalence of recurrent defects noted on radiographic studies were extracted. Confidence intervals were then calculated for the American Shoulder and Elbow Surgeons, University of California at Los Angeles, and Constant scores. Quality appraisal was performed by the two authors to identify biases. There was no significant difference between the single-row and double-row groups within each study in terms of postoperative clinical outcomes. However, one study divided each of the groups into patients with small-to-medium tears (< 3 cm in length) and those with large-to-massive tears (> or = 3 cm in length), and the authors noted that patients with large to massive tears who had double-row fixation performed better in terms of the American Shoulder and Elbow Surgeons scores and Constant scores in comparison with those who had single-row fixation. Two studies demonstrated a significant difference in terms of structural healing of the rotator cuff tendons after surgery, with the double-row method having superior results. There was an overlap in the confidence intervals between the single-row and double-row groups for all of the studies and the American Shoulder and Elbow Surgeons, Constant, and University of California at Los Angeles scoring systems utilized in the studies, indicating that there was no difference in these scores between single-row and double-row fixation. Potential biases included selection, performance, detection, and attrition biases; each study had at least one bias. Two studies had potentially inadequate power to detect differences between the two techniques. There appears to be a benefit of structural healing when an arthroscopic rotator cuff repair is performed with double-row fixation as opposed to single-row fixation. However, there is little evidence to support any functional differences between the two techniques, except, possibly, for patients with large or massive rotator cuff tears (> or = 3 cm). A risk-reward analysis of a patient's age, functional demands, and other quality-of-life issues should be considered before deciding which surgical method to employ. Double-row fixation may result in improved structural healing at the site of rotator cuff repair in some patients, depending on the size of the tear.
Effects of vane/blade ratio and spacing on fan noise, volume 1
NASA Technical Reports Server (NTRS)
Gliebe, P. R.; Kantola, R. A.
1983-01-01
The noise characteristics of a high-speed fan were studied. The experimental investigation was carried out on a 50.8 cm (20 in.) diameter scale model fan stage in an anechoic chamber with an inflow turbulence control screen installed. The forty-four blade rotor was tested with forty-eight vane and eighty-six vane stator rows, over a range of aixal rotor-stator spacings from 0.5 to 2.3 rotor tip chords. A two-dimensional strip theory model of rotor-stator interaction noise was employed to predict the measured tone power level trends, and good overall agreement with measured trends was obtained.
Effects of Shrouded Stator Cavity Flows on Multistage Axial Compressor Aerodynamic Performance
NASA Technical Reports Server (NTRS)
Wellborn, Steven R.; Okiishi, Theodore H.
1996-01-01
Experiments were performed on a low-speed multistage axial-flow compressor to assess the effects of shrouded stator cavity flows on aerodynamic performance. Five configurations, which involved changes in seal-tooth leakage rates and/or elimination of the shrouded stator cavities, were tested. Data collected enabled differences in overall individual stage and the third stage blade element performance parameters to be compared. The results show conclusively that seal-tooth leakage ran have a large impact on compressor aerodynamic performance while the presence of the shrouded stator cavities alone seemed to have little influence. Overall performance data revealed that for every 1% increase in the seal-tooth clearance to blade-height ratio the pressure rise dropped up to 3% while efficiency was reduced by 1 to 1.5 points. These observed efficiency penalty slopes are comparable to those commonly reported for rotor and cantilevered stator tip clearance variations. Therefore, it appears that in order to correctly predict overall performance it is equally important to account for the effects of seal-tooth leakage as it is to include the influence of tip clearance flows. Third stage blade element performance data suggested that the performance degradation observed when leakage was increased was brought about in two distinct ways. First, increasing seal-tooth leakage directly spoiled the near hub performance of the stator row in which leakage occurred. Second, the altered stator exit now conditions caused by increased leakage impaired the performance of the next downstream stage by decreasing the work input of the downstream rotor and increasing total pressure loss of the downstream stator. These trends caused downstream stages to progressively perform worse. Other measurements were acquired to determine spatial and temporal flow field variations within the up-and-downstream shrouded stator cavities. Flow within the cavities involved low momentum fluid traveling primarily in the circumferential direction at about 40% of the hub wheel speed. Measurements indicated that the flow within both cavities was much more complex than first envisioned. A vortical flow structure in the meridional plane, similar to a driven cavity, existed within the upstream cavity Furthermore, other spatial and temporal variations in Row properties existed. the most prominent being caused by the upstream potential influence of the downstream blade. This influence caused the fluid within cavities near the leading edges of either stator blades in space or rotor blades in time to be driven radially inward relative to fluid near blade mid-pitch. This influence also produced large unsteady velocity fluctuations in the downstream cavity because of the passing of the downstream rotor blade.
Kim, David H; Elattrache, Neal S; Tibone, James E; Jun, Bong-Jae; DeLaMora, Sergai N; Kvitne, Ronald S; Lee, Thay Q
2006-03-01
Reestablishment of the native footprint during rotator cuff repair has been suggested as an important criterion for optimizing healing potential and fixation strength. A double-row rotator cuff footprint repair will demonstrate superior biomechanical properties compared with a single-row repair. Controlled laboratory study. In 9 matched pairs of fresh-frozen cadaveric shoulders, the supraspinatus tendon from 1 shoulder was repaired with a double-row suture anchor technique: 2 medial anchors with horizontal mattress sutures and 2 lateral anchors with simple sutures. The tendon from the contralateral shoulder was repaired using a single lateral row of 2 anchors with simple sutures. Each specimen underwent cyclic loading from 10 to 180 N for 200 cycles, followed by tensile testing to failure. Gap formation and strain over the footprint area were measured using a video digitizing system; stiffness and failure load were determined from testing machine data. Gap formation for the double-row repair was significantly smaller (P < .05) when compared with the single-row repair for the first cycle (1.67 +/- 0.75 mm vs 3.10 +/- 1.67 mm, respectively) and the last cycle (3.58 +/- 2.59 mm vs 7.64 +/- 3.74 mm, respectively). The initial strain over the footprint area for the double-row repair was nearly one third (P < .05) the strain of the single-row repair. Adding a medial row of anchors increased the stiffness of the repair by 46% and the ultimate failure load by 48% (P < .05). Footprint reconstruction of the rotator cuff using a double-row repair improved initial strength and stiffness and decreased gap formation and strain over the footprint when compared with a single-row repair. To achieve maximal initial fixation strength and minimal gap formation for rotator cuff repair, reconstructing the footprint attachment with 2 rows of suture anchors should be considered.
Baums, Mike H; Spahn, Gunter; Buchhorn, Gottfried H; Schultz, Wolfgang; Hofmann, Lars; Klinger, Hans-Michael
2012-06-01
To investigate the biomechanical and magnetic resonance imaging (MRI)-derived morphologic changes between single- and double-row rotator cuff repair at different time points after fixation. Eighteen mature female sheep were randomly assigned to either a single-row treatment group using arthroscopic Mason-Allen stitches or a double-row treatment group using a combination of arthroscopic Mason-Allen and mattress stitches. Each group was analyzed at 1 of 3 survival points (6 weeks, 12 weeks, and 26 weeks). We evaluated the integrity of the cuff repair using MRI and biomechanical properties using a mechanical testing machine. The mean load to failure was significantly higher in the double-row group compared with the single-row group at 6 and 12 weeks (P = .018 and P = .002, respectively). At 26 weeks, the differences were not statistically significant (P = .080). However, the double-row group achieved a mean load to failure similar to that of a healthy infraspinatus tendon, whereas the single-row group reached only 70% of the load of a healthy infraspinatus tendon. No significant morphologic differences were observed based on the MRI results. This study confirms that in an acute repair model, double-row repair may enhance the speed of mechanical recovery of the tendon-bone complex when compared with single-row repair in the early postoperative period. Double-row rotator cuff repair enables higher mechanical strength that is especially sustained during the early recovery period and may therefore improve clinical outcome. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Gartsman, Gary M; Drake, Gregory; Edwards, T Bradley; Elkousy, Hussein A; Hammerman, Steven M; O'Connor, Daniel P; Press, Cyrus M
2013-11-01
The purpose of this study was to compare the structural outcomes of a single-row rotator cuff repair and double-row suture bridge fixation after arthroscopic repair of a full-thickness supraspinatus rotator cuff tear. We evaluated with diagnostic ultrasound a consecutive series of ninety shoulders in ninety patients with full-thickness supraspinatus tears at an average of 10 months (range, 6-12) after operation. A single surgeon at a single hospital performed the repairs. Inclusion criteria were full-thickness supraspinatus tears less than 25 mm in their anterior to posterior dimension. Exclusion criteria were prior operations on the shoulder, partial thickness tears, subscapularis tears, infraspinatus tears, combined supraspinatus and infraspinatus repairs and irreparable supraspinatus tears. Forty-three shoulders were repaired with single-row technique and 47 shoulders with double-row suture bridge technique. Postoperative rehabilitation was identical for both groups. Ultrasound criteria for healed repair included visualization of a tendon with normal thickness and length, and a negative compression test. Eighty-three patients were available for ultrasound examination (40 single-row and 43 suture-bridge). Thirty of 40 patients (75%) with single-row repair demonstrated a healed rotator cuff repair compared to 40/43 (93%) patients with suture-bridge repair (P = .024). Arthroscopic double-row suture bridge repair (transosseous equivalent) of an isolated supraspinatus rotator cuff tear resulted in a significantly higher tendon healing rate (as determined by ultrasound examination) when compared to arthroscopic single-row repair. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Creagh, John W.R.; Sandercrock, Donald M.
1950-01-01
An investigation is being conducted to determine the performance of the 12-stage axial-flow compressor of the XT-46 turbine-propeller engine. This compressor was designed to produce a pressure ratio of 9 at an adiabatic efficiency of 0.86. The design pressure ratios per stage were considerably greater than any employed in current aircraft gas-turbine engines using this type of compressor. The compressor performance was evaluated at two stations. The station near the entrance section of the combustors indicated a peak pressure ratio of 6.3 at an adiabatic efficiency of 0.63 for a corrected weight flow of 23.1 pounds per second. The other, located one blade-chord downstream of the last stator row, indicated a peak pressure ratio of 6.97 at an adiabatic efficiency of 0.81 for a corrected weight flow of 30.4 pounds per second. The difference in performance obtained at the two stations is attributed to shock waves in the vicinity of the last stator row. These shock waves and the accompanying flow choking, together with interstage circulatory flows, shift the compressor operating curves into the region where surge would normally occur. The inability of the compressor to meet design pressure ratio is probably due to boundary-layer buildup in the last stages, which cause axial velocities greater than design values that, in turn, adversely affect the angles of attack and turning angles in these blade rows.
NASA Technical Reports Server (NTRS)
Ameri, Ali A.
2012-01-01
The purpose of this report is to summarize and document the work done to enable a NASA CFD code to model laminar-turbulent transition process on an isolated turbine blade. The ultimate purpose of the present work is to down-select a transition model that would allow the flow simulation of a variable speed power turbine to be accurately performed. The flow modeling in its final form will account for the blade row interactions and their effects on transition which would lead to accurate accounting for losses. The present work only concerns itself with steady flows of variable inlet turbulence. The low Reynolds number k- model of Wilcox and a modified version of the same model will be used for modeling of transition on experimentally measured blade pressure and heat transfer. It will be shown that the k- model and its modified variant fail to simulate the transition with any degree of accuracy. A case is thus made for the adoption of more accurate transition models. Three-equation models based on the work of Mayle on Laminar Kinetic Energy were explored. The three-equation model of Walters and Leylek was thought to be in a relatively mature state of development and was implemented in the Glenn-HT code. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Surface heat transfer rate serves as sensitive indicator of transition. With the newly implemented model, it was shown that the simulation of transition process is much improved over the baseline k- model for the single Reynolds number and pressure ratio attempted; while agreement with heat transfer data became more satisfactory. Armed with the new transition model, total-pressure losses of computed three-dimensional flow of E3 tip section cascade were compared to the experimental data for a range of incidence angles. The results obtained, form a partial loss bucket for the chosen blade. In time the loss bucket will be populated with losses at additional incidences. Results obtained thus far will be discussed herein.
Method of making an aero-derivative gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiebe, David J.
A method of making an aero-derivative gas turbine engine (100) is provided. A combustor outer casing (68) is removed from an existing aero gas turbine engine (60). An annular combustor (84) is removed from the existing aero gas turbine engine. A first row of turbine vanes (38) is removed from the existing aero gas turbine engine. A can annular combustor assembly (122) is installed within the existing aero gas turbine engine. The can annular combustor assembly is configured to accelerate and orient combustion gasses directly onto a first row of turbine blades of the existing aero gas turbine engine. Amore » can annular combustor assembly outer casing (108) is installed to produce the aero-derivative gas turbine engine (100). The can annular combustor assembly is installed within an axial span (85) of the existing aero gas turbine engine vacated by the annular combustor and the first row of turbine vanes.« less
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
1999-01-01
A reduced order modeling scheme has been developed for the unsteady acoustic and vortical coupling between blade rows of a turbomachine. The essential behavior of the system is governed by modal scattering coefficients (i.e., reflection and transmission coefficients) of the rotor, stator, inlet and nozzle, which are calculated as if they were connected to non-reflecting ducts. The objective of this report is to identify fundamental behavior of these scattering coefficients for a better understanding of the role of blade row reflection and transmission in noise generation. A 2D flat plate unsteady cascade model is used for the analysis with the expectation that the general behavior presented herein will carry over to models that include more realistic flow and geometry. It is shown that stators scatter input waves into many modes at the same frequency whereas rotors scatter on frequency, or harmonic order. Important cases are shown here the rotor reflection coefficient is greater than unity; a mode at blade passing frequency (BPF) traveling from the stator with unit sound power is reflected by the rotor with more than unit power at 2xBPF and 3xBPE Analysis is presented to explain this unexpected phenomenon. Scattering curves are presented in a format chosen for design use and for physical interpretation. To aid in interpretation of the curves, formulas are derived for special condition where waveforms are parallel to perpendicular to the rotor.
Three-dimensional flow in radial turbomachinery and its impact on design
NASA Technical Reports Server (NTRS)
Tan, Choon S.; Hawthorne, William
1993-01-01
In the two papers on the 'Theory of Blade Design for Large Deflections' published in 1984, a new inverse design technique was presented for designing the shape of turbomachinery blades in three-dimensional flow. The technique involves the determination of the blade profile from the specification of a distribution of the product of the radius and the pitched averaged tangential velocity (i.e., r bar-V(sub theta), the mean swirl schedule) within the bladed region. This is in contrast to the conventional inverse design technique for turbomachinery blading in two dimensional flow in which the blade surface pressure or velocity distribution is specified and the blade profile determined as a result; this is feasible in two-dimensional flow because the streamlines along the blade surfaces are known a priori. However, in three-dimensional flow, the stream surface is free to deform within the blade passage so that the streamlines on the blade surfaces are not known a priori; thus it is difficult and not so useful to prescribe the blade surface pressure or velocity distribution and determine the resulting blade profile. It therefore seems logical to prescribe the swirl schedule within the bladed region for designing a turbomachinery blade profile in three-dimensional flow. Furthermore, specifying r bar-V(sub theta) has the following advantages: (1) it is related to the circulation around the blade (i.e., it is an aerodynamic quantity); (2) the work done or extracted is approximately proportional to the overall change in r bar-V(sub theta) across a given blade row (Euler turbine equation); and (3) the rate of change of r bar-V(sub theta) along the mean streamline at the blade is related to the pressure jump across the blade and therefore the blade loading. Since the publications of those two papers, the technique has been applied to the design of a low speed as well as a high speed radial inflow turbine (for turbocharger applications) both of which showed definite improvements in performance over that of wheels of conventional designs, the design study of a high pressure ratio radial inflow turbine with and without splitter blades.
Effect of Film-Hole Shape on Turbine Blade Film Cooling Performance
NASA Technical Reports Server (NTRS)
Han, J. C.; Teng, S.
2000-01-01
The detailed heat transfer coefficient and film cooling effectiveness distributions as well as tile detailed coolant jet temperature profiles on the suction side of a gas turbine blade A,ere measured using a transient liquid crystal image method and a traversing cold wire and a traversing thermocouple probe, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. The hole geometries studied include standard cylindrical holes and holes with diffuser shaped exit portion (i.e. fanshaped holes and laidback fanshaped holes). Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 or 0.1. Coolant blowing ratio was varied from 0.4 to 1.2. Results show that both expanded holes have significantly improved thermal protection over the surface downstream of the ejection location, particularly at high blowing ratios. However, the expanded hole injections induce earlier boundary layer transition to turbulence and enhance heat transfer coefficients at the latter part of the blade suction surface. In general, the unsteady wake tends to reduce film cooling effectiveness.
Mihata, Teruhisa; Watanabe, Chisato; Fukunishi, Kunimoto; Ohue, Mutsumi; Tsujimura, Tomoyuki; Fujiwara, Kenta; Kinoshita, Mitsuo
2011-10-01
Although previous biomechanical research has demonstrated the superiority of the suture-bridge rotator cuff repair over double-row repair from a mechanical point of view, no articles have described the structural and functional outcomes of this type of procedure. The structural and functional outcomes after arthroscopic rotator cuff repair may be different between the single-row, double-row, and combined double-row and suture-bridge (compression double-row) techniques. Cohort study; Level of evidence, 3. There were 206 shoulders in 201 patients with full-thickness rotator cuff tears that underwent arthroscopic rotator cuff repair. Eleven patients were lost to follow-up. Sixty-five shoulders were repaired using the single-row, 23 shoulders using the double-row, and 107 shoulders using the compression double-row techniques. Clinical outcomes were evaluated at an average of 38.5 months (range, 24-74 months) after rotator cuff repair. Postoperative cuff integrity was determined using Sugaya's classification of magnetic resonance imaging (MRI). The retear rates after arthroscopic rotator cuff repair were 10.8%, 26.1%, and 4.7%, respectively, for the single-row, double-row, and compression double-row techniques. In the subcategory of large and massive rotator cuff tears, the retear rate in the compression double-row group (3 of 40 shoulders, 7.5%) was significantly less than those in the single-row group (5 of 8 shoulders, 62.5%, P < .001) and the double-row group (5 of 12 shoulders, 41.7%, P < .01). Postoperative clinical outcomes in patients with a retear were significantly lower than those in patients without a retear for all 3 techniques. The additional suture bridges decreased the retear rate for large and massive tears. The combination of the double-row and suture-bridge techniques, which had the lowest rate of postoperative retear, is an effective option for arthroscopic repair of the rotator cuff tendons because the postoperative functional outcome in patients with a retear is inferior to that without retear.
Modeling Film-Coolant Flow Characteristics at the Exit of Shower-Head Holes
NASA Technical Reports Server (NTRS)
Garg, Vijay K.; Gaugler, R. E. (Technical Monitor)
2000-01-01
The coolant flow characteristics at the hole exits of a film-cooled blade are derived from an earlier analysis where the hole pipes and coolant plenum were also discretized. The blade chosen is the VKI rotor with three staggered rows of shower-head holes. The present analysis applies these flow characteristics at the shower-head hole exits. A multi-block three-dimensional Navier-Stokes code with Wilcox's k-omega model is used to compute the heat transfer coefficient on the film-cooled turbine blade. A reasonably good comparison with the experimental data as well as with the more complete earlier analysis where the hole pipes and coolant plenum were also gridded is obtained. If the 1/7th power law is assumed for the coolant flow characteristics at the hole exits, considerable differences in the heat transfer coefficient on the blade surface, specially in the leading-edge region, are observed even though the span-averaged values of h (heat transfer coefficient based on T(sub o)-T(sub w)) match well with the experimental data. This calls for span-resolved experimental data near film-cooling holes on a blade for better validation of the code.
Analyzing Aeroelasticity in Turbomachines
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, R.
2003-01-01
ASTROP2-LE is a computer program that predicts flutter and forced responses of blades, vanes, and other components of such turbomachines as fans, compressors, and turbines. ASTROP2-LE is based on the ASTROP2 program, developed previously for analysis of stability of turbomachinery components. In developing ASTROP2- LE, ASTROP2 was modified to include a capability for modeling forced responses. The program was also modified to add a capability for analysis of aeroelasticity with mistuning and unsteady aerodynamic solutions from another program, LINFLX2D, that solves the linearized Euler equations of unsteady two-dimensional flow. Using LINFLX2D to calculate unsteady aerodynamic loads, it is possible to analyze effects of transonic flow on flutter and forced response. ASTROP2-LE can be used to analyze subsonic, transonic, and supersonic aerodynamics and structural mistuning for rotors with blades of differing structural properties. It calculates the aerodynamic damping of a blade system operating in airflow so that stability can be assessed. The code also predicts the magnitudes and frequencies of the unsteady aerodynamic forces on the airfoils of a blade row from incoming wakes. This information can be used in high-cycle fatigue analysis to predict the fatigue lives of the blades.
Gas turbine blade film cooling and blade tip heat transfer
NASA Astrophysics Data System (ADS)
Teng, Shuye
The detailed heat transfer coefficient and film cooling effectiveness distributions as well as the detailed coolant jet temperature profiles on the suction side of a gas turbine blade were measured using a transient liquid crystal image method and a traversing cold wire and thermocouple probe, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. The hole geometries studied include standard cylindrical holes and holes with diffuser shaped exit portion (i.e. fanshaped holes and laidback fanshaped holes). Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3 x 105. The upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 and 0.1. The coolant blowing ratio was varied from 0.4 to 1.2. Results show that both expanded holes have significantly improved thermal protection over the surface downstream of the ejection location, particularly at high blowing ratios. However, the expanded hole injections induce earlier boundary layer transition to turbulence and enhance heat transfer coefficients at the latter part of the blade suction surface. In general, the unsteady wake tends to reduce film cooling effectiveness. Measurements of detailed heat transfer coefficient distributions on a turbine blade tip were performed in the same wind tunnel facility as above. The central blade had a variable tip gap clearance. Measurements were made at three different tip gap clearances of about 1.1%, 2.1%, and 3% of the blade span. Static pressure distributions were measured in the blade mid-span and on the shroud surface. Detailed heat transfer coefficient distributions were measured on the blade tip surface. Results show that reduced tip clearance leads to reduced heat transfer coefficient over the blade tip surface. Results also show that reduced tip clearance tends to weaken the unsteady wake effect on blade tip heat transfer.
Acoustic pressures emanating from a turbomachine stage
NASA Technical Reports Server (NTRS)
Ramachandra, S. M.
1984-01-01
A knowledge of the acoustic energy emission of each blade row of a turbomachine is useful for estimating the overall noise level of the machine and for determining its discrete frequency noise content. Because of the close spacing between the rotor and stator of a compressor stage, the strong aerodynamic interactions between them have to be included in obtaining the resultant flow field. A three dimensional theory for determining the discrete frequency noise content of an axial compressor consisting of a rotor and a stator each with a finite number of blades are outlined. The lifting surface theory and the linearized equation of an ideal, nonsteady compressible fluid motion are used for thin blades of arbitrary cross section. The combined pressure field at a point of the fluid is constructed by linear addition of the rotor and stator solutions together with an interference factor obtained by matching them for net zero vorticity behind the stage.
Thermal shields for gas turbine rotor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Christopher W.; Acar, Bulent
A turbomachine including a rotor having an axis and a plurality of disks positioned adjacent to each other in the axial direction, each disk including opposing axially facing surfaces and a circumferentially extending radially facing surface located between the axially facing surfaces. At least one row of blades is positioned on each of the disks, and the blades include an airfoil extending radially outward from the disk A non-segmented circumferentially continuous ring structure includes an outer rim defining a thermal barrier extending axially in overlapping relation over a portion of the radially facing surface of at least one disk, andmore » extending to a location adjacent to a blade on the disk A compliant element is located between a radially inner circumferential portion of the ring structure and a flange structure that extends axially from an axially facing surface of the disk.« less
Response of a thin airfoil encountering strong density discontinuity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marble, F.E.
1993-12-01
Airfoil theory for unsteady motion has been developed extensively assuming the undisturbed medium to be of uniform density, a restriction accurate for motion in the atmosphere. In some instances, notably for airfoil comprising fan, compressor and turbine blade rows, the undisturbed medium may carry density variations or ``spots``, resulting from non-uniformities in temperature or composition, of a size comparable to the blade chord. This condition exists for turbine blades, immediately downstream of the main burner of a gas turbine engine where the density fluctuations of the order of 50 percent may occur. Disturbances of a somewhat smaller magnitude arise frommore » the ingestion of hot boundary layers into fans, and exhaust into hovercraft. Because these regions of non-uniform density convect with the moving medium, the airfoil experiences a time varying load and moment which the authors calculate.« less
Barber, F Alan; Herbert, Morley A; Schroeder, F Alexander; Aziz-Jacobo, Jorge; Mays, Matthew M; Rapley, Jay H
2010-03-01
To evaluate the strength and suture-tendon interface security of various suture anchors triply and doubly loaded with ultrahigh-molecular weight polyethylene-containing sutures and to evaluate the relative effectiveness of placing these anchors in a single-row or double-row arrangement by cyclic loading and then destructive testing. The infraspinatus muscle was reattached to the original humeral footprint by use of 1 of 5 different repair patterns in 40 bovine shoulders. Two single-row repairs and three double-row repairs were tested. High-strength sutures were used for all repairs. Five groups were studied: group 1, 2 triple-loaded screw suture anchors in a single row with simple stitches; group 2, 2 triple-loaded screw anchors in a single row with simple stitches over a fourth suture passed perpendicularly ("rip-stop" stitch); group 3, 2 medial and 2 lateral screw anchors with a single vertical mattress stitch passed from the medial anchors and 2 simple stitches passed from the lateral anchors; group 4, 2 medial double-loaded screw anchors tied in 2 mattress stitches and 2 push-in lateral anchors capturing the medial sutures in a "crisscross" spanning stitch; and group 5, 2 medial double-loaded screw anchors tied in 2 mattress stitches and 2 push-in lateral anchors creating a "suture-bridge" stitch. The specimens were cycled between 10 and 180 N at 1.0 Hz for 3,500 cycles or until failure. Endpoints were cyclic loading displacement (5 and 10 mm), total displacement, and ultimate failure load. A single row of triply loaded anchors was more resistant to stretching to a 5- and 10-mm gap than the double-row repairs with or without the addition of a rip-stop suture (P < .05). The addition of a rip-stop stitch made the repair more resistant to gap formation than a double row repair (P < .05). The crisscross double row created by 2 medial double-loaded suture anchors and 2 lateral push-in anchors stretched more than any other group (P < .05). Double-row repairs with either crossing sutures or 4 separate anchor points were more likely to fail (5- or 10-mm gap) than a single-row repair loaded with 3 simple sutures. The triple-loaded anchors with ultrahigh-molecular weight polyethylene-containing sutures placed in a single row were more resistant to stretching than the double-row groups. Copyright 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Nelson, Cory O; Sileo, Michael J; Grossman, Mark G; Serra-Hsu, Frederick
2008-08-01
The purpose of this study was to compare the time-zero biomechanical strength and the surface area of repair between a single-row modified Mason-Allen rotator cuff repair and a double-row arthroscopic repair. Six matched pairs of sheep infraspinatus tendons were repaired by both techniques. Pressure-sensitive film was used to measure the surface area of repair for each configuration. Specimens were biomechanically tested with cyclic loading from 20 N to 30 N for 20 cycles and were loaded to failure at a rate of 1 mm/s. Failure was defined at 5 mm of gap formation. Double-row suture anchor fixation restored a mean surface area of 258.23 +/- 69.7 mm(2) versus 148.08 +/- 75.5 mm(2) for single-row fixation, a 74% increase (P = .025). Both repairs had statistically similar time-zero biomechanics. There was no statistical difference in peak-to-peak displacement or elongation during cyclic loading. Single-row fixation showed a higher mean load to failure (110.26 +/- 26.4 N) than double-row fixation (108.93 +/- 21.8 N). This was not statistically significant (P = .932). All specimens failed at the suture-tendon interface. Double-row suture anchor fixation restores a greater percentage of the anatomic footprint when compared with a single-row Mason-Allen technique. The time-zero biomechanical strength was not significantly different between the 2 study groups. This study suggests that the 2 factors are independent of each other. Surface area and biomechanical strength of fixation are 2 independent factors in the outcome of rotator cuff repair. Maximizing both factors may increase the likelihood of complete tendon-bone healing and ultimately improve clinical outcomes. For smaller tears, a single-row modified Mason-Allen suture technique may provide sufficient strength, but for large amenable tears, a double row can provide both strength and increased surface area for healing.
Core Engine Noise Control Program. Volume III. Prediction Methods
1974-08-01
turbofan engines , and Method (C) is based on an analytical description of viscous wake interaction between adjoining blade rows. Turbine Tone/ Jet ...levels for turbojet , turboshaft and turbofan engines . The turbojet data correlate highest and the turbofan data correlate lowest. Turbine Noise Noise...different engines were examined for combustor, jet and fan noise. Tnree turbojet , two turboshaft and two turbofan
NASA Astrophysics Data System (ADS)
Inozemtsev, A. A.; Samokhvalov, N. Yu.; Tikhonov, A. S.
2012-09-01
Results from a numerical study of three versions of the end-wall generatrix of the interblade channel used in the second-stage nozzle vanes of a prospective engine's turbine are presented. Recommendations for designing nonaxisymmetric end-wall surfaces are suggested based on the obtained data.
Survey of inlet noise reduction concepts for gas turbine engines
NASA Technical Reports Server (NTRS)
Lansing, D. L.; Chestnutt, D.
1976-01-01
This paper presents an overview of advanced concepts for the suppression of noise in the inlets of gas turbine engines. Noise suppression concepts are described, the directions of current research are reviewed, and problem areas requiring further work are indicated. The discussion focuses on acoustic liners, high Mach number inlets, active acoustic absorption, water vapor injection, and blade row reflection.
Theory of low frequency noise transmission through turbines
NASA Technical Reports Server (NTRS)
Matta, R. K.; Mani, R.
1979-01-01
Improvements of the existing theory of low frequency noise transmission through turbines and development of a working prediction tool are described. The existing actuator-disk model and a new finite-chord model were utilized in an analytical study. The interactive effect of adjacent blade rows, higher order spinning modes, blade-passage shocks, and duct area variations were considered separately. The improved theory was validated using the data acquired in an earlier NASA program. Computer programs incorporating the improved theory were produced for transmission loss prediction purposes. The programs were exercised parametrically and charts constructed to define approximately the low frequency noise transfer through turbines. The loss through the exhaust nozzle and flow(s) was also considered.
NASA Technical Reports Server (NTRS)
Kobayashi, H.
1978-01-01
Two dimensional, quasi three dimensional and three dimensional theories for the prediction of pure tone fan noise due to the interaction of inflow distortion with a subsonic annular blade row were studied with the aid of an unsteady three dimensional lifting surface theory. The effects of compact and noncompact source distributions on pure tone fan noise in an annular cascade were investigated. Numerical results show that the strip theory and quasi three-dimensional theory are reasonably adequate for fan noise prediction. The quasi three-dimensional method is more accurate for acoustic power and model structure prediction with an acoustic power estimation error of about plus or minus 2db.
Comparison of steady and unsteady secondary flows in a turbine stator cascade
NASA Technical Reports Server (NTRS)
Hebert, Gregory J.; Tiederman, William G.
1989-01-01
The effect of periodic rotor wakes on the secondary flow structure in a turbine stator cascade was investigated. A mechanism simulated the wakes shed from rotor blades by passing cylindrical rods across the inlet to a linear cascade installed in a recirculating water flow loop. Velocity measurements showed a passage vortex, similar to that seen in steady flow, during the time associated with undisturbed fluid. However, as the rotor wake passed through the blade row, a large crossflow toward the suction surface was observed in the midspan region. This caused the development of two large areas of circulation between the midspan and endwall regions, significantly distorting and weakening the passage vortices.
Kimmel, Keith D [Jupiter, FL
2012-05-29
A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.
USDA-ARS?s Scientific Manuscript database
Currently, the majority of peanuts grown in New Mexico and West Texas are planted in single rows on beds 36 to 40 inches apart. In 2006-2008, several field studies were conducted with Valencia peanuts comparing single row, twin row, and diamond planting patterns in various populations. The basic c...
Comparisons of single-row and twin-row soybean production in the Mid South
USDA-ARS?s Scientific Manuscript database
A Maturity Group (MG) IV and MG V soybean [Glycine max (L.) Merr] cultivar were planted in single-rows and twin-rows on 102 cm beds at 20, 30, 40, and 50 seeds m-2 in a Beulah fine sandy loam (coarse-loamy, mixed thermic Typic Dystrochrepts) in 2008, 2009, 2010 and Sharkey clay (Vertic Haplaquept) i...
NASA Astrophysics Data System (ADS)
Soranna, Francesco
The flow and turbulence around a rotor blade operating downstream of a row of Inlet Guide Vanes (IGV) are investigated experimentally in a refractive index matched turbomachinery facility that provides unobstructed view of the entire flow field. High resolution 2D and Stereoscopic PIV measurements are performed both at midspan and in the tip region of the rotor blade, focusing on effects of wake-blade, wake-boundary-layer and wake-wake interactions. We first examine the modification to the shape of an IGV-wake as well as to the spatial distribution of turbulence within it as the wake propagates along the rotor blade. Due to the spatially non-uniform velocity distribution, the IGV wake deforms through the rotor passage, expanding near the leading edge and shrinking near the trailing edge. The turbulence within this wake becomes spatially non-uniform and highly anisotropic as a result of interaction with the non-uniform strain rate field within the rotor passage. Several mechanisms, which are associated with rapid straining and highly non-uniform production rate (P), including negative production on the suction side of the blade, contribute to the observed trends. During IGV-wake impingement, the suction side boundary layer near the trailing edge becomes significantly thinner, with lower momentum thickness and more stable profile compared to other phases at the same location. Analysis of available terms in the integral momentum equation indicates that the phase-averaged unsteady term is the main contributor to the decrease in momentum thickness within the impinging wake. Thinning of the boundary/shear layer extends into the rotor near wake, making it narrower and increasing the phase averaged shear velocity gradients and associated production term just downstream of the trailing edge. Consequently, the turbulent kinetic energy (TKE) increases causing as much as 75% phase-dependent variations in peak TKE magnitude. Further away from the blade, the rotor wake is bent and contracted as a result of exposure to regions with high axial momentum ('jets') which fill the gaps between IGV-wakes. On the suction side of the rotor wake, contraction by the jet enhances the shear velocity gradients, and, with them, the shear production term, the dominant source of turbulence. Consequently, the Reynolds stresses and turbulent kinetic energy profiles become asymmetric across the rotor wake, with peak values located on the suction side, coinciding with the region of peak production. As the rotor wake propagates away from the blade, the process of bending and contraction by the jets continues, leading to formation of distinct wake-kinks containing regions of high turbulence, which we have coined turbulent 'hot spots'.
Amour, Julien; Le Manach, Yannick Le; Borel, Marie; Lenfant, François; Nicolas-Robin, Armelle; Carillion, Aude; Ripart, Jacques; Riou, Bruno; Langeron, Olivier
2010-02-01
Single-use metal laryngoscope blades are cheaper and carry a lower risk of infection than reusable metal blades. The authors compared single-use and reusable metal blades during rapid sequence induction of anesthesia in a multicenter cluster randomized trial. One thousand seventy-two adult patients undergoing general anesthesia under emergency conditions and requiring rapid sequence induction were randomly assigned on a weekly basis to either single-use or reusable metal blades (cluster randomization). After induction, a 60-s period was allowed to complete intubation. In the case of failed intubation, a second attempt was performed using the opposite type of blade. The primary endpoint was the rate of failed intubation, and the secondary endpoints were the incidence of complications (oxygen desaturation, lung aspiration, and/or oropharynx trauma) and the Cormack and Lehane score. Both groups were similar in their main characteristics, including the risk factors for difficult intubation. The rate of failed intubation was significantly decreased with single-use metal blades at the first attempt compared with reusable blades (2.8 vs. 5.4%, P < 0.05). In addition, the proportion of grades III and IV in Cormack and Lehane score were also significantly decreased with single-use metal blades (6 vs. 10%, P < 0.05). The global complication rate did not reach statistical significance, although the same trend was noted (6.8% vs. 11.5%, P = not significant). An investigator survey and a measure of illumination pointed that illumination might have been responsible for this result. The single-use metal blade was more efficient than a reusable metal blade in rapid sequence induction of anesthesia.
The Effect of Wake Passing on Turbine Blade Film Cooling
NASA Technical Reports Server (NTRS)
Heidmann, James David
1996-01-01
The effect of upstream blade row wake passing on the showerhead film cooling performance of a downstream turbine blade has been investigated through a combination of experimental and computational studies. The experiments were performed in a steady-flow annular turbine cascade facility equipped with an upstream rotating row of cylindrical rods to produce a periodic wake field similar to that found in an actual turbine. Spanwise, chordwise, and temporal resolution of the blade surface temperature were achieved through the use of an array of nickel thin-film surface gauges covering one unit cell of showerhead film hole pattern. Film effectiveness and Nusselt number values were determined for a test matrix of various injectants, injectant blowing ratios, and wake Strouhal numbers. Results indicated a demonstratable reduction in film effectiveness with increasing Strouhal number, as well as the expected increase in film effectiveness with blowing ratio. An equation was developed to correlate the span-average film effectiveness data. The primary effect of wake unsteadiness was found to be correlated well by a chordwise-constant decrement of 0.094-St. Measurable spanwise film effectiveness variations were found near the showerhead region, but meaningful unsteady variations and downstream spanwise variations were not found. Nusselt numbers were less sensitive to wake and injection changes. Computations were performed using a three-dimensional turbulent Navier-Stokes code which was modified to model wake passing and film cooling. Unsteady computations were found to agree well with steady computations provided the proper time-average blowing ratio and pressure/suction surface flow split are matched. The remaining differences were isolated to be due to the enhanced mixing in the unsteady solution caused by the wake sweeping normally on the pressure surface. Steady computations were found to be in excellent agreement with experimental Nusselt numbers, but to overpredict experimental film effectiveness values. This is likely due to the inability to match actual hole exit velocity profiles and the absence of a credible turbulence model for film cooling.
NASA Astrophysics Data System (ADS)
Yepuri, Giridhara Babu; Talanki Puttarangasetty, Ashok Babu; Kolke, Deepak Kumar; Jesuraj, Felix
2016-06-01
Increasing the gas turbine inlet temperature is one of the key technologies in raising gas turbine engine power output. Film cooling is one of the efficient cooling techniques to cool the hot section components of a gas turbine engines in turn the turbine inlet temperature can be increased. This study aims at investigating the effect of RANS-type turbulence models on adiabatic film cooling effectiveness over a scaled up gas turbine blade leading edge surfaces. For the evaluation, five different two equation RANS-type turbulent models have been taken in consideration, which are available in the ANSYS-Fluent. For this analysis, the gas turbine blade leading edge configuration is generated using Solid Works. The meshing is done using ANSYS-Workbench Mesh and ANSYS-Fluent is used as a solver to solve the flow field. The considered gas turbine blade leading edge model is having five rows of film cooling circular holes, one at stagnation line and the two each on either side of stagnation line at 30° and 60° respectively. Each row has the five holes with the hole diameter of 4 mm, pitch of 21 mm arranged in staggered manner and has the hole injection angle of 30° in span wise direction. The experiments are carried in a subsonic cascade tunnel facility at heat transfer lab of CSIR-National Aerospace Laboratory with a Reynolds number of 1,00,000 based on leading edge diameter. From the Computational Fluid Dynamics (CFD) evaluation it is found that K-ɛ Realizable model gives more acceptable results with the experimental values, compared to the other considered turbulence models for this type of geometries. Further the CFD evaluated results, using K-ɛ Realizable model at different blowing ratios are compared with the experimental results.
An Anatomic and Biomechanical Comparison of Bankart Repair Configurations.
Judson, Christopher H; Voss, Andreas; Obopilwe, Elifho; Dyrna, Felix; Arciero, Robert A; Shea, Kevin P
2017-11-01
Suture anchor repair for anterior shoulder instability can be performed using a number of different repair techniques, but none has been proven superior in terms of anatomic and biomechanical properties. Purpose/Hypothesis: The purpose was to compare the anatomic footprint coverage and biomechanical characteristics of 4 different Bankart repair techniques: (1) single row with simple sutures, (2) single row with horizontal mattress sutures, (3) double row with sutures, and (4) double row with labral tape. The hypotheses were as follows: (1) double-row techniques would improve the footprint coverage and biomechanical properties compared with single-row techniques, (2) horizontal mattress sutures would increase the footprint coverage compared with simple sutures, and (3) repair techniques with labral tape and sutures would not show different biomechanical properties. Controlled laboratory study. Twenty-four fresh-frozen cadaveric specimens were dissected. The native labrum was removed and the footprint marked and measured. Repair for each of the 4 groups was performed, and the uncovered footprint was measured using a 3-dimensional digitizer. The strength of the repair sites was assessed using a servohydraulic testing machine and a digital video system to record load to failure, cyclic displacement, and stiffness. The double-row repair techniques with sutures and labral tape covered 73.4% and 77.0% of the footprint, respectively. These percentages were significantly higher than the footprint coverage achieved by single-row repair techniques using simple sutures (38.1%) and horizontal mattress sutures (32.8%) ( P < .001). The footprint coverage of the simple suture and horizontal mattress suture groups was not significantly different ( P = .44). There were no significant differences in load to failure, cyclic displacement, or stiffness between the single-row and double-row groups or between the simple suture and horizontal mattress suture techniques. Likewise, there was no difference in the biomechanical properties of the double-row repair techniques with sutures versus labral tape. Double-row repair techniques provided better coverage of the native footprint of the labrum but did not provide superior biomechanical properties compared with single-row repair techniques. There was no difference in footprint coverage or biomechanical strength between the simple suture and horizontal mattress suture repair techniques. Although the double-row repair techniques had no difference in initial strength, they may improve healing in high-risk patients by improving the footprint coverage.
The cost-effectiveness of single-row compared with double-row arthroscopic rotator cuff repair.
Genuario, James W; Donegan, Ryan P; Hamman, Daniel; Bell, John-Erik; Boublik, Martin; Schlegel, Theodore; Tosteson, Anna N A
2012-08-01
Interest in double-row techniques for arthroscopic rotator cuff repair has increased over the last several years, presumably because of a combination of literature demonstrating superior biomechanical characteristics and recent improvements in instrumentation and technique. As a result of the increasing focus on value-based health-care delivery, orthopaedic surgeons must understand the cost implications of this practice. The purpose of this study was to examine the cost-effectiveness of double-row arthroscopic rotator cuff repair compared with traditional single-row repair. A decision-analytic model was constructed to assess the cost-effectiveness of double-row arthroscopic rotator cuff repair compared with single-row repair on the basis of the cost per quality-adjusted life year gained. Two cohorts of patients (one with a tear of <3 cm and the other with a tear of ≥3 cm) were evaluated. Probabilities for retear and persistent symptoms, health utilities for the particular health states, and the direct costs for rotator cuff repair were derived from the orthopaedic literature and institutional data. The incremental cost-effectiveness ratio for double-row compared with single-row arthroscopic rotator cuff repair was $571,500 for rotator cuff tears of <3 cm and $460,200 for rotator cuff tears of ≥3 cm. The rate of radiographic or symptomatic retear alone did not influence cost-effectiveness results. If the increase in the cost of double-row repair was less than $287 for small or moderate tears and less than $352 for large or massive tears compared with the cost of single-row repair, then double-row repair would represent a cost-effective surgical alternative. On the basis of currently available data, double-row rotator cuff repair is not cost-effective for any size rotator cuff tears. However, variability in the values for costs and probability of retear can have a profound effect on the results of the model and may create an environment in which double-row repair becomes the more cost-effective surgical option. The identification of the threshold values in this study may help surgeons to determine the most cost-effective treatment.
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Veres, Joseph P.; Wright, William B.; Struk, Peter M.
2013-01-01
The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to ice accretion in an ice crystal environment.
Jabre, Patricia; Galinski, Michel; Ricard-Hibon, Agnes; Devaud, Marie Laure; Ruscev, Mirko; Kulstad, Erik; Vicaut, Eric; Adnet, Fréderic; Margenet, Alain; Marty, Jean; Combes, Xavier
2011-03-01
Emergency tracheal intubation is reported to be more difficult with single-use plastic than with reusable metal laryngoscope blades in both inhospital and out-of-hospital settings. Single-use metal blades have been developed but have not been compared with conventional metal blades. This controlled trial compares the efficacy and safety of single-use metal blades with reusable metal blades in out-of-hospital emergency tracheal intubation. This randomized controlled trial was carried out in France with out-of-hospital emergency medical units (Services de Médecine d'Urgence et de Réanimation). This was a multicenter prospective noninferiority randomized controlled trial in adult out-of-hospital patients requiring emergency tracheal intubation. Patients were randomly assigned to either single-use or reusable metal laryngoscope blades and intubated by a senior physician or a nurse anesthetist. The primary outcome was first-pass intubation success. Secondary outcomes were incidence of difficult intubation, need for alternate airway devices, and early intubation-related complications (esophageal intubation, mainstem intubation, vomiting, pulmonary aspiration, dental trauma, bronchospasm or laryngospasm, ventricular tachycardia, arterial desaturation, hypotension, or cardiac arrest). The study included 817 patients, including 409 intubated with single-use blades and 408 with a reusable blade. First-pass intubation success was similar in both groups: 292 (71.4%) for single-use blades, 290 (71.1%) for reusable blades. The 95% confidence interval (CI) for the difference in treatments (0.3%; 95% CI -5.9% to 6.5%) did not include the prespecified inferiority margin of -7%. There was no difference in rate of difficult intubation (difference 3%; 95% CI -7% to 2%), need for alternate airway (difference 4%; 95% CI -8% to 1%), or early complication rate (difference 3%; 95% CI -3% to 8%). First-pass out-of-hospital tracheal intubation success with single-use metal laryngoscopy blades was noninferior to first-pass success with reusable metal laryngoscope blades. Copyright © 2010 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
Baums, M H; Buchhorn, G H; Gilbert, F; Spahn, G; Schultz, W; Klinger, H-M
2010-09-01
This experimental study aimed to compare the load-to-failure rate and stiffness of single- versus double-row suture techniques for repairing rotator cuff lesions using two different suture materials. Additionally, the mode of failure of each repair was evaluated. In 32 sheep shoulders, a standardized tear of the infraspinatus tendon was created. Then, n = 8 specimen were randomized to four repair methods: (1) Double-row Anchor Ethibond coupled with polyester sutures, USP No. 2; (2) Double-Row Anchor HiFi with polyblend polyethylene sutures, USP No. 2; (3) Single-Row Anchor Ethibond coupled with braided polyester sutures, USP No. 2; and (4) Single-Row Anchor HiFi with braided polyblend polyethylene sutures, USP No. 2. Arthroscopic Mason-Allen stitches were placed (single-row) and combined with medial horizontal mattress stitches (double-row). All specimens were loaded to failure at a constant displacement rate on a material testing machine. Group 4 showed lowest load-to-failure result with 155.7 +/- 31.1 N compared to group 1 (293.4 +/- 16.1 N) and group 2 (397.7 +/- 7.4 N) (P < 0.001). Stiffness was highest in group 2 (162 +/- 7.3 N/mm) and lowest in group 4 (84.4 +/- 19.9 mm) (P < 0.001). In group 4, the main cause of failure was due to the suture cutting through the tendon (n = 6), a failure case observed in only n = 1 specimen in group 2 (P < 0.001). A double-row technique combined with arthroscopic Mason-Allen/horizontal mattress stitches provides high initial failure strength and may minimize the risk of the polyethylene sutures cutting through the tendon in rotator cuff repair when a single load force is used.
Aerodynamic and heat transfer analysis of the low aspect ratio turbine using a 3D Navier-Stokes code
NASA Astrophysics Data System (ADS)
Choi, D.; Knight, C. J.
1991-06-01
The single-stage, high-pressure ratio Garrett Low Aspect Ratio Turbine (LART) test data obtained in a shock tunnel are employed as a basis for evaluating a new three-dimensional Navier Stokes code based on the O-H grid system. It uses Coakley's two-equation turbulence modeling with viscous sublayer resolution. For the nozzle guide vanes, calculations were made based on two grid zones: an O-grid zone wrapping around airfoil and an H-grid zone outside of the O-grid zone, including the regions upstream of the leadig edge and downstream of the trailing edge. For the rotor blade row, a third O-grid zone was added for the tip-gap region leakage flow. The computational results compare well with experiment. These comparisons include heat transfer distributions on the airfoils and end-walls. The leakage flow through the tip-gap clearance is well resolved.
Computation of the turbulent boundary layer downstream of vortex generators
NASA Astrophysics Data System (ADS)
Chang, Paul K.
1987-12-01
The approximate analysis of three-dimensional incompressible turbulent boundary layer downstream of vortex generators is presented. Extensive numerical computations are carried out to assess the effectiveness of single-row, counter-rotating vane-type vortex generators to alleviate flow separation lines. Flow separation downstream of the vortex generators on a thick airfoil are determined in terms of size, location, and arrangement of the vortex generators. These lines are compared with the separation line without the vortex generators. High efficiency is obtained with the moderately slender rectangular blade of the generator. The results indicate that separations is alleviated more effectively in the region closer to the symmetry axis of the generator than in the outer region of the symmetry axis. No optimum conditions for the alleviation of flow separation are established in this investigation, and no comparisons are made with other analytical results and experimental data.
Computation of leading edge film cooling from a CONSOLE geometry (CONverging Slot hOLE)
NASA Astrophysics Data System (ADS)
Guelailia, A.; Khorsi, A.; Hamidou, M. K.
2016-01-01
The aim of this study is to investigate the effect of mass flow rate on film cooling effectiveness and heat transfer over a gas turbine rotor blade with three staggered rows of shower-head holes which are inclined at 30° to the spanwise direction, and are normal to the streamwise direction on the blade. To improve film cooling effectiveness, the standard cylindrical holes, located on the leading edge region, are replaced with the converging slot holes (console). The ANSYS CFX has been used for this computational simulation. The turbulence is approximated by a k-ɛ model. Detailed film effectiveness distributions are presented for different mass flow rate. The numerical results are compared with experimental data.
NASA Technical Reports Server (NTRS)
Gelder, T. F.
1980-01-01
The aerodynamic performances of four stator-blade rows are presented and evaluated. The aerodynamic designs of two of these stators were compromised to reduce noise, a third design was not. On a calculated operating line passing through the design point pressure ratio, the best stator had overall pressure-ratio and efficiency decrements of 0.031 and 0.044, respectively, providing a stage pressure ratio of 1.483 and efficiency of 0.865. The other stators showed some correctable deficiencies due partly to the design compromises for noise. In the end-wall regions blade-element losses were significantly less for the shortest chord studied.
Baums, M H; Buchhorn, G H; Spahn, G; Poppendieck, B; Schultz, W; Klinger, H-M
2008-11-01
The aim of the study was to evaluate the time zero mechanical properties of single- versus double-row configuration for rotator cuff repair in an animal model with consideration of the stitch technique and suture material. Thirty-two fresh-frozen sheep shoulders were randomly assigned to four repair groups: suture anchor single-row repair coupled with (1) braided, nonabsorbable polyester suture sized USP No. 2 (SRAE) or (2) braided polyblend polyethylene suture sized No. 2 (SRAH). The double-row repair was coupled with (3) USP No. 2 (DRAE) or (4) braided polyblend polyethylene suture No. 2 (DRAH). Arthroscopic Mason-Allen stitches were used (single-row) and combined with medial horizontal mattress stitches (double-row). Shoulders were cyclically loaded from 10 to 180 N. Displacement to gap formation of 5- and 10-mm at the repair site, cycles to failure, and the mode of failure were determined. The ultimate tensile strength was verified in specimens that resisted to 3,000 cycles. DRAE and DRAH had a lower frequency of 5- (P = 0.135) and 10-mm gap formation (P = 0.135). All DRAE and DRAH resisted 3,000 cycles while only three SRAE and one SRAH resisted 3,000 cycles (P < 0.001). The ultimate tensile strength in double-row specimens was significantly higher than in others (P < 0.001). There was no significant variation in using different suture material (P > 0.05). Double-row suture anchor repair with arthroscopic Mason-Allen/medial mattress stitches provides initial strength superior to single-row repair with arthroscopic Mason-Allen stitches under isometric cyclic loading as well as under ultimate loading conditions. Our results support the concept of double-row fixation with arthroscopic Mason-Allen/medial mattress stitches in rotator cuff tears with improvement of initial fixation strength and ultimate tensile load. Use of new polyblend polyethylene suture material seems not to increase the initial biomechanical aspects of the repair construct.
Structureborne noise control in advanced turboprop aircraft
NASA Technical Reports Server (NTRS)
Loeffler, Irvin J.
1987-01-01
Structureborne noise is discussed as a contributor to propeller aircraft interior noise levels that are nonresponsive to the application of a generous amount of cabin sidewall acoustic treatment. High structureborne noise levels may jeopardize passenger acceptance of the fuel-efficient high-speed propeller transport aircraft designed for cruise at Mach 0.65 to 0.85. These single-rotation tractor and counter-rotation tractor and pusher propulsion systems will consume 15 to 30 percent less fuel than advanced turbofan systems. Structureborne noise detection methodologies and the importance of development of a structureborne noise sensor are discussed. A structureborne noise generation mechanism is described in which the periodic components or propeller swirl produce periodic torques and forces on downstream wings and airfoils that are propagated to the cabin interior as noise. Three concepts for controlling structureborne noise are presented: (1) a stator row swirl remover, (2) selection of a proper combination of blade numbers in the rotor/stator system of a single-rotation propeller, and the rotor/rotor system of a counter-rotation propeller, and (3) a tuned mechanical absorber.
NASA Astrophysics Data System (ADS)
Gordon, Kathryn; Morris, Scott; Jemcov, Aleksandar; Cameron, Joshua
2013-11-01
The interaction of components in a compressible, internal flow often results in unsteady interactions between the wakes and moving blades. A prime example in which this flow feature is of interest is the interaction between the downstream rotor blades in a transonic axial compressor with the wake vortices shed from the upstream inlet guide vane (IGV). Previous work shows that a double row of counter-rotating vortices convects downstream into the rotor passage as a result of the rotor blade bow shock impinging on the IGV. The rotor-relative time-mean total pressure distribution has a region of high total pressure corresponding to the pathline of the vortices. The present work focuses on the relationship between the magnitude of the time-mean rotor-relative total pressure profile and the axial spacing between the IGV and the rotor. A survey of different axial gap sizes is performed in a two-dimensional computational study to obtain the sensitivity of the pressure profile amplitude to IGV-rotor axial spacing.
NASA Technical Reports Server (NTRS)
Crook, Andrew J.; Delaney, Robert A.
1991-01-01
A procedure is studied for generating three-dimensional grids for advanced turbofan engine fan section geometries. The procedure constructs a discrete mesh about engine sections containing the fan stage, an arbitrary number of axisymmetric radial flow splitters, a booster stage, and a bifurcated core/bypass flow duct with guide vanes. The mesh is an h-type grid system, the points being distributed with a transfinite interpolation scheme with axial and radial spacing being user specified. Elliptic smoothing of the grid in the meridional plane is a post-process option. The grid generation scheme is consistent with aerodynamic analyses utilizing the average-passage equation system developed by Dr. John Adamczyk of NASA Lewis. This flow solution scheme requires a series of blade specific grids each having a common axisymmetric mesh, but varying in the circumferential direction according to the geometry of the specific blade row.
Simulation of multistage turbine flows
NASA Technical Reports Server (NTRS)
Adamczyk, John J.; Mulac, Richard A.
1987-01-01
A flow model has been developed for analyzing multistage turbomachinery flows. This model, referred to as the average passage flow model, describes the time-averaged flow field with a typical passage of a blade row embedded within a multistage configuration. Computer resource requirements, supporting empirical modeling, formulation code development, and multitasking and storage are discussed. Illustrations from simulations of the space shuttle main engine (SSME) fuel turbine performed to date are given.
Computation of rotor-stator interaction using the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Whitfield, David L.; Chen, Jen-Ping
1995-01-01
The numerical scheme presented belongs to a family of codes known as UNCLE (UNsteady Computation of fieLd Equations) as reported by Whitfield (1995), that is being used to solve problems in a variety of areas including compressible and incompressible flows. This derivation is specifically developed for general unsteady multi-blade-row turbomachinery problems. The scheme solves the Reynolds-averaged N-S equations with the Baldwin-Lomax turbulence model.
Kim, Tae-Hyung; Baek, Moon-Young; Park, Ji Eun; Ryu, Young Jin; Cheon, Jung-Eun; Kim, In-One; Choi, Young Hun
2018-06-01
The purpose of this study is to compare DWI for pediatric brain evaluation using single-shot echo-planar imaging (EPI), periodically rotated overlapping parallel lines with enhanced reconstruction (Blade), and readout-segmented EPI (Resolve). Blade, Resolve, and single-shot EPI were performed for 27 pediatric patients (median age, 9 years), and three datasets were independently reviewed by two radiologists. Qualitative analyses were performed for perceptive coarseness, image distortion, susceptibility-related changes, motion artifacts, and lesion conspicuity using a 5-point Likert scale. Quantitative analyses were conducted for spatial distortion and signal uniformity of each sequence. Mean scores were 2.13, 3.17, and 3.76 for perceptive coarseness; 4.85, 3.96, and 2.19 for image distortion; 4.76, 3.96, and 2.30 for susceptibility-related change; 4.96, 3.83, and 4.69 for motion artifacts; and 2.71, 3.75, and 1.92 for lesion conspicuity, for Blade, Resolve, and single-shot EPI, respectively. Blade and Resolve showed better quality than did single-shot EPI for image distortion, susceptibility-related changes, and lesion conspicuity. Blade showed less image distortion, fewer susceptibility-related changes, and fewer motion artifacts than did Resolve, whereas lesion conspicuity was better with Resolve. Blade showed increased signal variation compared with Resolve and single-shot EPI (coefficients of variation were 0.10, 0.08, and 0.05 for lateral ventricle; 0.13, 0.09, and 0.05 for centrum semiovale; and 0.16, 0.09, and 0.06 for pons in Blade, Resolve, and single-shot EPI, respectively). DWI with Resolve or Blade yields better quality regarding distortion, susceptibility-related changes, and lesion conspicuity, compared with single-shot EPI. Blade is less susceptible to motion artifacts than is Resolve, whereas Resolve yields less noise and better lesion conspicuity than does Blade.
Spiegl, U.J.; Euler, S.A.; Millett, P.J.; Hepp, P.
2016-01-01
Background: Several meta-analyses of randomized clinical trials have been performed to analyze whether double-row (DR) rotator cuff repair (RCR) provides superior clinical outcomes and structural healing compared to single-row (SR) repair. The purpose of this study was to sum up the results of meta-analysis comparing SR and DR repair with respect on clinical outcomes and re-tear rates. Methods: A literature search was undertaken to identify all meta-analyses dealing with randomized controlled trials comparing clinical und structural outcomes after SR versus DR RCR. Results: Eight meta-analyses met the eligibility criteria: two including Level I studies only, five including both Level I and Level II studies, and one including additional Level III studies. Four meta-analyses found no differences between SR and DR RCR for patient outcomes, whereas four favored DR RCR for tears greater than 3 cm. Two meta-analyses found no structural healing differences between SR and DR RCR, whereas six found DR repair to be superior for tears greater than 3 cm tears. Conclusion: No clinical differences are seen between single-row and double-row repair for small and medium rotator cuff tears after a short-term follow-up period with a higher re-tear rate following single-row repairs. There seems to be a trend to superior results with double-row repair in large to massive tear sizes. PMID:27708735
Ducted-Fan Engine Acoustic Predictions using a Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Rumsey, C. L.; Biedron, R. T.; Farassat, F.; Spence, P. L.
1998-01-01
A Navier-Stokes computer code is used to predict one of the ducted-fan engine acoustic modes that results from rotor-wake/stator-blade interaction. A patched sliding-zone interface is employed to pass information between the moving rotor row and the stationary stator row. The code produces averaged aerodynamic results downstream of the rotor that agree well with a widely used average-passage code. The acoustic mode of interest is generated successfully by the code and is propagated well upstream of the rotor; temporal and spatial numerical resolution are fine enough such that attenuation of the signal is small. Two acoustic codes are used to find the far-field noise. Near-field propagation is computed by using Eversman's wave envelope code, which is based on a finite-element model. Propagation to the far field is accomplished by using the Kirchhoff formula for moving surfaces with the results of the wave envelope code as input data. Comparison of measured and computed far-field noise levels show fair agreement in the range of directivity angles where the peak radiation lobes from the inlet are observed. Although only a single acoustic mode is targeted in this study, the main conclusion is a proof-of-concept: Navier-Stokes codes can be used both to generate and propagate rotor/stator acoustic modes forward through an engine, where the results can be coupled to other far-field noise prediction codes.
NASA Technical Reports Server (NTRS)
Hippensteele, S. A.; Cochran, R. P.
1980-01-01
The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.
Buchhorn, G. H.; Gilbert, F.; Spahn, G.; Schultz, W.; Klinger, H.-M.
2010-01-01
Aim This experimental study aimed to compare the load-to-failure rate and stiffness of single- versus double-row suture techniques for repairing rotator cuff lesions using two different suture materials. Additionally, the mode of failure of each repair was evaluated. Method In 32 sheep shoulders, a standardized tear of the infraspinatus tendon was created. Then, n = 8 specimen were randomized to four repair methods: (1) Double-row Anchor Ethibond® coupled with polyester sutures, USP No. 2; (2) Double-Row Anchor HiFi® with polyblend polyethylene sutures, USP No. 2; (3) Single-Row Anchor Ethibond® coupled with braided polyester sutures, USP No. 2; and (4) Single-Row Anchor HiFi® with braided polyblend polyethylene sutures, USP No. 2. Arthroscopic Mason–Allen stitches were placed (single-row) and combined with medial horizontal mattress stitches (double-row). All specimens were loaded to failure at a constant displacement rate on a material testing machine. Results Group 4 showed lowest load-to-failure result with 155.7 ± 31.1 N compared to group 1 (293.4 ± 16.1 N) and group 2 (397.7 ± 7.4 N) (P < 0.001). Stiffness was highest in group 2 (162 ± 7.3 N/mm) and lowest in group 4 (84.4 ± 19.9 mm) (P < 0.001). In group 4, the main cause of failure was due to the suture cutting through the tendon (n = 6), a failure case observed in only n = 1 specimen in group 2 (P < 0.001). Conclusions A double-row technique combined with arthroscopic Mason-Allen/horizontal mattress stitches provides high initial failure strength and may minimize the risk of the polyethylene sutures cutting through the tendon in rotator cuff repair when a single load force is used. PMID:20049605
Ma, C Benjamin; Comerford, Lyn; Wilson, Joseph; Puttlitz, Christian M
2006-02-01
Recent studies have shown that arthroscopic rotator cuff repairs can have higher rates of failure than do open repairs. Current methods of rotator cuff repair have been limited to single-row fixation of simple and horizontal stitches, which is very different from open repairs. The objective of this study was to compare the initial cyclic loading and load-to-failure properties of double-row fixation with those of three commonly used single-row techniques. Ten paired human supraspinatus tendons were split in half, yielding four tendons per cadaver. The bone mineral content at the greater tuberosity was assessed. Four stitch configurations (two-simple, massive cuff, arthroscopic Mason-Allen, and double-row fixation) were randomized and tested on each set of tendons. Specimens were cyclically loaded between 5 and 100 N at 0.25 Hz for fifty cycles and then loaded to failure under displacement control at 1 mm/sec. Conditioning elongation, peak-to-peak elongation, ultimate tensile load, and stiffness were measured with use of a three-dimensional tracking system and compared, and the failure type (suture or anchor pull-out) was recorded. No significant differences were found among the stitches with respect to conditioning elongation. The mean peak-to-peak elongation (and standard error of the mean) was significantly lower for the massive cuff (1.1 +/- 0.1 mm) and double-row stitches (1.1 +/- 0.1 mm) than for the arthroscopic Mason-Allen stitch (1.5 +/- 0.2 mm) (p < 0.05). The ultimate tensile load was significantly higher for double-row fixation (287 +/- 24 N) than for all of the single-row fixations (p < 0.05). Additionally, the massive cuff stitch (250 +/- 21 N) was found to have a significantly higher ultimate tensile load than the two-simple (191 +/- 18 N) and arthroscopic Mason-Allen (212 +/- 21 N) stitches (p < 0.05). No significant differences in stiffness were found among the stitches. Failure mechanisms were similar for all stitches. Rotator cuff repairs in the anterior half of the greater tuberosity had a significantly lower peak-to-peak elongation and higher ultimate tensile strength than did repairs on the posterior half. In this in vitro cadaver study, double-row fixation had a significantly higher ultimate tensile load than the three types of single-row fixation stitches. Of the single-row fixations, the massive cuff stitch had cyclic and load-to-failure characteristics similar to the double-row fixation. Anterior repairs of the supraspinatus tendon had significantly stronger biomechanical behavior than posterior repairs.
A Prospective Randomized Study Comparing Disposable with Reusable Blades for a Morcellator Device.
Becker, Benedikt; Orywal, Ann Katrin; Hausmann, Teresa; Gross, Andreas J; Netsch, Christopher
2017-03-01
Transurethral enucleation of the prostate for the management of benign prostatic obstruction (BPO) involves two steps: the enucleation and morcellation procedure. The aim of our study was to assess the efficacy of a morcellator device using disposable and reusable blades with different settings of morcellation speed. A prospective randomized study was initiated for patients with symptomatic BPO undergoing Thulium laser enucleation of the prostate. Mechanical tissue morcellation was performed using the Piranha™ morcellator (R. Wolf, Knittlingen, Germany) with disposable or reusable blades at 850 (n = 24) or 1500 revolutions per minute (rpm) (n = 24). Patient characteristics, intraoperative complications, and the morcellation rate (g/min) were recorded. Data are expressed as median and interquartile range (IQR). Forty-eight patients were randomized using disposable (n = 24) or reusable blades (n = 24). For reusable blades, the morcellation rate did not increase when changing the morcellation speed from 850 to 1500 rpm (5 vs 4.53 g/min, p = 0.843). The morcellation rate increased significantly when changing the morcellation speed from 850 to 1500 rpm using single-use blades (4.77 vs 10 g/min, p ≤ 0.014). The morcellation rate was not different at 850 rpm between reusable and single-use blades (5 vs 4.77 g/min, p = 0.671). Conversely, the morcellation rate was significantly different at 1500 rpm between reusable and single-use blades (4.53 vs 10 g/min, p ≤ 0.017). The total morcellation rate (at 850 and 1500 rpm) was significantly increased using single-use blades compared to reusable blades (7.67 vs 4.8 g/min, p ≤ 0.026). Interestingly, enucleated weight (g) and the morcellation rate (g/min) correlated inversely using single-use blades at 1500 rpm (r = -0.742, p ≤ 0.004). Only one superficial bladder injury occurred at 1500 rpm, which needed no further interventions. The Piranha morcellator facilitates efficient tissue removal with single-use and reusable blades. Disposable morcellator blades increase tissue removal significantly at 1500 rpm.
NASA Astrophysics Data System (ADS)
Beardsell, Alec; Collier, William; Han, Tao
2016-09-01
There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.
NASA Astrophysics Data System (ADS)
Uzol, O.; Chow, Y.-C.; Katz, J.; Meneveau, C.
2002-08-01
Performing PIV measurements within complex turbomachinery with multiple blade rows is difficult due to the optical obstruction to the illuminating sheet and to the camera caused by the blades. This paper introduces a refractive index matched facility that overcomes this problem. The rotor and stator blades are made of transparent acrylic, and the working fluid has the same optical refractive index as the blades. A 64% by weight solution of sodium iodide in water is used for this purpose. This liquid has a kinematic viscosity of about 1.1×10-6 m2/s, which is almost the same as that of water enabling operation at high Reynolds numbers. Issues related to operating with this fluid such as chemical stability, variations in transmittance and solutions to these problems are discussed. This setup allows full optical access to the entire rotor and stator passages both to the laser sheet and the camera. The experiments are conducted at different streamwise locations covering the entire flow fields around the rotor, the stator, the gap between them, and the wakes behind. Vector maps of the instantaneous and phase-averaged flow fields as well as the distribution of turbulent kinetic energy are obtained. Measurements at different magnifications enable us to obtain an overview of the flow structure, as well as detailed velocity distributions in the boundary layers and in the wakes.
Aerodynamics of advanced axial-flow turbomachinery
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.
1980-01-01
A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.
1994-02-01
numerical treatment. An explicit numerical procedure based on Runqe-Kutta time stepping for cell-centered, hexahedral finite volumes is...An explicit numerical procedure based on Runge-Kutta time stepping for cell-centered, hexahedral finite volumes is outlined for the approximate...Discretization 16 3.1 Cell-Centered Finite -Volume Discretization in Space 16 3.2 Artificial Dissipation 17 3.3 Time Integration 21 3.4 Convergence
Spiegl, Ulrich J; Smith, Sean D; Todd, Jocelyn N; Coatney, Garrett A; Wijdicks, Coen A; Millett, Peter J
2014-08-01
Single- and double-row arthroscopic reconstruction techniques for acute bony Bankart lesions have been described in the literature. The double-row fixation technique would provide superior reduction and stability of a simulated bony Bankart lesion at time zero in a cadaveric model compared with the single-row technique. Controlled laboratory study. Testing was performed on 14 matched pairs of glenoids with simulated bony Bankart fractures with a defect width of 25% of the glenoid diameter. Half of the fractures were repaired with a double-row technique, while the contralateral glenoids were repaired with a single-row technique. The quality of fracture reduction was measured with a coordinate measuring machine. To determine the biomechanical stability of the repairs, specimens were preconditioned with 10 sinusoidal cycles between 5 and 25 N at 0.1 Hz and then pulled to failure in the anteromedial direction at a rate of 5 mm/min. Loads at 1 mm and 2 mm of fracture displacement were determined. The double-row technique required significantly higher forces to achieve fracture displacements of 1 mm (mean, 60.6 N; range, 39.0-93.3 N; P = .001) and 2 mm (mean, 94.4 N; range, 43.4-151.2 N; P = .004) than the single-row technique (1 mm: mean, 30.2 N; range, 14.0-54.1 N and 2 mm: mean, 63.7 N; range, 26.6-118.8 N). Significantly reduced fracture displacement was seen after double-row repair for both the unloaded condition (mean, 1.1 mm; range, 0.3-2.4 mm; P = .005) and in response to a 10-N anterior force applied to the defect (mean, 1.6 mm; range, 0.5-2.7 mm; P = .001) compared with single-row repair (unloaded: mean, 2.1 mm; range, 1.3-3.4 mm and loaded: mean, 3.4 mm; range, 1.9-4.7 mm). The double-row fixation technique resulted in improved fracture reduction and superior stability at time zero in this cadaveric model. This information may influence the surgical technique used to treat large osseous Bankart fractures and the postoperative rehabilitation protocols implemented when such repair techniques are used. © 2014 The Author(s).
SSME single crystal turbine blade dynamics
NASA Technical Reports Server (NTRS)
Moss, Larry A.; Smith, Todd E.
1987-01-01
A study was performed to determine the dynamic characteristics of the Space Shuttle main engine high pressure fuel turbopump (HPFTP) blades made of single crystal (SC) material. The first and second stage drive turbine blades of HPFTP were examined. The nonrotating natural frequencies were determined experimentally and analytically. The experimental results of the SC second stage blade were used to verify the analytical procedures. The analytical study examined the SC first stage blade natural frequencies with respect to crystal orientation at typical operating conditions. The SC blade dynamic response was predicted to be less than the directionally solidified blade. Crystal axis orientation optimization indicated the third mode interference will exist in any SC orientation.
Gajendran, Varun K; Szabo, Robert M; Myo, George K; Curtiss, Shane B
2009-12-01
Open or unstable metacarpal fractures frequently require open reduction and internal fixation. Locking plate technology has improved fixation of unstable fractures in certain settings. In this study, we hypothesized that there would be a difference in strength of fixation using double-row locking plates compared with single- and double-row non-locking plates in comminuted metacarpal fractures. We tested our hypothesis in a gap metacarpal fracture model simulating comminution using fourth-generation, biomechanical testing-grade composite sawbones. The metacarpals were divided into 6 groups of 15 bones each. Groups 1 and 4 were plated with a standard 6-hole, 2.3-mm plate in AO fashion. Groups 2 and 5 were plated with a 6-hole double-row 3-dimensional non-locking plate with bicortical screws aimed for convergence. Groups 3 and 6 were plated with a 6-hole double-row 3-dimensional locking plate with unicortical screws. The plated metacarpals were then tested to failure against cantilever apex dorsal bending (groups 1-3) and torsion (groups 4-6). The loads to failure in groups 1 to 3 were 198 +/- 18, 223 +/- 29, and 203 +/- 19 N, respectively. The torques to failure in groups 4 to 6 were 2,033 +/- 155, 3,190 +/- 235, and 3,161 +/- 268 N mm, respectively. Group 2 had the highest load to failure, whereas groups 5 and 6 shared the highest torques to failure (p < .05). Locking and non-locking double-row plates had equivalent bending and torsional stiffness, significantly higher than observed for the single-row non-locking plate. No other statistical differences were noted between groups. When subjected to the physiologically relevant forces of apex dorsal bending and torsion in a comminuted metacarpal fracture model, double-row 3-dimensional non-locking plates provided superior stability in bending and equivalent stability in torsion compared with double-row 3-dimensional locking plates, whereas single-row non-locking plates provided the least stability.
Thermal and Structural Analysis of a Hollow Core Space Shuttle Main Engine (SSME) Turbine Blade
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Kalluri, Sreeramesh; McGaw, Michael A.
1995-01-01
The influence of primary and secondary orientations on the elastic response of a hollow core, (001)-oriented nickel base single-crystal superalloy turbine blade, was investigated under combined thermal and mechanical conditions. Finite element techniques is employed through MARC finite element code to conduct the analyses on a hollow core SSME turbine blade made out of PWA 1480 single crystal material. Primary orientation of the single crystal superalloy was varied in increments of 2 deg, from 0 to 10 deg, from the (001) direction. Two secondary orientations (0 and 45 deg) were considered with respect to the global coordinate system, as the primary orientation angle was varied. The stresses developed within the single crystal blade were determined for different orientations of the blade. The influence of angular offsets such as the single crystal's primary and secondary orientations and the loading conditions on the elastic stress response of the PWA 1480 hollow blade are summarized. The influence of he primary orientation angle, when constrained between the bounds considered, was not found to be as significant as the influence of the secondary orientation angle.
Navier-Stokes analysis of an oxidizer turbine blade with tip clearance
NASA Technical Reports Server (NTRS)
Gibeling, Howard J.; Sabnis, Jayant S.
1992-01-01
The Gas Generator Oxidizer Turbine (GGOT) Blade is being analyzed by various investigators under the NASA MSFC sponsored Turbine Stage Technology Team design effort. The present work concentrates on the tip clearance region flow and associated losses; however, flow details for the passage region are also obtained in the simulations. The present calculations simulate the rotor blade row in a rotating reference frame with the appropriate coriolis and centrifugal acceleration terms included in the momentum equation. The upstream computational boundary is located about one axial chord from the blade leading edge. The boundary conditions at this location were determined by using a Euler analysis without the vanes to obtain approximately the same flow profiles at the rotor as were obtained with the Euler stage analysis including the vanes. Inflow boundary layer profiles are then constructed assuming the skin friction coefficient at both the hub and the casing. The downstream computational boundary is located about one axial chord from the blade trailing edge, and the circumferentially averaged static pressure at this location was also obtained from the Euler analysis. Results were obtained for the 3-D baseline GGOT geometry at the full scale design Reynolds number. Details of the clearance region flow behavior and blade pressure distributions were computed. The spanwise variation in blade loading distributions are shown, and circumferentially averaged spanwise distributions of total pressure, total temperature, Mach number, and flow angle are shown at several axial stations. The spanwise variation of relative total pressure loss shows a region of high loss in the region near the casing. Particle traces in the near tip region show vortical behavior of the fluid which passes through the clearance region and exits at the downstream edge of the gap.
Natera, Luis; Consigliere, Paolo; Witney-Lagen, Caroline; Brugera, Juan; Sforza, Giuseppe; Atoun, Ehud; Levy, Ofer
2017-10-01
Many techniques of arthroscopic rotator cuff repair have been described. No significant differences in clinical outcomes or rerupture rates have been observed when comparing single-row with double-row methods. Not all single- and double-row repairs are the same. The details of the technique used are crucial. It has been shown that the suture-tendon interface is the weakest point of the reconstruction. Therefore, the biomechanical properties of rotator cuff repairs might be influenced more by the suture configuration than by the number of anchors or by the number of rows involved. Techniques that secure less amount of tendon over a smaller area of the healing zone might be expected to have higher failure rates. The way the sutures of the "parachute technique" are configured represents a quadruple mattress that increases the contact and pressure between the tendon and its footprint and increases the primary load to failure of the repair. We present a simple and effective single-row technique that involves the biomechanical and biological advantages related to the increased contact area and pressure between the cuff and its footprint.
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2014-01-01
Computational Aerodynamic simulations of an 840 ft/sec tip speed, Advanced Ducted Propulsor fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, lownoise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15- foot Low Speed Wind Tunnel at the NASA Glenn Research Center, resulting in quality, detailed aerodynamic and acoustic measurement data. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating conditions simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, excluding a long core duct section downstream of the core inlet guide vane. As a result, only fan rotational speed and system bypass ratio, set by specifying static pressure downstream of the core inlet guide vane row, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. The computed blade row flow fields for all five fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive boundary layer separations or related secondary-flow problems. A few spanwise comparisons between computational and measurement data in the bypass duct show that they are in good agreement, thus providing a partial validation of the computational results.
Esquivel, Amanda O.; Duncan, Douglas D.; Dobrasevic, Nikola; Marsh, Stephanie M.; Lemos, Stephen E.
2015-01-01
Background: Rotator cuff tendinopathy is a frequent cause of shoulder pain that can lead to decreased strength and range of motion. Failures after using the single-row technique of rotator cuff repair have led to the development of the double-row technique, which is said to allow for more anatomical restoration of the footprint. Purpose: To compare 5 different types of suture patterns while maintaining equality in number of anchors. The hypothesis was that the Mason-Allen–crossed cruciform transosseous-equivalent technique is superior to other suture configurations while maintaining equality in suture limbs and anchors. Study Design: Controlled laboratory study. Methods: A total of 25 fresh-frozen cadaveric shoulders were randomized into 5 suture configuration groups: single-row repair with simple stitch technique; single-row repair with modified Mason-Allen technique; double-row Mason-Allen technique; double-row cross-bridge technique; and double-row suture bridge technique. Load and displacement were recorded at 100 Hz until failure. Stiffness and bone mineral density were also measured. Results: There was no significant difference in peak load at failure, stiffness, maximum displacement at failure, or mean bone mineral density among the 5 suture configuration groups (P < .05). Conclusion: According to study results, when choosing a repair technique, other factors such as number of sutures in the repair should be considered to judge the strength of the repair. Clinical Relevance: Previous in vitro studies have shown the double-row rotator cuff repair to be superior to the single-row repair; however, clinical research does not necessarily support this. This study found no difference when comparing 5 different repair methods, supporting research that suggests the number of sutures and not the pattern can affect biomechanical properties. PMID:26665053
Clinical outcomes of arthroscopic single and double row repair in full thickness rotator cuff tears.
Ji, Jong-Hun; Shafi, Mohamed; Kim, Weon-Yoo; Kim, Young-Yul
2010-07-01
There has been a recent interest in the double row repair method for arthroscopic rotator cuff repair following favourable biomechanical results reported by some studies. The purpose of this study was to compare the clinical results of arthroscopic single row and double row repair methods in the full-thickness rotator cuff tears. 22 patients of arthroscopic single row repair (group I) and 25 patients who underwent double row repair (group II) from March 2003 to March 2005 were retrospectively evaluated and compared for the clinical outcomes. The mean age was 58 years and 56 years respectively for group I and II. The average follow-up in the two groups was 24 months. The evaluation was done by using the University of California Los Angeles (UCLA) rating scale and the shoulder index of the American Shoulder and Elbow Surgeons (ASES). In Group I, the mean ASES score increased from 30.48 to 87.40 and the mean ASES score increased from 32.00 to 91.45 in the Group II. The mean UCLA score increased from the preoperative 12.23 to 30.82 in Group I and from 12.20 to 32.40 in Group II. Each method has shown no statistical clinical differences between two methods, but based on the sub scores of UCLA score, the double row repair method yields better results for the strength, and it gives more satisfaction to the patients than the single row repair method. Comparing the two methods, double row repair group showed better clinical results in recovering strength and gave more satisfaction to the patients but no statistical clinical difference was found between 2 methods.
Clinical outcomes of arthroscopic single and double row repair in full thickness rotator cuff tears
Ji, Jong-Hun; Shafi, Mohamed; Kim, Weon-Yoo; Kim, Young-Yul
2010-01-01
Background: There has been a recent interest in the double row repair method for arthroscopic rotator cuff repair following favourable biomechanical results reported by some studies. The purpose of this study was to compare the clinical results of arthroscopic single row and double row repair methods in the full-thickness rotator cuff tears. Materials and Methods: 22 patients of arthroscopic single row repair (group I) and 25 patients who underwent double row repair (group II) from March 2003 to March 2005 were retrospectively evaluated and compared for the clinical outcomes. The mean age was 58 years and 56 years respectively for group I and II. The average follow-up in the two groups was 24 months. The evaluation was done by using the University of California Los Angeles (UCLA) rating scale and the shoulder index of the American Shoulder and Elbow Surgeons (ASES). Results: In Group I, the mean ASES score increased from 30.48 to 87.40 and the mean ASES score increased from 32.00 to 91.45 in the Group II. The mean UCLA score increased from the preoperative 12.23 to 30.82 in Group I and from 12.20 to 32.40 in Group II. Each method has shown no statistical clinical differences between two methods, but based on the sub scores of UCLA score, the double row repair method yields better results for the strength, and it gives more satisfaction to the patients than the single row repair method. Conclusions: Comparing the two methods, double row repair group showed better clinical results in recovering strength and gave more satisfaction to the patients but no statistical clinical difference was found between 2 methods. PMID:20697485
Relationship between noise, dose, and pitch in cardiac multi-detector row CT.
Primak, Andrew N; McCollough, Cynthia H; Bruesewitz, Michael R; Zhang, Jie; Fletcher, Joel G
2006-01-01
In spiral computed tomography (CT), dose is always inversely proportional to pitch. However, the relationship between noise and pitch (and hence noise and dose) depends on the scanner type (single vs multi-detector row) and reconstruction mode (cardiac vs noncardiac). In single detector row spiral CT, noise is independent of pitch. Conversely, in noncardiac multi-detector row CT, noise depends on pitch because the spiral interpolation algorithm makes use of redundant data from different detector rows to decrease noise for pitch values less than 1 (and increase noise for pitch values > 1). However, in cardiac spiral CT, redundant data cannot be used because such data averaging would degrade the temporal resolution. Therefore, the behavior of noise versus pitch returns to the single detector row paradigm, with noise being independent of pitch. Consequently, since faster rotation times require lower pitch values in cardiac multi-detector row CT, dose is increased without a commensurate decrease in noise. Thus, the use of faster rotation times will improve temporal resolution, not alter noise, and increase dose. For a particular application, the higher dose resulting from faster rotation speeds should be justified by the clinical benefits of the improved temporal resolution. RSNA, 2006
Advanced turbine blade tip seal system
NASA Technical Reports Server (NTRS)
Zelahy, J. W.
1981-01-01
An advanced blade/shroud system designed to maintain close clearance between blade tips and turbine shrouds and at the same time, be resistant to environmental effects including high temperature oxidation, hot corrosion, and thermal cycling is described. Increased efficiency and increased blade life are attained by using the advanced blade tip seal system. Features of the system include improved clearance control when blade tips preferentially wear the shrouds and a superior single crystal superalloy tip. The tip design, joint location, characterization of the single crystal tip alloy, the abrasive tip treatment, and the component and engine test are among the factors addressed. Results of wear testing, quality control plans, and the total manufacturing cycle required to fully process the blades are also discussed.
First-order aerodynamic and aeroelastic behavior of a single-blade installation setup
NASA Astrophysics Data System (ADS)
Gaunaa, M.; Bergami, L.; Guntur, S.; Zahle, F.
2014-06-01
Limitations on the wind speed at which blade installation can be performed bears important financial consequences. The installation cost of a wind farm could be significantly reduced by increasing the wind speed at which blade mounting operations can be carried out. This work characterizes the first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind of arbitrary direction. The model is coupled with a schematic aeroelastic representation of the taglines system, which returns the minimum line tension required to compensate for the aerodynamic forcing. The simplified models are in excellent agreement with the aeroelastic code HAWC2, and provide a solid basis for future design of an upgraded single blade installation system able to operate at higher wind speeds.
NASA Technical Reports Server (NTRS)
Arakere, N. K.; Swanson, G.
2002-01-01
High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297 finite element model runs. Fatigue lives at critical points in the blade are computed using finite element stress results and the failure criterion developed. Stress analysis results in the blade attachment region are also presented. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to significantly increase a component S resistance to fatigue crack growth with- out adding additional weight or cost. [DOI: 10.1115/1.1413767
Marra, John Joseph; Wessell, Brian J.; Liang, George
2013-03-05
A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
2011-01-01
The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range, from 100% at take-off to 54% at cruise. The variable-speed power turbine offers one approach by which to effect this speed variation. Key aero-challenges include high work factors at cruise and wide (40 to 60 deg.) incidence variations in blade and vane rows over the speed range. The turbine design approach must optimize cruise efficiency and minimize off-design penalties at take-off. The accuracy of the off-design incidence loss model is therefore critical to the turbine design. In this effort, 3-D computational analyses are used to assess the variation of turbine efficiency with speed change. The conceptual design of a 4-stage variable-speed power turbine for the Large Civil Tilt-Rotor application is first established at the meanline level. The design of 2-D airfoil sections and resulting 3-D blade and vane rows is documented. Three-dimensional Reynolds Averaged Navier-Stokes computations are used to assess the design and off-design performance of an embedded 1.5-stage portion-Rotor 1, Stator 2, and Rotor 2-of the turbine. The 3-D computational results yield the same efficiency versus speed trends predicted by meanline analyses, supporting the design choice to execute the turbine design at the cruise operating speed.
A Numerical Study of the Effect of Wake Passing on Turbine Blade Film Cooling
NASA Technical Reports Server (NTRS)
Heidmann, James D.
1995-01-01
Time-accurate and steady three-dimensional viscous turbulent numerical simulations were performed to study the effect of upstream blade wake passing unsteadiness on the performance of film cooling on a downstream axial turbine blade. The simulations modeled the blade as spanwise periodic and of infinite span. Both aerodynamic and heat transfer quantities were explored. A showerhead film cooling arrangement typical of modern gas turbine engines was employed. Showerhead cooling was studied because of its anticipated strong sensitivity to upstream flow fluctuations. The wake was modeled as a region of zero axial velocity on the upstream computational boundary which translated with each iteration. This model is compatible with a planned companion experiment in which the wakes will be produced by a rotating row of cylindrical rods upstream of an annular turbine cascade. It was determined that a steady solution with appropriate upstream swirl and stagnation pressure predicted the span-average film effectiveness quite well. The major difference is a 2 to 3 percent overprediction of span-average film effectiveness by the steady simulation on the pressure surface and in the showerhead region. Local overpredictions of up to 8 percent were observed in the showerhead region. These differences can be explained by the periodic relative lifting of the boundary layer and enhanced mixing in the unsteady simulations.
NASA Technical Reports Server (NTRS)
Chen, Shu-Cheng S.
2017-01-01
A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.
Utilizing Direct Numerical Simulations of Transition and Turbulence in Design Optimization
NASA Technical Reports Server (NTRS)
Rai, Man M.
2015-01-01
Design optimization methods that use the Reynolds-averaged Navier-Stokes equations with the associated turbulence and transition models, or other model-based forms of the governing equations, may result in aerodynamic designs with actual performance levels that are noticeably different from the expected values because of the complexity of modeling turbulence/transition accurately in certain flows. Flow phenomena such as wake-blade interaction and trailing edge vortex shedding in turbines and compressors (examples of such flows) may require a computational approach that is free of transition/turbulence models, such as direct numerical simulations (DNS), for the underlying physics to be computed accurately. Here we explore the possibility of utilizing DNS data in designing a turbine blade section. The ultimate objective is to substantially reduce differences between predicted performance metrics and those obtained in reality. The redesign of a typical low-pressure turbine blade section with the goal of reducing total pressure loss in the row is provided as an example. The basic ideas presented here are of course just as applicable elsewhere in aerodynamic shape optimization as long as the computational costs are not excessive.
Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys
NASA Technical Reports Server (NTRS)
Swanson, G. R.; Arakere, N. K.
2000-01-01
High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.
NASA Technical Reports Server (NTRS)
Woodward, R. P.; Lucas, J. G.; Balombin, J. R.
1977-01-01
The fan was externally driven by an electric motor. Design features for low-noise generation included the elimination of inlet guide vanes, long axial spacing between the rotor and stator blade rows, and the selection of blade-vane numbers to achieve duct-mode cutoff. The fan QF-2 results were compared with those of another full-scale fan having essentially identical aerodynamic design except for nozzle geometry and the direction of rotation. The fan QF-2 aerodynamic results were also compared with those obtained from a 50.8 cm rotor-tip-diameter model of the reverse rotation fan QF-2 design. Differences in nozzle geometry other than exit area significantly affected the comparison of the results of the full-scale fans.
Low pressure cooling seal system for a gas turbine engine
Marra, John J
2014-04-01
A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.
Numerical and experimental investigation of turbine blade film cooling
NASA Astrophysics Data System (ADS)
Berkache, Amar; Dizene, Rabah
2017-12-01
The blades in a gas turbine engine are exposed to extreme temperature levels that exceed the melting temperature of the material. Therefore, efficient cooling is a requirement for high performance of the gas turbine engine. The present study investigates film cooling by means of 3D numerical simulations using a commercial code: Fluent. Three numerical models, namely k-ɛ, RSM and SST turbulence models; are applied and then prediction results are compared to experimental measurements conducted by PIV technique. The experimental model realized in the ENSEMA laboratory uses a flat plate with several rows of staggered holes. The performance of the injected flow into the mainstream is analyzed. The comparison shows that the RANS closure models improve the over-predictions of center-line film cooling velocities that is caused by the limitations of the RANS method due to its isotropy eddy diffusivity.
SSME single-crystal turbine blade dynamics
NASA Technical Reports Server (NTRS)
Moss, Larry A.
1988-01-01
A study was performrd to determine the dynamic characteristics of the Space Shuttle Main Engine high pressure fuel turbopump (HPFTP) blades made of single crystal (SC) material. The first and second stage drive turbine blades of HPFTP were examined. The nonrotating natural frequencies were determined experimentally and analytically. The experimental results of the SC second stage blade were used to verify the analytical procedures. The study examined the SC first stage blade natural frequencies with respect to crystal orientation at typical operating conditions. The SC blade dynamic response was predicted to be less than the directionally solidified base. Crystal axis orientation optimization indicated that the third mode interference will exist in any SC orientation.
Aeroelastic Stability of Rotor Blades Using Finite Element Analysis
NASA Technical Reports Server (NTRS)
Chopra, I.; Sivaneri, N.
1982-01-01
The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model.
Advanced ceramic coating development for industrial/utility gas turbine applications
NASA Technical Reports Server (NTRS)
Andersson, C. A.; Lau, S. K.; Bratton, R. J.; Lee, S. Y.; Rieke, K. L.; Allen, J.; Munson, K. E.
1982-01-01
The effects of ceramic coatings on the lifetimes of metal turbine components and on the performance of a utility turbine, as well as of the turbine operational cycle on the ceramic coatings were determined. When operating the turbine under conditions of constant cooling flow, the first row blades run 55K cooler, and as a result, have 10 times the creep rupture life, 10 times the low cycle fatigue life and twice the corrosion life with only slight decreases in both specific power and efficiency. When operating the turbine at constant metal temperature and reduced cooling flow, both specific power and efficiency increases, with no change in component lifetime. The most severe thermal transient of the turbine causes the coating bond stresses to approach 60% of the bond strengths. Ceramic coating failures was studied. Analytic models based on fracture mechanics theories, combined with measured properties quantitatively assessed both single and multiple thermal cycle failures which allowed the prediction of coating lifetime. Qualitative models for corrosion failures are also presented.
NASA Technical Reports Server (NTRS)
Holdeman, James D.
2016-01-01
The purpose of this article is to explain why the extension of the previously published C = (S/Ho)sqrt(J) scaling for opposed rows of staggered jets wasn't directly successful in the study by Choi et al. (2016). It is not surprising that staggered jets from opposite sides do not pass each other at the expected C value, because Ho/D and sqrt(J) are much larger than the maximum in previous studies. These, and large x/D's, tend to suggest development of 2-dimensional flow. Although there are distinct optima for opposed rows of in-line jets, single-side injection, and opposed rows of staggered jets based on C, opposed rows of staggered jets provide as good or better mixing performance, at any C value, than opposed rows of in-line jets or jets from single-side injection.
Positive ions of the first- and second-row transition metal hydrides
NASA Technical Reports Server (NTRS)
Pettersson, Lars G. M.; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry
1987-01-01
Theoretical dissociation energies for the first- and second-row transition metal hydride positive ions are critically compared against recent experimental values obtained from ion beam reactive scattering methods. Theoretical spectroscopic parameters and dipole moments are presented for the ground and several low-lying excited states. The calculations employ large Gaussian basis sets and account for electron correlation using the single-reference single- and double-excitation configuration interaction and coupled-pair-functional methods. The Darwin and mass-velocity contributions to the relativistic energy are included in the all-electron calculations on the first-row systems using first-order perturbation theory, and in the second-row systems using the Hay and Wadt relativistic effective core potentials. The theoretical D(0) values for the second-row transition metal hydride positive ions should provide a critical measure of the experimental values, which are not as refined as many of those in the first transition row.
NASA Technical Reports Server (NTRS)
Arakere, Nagaraj K.; Swanson, Gregory R.
2000-01-01
High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.
Suture spanning augmentation of single-row rotator cuff repair: a biomechanical analysis.
Early, Nicholas A; Elias, John J; Lippitt, Steven B; Filipkowski, Danielle E; Pedowitz, Robert A; Ciccone, William J
2017-02-01
This in vitro study evaluated the biomechanical benefit of adding spanning sutures to single-row rotator cuff repair. Mechanical testing was performed to evaluate 9 pairs of cadaveric shoulders with complete rotator cuff repairs, with a single-row technique used on one side and the suture spanning technique on the other. The spanning technique included sutures from 2 lateral anchors securing tendon near the musculotendinous junction, spanning the same anchor placement from single-row repair. The supraspinatus muscle was loaded to 100 N at 0.25 Hz for 100 cycles, followed by a ramp to failure. Markers and a video tracking system measured anterior and posterior gap formation across the repair at 25-cycle intervals. The force at which the stiffness decreased by 50% and 75% was determined. Data were compared using paired t-tests. One single-row repair failed at <25 cycles. Both anterior and posterior gap distances tended to be 1 to 2 mm larger for the single-row repairs than for the suture spanning technique. The difference was statistically significant at all cycles for the posterior gap formation (P ≤ .02). The trends were not significant for the anterior gap (P ≥ .13). The loads at which the stiffness decreased by 50% and 75% did not differ significantly between the 2 types of repair (P ≥ .10). The suture spanning technique primarily improved posterior gap formation. Decreased posterior gap formation could reduce failure rates for rotator cuff repair. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Design geometry and design/off-design performance computer codes for compressors and turbines
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.
1995-01-01
This report summarizes some NASA Lewis (i.e., government owned) computer codes capable of being used for airbreathing propulsion system studies to determine the design geometry and to predict the design/off-design performance of compressors and turbines. These are not CFD codes; velocity-diagram energy and continuity computations are performed fore and aft of the blade rows using meanline, spanline, or streamline analyses. Losses are provided by empirical methods. Both axial-flow and radial-flow configurations are included.
NASA Technical Reports Server (NTRS)
Stauter, R. C.; Fleeter, S.
1982-01-01
Three dimensional aerodynamic data, required to validate and/or indicate necessary refinements to inviscid and viscous analyses of the flow through turbomachine blade rows, are discussed. Instrumentation and capabilities for pressure measurement, probe insertion and traversing, and flow visualization are reviewed. Advanced measurement techniques including Laser Doppler Anemometers, are considered. Data processing is reviewed. Predictions were correlated with the experimental data. A flow visualization technique using helium filled soap bubbles was demonstrated.
Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments
NASA Technical Reports Server (NTRS)
Arakere, Nagaraj K.; Swanson, Gregory
2000-01-01
Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach peak values at locations where fretting cracks have been observed. Fretting stresses at the attachment region are seen to vary significantly as a function of crystal orientation. Attempts to adapt techniques used for estimating fatigue life in the airfoil region, for life calculations in the attachment region, are presented. An effective model for predicting crystallographic crack initiation under mixed mode loading is required for life prediction under fretting action.
NASA Astrophysics Data System (ADS)
Ospennikova, O. G.; Orlov, M. R.; Kolodochkina, V. G.; Nazarkin, R. M.
2015-04-01
The irreversible structural changes of the single-crystal ZhS32-VI nickel superalloy blades of a high-pressure turbine that occur during life tests of a gas turbine engine are studied. The main operation damages in the hottest section of the blade airfoil are found to be the fracture of the heat-resistant coating in the leading edge and the formation of thermomechanical fatigue cracks. The possibility of reconditioning repair of the blades is considered.
Dynamic characteristics of single crystal SSME blades
NASA Technical Reports Server (NTRS)
Moss, L. A.; Smith, T. E.
1987-01-01
The Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) blades are currently manufactured using a directionally solidified (DS) material, MAR-M-246+Hf. However, a necessity to reduce the occurrence of fatigue cracking within the DS blades has lead to an interest in the use of a single crystal (SC) material, PWA-1480. A study was initiated to determine the dynamic characteristics of the HPFTP blades made of SC material and find possible critical engine order excitations. This study examined both the first and second stage drive turbine blades of the HPFTP. The dynamic characterization was done analytically as well as experimentally. The analytical study examined the SC first stage HPFTP blade dynamic characteristics under typical operating conditions. The blades were analyzed using MSC/NASTRAN and a finite element model. Two operating conditions, 27500 RPM and 35000 RPM, were investigated.
Leaf primordium size specifies leaf width and vein number among row-type classes in barley.
Thirulogachandar, Venkatasubbu; Alqudah, Ahmad M; Koppolu, Ravi; Rutten, Twan; Graner, Andreas; Hensel, Goetz; Kumlehn, Jochen; Bräutigam, Andrea; Sreenivasulu, Nese; Schnurbusch, Thorsten; Kuhlmann, Markus
2017-08-01
Exploring genes with impact on yield-related phenotypes is the preceding step to accomplishing crop improvements while facing a growing world population. A genome-wide association scan on leaf blade area (LA) in a worldwide spring barley collection (Hordeum vulgare L.), including 125 two- and 93 six-rowed accessions, identified a gene encoding the homeobox transcription factor, Six-rowed spike 1 (VRS1). VRS1 was previously described as a key domestication gene affecting spike development. Its mutation converts two-rowed (wild-type VRS1, only central fertile spikelets) into six-rowed spikes (mutant vrs1, fully developed fertile central and lateral spikelets). Phenotypic analyses of mutant and wild-type leaves revealed that mutants had an increased leaf width with more longitudinal veins. The observed significant increase of LA and leaf nitrogen (%) during pre-anthesis development in vrs1 mutants also implies a link between wider leaf and grain number, which was validated from the association of vrs1 locus with wider leaf and grain number. Histological and gene expression analyses indicated that VRS1 might influence the size of leaf primordia by affecting cell proliferation of leaf primordial cells. This finding was supported by the transcriptome analysis of mutant and wild-type leaf primordia where in the mutant transcriptional activation of genes related to cell proliferation was detectable. Here we show that VRS1 has an independent role on barley leaf development which might influence the grain number. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Yiping, Lu; Hui, Liu; Kun, Zhou; Daoying, Geng; Bo, Yin
2014-07-01
The purpose of this study is to compare BLADE diffusion-weighted imaging (DWI) with single-shot echo planar imaging (EPI) DWI on the aspects of feasibility of imaging the sellar region and image quality. A total of 3 healthy volunteers and 52 patients with suspected lesions in the sellar region were included in this prospective intra-individual study. All exams were performed at 3.0T with a BLADE DWI sequence and a standard single-shot EP-DWI sequence. Phantom measurements were performed to measure the objective signal-to-noise ratio (SNR). Two radiologists rated the image quality according to the visualisation of the internal carotid arteries, optic chiasm, pituitary stalk, pituitary gland and lesion, and the overall image quality. One radiologist measured lesion sizes for detecting their relationship with the image score. The SNR in BLADE DWI sequence showed no significant difference from the single-shot EPI sequence (P>0.05). All of the assessed regions received higher scores in BLADE DWI images than single-shot EP-DWI. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Low-speed wind-tunnel tests of single- and counter-rotation propellers
NASA Technical Reports Server (NTRS)
Dunham, D. M.; Gentry, G. L., Jr.; Coe, P. L., Jr.
1986-01-01
A low-speed (Mach 0 to 0.3) wind-tunnel investigation was conducted to determine the basic performance, force and moment characteristics, and flow-field velocities of single- and counter-rotation propellers. Compared with the eight-blade single-rotation propeller, a four- by four- (4 x 4) blade counter-rotation propeller with the same blade design produced substantially higher thrust coefficients for the same blade angles and advance ratios. The results further indicated that ingestion of the wake from a supporting pylon for a pusher configuration produced no significant change in the propeller thrust performance for either the single- or counter-rotation propellers. A two-component laser velocimeter (LV) system was used to make detailed measurements of the propeller flow fields. Results show increasing slipstream velocities with increasing blade angle and decreasing advance ratio. Flow-field measurements for the counter-rotation propeller show that the rear propeller turned the flow in the opposite direction from the front propeller and, therefore, could eliminate the swirl component of velocity, as would be expected.
[Rotator cuff repair: single- vs double-row. Clinical and biomechanical results].
Baums, M H; Kostuj, T; Klinger, H-M; Papalia, R
2016-02-01
The goal of rotator cuff repair is a high initial mechanical stability as a requirement for adequate biological recovery of the tendon-to-bone complex. Notwithstanding the significant increase in publications concerning the topic of rotator cuff repair, there are still controversies regarding surgical technique. The aim of this work is to present an overview of the recently published results of biomechanical and clinical studies on rotator cuff repair using single- and double-row techniques. The review is based on a selective literature research of PubMed, Embase, and the Cochrane Database on the subject of the clinical and biomechanical results of single- and double-row repair. In general, neither the biomechanical nor the clinical evidence can recommend the use of a double-row concept for the treatment for every rotator cuff tear. Only tears of more than 3 cm seem to benefit from better results on both imaging and in clinical outcome studies compared with the use of single-row techniques. Despite a significant increase in publications on the surgical treatment of rotator cuff tears in recent years, the clinical results were not significantly improved in the literature so far. Unique information and algorithms, from which the optimal treatment of this entity can be derived, are still inadequate. Because of the cost-effectiveness and the currently vague evidence, the double-row techniques cannot be generally recommended for the repair of all rotator cuff tears.
Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts
NASA Technical Reports Server (NTRS)
Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda
2004-01-01
Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves considerable post-processing work. For these reasons it is very advantageous to develop analytical solution schemes for subsurface stresses, whenever possible.
NASA Technical Reports Server (NTRS)
Katsanis, T.
1973-01-01
A FORTRAN 4 computer program has been developed that obtains a subsonic or shock-free transonic flow solution on the hub-shroud mid-channel flow surface of a turbomachine. The blade row may be fixed or rotating, and may be twisted and leaned. Flow may be axial or mixed, up to 45 deg from axial. Upstream and downstream flow variables may vary from hub to shroud, and provision is made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the flow surface; and approximate blade surface velocities. Subsonic solutions are obtained by a finite-difference stream-function solution. Transonic solutions are obtained by a velocity-gradient method, using information from a finite-difference stream-function solution at a reduced mass flow.
Blade Tip Pressure Measurements Using Pressure Sensitive Paint
NASA Technical Reports Server (NTRS)
Wong, Oliver D.; Watkins, Anthony Neal; Goodman, Kyle Z.; Crafton, James; Forlines, Alan; Goss, Larry; Gregory, James W.; Juliano, Thomas J.
2012-01-01
This paper discusses the application of pressure sensitive paint using laser-based excitation for measurement of the upper surface pressure distribution on the tips of rotor blades in hover and simulated forward flight. The testing was conducted in the Rotor Test Cell and the 14- by 22-ft Subsonic Tunnel at the NASA Langley Research Center on the General Rotor Model System (GRMS) test stand. The Mach-scaled rotor contained three chordwise rows of dynamic pressure transducers for comparison with PSP measurements. The rotor had an 11 ft 1 in. diameter, 5.45 in. main chord and a swept, tapered tip. Three thrust conditions were examined in hover, C(sub T) = 0.004, 0.006 and 0.008. In forward flight, an additional thrust condition, C(sub T) = 0.010 was also examined. All four thrust conditions in forward flight were conducted at an advance ratio of 0.35.
NASA Technical Reports Server (NTRS)
Katsanis, T.; Mcnally, W. D.
1974-01-01
A FORTRAN-IV computer program, MERIDL, has been developed that obtains a subsonic or shock-free transonic flow solution on the hub-shroud mid-channel flow surface of a turbomachine. The blade row may be fixed or rotating and may be twisted and leaned. Flow may be axial or mixed, up to 45 deg from axial. Upstream and downstream flow variables can vary from hub to shroud, and provision is made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the flow surface and approximate blade surface velocities. Subsonic solutions are obtained by a finite-difference stream-function solution. Transonic solutions are obtained by a velocity-gradient method, using information from a finite-difference stream-function solution at a reduced mass flow.
Nováček, V; Tran, T N; Klinge, U; Tolba, R H; Staat, M; Bronson, D G; Miesse, A M; Whiffen, J; Turquier, F
2012-10-11
The impact of surgical staplers on tissues has been studied mostly in an empirical manner. In this paper, finite element method was used to clarify the mechanics of tissue stapling and associated phenomena. Various stapling modalities and several designs of circular staplers were investigated to evaluate the impact of the device on tissues and mechanical performance of the end-to-end colorectal anastomosis. Numerical simulations demonstrated that a single row of staples is not adequate to resist leakage due to non-linear buckling and opening of the tissue layers between two adjacent staples. Compared to the single staple row configuration, significant increase in stress experienced by the tissue at the inner staple rows was observed in two and three rows designs. On the other hand, adding second and/or third staple row had no effect on strain in the tissue inside the staples. Variable height design with higher staples in outer rows significantly reduced the stresses and strains in outer rows when compared to the same configuration with flat cartridge. Copyright © 2012 Elsevier Ltd. All rights reserved.
Low-coherence interferometric tip-clearance probe
NASA Astrophysics Data System (ADS)
Kempe, Andreas; Schlamp, Stefan; Rösgen, Thomas; Haffner, Ken
2003-08-01
We propose an all-fiber, self-calibrating, economical probe that is capable of near-real-time, single-port, simultaneous blade-to-blade tip-clearance measurements with submillimeter accuracy (typically <100 μm, absolute) in the first stages of a gas turbine. Our probe relies on the interference between backreflected light from the blade tips during the 1-μs blade passage time and a frequency-shifted reference with variable time delay, making use of a low-coherence light source. A single optical fiber of arbitrary length connects the self-contained optics and electronics to the turbine.
NASA Technical Reports Server (NTRS)
Schum, Harold J.; Whitney, Warren J.
1949-01-01
A single-stage modification of the turbine from a Mark 25 torpedo power plant was investigated to determine the performance with two nozzle designs in combination with special rotor blades having a 20 inlet angle. The performance is presented in terms of blade, rotor, and brake efficiency as a function of blade-jet speed ratio for pressure ratios of 8, 15 (design), and 20. The blade efficiency with the nozzle having circular pas- sages (K) was equal to or higher than that with the nozzle having rectangular passages (J) for all pressure ratios and speeds investigated. The maximum blade efficiency of 0.571 was obtained with nozzle K at a pressure ratio of 8 and a blade-jet speed ratio of 0.296. The difference in blade efficiency was negligible at a pressure ratio of 8 at the low speeds; the maxim difference was 0.040 at a pressure ratio of 20 and a blade-jet speed ratio of 0.260.
Interaction of upstream flow distortions with high Mach number cascades
NASA Technical Reports Server (NTRS)
Englert, G. W.
1981-01-01
Features of the interaction of flow distortions, such as gusts and wakes with blade rows of advance type fans and compressors having high tip Mach numbers are modeled. A typical disturbance was assumed to have harmonic time dependence and was described, at a far upstream location, in three orthogonal spatial coordinates by a double Fourier series. It was convected at supersonic relative to a linear cascade described as an unrolled annulus. Conditions were selected so that the component of this velocity parallel to the axis of the turbomachine was subsonic, permitting interaction between blades through the upstream as well as downstream flow media. A strong, nearly normal shock was considered in the blade passages which was allowed curvature and displacement. The flows before and after the shock were linearized relative to uniform mean velocities in their respective regions. Solution of the descriptive equations was by adaption of the Wiener-Hopf technique, enabling a determination of distortion patterns through and downstream of the cascade as well as pressure distributions on the blade and surfaces. Details of interaction of the disturbance with the in-passage shock were discussed. Infuences of amplitude, wave length, and phase of the disturbance on lifts and moments of cascade configurations are presented. Numerical results are clarified by reference to an especially orderly pattern of upstream vertical motion in relation to the cascade parameters.
Computational Work to Support FAP/SRW Variable-Speed Power-Turbine Development
NASA Technical Reports Server (NTRS)
Ameri, Ali A.
2012-01-01
The purpose of this report is to document the work done to enable a NASA CFD code to model the transition on a blade. The purpose of the present work is to down-select a transition model that would allow the flow simulation of a Variable-Speed Power-Turbine (VSPT) to be accurately performed. The modeling is to be ultimately performed to also account for the blade row interactions and effect on transition and therefore accurate accounting for losses. The present work is limited to steady flows. The low Reynolds number k-omega model of Wilcox and a modified version of same will be used for modeling of transition on experimentally measured blade pressure and heat transfer. It will be shown that the k-omega model and its modified variant fail to simulate the transition with any degree of accuracy. A case is therefore made for more accurate transition models. Three-equation models based on the work of Mayle on Laminar Kinetic Energy were explored and the Walters and Leylek model which was thought to be in a more mature state of development is introduced and implemented in the Glenn-HT code. Two-dimensional flat plate results and three-dimensional results for flow over turbine blades and the resulting heat transfer and its transitional behavior are reported. It is shown that the transition simulation is much improved over the baseline k-omega model.
Meisel, Adam F; Henninger, Heath B; Barber, F Alan; Getelman, Mark H
2017-05-01
The purpose of this study was to evaluate the time zero cyclic and failure loading properties of a linked single-row rotator cuff repair compared with a standard simple suture single-row repair using triple-loaded suture anchors. Eighteen human cadaveric shoulders from 9 matched pairs were dissected, and full-thickness supraspinatus tears were created. The tendon cross-sectional area was recorded. In each pair, one side was repaired with a linked single-row construct and the other with a simple suture single-row construct, both using 2 triple-loaded suture anchors. After preloading, specimens were cycled to 1 MPa of effective stress at 1 Hz for 500 cycles, and gap formation was recorded with a digital video system. Samples were then loaded to failure, and modes of failure were recorded. There was no statistical difference in peak gap formation between the control and linked constructs (3.6 ± 0.9 mm and 3.6 ± 1.2 mm, respectively; P = .697). Both constructs averaged below a 5-mm cyclic failure threshold. There was no statistical difference in ultimate load to failure between the control and linked repair (511.1 ± 139.0 N and 561.2 ± 131.8 N, respectively; P = .164), and both groups reached failure at loads similar to previous studies. Constructs failed predominantly via tissue tearing parallel to the medial suture line. The linked repair performed similarly to the simple single-row repair. Both constructs demonstrated high ultimate load to failure and good resistance to gap formation with cyclic loading, validating the time zero strength of both constructs in a human cadaveric model. The linked repair provided equivalent resistance to gap formation and failure loads compared with simple suture single-row repairs with triple-loaded suture anchors. This suggests that the linked repair is a simplified rip-stop configuration using the existing suture that may perform similarly to current rotator cuff repair techniques. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Effect of location in an array on heat transfer to a cylinder in crossflow
NASA Technical Reports Server (NTRS)
Simoneau, R. J.; Vanfossen, G. J., Jr.
1982-01-01
An experiment was conducted to measure the heat transfer from a heated cylinder in crossflow in an array of circular cylinders. All cylinders had a length-to-diameter ratio of 3.0. Both in-line and staggered array patterns were studied. The cylinders were spaced 2.67 diameters apart center-to-center in both the axial and transverse directions to the flow. The row containing the heated cylinder remained in a fixed position in the channel and the relative location of this row within the array was changed by adding up to five upstream rows. The working fluid was nitrogen gas at pressures from 100 to 600 kPa. The Reynolds number ranged based on cylinder diameter and average unobstructed channel velocity was from 5,000 to 125,000. Turbulence intensity: profiles were measured for each case at a point one half space upstream of the row containing the heated cylinder. The basis of comparison for all the heat transfer data was the single row with the heated cylinder. For the in-line cases the addition of a single row of cylinders upstream of the row containing the heated cylinder increased the heat transfer by an average of 50 percent above the base case. Adding up to five more rows caused no increase or decrease in heat transfer. Adding rows in the staggered array cases resulted in average increases in heat transfer of 21, 64, 58, 46, and 46 percent for one to five upstream rows, respectively.
Ide, Junji; Karasugi, Tatsuki; Okamoto, Nobukazu; Taniwaki, Takuya; Oka, Kiyoshi; Mizuta, Hiroshi
2015-10-01
We compared the outcomes of knotless double-row suture bridge and single-row repairs in patients undergoing arthroscopic repair for anterosuperior rotator cuff tears. We included 61 full-thickness anterosuperior rotator cuff tears treated by arthroscopic repair, namely, single-row repair (group 1: 25 shoulders; mean patient age, 64 years) and the knotless double-row suture bridge repair (group 2: 36 shoulders; mean patient age, 62 years). Preoperative and postoperative magnetic resonance imaging was performed for all shoulders. Clinical outcomes were evaluated for mean follow-up periods of 81 months (range, 72-96 months) in group 1 and 34 months (range, 24-42 months) in group 2, using the University of California, Los Angeles and Japanese Orthopaedic Association assessments. At the final follow-up, both groups showed improvement in the average University of California, Los Angeles and Japanese Orthopaedic Association scores and range of motion, although no intergroup differences were observed. Both groups showed improved abduction strength, and the average score was higher in group 2 (P = .0112). The lift-off and belly-press test results were improved in both groups. Postoperatively, the incidence of positive lift-off tests tended to be lower (P = .075) and that of positive belly-press tests was lower in group 2, P = .049). The repair failure rate tended to be lower in group 2 (14% [5 of 36]) than in group 1 (32% [8 of 25]; P = .0839). Arthroscopic knotless double-row suture bridge repair of anterosuperior rotator cuff tears yielded functional outcomes equivalent to those of single-row repair and may be useful for improving subscapularis function, abduction strength, and tendon healing. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Carney, Kelly; Pereira, Michael; Kohlman, Lee; Goldberg, Robert; Envia, Edmane; Lawrence, Charles; Roberts, Gary; Emmerling, William
2013-01-01
The Federal Aviation Administration (FAA) has been engaged in discussions with airframe and engine manufacturers concerning regulations that would apply to new technology fuel efficient "openrotor" engines. Existing regulations for the engines and airframe did not envision features of these engines that include eliminating the fan blade containment systems and including two rows of counter-rotating blades. Damage to the airframe from a failed blade could potentially be catastrophic. Therefore the feasibility of using aircraft fuselage shielding was investigated. In order to establish the feasibility of this shielding, a study was conducted to provide an estimate for the fuselage shielding weight required to provide protection from an open-rotor blade loss. This estimate was generated using a two-step procedure. First, a trajectory analysis was performed to determine the blade orientation and velocity at the point of impact with the fuselage. The trajectory analysis also showed that a blade dispersion angle of 3deg bounded the probable dispersion pattern and so was used for the weight estimate. Next, a finite element impact analysis was performed to determine the required shielding thickness to prevent fuselage penetration. The impact analysis was conducted using an FAA-provided composite blade geometry. The fuselage geometry was based on a medium-sized passenger composite airframe. In the analysis, both the blade and fuselage were assumed to be constructed from a T700S/PR520 triaxially-braided composite architecture. Sufficient test data on T700S/PR520 is available to enable reliable analysis, and also demonstrate its good impact resistance properties. This system was also used in modeling the surrogate blade. The estimated additional weight required for fuselage shielding for a wing- mounted counterrotating open-rotor blade is 236 lb per aircraft. This estimate is based on the shielding material serving the dual use of shielding and fuselage structure. If the shielding material is not used for dual purpose, and is only used for shielding, then the additional weight per aircraft is estimated to be 428 lb. This weight estimate is based upon a number of assumptions that would need to be revised when applying this concept to an actual airplane design. For example, the weight savings that will result when there is no fan blade containment system, manufacturing limitations which may increase the weight where variable thicknesses was assumed, engine placement on the wing versus aft fuselage, etc.
Profitability of cover crops for single and twin row cotton
USDA-ARS?s Scientific Manuscript database
With the increased interest in cover crops, the impact of adoption on profitability of cash crops is a common question from producers. The objective of this study was to evaluate the profitability of cover crops for single and twin row cotton (Gossypium hirsutum L.) in Alabama. This experiment inclu...
NASA Astrophysics Data System (ADS)
Weiss, Armin; Geisler, Reinhard; Schwermer, Till; Yorita, Daisuke; Henne, Ulrich; Klein, Christian; Raffel, Markus
2017-09-01
A pressure-sensitive paint (PSP) system is presented to measure global surface pressures on fast rotating blades. It is dedicated to solve the problem of blurred image data employing the single-shot lifetime method. The efficient blur reduction capability of an optimized double-shutter imaging technique is demonstrated omitting error-prone post-processing or laborious de-rotation setups. The system is applied on Mach-scaled DSA-9A helicopter blades in climb at various collective pitch settings and blade tip Mach and chord Reynolds numbers (M_{ {tip}} = 0.29-0.57; Re_{ {tip}} = 4.63-9.26 × 10^5). Temperature effects in the PSP are corrected by a theoretical approximation validated against measured temperatures using temperature-sensitive paint (TSP) on a separate blade. Ensemble-averaged PSP results are comparable to pressure-tap data on the same blade to within 250 Pa. Resulting pressure maps on the blade suction side reveal spatially high resolved flow features such as the leading edge suction peak, footprints of blade-tip vortices and evidence of laminar-turbulent boundary-layer (BL) transition. The findings are validated by a separately conducted BL transition measurement by means of TSP and numerical simulations using a 2D coupled Euler/boundary-layer code. Moreover, the principal ability of the single-shot technique to capture unsteady flow phenomena is stressed revealing three-dimensional pressure fluctuations at stall.
Effect of blade outlet angle on radial thrust of single-blade centrifugal pump
NASA Astrophysics Data System (ADS)
Nishi, Y.; Fukutomi, J.; Fujiwara, R.
2012-11-01
Single-blade centrifugal pumps are widely used as sewage pumps. However, a large radial thrust acts on a single blade during pump operation because of the geometrical axial asymmetry of the impeller. This radial thrust causes vibrations of the pump shaft, reducing the service life of bearings and shaft seal devices. Therefore, to ensure pump reliability, it is necessary to quantitatively understand the radial thrust and clarify the behavior and generation mechanism. This study investigated the radial thrust acting on two kinds of single-blade centrifugal impellers having different blade outlet angles by experiments and computational fluid dynamics (CFD) analysis. Furthermore, the radial thrust was modeled by a combination of three components, inertia, momentum, and pressure, by applying an unsteady conservation of momentum to this impeller. As a result, the effects of the blade outlet angle on both the radial thrust and the modeled components were clarified. The total head of the impeller with a blade outlet angle of 16 degrees increases more than the impeller with a blade outlet angle of 8 degrees at a large flow rate. In this case, since the static pressure of the circumference of the impeller increases uniformly, the time-averaged value of the radial thrust of both impellers does not change at every flow rate. On the other hand, since the impeller blade loading becomes large, the fluctuation component of the radial thrust of the impeller with the blade outlet angle of 16 degrees increases. If the blade outlet angle increases, the fluctuation component of the inertia component will increase, but the time-averaged value of the inertia component is located near the origin despite changes in the flow rate. The fluctuation component of the momentum component becomes large at all flow rates. Furthermore, although the time-averaged value of the pressure component is almost constant, the fluctuation component of the pressure component becomes large at a large flow rate. In addition to the increase of the fluctuation component of this pressure component, because the fluctuation component of the inertia and momentum components becomes large (as mentioned above), the radial thrust increases at a large flow rate, as is the case for the impeller with a large blade outlet angle.
NASA Technical Reports Server (NTRS)
Brent, J. A.; Cheatham, J. G.; Clemmons, D. R.
1972-01-01
A conventional and a tandem bladed stage were designed for a comparative experimental evaluation in a 0.8 hub/tip ratio single-stage compressor. Based on a preliminary design study, a radially constant work input distribution was selected for the rotor designs. Velocity diagrams and blade leading and trailing edge angles selected for the conventional rotor and stator were used in the design of the tandem blading. The effects of axial velocity ratio and secondary flow on turning were included in the selection of blade leading and trailing edge angles. Design values of rotor tip velocity and stage pressure ratio were 757 ft/sec and 1.26, respectively.
NASA Technical Reports Server (NTRS)
Freche, John C; Schum, Eugene F
1951-01-01
Blade-to-coolant convective heat-transfer coefficients were obtained on a forced-convection water-cooled single-stage turbine over a large laminar flow range and over a portion of the transition range between laminar and turbulent flow. The convective coefficients were correlated by the general relation for forced-convection heat transfer with laminar flow. Natural-convection heat transfer was negligible for this turbine over the Grashof number range investigated. Comparison of turbine data with stationary tube data for the laminar flow of heated liquids showed good agreement. Calculated average midspan blade temperatures using theoretical gas-to-blade coefficients and blade-to-coolant coefficients from stationary-tube data resulted in close agreement with experimental data.
RANS Simulation (Virtual Blade Model [VBM]) of Single Full Scale DOE RM1 MHK Turbine
Javaherchi, Teymour; Aliseda, Alberto
2013-04-10
Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study the flow field around and in the wake of the full scale DOE RM1 turbine is simulated using Blade Element Model (a.k.a Virtual Blade Model) by solving RANS equations coupled with k-\\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of device and structure of it's turbulent far wake. Due to the simplifications implemented for modeling the rotating blades in this model, VBM is limited to capture details of the flow field in near wake region of the device.
Cascade aeroacoustics including steady loading effects
NASA Astrophysics Data System (ADS)
Chiang, Hsiao-Wei D.; Fleeter, Sanford
A mathematical model is developed to analyze the effects of airfoil and cascade geometry, steady aerodynamic loading, and the characteristics of the unsteady flow field on the discrete frequency noise generation of a blade row in an incompressible flow. The unsteady lift which generates the noise is predicted with a complex first-order cascade convected gust analysis. This model was then applied to the Gostelow airfoil cascade and variations, demonstrating that steady loading, cascade solidity, and the gust direction are significant. Also, even at zero incidence, the classical flat plate cascade predictions are unacceptable.
Gas turbine engine with radial diffuser and shortened mid section
Charron, Richard C.; Montgomery, Matthew D.
2015-09-08
An industrial gas turbine engine (10), including: a can annular combustion assembly (80), having a plurality of discrete flow ducts configured to receive combustion gas from respective combustors (82) and deliver the combustion gas along a straight flow path at a speed and orientation appropriate for delivery directly onto the first row (56) of turbine blades (62); and a compressor diffuser (32) having a redirecting surface (130, 140) configured to receive an axial flow of compressed air and redirect the axial flow of compressed air radially outward.
NASA Technical Reports Server (NTRS)
Wood, J. R.; Owen, A. K.; Schumann, L. F.
1982-01-01
A conical-flow compressor stage with a large radius change through the rotor was tested at three values of rotor tip clearance. The stage had a tandem rotor and a tandem stator. Peak efficiency at design speed was 0.774 at a pressure ratio of 2.613. The rotor was tested without the stator, and detailed survey data were obtained for each rotor blade row. Overall peak rotor efficiency was 0.871 at a pressure ratio of 2.952.
A three-dimensional structured/unstructured hybrid Navier-Stokes method for turbine blade rows
NASA Technical Reports Server (NTRS)
Tsung, F.-L.; Loellbach, J.; Kwon, O.; Hah, C.
1994-01-01
A three-dimensional viscous structured/unstructured hybrid scheme has been developed for numerical computation of high Reynolds number turbomachinery flows. The procedure allows an efficient structured solver to be employed in the densely clustered, high aspect-ratio grid around the viscous regions near solid surfaces, while employing an unstructured solver elsewhere in the flow domain to add flexibility in mesh generation. Test results for an inviscid flow over an external transonic wing and a Navier-Stokes flow for an internal annular cascade are presented.
Numerical Studies of the Radiation Condition at the Inlet of a Transonic Compressor Blade Row.
1980-04-01
284-296 (1977). 2 aL.) ITH~rOU7 REFLECTOAJ &RWD b)WITH PJEFL.ECr-IOA, FIGLJ/AE I NV9 PATTERNhS EXPEC TED located a chord length or so upstream of the...C) W In -0N -W e --N 0 -00 e -’N -" M-M M V -NM ""NM N NM 0 - - - - - - - - - - - - --4 WUN NWCON NMWN NN VN N-CYN N N NOJcyN N-N N-N N O~j N 000 00
1994-02-01
In potassium iodide electrolyte, the usual "three-missing-row" (1 x 3) structure is seen to be generated by single gold atomic-row segments shifting...observed, involving the intermediate local formation of "one-missing-row" (I x 3) domains by removal of one-third of the top layer gold rows onto nearby...structure is achieved by aggregation of the displaced monoatomic row segments. The mechanistic value of following atomic-level reconstruction processes by
Moritz, Andreas; Heinrich, Sebastian; Irouschek, Andrea; Birkholz, Torsten; Prottengeier, Johannes; Schmidt, Joachim
2017-01-01
Single-use plastic blades (SUPB) and single-use metal blades (SUMB) for direct laryngoscopy and tracheal intubation have not yet been compared with reusable metal blades (RUMB) in difficult airway scenarios. The purpose of our manikin study was to compare the effectiveness of these different laryngoscope blades in a difficult airway scenario, as well as in a difficult airway scenario with simulated severe inhalation injury. Thirty anesthetists performed tracheal intubation (TI) with each of the three laryngoscope blades in the two scenario manikins. In the inhalation injury scenario, SUPB were associated with prolonged intubation times when compared with the metal blades. In the inhalation injury scenario, both metal laryngoscope blades provided a quicker, easier, and safer TI. In the difficult airway scenario, intubation times were significantly prolonged in the SUPB group in comparison to the RUMB group, but there were no significant differences between the SUPB and the SUMB. In this scenario, the RUMB demonstrated the shortest intubation times and seems to be the most effective device. Generally, results are in line with previous studies showing significant disadvantages of SUPB in both manikin scenarios. Therefore, metal blades might be beneficial, especially in the airway management of patients with inhalation injury. Copyright © 2016 Elsevier Inc. All rights reserved.
Dynamic response characteristics of dual flow-path integrally bladed rotors
NASA Astrophysics Data System (ADS)
Beck, Joseph A.; Brown, Jeffrey M.; Scott-Emuakpor, Onome E.; Cross, Charles J.; Slater, Joseph C.
2015-02-01
New turbine engine designs requiring secondary flow compression often look to dual flow-path integrally bladed rotors (DFIBRs) since these stages have the ability to perform work on the secondary, or bypassed, flow-field. While analogous to traditional integrally bladed rotor stages, DFIBR designs have many differences that result in unique dynamic response characteristics that must be understood to avoid fatigue. This work investigates these characteristics using reduced-order models (ROMs) that incorporate mistuning through perturbations to blade frequencies. This work provides an alternative to computationally intensive geometric-mistuning approaches for DFIBRs by utilizing tuned blade mode reductions and substructure coupling in cyclic coordinates. Free and forced response results are compared to full finite element model (FEM) solutions to determine if any errors are related to the reduced-order model formulation reduction methods. It is shown that DFIBRs have many more frequency veering regions than their single flow-path integrally blade rotor (IBR) counterparts. Modal families are shown to transition between system, inner-blade, and outer-blade motion. Furthermore, findings illustrate that while mode localization of traditional IBRs is limited to a single or small subset of blades, DFIBRs can have modal energy localized to either an inner- or outer-blade set resulting in many blades responding above tuned levels. Lastly, ROM forced response predictions compare well to full FEM predictions for the two test cases shown.
Impact resistance of composite fan blades
NASA Technical Reports Server (NTRS)
1974-01-01
Results are presented of a program to determine the impact resistance of composite fan blades subjected to foreign object damage (FOD) while operating under conditions simulating a short take-off and landing (STOL) engine at takeoff. The full-scale TF39 first-stage fan blade was chosen as the base design for the demonstration component since its configuration and operating tip speeds are similar to a typical STOL fan blade several composite configurations had already been designed and evaluated under previous programs. The first portion of the program was devoted toward fabricating and testing high impact resistant, aerodynamically acceptable composite blades which utilized only a single material system in any given blade. In order to increase the blade impact capability beyond this point, several mixed material (hybrid) designs were investigated using S-glass and Kevlar as well as boron and graphite fibers. These hybrid composite blades showed a marked improvement in resistance to bird impact over those blades made of a single composite material. The work conducted under this program has demonstrated substantial improvement in composite fan blades with respect to FOD resistance and has indicated that the hybrid design concept, which utilizes different types of fibers in various portions of a fan blade design depending on the particular requirements of the different areas and the characteristics of the different fibers involved, shows a significant improvement over those designs utilizing only one material system.
Secondary orientation effects in a single crystal superalloy under mechanical and thermal loads
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.
1991-01-01
The nickel-base single crystal superalloy PWA 1480 is a candidate blading material for the advanced turbopump development program of the SSME. In order to improve thermal fatigue resistance of the turbine blades, the single crystal superalloy PWA 1480 is grown along the low modulus zone axes (001) crystal orientation by a directional solidification process. Since cubic single crystal materials such as PWA 1480 exhibit anisotropic elastic behavior, the stresses developed within the single crystal superalloy due to mechanical and thermal loads are likely to be affected by the exact orientation of the secondary crystallographic direction with respect to the geometry of the turbine blade. The effects of secondary crystal orientation on the elastic response of single crystal PWA 1480 superalloy were investigated.
Effects of Rotor Blade Scaling on High-Pressure Turbine Unsteady Loading
NASA Astrophysics Data System (ADS)
Lastiwka, Derek; Chang, Dongil; Tavoularis, Stavros
2013-03-01
The present work is a study of the effects of rotor blade scaling of a single-stage high pressure turbine on the time-averaged turbine performance and on parameters that influence vibratory stresses on the rotor blades and stator vanes. Three configurations have been considered: a reference case with 36 rotor blades and 24 stator vanes, a case with blades upscaled by 12.5%, and a case with blades downscaled by 10%. The present results demonstrate that blade scaling effects were essentially negligible on the time-averaged turbine performance, but measurable on the unsteady surface pressure fluctuations, which were intensified as blade size was increased. In contrast, blade torque fluctuations increased significantly as blade size decreased. Blade scaling effects were also measurable on the vanes.
NASA Technical Reports Server (NTRS)
Giamei, A. F.; Salkeld, R. W.; Hayes, C. W.
1981-01-01
The objective of the High-Pressure Turbine Fabrication Program was to demonstrate the application and feasibility of Pratt & Whitney Aircraft-developed two-piece, single crystal casting and bonding technology on the turbine blade and vane configurations required for the high-pressure turbine in the Energy Efficient Engine. During the first phase of the program, casting feasibility was demonstrated. Several blade and vane halves were made for the bonding trials, plus solid blades and vanes were successfully cast for materials evaluation tests. Specimens exhibited the required microstructure and chemical composition. Bonding feasibility was demonstrated in the second phase of the effort. Bonding yields of 75 percent for the vane and 30 percent for the blade were achieved, and methods for improving these yield percentages were identified. A bond process was established for PWA 1480 single crystal material which incorporated a transient liquid phase interlayer. Bond properties were substantiated and sensitivities determined. Tooling die materials were identified, and an advanced differential thermal expansion tooling concept was incorporated into the bond process.
NASA Technical Reports Server (NTRS)
Wendt, Bruce J.; Greber, Isaac; Hingst, Warren R.
1991-01-01
An investigation of the structure and development of streamwise vortices embedded in a turbulent boundary layer was conducted. The vortices were generated by a single spanwise row of rectangular vortex generator blades. A single embedded vortex was examined, as well as arrays of embedded counter rotating vortices produced by equally spaced vortex generators. Measurements of the secondary velocity field in the crossplane provided the basis for characterization of vortex structure. Vortex structure was characterized by four descriptors. The center of each vortex core was located at the spanwise and normal position of peak streamwise vorticity. Vortex concentration was characterized by the magnitude of the peak streamwise vorticity, and the vortex strength by its circulation. Measurements of the secondary velocity field were conducted at two crossplane locations to examine the streamwise development of the vortex arrays. Large initial spacings of the vortex generators produced pairs of strong vortices which tended to move away from the wall region while smaller spacings produced tight arrays of weak vortices close to the wall. A model of vortex interaction and development is constructed using the experimental results. The model is based on the structure of the Oseen Vortex. Vortex trajectories are modelled by including the convective effects of neighbors.
BLADED IMPELLER FOR TURBOBLOWERS
Baumann, K.
1949-10-01
A means is given of holding open-sided impeller blades in a turbo-rotor. Two half blades, with dovetail roots of sufficient weight to contain the center of gravity, are fitted into slots cut in the rotor so as to form the desired angle between the blade faces. The adjoining edges of the half blades are welded to form one solid blade that is securely locked an the rotor. This design permits the manufacture of a V shaped impeller blade without the need of machining the entire V shaped contour from a single blank, and furthermore provides excellent locking characteristics for attachment to the rotor.
NASA Technical Reports Server (NTRS)
Brent, J. A.; Clemmons, D.
1972-01-01
Stage C, comprised of tandem-airfoil rotor C and tandem-airfoil stator B, was designed and tested to establish performance data for comparison with the performance of conventional single-airfoil blading. Velocity diagrams and blade leading and trailing edge metal angles selected for the conventional rotor and stator blading were used in the design of the tandem blading. The rotor had an inlet hub/tip ratio of 0.8 and a design tip velocity of 757 ft/sec. At design equivalent rotor speed, rotor C achieved a maximum adiabatic efficiency of 91.8% at a pressure ratio of 1.31. The stage maximum adiabatic efficiency was 86.5% at a pressure ratio of 1.31.
Effect of Blade-surface Finish on Performance of a Single-stage Axial-flow Compressor
NASA Technical Reports Server (NTRS)
Moses, Jason J; Serovy, George, K
1951-01-01
A set of modified NACA 5509-34 rotor and stator blades was investigated with rough-machine, hand-filed, and highly polished surface finishes over a range of weight flows at six equivalent tip speeds from 672 to 1092 feet per second to determine the effect of blade-surface finish on the performance of a single-stage axial-flow compressor. Surface-finish effects decreased with increasing compressor speed and with decreasing flow at a given speed. In general, finishing blade surfaces below the roughness that may be considered aerodynamically smooth on the basis of an admissible-roughness formula will have no effect on compressor performance.
Unsteady Aero Computation of a 1 1/2 Stage Large Scale Rotating Turbine
NASA Technical Reports Server (NTRS)
To, Wai-Ming
2012-01-01
This report is the documentation of the work performed for the Subsonic Rotary Wing Project under the NASA s Fundamental Aeronautics Program. It was funded through Task Number NNC10E420T under GESS-2 Contract NNC06BA07B in the period of 10/1/2010 to 8/31/2011. The objective of the task is to provide support for the development of variable speed power turbine technology through application of computational fluid dynamics analyses. This includes work elements in mesh generation, multistage URANS simulations, and post-processing of the simulation results for comparison with the experimental data. The unsteady CFD calculations were performed with the TURBO code running in multistage single passage (phase lag) mode. Meshes for the blade rows were generated with the NASA developed TCGRID code. The CFD performance is assessed and improvements are recommended for future research in this area. For that, the United Technologies Research Center's 1 1/2 stage Large Scale Rotating Turbine was selected to be the candidate engine configuration for this computational effort because of the completeness and availability of the data.
NASA Technical Reports Server (NTRS)
Meyer, Harold D.
1999-01-01
This report provides a study of rotor and stator scattering using the SOURCE3D Rotor Wake/Stator Interaction Code. SOURCE3D is a quasi-three-dimensional computer program that uses three-dimensional acoustics and two-dimensional cascade load response theory to calculate rotor and stator modal reflection and transmission (scattering) coefficients. SOURCE3D is at the core of the TFaNS (Theoretical Fan Noise Design/Prediction System), developed for NASA, which provides complete fully coupled (inlet, rotor, stator, exit) noise solutions for turbofan engines. The reason for studying scattering is that we must first understand the behavior of the individual scattering coefficients provided by SOURCE3D, before eventually understanding the more complicated predictions from TFaNS. To study scattering, we have derived a large number of scattering curves for vane and blade rows. The curves are plots of output wave power divided by input wave power (in dB units) versus vane/blade ratio. Some of these plots are shown in this report. All of the plots are provided in a separate volume. To assist in understanding the plots, formulas have been derived for special vane/blade ratios for which wavefronts are either parallel or normal to rotor or stator chords. From the plots, we have found that, for the most part, there was strong transmission and weak reflection over most of the vane/blade ratio range for the stator. For the rotor, there was little transmission loss.
NASA Technical Reports Server (NTRS)
Clark, William S.; Hall, Kenneth C.
1994-01-01
A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.
Three-dimensional Aerodynamic Instability in Multi-stage Axial Compressors
NASA Technical Reports Server (NTRS)
Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi
2003-01-01
Four separate tasks are reported. The first task: A Computational Model for Short Wavelength Stall Inception and Development In Multi-Stage Compressors; the second task: Three-dimensional Rotating Stall Inception and Effects of Rotating Tip Clearance Asymmetry in Axial Compressors; the third task:Development of an Effective Computational Methodology for Body Force Representation of High-speed Rotor 37; and the fourth task:Development of Circumferential Inlet Distortion through a Representative Eleven Stage High-speed axial compressor. The common theme that threaded throughout these four tasks is the conceptual framework that consists of quantifying flow processes at the fadcompressor blade passage level to define the compressor performance characteristics needed for addressing physical phenomena such compressor aerodynamic instability and compressor response to flow distoriton with length scales larger than compressor blade-to-blade spacing at the system level. The results from these two levels can be synthesized to: (1) simulate compressor aerodynamic instability inception local to a blade rotor tip and its development from a local flow event into the nonlinear limit cycle instability that involves the entire compressor as was demonstrated in the first task; (2) determine the conditions under which compressor stability assessment based on two-dimensional model may not be adequate and the effects of self-induced flow distortion on compressor stability limit as in the second task; (3) quantify multistage compressor response to inlet distortion in stagnation pressure as illustrated in the fourth task; and (4) elucidate its potential applicability for compressor map generation under uniform as well as non-uniform inlet flow given three-dimensional Navier-Stokes solution for each individual blade row as was demonstrated in the third task.
A novel capacitive absolute positioning sensor based on time grating with nanometer resolution
NASA Astrophysics Data System (ADS)
Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng
2018-05-01
The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.
Shin, Sang-Jin; Kook, Seung-Hwan; Rao, Nandan; Seo, Myeong-Jae
2015-08-01
Various repair techniques have been reported for the operative treatment of bursal-sided partial-thickness rotator cuff tears. Recently, arthroscopic single-row repair using a modified Mason-Allen technique has been introduced. The arthroscopic, modified Mason-Allen single-row technique with preservation of the articular-sided tendon provides satisfactory clinical outcomes and similar results to the double-row suture-bridge technique after conversion of a partial-thickness tear to a full-thickness tear. Cohort study; Level of evidence, 3. A retrospective study was conducted on 84 consecutive patients with symptomatic, bursal-sided partial-thickness rotator cuff tears involving more than 50% thickness of the tendon. A total of 47 patients were treated by the modified Mason-Allen single-row repair technique, preserving the articular-sided tendon, and 37 patients were treated by the double-row suture-bridge repair technique after conversion to a full-thickness tear. The clinical and functional outcomes were evaluated using the American Shoulder and Elbow Surgeons (ASES) and Constant scores and a visual analog scale (VAS) for pain and satisfaction of patients. Magnetic resonance imaging (MRI) was used to analyze the integrity of tendons at 6-month follow-up. Patients were followed up for a mean of 32.5 months. In the 47 patients treated with the modified Mason-Allen suture technique, the VAS score decreased from a preoperative mean of 5.3 ± 0.3 to 0.9 ± 0.5 at the time of final follow-up. There was a statistically significant increase in the mean ASES score (from 45.4 ± 2.9 to 88.6 ± 4.5) and mean Constant score (from 66.9 ± 2.6 to 88.1 ± 2.4) (P < .001). Four of 47 patients (8.5%) demonstrated retears at 6-month postoperative MRI. There was no statistical difference in terms of functional outcomes and the retear rate compared with those of patients with the suture-bridge repair technique (3 patients, 8.1%). However, the mean number of suture anchors used in the patients with modified Mason-Allen suture repair (1.2 ± 0.4) was significantly fewer than that in the patients with suture-bridge repair (3.2 ± 0.4) (P < .01). The modified Mason-Allen single-row repair technique that preserved the articular-sided tendon provided satisfactory clinical outcomes in patients with symptomatic, bursal-sided partial-thickness rotator cuff tears. Despite a fewer number of suture anchors, the shoulder functional outcomes and retear rate in patients after modified Mason-Allen repair were comparable with those of patients who underwent double-row suture-bridge repair. Therefore, the modified Mason-Allen single-row repair technique using a triple-loaded suture anchor can be considered as an effective treatment in patients with bursal-sided partial-thickness rotator cuff tears. © 2015 The Author(s).
Gerhardt, Christian; Hug, Konstantin; Pauly, Stephan; Marnitz, Tim; Scheibel, Markus
2012-12-01
Arthroscopic double-row fixation of supraspinatus tendon tears compared with single-row techniques is still a matter of debate. Arthroscopic double-row rotator cuff repair using the suture bridge technique provides better clinical results and lower retear rates than does single-row repair using a modified Mason-Allen stitch technique. Cohort study; Level of evidence 3. Forty patients underwent either an arthroscopic single-row modified Mason-Allen stitch (SR) (n = 20; mean age ± SD, 61.5 ± 7.4 y) or a modified suture bridge double-row repair (DR) (n = 20; age, 61.2 ± 7.5 y). The anteroposterior extension was classified as Bateman I in 10% and Bateman II in 90% of patients in the SR group and as Bateman II in 80% and Bateman III in 20% of patients in the DR group. Patients were matched for sex and age. The subjective shoulder value (SSV), Constant-Murley score (CS), and Western Ontario Rotator Cuff Index (WORC) were used for clinical follow-up. Furthermore, MRI scans were conducted for analysis of tendon integrity, muscle atrophy, and fatty infiltration via semiquantitative signal intensity analysis. In addition, re-defect patterns were evaluated. The mean follow-up time in the SR group was 16.8 ± 4.6 months. The mean SSV was 91.0% ± 8.8%, mean CS was 82.2 ± 8.1 (contralateral side, 88.8 ± 5.3), and mean WORC score was 96.5% ± 3.2%. The mean follow-up time in the DR group was 23.4 ± 2.9 months, with patients achieving scores of 92.9% ± 9.6% for the SSV, 77.0 ± 8.6 for the CS (contralateral side, 76.7 ± 17.1), and 90.7% ± 12.6% for the WORC (P > .05). No significant differences were detected in the clinical outcome between groups. Tendon integrity was as follows. Type 1, none in either group; type 2, 4 SR and 5 DR; type 3, 9 SR and 10 DR; type 4, 3 SR and 3 DR; and type 5, 3 SR and 2 DR. The failure rate was 31.6% (n = 6) in the SR group and 25% (n = 5) in the DR group (P > .05). No significant differences were obtained for muscular atrophy or fatty degeneration (SR group, 0.94 ± 0.16; DR group, 1.15 ± 0.5) (P > .05). Re-defects revealed lateral cuff failure in 83.3% of SR patients in contrast to patients treated with DR techniques. The re-defect pattern was medial cuff failure in 80% of the patients. The clinical results after modified Mason-Allen single-row versus double-mattress suture bridge technique did not demonstrate significant differences in a matched patient cohort. Concerning the failure mode, single- and double-row techniques seem to demonstrate different re-defect patterns.
NASA Astrophysics Data System (ADS)
Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori
2013-08-01
As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.
Fluid-Structure interaction analysis and performance evaluation of a membrane blade
NASA Astrophysics Data System (ADS)
Saeedi, M.; Wüchner, R.; Bletzinger, K.-U.
2016-09-01
Examining the potential of a membrane blade concept is the goal of the current work. In the sailwing concept the surface of the wing, or the blade in this case, is made from pre-tensioned membranes which meet at the pre-tensioned edge cable at the trailing edge. Because of the dependency between membrane deformation and applied aerodynamic load, two-way coupled fluid-structure interaction analysis is necessary for evaluation of the aerodynamic performance of such a configuration. The in-house finite element based structural solver, CARAT++, is coupled with OpenFOAM in order to tackle the multi-physics problem. The main aerodynamic characteristics of the membrane blade including lift coefficient, drag coefficient and lift to drag ratio are compared with its rigid counterpart. A single non-rotating NREL phase VI blade is studied here as a first step towards analyzing the concept for the rotating case. Compared with the rigid blade, the membrane blade has a higher slope of the lift curve. For higher angles of attack, lift and drag coefficients as well as the lift to drag ratio is higher for the membrane blade. A single non-rotating blade is studied here as a first step towards analyzing the concept for the rotating case.
NASA Astrophysics Data System (ADS)
Steiros, K.; Bruce, P. J. K.; Buxton, O. R. H.; Vassilicos, J. C.
2015-11-01
Experiments have been performed in an octagonal un-baffled water tank, stirred by three radial turbines with different geometry impellers: (1) regular rectangular blades; (2) single-iteration fractal blades; (3) two-iteration fractal blades. Shaft torque was monitored and the power number calculated for each case. Both impellers with fractal geometry blades exhibited a decrease of turbine power number compared to the regular one (15% decrease for single-iteration and 19% for two iterations). Phase locked PIV in the discharge region of the blades revealed that the vortices emanating from the regular blades are more coherent, have higher kinetic energy, and advect faster towards the tank's walls where they are dissipated, compared to their fractal counterparts. This suggests a strong link between vortex production and behaviour and the energy input for the different impellers. Planar PIV measurements in the bulk of the tank showed an increase of turbulence intensity of over 20% for the fractal geometry blades, suggesting higher mixing efficiency. Experiments with pressure measurements on the different geometry blade surfaces are ongoing to investigate the distribution of forces, and calculate hydrodynamic centres of pressure. The authors would like to acknowledge the financial support given by European Union FP7 Marie Curie MULTISOLVE project (Grant Agreement No. 317269).
Barber, F Alan; Drew, Otis R
2012-09-01
To compare tendon-bone interface motion and cyclic loading in a single-row, triple-loaded anchor repair with a suture-tape, rip-stop, double-row rotator cuff repair. Using 18 human shoulders from 9 matched cadaveric pairs, we created 2 groups of rotator cuff repairs. Group 1 was a double-row, rip-stop, suture-tape construct. Group 2 was a single-row, triple-loaded construct. Before mechanical testing, the supraspinatus footprint was measured with calipers. A superiorly positioned digital camera optically measured the tendon footprint motion during 60° of humeral internal and external rotation. Specimens were secured at a fixed angle not exceeding 45° in reference to the load. After preloading, each sample was cycled between 10 N and 100 N for 200 cycles at 1 Hz, followed by destructive testing at 33 mm/s. A digital camera with tracking software measured the repair displacement at 100 and 200 cycles. Ultimate load and failure mode for each sample were recorded. The exposed anterior footprint border (6.5% ± 6%) and posterior footprint border (0.9% ± 1.7%) in group 1 were statistically less than the exposed anterior footprint border (30.3% ± 17%) and posterior footprint border (29.8% ± 14%) in group 2 (P = .003 and P < .001, respectively). The maximal internal rotation and external rotation tendon footprint displacements in group 1 (1.6 mm and 1.4 mm, respectively) were less than those in group 2 (both 3.6 mm) (P = .007 and P = .004, respectively). Mean displacement after 100 cycles for group 1 and group 2 was 2.0 mm and 3.2 mm, respectively, and at 200 cycles, mean displacement was 2.5 mm and 4.2 mm, respectively (P = .02). The mean ultimate failure load in group 1 (586 N) was greater than that in group 2 (393 N) (P = .02). The suture-tendon interface was the site of most construct failures. The suture-tape, rip-stop, double-row rotator cuff repair had greater footprint coverage, less rotational footprint displacement, and a greater mean ultimate failure load than the triple-loaded, single-row repair on mechanical testing. No double-row or single-row constructs showed 5 mm of displacement after the first 100 cycles. The most common failure mode for both constructs was suture tearing through the tendon. Differences in cuff fixation influence rotational tendon movement and may influence postoperative healing. Stronger repair constructs still fail at the suture-tendon interface. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Disposable stainless steel vs plastic laryngoscope blades among paramedics.
Dos Santos, Frank D; Schnakofsky, Roberto; Cascio, Anthony; Liu, Junfeng; Merlin, Mark A
2011-07-01
Several studies have been published in the literature about intubation methods, but little is available on intubation equipment used in this setting. This is the first prehospital comparison of disposable plastic vs disposable stainless steel laryngoscope blades used by paramedics. The objective of this study was to compare prehospital intubation success rates on first attempt and overall number of attempts to obtain intubations using disposable plastic laryngoscopes blades vs disposable stainless steel laryngoscope blades. A retrospective prehospital cohort study was conducted during two 3-year periods. Two-way contingency table and χ(2) test were conducted to determine if there was a difference between the 2 types of blades. A proportional odds model with calculated 95% confidence interval (CI) and odd ratios were then calculated. A total of 2472 paramedic intubations were recorded over the 6-year period. The stainless steel single-use blades had a first attempt success rate of 88.9% vs 78.5% with plastic blades (P = .01; odds ratio, 1.94; 95% CI, 1.17-3.41). The stainless steel single-use laryngoscope blade had a lower number of attempts to successful intubation than the plastic blade (88.8% vs 74.3%, respectively) (P < .01; odds ratio, 1.64; 95% CI, 1.34-2.00). In the prehospital setting, stainless steel disposable blades were superior to plastic disposable blades in first attempt and overall number of attempts to intubation. Until further research is done, we recommend use of stainless steel blades for intubations in the prehospital setting by paramedics. Copyright © 2011 Elsevier Inc. All rights reserved.
Lorbach, O; Pape, D; Raber, F; Busch, L C; Kohn, D; Kieb, M
2012-11-01
Influence of the initial rotator cuff tear size and of different subregions of the SSP tendon on the cyclic loading behavior of a modified single-row reconstruction compared to a suture-bridging double-row repair. Artificial tears (25 and 35 mm) were created in the rotator cuff of 24 human cadaver shoulders. The reconstructions were performed as a single-row repair (SR) using a modified suture configuration or a suture-bridge double-row repair (DR). Radiostereometric analysis was used under cyclic loading (50 cycles, 10–180 N, 10–250 N) to calculate cyclic displacement in three different planes (anteroposterior (x), craniocaudal (y) and mediolateral (z) level). Cyclic displacement was recorded, and differences in cyclic displacement of the anterior compared to the posterior subregions of the tendon were calculated. In small-to-medium tears (25 mm) and medium-to-large tears (35 mm), significant lower cyclic displacement was seen for the SR-reconstruction compared to the DR-repair at 180 N (p ≤ 0.0001; p = 0.001) and 250 N (p = 0.001; p = 0.007) in the x-level. These results were confirmed in the y-level at 180 N (p = 0.001; p = 0.0022) and 250 N (p = 0.005; p = 0.0018). Comparison of the initial tear sizes demonstrated significant differences in cyclic displacement for the DR technique in the x-level at 180 N (p = 0.002) and 250 N (p = 0.004). Comparison of the anterior versus the posterior subregion of the tendon revealed significant lower gap formation in the posterior compared to the anterior subregions in the x-level for both tested rotator cuff repairs (p ≤ 0.05). The tested single-row repair using a modified suture configuration achieved superior results in three-dimensional measurements of cyclic displacement compared to the tested double-row suture-bridge repair. The results were dependent on the initial rupture size of the rotator cuff tear. Furthermore, significant differences were found between tendon subregions of the rotator cuff with significantly higher gap formation for the anterior compared to the posterior subregions.
Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material
NASA Technical Reports Server (NTRS)
Abdul-Aziz, A.; August, R.; Nagpal, V.
1993-01-01
Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.
Low-cost single-crystal turbine blades, volume 2
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Dennis, R. E.; Heath, B. R.
1984-01-01
The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components through extensive mechanical property testing, rig testing, and 200 hours of endurance engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproperietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivatives DS alloys developed during this project, NASAIR 100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. Firtree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.
The high Reynolds number flow through an axial-flow pump
NASA Astrophysics Data System (ADS)
Zierke, W. C.; Straka, W. A.; Taylor, P. D.
1993-11-01
The high Reynolds number pump (HIREP) facility at ARL Penn State has been used to perform a low-speed, large-scale experiment of the incompressible flow of water through a two-blade-row turbomachine. HIREP can involve blade chord Reynolds numbers as high as 6,000,000 and can accommodate a variety of instrumentation in both a stationary and a rotating frame of reference. The objectives of this experiment were as follows: to provide a database for comparison with three-dimensional, viscous (turbulent) flow computations; to evaluate the engineering models; and to improve our physical understanding of many of the phenomena involved in this complex flow field. The experimental results include a large quantity of data acquired throughout HIREP. A five-hole probe survey of the inlet flow 37.0 percent chord upstream of the inlet guide vane (IGV) leading edge is sufficient to give information for the inflow boundary conditions, while some static-pressure information is available to help establish an outflow boundary condition.
NASA Technical Reports Server (NTRS)
Woodward, R. P.; Lucas, J. G.; Stakolich, E. G.
1974-01-01
A 1.2-pressure-ratio, 1.83-meter-(6-ft-) diameter experimental fan stage with characteristics suitable for use in STOL aircraft engines was tested for acoustic and aerodynamic performance. The design incorporated features for low noise, including absence of inlet guide vanes, low rotor-blade-tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator rows. The stage was run with four nozzles of different area. The perceived noise along a 152.4 meter (500-ft) sideline was rear-quadrant dominated with a maximum design-point level of 103.9 PNdb. The acoustic 1/3-octave results were analytically separated into broadband and pure-tone components. It was found that the stage noise levels generally increase with a decrease in nozzle area, with this increase observed primarily in the broadband noise component. A stall condition was documented acoustically with a 90-percent-of-design-area nozzle.
NASA Technical Reports Server (NTRS)
Sreenivas, Kidambi; Whitfield, David L.
1995-01-01
Two linearized solvers (time and frequency domain) based on a high resolution numerical scheme are presented. The basic approach is to linearize the flux vector by expressing it as a sum of a mean and a perturbation. This allows the governing equations to be maintained in conservation law form. A key difference between the time and frequency domain computations is that the frequency domain computations require only one grid block irrespective of the interblade phase angle for which the flow is being computed. As a result of this and due to the fact that the governing equations for this case are steady, frequency domain computations are substantially faster than the corresponding time domain computations. The linearized equations are used to compute flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numerical solutions are compared to linear theory (where available) and to numerical solutions of the nonlinear Euler equations.
An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling
NASA Technical Reports Server (NTRS)
Heidmann, James D.; Lucci, Barbara L.; Reshotko, Eli
1997-01-01
The effect of wake passing on the showerhead film cooling performance of a turbine blade has been investigated experimentally. The experiments were performed in an annular turbine cascade with an upstream rotating row of cylindrical rods. Nickel thin-film gauges were used to determine local film effectiveness and Nusselt number values for various injectants, blowing ratios, and Strouhal numbers. Results indicated a reduction in film effectiveness with increasing Strouhal number, as well as the expected increase in film effectiveness with blowing ratio. An equation was developed to correlate the span-average film effectiveness data. The primary effect of wake unsteadiness was found to be correlated by a streamwise-constant decrement of 0.094.St. Steady computations were found to be in excellent agreement with experimental Nusselt numbers, but to overpredict experimental film effectiveness values. This is likely due to the inability to match actual hole exit velocity profiles and the absence of a credible turbulence model for film cooling.
An Idealized, Single Radial Swirler, Lean-Direct-Injection (LDI) Concept Meshing Script
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.; Thompson, Daniel
2008-01-01
To easily study combustor design parameters using computational fluid dynamics codes (CFD), a Gridgen Glyph-based macro (based on the Tcl scripting language) dubbed BladeMaker has been developed for the meshing of an idealized, single radial swirler, lean-direct-injection (LDI) combustor. BladeMaker is capable of taking in a number of parameters, such as blade width, blade tilt with respect to the perpendicular, swirler cup radius, and grid densities, and producing a three-dimensional meshed radial swirler with a can-annular (canned) combustor. This complex script produces a data format suitable for but not specific to the National Combustion Code (NCC), a state-of-the-art CFD code developed for reacting flow processes.
NASA Astrophysics Data System (ADS)
El Ayoubi, Carole; Hassan, Ibrahim; Ghaly, Wahid
2012-11-01
This paper aims to optimize film coolant flow parameters on the suction surface of a high-pressure gas turbine blade in order to obtain an optimum compromise between a superior cooling performance and a minimum aerodynamic penalty. An optimization algorithm coupled with three-dimensional Reynolds-averaged Navier Stokes analysis is used to determine the optimum film cooling configuration. The VKI blade with two staggered rows of axially oriented, conically flared, film cooling holes on its suction surface is considered. Two design variables are selected; the coolant to mainstream temperature ratio and total pressure ratio. The optimization objective consists of maximizing the spatially averaged film cooling effectiveness and minimizing the aerodynamic penalty produced by film cooling. The effect of varying the coolant flow parameters on the film cooling effectiveness and the aerodynamic loss is analyzed using an optimization method and three dimensional steady CFD simulations. The optimization process consists of a genetic algorithm and a response surface approximation of the artificial neural network type to provide low-fidelity predictions of the objective function. The CFD simulations are performed using the commercial software CFX. The numerical predictions of the aero-thermal performance is validated against a well-established experimental database.
Non-Linear Harmonic flow simulations of a High-Head Francis Turbine test case
NASA Astrophysics Data System (ADS)
Lestriez, R.; Amet, E.; Tartinville, B.; Hirsch, C.
2016-11-01
This work investigates the use of the non-linear harmonic (NLH) method for a high- head Francis turbine, the Francis99 workshop test case. The NLH method relies on a Fourier decomposition of the unsteady flow components in harmonics of Blade Passing Frequencies (BPF), which are the fundamentals of the periodic disturbances generated by the adjacent blade rows. The unsteady flow solution is obtained by marching in pseudo-time to a steady-state solution of the transport equations associated with the time-mean, the BPFs and their harmonics. Thanks to this transposition into frequency domain, meshing only one blade channel is sufficient, like for a steady flow simulation. Notable benefits in terms of computing costs and engineering time can therefore be obtained compared to classical time marching approach using sliding grid techniques. The method has been applied for three operating points of the Francis99 workshop high-head Francis turbine. Steady and NLH flow simulations have been carried out for these configurations. Impact of the grid size and near-wall refinement is analysed on all operating points for steady simulations and for Best Efficiency Point (BEP) for NLH simulations. Then, NLH results for a selected grid size are compared for the three different operating points, reproducing the tendencies observed in the experiment.
Nishimura, Akinobu; Nakazora, Shigeto; Ito, Naoya; Fukuda, Aki; Kato, Ko; Sudo, Akihiro
2016-06-01
Traumatic dislocation of peroneal tendons in the ankle is an uncommon lesion that mainly affects young adults. Unfortunately, most cases lead to recurrent dislocation of the peroneal tendons of the ankle (RPTD). Therefore, most cases need operative treatment. One of the most common operative procedures is superior peroneal retinaculum (SPR) repair. Recently, surgery for RPTD has been achieved with less invasive arthroscopic procedures. In this article, tendoscopic surgery for RPTD using a double-row suture bridge technique is introduced. This technique consists of debridement of the lateral aspect of the fibula under an intrasheath pseudo-cavity, suture anchor insertion into the fibular ridge, and reattachment of the SPR to the fibula using a knotless anchor screwed into the lateral aspect of the fibula. This technique mimics the double-row suture bridge technique for rotator cuff tear repair. The double-row suture bridge technique requires more surgical steps than the single-row technique, but it provides a wider bone-SPR contact surface and tighter fixation than the single-row technique. This procedure is an attractive option because it is less invasive and has achieved results similar to open procedures.
Arroyo-Hernández, M; Mellado-Romero, M A; Páramo-Díaz, P; Martín-López, C M; Cano-Egea, J M; Vilá Y Rico, J
2015-01-01
The purpose of this study is to analyze if there is any difference between the arthroscopic reparation of full-thickness supraspinatus tears with simple row technique versus suture bridge technique. We accomplished a retrospective study of 123 patients with full-thickness supraspinatus tears between January 2009 and January 2013 in our hospital. There were 60 simple row reparations, and 63 suture bridge ones. The mean age in the simple row group was 62.9, and in the suture bridge group was 63.3 years old. There were more women than men in both groups (67%). All patients were studied using the Constant test. The mean Constant test in the suture bridge group was 76.7, and in the simple row group was 72.4. We have also accomplished a statistical analysis of each Constant item. Strength was higher in the suture bridge group, with a significant statistical difference (p 0.04). The range of movement was also greater in the suture bridge group, but was not statistically significant. Suture bridge technique has better clinical results than single row reparations, but the difference is not statistically significant (p = 0.298).
De Falco, Enrica; Mancini, Emilia; Roscigno, Graziana; Mignola, Enrico; Taglialatela-Scafati, Orazio; Senatore, Felice
2013-12-04
This research was aimed at investigating the essential oil production, chemical composition and biological activity of a crop of pink flowered oregano (Origanum vulgare L. subsp. vulgare L.) under different spatial distribution of the plants (single and binate rows). This plant factor was shown to affect its growth, soil covering, fresh biomass, essential oil amount and composition. In particular, the essential oil percentage was higher for the binate row treatment at the full bloom. The chemical composition of the oils obtained by hydrodistillation was fully characterized by GC and GC-MS. The oil from plants grown in single rows was rich in sabinene, while plants grown in double rows were richer in ocimenes. The essential oils showed antimicrobial action, mainly against Gram-positive pathogens and particularly Bacillus cereus and B. subtilis.
Button fixation technique for Achilles tendon reinsertion: a biomechanical study.
Awogni, David; Chauvette, Guillaume; Lemieux, Marie-Line; Balg, Frédéric; Langelier, Ève; Allard, Jean-Pascal
2014-01-01
Chronic insertional tendinopathy of the Achilles tendon is a frequent and disabling pathologic entity. Operative treatment is indicated for patients for whom nonoperative management has failed. The treatment can consist of the complete detachment of the tendon insertion and extensive debridement. We biomechanically tested a new operative technique that uses buttons for fixation of the Achilles tendon insertion on the posterior calcaneal tuberosity and compared it with 2 standard bone anchor techniques. A total of 40 fresh-frozen cadaver specimens were used to compare 3 fixation techniques for reinserting the Achilles tendon: single row anchors, double row anchors, and buttons. The ultimate loads and failure mechanisms were recorded. The button assembly (median load 764 N, range 713 to 888) yielded a median fixation strength equal to 202% (range 137% to 251%) of that obtained with the double row anchors (median load 412 N, range 301 to 571) and 255% (range 213% to 317%) of that obtained with the single row anchors (median load 338 N, range 241 to 433N). The most common failure mechanisms were suture breakage with the buttons (55%) and pull out of the implant with the double row (70%) and single row (85%) anchors. The results of the present biomechanical cadaver study have shown that Achilles tendon reinsertion fixation using the button technique provides superior pull out strength than the bone anchors tested. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Rigby, David L.; Ameri, Ali A.; Veres, Joe; Jorgenson, Philip C. E.
2017-01-01
Viscous three-dimensional simulations of the Honeywell ALF502R-5 low pressure compressor (sometimes called a booster) using the NASA Glenn code GlennHT have been carried out. A total of ten simulations were produced. Five operating points are investigated, with each point run with two different wall thermal conditions. These operating points are at, or near, points where engine icing has been determined to be likely. In the future, the results of this study will be used for further analysis such as predicting collection efficiency of ice particles and ice growth rates at various locations in the compressor. A mixing plane boundary condition is used between each blade row, resulting in convergence to steady state within each blade row. The k-omega turbulence model of Wilcox, combined with viscous grid spacing near the wall on the order of one, is used to resolve the turbulent boundary layers. For each of the operating points, heat transfer coefficients are generated on the blades and walls. The heat transfer coefficients are produced by running the operating point with two different wall thermal conditions and then solving simultaneously for the heat transfer coefficient and adiabatic wall temperature at each point. Average Nusselt numbers are calculated for the most relevant surfaces. The values are seen to scale with Reynolds number to approximately a power of 0.7. Additionally, images of surface distribution of Nusselt number are presented. Qualitative comparison between the five operating points show that there is relatively little change in the character of the distribution. The dominant observed effect is that of an overall scaling, which is expected due to Reynolds number differences. One interesting aspect about the Nusselt number distribution is observed on the casing (outer diameter) downstream of the exit guide vanes (EGVs). The Nusselt number is relatively high between the pairs of EGVs, with two lower troughs downstream of each EGV trailing edge. This is of particular interest since rather complex ice shapes have been observed in that region.
Grimberg, Jean; Diop, Amadou; Kalra, Kunal; Charousset, Christophe; Duranthon, Louis-Denis; Maurel, Nathalie
2010-03-01
We assessed bone-tendon contact surface and pressure with a continuous and reversible measurement system comparing 3 different double- and single-row techniques of cuff repair with simulation of different joint positions. We reproduced a medium supraspinatus tear in 24 human cadaveric shoulders. For the 12 right shoulders, single-row suture (SRS) and then double-row bridge suture (DRBS) were used. For the 12 left shoulders, DRBS and then double-row cross suture (DRCS) were used. Measurements were performed before, during, and after knot tying and then with different joint positions. There was a significant increase in contact surface with the DRBS technique compared with the SRS technique and with the DRCS technique compared with the SRS or DRBS technique. There was a significant increase in contact pressure with the DRBS technique and DRCS technique compared with the SRS technique but no difference between the DRBS technique and DRCS technique. The DRCS technique seems to be superior to the DRBS and SRS techniques in terms of bone-tendon contact surface and pressure. Copyright 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Study on rotational frequency noise in a centrifugal compressor for automobile turbochargers
NASA Astrophysics Data System (ADS)
Wakaki, Daichi; Sakuka, Yuta; Yamasaki, Nobuhiko; Yamagata, Akihiro
2014-02-01
The rotational frequency noise (also known as the pulsation noise) due to the mistuning of impeller blade rows introduced at the manufacturing stage of the impellers is observed in the small-sized centrifugal compressor for automobile turbochargers. The present paper addresses the elucidation of the generating mechanism and parameter dependency such as the kind and degree of mistuning. In order to analyze numerically the rotational frequency noise due to mistuning, the unsteady computational fluid dynamics (CFD) of the whole compressor including volute is executed, and the resultant time history of the pressure is fed into the spectral analysis.
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.
1996-01-01
Experimental data from jet-engine tests have indicated that unsteady blade-row interaction effects can have a significant impact on the efficiency of low-pressure turbine stages. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Preliminary studies indicate that Reynolds number effects may contribute to the lower efficiencies at cruise conditions. In the current study, numerical experiments have been performed to quantify the Reynolds number dependence of unsteady wake/separation bubble interaction on the performance of a low-pressure turbine.
Icing Branch Current Research Activities in Icing Physics
NASA Technical Reports Server (NTRS)
Vargas, Mario
2009-01-01
Current development: A grid block transformation scheme which allows the input of grids in arbitrary reference frames, the use of mirror planes, and grids with relative velocities has been developed. A simple ice crystal and sand particle bouncing scheme has been included. Added an SLD splashing model based on that developed by William Wright for the LEWICE 3.2.2 software. A new area based collection efficiency algorithm will be incorporated which calculates trajectories from inflow block boundaries to outflow block boundaries. This method will be used for calculating and passing collection efficiency data between blade rows for turbo-machinery calculations.
Full 3D Analysis of the GE90 Turbofan Primary Flowpath
NASA Technical Reports Server (NTRS)
Turner, Mark G.
2000-01-01
The multistage simulations of the GE90 turbofan primary flowpath components have been performed. The multistage CFD code, APNASA, has been used to analyze the fan, fan OGV and booster, the 10-stage high-pressure compressor and the entire turbine system of the GE90 turbofan engine. The code has two levels of parallel, and for the 18 blade row full turbine simulation has 87.3 percent parallel efficiency with 121 processors on an SGI ORIGIN. Grid generation is accomplished with the multistage Average Passage Grid Generator, APG. Results for each component are shown which compare favorably with test data.
Experiments and modeling of dilution jet flow fields
NASA Technical Reports Server (NTRS)
Holdeman, James D.
1986-01-01
Experimental and analytical results of the mixing of single, double, and opposed rows of jets with an isothermal or variable-temperature main stream in a straight duct are presented. This study was performed to investigate flow and geometric variations typical of the complex, three-dimensional flow field in the dilution zone of gas-turbine-engine combustion chambers. The principal results, shown experimentally and analytically, were the following: (1) variations in orifice size and spacing can have a significant effect on the temperature profiles; (2) similar distributions can be obtained, independent of orifice diameter, if momentum-flux ratio and orifice spacing are coupled; (3) a first-order approximation of the mixing of jets with a variable-temperature main stream can be obtained by superimposing the main-stream and jets-in-an-isothermal-crossflow profiles; (4) the penetration of jets issuing mixing is slower and is asymmetric with respect to the jet centerplanes, which shift laterally with increasing downstream distance; (5) double rows of jets give temperature distributions similar to those from a single row of equally spaced, equal-area circular holes; (6) for opposed rows of jets, with the orifice centerlines in line, the optimum ratio of orifice spacing to duct height is one-half the optimum value for single-side injection at the same momentum-flux ratiol and (7) for opposed rows of jets, with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is twice the optimum value for single-side injection at the same momentum-flux ratio.
The effects of free stream turbulence on the flow field through a compressor cascade
NASA Astrophysics Data System (ADS)
Muthanna Kolera, Chittiappa
The flow through a compressor cascade with tip leakage has been studied experimentally. The cascade of GE rotor B section blades had an inlet angle of 65.1°, a stagger angle of 56.9°, and a solidity of 1.08. The final turning angle of the cascade was 11.8°. This compressor configuration was representative of the core compressor of an aircraft engine. The cascade was operated with a tip gap of 1.65%, and operated at a Reynolds number based on the chord length (0.254 m) of 388,000. Measurements were made at 8 axial locations to reveal the structure of the flow as it evolved through the cascade. Measurements were also made to reveal the effects of grid generated turbulence on this flow. The data set is unique in that not only does it give a comparison of elevated free stream turbulence effects, but also documents the developing flow through the blade row of a compressor cascade with tip leakage. Measurements were made at a total of 8 locations 0.8, 0.23 axial chords upstream and 0, 0.27, 0.48, 0.77, 0.98, and 1.26 axial chords downstream of the leading edge of the blade row for both inflow turbulence cases. The measurements revealed the formation and development of the tip leakage vortex within the passage. The tip leakage vortex becomes apparent at approximately X/ca = 0.27 and dominated much of the endwall flow. The tip leakage vortex is characterized by high streamwise velocity deficits, high vorticity and high turbulence kinetic energy levels. The result showed that between 0.77 and 0.98 axial chords downstream of the leading edge, the vortex structure and behavior changes. The effects of grid generated turbulence were also documented. The results revealed significant effects on the flow field. The results showed a 4% decrease in the blade loading and a 20% reduction in the vorticity levels within tip leakage vortex. There was also a shift in the vortex path, showing a shift close to the suction side with grid generated turbulence, indicating the strength of the vortex was decreased. Circulation calculations showed this reduction, and also indicated that the tip leakage vortex increased in size by about 30%. The results revealed that overall, the turbulence kinetic energy levels in the tip leakage vortex were increased, with the most drastic change occurring at X/ca = 0.77.
Impact of thinning on soil properties and biomass in Apalachicola National Forest, Florida
Kelechi James Nwaokorie; Odemari Stephen Mbuya; Johnny Grace
2016-01-01
The effect of a silvicultural operation, row thinning at two intensities (single row, SR, and double row, DR, thinning), on soil properties and biomass were investigated in selected 28 year-old slash pine (Pinus elliotti) plantations in the Apalachicola National Forest. Stands were thinned in May 2011 and burn regimes were executed during dormant...
Beitzel, Knut; Mazzocca, Augustus D; Obopilwe, Elifho; Boyle, James W; McWilliam, James; Rincon, Lina; Dhar, Yasmin; Arciero, Robert A; Amendola, Annunziato
2013-07-01
Because of intratendinous ossifications, retrocalcaneal bursitis, or intratendinous necrosis commonly found in insertional tendinosis, it is often necessary to detach the tendon partially or entirely from its tendon-to-bone junction. Double-row repair for insertional Achilles tendinopathy will generate an increased contact area and demonstrate higher biomechanical stability. Controlled laboratory study. Eighteen cadaver Achilles tendons were split longitudinally and detached, exposing the calcaneus; an ostectomy was performed and the tendon was reattached to the calcaneus in 1 of 2 ways: 2 suture anchors (single row) or a 4-anchor (double row) construct. Footprint area measurements over time, displacement after cyclic loading (2000 cycles), and final load to failure were measured. The double-row refixation technique was statistically superior to the single-row technique in footprint area measurement initially and 5 minutes after repair (P = .009 and P = .01, respectively) but not after 24 hours (P = .713). The double-row construct demonstrated significantly improved measures for peak load (433.9 ± 84.3 N vs 212.0 ± 49.7 N; P = .042), load at yield (354.7 ± 106.2 N vs 198.7 ± 39.5 N; P = .01), and slope (51.8 ± 9.9 N/mm vs 66.7 ± 16.2 N/mm; P = .021). Cyclic loading did not demonstrate significant differences between the 2 constructs. Double-row construct for reinsertion of a completely detached Achilles tendon using proximal and distal rows resulted in significantly larger contact area initially and 5 minutes after repair and led to significantly higher peak load to failure on destructive testing. In treatment for insertional Achilles tendinosis, the tendon often has to be detached and anatomically reattached to its insertion at the calcaneus. To our knowledge there is a lack of biomechanical studies supporting either a number or a pattern of suture anchor fixation. Because the stresses going across the insertion site of the Achilles tendon are significant during rehabilitation and weightbearing activities, it is imperative to have a strong construct that allows satisfactory healing during the early postoperative process.
Integrated aerodynamic/dynamic optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Walsh, Joanne L.; Riley, Michael F.
1989-01-01
An integrated aerodynamic/dynamic optimization procedure is used to minimize blade weight and 4 per rev vertical hub shear for a rotor blade in forward flight. The coupling of aerodynamics and dynamics is accomplished through the inclusion of airloads which vary with the design variables during the optimization process. Both single and multiple objective functions are used in the optimization formulation. The Global Criteria Approach is used to formulate the multiple objective optimization and results are compared with those obtained by using single objective function formulations. Constraints are imposed on natural frequencies, autorotational inertia, and centrifugal stress. The program CAMRAD is used for the blade aerodynamic and dynamic analyses, and the program CONMIN is used for the optimization. Since the spanwise and the azimuthal variations of loading are responsible for most rotor vibration and noise, the vertical airload distributions on the blade, before and after optimization, are compared. The total power required by the rotor to produce the same amount of thrust for a given area is also calculated before and after optimization. Results indicate that integrated optimization can significantly reduce the blade weight, the hub shear and the amplitude of the vertical airload distributions on the blade and the total power required by the rotor.
Development of a wind energy converter with single blade rotor
NASA Astrophysics Data System (ADS)
Hipp, K.
1984-06-01
Wind energy converters with high tip speed ratio and a capacity of up to 50 kW in a 8.5 /msec wind speed were developed. Units with 12 m diameter rotors were tested. The concept of a cost favorable plant as a high speed engine with a supercritically running one blade rotor (soft bearing), gust balance out, automatic blade adjustment to ensure favorable starting qualities, proves to be a success. The single rectangular blade non-twisted with the profile NACA 23012/18 has no dynamic problems. The application of a centrifugal governor, i.e., vane like a Maxwell slat, operating only by rotation about a fixed hinge axis in order to attain adequate constant rotational speed of the plant, is not satisfactory.
Mook, William R; Greenspoon, Joshua A; Millett, Peter J
2016-01-01
Rotator cuff tears are a significant cause of shoulder morbidity. Surgical techniques for repair have evolved to optimize the biologic and mechanical variables critical to tendon healing. Double-row repairs have demonstrated superior biomechanical advantages to a single-row. The preferred technique for rotator cuff repair of the senior author was reviewed and described in a step by step fashion. The final construct is a knotless double row transosseous equivalent construct. The described technique includes the advantages of a double-row construct while also offering self reinforcement, decreased risk of suture cut through, decreased risk of medial row overtensioning and tissue strangulation, improved vascularity, the efficiency of a knotless system, and no increased risk for subacromial impingement from the burden of suture knots. Arthroscopic knotless double row rotator cuff repair is a safe and effective method to repair rotator cuff tears.
Mook, William R.; Greenspoon, Joshua A.; Millett, Peter J.
2016-01-01
Background: Rotator cuff tears are a significant cause of shoulder morbidity. Surgical techniques for repair have evolved to optimize the biologic and mechanical variables critical to tendon healing. Double-row repairs have demonstrated superior biomechanical advantages to a single-row. Methods: The preferred technique for rotator cuff repair of the senior author was reviewed and described in a step by step fashion. The final construct is a knotless double row transosseous equivalent construct. Results: The described technique includes the advantages of a double-row construct while also offering self reinforcement, decreased risk of suture cut through, decreased risk of medial row overtensioning and tissue strangulation, improved vascularity, the efficiency of a knotless system, and no increased risk for subacromial impingement from the burden of suture knots. Conclusion: Arthroscopic knotless double row rotator cuff repair is a safe and effective method to repair rotator cuff tears. PMID:27733881
Cooling of Gas Turbines. 2; Effectiveness of Rim Cooling of Blades
NASA Technical Reports Server (NTRS)
Wolfenstein, Lincoln; Meyer, Gene L.; McCarthy, John S.
1945-01-01
An analysis of rim cooling, which cools the blade by condition alone, was conducted. Gas temperatures ranged from 1300 degrees to 1900 degrees F and rim temperatures from 0 degrees to 1000 degrees F below gas temperatures. Results show that gas temperature increases up to 200 degrees F are permissible provided that the blades are cooled by 400 degrees to 500 degrees F below the gas temperature. Relatively small amounts of blade cooling, at constant gas temperature, give large increases in blade life. Dependence of rim cooling on heat-transfer coefficient, blade dimensions, and thermal conductivity is determined by a single parameter.
Method for maintaining a cutting blade centered in a kerf
Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.
2002-01-01
A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.
Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.
2000-01-01
A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.
Planting pattern and weed control method influence on yield production of corn (Zea mays L.)
NASA Astrophysics Data System (ADS)
Purba, E.; Nasution, D. P.
2018-02-01
Field experiment was carried out to evaluate the influence of planting patterns and weed control methods on the growth and yield of corn. The effect of the planting pattern and weed control method was studied in a split plot design. The main plots were that of planting pattern single row (25cm x 60cm), double row (25cm x 25cm x 60cm) and triangle row ( 25cm x 25cm x 25cm). Subplot was that of weed control method consisted five methods namely weed free throughout the growing season, hand weeding, sprayed with glyphosate, sprayed with paraquat, and no weeding.. Result showed that both planting pattern and weed control method did not affect the growth of corn. However, planting pattern and weed control method significantly affected yield production. Yield resulted from double row and triangle planting pattern was 14% and 41% higher, consecutively, than that of single row pattern. The triangle planting pattern combined with any weed control method produced the highest yield production of corn.
The Three Dimensional Flow Field at the Exit of an Axial-Flow Turbine Rotor
NASA Technical Reports Server (NTRS)
Lakshminarayana, B.; Ristic, D.; Chu, S.
1998-01-01
A systematic and comprehensive investigation was performed to provide detailed data on the three dimensional viscous flow phenomena downstream of a modem turbine rotor and to understand the flow physics such as origin, nature, development of wakes, secondary flow, and leakage flow. The experiment was carried out in the Axial Flow Turbine Research Facility (AFTRF) at Penn State, with velocity measurements taken with a 3-D LDV System. Two radial traverses at 1% and 10% of chord downstream of the rotor have been performed to identify the three-dimensional flow features at the exit of the rotor blade row. Sufficient spatial resolution was maintained to resolve blade wake, secondary flow, and tip leakage flow. The wake deficit is found to be substantial, especially at 1% of chord downstream of the rotor. At this location, negative axial velocity occurs near the tip, suggesting flow separation in the tip clearance region. Turbulence intensities peak in the wake region, and cross- correlations are mainly associated with the velocity gradient of the wake deficit. The radial velocities, both in the wake and in the endwall region, are found to be substantial. Two counter-rotating secondary flows are identified in the blade passage, with one occupying the half span close to the casino and the other occupying the half span close to the hub. The tip leakage flow is well restricted to 10% immersion from the blade tip. There are strong vorticity distributions associated with these secondary flows and tip leakage flow. The passage averaged data are in good agreement with design values.
PREDICTING TURBINE STAGE PERFORMANCE
NASA Technical Reports Server (NTRS)
Boyle, R. J.
1994-01-01
This program was developed to predict turbine stage performance taking into account the effects of complex passage geometries. The method uses a quasi-3D inviscid-flow analysis iteratively coupled to calculated losses so that changes in losses result in changes in the flow distribution. In this manner the effects of both the geometry on the flow distribution and the flow distribution on losses are accounted for. The flow may be subsonic or shock-free transonic. The blade row may be fixed or rotating, and the blades may be twisted and leaned. This program has been applied to axial and radial turbines, and is helpful in the analysis of mixed flow machines. This program is a combination of the flow analysis programs MERIDL and TSONIC coupled to the boundary layer program BLAYER. The subsonic flow solution is obtained by a finite difference, stream function analysis. Transonic blade-to-blade solutions are obtained using information from the finite difference, stream function solution with a reduced flow factor. Upstream and downstream flow variables may vary from hub to shroud and provision is made to correct for loss of stagnation pressure. Boundary layer analyses are made to determine profile and end-wall friction losses. Empirical loss models are used to account for incidence, secondary flow, disc windage, and clearance losses. The total losses are then used to calculate stator, rotor, and stage efficiency. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370/3033 under TSS with a central memory requirement of approximately 4.5 Megs of 8 bit bytes. This program was developed in 1985.
An aeroelastic analysis of the Darrieus wind turbine
NASA Astrophysics Data System (ADS)
Meyer, E. E.; Smith, C. E.
1983-12-01
The stability of a single Darrieus wind turbine blade spinning in still air is investigated using linearized equations of motion. The three most dangerous flutter modes are characterized for a one-parameter family of blades. In addition, the influence of blade density, mass and aerodynamic center offsets, and structural damping is presented.
An unsteady lifting surface method for single rotation propellers
NASA Technical Reports Server (NTRS)
Williams, Marc H.
1990-01-01
The mathematical formulation of a lifting surface method for evaluating the steady and unsteady loads induced on single rotation propellers by blade vibration and inflow distortion is described. The scheme is based on 3-D linearized compressible aerodynamics and presumes that all disturbances are simple harmonic in time. This approximation leads to a direct linear integral relation between the normal velocity on the blade (which is determined from the blade geometry and motion) and the distribution of pressure difference across the blade. This linear relation is discretized by breaking the blade up into subareas (panels) on which the pressure difference is treated as approximately constant, and constraining the normal velocity at one (control) point on each panel. The piece-wise constant loads can then be determined by Gaussian elimination. The resulting blade loads can be used in performance, stability and forced response predictions for the rotor. Mathematical and numerical aspects of the method are examined. A selection of results obtained from the method is presented. The appendices include various details of the derivation that were felt to be secondary to the main development in Section 1.
NASA Technical Reports Server (NTRS)
Schum, Harold J.; Whitney, Warren J.
1949-01-01
A Mark 25 torpedo power plant modified to operate as a single-stage turbine was investigated to determine the performance with two nozzle designs and a standard first-stage rotor having 0.40-inch blades with a 17O met-air angle. Both nozzles had smaller port cross-sectional areas than those nozzles of similar design, which were previously investigated. The performance of the two nozzles was compared on the basis of blade, rotor, and brake efficiencies as a function of blade-jet speed ratio for pressure ratios of 8, 15 (design), and 20. At pressure ratios of 15 and 20, the blade efficiency obtained with the nozzle having circular passages (K) was higher than that obtained with the nozzle having rectangular passages (J). At a pressure ratio of 8, the efficiencies obtained with the two nozzles were comparable for blade-jet speed ratios of less than 0.260. For blade-jet speed ratios exceeding this value, nozzle K yielded slightly higher efficiencies. The maximum blade efficiency of 0.569 was obtained with nozzle K at a pressure ratio of 8 and a blade-jet speed ratio of 0.295. At design speed and pressure ratio, nozzle K yielded a maximum blade efficiency of 0.534, an increase of 0.031 over that obtained with nozzle J. When the blade efficiencies of the two nozzles were compared with those of four other nozzles previously investigated, the maximum difference for the six nozzles with this rotor was 0.050. From, this comparison, no specific effect of nozzles size or shape on over-all performance was discernible.
Passi, Y; Sathyamoorthy, M; Lerman, J; Heard, C; Marino, M
2014-11-01
Miller laryngoscope blades are preferred for laryngoscopy in infants and children <2 yr of age. Despite their long history, the laryngeal view with the Miller blade size 1 has never been compared with that with the Macintosh (MAC) blade in children. This prospective, single-blinded, randomized study was designed to compare the laryngeal views with the size 1 Miller and MAC blades in children <2 yr. With IRB approval, 50 ASA I and II children <2 yr undergoing elective surgery were enrolled. After an inhalation induction and neuromuscular block with i.v. rocuronium 0.5 mg kg(-1), two laryngeal views were obtained with a single blade (Miller or MAC) in each child: one lifting the epiglottis and another lifting the tongue base. The best laryngeal views in each blade position were photographed with a SONY(®) Cyber-shot camera and rated by a blinded anaesthesiologist using the percentage of glottic opening scale. The scores with the Miller blade lifting the epiglottis and the MAC blade lifting the tongue base were similar. The scores with the Miller blade lifting the epiglottis and the tongue base were similar. The scores for the MAC blade lifting the tongue base were greater than those lifting the epiglottis (95% confidence interval: 7.6-26.8) (P=0.0004). In infants and children <2 yr of age, optimal laryngeal views may be obtained with either the Miller size 1 blade lifting the epiglottis or with the Miller or MAC blades lifting the tongue base. NCT01717872 at Clinical Trials.gov. © The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Schum, Harold J.; Whitney, Warren J.
1949-01-01
A single-stage modification of the turbine from a Mark 25 torpedo power plant was investigated to determine the performance with two nozzles and three rotor-blade designs. The performance was evaluated in terms of brake, rotor, and blade efficiencies at pressure ratios of 8, 15 (design), and 20. The blade efficiencies with the two nozzles are compared with those obtained with four other nozzles previously investigated with the same three rotor-blade designs. Blade efficiency with the cast nozzle of rectangular cross section (J) was higher than that with the circular reamed nozzle (K) at all speeds and pressure ratios with a rotor having a 0.45-inch 17 degree-inlet-angle blades. The efficiencies for both these nozzles were generally low compared with those of the four other nozzles previously investigated in combination with this rotor. At pressure ratios of 15 and 20, the blade efficiencies with nozzle K and the two rotors with 0.40-inch blades having different inlet angles were higher than with the four other nozzles, but the efficiency with nozzle J was generally low. Increasing the blade inlet angle from 17 degrees to 20 degrees had little effect on turbine performance, whereas changing the blade length from 0.40 to 0.45 inch had a marked effect. Although a slight correlation of efficiency with nozzle size was noted for the rotor with 0.45-inch 17 degree-inlet-angle blades, no such effect was discernible ,for the two rotors with 0.40-inch blades.Losses in the supersonic air stream resulting from the complex flow path in the small air passages are probably a large percentage of the total losses, and apparently the effects of changing nozzle size and shape within the limits investigated are of secondary importance.
Galinski, Michel; Catineau, Jean; Rayeh, Fatima; Muret, Jane; Ciebiera, Jean-Pierre; Plantevin, Frédéric; Foucrier, Arnaud; Tual, Loic; Combes, Xavier; Adnet, Frédéric
2011-03-01
To compare two brands of disposable plastic laryngoscope blades, Vital View plastic blades and Heine XP plastic blades, with the reusable Heine Classic+ Macintosh metal blades. Prospective randomized, controlled, single-blinded study. Operating room of a university-affiliated hospital. 519 patients without criteria for predicted difficult intubation, undergoing scheduled surgery during general anesthesia. Patients were randomized to three groups according to laryngoscope blade brand. Difficult tracheal intubation was evaluated by the Intubation Difficulty Scale (IDS) (IDS > 5 = procedure involving moderate to major difficulty). The percentage of intubations with an IDS > 5 was 3.1% in Group M (metal blade group), 5.1% in Group V (Vital View plastic blade group), and 10.0% in Group H (Heine plastic blade group). A significant difference was noted between Groups M and H (P = 0.02) but not between Groups M and V. Intubation may be more challenging when using Heine XP plastic blades but no significant difference exists between Vital-View plastic blades and Heine Classic+ metal blades. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gokce, Zeki Ozgur
The gas turbine is one of the most important parts of the air-breathing jet engine. Hence, improving its efficiency and rendering it operable under high temperatures are constant goals for the aerospace industry. Two types of flow within the gas turbine are of critical relevance: The flow around the first row of stator blades (also known as the nozzle guide vane blade - NGV) and the cooling flow inside the turbine blade cooling channel. The subject of this thesis work was to search for methods that could improve the characteristics of these two types of flows, thus enabling superior engine performance. The innovative aspect of our work was to apply an endwall shape modification previously employed by non-aerospace industries for cooling applications, to the gas turbine cooling flow which is vital to aerospace propulsion. Since the costs of investigating the possible benefits of any idea via extensive experiments could be quite high, we decided to use computational fluid dynamics (CFD) followed by experimentation as our methodology. We decided to analyze the potential benefits of using vortex generators (VGs) as well as the rectangular endwall fence. Since the pin-fins used in cooling flow are circular cylinders, and since the boundary layer flow is mainly characterized by the leading edge diameter of the NGV blade, we modeled both the pin-fins and the NGV blade as vertical circular cylinders. The baseline case consisted of the cylinder(s) being subjected to cross flow and a certain amount of freestream turbulence. The modifications we made on the endwall consisted of rectangular fences. In the case of the cooling flow, we used triangular shaped, common flow up oriented, delta winglet type vortex generators as well as rectangular endwall fences. The channel contained singular cylinders as well as staggered rows of multiple cylinders. For the NGV flow, a rectangular endwall fence and a singular cylinder were utilized. Using extensive CFD modeling and analysis, we confirmed that placing a rectangular endwall fence upstream of the cylinder created additional turbulent mixing in the domain. This led to increased mixing of the cooler flow in the freestream and the hotter flow near the endwall. As a result, we showed that adding a rectangular fence created a 10% mean heat transfer increase downstream of the cylinder. When vortex generators are used, as the flow passes over the sharp edges of the vortex generators, it separates and continues downstream in a rolling, helical pattern. Combined with the effect generated by the orientation of the vortex generators, this flow structure mixes the higher momentum fluid in the freestream with lower momentum fluid in the boundary layer. Similar turbulent mixing behavior is observed over the entire domain, near the cylinders and the side walls. As a result, the heat transfer levels over the wall surfaces are increased and improved cooling is achieved. The improvements in heat transfer are obtained at the expense of acceptable pressure losses across the cooling channel. When the vortex generators are used, the CFD modeling studies showed that overall heat transfer improvements as high as 27% compared to the baseline case are observed inside a domain containing multiple rows of cylinders. A price in the form of 13% pressure loss increase across the channel is paid for the heat transfer benefits. Experiments conducted in the open loop wind tunnel of the Turbomachinery Aero-Heat Transfer Laboratory of the Department of Aerospace Engineering of Penn State University supported the general positive trend of these findings, with a 14% overall increase in heat transfer over the constant heat flux surface when vortex generators are installed, accompanied by an 8% increase in pressure loss. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Pawar, Prashant M.; Jung, Sung Nam
2008-12-01
In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades.
Linear and nonlinear dynamic analysis of redundant load path bearingless rotor systems
NASA Technical Reports Server (NTRS)
Murthy, V. R.
1985-01-01
The bearingless rotorcraft offers reduced weight, less complexity and superior flying qualities. Almost all the current industrial structural dynamic programs of conventional rotors which consist of single load path rotor blades employ the transfer matrix method to determine natural vibration characteristics because this method is ideally suited for one dimensional chain like structures. This method is extended to multiple load path rotor blades without resorting to an equivalent single load path approximation. Unlike the conventional blades, it isk necessary to introduce the axial-degree-of-freedom into the solution process to account for the differential axial displacements in the different load paths. With the present extension, the current rotor dynamic programs can be modified with relative ease to account for the multiple load paths without resorting to the equivalent single load path modeling. The results obtained by the transfer matrix method are validated by comparing with the finite element solutions. A differential stiffness matrix due to blade rotation is derived to facilitate the finite element solutions.
... needed to determine whether a single- or multiple-blade razor is best for preventing ingrown hair. See ... in the direction of hair growth. Rinse the blade after each stroke. Rinse your skin and apply ...
Microstructure-Property-Design Relationships in the Simulation Era: An Introduction (PREPRINT)
2010-01-01
Astronautics (AIAA) paper #1026. 20. Dimiduk DM (1998) Systems engineering of gamma titanium aluminides : impact of fundamentals on development strategy...microstructure-sensitive design tools for single-crystal turbine blades provides an accessible glimpse into future computational tools and their data...requirements. 15. SUBJECT TERMS single-crystal turbine blades , computational methods, integrated computational materials 16. SECURITY
Characterization of a nine-meter sensor-equipped wind turbine blade using a laser measuring device
USDA-ARS?s Scientific Manuscript database
A nine-meter turbine blade was prepared for an experiment to examine the movement and fatigue patterns during operation on a 115 kW turbine. The blade, equipped with surface mounted fiber optic strain gauges, foil strain gauges, single, and triple axis accelerometers was placed on a calibration fixt...
Novel casting processes for single-crystal turbine blades of superalloys
NASA Astrophysics Data System (ADS)
Ma, Dexin
2018-03-01
This paper presents a brief review of the current casting techniques for single-crystal (SC) blades, as well as an analysis of the solidification process in complex turbine blades. A series of novel casting methods based on the Bridgman process were presented to illustrate the development in the production of SC blades from superalloys. The grain continuator and the heat conductor techniques were developed to remove geometry-related grain defects. In these techniques, the heat barrier that hinders lateral SC growth from the blade airfoil into the extremities of the platform is minimized. The parallel heating and cooling system was developed to achieve symmetric thermal conditions for SC solidification in blade clusters, thus considerably decreasing the negative shadow effect and its related defects in the current Bridgman process. The dipping and heaving technique, in which thinshell molds are utilized, was developed to enable the establishment of a high temperature gradient for SC growth and the freckle-free solidification of superalloy castings. Moreover, by applying the targeted cooling and heating technique, a novel concept for the three-dimensional and precise control of SC growth, a proper thermal arrangement may be dynamically established for the microscopic control of SC growth in the critical areas of large industrial gas turbine blades.
System Developed for Real-Time Blade-Flutter Monitoring in the Wind Tunnel
NASA Technical Reports Server (NTRS)
Kurkov, Anatole P.; Dhadwal, Harbans S.; Radzikowski, mark; Strukov, Dmitri
2005-01-01
A real-time system has been developed to monitor flutter vibrations in turbomachinery. The system is designed for continuous processing of blade tip timing data at a rate of 10 MB/sec. A USB 2.0 interface provides uninterrupted real-time processing of the data, and the blade-tip arrival times are measured with a 50-MHz oscillator and a 24-bit pipelined architecture counter. The input stage includes a glitch catcher, which reduces the probability of detecting a ghost blade to negligible levels. A graphical user interface provides online interrogation of any blade tip from any light probe sensor. Alternatively, data from all blades and all sensors can be superimposed into a single composite scatter plot displaying the vibration amplitude of each blade.
Blade Assessment for Ice Impact (BLASIM). User's manual, version 1.0
NASA Technical Reports Server (NTRS)
Reddy, E. S.; Abumeri, G. H.
1993-01-01
The Blade Assessment Ice Impact (BLASIM) computer code can analyze solid, hollow, composite, and super hybrid blades. The solid blade is made up of a single material where hollow, composite, and super hybrid blades are constructed with prescribed composite layup. The properties of a composite blade can be specified by inputting one of two options: (1) individual ply properties, or (2) fiber/matrix combinations. When the second option is selected, BLASIM utilizes ICAN (Integrated Composite ANalyzer) to generate the temperature/moisture dependent ply properties of the composite blade. Two types of geometry input can be given: airfoil coordinates or NASTRAN type finite element model. These features increase the flexibility of the program. The user's manual provides sample cases to facilitate efficient use of the code while gaining familiarity.
Characteristics of Boundary Layer Transition in a Multi-Stage Low-Pressure Turbine
NASA Technical Reports Server (NTRS)
Wisler, Dave; Halstead, David E.; Okiishi, Ted
2007-01-01
An experimental investigation of boundary layer transition in a multi-stage turbine has been completed using surface-mounted hot-film sensors. Tests were carried out using the two-stage Low Speed Research Turbine of the Aerodynamics Research Laboratory of GE Aircraft Engines. Blading in this facility models current, state-of-the-art low pressure turbine configurations. The instrumentation technique involved arrays of densely-packed hot-film sensors on the surfaces of second stage rotor and nozzle blades. The arrays were located at mid-span on both the suction and pressure surfaces. Boundary layer measurements were acquired over a complete range of relevant Reynolds numbers. Data acquisition capabilities provided means for detailed data interrogation in both time and frequency domains. Data indicate that significant regions of laminar and transitional boundary layer flow exist on the rotor and nozzle suction surfaces. Evidence of relaminarization both near the leading edge of the suction surface and along much of the pressure surface was observed. Measurements also reveal the nature of the turbulent bursts occuring within and between the wake segments convecting through the blade row. The complex character of boundary layer transition resulting from flow unsteadiness due to nozzle/nozzle, rotor/nozzle, and nozzle/rotor wake interactions are elucidated using these data. These measurements underscore the need to provide turbomachinery designers with models of boundary layer transition to facilitate accurate prediction of aerodynamic loss and heat transfer.
Unsteady Aerodynamic Models for Turbomachinery Aeroelastic and Aeroacoustic Applications
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Barnett, Mark; Ayer, Timothy C.
1995-01-01
Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows of axial-flow turbomachines. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of the blading. The emphasis has been placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, high Reynolds number flows driven by small amplitude unsteady excitations have been considered. The resulting analyses should apply in many practical situations and lead to a better understanding of the relevant flow physics. In addition, they will be efficient computationally, and therefore, appropriate for use in aeroelastic and aeroacoustic design studies. Under the present effort, inviscid interaction and linearized inviscid unsteady flow models have been formulated, and inviscid and viscid prediction capabilities for subsonic steady and unsteady cascade flows have been developed. In this report, we describe the linearized inviscid unsteady analysis, LINFLO, the steady inviscid/viscid interaction analysis, SFLOW-IVI, and the unsteady viscous layer analysis, UNSVIS. These analyses are demonstrated via application to unsteady flows through compressor and turbine cascades that are excited by prescribed vortical and acoustic excitations and by prescribed blade vibrations. Recommendations are also given for the future research needed for extending and improving the foregoing asymptotic analyses, and to meet the goal of providing efficient inviscid/viscid interaction capabilities for subsonic and transonic unsteady cascade flows.
Design and Modeling of Turbine Airfoils with Active Flow Control in Realistic Engine Conditions
2008-07-16
deficit and turbulence parameters in the wake of a passing blade . An additional objective was to determine the proper cylinder diameter and...we see that in terms of velocity deficit only, the 4mm cylinder at x/D=8 approximates very well the blade wake . However, we see that the problem...Results Blade Wake The computational domain consisted of a single blade with periodic conditions imposed at approximately the mid-passage, as seen in
NASA Technical Reports Server (NTRS)
Holdeman, James D.; Clisset, James R.; Moder, Jeffrey P.
2010-01-01
The primary purpose of this jet-in-crossflow study was to calculate expected results for two configurations for which limited or no experimental results have been published: (1) cases of opposed rows of closely-spaced jets from inline and staggered round holes and (2) rows of jets from alternating large and small round holes. Simulations of these configurations were performed using an Excel (Microsoft Corporation) spreadsheet implementation of a NASA-developed empirical model which had been shown in previous publications to give excellent representations of mean experimental scalar results suggesting that the NASA empirical model for the scalar field could confidently be used to investigate these configurations. The supplemental Excel spreadsheet is posted with the current report on the NASA Glenn Technical Reports Server (http://gltrs.grc.nasa.gov) and can be accessed from the Supplementary Notes section as TM-2010-216100-SUPPL1.xls. Calculations for cases of opposed rows of jets with the orifices on one side shifted show that staggering can improve the mixing, particularly for cases where jets would overpenetrate slightly if the orifices were in an aligned configuration. The jets from the larger holes dominate the mixture fraction for configurations with a row of large holes opposite a row of smaller ones although the jet penetration was about the same. For single and opposed rows with mixed hole sizes, jets from the larger holes penetrated farther. For all cases investigated, the dimensionless variance of the mixture fraction decreased significantly with increasing downstream distance. However, at a given downstream distance, the variation between cases was small.
Medial-row failure after arthroscopic double-row rotator cuff repair.
Yamakado, Kotaro; Katsuo, Shin-ichi; Mizuno, Katsunori; Arakawa, Hitoshi; Hayashi, Seigaku
2010-03-01
We report 4 cases of medial-row failure after double-row arthroscopic rotator cuff repair (ARCR) without arthroscopic subacromial decompression (ASAD), in which there was pullout of mattress sutures of the medial row and knots were caught between the cuff and the greater tuberosity. Between October 2006 and January 2008, 49 patients underwent double-row ARCR. During this period, ASAD was not performed with ARCR. Revision arthroscopy was performed in 8 patients because of ongoing symptoms after the index operation. In 4 of 8 patients the medial rotator cuff failed; the tendon appeared to be avulsed at the medial row, and there were exposed knots on the bony surface of the rotator cuff footprint. It appeared that the knots were caught between the cuff and the greater tuberosity. Three retear cuffs were revised with the arthroscopic transtendon technique, and one was revised with a single-row technique after completing the tear. ASAD was performed in all patients. Three of the four patients showed improvement of symptoms and returned to their preinjury occupation. Impingement of pullout knots may be a source of pain after double-row rotator cuff repair. Copyright 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
F100(3) parallel compressor computer code and user's manual
NASA Technical Reports Server (NTRS)
Mazzawy, R. S.; Fulkerson, D. A.; Haddad, D. E.; Clark, T. A.
1978-01-01
The Pratt & Whitney Aircraft multiple segment parallel compressor model has been modified to include the influence of variable compressor vane geometry on the sensitivity to circumferential flow distortion. Further, performance characteristics of the F100 (3) compression system have been incorporated into the model on a blade row basis. In this modified form, the distortion's circumferential location is referenced relative to the variable vane controlling sensors of the F100 (3) engine so that the proper solution can be obtained regardless of distortion orientation. This feature is particularly important for the analysis of inlet temperature distortion. Compatibility with fixed geometry compressor applications has been maintained in the model.
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
1994-01-01
A two dimensional linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.
Tran, Jacqueline; Rice, Anthony J; Main, Luana C; Gastin, Paul B
2014-04-01
The systematic management of training requires accurate training load measurement. However, quantifying the training of elite Australian rowers is challenging because of (a) the multicenter, multistate structure of the national program; (b) the variety of training undertaken; and (c) the limitations of existing methods for quantifying the loads accumulated from varied training formats. Therefore, the purpose of this project was to develop a new measure for quantifying training loads in rowing (the T2minute method). Sport scientists and senior coaches at the National Rowing Center of Excellence collaborated to develop the measure, which incorporates training duration, intensity, and mode to quantify a single index of training load. To account for training at different intensities, the method uses standardized intensity zones (T zones) established at the Australian Institute of Sport. Each zone was assigned a weighting factor according to the curvilinear relationship between power output and blood lactate response. Each training mode was assigned a weighting factor based on whether coaches perceived it to be "harder" or "easier" than on-water rowing. A common measurement unit, the T2minute, was defined to normalize sessions in different modes to a single index of load; one T2minute is equivalent to 1 minute of on-water single scull rowing at T2 intensity (approximately 60-72% VO2max). The T2minute method was successfully implemented to support national training strategies in Australian high performance rowing. By incorporating duration, intensity, and mode, the T2minute method extends the concepts that underpin current load measures, providing 1 consistent system to quantify loads from varied training formats.
Load response and gap formation in a single-row cruciate suture rotator cuff repair.
Huntington, Lachlan; Richardson, Martin; Sobol, Tony; Caldow, Jonathon; Ackland, David C
2017-06-01
Double-row rotator cuff tendon repair techniques may provide superior contact area and strength compared with single-row repairs, but are associated with higher material expenses and prolonged operating time. The purpose of this study was to evaluate gap formation, ultimate tensile strength and stiffness of a single-row cruciate suture rotator cuff repair construct, and to compare these results with those of the Mason-Allen and SutureBridge repair constructs. Infraspinatus tendons from 24 spring lamb shoulders were harvested and allocated to cruciate suture, Mason-Allen and SutureBridge repair groups. Specimens were loaded cyclically between 10 and 62 N for 200 cycles, and gap formation simultaneously measured using a high-speed digital camera. Specimens were then loaded in uniaxial tension to failure, and construct stiffness and repair strength were evaluated. Gap formation in the cruciate suture repair was significantly lower than that of the Mason-Allen repair (mean difference = 0.6 mm, P = 0.009) and no different from that of the SutureBridge repair (P > 0.05). Both the cruciate suture repair (mean difference = 15.7 N/mm, P = 0.002) and SutureBridge repair (mean difference = 15.8 N/mm, P = 0.034) were significantly stiffer than that of the Mason-Allen repair; however, no significant differences in ultimate tensile strength between repair groups were discerned (P > 0.05). The cruciate suture repair construct, which may represent a simple and cost-effective alternative to double-row and double-row equivalent rotator cuff repairs, has comparable biomechanical strength and integrity with that of the SutureBridge repair, and may result in improved construct longevity and tendon healing compared with the Mason-Allen repair. © 2017 Royal Australasian College of Surgeons.
Pre-Stall Behavior of a Transonic Axial Compressor Stage via Time-Accurate Numerical Simulation
NASA Technical Reports Server (NTRS)
Chen, Jen-Ping; Hathaway, Michael D.; Herrick, Gregory P.
2008-01-01
CFD calculations using high-performance parallel computing were conducted to simulate the pre-stall flow of a transonic compressor stage, NASA compressor Stage 35. The simulations were run with a full-annulus grid that models the 3D, viscous, unsteady blade row interaction without the need for an artificial inlet distortion to induce stall. The simulation demonstrates the development of the rotating stall from the growth of instabilities. Pressure-rise performance and pressure traces are compared with published experimental data before the study of flow evolution prior to the rotating stall. Spatial FFT analysis of the flow indicates a rotating long-length disturbance of one rotor circumference, which is followed by a spike-type breakdown. The analysis also links the long-length wave disturbance with the initiation of the spike inception. The spike instabilities occur when the trajectory of the tip clearance flow becomes perpendicular to the axial direction. When approaching stall, the passage shock changes from a single oblique shock to a dual-shock, which distorts the perpendicular trajectory of the tip clearance vortex but shows no evidence of flow separation that may contribute to stall.
NASA Technical Reports Server (NTRS)
Reynolds, Robert M; Samonds, Robert I; Walker, John H
1957-01-01
An investigation has been made to determine the aerodynamic characteristics of the NACA 4-(5)(05)-041 four-blade, single-relation propeller and the NACA 4-(5)(05)-037 six- and eight-blade, dual-rotation propellers in combination with various spinners and NACA d-type spinner-cowling combinations at Mach numbers up to 0.84. Propeller force characteristics, local velocity distributions in the propeller planes, inlet pressure recoveries, and static-pressure distributions on the cowling surfaces were measured for a wide range of blade angles, advance ratios, and inlet-velocity ratios. Included are data showing: (a) the effect of extended cylindrical spinners on the characteristics of the single-rotation propeller, (b) the effect of variation of the difference in blade angle setting between the front and rear components of the dual-rotation propellers, (c) the negative- and static-thrust characteristics of the propellers with 1 series spinners, and (d) the effects of ideal- and platform-type propeller-spinner junctures on the pressure-recovery characteristics of the single-rotation propeller-spinner-cowling combination.
Prop-fan with improved stability
NASA Technical Reports Server (NTRS)
Rothman, Edward A. (Inventor); Violette, John A. (Inventor)
1988-01-01
Improved prop-fan stability is achieved by providing each blade of the prop-fan with a leading edge which, outwardly, from a location thereon at the mid-span of the blade, occupy generally a single plane.
NASA Technical Reports Server (NTRS)
Bushnell, Peter
1988-01-01
The aerodynamic pressure distribution was determined on a rotating Prop-Fan blade at the S1-MA wind tunnel facility operated by the Office National D'Etudes et de Recherches Aerospatiale (ONERA) in Modane, France. The pressure distributions were measured at thirteen radial stations on a single rotation Large Scale Advanced Prop-Fan (LAP/SR7) blade, for a sequence of operating conditions including inflow Mach numbers ranging from 0.03 to 0.78. Pressure distributions for more than one power coefficient and/or advanced ratio setting were measured for most of the inflow Mach numbers investigated. Due to facility power limitations the Prop-Fan test installation was a two bladed version of the eight design configuration. The power coefficient range investigated was therefore selected to cover typical power loading per blade conditions which occur within the Prop-Fan operating envelope. The experimental results provide an extensive source of information on the aerodynamic behavior of the swept Prop-Fan blade, including details which were elusive to current computational models and do not appear in the two-dimensional airfoil data.
Numerical simulation of compressor endwall and casing treatment flow phenomena
NASA Technical Reports Server (NTRS)
Crook, A. J.; Greitzer, E. M.; Tan, C. S.; Adamczyk, J. J.
1992-01-01
A numerical study is presented of the flow in the endwall region of a compressor blade row, in conditions of operation with both smooth and grooved endwalls. The computations are first compared to velocity field measurements in a cantilevered stator/rotating hub configuration to confirm that the salient features are captured. Computations are then interrogated to examine the tip leakage flow structure since this is a dominant feature of the endwall region. In particular, the high blockage that can exist near the endwalls at the rear of a compressor blade passage appears to be directly linked to low total pressure fluid associated with the leakage flow. The fluid dynamic action of the grooved endwall, representative of the casing treatments that have been most successful in suppressing stall, is then simulated computationally and two principal effects are identified. One is suction of the low total pressure, high blockage fluid at the rear of the passage. The second is energizing of the tip leakage flow, most notably in the core of the leakage vortex, thereby suppressing the blockage at its source.
NASA Technical Reports Server (NTRS)
Welch, Gerand E.
2010-01-01
The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range (100% at take-off to 54% at cruise). The variable-speed power turbine, when coupled to a fixed-gear-ratio transmission, offers one approach to accomplish this speed variation. The key aero-challenges of the variable-speed power turbine are related to high work factors at cruise, where the power turbine operates at 54% of take-off speed, wide incidence variations into the vane, blade, and exit-guide-vane rows associated with the power-turbine speed change, and the impact of low aft-stage Reynolds number (transitional flow) at 28 kft cruise. Meanline and 2-D Reynolds-Averaged Navier- Stokes analyses are used to characterize the variable-speed power-turbine aerodynamic challenges and to outline a conceptual design approach that accounts for multi-point operation. Identified technical challenges associated with the aerodynamics of high work factor, incidence-tolerant blading, and low Reynolds numbers pose research needs outlined in the paper
Advanced optical blade tip clearance measurement system
NASA Technical Reports Server (NTRS)
Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.
1978-01-01
An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.
Analytical design of an advanced radial turbine. [automobile engines
NASA Technical Reports Server (NTRS)
Large, G. D.; Finger, D. G.; Linder, C. G.
1981-01-01
The aerodynamic and mechanical potential of a single stage ceramic radial inflow turbine was evaluated for a high temperature single stage automotive engine. The aerodynamic analysis utilizes a turbine system optimization technique to evaluate both radial and nonradial rotor blading. Selected turbine rotor configurations were evaluated mechanically with three dimensional finite element techniques. Results indicate that exceptionally high rotor tip speeds (2300 ft/sec) and performance potential are feasible with radial bladed rotors if the projected ceramic material properties are realized. Nonradial rotors reduced tip speed requirements (at constant turbine efficiency) but resulted in a lower cumulative probability of success due to higher blade and disk stresses.
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2014-01-01
Computational Aerodynamic simulations of a 1215 ft/sec tip speed transonic fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which for this model did not include a split flow path with core and bypass ducts. As a result, it was only necessary to adjust fan rotational speed in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the flow fields at all operating conditions reveals no excessive boundary layer separations or related secondary-flow problems.
High fidelity simulation of non-synchronous vibration for aircraft engine fan/compressor
NASA Astrophysics Data System (ADS)
Im, Hong-Sik
The objectives of this research are to develop a high fidelity simulation methodology for turbomachinery aeromechanical problems and to investigate the mechanism of non-synchronous vibration (NSV) of an aircraft engine axial compressor. A fully conservative rotor/stator sliding technique is developed to accurately capture the unsteadiness and interaction between adjacent blade rows. Phase lag boundary conditions (BC) based on the time shift (direct store) method and the Fourier series phase lag BC are implemented to take into account the effect of phase difference for a sector of annulus simulation. To resolve the nonlinear interaction between flow and vibrating blade structure, a fully coupled fluid-structure interaction (FSI) procedure that solves the structural modal equations and time accurate Navier-Stokes equations simultaneously is adopted. An advanced mesh deformation method that generates the blade tip block mesh moving with the blade displacement is developed to ensure the mesh quality. An efficient and low diffusion E-CUSP (LDE) scheme as a Riemann solver designed to minimize numerical dissipation is used with an improved hybrid RANS/LES turbulence strategy, delayed detached eddy simulation (DDES). High order accuracy (3rd and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and a conservative 2nd and 4th order viscous flux differencing are employed. Extensive validations are conducted to demonstrate high accuracy and robustness of the high fidelity FSI simulation methodology. The validated cases include: (1) DDES of NACA 0012 airfoil at high angle of attack with massive separation. The DDES accurately predicts the drag whereas the URANS model significantly over predicts the drag. (2) The AGARD Wing 445.6 flutter boundary is accurately predicted including the point at supersonic incoming flow. (3) NASA Rotor 67 validation for steady state speed line and radial profiles at peak efficiency point and near stall point. The calculated results agree excellently with the experiment. (4) NASA Stage 35 speed line and radial profiles to validate the steady state mixing plane BC for multistage computation. Excellent agreement is obtained between the computation and experiment. (5) NASA Rotor 67 full annulus and single passage FSI simulation at near peak condition to validate phase lag BC. The time shifted phase lag BC accurately predicts blade vibration responses that agrees better with the full annulus FSI simulation. The DDES methodology is used to investigate the stall inception of NASA Rotor 67. The stall process begins with spike inception and develops to full stall. The whole process is simulated with full annulus of the rotor. The fully coupled FSI is then used to simulate the stall flutter of NASA Rotor 67. The multistage simulations of a GE aircraft engine high pressure compressor (HPC) reveal for the first time that the travelling tornado vortex formed on the rotor blade tip region is the root cause for the NSV of the compressor. The rotor blades under NSV have large torsional vibration due to the tornado vortex propagation in the opposite to the rotor rotation. The tornado vortex frequency passing the suction surface of each blade in the tip region agrees with the NSV frequency. The predicted NSV frequency based on URANS model with rigid blades agrees very well with the experimental measurement with only 3.3% under-predicted. The NSV prediction using FSI with vibrating blades also obtain the same frequency as the rigid blades. This is because that the NSV is primarily caused by the flow vortex instability and the no resonance occurs. The blade structures respond passively and the small amplitudes of the blade vibration do not have significant effect on the flow. The predicted frequency using DDES with rigid blades is more deviated from the experiment and is 14.7% lower. The reason is that the DDES tends to predict the rotor stall earlier than the URANS and the NSV can be achieved only at higher mass flow rate, which generates a lower frequency. The possible reason for the DDES to predict the rotor stall early may be because DDES is more sensitive to wave reflection and a non-reflective boundary condition may be necessary. Overall, the high fidelity FSI methodology developed in this thesis for aircraft engine fan/compressor aeromechanics simulation is demonstrated to be very successful and has advanced the forefront of the state of the art. Future work to continue to improve the accuracy and efficiency is discussed at the end of the thesis.
77 FR 71673 - Decision To Rescind Buy America Waiver for Minivans and Minivan Chassis
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-03
... vehicle (as provided in the MV-1) constitutes a ``row'' and that a single rear-facing jump seat in the middle constitutes a ``row,'' the middle jump seat is not standard equipment on the MV-1. 3. The MV-1...
RANS Simulation (Virtual Blade Model [VBM]) of Single Lab Scaled DOE RM1 MHK Turbine
Javaherchi, Teymour; Stelzenmuller, Nick; Aliseda, Alberto; Seydel, Joseph
2014-04-15
Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study the flow field around and in the wake of the lab-scaled DOE RM1 turbine is simulated using Blade Element Model (a.k.a Virtual Blade Model) by solving RANS equations coupled with k-\\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of device and structure of it's turbulent far wake. Due to the simplifications implemented for modeling the rotating blades in this model, VBM is limited to capture details of the flow field in near wake region of the device. The required User Defined Functions (UDFs) and look-up table of lift and drag coefficients are included along with the .cas and .dat files.
Programmable Aperture with MEMS Microshutter Arrays
NASA Technical Reports Server (NTRS)
Moseley, Samuel; Li, Mary; Kutyrev, Alexander; Kletetschka, Gunther; Fettig, Rainer
2011-01-01
A microshutter array (MSA) has been developed for use as an aperture array for multi-object selections in James Webb Space Telescope (JWST) technology. Light shields, molybdenum nitride (MoN) coating on shutters, and aluminum/aluminum oxide coatings on interior walls are put on each shutter for light leak prevention, and to enhance optical contrast. Individual shutters are patterned with a torsion flexure that permits shutters to open 90 deg. with a minimized mechanical stress concentration. The shutters are actuated magnetically, latched, and addressed electrostatically. Also, micromechanical features are tailored onto individual shutters to prevent stiction. An individual shutter consists of a torsion hinge, a shutter blade, a front electrode that is coated on the shutter blade, a backside electrode that is coated on the interior walls, and a magnetic cobalt-iron coating. The magnetic coating is patterned into stripes on microshutters so that shutters can respond to an external magnetic field for the magnetic actuation. A set of column electrodes is placed on top of shutters, and a set of row electrodes on sidewalls is underneath the shutters so that they can be electrostatically latched open. A linear permanent magnet is aligned with the shutter rows and is positioned above a flipped upside-down array, and sweeps across the array in a direction parallel to shutter columns. As the magnet sweeps across the array, sequential rows of shutters are rotated from their natural horizontal orientation to a vertical open position, where they approach vertical electrodes on the sidewalls. When the electrodes are biased with a sufficient electrostatic force to overcome the mechanical restoring force of torsion bars, shutters remain latched to vertical electrodes in their open state. When the bias is removed, or is insufficient, the shutters return to their horizontal, closed positions. To release a shutter, both the electrode on the shutter and the one on the back wall where the shutter sits are grounded. The shutters with one or both ungrounded electrodes are held open. Sub-micron bumps underneath light shields and silicon ribs on back walls are the two features to prevent stiction. These features ensure that the microshutter array functions properly in mechanical motions. The MSA technology can be used primarily in multi-object imaging and spectroscopy, photomask generation, light switches, and in the stepper equipment used to make integrated circuits and MEMS (microelectromechanical systems) devices.
Unsteady and Three-Dimensional Flow in Turbomachines
1999-12-01
designers must mitigate possible blade vibrations in the turbomachinery stages. The cyclical stresses associated with blade vibration can rapidly accrue... vibrational instability. In particular, the focus is upon developing a rational methodology towards "flutter clearance" that is, towards ensuring...model of the rotor that considers a single mode of vibration for each blade, as schematically represented in Fig. 4.2a. Under a coordinate
Methods of Enhancing the Operating Characteristics of Gas-Turbine Blades
NASA Astrophysics Data System (ADS)
Ospennikova, O. G.; Visik, E. M.; Gerasimov, V. V.; Kolyadov, E. V.
2017-12-01
This paper considers the main tendencies of development and ways of introduction of new technological solutions and alloys in the production of industrial gas-turbine unit (GTU) blades and presents a review of modern corrosion-resistant alloys, casting units for high-gradient directional solidification, and the techniques providing the preparation of a single-crystal structure in the blades of stationary turbine plants.
Burkhart, Stephen S; Denard, Patrick J; Konicek, John; Hanypsiak, Bryan T
2014-02-01
Poor-quality tendon is one of the most difficult problems the surgeon must overcome in achieving secure fixation during rotator cuff repair. A load-sharing rip-stop construct (LSRS) has recently been proposed as a method for improving fixation strength, but the biomechanical properties of this construct have not yet been examined. To compare the strength of the LSRS construct to that of single-row fixation for rotator cuff repair. Controlled laboratory study. Rotator cuff tears were created in 6 cadaveric matched-pair specimens and repaired with a single row or an LSRS. In the LSRS repair, a 2-mm suture tape was placed as an inverted mattress stitch in the rotator cuff, and sutures from 2 anchors were placed as simple stitches that passed medial to the suture tape. The suture tape limbs were secured with knotless anchors laterally before sutures were tied from the medial anchors. Displacement was observed with video tracking after cyclic loading, and specimens were loaded to failure. The mean load to failure was 371 ± 102 N in single-row repairs compared with 616 ± 185 N in LSRS repairs (P = .031). There was no difference in displacement with cyclic loading between the groups (3.3 ± 0.8 mm vs. 3.5 ± 1.1 mm; P = .561). In the single-row group, 4 of 6 failures occurred at the suture-tendon interface. In the LSRS group, only 1 failure occurred at the suture-tendon interface. The ultimate failure load of the LSRS construct for rotator cuff repair was 1.7 times that of a single-row construct in a cadaveric model. The LSRS rotator cuff repair construct may be useful in the repair of difficult tears such as massive tears, medial tears, and tears with tendon loss.
Dilution jet mixing program, phase 3
NASA Technical Reports Server (NTRS)
Srinivasan, R.; Coleman, E.; Myers, G.; White, C.
1985-01-01
The main objectives for the NASA Jet Mixing Phase 3 program were: extension of the data base on the mixing of single sided rows of jets in a confined cross flow to discrete slots, including streamlined, bluff, and angled injections; quantification of the effects of geometrical and flow parameters on penetration and mixing of multiple rows of jets into a confined flow; investigation of in-line, staggered, and dissimilar hole configurations; and development of empirical correlations for predicting temperature distributions for discrete slots and multiple rows of dilution holes.
Active Vibration Reduction of Titanium Alloy Fan Blades (FAN1) Using Piezoelectric Materials
NASA Technical Reports Server (NTRS)
Choi, Benjamin; Kauffman, Jeffrey; Duffy, Kirsten; Provenza, Andrew; Morrison, Carlos
2010-01-01
The NASA Glenn Research Center is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this paper, a digital resonant control technique emulating passive shunt circuits is used to demonstrate vibration reduction of FAN1 Ti real fan blade at the several target modes. Single-mode control and multi-mode control using one piezoelectric material are demonstrated. Also a conceptual study of how to implement this digital control system into the rotating fan blade is discussed.
Design and Test Research on Cutting Blade of Corn Harvester Based on Bionic Principle.
Tian, Kunpeng; Li, Xianwang; Zhang, Bin; Chen, Qiaomin; Shen, Cheng; Huang, Jicheng
2017-01-01
Existing corn harvester cutting blades have problems associated with large cutting resistance, high energy consumption, and poor cut quality. Using bionics principles, a bionic blade was designed by extracting the cutting tooth profile curve of the B. horsfieldi palate. Using a double-blade cutting device testing system, a single stalk cutting performance contrast test for corn stalks obtained at harvest time was carried out. Results show that bionic blades have superior performance, demonstrated by strong cutting ability and good cut quality. Using statistical analysis of two groups of cutting test data, the average cutting force and cutting energy of bionic blades and ordinary blades were obtained as 480.24 N and 551.31 N and 3.91 J and 4.38 J, respectively. Average maximum cutting force and cutting energy consumption for the bionic blade were reduced by 12.89% and 10.73%, respectively. Variance analysis showed that both blade types had a significant effect on maximum cutting energy and cutting energy required to cut a corn stalk. This demonstrates that bionic blades have better cutting force and energy consumption reduction performance than ordinary blades.
Manufacturing Processes for Long-Life Gas Turbines
NASA Astrophysics Data System (ADS)
Hoppin, G. S.; Danesi, W. P.
1986-07-01
Dual-alloy turbine wheels produced by solid-state diffusion bonding of vacuum investment cast blade rings of one superalloy to preconsolidated powder metal hubs of a second superalloy have the long cyclic lives characteristic of wrought or powder superalloys combined with the high creep strength and net-shape blades characteristic of cast superalloys. A wide variety of superalloys and turbine configurations are compatible with this technology. Improved temperature capability turbine blades and vanes of the MAR-M 247 alloy made by directional solidification casting processes are now in volume production for Garrett gas turbines. Single-crystal alloys derivative to MAR-M 247 further extend the temperature capability of turbine blades and have been successfully engine tested. These blades are produced by a relatively simple modification of the processes used to manufacture directionally solidified blades.
School Transformation + Development Map
ERIC Educational Resources Information Center
Locker, Frank M.
2010-01-01
The field of education has highly varied educational practices and facilities needs. Still, much of education continues to be delivered in the recognizable tradition of teachers working alone in isolated classrooms and buildings planned based on rows and rows of those classrooms. But there is no longer one single, universal view of how education…
Reliability analysis of single crystal NiAl turbine blades
NASA Technical Reports Server (NTRS)
Salem, Jonathan; Noebe, Ronald; Wheeler, Donald R.; Holland, Fred; Palko, Joseph; Duffy, Stephen; Wright, P. Kennard
1995-01-01
As part of a co-operative agreement with General Electric Aircraft Engines (GEAE), NASA LeRC is modifying and validating the Ceramic Analysis and Reliability Evaluation of Structures algorithm for use in design of components made of high strength NiAl based intermetallic materials. NiAl single crystal alloys are being actively investigated by GEAE as a replacement for Ni-based single crystal superalloys for use in high pressure turbine blades and vanes. The driving force for this research lies in the numerous property advantages offered by NiAl alloys over their superalloy counterparts. These include a reduction of density by as much as a third without significantly sacrificing strength, higher melting point, greater thermal conductivity, better oxidation resistance, and a better response to thermal barrier coatings. The current drawback to high strength NiAl single crystals is their limited ductility. Consequently, significant efforts including the work agreement with GEAE are underway to develop testing and design methodologies for these materials. The approach to validation and component analysis involves the following steps: determination of the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; measurement of the failure strength envelope of the material; coding of statistically based reliability models; verification of the code and model; and modeling of turbine blades and vanes for rig testing.
Preliminary structural design of composite main rotor blades for minimum weight
NASA Technical Reports Server (NTRS)
Nixon, Mark W.
1987-01-01
A methodology is developed to perform minimum weight structural design for composite or metallic main rotor blades subject to aerodynamic performance, material strength, autorotation, and frequency constraints. The constraints and load cases are developed such that the final preliminary rotor design will satisfy U.S. Army military specifications, as well as take advantage of the versatility of composite materials. A minimum weight design is first developed subject to satisfying the aerodynamic performance, strength, and autorotation constraints for all static load cases. The minimum weight design is then dynamically tuned to avoid resonant frequencies occurring at the design rotor speed. With this methodology, three rotor blade designs were developed based on the geometry of the UH-60A Black Hawk titanium-spar rotor blade. The first design is of a single titanium-spar cross section, which is compared with the UH-60A Black Hawk rotor blade. The second and third designs use single and multiple graphite/epoxy-spar cross sections. These are compared with the titanium-spar design to demonstrate weight savings from use of this design methodology in conjunction with advanced composite materials.
Design and Development of Turbodrill Blade Used in Crystallized Section
Yu, Wang; Jianyi, Yao; Zhijun, Li
2014-01-01
Turbodrill is a type of hydraulic axial turbomachinery which has a multistage blade consisting of stators and rotors. In this paper, a turbodrill blade that can be applied in crystallized section under high temperature and pressure conditions is developed. On the basis of Euler equations, the law of energy transfer is analyzed and the output characteristics of turbodrill blade are proposed. Moreover, considering the properties of the layer and the bole-hole conditions, the radical size, the geometrical dimension, and the blade profile are optimized. A computational model of a single-stage blade is built on the ANSYS CFD into which the three-dimensional model of turbodrill is input. In light of the distribution law of the pressure and flow field, the functions of the turbodrill blade are improved and optimized. The turbodrill blade optimization model was verified based on laboratory experiments. The results show that the design meets the deep hard rock mineral exploration application and provides good references for further study. PMID:25276857
Optimization of blade motion of vertical axis turbine
NASA Astrophysics Data System (ADS)
Ma, Yong; Zhang, Liang; Zhang, Zhi-yang; Han, Duan-feng
2016-04-01
In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.
Effects of rotor model degradation on the accuracy of rotorcraft real time simulation
NASA Technical Reports Server (NTRS)
Houck, J. A.; Bowles, R. L.
1976-01-01
The effects are studied of degrading a rotating blade element rotor mathematical model to meet various real-time simulation requirements of rotorcraft. Three methods of degradation were studied: reduction of number of blades, reduction of number of blade segments, and increasing the integration interval, which has the corresponding effect of increasing blade azimuthal advance angle. The three degradation methods were studied through static trim comparisons, total rotor force and moment comparisons, single blade force and moment comparisons over one complete revolution, and total vehicle dynamic response comparisons. Recommendations are made concerning model degradation which should serve as a guide for future users of this mathematical model, and in general, they are in order of minimum impact on model validity: (1) reduction of number of blade segments, (2) reduction of number of blades, and (3) increase of integration interval and azimuthal advance angle. Extreme limits are specified beyond which the rotating blade element rotor mathematical model should not be used.
Near-field acoustic characteristics of a single-rotor propfan
NASA Technical Reports Server (NTRS)
Bartel, H. W.; Swift, G.
1989-01-01
The near-field noise characteristics of the SR-7L, an eight-blade, single-rotor, wing-mounted, tractor propfan have been determined. It is found that the noise is dominated by discrete tones, usually at the first order (and occasionally at the second or third order) of the blade-passage frequency. The highest noise levels were noted at conditions of high tip helical speeds and high dynamic pressures.
Method and apparatus of wide-angle optical beamsteering from a nanoantenna phased array
Davids, Paul; DeRose, Christopher; Rakich, Peter Thomas
2015-08-11
An optical beam-steering apparatus is provided. The apparatus includes one or more optical waveguides and at least one row of metallic nanoantenna elements overlying and electromagnetically coupled to a respective waveguide. In each such row, individual nanoantenna elements are spaced apart along an optical propagation axis of the waveguide so that there is an optical propagation phase delay between successive pairs of nanoantenna elements along the row. The apparatus also includes a respective single electric heating element in thermal contact with each of the waveguides. Each heating element is arranged to heat, substantially uniformly, at least that portion of its waveguide that directly underlies the corresponding row of nanoantenna elements.
2006-09-07
aircraft repairs, including: 1. Single crystal turbine blade for two gas turbine engines ( FAA approved repair) 2. Second stage gas turbine blade ...gas turbine engine components. These include (a) application of corrosion resistant coatings to turbine blade tips where protective diffusion...base materials on many functional components (e.g., Ni-base superalloys, stainless steels, Monel, titanium alloys), thus allowing for self-repair
Feasibility study of an aerial manipulator interacting with a vertical wall
2017-06-01
each blade . Some tests are run with different levels of PWM input and the resultant angular acceleration in each case is measured with the motion...Helicopter Near a Vertical Surface ...................29 Figure 15. Near-Wall Moment for a Single Blade Helicopter. Source: [30]. .............30...with canted propellers is proposed, so that each blade applies thrust with components in the vertical and in the horizontal plane. In Figure 10
Numerical Analysis of Helical Pile-Soil Interaction under Compressive Loads
NASA Astrophysics Data System (ADS)
Polishchuk, A. I.; Maksimov, F. A.
2017-11-01
The results of the field tests of full-scale steel helical piles in clay soils intended for prefabricated temporary buildings foundations are presented in this article. The finite element modeling was used for the evaluation of stress distribution of the clay soil around helical piles. An approach of modeling of the screw-pile geometry has been proposed through the Finite Element Analysis. Steel helical piles with a length of 2.0 m, shaft diameter of 0.108 m and a blade diameter of 0.3 m were used in the experiments. The experiments have shown the efficiency of double-bladed helical piles in the clay soils compared to single-bladed piles. It has been experimentally established that the introduction of the second blade into the pile shaft provides an increase of the bearing capacity in clay soil up to 30% compared to a single-bladed helical pile with similar geometrical dimensions. The numerical results are compared with the measurements obtained by a large scale test and the bearing capacity has been estimated. It has been found that the model results fit the field results. For a double-bladed helical pile it was revealed that shear stresses upon pile loading are formed along the lateral surface forming a cylindrical failure surface.
NASA Astrophysics Data System (ADS)
Hu, Yongjun; Wang, Yanping; Li, Guoqi; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong
2015-04-01
Compared with single rotor small axial flow fans, dual-rotor small axial flow fans is better regarding the static characteristics. But the aerodynamic noise of dual-rotor small axial flow fans is worse than that of single rotor small axial flow fans. In order to improve aerodynamic noise of dual-rotor small axial flow fans, the pre-stage blades with different perforation numbers are designed in this research. The RANS equations and the standard k-ɛ turbulence model as well as the FW-H noise model are used to simulate the flow field within the fan. Then, the aerodynamic performance of the fans with different perforation number is compared and analyzed. The results show that: (1) Compared to the prototype fan, the noise of fans with perforation blades is reduced. Additionally, the noise of the fans decreases with the increase of the number of perforations. (2) The vorticity value in the trailing edge of the pre-stage blades of perforated fans is reduced. It is found that the vorticity value in the trailing edge of the pre-stage blades decreases with the increase of the number of perforations. (3) Compared to the prototype fan, the total pressure rising and efficiency of the fans with perforation blades drop slightly.
NASA Astrophysics Data System (ADS)
Kuznetsov, V. P.; Lesnikov, V. P.; Muboyadzhyan, S. A.; Repina, O. V.
2007-05-01
Complex diffusion-condensation protective coatings characterized by gradient distribution of alloying elements over the thickness due to formation of a diffusion barrier layer on the surface of blades followed by deposition of condensation alloyed layers based on the Ni-Co-Cr-Al-Y system and an external layer based on a NiAl alloyed β-phase and a ZrO2: Y2O3 ceramics are presented. A complex gradient coating possessing unique protective properties at t = 1100-1200°C for single-crystal blades from alloy ZhS36VI for advanced gas turbine engines with gas temperature of 1550°C at the inlet to the turbine is described.
Experiments in dilution jet mixing
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Srinivasan, R.; Berenfeld, A.
1983-01-01
Experimental results are given on the mixing of a single row of jets with an isothermal mainstream in a straight duct, to include flow and geometric variations typical of combustion chambers in gas turbine engines. The principal conclusions reached from these experiments were: at constant momentum ratio, variations in density ratio have only a second-order effect on the profiles; a first-order approximation to the mixing of jets with a variable temperature mainstream can be obtained by superimposing the jets-in-an isothermal-crossflow and mainstream profiles; flow area convergence, especially injection-wall convergence, significantly improves the mixing; for opposed rows of jets, with the orifice centerlines in-line, the optimum ratio of orifice spacing to duct height is one half of the optimum value for single side injection at the same momentum ratio; and for opposed rows of jets, with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is twice the optimum value for single side injection at the same momentum ratio.
Experiments in dilution jet mixing effects of multiple rows and non-circular orifices
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Srinivasan, R.; Coleman, E. B.; Meyers, G. D.; White, C. D.
1985-01-01
Experimental and empirical model results are presented that extend previous studies of the mixing of single-sided and opposed rows of jets in a confined duct flow to include effects of non-circular orifices and double rows of jets. Analysis of the mean temperature data obtained in this investigation showed that the effects of orifice shape and double rows are significant only in the region close to the injection plane, provided that the orifices are symmetric with respect to the main flow direction. The penetration and mixing of jets from 45-degree slanted slots is slightly less than that from equivalent-area symmetric orifices. The penetration from 2-dimensional slots is similar to that from equivalent-area closely-spaced rows of holes, but the mixing is slower for the 2-D slots. Calculated mean temperature profiles downstream of jets from non-circular and double rows of orifices, made using an extension developed for a previous empirical model, are shown to be in good agreement with the measured distributions.
Experiments in dilution jet mixing - Effects of multiple rows and non-circular orifices
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Srinivasan, R.; Coleman, E. B.; Meyers, G. D.; White, C. D.
1985-01-01
Experimental and empirical model results are presented that extend previous studies of the mixing of single-sided and opposed rows of jets in a confined duct flow to include effects of non-circular orifices and double rows of jets. Analysis of the mean temperature data obtained in this investigation showed that the effects of orifice shape and double rows are significant only in the region close to the injection plane, provided that the orifices are symmetric with respect to the main flow direction. The penetration and mixing of jets from 45-degree slanted slots is slightly less than that from equivalent-area symmetric orifices. The penetration from two-dimensional slots is similar to that from equivalent-area closely-spaced rows of holes, but the mixing is slower for the 2-D slots. Calculated mean temperature profiles downstream of jets from non-circular and double rows of orifices, made using an extension developed for a previous empirical model, are shown to be in good agreement with the measured distributions.
Meier, Steven W; Meier, Jeffrey D
2006-11-01
The purpose of this study was to compare the initial mechanical strength of 3 rotator cuff repair techniques. A total of 30 fresh-frozen cadaveric shoulders were prepared, and full-thickness supraspinatus tears were created. Specimens were randomized and placed into 3 groups: (1) transosseous suture technique (group I: TOS, n = 10, 6F/4M), (2) single-row suture anchor fixation (group II: SRSA, n = 10, 6F/4M), and (3) double-row suture anchor fixation (group III: DRSA, n = 10, 6F/4M). Each specimen underwent cyclic load testing from 5 N to 180 N at a rate of 33 mm/sec. The test was stopped when complete failure (repair site gap of 10 mm) or a total of 5,000 cycles was attained. Group I (TOS) failed at an average of 75.3 +/- 22.49 cycles, and group II (SRSA) at an average of 798.3 +/- 73.28 cycles; group III (DRSA) had no failures because all samples were stopped when 5,000 cycles had been completed. Fixation strength of the DRSA technique proved to be significantly greater than that of SRSA (P < .001), and both suture anchor groups were significantly stronger than the TOS group (P < .001). Suture anchor repairs were significantly stronger than transosseous repairs. Furthermore, double-row suture anchor fixation was significantly stronger than was single-row repair. Therefore, double-row fixation may be superior to other techniques in that it provides a substantially stronger repair that could lead to improved biologic healing. A high incidence of incomplete healing occurs in rotator cuff repair. Use of double-row fixation may help the clinician to address some deficiencies in current methods by increasing the strength of the repair, potentially leading to improved healing rates.
Marasigan, K; Toews, M; Kemerait, R; Abney, M R; Culbreath, A; Srinivasan, R
2018-05-28
Peanut growers use a combination of tactics to manage spotted wilt disease caused by thrips-transmitted Tomato spotted wilt virus (TSWV). They include planting TSWV-resistant cultivars, application of insecticides, and various cultural practices. Two commonly used insecticides against thrips are aldicarb and phorate. Both insecticides exhibit broad-spectrum toxicity. Recent research has led to the identification of potential alternatives to aldicarb and phorate. In this study, along with reduced-risk, alternative insecticides, we evaluated the effect of conventional versus strip tillage; single versus twin row seeding pattern; and 13 seed/m versus 20 seed/m on thips density, feeding injury, and spotted wilt incidence. Three field trials were conducted in Georgia in 2012 and 2013. Thrips counts, thrips feeding injuriy, and incidence of spotted wilt were less under strip tillage than under conventional tillage. Reduced feeding injury from thrips was observed on twin-row plots compared with single-row plots. Thrips counts, thrips feeding injury, and incidence of spotted wilt did not vary by seeding rate. Yield from twin-row plots was greater than yield from single-row plots only in 2012. Yield was not affected by other cultural practices. Alternative insecticides, including imidacloprid and spinetoram, were as effective as phorate in suppressing thrips and reducing incidence of spotted wilt in conjunction with cultural practices. Results suggest that cultural practices and reduced-risk insecticides (alternatives to aldicarb and phorate) can effectively suppress thrips and incidence of spotted wilt in peanut.
Machan, Melissa D; Monaghan, W Patrick; McDonough, John; Hogan, Gerard
2013-04-01
The purpose of this evidence-based project was to determine the perceptions of anesthesia providers regarding the use of disposable laryngoscope blades. Frequency of use, ease of use, and complications encountered when using the disposable blade were evaluated before and after an in-service program designed to increase the use of disposable blades. Participants completed an anonymous questionnaire about their knowledge and practice regarding disposable laryngoscope blades. Then they received an investigator-developed article to read about the best and most recent practices regarding disposable laryngoscope blades. The same anonymous questionnaire was completed 3 months later. Inventory of the disposable laryngoscope blades was collected before the project and 1 and 3 months later. After the intervention, 25% of anesthesia providers described performance as their reason for not using the disposable laryngoscope blade, which was down from 60% at the project's start. Inventory showed a 23% increase in use of disposable laryngoscope blades after the intervention, which a single-proportion Z test showed was statistically significant (Z = 2.046, P = .041). This evidence-based project shows that a change in practice was evident after dissemination of the best and most recent clinical evidence regarding laryngoscope blades, which should translate to improved patient outcomes.
Jones, R M; Jones, P L; Gildersleve, C D; Hall, J E; Harding, L J E; Chawathe, M S
2004-10-01
The Cardiff paediatric laryngoscope blade is a single blade that has been designed for use in children from birth to adolescence. This open, randomised, crossover study compared the Cardiff blade with the straight, size 1, Miller laryngoscope blade in 39 infants under 1 years of age and the curved, size 2, Macintosh blade in 39 children aged 1-16 years. The same laryngoscopic view was obtained with the Cardiff and Miller blades in 26 patients; the view was better with the Cardiff blade in seven patients and better with the Miller blade in six (median (IQR [range]) grade of laryngoscopy 1 (1-2 [1-3]) vs. 1 (1-2 [1-3]), respectively; p = 0.405). The Cardiff blade was faster at gaining a view than the Miller blade (mean (SD) time 8.5 (2.9) s vs. 10.2 (3.5) s, respectively; 95% CI for difference -2.8 to -0.4; p = 0.009). The Cardiff and Macintosh blades produced the same view in 32 patients; the view was better with the Cardiff blade in seven patients (median (IQR [range]) grade of laryngoscopy 1 (1-1 [1-3]) vs. 1 (1-2 [1-3]), respectively; p = 0.008). There was no difference in time to gain these views: mean (SD) 8.7 (3.0) s vs. 9.3 (2.7) s, respectively (95% CI for difference -1.58 to 0.40; p = 0.237). The Cardiff paediatric laryngoscope blade compares favourably with these two established laryngoscope blades in children.
Large-Scale Simulations and Detailed Flow Field Measurements for Turbomachinery Aeroacoustics
NASA Technical Reports Server (NTRS)
VanZante, Dale
2008-01-01
The presentation is a review of recent work in highly loaded compressors, turbine aeroacoustics and cooling fan noise. The specific topics are: the importance of correct numerical modeling to capture blade row interactions in the Ultra Efficient Engine Technology Proof-of-Concept Compressor, the attenuation of a detonation pressure wave by an aircraft axial turbine stage, current work on noise sources and acoustic attenuation in turbines, and technology development work on cooling fans for spaceflight applications. The topic areas were related to each other by certain themes such as the advantage of an experimentalist s viewpoint when analyzing numerical simulations and the need to improve analysis methods for very large numerical datasets.
Overview of aerothermodynamic loads definition study
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.
1991-01-01
The objective of the Aerothermodynamic Loads Definition Study is to develop methods of accurately predicting the operating environment in advanced Earth-to-Orbit (ETO) propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. Development of time averaged and time dependent three dimensional viscous computer codes as well as experimental verification and engine diagnostic testing are considered to be essential in achieving that objective. Time-averaged, nonsteady, and transient operating loads must all be well defined in order to accurately predict powerhead life. Described here is work in unsteady heat flow analysis, improved modeling of preburner flow, turbulence modeling for turbomachinery, computation of three dimensional flow with heat transfer, and unsteady viscous multi-blade row turbine analysis.
NASA Technical Reports Server (NTRS)
Bushnell, P.; Gruber, M.; Parzych, D.
1988-01-01
Unsteady blade surface pressure data for the Large-Scale Advanced Prop-Fan (LAP) blade operation with angular inflow, wake inflow and uniform flow over a range of inflow Mach numbers of 0.02 to 0.70 is provided. The data are presented as Fourier coefficients for the first 35 harmonics of shaft rotational frequency. Also presented is a brief discussion of the unsteady blade response observed at takeoff and cruise conditions with angular and wake inflow.
High Aspect-Ratio Neural Probes using Conventional Blade Dicing
NASA Astrophysics Data System (ADS)
Goncalves, S. B.; Ribeiro, J. F.; Silva, A. F.; Correia, J. H.
2016-10-01
Exploring deep neural circuits has triggered the development of long penetrating neural probes. Moreover, driven by brain displacement, the long neural probes require also a high aspect-ratio shafts design. In this paper, a simple and reproducible method of manufacturing long-shafts neural probes using blade dicing technology is presented. Results shows shafts up to 8 mm long and 200 µm wide, features competitive to the current state-of-art, being its outline simply accomplished by a single blade dicing program. Therefore, conventional blade dicing presents itself as a viable option to manufacture long neural probes.
Onay, Ulaş; Akpınar, Sercan; Akgün, Rahmi Can; Balçık, Cenk; Tuncay, Ismail Cengiz
2013-01-01
The aim of this study was to compare new knotless single-row and double-row suture anchor techniques with traditional transosseous suture techniques for different sized rotator cuff tears in an animal model. The study included 56 cadaveric sheep shoulders. Supraspinatus cuff tears of 1 cm repaired with new knotless single-row suture anchor technique and supraspinatus and infraspinatus rotator cuff tears of 3 cm repaired with double-row suture anchor technique were compared to traditional transosseous suture techniques and control groups. The repaired tendons were loaded with 5 mm/min static velocity with 2.5 kgN load cell in Instron 8874 machine until the repair failure. The 1 cm transosseous group was statistically superior to 1 cm control group (p=0.021, p<0.05) and the 3 cm SpeedBridge group was statistically superior to the 1 cm SpeedFix group (p=0.012, p<0.05). The differences between the other groups were not statistically significant. No significant difference was found between the new knotless suture anchor techniques and traditional transosseous suture techniques.
Application of cylindrical, triangular and hemispherical dimples in the film cooling technology
NASA Astrophysics Data System (ADS)
Khalatov, A. A.; Panchenko, N. A.; Severin, S. D.
2017-11-01
The results of film cooling numerical simulation over a flat plate with coolant supply through a single span-wise array of inclined (α = 30°) holes arranged inside cylindrical, triangular, and hemispherical dimples are represented in the paper. Such configurations are of a great practical interest for application in advanced blade cooling systems of high-performance gas turbines. The schemes with coolant supply into triangular and hemispherical dimples were first proposed and patented by the IET of the NAS of Ukraine. For numerical simulation the ANSYS CFX 14 commercial code was used. Numerical simulation were carried out in a wide range of the blowing ratio parameter varied from 0.5 to 2.0. For low blowing ratio parameter (m = 0.5) the laterally averaged film cooling efficiency is actually the same for all investigated schemes over the main film cooling area. In this area, the most simple in terms of the film cooling production technology configuration can be used. At the medium and high blowing ratios (m = 1.0 or higher) all investigated film cooling schemes allow to increase the laterally averaged film cooling efficiency in comparison with the traditional cooling scheme with single row of incline holes. In this case the configuration with coolant supply into triangular dimples of the «crater» type demonstrates the best film cooling efficiency due to significant reduction in the intensity and scale of the “kidney” vortex beyond configuration, as well as due to decrease in the coolant blowing non-uniformity factor.
Application of single crystal superalloys for Earth-to-orbit propulsion systems
NASA Technical Reports Server (NTRS)
Dreshfield, R. L.; Parr, R. A.
1987-01-01
Single crystal superalloys were first identified as potentially useful engineering materials for aircraft gas turbine engines in the mid-1960's. Although they were not introduced into service as turbine blades in commercial aircraft engines until the early 1980's, they have subsequently accumulated tens of millions of flight hours in revenue producing service. The space shuttle main engine (SSME) and potential advanced earth-to-orbit propulsion systems impose severe conditions on turbopump turbine blades which for some potential failure modes are more severe than in aircraft gas turbines. Research activities which are directed at evaluating the potential for single crystal superalloys for application as turbopump turbine blades in the SSME and advanced rocket engines are discussed. The mechanical properties of these alloys are summarized and the effects of hydrogen are noted. The use of high gradient directional solidification and hot isostatic pressing to improve fatigue properties is also addressed.
Aerodynamics of Cascaded Airfoils Oscillating or Subject to Three-Dimensional Periodic Gusts.
1980-01-01
and guide vanes and induce fluctuating aerodynamic forces on their blades . The aeroelastic stability of the engine , therefore, depends on the...71, we carried out a comparative study for a compressor, a I turbine , a flat plate cascade, and a single airfoil having the same blade geometry. Table...amplification of acoustic response, and inducing blade vibrations. In particular, during take-off and landing of jet powered aircraft the presence
Aero-Mechanical Coupling in a High-Speed Compressor
2010-02-01
compressor for which this facility is being designed is a scale model of a single stage of a civil jet engine . A strong non-synchronous blade vibration was...Flutter and resonant vibration characteristics of engine blades . Journal of engineering for gas turbines and power, 119. Thermann, H. and Niehuis, R...changes in airfoil lift associated with the unsteady flow. The blade aerodynamics are approximated by a flat plate, however more complex shapes can be
Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines
NASA Technical Reports Server (NTRS)
Bisset, J. W.
1976-01-01
The cost/benefits of advance commercial gas turbine materials are described. Development costs, estimated payoffs and probabilities of success are discussed. The materials technologies investigated are: (1) single crystal turbine blades, (2) high strength hot isostatic pressed turbine disk, (3) advanced oxide dispersion strengthened burner liner, (4) bore entry cooled hot isostatic pressed turbine disk, (5) turbine blade tip - outer airseal system, and (6) advance turbine blade alloys.
McCormick, Frank; Gupta, Anil; Bruce, Ben; Harris, Josh; Abrams, Geoff; Wilson, Hillary; Hussey, Kristen; Cole, Brian J.
2014-01-01
Purpose: The purpose of this study was to measure and compare the subjective, objective, and radiographic healing outcomes of single-row (SR), double-row (DR), and transosseous equivalent (TOE) suture techniques for arthroscopic rotator cuff repair. Materials and Methods: A retrospective comparative analysis of arthroscopic rotator cuff repairs by one surgeon from 2004 to 2010 at minimum 2-year followup was performed. Cohorts were matched for age, sex, and tear size. Subjective outcome variables included ASES, Constant, SST, UCLA, and SF-12 scores. Objective outcome variables included strength, active range of motion (ROM). Radiographic healing was assessed by magnetic resonance imaging (MRI). Statistical analysis was performed using analysis of variance (ANOVA), Mann — Whitney and Kruskal — Wallis tests with significance, and the Fisher exact probability test <0.05. Results: Sixty-three patients completed the study requirements (20 SR, 21 DR, 22 TOE). There was a clinically and statistically significant improvement in outcomes with all repair techniques (ASES mean improvement P = <0.0001). The mean final ASES scores were: SR 83; (SD 21.4); DR 87 (SD 18.2); TOE 87 (SD 13.2); (P = 0.73). There was a statistically significant improvement in strength for each repair technique (P < 0.001). There was no significant difference between techniques across all secondary outcome assessments: ASES improvement, Constant, SST, UCLA, SF-12, ROM, Strength, and MRI re-tear rates. There was a decrease in re-tear rates from single row (22%) to double-row (18%) to transosseous equivalent (11%); however, this difference was not statistically significant (P = 0.6). Conclusions: Compared to preoperatively, arthroscopic rotator cuff repair, using SR, DR, or TOE techniques, yielded a clinically and statistically significant improvement in subjective and objective outcomes at a minimum 2-year follow-up. Level of Evidence: Therapeutic level 3. PMID:24926159
NASA Technical Reports Server (NTRS)
Diaguila, Anthony J; Freche, John C
1951-01-01
Blade-to-coolant heat-transfer data and operating data were obtained with a natural-convection water-cooled turbine over range of turbine speeds and inlet-gas temperatures. The convective coefficients were correlated by the general relation for natural-convection heat transfer. The turbine data were displaced from a theoretical equation for natural convection heat transfer in the turbulent region and from natural-convection data obtained with vertical cylinders and plates; possible disruption of natural convection circulation within the blade coolant passages was thus indicated. Comparison of non dimensional temperature-ratio parameters for the blade leading edge, midchord, and trailing edge indicated that the blade cooling effectiveness is greatest at the midchord and least at the trailing edge.
Determination of Turbine Blade Life from Engine Field Data
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.
2013-01-01
It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal-mechanical fatigue (TMF) as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) TMF, (2) Oxidation/erosion (O/E), and (3) Other. From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to O/E equaled that attributed to TMF. The category that contributed most to blade failure was Other. If there were no blade failures attributed to O/E and TMF, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.
Sequential cooling insert for turbine stator vane
Jones, Russel B
2017-04-04
A sequential flow cooling insert for a turbine stator vane of a small gas turbine engine, where the impingement cooling insert is formed as a single piece from a metal additive manufacturing process such as 3D metal printing, and where the insert includes a plurality of rows of radial extending impingement cooling air holes alternating with rows of radial extending return air holes on a pressure side wall, and where the insert includes a plurality of rows of chordwise extending second impingement cooling air holes on a suction side wall. The insert includes alternating rows of radial extending cooling air supply channels and return air channels that form a series of impingement cooling on the pressure side followed by the suction side of the insert.
Application of Single Crystal Failure Criteria: Theory and Turbine Blade Case Study
NASA Technical Reports Server (NTRS)
Sayyah, Tarek; Swanson, Gregory R.; Schonberg, W. P.
1999-01-01
The orientation of the single crystal material within a structural component is known to affect the strength and life of the part. The first stage blade of the High Pressure Fuel Turbopump (HPFTP)/ Alternative Turbopump Development (ATD), of the Space Shuttle Main Engine (SSME) was used to study the effects of secondary axis'orientation angles on the failure rate of the blade. A new failure criterion was developed based on normal and shear strains on the primary crystallographic planes. The criterion was verified using low cycle fatigue (LCF) specimen data and a finite element model of the test specimens. The criterion was then used to study ATD/HPFTP first stage blade failure events. A detailed ANSYS finite element model of the blade was used to calculate the failure parameter for the different crystallographic orientations. A total of 297 cases were run to cover a wide range of acceptable orientations within the blade. Those orientations are related to the base crystallographic coordinate system that was created in the ANSYS finite element model. Contour plots of the criterion as a function of orientation for the blade tip and attachment were obtained. Results of the analysis revealed a 40% increase in the failure parameter due to changing of the primary and secondary axes of material orientations. A comparison between failure criterion predictions and actual engine test data was then conducted. The engine test data comes from two ATD/HPFTP builds (units F3- 4B and F6-5D), which were ground tested on the SSME at the Stennis Space Center in Mississippi. Both units experienced cracking of the airfoil tips in multiple blades, but only a few cracks grew all the way across the wall of the hollow core airfoil.
NASA Technical Reports Server (NTRS)
Sekula, Martin K.
2012-01-01
Projection moir interferometry (PMI) was employed to measure blade deflections during a hover test of a generic model-scale rotor in the NASA Langley 14x22 subsonic wind tunnel s hover facility. PMI was one of several optical measurement techniques tasked to acquire deflection and flow visualization data for a rotor at several distinct heights above a ground plane. Two of the main objectives of this test were to demonstrate that multiple optical measurement techniques can be used simultaneously to acquire data and to identify and address deficiencies in the techniques. Several PMI-specific technical challenges needed to be addressed during the test and in post-processing of the data. These challenges included developing an efficient and accurate calibration method for an extremely large (65 inch) height range; automating the analysis of the large amount of data acquired during the test; and developing a method to determinate the absolute displacement of rotor blades without a required anchor point measurement. The results indicate that the use of a single-camera/single-projector approach for the large height range reduced the accuracy of the PMI system compared to PMI systems designed for smaller height ranges. The lack of the anchor point measurement (due to a technical issue with one of the other measurement techniques) limited the ability of the PMI system to correctly measure blade displacements to only one of the three rotor heights tested. The new calibration technique reduced the data required by 80 percent while new post-processing algorithms successfully automated the process of locating rotor blades in images, determining the blade quarter chord location, and calculating the blade root and blade tip heights above the ground plane.
Periodic control of the individual-blade-control helicopter rotor
NASA Technical Reports Server (NTRS)
Mckillip, R. M., Jr.
1985-01-01
This paper describes the results of an investigation into methods of controller design for linear periodic systems utilizing an extension of modern control methods. Trends present in the selection of various cost functions are outlined, and closed-loop controller results are demonstrated for two cases: first, on an analog computer simulation of the rigid out of plane flapping dynamics of a single rotor blade, and second, on a 4 ft diameter single-bladed model helicopter rotor in the MIT 5 x 7 subsonic wind tunnel, both for various high levels of advance ratio. It is shown that modal control using the IBC concept is possible over a large range of advance ratios with only a modest amount of computational power required.
Computational aspects of real-time simulation of rotary-wing aircraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Houck, J. A.
1976-01-01
A study was conducted to determine the effects of degrading a rotating blade element rotor mathematical model suitable for real-time simulation of rotorcraft. Three methods of degradation were studied, reduction of number of blades, reduction of number of blade segments, and increasing the integration interval, which has the corresponding effect of increasing blade azimuthal advance angle. The three degradation methods were studied through static trim comparisons, total rotor force and moment comparisons, single blade force and moment comparisons over one complete revolution, and total vehicle dynamic response comparisons. Recommendations are made concerning model degradation which should serve as a guide for future users of this mathematical model, and in general, they are in order of minimum impact on model validity: (1) reduction of number of blade segments; (2) reduction of number of blades; and (3) increase of integration interval and azimuthal advance angle. Extreme limits are specified beyond which a different rotor mathematical model should be used.
Compressor seal rub energetics study
NASA Technical Reports Server (NTRS)
Laverty, W. F.
1978-01-01
The rub mechanics of compressor abradable blade tip seals at simulated engine conditions were investigated. Twelve statistically planned, instrumented rub tests were conducted with titanium blades and Feltmetal fibermetal rubstrips. The tests were conducted with single stationary blades rubbing against seal material bonded to rotating test disks. The instantaneous rub torque, speed, incursion rate and blade temperatures were continuously measured and recorded. Basic rub parameters (incursion rate, rub depth, abradable density, blade thickness and rub velocity) were varied to determine the effects on rub energy and heat split between the blade, rubstrip surface and rub debris. The test data was reduced, energies were determined and statistical analyses were completed to determine the primary and interactive effects. Wear surface morphology, profile measurements and metallographic analysis were used to determine wear, glazing, melting and material transfer. The rub energies for these tests were most significantly affected by the incursion rate while rub velocity and blade thickness were of secondary importance. The ratios of blade wear to seal wear were representative of those experienced in engine operation of these seal system materials.
NASA Astrophysics Data System (ADS)
Klimas, P. C.
1982-05-01
A summary of the progress of modeling the aerodynamic effects on the blades of a Darrieus wind turbine is presented. Interference is discussed in terms of blade/blade wake interaction and improvements in single and multiple stream tube models, of vortex simulations of blades and their wakes, and a hybrid momentum/vortex code to combine fast computation time with interference-describing capabilities. An empirical model has been developed for treating the properties of dynamic stall such as airfoil geometry, Reynolds number, reduced frequency, angle-of-attack, and Mach number. Pitching circulation has been subjected to simulation as potential flow about a two-dimensional flat plate, along with applications of the concepts of virtual camber and virtual incidence, with a cambered airfoil operating in a rectilinear flowfield. Finally, a need to develop a loading model suitable for nonsymmetrical blade sections is indicated, as well as blade behavior in a dynamic, curvilinear regime.
Materials for advanced turbine engines. Volume 1: Advanced blade tip seal system
NASA Technical Reports Server (NTRS)
Zelahy, J. W.; Fairbanks, N. P.
1982-01-01
Project 3, the subject of this technical report, was structured toward the successful engine demonstration of an improved-efficiency, long-life, tip-seal system for turbine blades. The advanced tip-seal system was designed to maintain close operating clearances between turbine blade tips and turbine shrouds and, at the same time, be resistant to environmental effects including high-temperature oxidation, hot corrosion, and thermal cycling. The turbine blade tip comprised an environmentally resistant, activated-diffussion-bonded, monocrystal superalloy combined with a thin layer of aluminium oxide abrasive particles entrapped in an electroplated NiCr matrix. The project established the tip design and joint location, characterized the single-crystal tip alloy and abrasive tip treatment, and established the manufacturing and quality-control plans required to fully process the blades. A total of 171 blades were fully manufactured, and 100 were endurance and performance engine-tested.
Aeroelastic behavior of composite rotor blades with swept tips
NASA Technical Reports Server (NTRS)
Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur
1992-01-01
This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.