Sample records for single boron-epoxy composite

  1. A single fracture toughness parameter for fibrous composite laminates

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1981-01-01

    A general fracture toughness parameter Qc was previously derived and verified to be a material constant, independent of layup, for centrally cracked boron aluminum composite specimens. The specimens were made with various proportions of 0 and + or - 45 degree plies. A limited amount of data indicated that the ratio Qc/epsilon tuf' where epsilon tuf is the ultimate tensile strain of the fibers, might be a constant for all composite laminates, regardless of material and layup. In that case, a single value of Qc/epsilon tuf could be used to predict the fracture toughness of all fibrous composite laminates from only the elastic constants and epsilon tuf. Values of Qc/epsilon tuf were calculated for centrally cracked specimens made from graphite/polyimide, graphite/epoxy, E glass/epoxy, boron/epoxy, and S glass graphite/epoxy materials with numerous layups. Within ordinary scatter, the data indicate that Qc/epsilon tuf is a constant for all laminates that did not split extensively at the crack tips or have other deviate failure modes.

  2. Large boron--epoxy filament-wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Jensen, W. M.; Bailey, R. L.; Knoell, A. C.

    1973-01-01

    Advanced composite material used to fabricate pressure vessel is prepeg (partially cured) consisting of continuous, parallel boron filaments in epoxy resin matrix arranged to form tape. To fabricate chamber, tape is wound on form which must be removable after composite has been cured. Configuration of boron--epoxy composite pressure vessel was determined by computer program.

  3. Strain rate effects on mechanical properties of fiber composites, part 3

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1976-01-01

    An experimental investigation was conducted to determine the strain rate effects in fiber composites. Unidirectional composite specimens of boron/epoxy, graphite/epoxy, S-glass/epoxy and Kevlar/epoxy were tested to determine longitudinal, transverse and intralaminar (in-plane) shear properties. In the Longitudinal direction the Kevlar/epoxy shows a definite increase in both modulus and strength with strain rate. In the transverse direction, a general trend toward higher strength with strain rate is noticed. The intralaminar shear moduli and strengths of boron/epoxy and graphite/epoxy show a definite rise with strain rate.

  4. Evaluation of boron-epoxy-reinforced titanium tubular truss for application to a space shuttle booster thrust structure

    NASA Technical Reports Server (NTRS)

    Corvelli, N.; Carri, R.

    1972-01-01

    Results of a study to demonstrate the applicability of boron-epoxy-composite-reinforced titanium tubular members to a space shuttle booster thrust structure are presented and discussed. The experimental results include local buckling of all-composite and composite-reinforced-metal cylinders with low values of diameter-thickness ratio, static tests on composite-to-metal bonded step joints, and a test to failure of a boron-epoxy-reinforced titanium demonstration truss. The demonstration truss failed at 118 percent of design ultimate load. Test results and analysis for all specimens and the truss are compared. Comparing an all-titanium design and a boron-epoxy-reinforced-titanium (75 percent B-E and 25 percent Ti) design for application to the space shuttle booster thrust structure indicates that the latter would weigh approximately 24 percent less. Experimental data on the local buckling strength of cylinders with a diameter-thickness ratio of approximately 50 are needed to insure that undue conservatism is not used in future designs.

  5. Technology of civil usage of composites. [in commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Kemp, D. E.

    1977-01-01

    The paper deals with the use of advanced composites in structural components of commercial aircraft. The need for testing the response of a material system to service environment is discussed along with methods for evaluating design and manufacturing aspects of a built-up structure under environmental conditions and fail-safe (damage-tolerance) evaluation of structures. Crashworthiness aspects, the fire-hazard potential, and electrical damage of composite structures are considered. Practical operational experience with commercial aircraft is reviewed for boron/epoxy foreflaps, Kevlar/epoxy fillets and fairings, graphite/epoxy spoilers, graphite/polysulfone spoilers, graphite/epoxy floor posts, boron/aluminum aft pylon skin panels, graphite/epoxy engine nose cowl outer barrels, and graphite/epoxy upper aft rudder segments.

  6. FOD impact testing of composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  7. FOD impact testing of composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin, and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  8. Impact testing on composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  9. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 1: Concept development and feasibility

    NASA Technical Reports Server (NTRS)

    Oken, S.; June, R. R.

    1971-01-01

    The analytical and experimental investigations are described in the first phase of a program to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites. The interactions resulting from combining the two types of materials into single assemblies as well as their ability to function structurally were studied. The combinations studied were boron-epoxy reinforced aluminum, boron-epoxy reinforced titanium, and boron-polyimide reinforced titanium. The concepts used unidirectional composites as reinforcement in the primary loading direction and metal for carrying the transverse loads as well as its portion of the primary load. The program established that several realistic concepts could be fabricated, that these concepts could perform to a level that would result in significant weight savings, and that there are means for predicting their capability within a reasonable degree of accuracy. This program also encountered problems related to the application of polyimide systems that resulted in their relatively poor and variable performance.

  10. An evaluation of upgraded boron fibers in epoxy-matrix composites

    NASA Technical Reports Server (NTRS)

    Rhodes, T. C.; Fleck, J. N.; Meiners, K. E.

    1973-01-01

    An initial evaluation of upgraded boron fibers in an epoxy matrix is performed. Data generated on the program show that fiber strength does increase as a consequence of the upgrading treatment. However, the interlaninar shear strength of upgraded fiber composites is lower than that for an untreated fiber composite. In the limited tests performed, the increased fiber strength failed to translate into the composite.

  11. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 1 summary report: Shear web design development

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Zimmerman, D. K.

    1972-01-01

    An advanced composite shear web design concept was developed for the Space Shuttle orbiter main engine thrust beam structure. Various web concepts were synthesized by a computer-aided adaptive random search procedure. A practical concept is identified having a titanium-clad + or - 45 deg boron/epoxy web plate with vertical boron/epoxy reinforced aluminum stiffeners. The boron-epoxy laminate contributes to the strength and stiffness efficiency of the basic web section. The titanium-cladding functions to protect the polymeric laminate parts from damaging environments and is chem-milled to provide reinforcement in selected areas. Detailed design drawings are presented for both boron/epoxy reinforced and all-metal shear webs. The weight saving offered is 24% relative to all-metal construction at an attractive cost per pound of weight saved, based on the detailed designs. Small scale element tests substantiate the boron/epoxy reinforced design details in critical areas. The results show that the titanium-cladding reliably reinforces the web laminate in critical edge load transfer and stiffener fastener hole areas.

  12. Fillers for improved graphite fiber retention by polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Sheppard, C. H.

    1981-01-01

    The results of a program designed to determine the extent to which elemental boron and boron containing fillers added to the matrix resin of graphite/epoxy composites prevent the release of graphite fibers when the composites are exposed to fire and impact conditions are described. The fillers evaluated were boron, boron carbide and aluminum boride. The conditions evaluated were laboratory simulations of those that could exist in the event of an aircraft crash and burn situation. The baseline (i.e., unfilled) laminates evaluated were prepared from commercially available graphite/epoxy. The baseline and filled laminates' mechanical properties, before and after isothermal and humidity aging, also were compared. It was found that a small amount of graphite fiber was released from the baseline graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that the addition of boron and boron containing fillers to the resin matrix eliminated this fiber release. Mechanical properties of laminates containing the boron and boron containing fillers were lower than those of the baseline laminates. These property degradations for two systems: boron (5 micron) at 2.5 percent filler loading, and boron (5 micron) at 5.0 percent filler loading do not appear severe enough to preclude their use in structural composite applications.

  13. Effects of mechanical and thermal cycling on composite and hybrid laminates with residual stresses

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1977-01-01

    The effects of tensile load cycling and thermal cycling on residual stiffness and strength properties of the following composite and hybrid angle-ply laminates were studied: boron/epoxy, boron/polyimide, graphite/low-modulus epoxy, graphite/high-modulus epoxy, graphite/polyimide, S-glass/epoxy, graphite/Kevlar 49/epoxy, and graphite/S-glass/epoxy. Specimens of the first six types were mechanically cycled up to 90% of static strength. Those that survived 10 million cycles were tested statically to failure, and no significant changes in residual strength and modulus were noted. Specimens of all types were subjected to thermal cycling between room temperature and 411 K for the epoxy-matrix composites and 533 K for the polyimide-matrix composites. The residual strength and stiffness remained largely unchanged, except for the graphite/low-modulus epoxy, which showed reductions in both of approximately 35%. When low-temperature thermal cycling under tensile load was applied, there was a noticeable reduction in modulus and strength in the graphite/low-modulus epoxy and some strength reduction in the S-glass/epoxy.

  14. Impact resistance of composite fan blades. [fiber reinforced graphite and boron epoxy blades for STOL operating conditions

    NASA Technical Reports Server (NTRS)

    Premont, E. J.; Stubenrauch, K. R.

    1973-01-01

    The resistance of current-design Pratt and Whitney Aircraft low aspect ratio advanced fiber reinforced epoxy matrix composite fan blades to foreign object damage (FOD) at STOL operating conditions was investigated. Five graphite/epoxy and five boron/epoxy wide chord fan blades with nickel plated stainless steel leading edge sheath protection were fabricated and impact tested. The fan blades were individually tested in a vacuum whirlpit under FOD environments. The FOD environments were typical of those encountered in service operations. The impact objects were ice balls, gravel, stralings and gelatin simulated birds. Results of the damage sustained from each FOD impact are presented for both the graphite boron reinforced blades. Tests showed that the present design composite fan blades, with wrap around leading edge protection have inadequate FOD impact resistance at 244 m/sec (800 ft/sec) tip speed, a possible STOL operating condition.

  15. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: Flight service and inspection

    NASA Technical Reports Server (NTRS)

    Kizer, J. A.

    1981-01-01

    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force.

  16. Evaluation of experimental methods for determining dynamic stiffness and damping of composite materials

    NASA Technical Reports Server (NTRS)

    Bert, C. W.; Clary, R. R.

    1974-01-01

    Various methods potentially usable for determining dynamic stiffness and damping of composite materials are reviewed. Of these, the following most widely used techniques are singled out for more detailed discussion: free vibration, pulse propagation, and forced vibration response. To illustrate the usefulness and validity of dynamic property data, their application in dynamic analyses and comparison with measured structural response are described for the following composite-material structures: free-free sandwich beam with glass-epoxy facings, clamped-edge sandwich plate with similar facings, free-end sandwich conical shell with similar facings, and boron-epoxy free plate with layers arranged at various orientations.

  17. Alignment of Boron Nitride Nanofibers in Epoxy Composite Films for Thermal Conductivity and Dielectric Breakdown Strength Improvement.

    PubMed

    Wang, Zhengdong; Liu, Jingya; Cheng, Yonghong; Chen, Siyu; Yang, Mengmeng; Huang, Jialiang; Wang, Hongkang; Wu, Guanglei; Wu, Hongjing

    2018-04-15

    Development of polymer-based composites with simultaneously high thermal conductivity and breakdown strength has attracted considerable attention owing to their important applications in both electronic and electric industries. In this work, boron nitride (BN) nanofibers (BNNF) are successfully prepared as fillers, which are used for epoxy composites. In addition, the BNNF in epoxy composites are aligned by using a film casting method. The composites show enhanced thermal conductivity and dielectric breakdown strength. For instance, after doping with BNNF of 2 wt%, the thermal conductivity of composites increased by 36.4% in comparison with that of the epoxy matrix. Meanwhile, the breakdown strength of the composite with 1 wt% BNNF is 122.9 kV/mm, which increased by 6.8% more than that of neat epoxy (115.1 kV/mm). Moreover, the composites have maintained a low dielectric constant and alternating current conductivity among the range of full frequency, and show a higher thermal decomposition temperature and glass-transition temperature. The composites with aligning BNNF have wide application prospects in electronic packaging material and printed circuit boards.

  18. Alignment of Boron Nitride Nanofibers in Epoxy Composite Films for Thermal Conductivity and Dielectric Breakdown Strength Improvement

    PubMed Central

    Liu, Jingya; Cheng, Yonghong; Chen, Siyu; Yang, Mengmeng; Huang, Jialiang

    2018-01-01

    Development of polymer-based composites with simultaneously high thermal conductivity and breakdown strength has attracted considerable attention owing to their important applications in both electronic and electric industries. In this work, boron nitride (BN) nanofibers (BNNF) are successfully prepared as fillers, which are used for epoxy composites. In addition, the BNNF in epoxy composites are aligned by using a film casting method. The composites show enhanced thermal conductivity and dielectric breakdown strength. For instance, after doping with BNNF of 2 wt%, the thermal conductivity of composites increased by 36.4% in comparison with that of the epoxy matrix. Meanwhile, the breakdown strength of the composite with 1 wt% BNNF is 122.9 kV/mm, which increased by 6.8% more than that of neat epoxy (115.1 kV/mm). Moreover, the composites have maintained a low dielectric constant and alternating current conductivity among the range of full frequency, and show a higher thermal decomposition temperature and glass-transition temperature. The composites with aligning BNNF have wide application prospects in electronic packaging material and printed circuit boards. PMID:29662038

  19. Durability of aircraft composite materials

    NASA Technical Reports Server (NTRS)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  20. Development of lightweight aluminum compression panels reinforced by boron-epoxy infiltrated extrusions

    NASA Technical Reports Server (NTRS)

    Roy, P. A.; Mcelman, J. A.; Henshaw, J.

    1973-01-01

    Analytical and experimental studies were performed to evaluate the structural efficiencies afforded by the selective reinforcement of conventional aluminum compression panels with unidirectional boron epoxy composite materials. A unique approach for selective reinforcement was utilized called boron/epoxy infiltration. This technique uses extruded metal sections with preformed hollow voids into which unidirectional boron filaments are drawn and subsequently infiltrated with resin to form an integral part. Simplified analytical models were developed to investigate the behavior of stiffener webs with reinforced flanges. Theoretical results are presented demonstrating the effects of transverse shear, of the reinforcement, flange eccentricity and torsional stiffness in such construction. A series of 55 tests were conducted on boron-infiltrated rods and extruded structural sections.

  1. Application of finite element substructuring to composite micromechanics. M.S. Thesis - Akron Univ., May 1984

    NASA Technical Reports Server (NTRS)

    Caruso, J. J.

    1984-01-01

    Finite element substructuring is used to predict unidirectional fiber composite hygral (moisture), thermal, and mechanical properties. COSMIC NASTRAN and MSC/NASTRAN are used to perform the finite element analysis. The results obtained from the finite element model are compared with those obtained from the simplified composite micromechanics equations. A unidirectional composite structure made of boron/HM-epoxy, S-glass/IMHS-epoxy and AS/IMHS-epoxy are studied. The finite element analysis is performed using three dimensional isoparametric brick elements and two distinct models. The first model consists of a single cell (one fiber surrounded by matrix) to form a square. The second model uses the single cell and substructuring to form a nine cell square array. To compare computer time and results with the nine cell superelement model, another nine cell model is constructed using conventional mesh generation techniques. An independent computer program consisting of the simplified micromechanics equation is developed to predict the hygral, thermal, and mechanical properties for this comparison. The results indicate that advanced techniques can be used advantageously for fiber composite micromechanics.

  2. Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes.

    PubMed

    Lee, Dongju; Song, Sung Ho; Hwang, Jaewon; Jin, Sung Hwan; Park, Kwang Hyun; Kim, Bo Hyun; Hong, Soon Hyung; Jeon, Seokwoo

    2013-08-12

    The influence of surface modifications on the mechanical properties of epoxy-hexagonal boron nitride nanoflake (BNNF) nanocomposites is investigated. Homogeneous distributions of boron nitride nanoflakes in a polymer matrix, preserving intrinsic material properties of boron nitride nanoflakes, is the key to successful composite applications. Here, a method is suggested to obtain noncovalently functionalized BNNFs with 1-pyrenebutyric acid (PBA) molecules and to synthesize epoxy-BNNF nanocomposites with enhanced mechanical properties. The incorporation of noncovalently functionalized BNNFs into epoxy resin yields an elastic modulus of 3.34 GPa, and 71.9 MPa ultimate tensile strength at 0.3 wt%. The toughening enhancement is as high as 107% compared to the value of neat epoxy. The creep strain and the creep compliance of the noncovalently functionalized BNNF nanocomposite is significantly less than the neat epoxy and the nonfunctionalized BNNF nanocomposite. Noncovalent functionalization of BNNFs is effective to increase mechanical properties by strong affinity between the fillers and the matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers

    PubMed Central

    Domun, Nadiim; Paton, Keith R.; Sainsbury, Toby; Zhang, Tao; Mohamud, Hibaaq

    2017-01-01

    In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, GIC, by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly. PMID:29048345

  4. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers.

    PubMed

    Domun, Nadiim; Paton, Keith R; Hadavinia, Homayoun; Sainsbury, Toby; Zhang, Tao; Mohamud, Hibaaq

    2017-10-19

    In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, G IC , by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly.

  5. Structural design and stress analysis program for advanced composite filament-wound axisymmetric pressure vessels (COMTANK)

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.

    1972-01-01

    Computer program has been specifically developed to handle, in an efficient and cost effective manner, planar wound pressure vessels fabricated of either boron-epoxy or graphite-epoxy advanced composite materials.

  6. Improved fiber retention by the use of fillers in graphite fiber/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Bowles, K. J.

    1980-01-01

    A variety of matrix fillers were tested for their ability to prevent loss of fiber from graphite fiber/PMR polyimide and graphite fiber/epoxy composites in a fire. The fillers tested included powders of boron, boron carbide lime glass, lead glass, and aluminum. Boron was the most effective and prevented any loss of graphite fiber during burning. Mechanical properties of composites containing boron filler were measured and compared to those of composites containing no filler.

  7. Multi-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1976-01-01

    Resin matrix composites having improved resistance to foreign object damage in gas turbine engine fan blade applications were developed. Materials evaluated include epoxy matrix graphite/glass and boron/glass hybrids, thermoplastic matrix boron/glass hybrids, and superhybrids consisting of graphite/epoxy, boron/aluminum, and titanium alloy sheets. Static, pendulum impact, and ballistic impact test results are reported for all materials. Superhybrid blade like specimens are shown to be capable of withstanding relatively severe ballistic impacts from gelatin spheres without fracture. The effects of ply configuration and projectile angle of incidence on impact behavior are described. Predictions of surface strains during ballistic impact are presented and shown to be in reasonable agreement with experimental measurements.

  8. Burning characteristics and fiber retention of graphite/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1980-01-01

    Graphite fiber reinforced resin matrix composites were subjected to controlled burning conditions to determine their burning characteristics and fiber retention properties. Small samples were burned with a natural gas fired torch to study the effects of fiber orientation and structural flaws such as holes and slits that were machined into the laminates. Larger laminate samples were burned in a modified heat release rate calorimeter. Unidirectional epoxy/graphite and polyimide/graphite composites and boron powder filled samples of each of the two composite systems were burn tested. The composites were exposed to a thermal radiation of 5.3 Btu/sq ft-sec in air. Samples of each of the unfilled composite were decomposed anaerobically in the calorimeter. Weight loss data were recorded for burning and decomposition times up to thirty-five minutes. The effects of fiber orientation, flaws, and boron filler additives to the resins were evaluated. A high char forming polyimide resin was no more effective in retaining graphite fibers than a low char forming epoxy resin when burned in air. Boron powder additions to both the polyimide and the epoxy resins stabilized the chars and effectively controlled the fiber release.

  9. Lamination residual stresses in fiber composites

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1975-01-01

    An experimental investigation was conducted to determine the magnitude of lamination residual stresses in angle-ply composites and to evaluate their effects on composite structural integrity. The materials investigated were boron/epoxy, boron/polyimide, graphite/low modulus epoxy, graphite/high modulus epoxy, graphite/polyimide and s-glass/epoxy. These materials were fully characterized. Static properties of laminates were also determined. Experimental techniques using embedded strain gages were developed and used to measure residual strains during curing. The extent of relaxation of lamination residual stresses was investigated. It was concluded that the degree of such relaxation is low. The behavior of angle-ply laminates subjected to thermal cycling, tensile load cycling, and combined thermal cycling with tensile load was investigated. In most cases these cycling programs did not have any measurable influence on residual strength and stiffness of the laminates. In the tensile load cycling tests, the graphite/polyimide shows the highest endurance with 10 million cycle runouts at loads up to 90 percent of the static strength.

  10. Elastic torsional buckling of thin-walled composite cylinders

    NASA Technical Reports Server (NTRS)

    Marlowe, D. E.; Sushinsky, G. F.; Dexter, H. B.

    1974-01-01

    The elastic torsional buckling strength has been determined experimentally for thin-walled cylinders fabricated with glass/epoxy, boron/epoxy, and graphite/epoxy composite materials and composite-reinforced aluminum and titanium. Cylinders have been tested with several unidirectional-ply orientations and several cross-ply layups. Specimens were designed with diameter-to-thickness ratios of approximately 150 and 300 and in two lengths of 10 in. and 20 in. The results of these tests were compared with the buckling strengths predicted by the torsional buckling analysis of Chao.

  11. Conceptual Design Studies of Composite AMST

    DTIC Science & Technology

    1974-10-01

    WEIGHT OF THE AIRFRAME THE PROPERTIES OF HIGH -STRENGTH GRAPHITE-EPOXY COMPOSITES (REPRESENTATIVE OF THORNEL 300 FIBERS) WERE USED IN THE APPLICATION...The primary advanced composite material selected was a high -strength graphite-epoxy (Thornel 300/Narmco 5208). Boron-infiltrated aluminum extrusions...Figure Page 25 Trimming Irregular Cutouts in Wing Box Attach Angles ...... 71 26 Hydroforming W-Truss Web Beaded Panels ................ 72 27 Exploded

  12. Hybrid boron nitride-natural fiber composites for enhanced thermal conductivity.

    PubMed

    Xia, Changlei; Garcia, Andres C; Shi, Sheldon Q; Qiu, Ying; Warner, Nathaniel; Wu, Yingji; Cai, Liping; Rizvi, Hussain R; D'Souza, Nandika A; Nie, Xu

    2016-10-05

    Thermal conductivity was dramatically increased after adding natural fiber into hexagonal boron nitride (hBN)/epoxy composites. Although natural fiber does not show high-thermal conductivity itself, this study found that the synergy of natural fiber with hBN could significantly improve thermal conductivity, compared with that solely using hBN. A design of mixtures approach using constant fibers with increasing volume fractions of hBN was examined and compared. The thermal conductivity of the composite containing 43.6% hBN, 26.3% kenaf fiber and 30.1% epoxy reached 6.418 W m -1 K -1 , which was 72.3% higher than that (3.600 W m -1 K -1 ) of the 69.0% hBN and 31.0% epoxy composite. Using the scanning electron microscope (SEM) and micro computed tomography (micro-CT), it was observed that the hBN powders were well distributed and ordered on the fiber surfaces enhancing the ceramic filler's interconnection, which may be the reason for the increase in thermal conductivity. Additionally, the results from mechanical and dynamic mechanical tests showed that performances dramatically improved after adding kenaf fibers into the hBN/epoxy composite, potentially benefiting the composite's use as an engineered material.

  13. Advanced composites: Fabrication processes for selected resin matrix materials

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.

  14. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Straayer, J. W.

    1974-01-01

    A final program summary is reported for test and evaluation activities that were conducted for space shuttle web selection. Large scale advanced composite shear web components were tested and analyzed to evaluate application of advanced composite shear web construction to a space shuttle orbiter thrust structure. The shear web design concept consisted of a titanium-clad + or - 45 deg boron/epoxy web laminate stiffened with vertical boron-epoxy reinforced aluminum stiffeners and logitudinal aluminum stiffening. The design concept was evaluated to be efficient and practical for the application that was studied. Because of the effects of buckling deflections, a requirement is identified for shear buckling resistant design to maximize the efficiency of highly-loaded advanced composite shear webs.

  15. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 3: Major component development

    NASA Technical Reports Server (NTRS)

    Bryson, L. L.; Mccarty, J. E.

    1973-01-01

    Analytical and experimental investigations, performed to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites, are reported. Aluminum-boron-epoxy and titanium-boron-epoxy were used in the design and manufacture of three major structural components. The components were representative of subsonic aircraft fuselage and window belt panels and supersonic aircraft compression panels. Both unidirectional and multidirectional reinforcement concepts were employed. Blade penetration, axial compression, and inplane shear tests were conducted. Composite reinforced structural components designed to realistic airframe structural criteria demonstrated the potential for significant weight savings while maintaining strength, stability, and damage containment properties of all metal components designed to meet the same criteria.

  16. Hybrid boron nitride-natural fiber composites for enhanced thermal conductivity

    NASA Astrophysics Data System (ADS)

    Xia, Changlei; Garcia, Andres C.; Shi, Sheldon Q.; Qiu, Ying; Warner, Nathaniel; Wu, Yingji; Cai, Liping; Rizvi, Hussain R.; D'Souza, Nandika A.; Nie, Xu

    2016-10-01

    Thermal conductivity was dramatically increased after adding natural fiber into hexagonal boron nitride (hBN)/epoxy composites. Although natural fiber does not show high-thermal conductivity itself, this study found that the synergy of natural fiber with hBN could significantly improve thermal conductivity, compared with that solely using hBN. A design of mixtures approach using constant fibers with increasing volume fractions of hBN was examined and compared. The thermal conductivity of the composite containing 43.6% hBN, 26.3% kenaf fiber and 30.1% epoxy reached 6.418 W m-1 K-1, which was 72.3% higher than that (3.600 W m-1 K-1) of the 69.0% hBN and 31.0% epoxy composite. Using the scanning electron microscope (SEM) and micro computed tomography (micro-CT), it was observed that the hBN powders were well distributed and ordered on the fiber surfaces enhancing the ceramic filler’s interconnection, which may be the reason for the increase in thermal conductivity. Additionally, the results from mechanical and dynamic mechanical tests showed that performances dramatically improved after adding kenaf fibers into the hBN/epoxy composite, potentially benefiting the composite’s use as an engineered material.

  17. Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers

    NASA Astrophysics Data System (ADS)

    Yu, Jingjing; Zhao, Wenjie; Wu, Yinghao; Wang, Deliang; Feng, Ruotao

    2018-03-01

    A series of epoxy resin (EP) composite coatings reinforced with functionalized cubic boron nitride (FC-BN) and functionalized hexagonal boron nitride (FH-BN) were fabricated successfully on 316L stainless steel by hand lay-up technique. The structure properties were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The morphologies were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, UMT-3 tribometer and surface profiler were used to investigate tribological behaviors of as-prepared composite coatings under dry friction and seawater conditions respectively. The results demonstrated that the presence of FC-BN or FH-BN fillers could greatly decrease the friction coefficient (COF) and wear rate of epoxy, in addition, composite coatings possess better tribological properties under seawater condition which was attributed to the lubricating effect of seawater. Moreover, FC-BN endows the composite coatings the highest wear resistance, and FH-BN /EP composite coatings exhibited the best friction reduction performance which is attributed to the self-lubricating performance of lamella structure for FH-BN sheet.

  18. Thermal design of composite material high temperature attachments

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An evaluation has been made of the thermal aspects of utilizing advanced filamentary composite materials as primary structures on the shuttle vehicle. The technical objectives of this study are to: (1) establish and design concepts for maintaining material temperatures within allowable limits at TPS attachments and or penetrations applicable to the space shuttle; and (2) verify the thermal design analysis by testing selected concepts. Specific composite materials being evaluated are boron epoxy, graphite/epoxy, boron polyimide, and boron aluminum; graphite/polyimide has been added to this list for property data identification and preliminary evaluation of thermal design problems. The TPS standoff to composite structure attachment over-temperature problem is directly related to TPS maximum surface temperature. To provide a thermally comprehensive evaluation of attachment temperature characteristics, maximum surface temperatures of 900 F, 1200 F, 1800 F, 2500 F and 3000 F are considered in this study. This range of surface temperatures and the high and low maximum temperature capability of the selected composite materials will result in a wide range of thermal requirements for composite/TPS standoff attachments.

  19. Hybrid boron nitride-natural fiber composites for enhanced thermal conductivity

    PubMed Central

    Xia, Changlei; Garcia, Andres C.; Shi, Sheldon Q.; Qiu, Ying; Warner, Nathaniel; Wu, Yingji; Cai, Liping; Rizvi, Hussain R.; D’Souza, Nandika A.; Nie, Xu

    2016-01-01

    Thermal conductivity was dramatically increased after adding natural fiber into hexagonal boron nitride (hBN)/epoxy composites. Although natural fiber does not show high-thermal conductivity itself, this study found that the synergy of natural fiber with hBN could significantly improve thermal conductivity, compared with that solely using hBN. A design of mixtures approach using constant fibers with increasing volume fractions of hBN was examined and compared. The thermal conductivity of the composite containing 43.6% hBN, 26.3% kenaf fiber and 30.1% epoxy reached 6.418 W m−1 K−1, which was 72.3% higher than that (3.600 W m−1 K−1) of the 69.0% hBN and 31.0% epoxy composite. Using the scanning electron microscope (SEM) and micro computed tomography (micro-CT), it was observed that the hBN powders were well distributed and ordered on the fiber surfaces enhancing the ceramic filler’s interconnection, which may be the reason for the increase in thermal conductivity. Additionally, the results from mechanical and dynamic mechanical tests showed that performances dramatically improved after adding kenaf fibers into the hBN/epoxy composite, potentially benefiting the composite’s use as an engineered material. PMID:27703226

  20. Hypervelocity Impact Experiments on Epoxy/Ultra-High Molecular Weight Polyethylene Composite Panels Reinforced with Nanotubes

    NASA Technical Reports Server (NTRS)

    Khatiwada, Suman; Laughman, Jay W.; Armada, Carlos A.; Christiansen, Eric L.; Barrera, Enrique V.

    2012-01-01

    Advanced composites with multi-functional capabilities are of great interest to the designers of aerospace structures. Polymer matrix composites (PMCs) reinforced with high strength fibers provide a lightweight and high strength alternative to metals and metal alloys conventionally used in aerospace architectures. Novel reinforcements such as nanofillers offer potential to improve the mechanical properties and add multi-functionality such as radiation resistance and sensing capabilities to the PMCs. This paper reports the hypervelocity impact (HVI) test results on ultra-high molecular weight polyethylene (UHMWPE) fiber composites reinforced with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT). Woven UHMWPE fabrics, in addition to providing excellent impact properties and high strength, also offer radiation resistance due to inherent high hydrogen content. SWCNT have exceptional mechanical and electrical properties. BNNT (figure 1) have high neutron cross section and good mechanical properties that add multi-functionality to this system. In this project, epoxy based UHMWPE composites containing SWCNT and BNNT are assessed for their use as bumper shields and as intermediate plates in a Whipple Shield for HVI resistance. Three composite systems are prepared to compare against one another: (I) Epoxy/UHMWPE, (II) Epoxy/UHMWPE/SWCNT and (III) Epoxy/UHMWPE/SWCNT/BNNT. Each composite is a 10.0 by 10.0 by 0.11 cm3 panel, consisting of 4 layers of fabrics arranged in cross-ply orientation. Both SWCNT and BNNT are 0.5 weight % of the fabric preform. Hypervelocity impact tests are performed using a two-stage light gas gun at Rice University

  1. Burning characteristics and fiber retention of graphite/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1980-01-01

    Graphite fiber reinforced resin matrix composites were subjected to controlled burning conditions to determine their burning characteristics and fiber retention properties. Two types of burning equipment were used. Small samples were burned with a natural gas fired torch to study the effects of fiber orientation and structural flaws such as holes and slits that were machined into the laminates. Larger laminate samples were burned in a Heat Release Rate Calorimeter. Unidirectional epoxy/graphite and polyimide/graphite composites and boron powder filled samples of each of the two composite systems were burn tested and exposed to a thermal radiation. The effects of fiber orientation, flaws, and boron filler additives to the resins were evaluated. A high char forming polyimide resin was no more effective in retaining graphite fibers than a low char forming epoxy resin when burning in air.

  2. Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites.

    PubMed

    Wang, Xue-Bin; Weng, Qunhong; Wang, Xi; Li, Xia; Zhang, Jun; Liu, Fei; Jiang, Xiang-Fen; Guo, Hongxuan; Xu, Ningsheng; Golberg, Dmitri; Bando, Yoshio

    2014-09-23

    Electrically insulating boron nitride (BN) nanosheets possess thermal conductivity similar to and thermal and chemical stabilities superior to those of electrically conductive graphenes. Currently the production and application of BN nanosheets are rather limited due to the complexity of the BN binary compound growth, as opposed to massive graphene production. Here we have developed the original strategy "biomass-directed on-site synthesis" toward mass production of high-crystal-quality BN nanosheets. The strikingly effective, reliable, and high-throughput (dozens of grams) synthesis is directed by diverse biomass sources through the carbothermal reduction of gaseous boron oxide species. The produced BN nanosheets are single crystalline, laterally large, and atomically thin. Additionally, they assemble themselves into the same macroscopic shapes peculiar to original biomasses. The nanosheets are further utilized for making thermoconductive and electrically insulating epoxy/BN composites with a 14-fold increase in thermal conductivity, which are envisaged to be particularly valuable for future high-performance electronic packaging materials.

  3. Buckling behavior of composite cylinders subjected to compressive loading

    NASA Technical Reports Server (NTRS)

    Carri, R. L.

    1973-01-01

    Room temperature compressive buckling strengths of eight cylinders, four boron-epoxy and four boron-epoxy reinforced-titanium, with diameter to thickness ratios ranging between 40 and 67 are determined experimentally and compared with analytical predictions. Numerical buckling strengths are presented for Donnell's, Flugge's and Sanders' shell theories for anisotropic and orthotropic material cases. Comparison of analytical predictions with experimental results indicates good agreement and the recommended correlation factor suggested in the literature is applicable for design. For the cylinders tested, the correlation between experiment and theory ranged from 0.73 to 0.97.

  4. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    NASA Astrophysics Data System (ADS)

    Cui, Mingjun; Ren, Siming; Chen, Jia; Liu, Shuan; Zhang, Guangan; Zhao, Haichao; Wang, Liping; Xue, Qunji

    2017-03-01

    Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT-) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT-, as proved by Raman and UV-vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 106 Ω cm2) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  5. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity.

    PubMed

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-19

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.

  6. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity

    PubMed Central

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-01

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation. PMID:26783258

  7. Shear-Assisted Production of Few-Layer Boron Nitride Nanosheets by Supercritical CO2 Exfoliation and Its Use for Thermally Conductive Epoxy Composites.

    PubMed

    Tian, Xiaojuan; Li, Yun; Chen, Zhuo; Li, Qi; Hou, Liqiang; Wu, Jiaye; Tang, Yushu; Li, Yongfeng

    2017-12-19

    Boron nitride nanosheets (BNNS) hold the similar two-dimensional structure as graphene and unique properties complementary to graphene, which makes it attractive in application ranging from electronics to energy storage. The exfoliation of boron nitride (BN) still remains challenge and hinders the applications of BNNS. In this work, the preparation of BNNS has been realized by a shear-assisted supercritical CO 2 exfoliation process, during which supercritical CO 2 intercalates and diffuses between boron nitride layers, and then the exfoliation of BN layers is obtained in the rapid depressurization process by overcoming the van der Waals forces. Our results indicate that the bulk boron nitride has been successfully exfoliated into thin nanosheets with an average 6 layers. It is found that the produced BNNS is well-dispersed in isopropyl alcohol (IPA) with a higher extinction coefficient compared with the bulk BN. Moreover, the BNNS/epoxy composite used as thermal interface materials has been prepared. The introduction of BNNS results in a 313% enhancement in thermal conductivity. Our results demonstrate that BNNS produced by supercritical CO 2 exfoliation show great potential applications for heat dissipation of high efficiency electronics.

  8. Nanostructure of tetrafunctional epoxy resins and composites: Correlation to moisture absorption properties

    NASA Astrophysics Data System (ADS)

    Bolan, Brett Andrew

    The effect that changes in network topology, while maintaining a constant network polarity (i.e. thermodynamic driving force was kept constant), had upon the moisture absorption properties of an aerospace grade tetrafunctional epoxy (TGMDA) cured with multifunctional amines were investigated. Utilizing Positron Annihilation Lifetime Spectroscopy (PALS) to characterize the nanoscale structure of these epoxies, it was found that as the "static" hole volume (a measurement of packing defects at 0K) increased so did the equilibrium uptake. PALS studies of one of these resins cured to varying extents, found that this static amount increased with degree of cure indicating that the network becomes more open as a direct consequence of crosslinking. Polar groups, which are the attractive force for diffusion, are in the vicinity of these crosslinks, therefore it is believed that the increase in static hole volume results in exposing more polar groups for absorption. The diffusion coefficient, which is representative of the kinetic aspect of diffusion, was also investigated. It was discovered that the amount of nanohole volume in the polymer; whether the total, the static, or dynamic (i.e. thermally activated) does not correlate to the diffusion coefficient in anyway. Furthermore, at an isotherm the diffusion coefficients for all these materials were relatively constant. From this it is hypothesized that it is the similar sub-Tsb{g} motions of these resins which is the rate limiting step in diffusion. This was bolstered by the fact that the activation energy for diffusion and for the sub-Tsb{g} motions for these epoxies are of the same order of magnitude. The nanostructure of fiber reinforced epoxy composites (i.e. a boron/epoxy and a graphite/epoxy) were probed with the bulk PALS technique as well. It was observed that for the graphite/epoxy composite and its flash (i.e. no fibers present) cured under identical conditions, that the nanoholes in the composite were larger than those present in the flash at temperatures below the epoxy's Tsb{g}. Curiously the boron/epoxy composite and its flash showed an opposite trend. Several potential explanations were examined. The only viable explanation for the observed nanostructural differences between the flash and the resin in these composites utilizes a micromechanics approach involving the CTE mismatch between the fibers and the matrix material. In this approach it is proposed that the fibers in the composite act as a constraint, preventing the nanohole from freely contracting (upon cooling through Tsb{g}) in the axial direction, while Poisson's ratio forces the holes to contract more in the transverse direction than the unrestrained hole in the flash. Therefore the resultant nanoholes in the composite maybe elongated in the fiber direction and shortened in the transverse direction when below the curing temperature. When the PALS technique probed these elongated holes it averaged their dimensions (but weighted the shortest dimension more heavily), thereby yielding the observed results. Despite slightly smaller static holes in the boron/epoxy composite than its flash, no difference in equilibrium uptake was noticed. The diffusion coefficient for the epoxy resin in this composite was found to be an order of magnitude higher than its flash. Nanostructure is not believed to be the cause of this but rather the glass fiber scrim cloth utilized in the processing of the prepreg.

  9. Novel radiation-resistant glass fiber/epoxy composite for cryogenic insulation system

    NASA Astrophysics Data System (ADS)

    Wu, Z. X.; Zhang, H.; Yang, H. H.; Chu, X. X.; Li, L. F.

    2010-08-01

    A new radiation-resistant epoxy resin system was developed that has low viscosity and long working time at 45 °C. The system consists of triglycidyl-p-aminophenol (TGPAP) epoxide, isopropylidenebisphenol bis[(2-glycidyloxy-3-n-butoxy)-1-propylether] (IPBE) epoxide and diethyl toluene diamine (DETD). Boron-free glass fiber composites of epoxy resin with different ratio of TGPAP/IPBE/DETD were prepared by vacuum press impregnation. The ratio of TGPAP/IPBE affected the working time and the viscosity at the impregnation. The mechanical properties of the composites at 300 K and at 77 K were measured before and after 60Co γ-ray irradiation of 1 MGy at ambient temperature. The γ-ray radiation scarcely affected the properties of the composites.

  10. Evaluation of a metal fuselage panel selectively reinforced with filamentary composites for space shuttle application

    NASA Technical Reports Server (NTRS)

    Wennhold, W. F.

    1974-01-01

    The use of high strength and modulus of advanced filamentary composites to reduce the structural weight of aerospace vehicles was investigated. Application of the technology to space shuttle components was the primary consideration. The mechanical properties for the boron/epoxy, graphite/epoxy, and polyimide data are presented. Structural testing of two compression panel components was conducted in a simulated space shuttle thermal environment. Results of the tests are analyzed.

  11. Development and fabrication of a graphite polyimide box beam

    NASA Technical Reports Server (NTRS)

    Nadler, M. A.; Darms, F. J.

    1972-01-01

    The state-of-the-art of graphite/polyimide structures was evaluated and key design and fabrication issues to be considered in future hardware programs are defined. The fabrication and testing at 500 F of a graphite/polyimide center wing box beam using OV-10A aircraft criteria was accomplished. The baseline design of this box was developed in a series of studies of other advanced composite materials: glass/epoxy, boron/epoxy, and boron/polyimide. The use of this basic design permits ready comparison of the performance of graphite/polyimide with these materials. Modifications to the baseline composite design were made only in those areas effected by the change of materials. Processing studies of graphite fiber polyimide resins systems resulted in the selection of a Modmor II/Gemon L material.

  12. Evaluation of cryogenic insulation materials and composites for use in nuclear radiation environments

    NASA Technical Reports Server (NTRS)

    Bullock, R. E.

    1972-01-01

    The following subjects are studied: (1) composite materials tests; (2) test of liquid level sensors and fission couples; (3) test of valve-seal materials; (4) boron epoxy composites; (5) radiation analysis of explosive materials and bifuels for RNS applications; and (6) test of thermal insulation.

  13. Epoxy-borax-coal tar composition for a radiation protective, burn resistant drum liner and centrifugal casting method

    DOEpatents

    Taylor, Robert S.; Boyer, Norman W.

    1980-01-01

    A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of Borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% Borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  14. Epoxy-borax-coal tar composition for a radiation protective, burn resistant drum liner and centrifugal casting method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, N.W.; Taylor, R.S.

    1980-10-28

    A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  15. Application of boron/epoxy reinforced aluminum stringers and boron/epoxy skid gear for the CH54B helicopter tail cone. Phase 2: Fabrication, inspection and flight test

    NASA Technical Reports Server (NTRS)

    Welge, R. T.

    1972-01-01

    A CH-54B Skycrane helicopter was fabricated with boron/epoxy reinforced stringers in the tail cone and boron/epoxy tubes in the tail skid. The fabrication of the tail cone was made with conventional tooling, production shop personnel, and no major problems. The flight test program includes a stress and vibration survey using strain gages and vibration transducers located in critical areas. The program to inspect and monitor the reliability of the components is discussed.

  16. Prediction of Fatigue Crack Growth of Repaired Al-alloy Structures with Double Sides

    NASA Astrophysics Data System (ADS)

    Benachour, M.; Benachour, N.; Benguediab, M.; Seriari, F. Z.

    During navigation, aircrafts are subject to fatigue damage. In order to rehabilitate damaged structures some techniques are often used to resolve this problem. Efficient repair technique, called composite patch repair, was used to reinforce the damaged structures and stop cracks. In this paper, effect of composite patch repair (Boron/Epoxy) on fatigue crack growth (FCG) was investigated on 2219 T62 Al-alloy. Effects of double patch repair in single notch tensile specimen (SENT) on FCG were studied and compared to single patch repair. Results show beneficial effect of patch repair on fatigue life and FCGR in comparison with the un-patched specimen. In addition, effect of mean stress characterized by stress ratio was highlighted. Fatigue behavior of investigated Al-alloy was compared.

  17. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 3 Summary report: Shear web component testing and analysis

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Straayer, J. W.

    1973-01-01

    Three large scale advanced composite shear web components were tested and analyzed to evaluate application of the design concept to a space shuttle orbiter thrust structure. The shear web design concept consisted of a titanium-clad + or - 45 deg boron/epoxy web laminate stiffened with vertical boron/epoxy reinforced aluminum stiffeners. The design concept was evaluated to be efficient and practical for the application that was studied. Because of the effects of buckling deflections, a requirement is identified for shear buckling resistant design to maximize the efficiency of highly-loaded advanced composite shear webs. An approximate analysis of prebuckling deflections is presented and computer-aided design results, which consider prebuckling deformations, indicate that the design concept offers a theoretical weight saving of 31 percent relative to all metal construction. Recommendations are made for design concept options and analytical methods that are appropriate for production hardware.

  18. X-ray method shows fibers fail during fatigue of boron-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Roderick, G. L.; Whitcomb, J. D.

    1975-01-01

    A method proposed for studying progressive fiber fracture in boron-epoxy laminates during fatigue tests is described. It is based on the intensity of X-ray absorption of the tungsten core in the boron filaments as contrasted with that of the boron and epoxy matrix. When the laminate is X-rayed, the image of the tungsten in the born filaments is recorded on a photographic plate. Breaks in the boron laminates can be easily identified by magnifying the photographic plates. The method is suitable for studying broken boron filaments in most matrix materials, and may supply key information for developing realistic fatigue and fracture models.

  19. Hybrid MoS2/h-BN Nanofillers As Synergic Heat Dissipation and Reinforcement Additives in Epoxy Nanocomposites.

    PubMed

    Ribeiro, Hélio; Trigueiro, João Paulo C; Silva, Wellington M; Woellner, Cristiano F; Owuor, Peter S; Cristian Chipara, Alin; Lopes, Magnovaldo C; Tiwary, Chandra S; Pedrotti, Jairo J; Villegas Salvatierra, Rodrigo; Tour, James M; Chopra, Nitin; Odeh, Ihab N; Silva, Glaura G; Ajayan, Pulickel M

    2017-09-26

    Two-dimensional (2D) nanomaterials as molybdenum disulfide (MoS 2 ), hexagonal boron nitride (h-BN), and their hybrid (MoS 2 /h-BN) were employed as fillers to improve the physical properties of epoxy composites. Nanocomposites were produced in different concentrations and studied in their microstructure, mechanical and thermal properties. The hybrid 2D mixture imparted efficient reinforcement to the epoxy leading to increases of up to 95% in tensile strength, 60% in ultimate strain, and 58% in Young's modulus. Moreover, an enhancement of 203% in thermal conductivity was achieved for the hybrid composite as compared to the pure polymer. The incorporation of MoS 2 /h-BN mixture nanofillers in epoxy resulted in nanocomposites with multifunctional characteristics for applications that require high mechanical and thermal performance.

  20. A Study of the Effect of Adhesive and Matrix Stiffnesses on the Axial, Normal, and Shear Stress Distributions of a Boron-epoxy Reinforced Composite Joint. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Howell, W. E.

    1974-01-01

    The mechanical properties of a symmetrical, eight-step, titanium-boron-epoxy joint are discussed. A study of the effect of adhesive and matrix stiffnesses on the axial, normal, and shear stress distributions was made using the finite element method. The NASA Structural Analysis Program (NASTRAN) was used for the analysis. The elastic modulus of the adhesive was varied from 345 MPa to 3100 MPa with the nominal value of 1030 MPa as a standard. The nominal values were used to analyze the stability of the joint. The elastic moduli were varied to determine their effect on the stresses in the joint.

  1. Materials Research in Support of Superconducting Machinery V

    DTIC Science & Technology

    1976-04-01

    GTAW , EB, GMAW), brazing, and soldering from 4-300 K. Properties include tensile, notched tensile, fracture toughness, and fatigue crack growth...include: aluminum alloys 1100, 2014, 2219; a nicke1- chromium -iron alloy; iron-47.5 nickel; and the composite materials boron/aluminum, boron/epoxy, S...nickel" by H. M. Ledbetter and D. T. Read. (3) N. jkel- chromium -iron-molybdenum alloy. There is an accompanying reprint of our previously described

  2. Acoustic emission studies of large advanced composite rocket motor cases.

    NASA Technical Reports Server (NTRS)

    Robinson, E. Y.

    1973-01-01

    Acoustic emission (AE) patterns were measured during pressure testing of advanced composite rocket motor cases made of boron/epoxy and graphite/epoxy. Both accelerometers and high frequency AE transducers were used, and both frequency spectrum and amplitude distribution were studied. The AE patterns suggest that precursor emission might be used in certain cases to anticipate failure. The technique of hold-cycle AE monitoring was also evaluated and could become a valuable decision gate for test continuation/termination. Data presented show similarity of accelerometers and AE transducer responses despite the different frequency response, and suggest that structural AE phenomena are broadband.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, G.J.; Brown, G.G.; Waterman, D.D.

    The feasibility of prestressing commercial boron/epoxy and graphite/epoxy prepreg material to higher strengths and lower property dispersions is demonstrated. Its practical application as an on-line process for improving quality levels is possible with minor modifications to current experimental practice. The mechanics of the bendstressing method affects a controlled alteration in the fiber defect content to the extent that composite improvements can be achieved approaching the inherent fiber quality with dispersions in properties reduced to the 1 to 2% range. (Author, modified-PL)

  4. Properties of radiation stable, low viscosity impregnating resin for cryogenic insulation system

    NASA Astrophysics Data System (ADS)

    Wu, Zhixiong; Zhang, Hao; Yang, Huihui; Chu, Xinxin; Song, Yuntao; Wu, Weiyue; Liu, Huajun; Li, Laifeng

    2011-06-01

    Impregnating resins in fusion magnet technology are required to be radiation stable, low viscosity, long usable life and high toughness. To meet these objectives, we developed a new epoxy based composite which consists of triglycidyl-p-aminophenol (TGPAP) epoxy resin and isopropylidenebisphenol bis[(2-glycidyloxy-3-n-butoxy)-1-propylether] (IPBE). The ratio of TGPAP to IPBE can be varied to achieve desired viscosity and working time. The boron-free glass fiber reinforced composites were prepared by vacuum pressure impregnation. The radiation resistance was evaluated by 60Co γ-ray irradiation of 1 MGy at ambient temperature. The mechanical properties of the composites have been measured at room temperature and at 77 K.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, D.J.

    Three types of boron/epoxy prepreg tape were prestressed to fracture weak sites along the fiber by winding over 0.3- to 0.6-inch diameter rollers prior to lamination. The prestressed prepreg was then laminated, and design allowable testing was conducted to determine if mechanical strength properties are increased and data scatter is reduced by prestressing. The types of prepreg studied were standard 'Rigidite' 5505/4 prepreg, carbon substrate boron fiber prepreg, and a prepreg made from 'defect' tungsten substrate boron that was manufactured in a high-speed, low-cost, production process. The strength of angleply composites of both 'Rigidite' 5505/4 and carbon substrate boron compositesmore » were unaffected by prestressing. A study was made to determine if prepreg costs could be reduced by manufacturing low-cost 'defect' boron fiber and prestressing it to improve its properties. The results of this study were inconclusive. The test results show prestressing marginally improved some composite properties while others were reduced. On 'Rigidite' 5505/4 unidirectional composites, fatigue strength was significantly improved by prestressing, while longitudinal tensile strength was reduced at room temperature and 350 F. On unidirectional carbon substrate boron composites, the longitudinal tensile strength at room temperature and 350F was increased with attendant variability, while fatigue strength at high stress levels was reduced but not affected at low stress levels.« less

  6. Composite materials research and education program: The NASA-Virginia Tech composites program

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1980-01-01

    Major areas of study include: (1) edge effects in finite width laminated composites subjected to mechanical, thermal and hygroscopic loading with temperature dependent material properties and the influence of edge effects on the initiation of failure; (2) shear and compression testing of composite materials at room and elevated temperatures; (3) optical techniques for precise measurement of coefficients of thermal expansion of composites; (4) models for the nonlinear behavior of composites including material nonlinearity and damage accumulation and verification of the models under biaxial loading; (5) compressive failure of graphite/epoxy plates with circular holes and the buckling of composite cylinders under combined compression and torsion; (6) nonlinear mechanical properties of borsic/aluminum, graphite/polyimide and boron/aluminum; (7) the strength characteristics of spliced sandwich panels; and (8) curved graphite/epoxy panels subjected to internal pressure.

  7. Crack propagation in aluminum sheets reinforced with boron-epoxy

    NASA Technical Reports Server (NTRS)

    Roderick, G. L.

    1979-01-01

    An analysis was developed to predict both the crack growth and debond growth in a reinforced system. The analysis was based on the use of complex variable Green's functions for cracked, isotropic sheets and uncracked, orthotropic sheets to calculate inplane and interlaminar stresses, stress intensities, and strain-energy-release rates. An iterative solution was developed that used the stress intensities and strain-energy-release rates to predict crack and debond growths, respectively, on a cycle-by-cycle basis. A parametric study was made of the effects of boron-epoxy composite reinforcement on crack propagation in aluminum sheets. Results show that the size of the debond area has a significant effect on the crack propagation in the aluminum. For small debond areas, the crack propagation rate is reduced significantly, but these small debonds have a strong tendency to enlarge. Debond growth is most likely to occur in reinforced systems that have a cracked metal sheet reinforced with a relatively thin composite sheet.

  8. Enhancement of thermal conductive pathway of boron nitride coated polymethylsilsesquioxane composite.

    PubMed

    Kim, Gyungbok; Ryu, Seung Han; Lee, Jun-Tae; Seong, Ki-Hun; Lee, Jae Eun; Yoon, Phil-Joong; Kim, Bum-Sung; Hussain, Manwar; Choa, Yong-Ho

    2013-11-01

    We report here in the fabrication of enhanced thermal conductive pathway nanocomposites of boron nitride (BN)-coated polymethylsilsesquioxane (PMSQ) composite beads using isopropyl alcohol (IPA) as a mixing medium. Exfoliated and size-reduced boron nitride particles were successfully coated on the PMSQ beads and explained by surface charge differences. A homogeneous dispersion and coating of BN on the PMSQ beads using IPA medium was confirmed by SEM. Each condition of the composite powder was carried into the stainless still mould and then hot pressed in an electrically heated hot press machine. Three-dimensional percolation networks and conductive pathways created by exfoliated BN were precisely formed in the nanocomposites. The thermal conductivity of nanocomposites was measured by multiplying specific gravity, specific heat, and thermal diffusivity, based upon the laser flash method. Densification of the composite resulted in better thermal properties. For an epoxy reinforced composite with 30 vol% BN and PMSQ, a thermal conductivity of nine times higher than that of pristine PMSQ was observed.

  9. Durability of commercial aircraft and helicopter composite structures

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified.

  10. Influence of stress interaction on the behavior of off-axis unidirectional composites

    NASA Technical Reports Server (NTRS)

    Pindera, M. J.; Herakovich, C. T.

    1980-01-01

    The yield function for plane stress of a transversely isotropic composite lamina consisting of stiff, linearly elastic fibers and a von Mises matrix material is formulated in terms of Hill's elastic stress concentration factors and a single plastic constraint parameter. The above are subsequently evaluated on the basis of observed average lamina and constituent response for the Avco 5505 boron epoxy system. It is shown that inclusion of residual stresses in the yield function together with the incorporation of Dubey and Hillier's concept of generalized yield stress for anisotropic media in the constitutive equation correctly predicts the trends observed in experiments. The incorporation of the strong axial stress interaction necessary to predict the correct trends in the shear response is directly traced to the high residual axial stresses in the matrix induced during fabrication of the composite.

  11. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    NASA Technical Reports Server (NTRS)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  12. Fiber reinforced solids possessing great fracture toughness: The role of interfacial strength

    NASA Technical Reports Server (NTRS)

    Atkins, A. G.

    1975-01-01

    The results of angle-ply investigations for strength and toughness of brittle fiber/brittle filament composites are presented. General results are discussed for both unidirectional and angle-ply intermittently bonded boron/epoxy composites as affected by soaking and freezing water environments. A description of and the operating instructions are included for the modified 230 mm (9 inch) wide intermittent coating tape making apparatus.

  13. Boron--epoxy tubular structure members

    NASA Technical Reports Server (NTRS)

    Shakespeare, W. B. J.; Nelson, P. T.; Lindkvist, E. C.

    1973-01-01

    Composite materials fabricate thin-walled tubular members which have same load-carrying capabilities as aluminum, titanium, or other metals, but are lighter. Interface between stepped end fitting and tube lends itself to attachments by primary as well as secondary bonding. Interlaminar shear and hoop stress buildup in attachment at end fitting is avoided.

  14. Fatigue of notched fiber composite laminates. Part 2: Analytical and experimental evaluation

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. V.; Mclaughlin, P. V., Jr.; Pipes, R. B.

    1976-01-01

    The analytical/experimental correlation study was performed to develop an understanding of the behavior of notched Boron/epoxy laminates subjected to tension/tension fatigue loading. It is postulated that the fatigue induced property changes (stiffness as well as strength) of the laminate can be obtained from the lamina fatigue properties. To that end, the Boron/epoxy lamina static and fatigue data (lifetime, residual stiffness and strength) were obtained initially. The longitudinal and transverse tension data were determined from the (0) and (90) laminate tests while the in-plane shear data were obtained from the (+ or - 45) sub s laminates. The static tests obtained the notched strength and mode of failure while the fatigue tests determined lifetime, damage propagation and residual strength. The failure in static tension occurred in a transverse crack propagation mode.

  15. Proceedings of the Army Symposium on Solid Mechanics, 1976 - Composite Materials: The Influence of Mechanics of Failure on Design

    DTIC Science & Technology

    1976-09-01

    SOFTENING STRIP DESIGN CONCEPTS Initial studies of softening strip design concepts were presented by Eisenmann (8) in boron/epoxy laminates. His...Metals," Foreign Object Impact Damage to Composites, ASTM-STP-568, 1974. 8. Eisenmann , J. R., and Kaminski, B. E., "Fracture Control for Composite...REFERENCES 1. Waddoups, M.E., Eisenmann , J.R., and Kaminski, B.E., Journal of Composite Materials, Vol. 5, October 1971, pp. 446-454. 2. Whitney

  16. Additional results on space environmental effects on polymer matrix composites: Experiment A0180

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.

    1992-01-01

    Additional experimental results on the atomic oxygen erosion of boron, Kevlar, and graphite fiber reinforced epoxy matrix composites are presented. Damage of composite laminates due to micrometeoroid/debris impacts is also examined with particular emphasis on the relationship between damage area and actual hole size due to particle penetration. Special attention is given to one micrometeoroid impact on an aluminum base plate which resulted in ejecta visible on an adjoining vertical flange structure.

  17. Computational Design of Epoxy/ Boron Carbide Nanocomposites for Radiation Shielding Applications

    NASA Astrophysics Data System (ADS)

    Bejagam, Karteek; Galehdari, Nasim; Espinosa, Ingrid; Deshmukh, Sanket A.; Kelkar, Ajit D.

    An individual working in industries that include nuclear power plants, healthcare industry, and aerospace are knowingly or unknowingly exposed to radiations of different energies. Exposure to high-energy radiations such as α/ β particle emissions or gamma ray electromagnetic radiations enhances the health risks that can lead to carcinogenesis, cardiac problems, cataracts, and other acute radiation syndromes. The best possible solution to protect one from the exposure to radiations is shielding. In the present study, we have developed a new algorithm to generate a range of different structures of Diglycidyl Ether of Bisphenol F (EPON 862) and curing agent Diethylene Toluene Diamine (DETDA) resins with varying degrees of crosslinking. 3, 5, and 10 weight percent boron carbide was employed as filling materials to study its influence on the thermal and mechanical properties of composite. We further conduct the reactive molecular dynamics (RMD) simulations to investigate the effect of radiation exposure on the structural, physical, and mechanical properties of these Epoxy/Boron Carbide nanocomposites. Where possible the simulation results were compared with the experimental data.

  18. Monitoring Fiber Stress During Curing of Single Fiber Glass- and Graphite-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Madhukar, Madhu S.; Kosuri, Ranga P.; Bowles, Kenneth J.

    1994-01-01

    The difference in thermal expansion characteristics of epoxy matrices and graphite fibers can produce significant residual stresses in the fibers during curing of composite materials. Tests on single fiber glass-epoxy and graphite-epoxy composite specimens were conducted in which the glass and graphite fibers were preloaded in tension, and the epoxy matrix was cast around the fibers. The fiber tension was monitored while the matrix was placed around the fiber and subjected to the temperature-time curing cycle. Two mechanisms responsible for producing stress in embedded fibers were identified as matrix thermal expansion and contraction and matrix cure shrinkage. A simple analysis based on the change in fiber tension during the curing cycle was conducted to estimate the produced stresses. Experimental results on single fiber glass- and graphite-epoxy composites show that the fiber was subjected to significant tensile stresses when the temperature was raised from the first to the second dwell period. When initial fiber pretension is about 60 percent of the fiber failure load, these curing-induced stresses can cause tensile fracture of the embedded fiber.

  19. Material for radioactive protection

    DOEpatents

    Taylor, R.S.; Boyer, N.W.

    A boron containing burn resistant, low-level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source is described. The material is basically composed of borax in the range of 25 to 50%, coal tar in the range of 25 to 37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  20. Boron epoxy rocket motor case program

    NASA Technical Reports Server (NTRS)

    Stang, D. A.

    1971-01-01

    Three 28-inch-diameter solid rocket motor cases were fabricated using 1/8 inch wide boron/epoxy tape. The cases had unequal end closures (4-1/8-inch-diameter forward flanges and 13-inch-diameter aft flanges) and metal attachment skirts. The flanges and skirts were titanium 6Al-4V alloy. The original design for the first case was patterned after the requirements of the Applications Technology Satellite apogee kick motor. The second and third cases were designed and fabricated to approximate the requirements of a small Applications Technology Satellite apogee kick motor. The program demonstrated the feasibility of designing and fabricating large-scale filament-wound solid propellant rocket motor cases with boron/epoxy tape.

  1. High-Nitrogen-Based Pyrotechnics: Longer- and Brighter-Burning, Perchlorate-Free, Red-Light Illuminants for Military and Civilian Applications

    DTIC Science & Technology

    2011-01-01

    combustion of these materials. To address the aforementioned perchlorate issues, an effort was initiated by ARDEC to remove potassium per- chlorate ...with acceptable burn times for pyrotechnic applications by using potassium nitrate– amorphous boron–crystalline boron/boron carbide–epoxy binder mixtures...3,4] Moreover, it was discovered by ARDEC that a potassium nitrate–boron carbide–epoxy binder mix- ture alone was able to generate suitable green

  2. Thermal design of composite materials high temperature attachments

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The thermal aspects of using filamentary composite materials as primary airframe structures on advanced atmospheric entry spacecraft such as the space shuttle vehicle were investigated to identify and evaluate potential design approaches for maintaining composite structures within allowable temperature limits at thermal protection system (TPS) attachments and/or penetrations. The investigation included: (1) definition of thermophysical data for composite material structures; (2) parametric characterization and identification of the influence of the aerodynamic heating and attachment design parameters on composite material temperatures; (3) conceptual design, evaluation, and detailed thermal analyses of temperature limiting design concepts; and (4) the development of experimental data for assessment of the thermal design methodologies and data used for evaluation of the temperature-limiting design concepts. Temperature suppression attachment concepts were examined for relative merit. The simple isolator was identified as the most weight-effective concept and was selected for detail design, thermal analysis, and testing. Tests were performed on TPS standoff attachments to boron/aluminum, boron/polyimide and graphite/epoxy composite structures.

  3. Progress toward Making Epoxy/Carbon-Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Tiano, Thomas; Roylance, Margaret; Gassner, John; Kyle, William

    2008-01-01

    A modicum of progress has been made in an effort to exploit single-walled carbon nanotubes as fibers in epoxy-matrix/fiber composite materials. Two main obstacles to such use of carbon nanotubes are the following: (1) bare nanotubes are not soluble in epoxy resins and so they tend to agglomerate instead of becoming dispersed as desired; and (2) because of lack of affinity between nanotubes and epoxy matrices, there is insufficient transfer of mechanical loads between the nanotubes and the matrices. Part of the effort reported here was oriented toward (1) functionalization of single-walled carbon nanotubes with methyl methacrylate (MMA) to increase their dispersability in epoxy resins and increase transfer of mechanical loads and (2) ultrasonic dispersion of the functionalized nanotubes in tetrahydrofuran, which was used as an auxiliary solvent to aid in dispersing the functionalized nanotubes into a epoxy resin. In another part of this effort, poly(styrene sulfonic acid) was used as the dispersant and water as the auxiliary solvent. In one experiment, the strength of composite of epoxy with MMA-functionalized-nanotubes was found to be 29 percent greater than that of a similar composite of epoxy with the same proportion of untreated nanotubes.

  4. Analytical and experimental studies of graphite-epoxy and boron-epoxy angle ply laminates in compression

    NASA Technical Reports Server (NTRS)

    Weller, T.

    1977-01-01

    The applicability and adequacy of several computer techniques in predicting satisfactorily the nonlinear/inelastic response of angle ply laminates were evaluated. The analytical predictions were correlated with the results of a test program on the inelastic response under axial compression of a large variety of graphite-epoxy and boron-epoxy angle ply laminates. These comparison studies indicate that neither of the abovementioned analyses can satisfactorily predict either the mode of response or the ultimate stress value corresponding to a particular angle ply laminate configuration. Consequently, also the simple failure mechanisms assumed in the analytical models were not verified.

  5. The fabrication, testing and delivery of boron/epoxy and graphite/epoxy nondestructive test standards

    NASA Technical Reports Server (NTRS)

    Pless, W. M.; Lewis, W. H.

    1971-01-01

    A description is given of the boron/epoxy and graphite/epoxy nondestructive test standards which were fabricated, tested and delivered to the National Aeronautics and Space Administration. Detailed design drawings of the standards are included to show the general structures and the types and location of simulated defects built into the panels. The panels were laminates with plies laid up in the 0 deg, + or - 45 deg, and 90 deg orientations and containing either titanium substrates or interlayered titanium perforated shims. Panel thickness was incrementally stepped from 2.36 mm (0.093 in.) to 12.7 mm (0.500 in.) for the graphite/epoxy standards, and from 2.36 mm (0.093 in.) to 6.35 mm (0.25 in.) for the boron/epoxy standards except for the panels with interlayered shims which were 2.9 mm (0.113 in.) maximum thickness. The panel internal conditions included defect free regions, resin variations, density/porosity variations, cure variations, delaminations/disbonds at substrate bondlines and between layers, inclusions, and interlayered shims. Ultrasonic pulse echo C-scan and low-kilovoltage X-ray techniques were used to evaluate and verify the internal conditions of the panels.

  6. Preparation of high-content hexagonal boron nitride composite film and characterization of atomic oxygen erosion resistance

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Min; Gu, Yizhuo; Wang, Shaokai; Zhang, Zuoguang

    2017-04-01

    Space aircrafts circling in low earth orbit are suffered from highly reactive atomic oxygen (AO). To shield AO, a flexible thin film with 80 wt.% hexagonal boron nitride (h-BN) and h-BN/epoxy film were fabricated through vacuum filtration and adding nanofibrillated cellulose fibers. H-BN nanosheets were hydroxylated for enhancing interaction in the films. Mass loss and erosion yield at accumulated AO fluence about 3.04 × 1020 atoms/cm2 were adopted to evaluate the AO resistance properties of the films. A carpet-like rough surface, chemical oxidations and change in crystal structure of h-BN were found after AO treatment, and the degrading mechanism was proposed. The mass loss and erosion yield under AO attack were compared between h-BN film and h-BN/epoxy film, and the comparison was also done for various types of shielding AO materials. Excellent AO resistance property of h-BN film is shown, and the reasons are analyzed.

  7. Preliminary burn and impact tests of hybrid polymeric composites. [preventing graphite fiber release

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Brewer, W. D.

    1978-01-01

    Free graphite fibers released into the environment from resin matrix composite components, as a result of fire and/or explosion, pose a potential hazard to electrical equipment. An approach to prevent the fibers from becoming airborne is to use hybrid composite materials which retain the fibers at the burn site. Test results are presented for three hybrid composites that were exposed to a simulation of an aircraft fire and explosion. The hybrid systems consisted of 16 plies of graphite-epoxy with two plies of Kevlar-, S-glass-, or boron-epoxy on each face. Two different test environments were used. In one environment, specimens were heated by convection only, and then impacted by a falling mass. In the other environment, specimens were heated by convection and by radiation, but were not impacted. The convective heat flux was about 100-120 kW/m in both environments and the radiative flux was about 110 kW/sq m.

  8. Evaluation of bonded boron/epoxy doublers for commercial aircraft aluminum structures

    NASA Technical Reports Server (NTRS)

    Belason, Bruce; Rutherford, Paul; Miller, Matthew; Raj, Shreeram

    1994-01-01

    An 18 month laboratory test and stress analysis program was conducted to evaluate bonded boron/epoxy doublers for repairing cracks on aluminum aircraft structures. The objective was to obtain a core body of substantiating data which will support approval for use on commercial transports of a technology that is being widely used by the military. The data showed that the doublers had excellent performance.

  9. Thermal-mechanical properties of epoxy-impregnated Bi-2212/Ag composite

    DOE PAGES

    Li, Pei; Wang, Yang; Fermi National Accelerator Lab.; ...

    2014-11-26

    In this study, knowledge of the thermal-mechanical properties of epoxy/superconductor/insulation composite is important for designing, fabricating, and operating epoxy impregnated high field superconducting magnets near their ultimate potentials. We report measurements of the modulus of elasticity, Poisson's ratio, and the coefficient of thermal contraction of epoxy-impregnated composite made from the state-of-the-art powder-in-tube multifilamentary Ag/Bi 2Sr 2CaCu 2O x round wire at room temperature and cryogenic temperatures. Stress-strain curves of samples made from single-strand and Rutherford cables were tested under both monotonic and cyclic compressive loads, with single strands insulated using a thin TiO 2 insulation coating and the Rutherford cablemore » insulated with a braided ceramic sleeve.« less

  10. Program for establishing long time flight service performance of composite materials in the central wing structure of C-130 aircraft. Phase 2: Detailed design

    NASA Technical Reports Server (NTRS)

    Harvill, W. E.; Duhig, J. J.; Spencer, B. R.

    1973-01-01

    The design, fabrication, and evaluation of boron-epoxy reinforced C-130 center wing boxes are discussed. Design drawings, static strength, fatigue endurance, flutter, and weight analyses required for the wing box fabrication are presented. Additional component testing to verify the design for panel buckling and to evaluate specific local design areas are reported.

  11. Damage Tolerant Analysis of Cracked Al 2024-T3 Panels repaired with Single Boron/Epoxy Patch

    NASA Astrophysics Data System (ADS)

    Mahajan, Akshay D.; Murthy, A. Ramachandra; Nanda Kumar, M. R.; Gopinath, Smitha

    2018-06-01

    It is known that damage tolerant analysis has two objectives, namely, remaining life prediction and residual strength evaluation. To achieve the these objectives, determination of accurate and reliable fracture parameter is very important. XFEM methodologies for fatigue and fracture analysis of cracked aluminium panels repaired with different patch shapes made of single boron/epoxy have been developed. Heaviside and asymptotic crack tip enrichment functions are employed to model the crack. XFEM formulations such as displacement field formulation and element stiffness matrix formulation are presented. Domain form of interaction integral is employed to determine Stress Intensity Factor of repaired cracked panels. Computed SIFs are incorporated in Paris crack growth model to predict the remaining fatigue life. The residual strength has been computed by using the remaining life approach, which accounts for both crack growth constants and no. of cycles to failure. From the various studies conducted, it is observed that repaired panels have significant effect on reduction of the SIF at the crack tip and hence residual strength as well as remaining life of the patched cracked panels are improved significantly. The predicted remaining life and residual strength will be useful for design of structures/components under fatigue loading.

  12. Wave propagation in fiber composite laminates, part 2

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1976-01-01

    An experimental investigation was conducted to determine the wave propagation characteristics, transient strains and residual properties in unidirectional and angle-ply boron/epoxy and graphite/epoxy laminates impacted with silicone rubber projectiles at velocities up to 250 MS-1. The predominant wave is flexural, propagating at different velocities in different directions. In general, measured wave velocities were higher than theoretically predicted values. The amplitude of the in-plane wave is less than ten percent of that of the flexural wave. Peak strains and strain rates in the transverse to the (outer) fiber direction are much higher than those in the direction of the fibers. The dynamics of impact were also studied with high speed photography.

  13. Magnetohydrodynamic (MHD) Magnet Modeling

    DTIC Science & Technology

    1979-06-01

    Relationship /4 to Structural Teeth and Cold Bore Tube 56 Force Cý.mponents on Saddlc Winding 84 57 Quarter Section of Magnet nesign at Midplane 85 58...Graphite/Epoxy Filament Wound 184 A-2 Concept B - Boron /Aluminum Structure 186 A-3 Concept i - Graphite/Epoxy Structure 187 A-4 Initial Stress Analysis...Wound A-15 MHD Magnet Modeling Manufacturing Sequence 205 Concept B - Boron /Aluminum Structure A-16 MHD Magnet Modeling Manufacturing Sequence 206

  14. Directly deposited graphene nanowalls on carbon fiber for improving the interface strength in composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Yao; Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714; Chu, Jin

    2016-05-23

    Graphene nanowalls (GNWs) were grown directly on carbon fibers using a chemical vapor deposition technique which is simple and catalyst-free. We found that there is very strong π-π stacking which is a benefit for the GNWs/carbon fiber interface. This single modified filament then was embedded into an epoxy matrix to be a single-fiber composite in which was formed a “tenon-mortise” structure. Such a “tenon-mortise” model provides a simple, stable, and powerful connection between carbon fiber and the epoxy matrix. In addition, it was demonstrated that the epoxy matrix can be well embedded into GNWs through a field emission scanning electronmore » microscope. The results of the single-fiber composite tests indicated that the interfacial strength of the composites was immensely improved by 173% compared to those specimens without GNWs.« less

  15. Experimental studies of graphite-epoxy and boron-epoxy angle ply laminates in compression

    NASA Technical Reports Server (NTRS)

    Weller, T.

    1977-01-01

    A test program aimed at studying the nonlinear/inelastic response under axial compression across a wide range of angle ply was graphite-epoxy and boron-epoxy laminates was presented and described. The strength allowables corresponding to the various laminate configurations were defined and the failure mechanisms which dictate their mode of failure were detected. The program involved two types of specimens for each laminate configuration: compression sandwich coupons and compression tubes. The test results indicate that the coupons perform better than the tubes displaying considerably high stress-strain allowables and mechanical properties relative to the tubes. Also, it is observed that depending on their dimensions the coupons are susceptible to very pronounced edge effects. This sensitivity results in assigning to the laminate conservative mechanical properties rather than the actual ones.

  16. Construction of 3D Skeleton for Polymer Composites Achieving a High Thermal Conductivity.

    PubMed

    Yao, Yimin; Sun, Jiajia; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2018-03-01

    Owing to the growing heat removal issue in modern electronic devices, electrically insulating polymer composites with high thermal conductivity have drawn much attention during the past decade. However, the conventional method to improve through-plane thermal conductivity of these polymer composites usually yields an undesired value (below 3.0 Wm -1 K -1 ). Here, construction of a 3D phonon skeleton is reported composed of stacked boron nitride (BN) platelets reinforced with reduced graphene oxide (rGO) for epoxy composites by the combination of ice-templated and infiltrating methods. At a low filler loading of 13.16 vol%, the resulting 3D BN-rGO/epoxy composites exhibit an ultrahigh through-plane thermal conductivity of 5.05 Wm -1 K -1 as the best thermal-conduction performance reported so far for BN sheet-based composites. Theoretical models qualitatively demonstrate that this enhancement results from the formation of phonon-matching 3D BN-rGO networks, leading to high rates of phonon transport. The strong potential application for thermal management has been demonstrated by the surface temperature variations of the composites with time during heating and cooling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. On thermal edge effects in composite laminates

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1976-01-01

    Results are presented for a finite-element investigation of the combined influence of edge effects due to mechanical and thermal mismatch in composite laminates with free edges. Laminates of unidirectional boron/epoxy symmetrically bonded to sheets of aluminum and titanium were studied. It is shown that interlaminar thermal stresses may be more significant than the interlaminar stresses due to loading only. In addition, the stresses due to thermal mismatch may be of the same sign as those due to Poisson's mismatch or they may be of opposite sign depending upon material properties, stacking sequence, and direction of loading. The paper concludes with a brief discussion of thermal stresses in all-composite laminates.

  18. A model of the thermal-spike mechanism in graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Adamson, M. J.

    1982-01-01

    The influence of a thermal spike on a moisture-saturated graphite/epoxy composite was studied in detail. A single thermal spike from 25 C to 132 C was found to produce damage as evidenced by a significant increase in the level of moisture saturation in the composite. Approximately half of this increase remained after a vacuum anneal at 150 C for 7 days, suggesting the presence of an irreversible damage component. Subsequent thermal spikes created less and less additional moisture absorption, with the cumulative effect being a maximum or limiting moisture capacity of the composite. These observations are explained in terms of a model previously developed to explain the reverse thermal effect of moisture absorption in epoxy and epoxy matrix composites. This model, based on the inverse temperature dependence of free volume, contributes an improved understanding of thermal-spike effects in graphite/epoxy composites.

  19. Ultralow percolation threshold of single walled carbon nanotube-epoxy composites synthesized via an ionic liquid dispersant/initiator

    NASA Astrophysics Data System (ADS)

    Watters, Arianna L.; Palmese, Giuseppe R.

    2014-09-01

    Uniform dispersion of single walled carbon nanotubes (SWNTs) in an epoxy was achieved by a streamlined mechano-chemical processing method. SWNT-epoxy composites were synthesized using a room temperature ionic liquid (IL) with an imidazolium cation and dicyanamide anion. The novel approach of using ionic liquid that behaves as a dispersant for SWNTs and initiator for epoxy polymerization greatly simplifies nanocomposite synthesis. The material was processed using simple and scalable three roll milling. The SWNT dispersion of the resultant composite was evaluated by electron microscopy and electrical conductivity measurements in conjunction with percolation theory. Processing conditions were optimized to achieve the lowest possible percolation threshold, 4.29 × 10-5 volume fraction SWNTs. This percolation threshold is among the best reported in literature yet it was obtained using a streamlined method that greatly simplifies processing.

  20. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 3: Fabrication

    NASA Technical Reports Server (NTRS)

    Harvill, W. E.; Kays, A. O.

    1974-01-01

    The manufacturing plan for three C-130 aircraft center wing box test articles, selectively reinforced with boron-epoxy composites, is outlined for the following tasks: (1) tooling; (2) metal parts fabrication: (3) reinforcing laminate fabrication; (4) laminate-to-metal parts bonding; and (5) wing box assembly. The criteria used for reliability and quality assurance are discussed, and several solutions to specific manufacturing problems encountered during fabrication are given. For Vol. 1, see N73-13011; for Vol. 2, see N73-22929.

  1. Study to investigate design, fabrication and test of low cost concepts for large hybrid composite helicopter fuselage, phase 2

    NASA Technical Reports Server (NTRS)

    Adams, K. M.; Lucas, J. J.

    1977-01-01

    The development of a frame/stringer/skin fabrication technique for composite airframe construction was studied as a low cost approach to the manufacturer of larger helicopter airframe components. A center cabin aluminum airframe section of the Sikorsky CH-53D, was selected for evaluation as a composite structure. The design, as developed, is composed of a woven KEVLAR R-49/epoxy skin and graphite/epoxy frames and stringers. The single cure concept is made possible by the utilization of pre-molded foam cores, over which the graphite/epoxy pre-impregnated frame and stringer reinforcements are positioned. Bolted composite channel sections were selected as the optimum joint construction. The applicability of the single cure concept to larger realistic curved airframe sections, and the durability of the composite structure in a realistic spectrum fatigue environment, was described.

  2. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    NASA Astrophysics Data System (ADS)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  3. Effect of Graphene Oxide Mixed Epoxy on Mechanical Properties of Carbon Fiber/Acrylonitrile-Butadiene-Styrene Composites.

    PubMed

    Wang, Cuicui; Ge, Heyi; Ma, Xiaolong; Liu, Zhifang; Wang, Ting; Zhang, Jingyi

    2018-04-01

    In this study, the watersoluble epoxy resin was prepared via the ring-opening reaction between diethanolamine and epoxy resin. The modified resin mixed with graphene oxide (GO) as a sizing agent was coated onto carbon fiber (CF) and then the GO-CF reinforced acrylonitrile-butadienestyrene (ABS) composites were prepared. The influences of the different contents of GO on CF and CF/ABS composite were explored. The combination among epoxy, GO sheets and maleic anhydride grafted ABS (ABSMA) showed a synergistic effect on improving the properties of GO-CF and GO-CF/ABS composite. The GO-CF had higher single tensile strength than the commercial CF. The maximum ILSS of GO-CF/ABS composite obtained 19.2% improvement as compared with that of the commercial CF/ABS composite. Such multiscale enhancement method and the synergistic reinforced GO-CF/ABS composite show good prospective applications in many industry areas.

  4. The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments.

    PubMed

    Manoharan, M P; Sharma, A; Desai, A V; Haque, M A; Bakis, C E; Wang, K W

    2009-07-22

    Carbon nanotubes and nanofibers are extensively researched as reinforcing agents in nanocomposites for their multifunctionality, light weight and high strength. However, it is the interface between the nanofiber and the matrix that dictates the overall properties of the nanocomposite. The current trend is to measure elastic properties of the bulk nanocomposite and then compare them with theoretical models to extract the information on the interfacial strength. The ideal experiment is single fiber pullout from the matrix because it directly measures the interfacial strength. However, the technique is difficult to apply to nanocomposites because of the small size of the fibers and the requirement for high resolution force and displacement sensing. We present an experimental technique for measuring the interfacial strength of nanofiber-reinforced composites using the single fiber pullout technique and demonstrate the technique for a carbon nanofiber-reinforced epoxy composite. The experiment is performed in situ in a scanning electron microscope and the interfacial strength for the epoxy composite was measured to be 170 MPa.

  5. Shock Equation of State of Multi-Phase Epoxy-Based Composite (Al-MnO2-Epoxy)

    DTIC Science & Technology

    2010-10-01

    single stage light gas gun , two...using three different loading techniques— single stage light gas gun , two stage light gas gun , and explosive loading—with multiple diagnostic...wave speed. B. Single stage gas gun loading experiments Four gas gun -driven equation of state experiments were conducted at NSWC-Indian Head using

  6. Fracto-emission from graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Dickinson, J. T.

    1983-01-01

    Fracto-emission (FE) is the emission of particles and photons during and following crack propagation. Electrons (EE), positive ions (PIE), and excited and ground state neutrals (NE) were observed. Results of a number of experiments involving principally graphite/epoxy composites and Kevlar single fibers are presented. The physical processes responsible for EE and PIE are discussed as well as FE from fiber- and particulate-reinforced composites.

  7. Organic Fluorescent Dyes Supported on Activated Boron Nitride: A Promising Blue Light Excited Phosphors for High-Performance White Light-Emitting Diodes

    PubMed Central

    Li, Jie; Lin, Jing; Huang, Yang; Xu, Xuewen; Liu, Zhenya; Xue, Yanming; Ding, Xiaoxia; Luo, Han; Jin, Peng; Zhang, Jun; Zou, Jin; Tang, Chengchun

    2015-01-01

    We report an effective and rare-earth free light conversion material synthesized via a facile fabrication route, in which organic fluorescent dyes, i.e. Rhodamine B (RhB) and fluorescein isothiocyanate (FITC) are embedded into activated boron nitride (αBN) to form a composite phosphor. The composite phosphor shows highly efficient Förster resonance energy transfer and greatly improved thermal stability, and can emit at broad visible wavelengths of 500–650 nm under the 466 nm blue-light excitation. By packaging of the composite phosphors and a blue light-emitting diode (LED) chip with transparent epoxy resin, white LED with excellent thermal conductivity, current stability and optical performance can be realized, i.e. a thermal conductivity of 0.36 W/mk, a Commission Internationale de 1'Eclairage color coordinates of (0.32, 0.34), and a luminous efficiency of 21.6 lm·W−1. Our research opens the door toward to the practical long-life organic fluorescent dyes-based white LEDs. PMID:25682730

  8. Fabrication and Performance of Endoscopic Ultrasound Radial Arrays Based on PMN-PT Single Crystal/Epoxy 1-3 Composite

    PubMed Central

    Zhou, Dan; Cheung, Kwok Fung; Chen, Yan; Lau, Sien Ting; Zhou, Qifa; Shung, K. Kirk; Luo, Hao Su; Dai, Jiyan; Chan, Helen Lai Wa

    2011-01-01

    In this paper, 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystal/epoxy 1–3 composite was used as the active material of the endoscopic ultrasonic radial array transducer, because this composite exhibited ultrahigh electromechanical coupling coefficient (kt = 0.81%), very low mechanical quality factor (Qm = 11) and relatively low acoustic impedance (Zt = 12 MRayls). A 6.91 MHz PMN-PT/epoxy 1–3 composite radial array transducer with 64 elements was tested in a pulse-echo response measurement. The −6-dB bandwidth of the composite array transducer was 102%, which was ~30% larger than that of traditional lead zirconate titanate array transducer. The two-way insertion loss was found to be −32.3 dB. The obtained results show that this broadband array transducer is promising for acquiring high-resolution endoscopic ultrasonic images in many clinical applications. PMID:21342833

  9. Progress Toward Sequestering Carbon Nanotubes in PmPV

    NASA Technical Reports Server (NTRS)

    Bley, Richard A.

    2009-01-01

    Sequestration of single-walled carbon nanotubes (SWNTs) in molecules of poly(m-phenylenevinylene-co-2,5-diocty-loxy-p-phenylenevinylene) [PmPV] is a candidate means of promoting dissolution of single-walled carbon nanotubes (SWNTs) into epoxies for making strong, lightweight epoxy-matrix/carbon-fiber composite materials. Bare SWNTs cannot be incorporated because they are not soluble in epoxies. In the present approach, one exploits the tendency of PmPV molecules to wrap themselves around SWNTs without chemically bonding to them.

  10. Thermal expansion of an epoxy-glass microsphere composite

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Burks, H. D.

    1977-01-01

    The thermal expansion of a composite of epoxy (diglycidyl ether of bisphenol A) and solid glass microspheres was investigated. The microspheres had surfaces which were either untreated or treated with a silicone release agent, an epoxy coupling agent, or a general purpose silane coupling agent. Both room temperature (about 300 K) and elevated temperature (about 475 K) cures were used for the epoxy. Two microsphere size ranges were used, about 50 microns, which is applicable in filled moldings, and about 125 microns, which is applicable as bond line spacers. The thermal expansion of the composites was measured from 300 to 350 K or from 300 to 500 K, depending on the epoxy cure temperature. Measurements were made on composites containing up to .6 volume fraction microspheres. Two predictive models, which required only the values of thermal expansion of the polymer and glass and their specific gravities, were tested against the experimental data. A finite element analysis was made of the thermal strain of a composite cell containing a single microsphere surrounded by a finite-thickness interface.

  11. Thermal expansion of selected graphite reinforced polyimide-, epoxy-, and glass-matrix composite

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.

    1985-01-01

    The thermal expansion of three epoxy-matrix composites, a polyimide-matrix composite and a borosilicate glass-matrix composite, each reinforced with continuous carbon fibers, has been measured and compared. The expansion of a composite with a rubber toughened epoxy-matrix and P75S carbon fibers was very different from the expansion of two different single phase epoxy-matrix composites with P75S fibers although all three had the same stacking sequence. Reasonable agreement was obtained between measured thermal-expansion data and results from classical laminate theory. The thermal expansion of a material may change markedly as a result of thermal cycling. Microdamage, induced by 250 cycles between -156 C and 121 C in the graphite/polyimide laminate, caused a 53 percent decrease in the coefficient of thermal expansion. The thermal expansion of the graphite/glass laminate was not changed by 100 thermal cycles from -129 C to 38 C; however, a residual strain of about 10 x 10 to the minus 6 power was measured for the laminate tested.

  12. Composite impact strength improvement through a fiber/matrix interphase

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1975-01-01

    Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus.

  13. Dynamic Modulus and Damping of Boron, Silicon Carbide, and Alumina Fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.; Williams, W.

    1980-01-01

    The dynamic modulus and damping capacity for boron, silicon carbide, and silicon carbide coated boron fibers were measured from-190 to 800 C. The single fiber vibration test also allowed measurement of transverse thermal conductivity for the silicon carbide fibers. Temperature dependent damping capacity data for alumina fibers were calculated from axial damping results for alumina-aluminum composites. The dynamics fiber data indicate essentially elastic behavior for both the silicon carbide and alumina fibers. In contrast, the boron based fibers are strongly anelastic, displaying frequency dependent moduli and very high microstructural damping. Ths single fiber damping results were compared with composite damping data in order to investigate the practical and basic effects of employing the four fiber types as reinforcement for aluminum and titanium matrices.

  14. An investigation of chemically-induced improvement in saturation moisture characteristics of epoxies

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; St.clair, T. L.; Stoakley, D. M.

    1984-01-01

    MY-720/DDS epoxy samples were treated with three selected chemical compounds to render the active H-sites inactive for moisture absorption. Treating the epoxy castings with acetyl chloride and dichlorodimethyl silane leads only to surface changes indicating that these molecules are too large to penetrate the epoxy castings. Boron trifluoride, on the other hand, does penetrate the epoxy chain as is indicated by the formation of green domains in the interior of the castings. However, the process of saturating the specimens with moisture appears to leach out the chemical additives--thereby nullifying their possible ameliorative effects.

  15. Ultra high molecular weight polyethylene (UHMWPE) fiber epoxy composite hybridized with Gadolinium and Boron nanoparticles for radiation shielding

    NASA Astrophysics Data System (ADS)

    Mani, Venkat; Prasad, Narasimha S.; Kelkar, Ajit

    2016-09-01

    Deep space radiations pose a major threat to the astronauts and their spacecraft during long duration space exploration missions. The two sources of radiation that are of concern are the galactic cosmic radiation (GCR) and the short lived secondary neutron radiations that are generated as a result of fragmentation that occurs when GCR strikes target nuclei in a spacecraft. Energy loss, during the interaction of GCR and the shielding material, increases with the charge to mass ratio of the shielding material. Hydrogen with no neutron in its nucleus has the highest charge to mass ratio and is the element which is the most effective shield against GCR. Some of the polymers because of their higher hydrogen content also serve as radiation shield materials. Ultra High Molecular Weight Polyethylene (UHMWPE) fibers, apart from possessing radiation shielding properties by the virtue of the high hydrogen content, are known for extraordinary properties. An effective radiation shielding material is the one that will offer protection from GCR and impede the secondary neutron radiations resulting from the fragmentation process. Neutrons, which result from fragmentation, do not respond to the Coulombic interaction that shield against GCR. To prevent the deleterious effects of secondary neutrons, targets such as Gadolinium are required. In this paper, the radiation shielding studies that were carried out on the fabricated sandwich panels by vacuum-assisted resin transfer molding (VARTM) process are presented. VARTM is a manufacturing process used for making large composite structures by infusing resin into base materials formed with woven fabric or fiber using vacuum pressure. Using the VARTM process, the hybridization of Epoxy/UHMWPE composites with Gadolinium nanoparticles, Boron, and Boron carbide nanoparticles in the form of sandwich panels were successfully carried out. The preliminary results from neutron radiation tests show that greater than 99% shielding performance was achieved with these sandwich panels. Moreover, the mechanical testing and thermo-physical analysis performed show that core materials can preserve their thermo-physical and mechanical integrity after radiation.

  16. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  17. Fabrication and testing of non-graphitic superhybrid composites

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Sinclair, J. H.; Chamis, C. C.

    1979-01-01

    A study was conducted to determine the fabrication feasibility and the mechanical properties of adhesively-bonded boron aluminum/titanium and non-graphitic fiber/epoxy resin superhybrid (NGSH) composite laminates for potential aerospace applications. The major driver for this study was the elimination of a potential graphite fiber release problem in the event of a fire. The results of the study show that non-graphitic fibers, such as S-glass and Kevlar 49, may be substituted for the graphite fibers used in superhybrid (SH) composites for some applications. As is to be expected, however, the non-graphitic superhybrids have lower stiffness properties than the graphitic superhybrids. In-plane and flexural moduli of the laminates studied in this program can be predicted reasonably well using linear laminate theory while nonlinear laminate theory is required for strength predictions.

  18. Structural models of increasing complexity for icosahedral boron carbide with compositions throughout the single-phase region from first principles

    NASA Astrophysics Data System (ADS)

    Ektarawong, A.; Simak, S. I.; Alling, B.

    2018-05-01

    We perform first-principles calculations to investigate the phase stability of boron carbide, concentrating on the recently proposed alternative structural models composed not only of the regularly studied B11Cp (CBC) and B12(CBC), but also of B12(CBCB) and B12( B4 ). We find that a combination of the four structural motifs can result in low-energy electron precise configurations of boron carbide. Among several considered configurations within the composition range of B10.5C and B4C , we identify in addition to the regularly studied B11Cp (CBC) at the composition of B4C two low-energy configurations, resulting in a new view of the B-C convex hull. Those are [B12 (CBC)]0.67[B12(B4)] 0.33 and [B12 (CBC)]0.67[ B12 (CBCB)]0.33, corresponding to compositions of B10.5C and B6.67C , respectively. As a consequence, B12(CBC) at the composition of B6.5C , previously suggested in the literature as a stable configuration of boron carbide, is no longer part of the B -C convex hull. By inspecting the electronic density of states as well as the elastic moduli, we find that the alternative models of boron carbide can provide a reasonably good description for electronic and elastic properties of the material in comparison with the experiments, highlighting the importance of considering B12(CBCB) and B12( B4 ), together with the previously proposed B11Cp (CBC) and B12(CBC), as the crucial ingredients for modeling boron carbide with compositions throughout the single-phase region.

  19. Aspects of the Fracture Toughness of Carbon Nanotube Modified Epoxy Polymer Composites

    NASA Astrophysics Data System (ADS)

    Mirjalili, Vahid

    Epoxy resins used in fibre reinforced composites exhibit a brittle fracture behaviour, because they show no sign of damage prior to a catastrophic failure. Rubbery materials and micro-particles have been added to epoxy resins to improve their fracture toughness, which reduces strength and elastic properties. In this research, carbon nanotubes (CNTs) are investigated as a potential toughening agent for epoxy resins and carbon fibre reinforced composites, which can also enhance strength and elastic properties. More specifically, the toughening mechanisms of CNTs are investigated theoretically and experimentally. The effect of aligned and randomly oriented carbon nanotubes (CNTs) on the fracture toughness of polymers was modelled using Elastic Plastic Fracture Mechanics. Toughening from CNT pull-out and rupture were considered, depending on the CNTs critical length. The model was used to identify the effect of CNTs geometrical and mechanical properties on the fracture toughness of CNT-modified epoxies. The modelling results showed that a uniform dispersion and alignment of a high volume fraction of CNTs normal to the crack growth plane would lead to the maximum fracture toughness enhancement. To achieve a uniform dispersion, the effect of processing on the dispersion of single walled and multi walled CNTs in epoxy resins was investigated. An instrumented optical microscope with a hot stage was used to quantify the evolution of the CNT dispersion during cure. The results showed that the reduction of the resin viscosity at temperatures greater than 100 °C caused an irreversible re-agglomeration of the CNTs in the matrix. The dispersion quality was then directly correlated to the fracture toughness of the modified resin. It was shown that the fine tuning of the ratio of epoxy resin, curing agent and CNT content was paramount to the improvement of the base resin fracture toughness. For the epoxy resin (MY0510 from Hexcel), an improvement of 38% was achieved with 0.3 wt.% of Single Walled CNT (SWNT). Finally, the CNT-modified epoxy resin was used to manufacture carbon fibre laminates by resin film infusion and prepreg technologies. The Mode I and Mode II delamination properties of the CNT-modified composite increased by 140% and 127%, respectively. In contrast, this improvement was not observed for the base CNT-modified polymers, used to manufacture the composite laminates. A qualitative analysis of the fractured surface using a Scanning Electron Microscope revealed a good dispersion in the composites samples, confirming the importance of processing to harness the full potential of carbon nanotubes for toughening polymer composites.

  20. Improving the interfacial and mechanical properties of short glass fiber/epoxy composites by coating the glass fibers with cellulose nanocrystals

    Treesearch

    A. Asadi; M. Miller; Robert Moon; K. Kalaitzidou

    2016-01-01

    In this study, the interfacial and mechanical properties of cellulose nanocrystals (CNC) coated glass fiber/epoxy composites were investigated as a function of the CNC content on the surface of glass fibers (GF). Chopped GF rovings were coated with CNC by immersing the GF in CNC (0–5 wt%) aqueous suspensions. Single fiber fragmentation (SFF) tests showed that the...

  1. Thermal and damping behaviour of magnetic shape memory alloy composites

    NASA Astrophysics Data System (ADS)

    Glock, Susanne; Michaud, Véronique

    2015-06-01

    Single crystals of ferromagnetic shape memory alloys (MSMA) exhibit magnetic field and stress induced strains via energy dissipating twinning. Embedding single crystalline MSMA particles into a polymer matrix could thus produce composites with enhanced energy dissipation, suitable for damping applications. Composites of ferromagnetic, martensitic or austenitic Ni-Mn-Ga powders embedded in a standard epoxy matrix were produced by casting. The martensitic powder composites showed a crystal structure dependent damping behaviour that was more dissipative than that of austenitic powder or Cu-Ni reference powder composites and than that of the pure matrix. The loss ratio also increased with increasing strain amplitude and decreasing frequency, respectively. Furthermore, Ni-Mn-Ga powder composites exhibited an increased damping behaviour at the martensite/austenite transformation temperature of the Ni-Mn-Ga particles in addition to that at the glass transition temperature of the epoxy matrix, creating possible synergetic effects.

  2. Development of a metal-clad advanced composite shear web design concept

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  3. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 1: Advanced development

    NASA Technical Reports Server (NTRS)

    Harvill, W. E.; Kays, A. O.; Young, E. C.; Mcgee, W. M.

    1972-01-01

    Areas where selective reinforcement of conventional metallic structure can improve static strength/fatigue endurance at lower weight than would be possible if metal reinforcement were used are discussed. These advantages are now being demonstrated by design, fabrication, and tests of three boron-epoxy reinforced C-130E center wing boxes. This structural component was previously redesigned using an aluminum build-up to meet increased severity of fatigue loadings. Direct comparisons of relative structural weights, manufacturing costs, and producibility can therefore be obtained, and the long-time flight service performance of the composite reinforced structure can be evaluated against the wide background of metal reinforced structure.

  4. Lewis acid catalyzed ring-opening polymerization of natural epoxy oil (Euphorbia oil) in carbon dioxide media

    USDA-ARS?s Scientific Manuscript database

    In an attempt to build up useful application of plant oil based polymers, natural epoxy oil (euphorbia oil-EuO) was polymerized in liquid carbon dioxide in the presence of Lewis acid catalyst [Boron trifluoride diethyl etherate (BF3•OEt2)]. The resulting polymers (RPEuO) were characterized by FTIR ...

  5. Electron emission and acoustic emission from the fracture of graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Dickinson, J. T.; Jahan-Latibari, A.; Jensen, L. C.

    1985-01-01

    In past studies it has been shown that the fracture of materials leads to the emission of a variety of species, including electrons, ions, neutral molecules, and photons, all encompassed by the term 'fractoemission' (FE). In this paper, electron emission (EE) from the fracture of single graphite fibers and neat epoxy resin is examined. Measurements of EE are also combined with the detection of acoustic emission (AE) during the testing of graphite-epoxy composite specimens with various fiber orientation. The characteristics of these signals are related to known failure mechanisms in fiber-reinforced plastics. This study suggests that by comparing data from AE and FE measurements, one can detect and distinguish the onset of internal and external failure in composites. EE measurements are also shown to be sensitive to the locus of fracture in a composite material.

  6. Curing Effects on Interfacial Adhesion between Recycled Carbon Fiber and Epoxy Resin Heated by Microwave Irradiation

    PubMed Central

    Shimamoto, Daisuke; Hotta, Yuji

    2018-01-01

    The interfacial adhesion of recycled carbon fiber (CF) reinforced epoxy composite heated by microwave (MW) irradiation were investigated by changing the curing state of the epoxy resin. The recycled CF was recovered from the composite, which was prepared by vacuum-assisted resin transfer molding, by thermal degradation at 500 or 600 °C. Thermogravimetric analysis showed that the heating at 600 °C caused rough damage to the CF surface, whereas recycled CF recovered at 500 °C have few defects. The interfacial shear strength (IFSS) between recycled CF and epoxy resin was measured by a single-fiber fragmentation test. The test specimen was heated by MW after mixing the epoxy resin with a curing agent or pre-curing, in order to investigate the curing effects on the matrix resin. The IFSSs of the MW-irradiated samples were significantly varied by the curing state of the epoxy resin and the surface condition of recycled CF, resulting that they were 99.5 to 131.7% of oven heated samples Furthermore, rheological measurements showed that the viscosity and shrinking behaviors of epoxy resin were affected based on the curing state of epoxy resin before MW irradiation. PMID:29587422

  7. Curing Effects on Interfacial Adhesion between Recycled Carbon Fiber and Epoxy Resin Heated by Microwave Irradiation.

    PubMed

    Tominaga, Yuichi; Shimamoto, Daisuke; Hotta, Yuji

    2018-03-26

    The interfacial adhesion of recycled carbon fiber (CF) reinforced epoxy composite heated by microwave (MW) irradiation were investigated by changing the curing state of the epoxy resin. The recycled CF was recovered from the composite, which was prepared by vacuum-assisted resin transfer molding, by thermal degradation at 500 or 600 °C. Thermogravimetric analysis showed that the heating at 600 °C caused rough damage to the CF surface, whereas recycled CF recovered at 500 °C have few defects. The interfacial shear strength (IFSS) between recycled CF and epoxy resin was measured by a single-fiber fragmentation test. The test specimen was heated by MW after mixing the epoxy resin with a curing agent or pre-curing, in order to investigate the curing effects on the matrix resin. The IFSSs of the MW-irradiated samples were significantly varied by the curing state of the epoxy resin and the surface condition of recycled CF, resulting that they were 99.5 to 131.7% of oven heated samples Furthermore, rheological measurements showed that the viscosity and shrinking behaviors of epoxy resin were affected based on the curing state of epoxy resin before MW irradiation.

  8. Epoxy composite dusts with and without carbon nanotubes cause similar pulmonary responses, but differences in liver histology in mice following pulmonary deposition.

    PubMed

    Saber, Anne Thoustrup; Mortensen, Alicja; Szarek, Józef; Koponen, Ismo Kalevi; Levin, Marcus; Jacobsen, Nicklas Raun; Pozzebon, Maria Elena; Mucelli, Stefano Pozzi; Rickerby, David George; Kling, Kirsten; Atluri, Rambabu; Madsen, Anne Mette; Jackson, Petra; Kyjovska, Zdenka Orabi; Vogel, Ulla; Jensen, Keld Alstrup; Wallin, Håkan

    2016-06-29

    The toxicity of dusts from mechanical abrasion of multi-walled carbon nanotube (CNT) epoxy nanocomposites is unknown. We compared the toxic effects of dusts generated by sanding of epoxy composites with and without CNT. The used CNT type was included for comparison. Mice received a single intratracheal instillation of 18, 54 and 162 μg of CNT or 54, 162 and 486 μg of the sanding dust from epoxy composite with and without CNT. DNA damage in lung and liver, lung inflammation and liver histology were evaluated 1, 3 and 28 days after intratracheal instillation. Furthermore, the mRNA expression of interleukin 6 and heme oxygenase 1 was measured in the lungs and serum amyloid A1 in the liver. Printex 90 carbon black was included as a reference particle. Pulmonary exposure to CNT and all dusts obtained by sanding epoxy composite boards resulted in recruitment of inflammatory cells into lung lumen: On day 1 after instillation these cells were primarily neutrophils but on day 3, eosinophils contributed significantly to the cell population. There were still increased numbers of neutrophils 28 days after intratracheal instillation of the highest dose of the epoxy dusts. Both CNT and epoxy dusts induced DNA damage in lung tissue up to 3 days after intratracheal instillation but not in liver tissue. There was no additive effect of adding CNT to epoxy resins for any of the pulmonary endpoints. In livers of mice instilled with CNT and epoxy dust with CNTs inflammatory and necrotic histological changes were observed, however, not in mice instilled with epoxy dust without CNT. Pulmonary deposition of epoxy dusts with and without CNT induced inflammation and DNA damage in lung tissue. There was no additive effect of adding CNT to epoxies for any of the pulmonary endpoints. However, hepatic inflammatory and necrotic histopathological changes were seen in mice instilled with sanding dust from CNT-containing epoxy but not in mice instilled with reference epoxy.

  9. Homogeneous Liquid Phase Transfer of Graphene Oxide into Epoxy Resins.

    PubMed

    Amirova, Lyaysan; Surnova, Albina; Balkaev, Dinar; Musin, Delus; Amirov, Rustem; Dimiev, Ayrat M

    2017-04-05

    The quality of polymer composite materials depends on the distribution of the filler in the polymer matrix. Due to the presence of the oxygen functional groups, graphene oxide (GO) has a strong affinity to epoxy resins, providing potential opportunity for the uniform distribution of GO sheets in the matrix. Another advantage of GO over its nonoxidized counterpart is its ability to exfoliate to single-atomic-layer sheets in water and in some organic solvents. However, these advantages of GO have not yet been fully realized due to the lack of the methods efficiently introducing GO into the epoxy resin. Here we develop a novel homogeneous liquid phase transfer method that affords uniform distribution, and fully exfoliated condition of GO in the polymer matrix. The most pronounced alteration of properties of the cured composites is registered at the 0.10%-0.15% GO content. Addition of as little as 0.10% GO leads to the increase of the Young's modulus by 48%. Moreover, we demonstrate successful introduction of GO into the epoxy matrix containing an active diluent-modifier; this opens new venues for fabrication of improved GO-epoxy-modifier composites with a broad range of predesigned properties. The experiments done on reproducing the two literature methods, using alternative GO introduction techniques, lead to either decrease or insignificant increase of the Young's modulus of the resulting GO-epoxy composites.

  10. MWCNTs/P(St-co-GMA) composite nanofibers of engineered interface chemistry for epoxy matrix nanocomposites.

    PubMed

    Özden-Yenigün, Elif; Menceloğlu, Yusuf Z; Papila, Melih

    2012-02-01

    Strengthened nanofiber-reinforced epoxy matrix composites are demonstrated by engineering composite electrospun fibers of multi-walled carbon nanotubes (MWCNTs) and reactive P(St-co-GMA). MWCNTs are incorporated into surface-modified, reactive P(St-co-GMA) nanofibers by electrospinning; functionalization of these MWCNT/P(St-co-GMA) composite nanofibers with epoxide moieties facilitates bonding at the interface of the cross-linked fibers and the epoxy matrix, effectively reinforcing and toughening the epoxy resin. Rheological properties are determined and thermodynamic stabilization is demonstrated for MWCNTs in the P(St-co-GMA)-DMF polymer solution. Homogeneity and uniformity of the fiber formation within the electrospun mats are achieved at polymer concentration of 30 wt %. Results show that the MWCNT fraction decreases the polymer solution viscosity, yielding a narrower fiber diameter. The fiber diameter drops from an average of 630 nm to 460 nm, as the MWCNTs wt fraction (1, 1.5, and 2%) is increased. The electrospun nanofibers of the MWCNTs/P(St-co-GMA) composite are also embedded into an epoxy resin to investigate their reinforcing abilities. A significant increase in the mechanical response is observed, up to >20% in flexural modulus, when compared to neat epoxy, despite a very low composite fiber weight fraction (at about 0.2% by a single-layer fibrous mat). The increase is attributed to the combined effect of the two factors the inherent strength of the well-dispersed MWCNTs and the surface chemistry of the electrospun fibers that have been modified with epoxide to enable cross-linking between the polymer matrix and the nanofibers.

  11. Design and UV-curable behaviour of boron based reactive diluent for epoxy acrylate oligomer used for flame retardant wood coating

    PubMed Central

    Chambhare, Sachin U.; Lokhande, Gunawant P.; Jagtap, Ramanand N.

    2017-01-01

    Abstract Difunctional boron-containing reactive flame retardant for UV-curable epoxy acrylate oligomer was synthesized from phenyl boronic acid and glycidyl methacrylate. The synthesized reactive diluent was utilized to formulate ultraviolet (UV)-curable wood coatings. The weight fractions of reactive diluent in coatings formulation was varied from 5 to 25 wt % with constant photoinitiator concentration. The molecular structure of reactive flame retardant was confirmed by Fourier-transform infrared, Nuclear magnetic resonance (NMR) and 11B NMR spectral analysis. Further, the efficacy of flame retardant behaviour of coatings was evaluated using limiting oxygen index and UL-94 vertical burning test. Thermal stability of cured coatings films were estimated from thermogravimetric and differential scanning calorimetry analysis. The effects of varying concentration of reactive diluent on the viscosity of coatings formulation along with optical, mechanical and chemical resistance properties of coatings were also evaluated. The coatings gel content, water absorption behaviour, contact angle analysis and stain resistance were also studied. PMID:29491786

  12. Tuning negative differential resistance in single-atomic layer boron-silicon sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ming-Yue; Liu, Chun-Sheng, E-mail: csliu@njupt.edu.cn, E-mail: yanxh@njupt.edu.cn; Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, Jiangsu

    2015-03-21

    Using density functional theory and nonequilibrium Green's function formalism for quantum transport calculation, we have quantified the ballistic transport properties along different directions in two-dimensional boron-silicon (B-Si) compounds, as well as the current response to bias voltage. The conductance of the most B-Si devices is higher than the conductance of one-atom-thick boron and silicene. Furthermore, the negative differential resistance phenomenon can be found at certain B-Si stoichiometric composition, and it occurs at various bias voltages. Also, the peak-to-valley ratio is sensitive to the B-Si composition and dependent of the direction considered for B-Si monolayers. The present findings could be helpfulmore » for applications of the single-atomic layer B-Si sheets in the field of semiconductor devices or low-dimensional electronic devices.« less

  13. Carbon fiber based composites stress analysis. Experimental and computer comparative studies

    NASA Astrophysics Data System (ADS)

    Sobek, M.; Baier, A.; Buchacz, A.; Grabowski, Ł.; Majzner, M.

    2015-11-01

    Composite materials used nowadays for the production of composites are the result of advanced research. This allows assuming that they are among the most elaborate tech products of our century. That fact is evidenced by the widespread use of them in the most demanding industries like aerospace and space industry. But the heterogeneous materials and their advantages have been known to mankind in ancient times and they have been used by nature for millions of years. Among the fibers used in the industry most commonly used are nylon, polyester, polypropylene, boron, metal, glass, carbon and aramid. Thanks to their physical properties last three fiber types deserve special attention. High strength to weight ratio allow the use of many industrial solutions. Composites based on carbon and glass fibers are widely used in the automotive. Aramid fibers ideal for the fashion industry where the fabric made from the fibers used to produce the protective clothing. In the paper presented issues of stress analysis of composite materials have been presented. The components of composite materials and principles of composition have been discussed. Particular attention was paid to the epoxy resins and the fabrics made from carbon fibers. The article also includes basic information about strain measurements performed on with a resistance strain gauge method. For the purpose of the laboratory tests a series of carbon - epoxy composite samples were made. For this purpose plain carbon textile was used with a weight of 200 g/mm2 and epoxy resin LG730. During laboratory strain tests described in the paper Tenmex's delta type strain gauge rosettes were used. They were arranged in specific locations on the surface of the samples. Data acquisition preceded using HBM measurement equipment, which included measuring amplifier and measuring head. Data acquisition was performed using the Easy Catman. In order to verify the results of laboratory tests numerical studies were carried out in a computing environment, Siemens PLM NX 9.0. For this purpose, samples were modeled composite corresponding to real samples. Tests were made for boundary conditions compatible with the laboratory tests boundary conditions.

  14. Sequestration of Single-Walled Carbon Nanotubes in a Polymer

    NASA Technical Reports Server (NTRS)

    Bley, Richard A.

    2007-01-01

    Sequestration of single-walled carbon nanotubes (SWCNs) in a suitably chosen polymer is under investigation as a means of promoting the dissolution of the nanotubes into epoxies. The purpose of this investigation is to make it possible to utilize SWCNs as the reinforcing fibers in strong, lightweight epoxy-matrix/carbon-fiber composite materials. SWCNs are especially attractive for use as reinforcing fibers because of their stiffness and strength-to-weight ratio: Their Young s modulus has been calculated to be 1.2 TPa, their strength has been calculated to be as much as 100 times that of steel, and their mass density is only one-sixth that of steel. Bare SWCNs cannot be incorporated directly into composite materials of the types envisioned because they are not soluble in epoxies. Heretofore, SWCNS have been rendered soluble by chemically attaching various molecular chains to them, but such chemical attachments compromise their structural integrity. In the method now under investigation, carbon nanotubes are sequestered in molecules of poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) [PmPV]. The strength of the carbon nanotubes is preserved because they are not chemically bonded to the PmPV. This method exploits the tendency of PmPV molecules to wrap themselves around carbon nanotubes: the wrapping occurs partly because there exists a favorable interface between the conjugated face of a nanotube and the conjugated backbone of the polymer and partly because of the helical molecular structure of PmPV. The constituents attached to the polymer backbones (the side chains) render the PmPV-wrapped carbon nanotubes PmPV soluble in organic materials that, in turn, could be used to suspend the carbon nanotubes in epoxy precursors. At present, this method is being optimized: The side chains on the currently available form of PmPV are very nonpolar and unable to react with the epoxy resins and/or hardeners; as a consequence, SWCN/PmPV composites have been observed to precipitate out of epoxies while the epoxies were being cured. If the side chains of the PmPV molecules were functionalized to make them capable of reacting with the epoxy matrices, it might be possible to make progress toward practical applications. By bonding the side chains of the PmPV molecules to an epoxy matrix, one would form an PmPV conduit between the epoxy matrix and the carbon nanotubes sequestered in the PmPV. This conduit would transfer stresses from the epoxy matrix to the nanotubes. This proposed load-transfer mode is similar to that of the current practice in which silane groups are chemically bonded to both the epoxy matrices and the fibers (often glass fibers) in epoxymatrix/fiber composites.

  15. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 4: Ground/flight acceptance tests

    NASA Technical Reports Server (NTRS)

    Harvill, W. E.; Kizer, J. A.

    1976-01-01

    The advantageous structural uses of advanced filamentary composites are demonstrated by design, fabrication, and test of three boron-epoxy reinforced C-130 center wing boxes. The advanced development work necessary to support detailed design of a composite reinforced C-130 center wing box was conducted. Activities included the development of a basis for structural design, selection and verification of materials and processes, manufacturing and tooling development, and fabrication and test of full-scale portions of the center wing box. Detailed design drawings, and necessary analytical structural substantiation including static strength, fatigue endurance, flutter, and weight analyses are considered. Some additional component testing was conducted to verify the design for panel buckling, and to evaluate specific local design areas. Development of the cool tool restraint concept was completed, and bonding capabilities were evaluated using full-length skin panel and stringer specimens.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaoming; Ke, Changhong, E-mail: xqwang@uga.edu, E-mail: cke@binghamton.edu; Zhang, Liuyang

    We investigate the mechanical strength of boron nitride nanotube (BNNT) polymer interfaces by using in situ electron microscopy nanomechanical single-tube pull-out techniques. The nanomechanical measurements show that the shear strengths of BNNT-epoxy and BNNT-poly(methyl methacrylate) interfaces reach 323 and 219 MPa, respectively. Molecular dynamics simulations reveal that the superior load transfer capacity of BNNT-polymer interfaces is ascribed to both the strong van der Waals interactions and Coulomb interactions on BNNT-polymer interfaces. The findings of the extraordinary mechanical strength of BNNT-polymer interfaces suggest that BNNTs are excellent reinforcing nanofiller materials for light-weight and high-strength polymer nanocomposites.

  17. Mechanical properties of hybrid SiC/CNT filled toughened epoxy nanocomposite

    NASA Astrophysics Data System (ADS)

    Ratim, S.; Ahmad, S.; Bonnia, N. N.; Yahaya, Sabrina M.

    2018-01-01

    Mechanical properties of epoxy nanocomposites filled single filler have been extensively studied by various researchers. However, there are not much discovery on the behavior of hybrid nanocomposite. In this study, single and hybrid nanocomposites of toughened epoxy filled CNT/SiC nanoparticles were investigated. The hybrid nanocomposites samples were prepared by combining CNT and SiC nanoparticles in toughened epoxy matrix via mechanical stirring method assisted with ultrasonic cavitations. Epoxy resin and liquid epoxidized natural rubber (LENR) mixture were first blend prior to the addition of nanofillers. Then, the curing process of the nanocomposite samples were conducted by compression molding technique at 130°C for 2 hours. The purpose of this study is to investigate the hybridization effect of CNT and SiC nanoparticles on mechanical properties toughened epoxy matrix. The total loading of single and hybrid nanofillers were fixed to 4% volume are 0, 4C, 4S, 3S1C, 2S2C, and 1S3C. Mechanical properties of hybrid composites show that the highest value of tensile strength achieved by 3S1C sample at about 7% increment and falls between their single composite values. Meanwhile, the stiffness of the same sample is significantly increased at about 31% of the matrix. On the other hand, a highest flexural property is obtained by 1S3C sample at about 20% increment dominated by CNT content. However, the impact strength shows reduction trend with the addition of SiC and CNT into the matrix. The hybridization of SiC and CNT show highest value in sample 1S3C at about 3.37 kJ/m2 of impact energy absorbed. FESEM micrograph have confirmed that better distributions and interaction observed between SiC nanoparticles and matrix compared to CNT, which contributed to higher tensile strength and modulus.

  18. Delamination of Composite Cylinders

    NASA Astrophysics Data System (ADS)

    Davies, Peter; Carlsson, Leif A.

    The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.

  19. Predicting the tensile strength of A UD basalt/ epoxy composite used for the confinement of concrete structures

    NASA Astrophysics Data System (ADS)

    Ciniņa, I.; Zīle, O.; Andersons, J.

    2013-01-01

    The principal aim of the present research was to predict the strength of UD basalt fiber/epoxy matrix composites in tension along the reinforcement direction. Tension tests on single basalt fibers were performed to determine the functional form of their strength distribution and to evaluate the parameters of the distribution. Also, microbond tests were carried out to assess the interfacial shear strength of the fibers and polymer matrix. UD composite specimens were produced and tested for the longitudinal tensile strength. The predicted strength of the composite was found to exceed the experimental values by ca. 20%, which can be explained by imperfections in the fiber alignment, impregnation, and adhesion in the composite specimens.

  20. Signature analysis of acoustic emission from graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Henneke, E. G., II

    1977-01-01

    Acoustic emissions were monitored for crack extension across and parallel to the fibers in a single ply and multiply laminates of graphite epoxy composites. Spectrum analysis was performed on the transient signal to ascertain if the fracture mode can be characterized by a particular spectral pattern. The specimens were loaded to failure quasistatically in a tensile machine. Visual observations were made via either an optical microscope or a television camera. The results indicate that several types of characteristics in the time and frequency domain correspond to different types of failure.

  1. Evaluation of Material Models within LS-DYNA(Registered TradeMark) for a Kevlar/Epoxy Composite Honeycomb

    NASA Technical Reports Server (NTRS)

    Polanco, Michael A.; Kellas, Sotiris; Jackson, Karen

    2009-01-01

    The performance of material models to simulate a novel composite honeycomb Deployable Energy Absorber (DEA) was evaluated using the nonlinear explicit dynamic finite element code LS-DYNA(Registered TradeMark). Prototypes of the DEA concept were manufactured using a Kevlar/Epoxy composite material in which the fibers are oriented at +/-45 degrees with respect to the loading axis. The development of the DEA has included laboratory tests at subcomponent and component levels such as three-point bend testing of single hexagonal cells, dynamic crush testing of single multi-cell components, and impact testing of a full-scale fuselage section fitted with a system of DEA components onto multi-terrain environments. Due to the thin nature of the cell walls, the DEA was modeled using shell elements. In an attempt to simulate the dynamic response of the DEA, it was first represented using *MAT_LAMINATED_COMPOSITE_FABRIC, or *MAT_58, in LS-DYNA. Values for each parameter within the material model were generated such that an in-plane isotropic configuration for the DEA material was assumed. Analytical predictions showed that the load-deflection behavior of a single-cell during three-point bending was within the range of test data, but predicted the DEA crush response to be very stiff. In addition, a *MAT_PIECEWISE_LINEAR_PLASTICITY, or *MAT_24, material model in LS-DYNA was developed, which represented the Kevlar/Epoxy composite as an isotropic elastic-plastic material with input from +/-45 degrees tensile coupon data. The predicted crush response matched that of the test and localized folding patterns of the DEA were captured under compression, but the model failed to predict the single-cell three-point bending response.

  2. Design of improved ceramic/polymeric composites

    NASA Astrophysics Data System (ADS)

    Seghi, Steven Monte

    This thesis describes an optimized approach for fabrication of boron nitride matrix composites reinforced with carbon fibers. The boron nitride was introduced via liquid infiltration of borazine oligomer to obtain high density (rho ˜ 1.75g/cc) composites and d002 spacings of 3.35A, which afforded excellent hydrolytic stability. The friction and wear properties were explored using an inertial dynamometer for potential replacement of current C/C in aircraft brakes. One set of tested composites provided outstanding wear resistance, incurring nearly zero wear across the entire range tested. In contrast to C/C, the coefficient of friction (COF) was relatively stable with respect to energy level, varying only 0.2 to 0.3. The wear surface morphologies were examined and it was found that low volume BN composites wore by a mechanism similar to C/C. The wear rates were controlled by the formation of a friction film from the wear debris. In the case of BN composites, this film incurred wear via an abrasive and brittle fracture mechanism while C/C exhibited only abrasive wear. As the BN content increased, a film still formed from the debris but large particles of BN emerged that limited direct contact of the surfaces thus effectively eliminating abrasive wear so the underlying film wore via brittle fracture. The removed wear debris was easily reincorporated into the film, with the suspected aid of boron oxide, thus keeping the wear rates low. The last chapter deals with the design, fabrication, and evaluation of a new coupling agent for glass fiber/epoxy matrix composites. This interface consisted of a thin coating of activated carbon (ACI) with high surface area to take advantage of mechanical interlocking. Furthermore, the surface chemistry was modified to provide varying degrees of bonding to the resin. These ACI provided equivalent moduli when compared to similar composites using commercial coupling agents. Hygrothermal aging showed the basic surface chemistry ACI to be extremely resistant to mechanical property degradation. The ACI systems displayed two distinct failure modes, fiber/matrix fracture and fiber debonding, controlled by the interface strength and thus the surface chemistry. These different failure modes led to a damage evolution study via thermoelastic stress analysis.

  3. Modified carbon fibers to improve composite properties. [sizing fibers for reduced electrical conductivity and adhesion during combustion

    NASA Technical Reports Server (NTRS)

    Shepler, R. E.

    1979-01-01

    Thin coatings, 5 to 10 wt. percent, were applied to PAN-based carbon fibers. These coatings were intended to make the carbon fibers less electrically conductive or to cause fibers to stick together when a carbon fiber/epoxy composite burned. The effectiveness of the coatings in these regards was evaluated in burn tests with a test rig designed to simulate burning, impact and wind conditions which might release carbon fibers. The effect of the coatings on fiber and composite properties and handling was also investigated. Attempts at sizing carbon fibers with silicon dioxide, silicon carbide and boron nitride meet with varying degrees of success; however, none of these materials provided an electrically nonconductive coating. Coatings intended to stick carbon fibers together after a composite burned were sodium silicate, silica gel, ethyl silicate, boric acid and ammonium borate. Of these, only the sodium silicate and silica gel provided any sticking together of fibers. The amount of sticking was insufficient to achieve the desired objectives.

  4. Study of high resistance inorganic coatings on graphite fibers. [for graphite-epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Veltri, R. D.; Scola, D. A.

    1979-01-01

    Coatings made of boron, silicon carbide, silica, and silica-like materials were studied to determine their ability to increase resistance of graphite fibers. The most promising results were attained by chemical vapor depositing silicon carbide on graphite fiber followed by oxidation, and drawing graphite fiber through ethyl silicate followed by appropriate heat treatments. In the silicon carbide coating studies, no degradation of the graphite fibers was observed and resistance values as high as three orders of magnitude higher than that of the uncoated fiber was attained. The strength of a composite fabricated from the coated fiber had a strength which compared favorably with those of composites prepared from uncoated fiber. For the silica-like coated fiber prepared by drawing the graphite fiber through an ethyl silicate solution followed by heating, coated fiber resistances about an order of magnitude greater than that of the uncoated fiber were attained. Composites prepared using these fibers had flexural strengths comparable with those prepared using uncoated fibers, but the shear strengths were lower.

  5. Structural deformation of 0.74Pb(Mg1/3Nb2/3)O3-0.26PbTiO3 single crystal in 1-3 composites due to interface stresses and poling procedure optimization

    NASA Astrophysics Data System (ADS)

    Wang, Chunying; Sun, Enwei; Liu, Yingchun; Zhang, Rui; Yang, Bin; Cao, Wenwu

    2016-09-01

    Interface stresses strongly influence the functional property of 1-3 piezoelectric composites. Using the translucent nature of (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals, we have studied stress distributions and domain configuration changes during poling inside the crystal rods by polarizing light microscopy and piezoresponse force microscopy. It was found that the interface stresses due to interaction with polymeric filler led a deformed rhombohedral phase and caused incomplete poling near rod-edges. Compared with "hard" epoxy (Epotek301) filler, "soft" epoxy (Stycast) filler showed weaker impact on the crystals rods and less influence on domain configurations. We also show that high temperature poling (70 °C) can substantially improve the piezoelectric coefficient of composites filled with hard epoxy due to creeping above the glass transition Tg. Analytic stress distribution equations based on cylinder rods were modified to explain the physical principle and to predict the stress distribution for square rods case, which was verified by finite element simulation to be accurate within 5%.

  6. Thermal and Mechanical Characteristics of Polymer Composites Based on Epoxy Resin, Aluminium Nanopowders and Boric Acid

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The epoxy polymers are characterized by low thermal stability and high flammability. Nanoparticles are considered to be effective fillers of polymer composites for improving their thermal and functional properties. In this work, the epoxy composites were prepared using epoxy resin ED-20, polyethylene polyamine as a hardener, aluminum nanopowder and boric acid fine powder as flame-retardant filler. The thermal characteristics of the obtained samples were studied using thermogravimetric analysis and differential scanning calorimetry. The mechanical characteristics of epoxy composites were also studied. It was found that an addition of all fillers enhances the thermal stability and mechanical characteristics of the epoxy composites. The best thermal stability showed the epoxy composite filled with boric acid. The highest flexural properties showed the epoxy composite based on the combination of boric acid and aluminum nanopowder.

  7. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity.

    PubMed

    Xu, Yonggang; Yang, Chi; Li, Jun; Mao, Xiaojian; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-12-18

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity.

  8. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity

    PubMed Central

    Xu, Yonggang; Yang, Chi; Li, Jun; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-01-01

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity. PMID:29258277

  9. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  10. Thermal Conductivity of Epoxy Resin Composites Filled with Combustion Synthesized h-BN Particles.

    PubMed

    Chung, Shyan-Lung; Lin, Jeng-Shung

    2016-05-20

    The thermal conductivity of epoxy resin composites filled with combustion-synthesized hexagonal boron nitride (h-BN) particles was investigated. The mixing of the composite constituents was carried out by either a dry method (involving no use of solvent) for low filler loadings or a solvent method (using acetone as solvent) for higher filler loadings. It was found that surface treatment of the h-BN particles using the silane 3-glycidoxypropyltrimethoxysilane (GPTMS) increases the thermal conductivity of the resultant composites in a lesser amount compared to the values reported by other studies. This was explained by the fact that the combustion synthesized h-BN particles contain less -OH or active sites on the surface, thus adsorbing less amounts of GPTMS. However, the thermal conductivity of the composites filled with the combustion synthesized h-BN was found to be comparable to that with commercially available h-BN reported in other studies. The thermal conductivity of the composites was found to be higher when larger h-BN particles were used. The thermal conductivity was also found to increase with increasing filler content to a maximum and then begin to decrease with further increases in this content. In addition to the effect of higher porosity at higher filler contents, more horizontally oriented h-BN particles formed at higher filler loadings (perhaps due to pressing during formation of the composites) were suggested to be a factor causing this decrease of the thermal conductivity. The measured thermal conductivities were compared to theoretical predictions based on the Nielsen and Lewis theory. The theoretical predictions were found to be lower than the experimental values at low filler contents (< 60 vol %) and became increasing higher than the experimental values at high filler contents (> 60 vol %).

  11. Development of indigenous insulation material for superconducting magnets and study of its characteristics under influence of intense neutron irradiation

    NASA Astrophysics Data System (ADS)

    Sharma, Rajiv; Tanna, V. L.; Rao, C. V. S.; Abhangi, Mitul; Vala, Sudhirsinh; Sundaravel; Varatharajan, S.; Sivakumar, S.; Sasi, K.; Pradhan, S.

    2017-02-01

    Epoxy based glass fiber reinforced composites are the main insulation system for the superconducting magnets of fusion machines. 14MeV neutrons are generated during the DT fusion process, however the energy spectra and flux gets modified to a great extent when they reach the superconducting magnets. Mechanical properties of the GFRP insulation material is reported to degrade up to 30%. As a part of R & D activity, a joint collaboration with IGCAR, Kalpakkam has been established. The indigenous insulation material is subjected to fast neutron fluence of 1014 - 1019 n/m2 (E>0.1 MeV) in FBTR and KAMINI Reactor, India. TRIM software has been used to simulate similar kind of damage produced by neutrons by ion irradiation with 5 MeV Al ions and 3 MeV protons. Fluence of the ions was adjusted to get the same dpa. We present the test experiment of neutron irradiation of the composite material (E-glass, S-glass fiber boron free and DGEBA epoxy). The test results of tensile, inter laminar shear and electrical breakdown strength as per ASTM standards, assessment of micro-structure surface degradation before and after irradiation will be presented. MCNP simulations are carried out for neutron flux, dose and damages produced in the insulation material.

  12. Structural and electronic properties of carbon nanotube-reinforced epoxy resins.

    PubMed

    Suggs, Kelvin; Wang, Xiao-Qian

    2010-03-01

    Nanocomposites of cured epoxy resin reinforced by single-walled carbon nanotubes exhibit a plethora of interesting behaviors at the molecular level. We have employed a combination of force-field-based molecular mechanics and first-principles calculations to study the corresponding binding and charge-transfer behavior. The simulation study of various nanotube species and curing agent configurations provides insight into the optimal structures in lieu of interfacial stability. An analysis of charge distributions of the epoxy functionalized semiconducting and metallic tubes reveals distinct level hybridizations. The implications of these results for understanding dispersion mechanism and future nano reinforced composite developments are discussed.

  13. Synthesis of polyoxometalate-loaded epoxy composites

    DOEpatents

    Anderson, Benjamin J

    2014-10-07

    The synthesis of a polyoxometalate-loaded epoxy uses a one-step cure by applying an external stimulus to release the acid from the polyoxometalate and thereby catalyze the cure reaction of the epoxy resin. Such polyoxometalate-loaded epoxy composites afford the cured epoxy unique properties imparted by the intrinsic properties of the polyoxometalate. For example, polyoxometalate-loaded epoxy composites can be used as corrosion resistant epoxy coatings, for encapsulation of electronics with improved dielectric properties, and for structural applications with improved mechanical properties.

  14. [The research of biodegradation of a composite material used in reconstructive and reparative surgery of maxillofacial area].

    PubMed

    Malanchuk, V O; Astapenko, O O; Halatenko, N A; Rozhnova, R A

    2013-09-01

    Dates about the research of biodegradation of epoxy-polyurethane composite material used in reconstructive and reparative surgery of maxillofacial area are reflected in the article. Was founded: 1) notable biodegradation of species from epoxy-polyurethane composition in the term of observation up to 6 months was not founded. That testifies their preservation of physical and mechanical properties. 2) founded, that in species from epoxy-polyurethane composition, which contain levamisole, processes of biodegradation are faster then in species from pure epoxy-polyurethane composition and in species from epoxy-polyurethane composition with hydroxyapatite; 3) material from epoxy-polyurethane composition, which contains levamisole and hydroxyapatite, stays in biological environment in small quantity of petty fragments during the incubation in term of 2 years. So, it biodegrades practically totally. Authors suggest on the basis of achieved information, that the use of epoxy-polyurethane constructions that biodegrade, is pertinently in reconstructive maxillofacial surgery.

  15. Evaluation of atomic oxygen resistant protective coatings for fiberglass-epoxy composites in LEO

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Paulsen, Phillip E.; Brady, Joyce A.

    1989-01-01

    Fiberglass-epoxy composite masts are the prime structural members for the Space Station Freedom solar array. At the altitude where Space Station Freedom will operate, atomic oxygen atoms are the most predominant species. Atomic oxygen is highly reactive and has been shown to oxidize organic and some metallic materials. Tests with random and directed atomic oxygen exposure have shown that the epoxy is removed from the composite exposing brittle glass fibers which could be easily removed from the surface where they could contaminate Space Station Freedom Systems. Protection or fiber containment systems; inorganic based paints, aluminum braid, and a metal coating; were evaluated for resistance to atomic oxygen, vacuum ultraviolet radiation, thermal cycling, and mechanical flexing. All appeared to protect well against atomic oxygen and provide fiber containment except for the single aluminum braid covering. UV radiation resistance was acceptable and in general, thermal cycling and flexure had little to no effect on the mass loss rate for most coatings.

  16. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry

    NASA Astrophysics Data System (ADS)

    Kaczmarek, K.; Langer, G.; Nehrke, G.; Horn, I.; Misra, S.; Janse, M.; Bijma, J.

    2014-12-01

    A number of studies have shown that the boron isotopic composition (δ11B) and the B/Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32-, and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the boron isotopic composition and B/Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B/Ca increases with increasing BOH4-/HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B/Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B/Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.

  17. Anvil cell gasket design for high pressure nuclear magnetic resonance experiments beyond 30 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Thomas; Haase, Jürgen

    2015-12-15

    Nuclear magnetic resonance (NMR) experiments are reported at up to 30.5 GPa of pressure using radiofrequency (RF) micro-coils with anvil cell designs. These are the highest pressures ever reported with NMR, and are made possible through an improved gasket design based on nano-crystalline powders embedded in epoxy resin. Cubic boron-nitride (c-BN), corundum (α-Al{sub 2}O{sub 3}), or diamond based composites have been tested, also in NMR experiments. These composite gaskets lose about 1/2 of their initial height up to 30.5 GPa, allowing for larger sample quantities and preventing damages to the RF micro-coils compared to precipitation hardened CuBe gaskets. It ismore » shown that NMR shift and resolution are less affected by the composite gaskets as compared to the more magnetic CuBe. The sensitivity can be as high as at normal pressure. The new, inexpensive, and simple to engineer gaskets are thus superior for NMR experiments at high pressures.« less

  18. Evaluation of interlaminar shear of laminate by 3D digital holography

    NASA Astrophysics Data System (ADS)

    Mayssa, Karray; Christophe, Poilane; Mohamed, Gargouri; Pascal, Picart

    2017-05-01

    In this paper, we propose a three-color holographic interferometer devoted to the 3D displacement field analysis of a composite material. The method in applied to analyze cracks during a short beam shear test. The tested materials are a glass/epoxy composite, a flax/carbon/epoxy composite and a flax/epoxy composite. Such an evaluation provides a pertinent parameter to detect premature cracks in the structure, long before it becomes visible on the real time stress/strain curve, or with a classical microscope. Moreover, the mechanical proprieties of flax/carbon/epoxy composite and flax/epoxy composite are compared.

  19. Fluorinated Alkyl Ether Epoxy Resin Compositions and Applications Thereof

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Wohl, Christopher J. (Inventor); Siochi, Emilie J. (Inventor); Gardner, John M. (Inventor); Smith, Joseph G. (Inventor); Palmieri, Frank M. (Inventor)

    2017-01-01

    Epoxy resin compositions prepared using amino terminated fluoro alkyl ethers. The epoxy resin compositions exhibit low surface adhesion properties making them useful as coatings, paints, moldings, adhesives, and fiber reinforced composites.

  20. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites

    NASA Astrophysics Data System (ADS)

    Visakh, P. M.; Nazarenko, O. B.; Sarath Chandran, C.; Melnikova, T. V.; Nazarenko, S. Yu.; Kim, J.-C.

    2017-07-01

    The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose.

  1. Interaction of boron cluster ions with water: Single collision dynamics and sequential etching

    NASA Astrophysics Data System (ADS)

    Hintz, Paul A.; Ruatta, Stephen A.; Anderson, Scott L.

    1990-01-01

    Reactions of mass-selected, cooled, boron cluster ions (B+n, n=1-14) with water have been studied for collision energies from 0.1 to 6.0 eV. Most work was done with D2O, however isotope effects were examined for selected reactant cluster ions. For all size clusters there are exoergic product channels, which in most cases have no activation barriers. Cross sections are generally large, however there are fluctuations with cluster size in total reactivity, collision energy dependences, and in product distributions. For small cluster ions, there is a multitude of product channels. For clusters larger than B+6, the product distributions are dominated by a single channel: Bn-1D++DBO. Under multiple collision conditions, the primary products undergo a remarkable sequence of secondary ``etching'' reactions. As these occur, boron atoms are continuously replaced by hydrogen, and the intermediate products retain the composition: Bn-mH+m. This highly efficient chemistry appears to continue unchanged as the composition changes from pure boron to mostly hydrogen. Comparison of these results is made with boron cluster ion reactions with O2 and D2, as well as reactions with water of aluminum and silicon cluster ions. Some discussion is given of the thermochemistry for these reactions, and a possible problem with the thermochemical data in the BOD/DBO system is discussed.

  2. The effect of interlaminar graphene nano-sheets reinforced e-glass fiber/ epoxy on low velocity impact response of a composite plate

    NASA Astrophysics Data System (ADS)

    Al-Maharma, A. Y.; Sendur, P.

    2018-05-01

    In this study, we compare the inter-laminar effect of graphene nano-sheets (GNSs) and CNTs on the single and multiple dynamic impact response of E-glass fiber reinforced epoxy composite (GFEP). In the comparisons, raw GFEP composite is used as baseline for quantifying the improvement on the dynamic impact response. For that purpose, finite element based models are developed for GNSs on GFEP, graphene coating on glass fibers, inter-laminar composite of CNTs reinforced polyester at 7.5 vol%, and combinations of all these reinforcements. Comparisons are made on three metrics: (i) total deformation, (ii) the contact force, and (iii) internal energy of the composite plate. The improvement on axial modulus (E1) of GFEP reinforced with one layer of GNS (0.5 wt%) without polyester at lamination sequence of [0]8 is 29.4%, which is very close to the improvement of 31% on storage modulus for multi-layer graphene with 0.5 wt% reinforced E-glass/epoxy composite at room temperature. Using three GNSs (1.5 wt%) reinforced polyester composite as interlaminar layer results in an improvement of 57.1% on E1 of GFEP composite. The simulation results reveal that the interlaminar three GNSs/polyester composite at mid-plane of GFEP laminated composite can significantly improve the dynamic impact resistance of GFEP structure compared to the other aforementioned structural reinforcements. Reinforcing GFEP composite with three layers of GNSs/polyester composite at mid-plane results in an average of 35% improvement on the dynamic impact resistance for healthy and damaged composite plate under low velocity impacts of single and multiple steel projectiles. This model can find application in various areas including structural health monitoring, fire retardant composite, and manufacturing of high strength and lightweight mechanical parts such as gas tank, aircraft wings and wind turbine blades.

  3. Ballistic damage in hybrid composite laminates

    NASA Astrophysics Data System (ADS)

    Phadnis, Vaibhav A.; Pandya, Kedar S.; Naik, Niranjan K.; Roy, Anish; Silberschmidt, Vadim V.

    2015-07-01

    Ballistic damage of hybrid woven-fabric composites made of plain-weave E-glass- fabric/epoxy and 8H satin-weave T300 carbon-fabric/epoxy is studied using a combination of experimental tests, microstructural studies and finite-element (FE) analysis. Ballistic tests were conducted with a single-stage gas gun. Fibre damage and delamination were observed to be dominating failure modes. A ply-level FE model was developed, with a fabric-reinforced ply modelled as a homogeneous orthotropic material with capacity to sustain progressive stiffness degradation due to fibre/matrix cracking, fibre breaking and plastic deformation under shear loading. Simulated damage patterns on the front and back faces of fabric-reinforced composite plates provided an insight into their damage mechanisms under ballistic loading.

  4. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    NASA Astrophysics Data System (ADS)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  5. Completion of evaluation of manufacturing processes for B/Al composites containing 0.2mm diameter boron fibers

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Moorhead, P. E.

    1980-01-01

    Four fabricators produced a total of 54 B/1100 Al, B/6061 Al, and B/2024 Al panels for evaluation. The 8 ply unidirectional, 45 to 50 volume percent, panels were made using 0.20 mm diameter boron fibers which were obtained from a single supplier. Hot press consolidation was carried out in vacuum except for one set of dry woven tape panels which were hot pressed in air. A single testing contractor conducted nondestructive inspection, metallography, fractography and mechanical property tests. The mechanical property tests included 21 and 260 C tensile tests and 21 C shear tests. Panel quality, as measured by nondestructive evaluation, was generally good as were the 21 C tensile properties. The panels hot pressed in air delaminated in the shear tests. Shear strength values were lower in these panels. But tensile strengths were not affected by the delaminations because of the relation between the tensile loading direction and the delaminations. Composite tensile strength was found to be proportional to the volume percent boron and the aluminum matrix rather than to the tape used or fabrication technique. Suitability of these composites for 260 C service was confirmed by tensile tests.

  6. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites

    PubMed Central

    Alajmi, Mahdi; Shalwan, Abdullah

    2015-01-01

    The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR) and coefficient of friction (COF) of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs), as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites. PMID:28793431

  7. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites.

    PubMed

    Alajmi, Mahdi; Shalwan, Abdullah

    2015-07-08

    The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR) and coefficient of friction (COF) of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs), as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites.

  8. Processing and Characterization of Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Can, Roberto J.; Grimsley, Brian W.; Czabaj, Michael W.; Siochi, Emilie J.; Hull, Brandon

    2014-01-01

    Recent advances in the synthesis of large-scale quantities of carbon nanotubes (CNT) have provided the opportunity to study the mechanical properties of polymer matrix composites using these novel materials as reinforcement. Nanocomp Technologies, Inc. currently supplies large sheets with dimensions up to 122 cm x 244 cm containing both single-wall and few-wall CNTs. The tubes are approximately 1 mm in length with diameters ranging from 8 to 12 nm. In the present study being conducted at NASA Langley Research Center (LaRC), single and multiple layers of CNT sheets were infused or coated with various polymer solutions that included commercial toughened-epoxies and bismaleimides, as well as a LaRC developed polyimide. The resulting CNT composites were tested in tension using a modified version of ASTM D882-12 to determine their strength and modulus values. The effects of solvent treatment and mechanical elongation/alignment of the CNT sheets on the tensile performance of the composite were determined. Thin composites (around 50 wt% CNT) fabricated from acetone condensed and elongated CNT sheets with either a BMI or polyimide resin solution exhibited specific tensile moduli approaching that of toughened epoxy/ IM7 carbon fiber unidirectional composites.

  9. Graphite/Ultra-High Modulus Polyethylene Hybrid Fiber Composites with Epoxy and Polyethylene Matrices for Cosmic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    2003-01-01

    One of the most significant technical challenges in long-duration space missions is that of protecting the crew from harmful radiation. Protection against such radiation on a manned Mars mission will be of vital importance both during transit and while on the surface of the planet. The development of multifunctional materials that serve as integral structural members of the space vehicle and provide the necessary radiation shielding for the crew would be both mission enabling and cost effective. Additionally, combining shielding and structure could reduce total vehicle mass. Hybrid laminated composite materials having both ultramodulus polyethylene (PE) and graphite fibers in epoxy and PE matrices could meet such mission requirements. PE fibers have excellent physical properties, including the highest specific strength of any known fiber. Moreover, the high hydrogen (H) content of polyethylene makes the material an excellent shielding material for cosmic radiation. When such materials are incorporated into an epoxy or PE matrix a very effective shielding material is expected. Boron (B) may be added to the matrix resin or used as a coating to further increase the shielding effectiveness due to B s ability to slow thermal neutrons. These materials may also serve as micrometeorites shields due to PE s high impact energy absorption properties. It should be noted that such materials can be fabricated by existing equipment and methods. It is the objective of this work therefore to: (a) perform preliminary analysis of the radiation transport within these materials; (b) fabricate panels for mechanical property testing before and after radiation exposure. Preliminary determination on the effectiveness of the combinations of material components on both shielding and structural efficiency will be made.

  10. Functionalization of Graphene Nanoplatelets Using Sugar Azide for Graphene/Epoxy Nanocomposites

    DTIC Science & Technology

    2014-06-20

    temperature to 200°C in the single cantilever mode at a heating rate and frequency of 3°C/min and 1 Hz, respectively. Thermogravimetric analysis (TGA) of...14. ABSTRACT We report a covalent functionalization of graphene nanoparticles (GnPs) employing 2,3,4-Tri-O-acetyl-β-D-xylopyranosyl azide...and glass transition temperature (~10C) compared to an un-functionalized GnP based epoxy composite. 15. SUBJECT TERMS Graphene nanoparticles

  11. Superior Mechanical Properties of Epoxy Composites Reinforced by 3D Interconnected Graphene Skeleton.

    PubMed

    Ni, Ya; Chen, Lei; Teng, Kunyue; Shi, Jie; Qian, Xiaoming; Xu, Zhiwei; Tian, Xu; Hu, Chuansheng; Ma, Meijun

    2015-06-03

    Epoxy-based composites reinforced by three-dimensional graphene skeleton (3DGS) were fabricated in resin transfer molding method with respect to the difficulty in good dispersion and arrangement of graphene sheets in composites by directly mixing graphene and epoxy. 3DGS was synthesized in the process of self-assembly and reduction with poly(amidoamine) dendrimers. In the formation of 3DGS, graphene sheets were in good dispersion and ordered state, which resulted in exceptional mechanical properties and thermal stability for epoxy composites. For 3DGS/epoxy composites, the tensile and compressive strengths significantly increased by 120.9% and 148.3%, respectively, as well as the glass transition temperature, which increased by a notable 19 °C, unlike the thermal exfoliation graphene/epoxy composites via direct-mixing route, which increased by only 0.20 wt % content of fillers. Relative to the graphene/epoxy composites in direct-mixing method mentioned in literature, the increase in tensile and compressive strengths of 3DGS/epoxy composites was at least twofold and sevenfold, respectively. It can be expected that 3DGS, which comes from preforming graphene sheets orderly and dispersedly, would replace graphene nanosheets in polymer nanocomposite reinforcement and endow composites with unique structure and some unexpected performance.

  12. Preparation, Characterization, and Enhanced Thermal and Mechanical Properties of Epoxy-Titania Composites

    PubMed Central

    Rubab, Zakya; Siddiqi, Humaira M.; Saeed, Shaukat

    2014-01-01

    This paper presents the synthesis and thermal and mechanical properties of epoxy-titania composites. First, submicron titania particles are prepared via surfactant-free sol-gel method using TiCl4 as precursor. These particles are subsequently used as inorganic fillers (or reinforcement) for thermally cured epoxy polymers. Epoxy-titania composites are prepared via mechanical mixing of titania particles with liquid epoxy resin and subsequently curing the mixture with an aliphatic diamine. The amount of titania particles integrated into epoxy matrix is varied between 2.5 and 10.0 wt.% to investigate the effect of sub-micron titania particles on thermal and mechanical properties of epoxy-titania composites. These composites are characterized by X-ray photoelectron (XPS) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric (TG), and mechanical analyses. It is found that sub-micron titania particles significantly enhance the glass transition temperature (>6.7%), thermal oxidative stability (>12.0%), tensile strength (>21.8%), and Young's modulus (>16.8%) of epoxy polymers. Epoxy-titania composites with 5.0 wt.% sub-micron titania particles perform best at elevated temperatures as well as under high stress. PMID:24578638

  13. Mechanical and Thermal Properties of Epoxy Composites Containing Zirconia-Impregnated Halloysite Nanotubes with Different Loadings.

    PubMed

    Kim, Suhyun; Kim, Moon Il; Shon, Minyoung; Seo, Bongkuk; Lim, Choongsun

    2018-09-01

    Epoxy resins are widely used in various industrial fields due to their low cost, good workability, heat resistance, and good mechanical strength. However, they suffer from brittleness, an issue that must be addressed for further applications. To solve this problem, additional fillers are needed to improve the mechanical and thermal properties of the resins; zirconia is one such filler. However, it has been reported that aggregation may occur in the epoxy composites as the amount of zirconia increases, preventing enhancement of the mechanical strength of the epoxy composites. Herein, to reduce the aggregation, zirconia was well dispersed on halloysite nanotubes (HNTs), which have high thermal and mechanical strength, by a conventional wet impregnation method. The HNTs were impregnated with zirconia at different loadings using zirconyl chloride octahydrate as a precursor. The mechanical and thermal strengths of the epoxy composites with these fillers were investigated. The zirconia-impregnated HNTs (Zr/HNT) were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and tunneling electron microscopy (TEM). The hardening conditions of the epoxy composites were analyzed by differential scanning calorimetry (DSC). The thermal strength of the epoxy composites was studied by thermomechanical analysis (TMA) and micro-calorimetry and the mechanical strength of the epoxy composites (flexural strength and tensile strength) was studied by using a universal testing machine (UTM). The mechanical and thermal strengths of the epoxy composites with Zr/HNT were improved compared to those of the epoxy composite with HNT, and also increased as the zirconia loading on HNT increased.

  14. Allergic contact dermatitis from a nonbisphenol A epoxy in a graphite fiber reinforced epoxy laminate.

    PubMed

    Mathias, C G

    1987-09-01

    An employee of the Composites Division of an aircraft engine manufacturing firm developed dermatitis associated with the handling of a graphite fiber reinforced epoxy laminate (epoxy prepreg). Patch test investigation demonstrated that the responsible causal agent was the nonbisphenol A epoxy binder, 4-glycidyloxy-N, N-diglycidylaniline. A patch test with bisphenol A epoxy from a standard patch test screening series was negative. Subsequent interviews with employees of the Composites Division suggested that a relative lack of awareness of the cutaneous hazards of fiber reinforced epoxy laminates, compared with liquid epoxy resin systems, may be an important risk factor for allergic sensitization to these composite materials.

  15. Fracture behavior of block copolymer and graphene nanoplatelet modified epoxy and fiber reinforced/epoxy polymer composites

    NASA Astrophysics Data System (ADS)

    Kamar, Nicholas T.

    Glass and carbon fiber reinforced/epoxy polymer composites (GFRPs and CFRPs) have high strength-to-weight and stiffness-to-weight ratios. Thus, GFRPs and CFRPs are used to lightweight aircraft, marine and ground vehicles to reduce transportation energy utilization and cost. However, GFRP and CFRP matrices have a low resistance to crack initiation and propagation; i.e. they have low fracture toughness. Current methods to increase fracture toughness of epoxy and corresponding GFRP and CFRPs often reduce composite mechanical and thermomechanical properties. With the advent of nanotechnology, new methods to improve the fracture toughness and impact properties of composites are now available. The goal of this research is to identify the fracture behavior and toughening mechanisms of nanoparticle modified epoxy, GFRPs and CFRPs utilizing the triblock copolymer poly(styrene)-block-poly(butadiene)-block-poly(methylmethacrylate) (SBM) and graphene nanoplatelets (GnPs) as toughening agents. The triblock copolymer SBM was used to toughen the diglycidyl ether of bisphenol-A (DGEBA) resin cured with m-phenylenediamine (mPDA) and corresponding AS4-12k CFRPs. SBM self assembled in epoxy to form nanostructured domains leading to larger increases in fracture toughness, KQ (MPa*m 1/2) than the traditional, phase separating carboxyl-terminated butadiene-acrylonitrile (CTBN) rubber. Additionally, SBM increased the mode-I fracture toughness, GIc (J/m2) of CFRPs without corresponding reductions in composite three-point flexural properties and glass transition temperature (Tg). Fractography of SBM modified epoxy and CFRPs via scanning electron microscopy (SEM) showed that sub 100 nm spherical micelles cavitated to induce void growth and matrix shear yielding toughening mechanisms. Furthermore, SBM did not suppress epoxy Tg, while CTBN decreased Tg with both increasing concentration and acrylonitrile content. Graphene nanoplatelets (GnPs) consist of a few layers of graphene sheets, which are a single atomic layer of sp2 hybridized carbon atoms arranged in a honeycomb lattice. GnPs have excellent thermal, electrical and mechanical properties and are thus attractive fillers for composite materials. GnPs with a basal plane diameter of 5 microm were incorporated between lamina in GFRPs made via vacuum assisted resin transfer molding (VARTM). At only 0.25 wt%, GnPs improved GFRP flexural strength and GIc by 29 and 25%, respectively. GnPs also improved the low velocity drop weight impact properties of the GFRP laminates. Ultrasonic C-scans and dye penetration experiments on impacted laminates showed that the impact-side damage area decreased with increasing concentration of GnPs, while the back-side damage area increased. The addition of GnPs improved absorption and dissipation of impact energy throughout GFRP laminates. Additionally, GnPs were investigated as toughening agents in epoxy and corresponding AS4-12k CFRPs. In epoxy and CFRPs, GnPs activate a crack deflection toughening mechanism, resulting in increased fracture surface area and fracture energy. Hybrid GnP/SBM modified epoxy and CFRPs were also investigated.

  16. Mechanical Reinforcement of Epoxy Composites with Carbon Fibers and HDPE

    NASA Astrophysics Data System (ADS)

    He, R.; Chang, Q.; Huang, X.; Li, J.

    2018-01-01

    Silanized carbon fibers (CFs) and a high-density polyethylene with amino terminal groups (HDPE) were introduced into epoxy resins to fabricate high-performance composites. A. mechanical characterization of the composites was performed to investigate the effect of CFs in cured epoxy/HDPE systems. The composites revealed a noticeable improvement in the tensile strength, elongation at break, flexural strength, and impact strength in comparison with those of neat epoxy and cured epoxy/HDPE systems. SEM micrographs showed that the toughening effect could be explained by yield deformations, phase separation, and microcracking.

  17. Thermal Characterization and Flammability of Structural Epoxy Adhesive and Carbon/Epoxy Composite with Environmental and Chemical Degradation (Postprint)

    DTIC Science & Technology

    2012-01-01

    this study). TGA scans show the thermal degradation of carbon/ epoxy composite by fuel additive at room temperature. Through Microscale Combustion...concerns regarding the durability of structural epoxy adhesive contaminated by hydraulic fluid or fuel additive , under simplified test conditions (no...higher than room tem- perature) or fuel additive (at all temperatures of this study). TGA scans show the thermal degradation of carbon/ epoxy composite

  18. Modification of the Interfacial Interaction between Carbon Fiber and Epoxy with Carbon Hybrid Materials

    PubMed Central

    Yu, Kejing; Wang, Menglei; Wu, Junqing; Qian, Kun; Sun, Jie; Lu, Xuefeng

    2016-01-01

    The mechanical properties of the hybrid materials and epoxy and carbon fiber (CF) composites were improved significantly as compared to the CF composites made from unmodified epoxy. The reasons could be attributed to the strong interfacial interaction between the CF and the epoxy composites for the existence of carbon nanomaterials. The microstructure and dispersion of carbon nanomaterials were characterized by transmission electron microscopy (TEM) and optical microscopy (OM). The results showed that the dispersion of the hybrid materials in the polymer was superior to other carbon nanomaterials. The high viscosity and shear stress characterized by a rheometer and the high interfacial friction and damping behavior characterized by dynamic mechanical analysis (DMA) indicated that the strong interfacial interaction was greatly improved between fibers and epoxy composites. Remarkably, the tensile tests presented that the CF composites with hybrid materials and epoxy composites have a better reinforcing and toughening effect on CF, which further verified the strong interfacial interaction between epoxy and CF for special structural hybrid materials. PMID:28335217

  19. Fracture Mechanics of Transverse Cracks and Edge Delamination in Graphite-Epoxy Composite Laminates.

    DTIC Science & Technology

    1982-03-01

    Fracture failure in multi-layer epoxy-based composite laminates seldom begins with breaking of the load-carrying reinforcing fibers. Rather, smeall...often observed sub-laminate fracture mudes in, e.g., glass-epoxy and graph- ite-epoxy composite laminates. Although these matrix-dominated crackings...the uicrostructures of any given fibrous composite , fracture analysis of sub-laminate cracks based on micro leanie [I Is almost Impossible If not

  20. Behavior of single lap composite bolted joint under traction loading: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Awadhani, L. V.; Bewoor, Anand

    2018-04-01

    Composite bolted joints are preferred connection in the composite structures to facilitate the dismantling for the replacements/ maintenance work. The joint behavior under tractive forces has been studied in order to understand the safety of the structure designed. The main objective of this paper is to investigate the behavior of single-lap joints in carbon fiber reinforced epoxy composites under traction loading conditions. The experiments were designed to identify the effect of bolt diameter, stacking sequence and loading rate on the properties of the joint. The experimental results show that the parameters influence the joint performance significantly.

  1. Polymer matrix and graphite fiber interface study

    NASA Technical Reports Server (NTRS)

    Adams, D. F.; Zimmerman, R. S.; Odom, E. M.

    1985-01-01

    Hercules AS4 graphite fiber, unsized, or with EPON 828, PVA, or polysulfone sizing, was combined with three different polymer matrices. These included Hercules 3501-6 epoxy, Hercules 4001 bismaleimide, and Hexcel F155 rubber toughened epoxy. Unidirectional composites in all twelve combinations were fabricated and tested in transverse tension and axial compression. Quasi-isotropic laminates were tested in axial tension and compression, flexure, interlaminar shear, and tensile impact. All tests were conducted at both room temperature, dry and elevated temperature, and wet conditions. Single fiber pullout testing was also performed. Extensive scanning electron microphotographs of fracture surfaces are included, along with photographs of single fiber pullout failures. Analytical/experimental correlations are presented, based on the results of a finite element micromechanics analysis. Correlations between matrix type, fiber sizing, hygrothermal environment, and loading mode are presented. Results indicate that the various composite properties were only moderately influenced by the fiber sizings utilized.

  2. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  3. Anchoring ceria nanoparticles on graphene oxide and their radical scavenge properties under gamma irradiation environment.

    PubMed

    Xia, Wei; Zhao, Jun; Wang, Tao; Song, Li; Gong, Hao; Guo, Hu; Gao, Bing; Fan, Xiaoli; He, Jianping

    2017-06-28

    Polymer networks such as those of epoxy resin, as common protection materials, possess radiolytic oxidation degradation effects under gamma irradiation environment, which have a great accelerating effect on the ageing rate and severely limit their potential applications for metal protection in the nuclear industry. To overcome this, we report a simple scheme of anchoring crystalline ceria nanoparticles onto graphene sheets (CG) and incorporate it into the epoxy resin, followed by thermal polymerization to obtain CeO 2 /graphene-epoxy nanocomposite coating (CGNS). We had proven that graphene might act as "interwalls" in the epoxy matrix, which will result in space location-obstruct effect as well as absorb the radicals induced by γ-ray irradiation. Moreover, owing to the interconversion of cerium ions between their +3 and +4 states coupled with the formation of oxygen vacancy defects, electron spin resonance (ESR) detection shows that CeO 2 /graphene (CG) could act as a preferable radical scavenger and achieve better performance in trapping radicals than single graphene based composite. Electrochemical data strongly demonstrate that CeO 2 /graphene is capable of maintaining the anti-corrosion properties under gamma irradiation environment. Therefore, the designed hybrid CeO 2 /graphene-epoxy composite can be considered as potential candidates for protective coatings in nuclear industry.

  4. Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite

    NASA Astrophysics Data System (ADS)

    Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.

  5. Tensile Mechanical Property of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Ghazilan, A. L. Ahmad; Mokhtar, H.; Shaik Dawood, M. S. I.; Aminanda, Y.; Ali, J. S. Mohamed

    2017-03-01

    Natural, short, untreated and randomly oriented oil palm empty fruit bunch fiber reinforced epoxy composites were manufactured using vacuum bagging technique with 20% fiber volume composition. The performance of the composite was evaluated as an alternative to synthetic or conventional reinforced composites. Tensile properties such as tensile strength, modulus of elasticity and Poisson’s ratio were compared to the tensile properties of pure epoxy obtained via tensile tests as per ASTM D 638 specifications using Universal Testing Machine INSTRON 5582. The tensile properties of oil palm empty fruit bunch fiber reinforced epoxy composites were lower compared to plain epoxy structure with the decrement in performances of 38% for modulus of elasticity and 61% for tensile strength.

  6. Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells

    NASA Astrophysics Data System (ADS)

    Anastasiadis, John S.; Simitses, George J.

    A higher-order shell theory was developed (kinematic relations, constitutive relations, equilibrium equations and boundary conditions), which includes initial geometric imperfections and transverse shear effects for a laminated cylindrical shell under the action of pressure, axial compression and in-plane shear. Through the perturbation technique, buckling equations are derived for the corresponding 'perfect geometry' symmetric laminated configuration. Critical pressures are computed for very long cylinders for several stacking sequences, several radius-to-total-thickness ratios, three lamina materials (boron/epoxy, graphite/epoxy, and Kevlar/epoxy), and three shell theories: classical, first-order shear deformable and higher- (third-)order shear deformable. The results provide valuable information concerning the applicability (accurate prediction of buckling pressures) of the various shell theories.

  7. Regeneration efficiency, shuttle heat loss and thermal conductivity in epoxy-composite annualr gap regenerators from 4K to 80K

    NASA Technical Reports Server (NTRS)

    Myrtle, K.; Cygax, S.; Plateel, C.; Winter, C.

    1983-01-01

    A test apparatus designed to simulate a section of a Stirling cycle cryocooler was built. Measurements of regeneration efficiency, shuttle heat loss and thermal conductivity reported for several regenerator test sections. The test composites were epoxy glass, epoxy glass with lead particles, epoxy glass with activated charcoal and epoxy graphite. Losses measured for these materials were approximately the same. Losses are in good agreement with those calculated theoretically for an epoxy glass (C-10) composite. The implications of these results on cryocooler design are discussed.

  8. Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites.

    PubMed

    Saba, N; Mohammad, F; Pervaiz, M; Jawaid, M; Alothman, O Y; Sain, M

    2017-04-01

    Present study, deals about isolation and characterization of cellulose nanofibers (CNFs) from the Northern Bleached Softwood Kraft (NBSK) pulp, fabrication by hand lay-up technique and characterization of fabricated epoxy nanocomposites at different filler loadings (0.5%, 0.75%, 1% by wt.). The effect of CNFs loading on mechanical (tensile, impact and flexural), morphological (scanning electron microscope and transmission electron microscope) and structural (XRD and FTIR) properties of epoxy composites were investigated. FTIR analysis confirms the introduction of CNFs into the epoxy matrix while no considerable change in the crystallinity and diffraction peaks of epoxy composites were observed by the XRD patterns. Additions of CNFs considerably enhance the mechanical properties of epoxy composites but a remarkable improvement is observed for 0.75% CNFs as compared to the rest epoxy nanocomposites. In addition, the electron micrographs revealed the perfect distribution and dispersion of CNFs in the epoxy matrix for the 0.75% CNFs/epoxy nanocomposites, while the existence of voids and agglomerations were observed beyond 0.75% CNFs filler loadings. Overall results analysis clearly revealed that the 0.75% CNFs filler loading is best and effective with respect to rest to enhance the mechanical and structural properties of the epoxy composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. On Technological Properties of Modified Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Gavrilov, M.

    2017-11-01

    The technological properties of epoxy composite materials based on constructional and chemical waste have been reviewed. The viscosity and component wettability of modified epoxy composites have been researched. The use of plasticizing additives to improve mixtures forming has been justified.

  10. Composite Bone Models in Orthopaedic Surgery Research and Education

    PubMed Central

    Elfar, John; Stanbury, Spencer; Menorca, Ron Martin Garcia; Reed, Jeffrey Douglas

    2014-01-01

    Composite bone models are increasingly used in orthopaedic biomechanics research and surgical education—applications that traditionally relied on cadavers. Cadaver bones are suboptimal for myriad reasons, including issues of cost, availability, preservation, and inconsistency between specimens. Further, cadaver samples disproportionately represent the elderly, whose bone quality may not be representative of the greater orthopaedic population. The current fourth-generation composite bone models provide an accurate reproduction of the biomechanical properties of human bone when placed under bending, axial, and torsional loads. The combination of glass fiber and epoxy resin components into a single phase has enabled manufacturing by injection molding. The high anatomic fidelity of the cadaver-based molds and negligible shrinkage properties of the epoxy resin results in a process that allows for excellent definition of anatomic detail in the cortical wall and optimized consistency of features between models. Recent biomechanical studies of composites have validated their use as a suitable substitute for cadaver specimens. PMID:24486757

  11. Composite bone models in orthopaedic surgery research and education.

    PubMed

    Elfar, John; Menorca, Ron Martin Garcia; Reed, Jeffrey Douglas; Stanbury, Spencer

    2014-02-01

    Composite bone models are increasingly used in orthopaedic biomechanics research and surgical education-applications that traditionally relied on cadavers. Cadaver bones are suboptimal for many reasons, including issues of cost, availability, preservation, and inconsistency between specimens. Further, cadaver samples disproportionately represent the elderly, whose bone quality may not be representative of the greater orthopaedic population. The current fourth-generation composite bone models provide an accurate reproduction of the biomechanical properties of human bone when placed under bending, axial, and torsional loads. The combination of glass fiber and epoxy resin components into a single phase has enabled manufacturing by injection molding. The high level of anatomic fidelity of the cadaver-based molds and negligible shrinkage properties of the epoxy resin results in a process that allows for excellent definition of anatomic detail in the cortical wall and optimized consistency of features between models. Recent biomechanical studies of composites have validated their use as a suitable substitute for cadaver specimens.

  12. Design and fabrication of a boron reinforced intertank skirt

    NASA Technical Reports Server (NTRS)

    Henshaw, J.; Roy, P. A.; Pylypetz, P.

    1974-01-01

    Analytical and experimental studies were performed to evaluate the structural efficiency of a boron reinforced shell, where the medium of reinforcement consists of hollow aluminum extrusions infiltrated with boron epoxy. Studies were completed for the design of a one-half scale minimum weight shell using boron reinforced stringers and boron reinforced rings. Parametric and iterative studies were completed for the design of minimum weight stringers, rings, shells without rings and shells with rings. Computer studies were completed for the final evaluation of a minimum weight shell using highly buckled minimum gage skin. The detail design is described of a practical minimum weight test shell which demonstrates a weight savings of 30% as compared to an all aluminum longitudinal stiffened shell. Sub-element tests were conducted on representative segments of the compression surface at maximum stress and also on segments of the load transfer joint. A 10 foot long, 77 inch diameter shell was fabricated from the design and delivered for further testing.

  13. Mechanical and wear characteristics of epoxy composites filled with industrial wastes: A comparative study

    NASA Astrophysics Data System (ADS)

    Purohit, A.; Satapathy, A.

    2017-02-01

    Use of industrial wastes, such as slag and sludge particles, as filler in polymers is not very common in the field of composite research. Therefore in this paper, a comparison of mechanical characteristics of epoxy based composites filled with LD sludge, BF slag and LD slag (wastes generated in iron and steel industries) were presented. A comparative study among these composites in regard to their dry sliding wear characteristics under similar test conditions was also included. Composites with different weight proportions (0, 5, 10, 15 and 20 wt.%) of LD sludge were fabricated by solution casting technique. Mechanical properties were evaluated as per ASTM test standards and sliding wear test was performed following a design of experiment approach based on Taguchi’s orthogonal array. The test results for epoxy-LD sludge composites were compared with those of epoxy-BF slag and epoxy-LD slag composites reported by previous investigators. The comparison reveals that epoxy filled with LD sludge exhibits superior mechanical and wear characteristics among the three types of composites considered in this study.

  14. The Effect of Moisture on the Properties of an Aramid/Epoxy Composite

    DTIC Science & Technology

    1983-05-01

    COMPOSITES DEVELOP~ENT DIVISiON...TYPE OF REPORT II PERIOD COV ERED THE EFFECT OF MOISTURE ON THE PROPERTIES OF AN Final Report ARAMID/EPOXY COMPOSITE ’· PERFORMING ORG. REPORT...ConrJnue on reror•ralt •rde ff n~(•.’lsar:,.- .,d ldenrl(y b~ L/odc numbe-r) Composite Materials Fatigue (mechanic s ) Aramid/epoxy composites

  15. Mechanical and thermal properties of MoS2 reinforced epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Madeshwaran, S. R.; Jayaganthan, R.; Velmurugan, R.; Gupta, N. K.; Manzhirov, A. V.

    2018-04-01

    The effects of molybdenum disulfide (MoS2) on thermal expansion and mechanical properties of epoxy composites were investigated. MoS2 nanosheets were exfoliated by ultra-sonication and reinforced into epoxy as nanofiller by mechanical stirring. Transmission electron microscopy observations demonstrated that MoS2 exhibited better dispersion in epoxy matrix. Thermal expansion measured by dilatometer has revealed that increasing MoS2 fractioninepoxy matrix significantly reduced the coefficient of thermal expansion (CTE). The 0.5wt% MoS2 incorporated epoxy composites shows 35.8% reduction in CTE as compared to neat epoxy. The addition of small fraction of MoS2(0.1wt%) in the composites increased the tensile and flexural strength 39.2% and 9.0% respectively. The glass transition temperature (Tg ) of 0.1wt% MoS2 incorporated epoxy composites shows 7.39% increase in Tg .

  16. Enhanced Flexural Strength of Tellurium Nanowires/epoxy Composites with the Reinforcement Effect of Nanowires

    NASA Astrophysics Data System (ADS)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Aditya, D. B.; Vijaya Bhaskar, S.; Thumu, Udayabhaskararao

    2018-02-01

    Investigating the mechanical properties of polymer nanocomposite materials has been greatly increased in the last decade. In particular, flexural strength plays a major role in resisting bending and shear loads of a composite material. Here, one dimensional (1D) tellurium nanowires (TeNWs) reinforced epoxy composites have been prepared and the flexural properties of resulted TeNWs/epoxy nanocomposites are studied. The diameter and length of the TeNWs used to make TeNWs/epoxy nanocomposites are 21±2.5 nm and 697±87 nm, respectively. Plain and TeNWs/epoxy nanocomposites are characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). Furthermore, significant enhancement in the flexural strength of TeNWs/epoxy nanocomposite is observed in comparison to plain epoxy composite, i.e. flexural strength is increased by 65% with the addition of very little amount of TeNWs content (0.05 wt.%) to epoxy polymer. Structural details of plain and TeNWs/epoxy at micrometer scale were examined by scanning electron microscopy (SEM). We believe that our results provide a new type of semiconductor nanowires based high strength epoxy polymer nanocomposites.

  17. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  18. Three-Dimensional Graphene Foam Induces Multifunctionality in Epoxy Nanocomposites by Simultaneous Improvement in Mechanical, Thermal, and Electrical Properties.

    PubMed

    Embrey, Leslie; Nautiyal, Pranjal; Loganathan, Archana; Idowu, Adeyinka; Boesl, Benjamin; Agarwal, Arvind

    2017-11-15

    Three-dimensional (3D) macroporous graphene foam based multifunctional epoxy composites are developed in this study. Facile dip-coating and mold-casting techniques are employed to engineer microstructures with tailorable thermal, mechanical, and electrical properties. These processing techniques allow capillarity-induced equilibrium filling of graphene foam branches, creating epoxy/graphene interfaces with minimal separation. Addition of 2 wt % graphene foam enhances the glass transition temperature of epoxy from 106 to 162 °C, improving the thermal stability of the polymer composite. Graphene foam aids in load-bearing, increasing the ultimate tensile strength by 12% by merely 0.13 wt % graphene foam in an epoxy matrix. Digital image correlation (DIC) analysis revealed that the graphene foam cells restrict and confine the deformation of the polymer matrix, thereby enhancing the load-bearing capability of the composite. Addition of 0.6 wt % graphene foam also enhances the flexural strength of the pure epoxy by 10%. A 3D network of graphene branches is found to suppress and deflect the cracks, arresting mechanical failure. Dynamic mechanical analysis (DMA) of the composites demonstrated their vibration damping capability, as the loss tangent (tan δ) jumps from 0.1 for the pure epoxy to 0.24 for ∼2 wt % graphene foam-epoxy composite. Graphene foam branches also provide seamless pathways for electron transfer, which induces electrical conductivity exceeding 450 S/m in an otherwise insulator epoxy matrix. The epoxy-graphene foam composite exhibits a gauge factor as high as 4.1, which is twice the typical gauge factor for the most common metals. Simultaneous improvement in thermal, mechanical, and electrical properties of epoxy due to 3D graphene foam makes epoxy-graphene foam composite a promising lightweight and multifunctional material for aiding load-bearing, electrical transport, and motion sensing in aerospace, automotive, robotics, and smart device structures.

  19. Space shuttle nonmetallic materials age life prediction

    NASA Technical Reports Server (NTRS)

    Mendenhall, G. D.; Hassell, J. A.; Nathan, R. A.

    1975-01-01

    The chemiluminescence from samples of polybutadiene, Viton, Teflon, Silicone, PL 731 Adhesive, and SP 296 Boron-Epoxy composite was measured at temperatures from 25 to 150 C. Excellent correlations were obtained between chemiluminescence and temperature. These correlations serve to validate accelerated aging tests (at elevated temperatures) designed to predict service life at lower temperatures. In most cases, smooth or linear correlations were obtained between chemiluminescence and physical properties of purified polymer gums, including the tensile strength, viscosity, and loss tangent. The latter is a complex function of certain polymer properties. Data were obtained with far greater ease by the chemiluminescence technique than by the conventional methods of study. The chemiluminescence from the Teflon (Halon) samples was discovered to arise from trace amounts of impurities, which were undetectable by conventional, destructive analysis of the sample.

  20. Effect of surface modification of fibers with a polymer coating on the interlaminar shear strength of a composite and the translation of fiber strength in an F-12 aramid/epoxy composite vessel

    NASA Astrophysics Data System (ADS)

    Shu-hui, Zhang; Guo-zheng, Liang; Wei, Zhang; Jin-fang, Zeng

    2006-11-01

    The surface of aramid fibers was modified with a polymer coating — a surface treatment reagent containing epoxy resin. The resulting fibers were examined by using NOL tests, hydroburst tests, and the scanning electron microscopy. The modified fibers had a rougher surface than the untreated ones. The interlaminar shear strength of an aramid-fiber-reinforced epoxy composite was highest when the concentration of polymer coating system was 5%. The translation of fiber strength in an aramid/epoxy composite vessel was improved by 8%. The mechanism of the surface treatment of fibers in improving the mechanical properties of aramid/epoxy composites is discussed.

  1. Composites of Graphene Nanoribbon Stacks and Epoxy for Joule Heating and Deicing of Surfaces.

    PubMed

    Raji, Abdul-Rahman O; Varadhachary, Tanvi; Nan, Kewang; Wang, Tuo; Lin, Jian; Ji, Yongsung; Genorio, Bostjan; Zhu, Yu; Kittrell, Carter; Tour, James M

    2016-02-10

    A conductive composite of graphene nanoribbon (GNR) stacks and epoxy is fabricated. The epoxy is filled with the GNR stacks, which serve as a conductive additive. The GNR stacks are on average 30 nm thick, 250 nm wide, and 30 μm long. The GNR-filled epoxy composite exhibits a conductivity >100 S/m at 5 wt % GNR content. This permits application of the GNR-epoxy composite for deicing of surfaces through Joule (voltage-induced) heating generated by the voltage across the composite. A power density of 0.5 W/cm(2) was delivered to remove ∼1 cm-thick (14 g) monolith of ice from a static helicopter rotor blade surface in a -20 °C environment.

  2. Process of Making Boron-Fiber Reinforced Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    2002-01-01

    The invention is an apparatus and method for producing a hybrid boron reinforced polymer matrix composition from powder pre-impregnated fiber tow bundles and a linear array of boron fibers. The boron fibers are applied onto the powder pre-impregnated fiber tow bundles and then are processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the powder pre-impregnated fiber tow bundles with the boron fibers become a hybrid boron reinforced polymer matrix composite tape. A driving mechanism pulls the powder pre-impregnated fiber tow bundles with boron fibers through the processing line of the apparatus and a take-up spool collects the formed hybrid boron-fiber reinforced polymer matrix composite tape.

  3. Tensile properties of compressed moulded Napier/glass fibre reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Fatinah, T. S.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Hong, T. W.; Amin, N. A. M.; Afendi, M.

    2017-10-01

    This paper describes the experimental investigation of the tensile properties of compressed moulded Napier grass fibres reinforced epoxy composites. The effect of treatment 5% sodium hydroxide (NaOH) concentrated solution and hybridization of Napier with CSM E-glass fibres on tensile properties was also studied. The untreated and treated Napier fibres with 25% fibre loading were fabricated with epoxy resin by a cold press process. 7% fibre loading of CSM glass fibre was hybrid as the skin layer for 18% fibre loading of untreated Napier grass fibre. The tensile tests were conducted using Universal Testing Machine in accordance with ASTM D638. The tensile properties of the untreated Napier/epoxy composites were compared with treated Napier/epoxy and untreated Napier/CSM/epoxy composites. The results demonstrated that the tensile performance of untreated Napier fibre composites was significantly improved by both of the modification; alkali treatment and glass fibre hybridization. Napier grass fibres showed promising potentials to be used as reinforcement in the polymer based composites.

  4. Epoxy/Fluoroether Composites

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Taylor, M. S.

    1986-01-01

    Composite materials made from unfilled and glass-fiber-reinforced epoxy toughened by copolymerization with elastomeric prepolymers of perfluoroalkyl ether diacyl fluoride (EDAF). Improved properties due to hydrogen bonding between rubber phase and epoxy matrix, plus formation of rubberlike phase domains that molecularly interpenetrate with epoxy matrix. With optimum rubber content, particle size, and particle shape, entire molecular structure reinforced and toughened. Improved composites also show increased failure strength, stiffness, glass-transition temperature, and resistance to water.

  5. Design and Analysis of Drive Shaft using Kevlar/Epoxy and Glass/Epoxy as a Composite Material

    NASA Astrophysics Data System (ADS)

    Karthikeyan, P.; Gobinath, R.; Kumar, L. Ajith; Jenish, D. Xavier

    2017-05-01

    In automobile industry drive shaft is one of the most important components to transmit power form the engine to rear wheel through the differential gear. Generally steel drive shaft is used in automobile industry, nowadays they are more interested to replace steel drive shaft with that of composite drive shaft. The overall objective of this paper is to analyze the composite drive shaft using to find out the best replacement for conventional steel drive shaft. The uses of advanced composite materials such as Kevlar, Graphite, Carbon and Glass with proper resins ware resulted in remarkable achievements in automobile industry because of its greater specific strength and specific modulus, improved fatigue and corrosion resistances and reduction in energy requirements due to reduction in weight as compared to steel shaft. This paper is to presents, the modeling and analysis of drive shaft using Kevlar/Epoxy and Glass/Epoxy as a composite material and to find best replacement for conventional steel drive shafts with an Kevlar/epoxy or Glass/Epoxy resin composite drive shaft. Modeling is done using CATIA software and Analysis is carried out by using ANSYS 10.0 software for easy understanding. The composite drive shaft reduces the weight by 81.67 % for Kevlar/Epoxy and 72.66% for Glass/Epoxy when compared with conventional steel drive shaft.

  6. Air Force SBIR/STTR Advantage. 2nd Quarter, 2011

    DTIC Science & Technology

    2011-01-01

    modem military aircraft. One structure of particular concern is the vertical stabilizer of the F-15 aircraft, with the bonding between the boron/ epoxy ...fiber brushes are currently deployed in the U.S. Navy submarine fleet in critical nuclear propulsion plant components on three separate submarine

  7. Fiber release from impacted graphite reinforced epoxy composites

    NASA Technical Reports Server (NTRS)

    Babinsky, T. C.

    1980-01-01

    Carbon fibers released from composites by aircraft fires and crashes can cause electrical shorts and consequent equipment damage. This report investigates less vigorous release mechanisms than that previously simulated by explosive burn/blast tests. When AS/3501-6 composites are impacted by various head and weight configurations of a pendulum impactor, less than 0.2 percent by weight of the original sample is released as single fibers. Other fiber release mechanisms studied were air blasts, constant airflow, torsion, flexural, and vibration of composite samples. The full significance of the low single fiber release rates found here is to be evaluated by NASA in their aircraft vulnerability studies.

  8. Effect of thermally reduced graphene oxide on dynamic mechanical properties of carbon fiber/epoxy composite

    NASA Astrophysics Data System (ADS)

    Adak, Nitai Chandra; Chhetri, Suman; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    The Carbon fiber (CF)/epoxy composites are being used in the automotive and aerospace industries owing to their high specific mechanical strength to weight ratio compared to the other conventional metal and alloys. However, the low interfacial adhesion between fiber and polymer matrix results the inter-laminar fracture of the composites. Effects of different carbonaceous nanomaterials i.e., carbon nanotubes (CNT), graphene nanosheets (GNPs), graphene oxide (GO) etc. on the static mechanical properties of the composites were investigated in detail. Only a few works focused on the improvement of the dynamic mechanical of the CF/epoxy composites. Herein, the effect of thermally reduced grapheme oxide (TRGO) on the dynamic mechanical properties of the CF/epoxy composites was investigated. At first, GO was synthesized using modified Hummers method and then reduced the synthesized GO inside a vacuum oven at 800 °C for 5 min. The prepared TRGO was dispersed in the epoxy resin to modify the epoxy matrix. Then, a number of TRGO/CF/epoxy laminates were manufactured incorporating different wt% of TRGO by vacuum assisted resin transfer molding (VARTM) technique. The developed laminates were cured at room temperature for 24 h and then post cured at 120 °C for 2 h. The dynamic mechanical analyzer (DMA 8000 Perkin Elmer) was used to examine the dynamic mechanical properties of the TRGO/CF/epoxy composites according to ASTM D7028. The dimension of the specimen was 44×10×2.4 mm3 for the DMA test. This test was carried out under flexural loading mode (duel cantilever) at a frequency of 1 Hz and amplitude of 50 μm. The temperature was ramped from 30 to 200 °C with a heating rate of 5 °C min-1. The dynamic mechanical analysis of the 0.2 wt% TRGO incorporated CF/epoxy composites showed ~ 96% enhancement in storage modulus and ~ 12 °C increments in glass transition temperature (Tg) compared to the base CF/epoxy composites. The fiber-matrix interaction was studied by Cole-Cole plot analysis. It proved the homogeneous dispersion of the epoxy resin and TRGO. The homogeneous dispersion of the TRGO in the epoxy matrix increased the overall enhancement of the dynamic mechanical properties of the hybrid composites.

  9. Bolted joints in graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1976-01-01

    All-graphite/epoxy laminates and hybrid graphite-glass/epoxy laminates were tested. The tests encompassed a range of geometries for each laminate pattern to cover the three basic failure modes - net section tension failure through the bolt hole, bearing and shearout. Static tensile and compressive loads were applied. A constant bolt diameter of 6.35 mm (0.25 in.) was used in the tests. The interaction of stress concentrations associated with multi-row bolted joints was investigated by testing single- and double-row bolted joints and open-hole specimens in tension. For tension loading, linear interaction was found to exist between the bearing stress reacted at a given bolt hole and the remaining tension stress running by that hole to be reacted elsewhere. The interaction under compressive loading was found to be non-linear. Comparative tests were run using single-lap bolted joints and double-lap joints with pin connection. Both of these joint types exhibited lower strengths than were demonstrated by the corresponding double-lap joints. The analysis methods developed here for single bolt joints are shown to be capable of predicting the behavior of multi-row joints.

  10. The Effects of Triggering Mechanisms on the Energy Absorption Capability of Circular Jute/Epoxy Composite Tubes under Quasi-Static Axial Loading

    NASA Astrophysics Data System (ADS)

    Sivagurunathan, Rubentheran; Lau Tze Way, Saijod; Sivagurunathan, Linkesvaran; Yaakob, Mohd. Yuhazri

    2018-01-01

    The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.

  11. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    DOEpatents

    Zoch, Harold L.

    1979-11-27

    A neutron absorbing composition comprising a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide.

  12. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Heczko, O.; Drahokoupil, J.; Straka, L.

    2015-05-01

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  13. Effects of high energy radiation on the mechanical properties of epoxy/graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1987-01-01

    Publications and theses generated on composite research are listed. Surface energy changes of an epoxy based on tetraglycidyl diaminodiphenyl methane (TGDDM)/diaminodiphenyl sulfone (DDS), T-300 graphite fiber and T-300/5208 (graphite fiber/epoxy) composites were investigated after irradiation with 0.5 MeV electrons. Electron spin resonance (ESR) investigations of line shapes and the radical decay behavior were made of an epoxy based on tetraglycidyl diaminodiphenyl methane (TGDDM)/diaminodiphenyl sulfone (DDS), T-300 graphite fiber, and T-300/5208 (graphite fiber/epoxy) composites after irradiation with Co(60) gamma-radiation or 0.5 MeV electrons. The results of the experiments are discussed.

  14. Rubber-toughened polyfunctional epoxies - Brominated vs nonbrominated formulated for graphite composites

    NASA Technical Reports Server (NTRS)

    Nir, Z.; Gilwee, W. J.; Kourtides, D. A.; Parker, J. A.

    1983-01-01

    A new, commercially available, trifunctional epoxy resin (tris-(hydroxyphenyl)-methane triglycidyl ether) was modified with synthetic rubber to increase the impact resistance of epoxy/graphite composites. These composites were reinforced with commercially available satin-weave carbon cloth using two formulations of epoxies (brominated and nonbrominated) containing various amounts of carboxy-terminated butadience acrylonitrile (CTBN) rubber that had been prereacted with epoxy resin. The impact resistance was determined by measuring the interlaminar shear strength of the composites after impact. The mechanical properties, such as flexural strength and modulus at room temperature and at 93 C, were also determined. Measurements were taken of the flammability and glass transition temperature (Tg); and a thermal-gravimetric analysis was made.

  15. Effects of high energy radiation on the mechanical properties of epoxy/graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1986-01-01

    The epoxy resin system formed by tetraglycidyl 4,4'-diamino diphenyl methane (TGDDM) and 4,4'-diamino diphenyl sulfone (DDS) was characterized by dynamic mechanical analysis and differential scanning calorimetry. Dynamic mechanical properties of graphite fiber epoxy composite specimens formulated with two different adhesive systems (NARMCO 5208, NARMCO 5209) were determined. The specimens were exposed to varying dose levels of ionizing radiation (0.5 MeV electrons) with a maximum absorbed dose of 10,000 Mrads. Following irradiation, property measurements were made to assess the influence of radiation on the epoxy and composite specimens. The results established that ionizing radiation has a limited effect on the properties of epoxy and composite specimens.

  16. Electron and proton absorption calculations for a graphite/epoxy composite model. [large space structures

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.

    1979-01-01

    The Bethe-Bloch stopping power relations for inelastic collisions were used to determine the absorption of electron and proton energy in cured neat epoxy resin and the absorption of electron energy in a graphite/epoxy composite. Absorption of electron energy due to bremsstrahlung was determined. Electron energies from 0.2 to 4.0 MeV and proton energies from 0.3 to 1.75 MeV were used. Monoenergetic electron energy absorption profiles for models of pure graphite, cured neat epoxy resin, and graphite/epoxy composites are reported. A relation is determined for depth of uniform energy absorption in a composite as a function of fiber volume fraction and initial electron energy. Monoenergetic proton energy absorption profiles are reported for the neat resin model. A relation for total proton penetration in the epoxy resin as a function of initial proton energy is determined. Electron energy absorption in the composite due to bremsstrahlung is reported. Electron and proton energy absorption profiles in cured neat epoxy resin are reported for environments approximating geosynchronous earth orbit.

  17. Effect of temperature on composite sandwich structures subjected to low velocity impact. [aircraft construction materials

    NASA Technical Reports Server (NTRS)

    Sharma, A. V.

    1980-01-01

    The effect of low velocity projectile impact on sandwich-type structural components was investigated. The materials used in the fabrication of the impact surface were graphite-, Kevlar-, and boron-fibers with appropriate epoxy matrices. The testing of the specimens was performed at moderately low- and high-temperatures as well as at room temperature to assess the impact-initiated strength degradation of the laminates. Eleven laminates with different stacking sequences, orientations, and thicknesses were tested. The low energy projectile impact is considered to simulate the damage caused by runway debris, the dropping of the hand tools during servicing, etc., on the secondary aircraft structures fabricated with the composite materials. The results show the preload and the impact energy combinations necessary to cause catastrophic failure in the laminates tested. A set of faired curves indicating the failure thresholds is shown separately for the tension-and compression-loaded laminates. The specific-strengths and -modulii for the various laminates tested are also given.

  18. Impact-initiated damage thresholds in composites

    NASA Technical Reports Server (NTRS)

    Sharma, A. V.

    1980-01-01

    An experimental investigation was conducted to study the effect of low velocity projectile impact on the sandwich-type structural components. The materials used in the fabrication of the impact surface were graphite-, Kevlar-, and boron-fibers with appropriate epoxy matrices. The testing of the specimens was performed at moderately low- and high-temperatures as well as at room temperature to assess the impact-initiated strength degradation of the laminates. Eleven laminates with different stacking sequences, orientations, and thicknesses were tested. The low energy projectile impact is considered to simulate the damage caused by runway debris, dropping of the hand tools during servicing, etc., on the secondary aircraft structures fabricated with the composite materials. The results show the preload and the impact energy combinations necessary to cause catastrophic failures in the laminates tested. A set of faired curves indicating the failure thresholds is shown separately for the tension- and compression-loaded laminates. The specific-strengths and -moduli for the various laminates tested are also given.

  19. Impact resistance of spar-shell composite fan blades

    NASA Technical Reports Server (NTRS)

    Graff, J.; Stoltze, L.; Varholak, E. M.

    1973-01-01

    Composite spar-shell fan blades for a 1.83 meter (6 feet) diameter fan stage were fabricated and tested in a whirling arm facility to evaluate foreign object damage (FOD) resistance. The blades were made by adhesively bonding boron-epoxy shells on titanium spars and then adhesively bonding an Inconel 625 sheath on the leading edge. The rotating blades were individually tested at a tip speed of 800 feet per second. Impacting media used were gravel, rivets, bolt, nut, ice balls, simulated birds, and a real bird. Incidence angles were typical of those which might be experienced by STOL aircraft. The tests showed that blades of the design tested in this program have satisfactory impact resistance to small objects such as gravel, rivets, nuts, bolts, and two inch diameter ice balls. The blades suffered nominal damage when impacted with one-pound birds (9 to 10 ounce slice size). However, the shell was removed from the spar for a larger slice size.

  20. Investigation of Structural Properties of Carbon-Epoxy Composites Using Fiber-Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, J.; Kaul, R.; Taylor, S.; Jackson, K.; Sharma, A.; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Fiber Bragg-gratings are embedded in carbon-epoxy laminates as well as bonded on the surface of cylindrical structures fabricated out of such composites. Structural properties of such composites is investigated. The measurements include stress-strain relation in laminates and Poisson's ratio in several specimens with varying orientation of the optical fiber Bragg-sensor with respect to the carbon fiber in an epoxy matrix. Additionally, Bragg gratings are bonded on the surface of cylinders fabricated out of carbon-epoxy composites and longitudinal and hoop strain on the surface is measured.

  1. Dissolution and Characterization of Boron Nitride Nanotubes in Superacid.

    PubMed

    Kleinerman, Olga; Adnan, Mohammed; Marincel, Daniel M; Ma, Anson W K; Bengio, E Amram; Park, Cheol; Chu, Sang-Hyon; Pasquali, Matteo; Talmon, Yeshayahu

    2017-12-19

    Boron nitride nanotubes (BNNTs) are of interest for their unique combination of high tensile strength, high electrical resistivity, high neutron cross section, and low reactivity. The fastest route to employing these properties in composites and macroscopic articles is through solution processing. However, dispersing BNNTs without functionalization or use of a surfactant is challenging. We show here by cryogenic transmission electron microscopy that BNNTs spontaneously dissolve in chlorosulfonic acid as disentangled individual molecules. Electron energy loss spectroscopy of BNNTs dried from the solution confirms preservation of the sp 2 hybridization for boron and nitrogen, eliminating the possibility of BNNT functionalization or damage. The length and diameter of the BNNTs was statistically calculated to be ∼4.5 μm and ∼4 nm, respectively. Interestingly, bent or otherwise damaged BNNTs are filled by chlorosulfonic acid. Additionally, nanometer-sized synthesis byproducts, including boron nitride clusters, isolated single and multilayer hexagonal boron nitride, and boron particles, were identified. Dissolution in superacid provides a route for solution processing BNNTs without altering their chemical structure.

  2. Polymerization of euphorbia oil with Lewis acid in carbon dioxide media

    USDA-ARS?s Scientific Manuscript database

    Boron trifluoride diethyl etherate (BF3-OEt2) Lewis acid catalyzed ring-opening polymerization of euphorbia oil (EO), a natural epoxy oil, in liquid carbon dioxide was conducted in an effort to develop useful vegetable oil based polymers. The resulting polymers (RPEO) were characterized by FTIR, 1H-...

  3. Polymerization of euphorbia oil in carbon dioxide media

    USDA-ARS?s Scientific Manuscript database

    Boron trifluoride diethyl etherate (BF3•OEt2), Lewis acid, catalyzed ring-opening polymerization of euphorbia oil (EO), a natural epoxy oil, was conducted in carbon dioxide. The resulting polymers (RPEO) were characterized by FTIR, 1H-NMR, 13C-NMR, solid state 13C-NMR spectroscopies, differential sc...

  4. Effect of Montmorillonite Nanogel Composite Fillers on the Protection Performance of Epoxy Coatings on Steel Pipelines.

    PubMed

    Atta, Ayman M; El-Saeed, Ashraf M; Al-Lohedan, Hamad A; Wahby, Mohamed

    2017-06-02

    Montmorillonite (MMT) clay mineral is widely used as filler for several organic coatings. Its activity is increased by exfoliation via chemical modification to produce nanomaterials. In the present work, the modification of MMT to form nanogel composites is proposed to increase the dispersion of MMT into epoxy matrices used to fill cracks and holes produced by the curing exotherms of epoxy resins. The dispersion of MMT in epoxy improved both the mechanical and anti-corrosion performance of epoxy coatings in aggressive marine environments. In this respect, the MMT surfaces were chemically modified with different types of 2-acrylamido-2-methyl propane sulfonic acid (AMPS) nanogels using a surfactant-free dispersion polymerization technique. The effect of the chemical structure, nanogel content and the interaction with MMT surfaces on the surface morphology, surface charges and dispersion in the epoxy matrix were investigated for use as nano-filler for epoxy coatings. The modified MMT nanogel epoxy composites showed excellent resistance to mechanical damage and salt spray resistance up to 1000 h. The interaction of MMT nanogel composites with the epoxy matrix and good response of AMPS nanogel to sea water improve their ability to act as self-healing materials for epoxy coatings for steel.

  5. Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy composite

    DOE PAGES

    Chandrasekaran, S.; Liebig, W. V.; Mecklenberg, M.; ...

    2015-11-04

    Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7–15 mg/cm 3 was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. Our present study investigates the fracture and failure of AG/epoxy composites and its energymore » absorption capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in K IC for AG/epoxy composites with 0.45 wt% of AG. Furthermore, our observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.« less

  6. Improved adhesion performances of aramid fibers with vinyl epoxy via supercritical carbon dioxide modification

    NASA Astrophysics Data System (ADS)

    Qin, M. L.; Kong, H. J.; Yu, M. H.; Teng, C. Q.

    2017-06-01

    In this paper, aramid fibers were treated under supercritical carbon dioxide (SCCO2) with isocyanate terminated liquid nitrile rubber to improve the adhesion performances of vinyl epoxy composites. The interfacial shear strength (IFSS) of vinyl epoxy composites was investigated by micro-bond test. The results indicate that the surface modification of aramid fibers in SCCO2 was an efficient method to increase the adhesion performances between fibers and vinyl epoxy. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were adopted to investigate the surface structure and composition of aramid fibers. The flexural strength and interlaminar shear strength (ILSS) of treated aramid fibers/vinyl epoxy composites was improved by 18.1% and 28.9% compared with untreated aramid fibers, respectively. Furthermore, the fractured surfaces of the composites were observed by SEM, which showed that the interfacial adhesion of composites has been remarkably changed.

  7. Theoretical modeling and experimental study of dielectric loss of the multi-push-pull mode magnetoelectric laminate composites

    NASA Astrophysics Data System (ADS)

    Xu, Bingbing; Ma, Jiashuai; Fang, Cong; Yao, Meng; Di, Wenning; Li, Xiaobing; Luo, Haosu

    2018-02-01

    In this work, we establish a dielectric loss model for multi-push-pull mode ME laminate composites. It deduces that the total dielectric loss of the ME composites equals the linear average of the dielectric loss of piezoelectric plate and epoxy resin. But further analysis of this model has indicated that we can ignore the dielectric loss of epoxy resin. To verify this model, we use three kinds of epoxy resin with different dielectric loss to fabricate multi-push-pull mode PMNT/Metglas ME laminate composites respectively. It turns out that the different kinds of epoxy resin have little influence on the total dielectric loss, capacitance and piezoelectricity of the composites, which demonstrates that our model conforms to the practical case. Therefore, we can pay more attention to the mechanical properties of epoxy resin rather than its dielectric loss on fabricating the ME laminate composites.

  8. Dynamic compressive strength of epoxy composites

    NASA Astrophysics Data System (ADS)

    Plastinin, A. V.; Sil'vestrov, V. V.

    1996-11-01

    The strength of laminated and unidirectionally reinforced composite materials was investigated in conditions of dynamic uniaxial compression with a strain rate of 50-1000 sec-1 using the split Hopkinson pressure bar method. It was shown that in conditions of dynamic compression, glass/epoxy, aramid/epoxy, and carbon/epoxy composites exhibit elastic-brittle behavior with anisotropy of the strength and elastic properties. The effect of the strain rate on the strength characteristics of fiberglass-reinforced plastics was demonstrated.

  9. Electrical conductivity of multi-walled carbon nanotubes-SU8 epoxy composites

    NASA Astrophysics Data System (ADS)

    Grimaldi, Claudio; Mionić, Marijana; Gaal, Richard; Forró, László; Magrez, Arnaud

    2013-06-01

    We have characterized the electrical conductivity of the composite which consists of multi-walled carbon nanotubes dispersed in SU8 epoxy resin. Depending on the processing conditions of the epoxy (ranging from non-polymerized to cross-linked), we obtained tunneling and percolating-like regimes of the electrical conductivity of the composites. We interpret the observed qualitative change of the conductivity behavior in terms of reduced separation between the nanotubes induced by polymerization of the epoxy matrix.

  10. Aqueous vinylidene fluoride polymer coating composition

    NASA Technical Reports Server (NTRS)

    Bartoszek, Edward J. (Inventor); Christofas, Alkis (Inventor)

    1978-01-01

    A water-based coating composition which may be air dried to form durable, fire resistant coatings includes dispersed vinylidene fluoride polymer particles, emulsified liquid epoxy resin and a dissolved emulsifying agent for said epoxy resin which agent is also capable of rapidly curing the epoxy resin upon removal of the water from the composition.

  11. Synthesis of improved phenolic resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Mcleod, A. H.

    1979-01-01

    Twenty seven addition cured phenolic resin compositions were prepared and tested for their ability to give char residues comparable to state-of-the-art phenolic resins. Cyanate, epoxy, allyl, acrylate, methacrylate and ethynyl derivatized phenolic oligomers were investigated. The novolac-cyanate and propargyl-novolac resins provided anaerobic char yields at 800 C of 58 percent. A 59 percent char yield was obtained from modified epoxy novolacs. A phosphonitrilic derivative was found to be effective as an additive for increasing char yields. The novolac-cyanate, epoxy-novolac and methacrylate-epoxy-novolac systems were investigated as composite matrices with Thornel 300 graphite fiber. All three resins showed good potential as composite matrices. The free radical cured methacrylate-epoxy-novolac graphite composite provided short beam shear strengths at room temperature of 93.3 MPa (13.5 ksi). The novolac-cyanate graphite composite produced a short beam shear strength of 74 MPa (10.7 ksi) and flexural strength of 1302 MPa (189 ksi) at 177 C. Air heat aging of the novolac-cyanate and epoxy novolac based composites for 12 weeks at 204 C showed good property retention.

  12. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    NASA Astrophysics Data System (ADS)

    Giang, Thanhkieu; Kim, Jinhwan

    2017-01-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature ( T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature ( T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  13. Study on drilling induced delamination of woven kenaf fiber reinforced epoxy composite using carbide drills

    NASA Astrophysics Data System (ADS)

    Suhaily, M.; Hassan, C. H. Che; Jaharah, A. G.; Azmi, H.; Afifah, M. A.; Khairusshima, M. K. Nor

    2018-04-01

    In this research study, it presents the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates when using the carbide drill bits. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated carbide drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs. The results indicated that the drill diameter has a significant influence on the delamination when drilling the woven kenaf fiber reinforced epoxy composites.

  14. Effects of simulated lightning on composite and metallic joints

    NASA Technical Reports Server (NTRS)

    Howell, W. E.; Plumer, J. A.

    1982-01-01

    The effects of simulated lightning strikes and currents on aircraft bonded joints and access/inspection panels were investigated. Both metallic and composite specimens were tested. Tests on metal fuel feed through elbows in graphite/epoxy structures were evaluated. Sparking threshold and residual strength of single lap bonded joints and sparking threshold of access/inspection panels and metal fuel feed through elbows are reported.

  15. Friction and Wear Behavior of Carbon Fabric-Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Şahin, Y.; De Baets, Patrick

    2017-12-01

    Besides intrinsic material properties, weight/energy savings and wear performance play an important role in the selection of materials for any engineering application. The tribological behavior of carbon fabric-reinforced epoxy composites produced by molding technique was investigated using a reciprocating pin-on-plate configuration. It was shown that the wear rate considerably decreased (by a factor of approx. 8) with the introduction of the reinforcing carbon fabric into the epoxy matrix. It was observed that the wear rate of the tested composites increased with an increase in normal load. Moreover, the coefficient of friction for epoxy/steel and composites/steel tribo-pairs was also determined and decreased with increasing load. By means of scanning electron microscopy of the wear tracks, different wear mechanisms such as matrix wear, matrix fatigue and cracking, matrix debris formation for neat epoxy together with fabric/fiber thinning, fabric breakage and fabric/matrix debonding for the reinforced epoxy could be distinguished.

  16. Dynamic stress analysis of smooth and notched fiber composite flexural specimens

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1984-01-01

    A detailed analysis of the dynamic stress field in smooth and notched fiber composite (Charpy-type) specimens is reported in this paper. The analysis is performed with the aid of the direct transient response analysis solution sequence of MSC/NASTRAN. Three unidirectional composites were chosen for the study. They are S-Glass/Epoxy, Kevlar/Epoxy and T-300/Epoxy composite systems. The specimens are subjected to an impact load which is modeled as a triangular impulse with a maximum of 2000 lb and a duration of 1 ms. The results are compared with those of static analysis of the specimens subjected to a peak load of 2000 lb. For the geometry and type of materials studied, the static analysis results gave close conservative estimates for the dynamic stresses. Another interesting inference from the study is that the impact induced effects are felt by S-Glass/Epoxy specimens sooner than Kevlar/Epoxy or T-300/Epoxy specimens.

  17. Fiber-Reinforced Reactive Nano-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Zhong, Wei-Hong

    2011-01-01

    An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).

  18. Fiber-optic epoxy composite cure sensor. II. Performance characteristics

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    The performance of a fiber-optic epoxy composite cure sensor, as previously proposed, depends on the optical properties and the reaction kinetics of the epoxy. The reaction kinetics of a typical epoxy system are presented. It is a third-order autocatalytic reaction with a peak observed in each isothermal reaction-rate curve. A model is derived to describe the performance characteristics of the epoxy cure sensor. If a composite coupon is cured at an isothermal temperature, the sensor signal can be used to predict the time when the gel point occurs and to monitor the cure process. The sensor is also shown to perform well in nonstoichiometric epoxy matrices. In addition the sensor can detect the end of the cure without calibration.

  19. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite while the effect on the axial properties is shown to be insignificant.

  20. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  1. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  2. Influence of MWCNTs addition on mechanical and thermal behaviour of epoxy/kenaf multi-scale nanocomposite

    NASA Astrophysics Data System (ADS)

    Noor, N. A. M.; Razak, J. A.; Ismail, S.; Mohamad, N.; Yaakob, M. Y.; Theng, T. H.

    2017-06-01

    This research was conducted to develop kenaf reinforced epoxy/MWCNTs multi-scale composite using kenaf fibre and MWCNTs as the reinforcement in epoxy as the hosted matrix. The composites were produced by using a combination of hand lay-up and vacuum bagging process. The selection of optimum composition of epoxy-MWCNTs is based on the MWCNTs loading and the resulted mixture viscosity. Lower resin viscosity is required to allow good wetting and interaction between matrix and filler, which will yielded superior final performance of the fabricated composites. Therefore, different loading of MWCNTs (0.0 wt. %, 0.5 wt. %, 1.0 wt. %, 3.0 wt. %, 5.0 wt. %, 7.0 wt. %) were used to investigate the mechanical and thermal properties of the composites. As a result, the epoxy/kenaf/MWCNTs multi-scale composite at 1.0 wt. % of MWCNTs addition had yielded substantial improvement by 15.54 % in tensile strength and 90.54 % in fracture toughness. Besides, the fracture surface morphology of the selected samples were analysed via scanning electron microscopy (SEM) observation to further support the reinforcement characteristic of epoxy/kenaf/MWCNTs multi-scale composite.

  3. The effectiveness of an adhesively bonded composite patch repair as applied to a transport aircraft lower wing skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruschau, J.J.; Coate, J.E.

    1996-12-31

    Specimens were machined from lower wing skin extrusions of a transport aircraft, precracked under fatigue loading, repaired with a boron/epoxy patch, and subsequently fatigue tested under simulated flight loading conditions to evaluate the effectiveness of an adhesively bonded repair patch. Testing was performed at RT and -54{degrees}C for two configurations: one with the crack running up the integral stiffener (riser), the other running down the riser towards the outer skin surface. Cracks were initiated from a single 6.35 mm diameter hole located in the riser portion of the 7075-T6 wing skin material. Ultrasonic inspections were performed during fatigue loading tomore » determine crack growth and damage underneath the patch. Limited results show the adhesively bonded patch was successful in stopping or greatly reducing any further crack growth. Under laboratory air conditions, no crack growth occurred following 30,000 equivalent flight hours, double the expected life of the patched structure. Similarly at -54{degrees}C, no crack growth was observed for a patched crack growing up the riser following 15,000 EFH. For the case of a crack growing down the riser at the lower test temperature, some crack growth was measured, though at a greatly reduced rate.« less

  4. Failure of composite plates under static biaxial planar loading

    NASA Technical Reports Server (NTRS)

    Waas, Anthony M.; Khamseh, Amir R.

    1992-01-01

    The project involved detailed investigations into the failure mechanisms in composite plates as a function of hole size (holes centrally located in the plates) under static loading. There were two phases to the project, the first dealing with uniaxial loads along the fiber direction, and the second dealing with coplanar biaxial loading. Results for the uniaxial tests have been reported and published previously, thus this report will place emphasis on the second phase of the project, namely the biaxial tests. The composite plates used in the biaxial loading experiments, as well as the uniaxial, were composed of a single ply unidirectional graphite/epoxy prepreg sandwiched between two layers of transparent thermoplastic. This setup enabled us to examine the failure initiation and propagation modes nondestructively, during the test. Currently, similar tests and analysis of results are in progress for graphite/epoxy cruciform shaped flat laminates. The results obtained from these tests will be available at a later time.

  5. Measurements of print-through in graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Jeunnette, Timothy T.; Anzic, Judith M.

    1989-01-01

    High-reflectance accurate-contour mirrors are needed for solar dynamic space power systems. Graphite fiber epoxy composites are attractive candidates for such applications owing to their high modulus, near-zero coefficient of thermal expansion, and low mass. However, mirrors prepared from graphite fiber epoxy composite substrates often exhibit print-through, a distortion of the surface, which causes a loss in solar specular reflectance. Efforts to develop mirror substrates without print-through distortion require a means of quantifying print-through. Methods have been developed to quantify the degree of print-through in graphite fiber epoxy composite specimens using surface profilometry.

  6. Distributed Sensing of Carbon-Epoxy Composites and Filament Wound Pressure Vessels Using Fiber-Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, J.; Kaul, R.; Taylor, S.; Myer, G.; Jackson, K.; Osei, A.; Sharma, A.

    2003-01-01

    Multiple Fiber Bragg-gratings are embedded in carbon-epoxy laminates as well as in composite wound pressure vessel. Structural properties of such composites are investigated. The measurements include stress-strain relation in laminates and Poisson's ratio in several specimens with varying orientation of the optical fiber Bragg-sensor with respect to the carbon fiber in an epoxy matrix. Additionally, fiber Bragg gratings are bonded on the surface of these laminates and cylinders fabricated out of carbon-epoxy composites and multiple points are monitored and compared for strain measurements at several locations.

  7. Room Temperature Curing Resin Systems for Graphite/Epoxy Composite Repair.

    DTIC Science & Technology

    1979-12-01

    ROOM TEMPERATURE CURING RESIN SYSTEMS FOR GRAPHITE/EPOXY COMPOS--ETC(UI DEC 79 0 J CRABTREE N62269-79-C-G224 UNCLASSIFIE O80-46 NADC -781 1-6 NL END...Room Temperature Curing Resin Sys-U3 linal for Graphite/Epoxy Composite Repair •.Dec *79 NOR- -46h: V111IT NUM8ER(s) 4362269-79- ,722 S. PERFORMING...repair, composite repair room temperature cure resin , moderate temperature cure resins , epoxies, adhesives, vinyl eater polymers, anaerobic curing polymers

  8. Low Temperature Processing of Boron Carbide Cement Composite for Tough, Wear Resistant Structures

    DTIC Science & Technology

    1997-12-15

    TITLE AND SUBTITLE Low Temperature Processing of Boron Carbide Cement Composite for Tough, Wear Resistant Structures 6. AUTHOR(S) Kristen J. Law...project has developed a low temperature polymer ceramic composite consisting of boron carbide layers bonded by cement, laminated with polymer...composite have been shown to compare favorably to those of partially sintered boron carbide. Applications for this material have been identified in

  9. Boron-carbide-aluminum and boron-carbide-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.

    1986-01-01

    Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

  10. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    DOEpatents

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  11. Thermal properties and dynamic mechanical properties of ceramic fillers filled epoxy composites

    NASA Astrophysics Data System (ADS)

    Saidina, D. S.; Mariatti, M.; Juliewatty, J.

    2015-07-01

    This present study is aimed to enhance the thermal and dynamic mechanical properties of ceramic fillers such as Calcium Copper Titanate, CaCu3Ti4O12 (CCTO) and Barium Titanate (BaTiO3) filled epoxy thin film composites. As can be seen from the results, 20 vol% BaTiO3/epoxy thin film composite showed the lowest coefficient of thermal expansion (CTE) value, the highest decomposition temperature (T5 and Tonset) and weight of residue among the composites as the filler has low CTE value, distributed homogeneously throughout the composite and less voids can be seen between epoxy resin and BaTiO3 filler.

  12. Effect of fiber content on the thermal conductivity and dielectric constant of hair fiber reinforced epoxy composite

    NASA Astrophysics Data System (ADS)

    Prasad Nanda, Bishnu; Satapathy, Alok

    2018-03-01

    This paper reports on the dielectric and thermal properties of hair fibers reinforced epoxy composites. Hair is an important part of human body which also offers protection to the human body. It is also viewed as a biological waste which is responsible for creating environmental pollution due to its low decomposition rate. But at the same time it has unique microstructural, mechanical and thermal properties. In the present work, epoxy composites are made by solution casting method with different proportions of short hair fiber (SHF). Effects of fiber content on the thermal conductivity and dielectric constant of epoxy resin are studied. Thermal conductivities of the composites are obtained using a UnithermTM Model 2022 tester. An HIOKI-3532-50 Hi Tester Elsier Analyzer is used for measuring the capacitance of the epoxy-SHF composite, from which dielectric constant (Dk) of the composite are calculated. A reduction in thermal conductivity of the composite is noticed with the increase in wt. % of fiber. The dielectric constant value of the composites also found to be significantly affected by the fiber content.

  13. Analytical Modeling for Mechanical Strength Prediction with Raman Spectroscopy and Fractured Surface Morphology of Novel Coconut Shell Powder Reinforced: Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Singh, Savita; Singh, Alok; Sharma, Sudhir Kumar

    2017-06-01

    In this paper, an analytical modeling and prediction of tensile and flexural strength of three dimensional micro-scaled novel coconut shell powder (CSP) reinforced epoxy polymer composites have been reported. The novel CSP has a specific mixing ratio of different coconut shell particle size. A comparison is made between obtained experimental strength and modified Guth model. The result shows a strong evidence for non-validation of modified Guth model for strength prediction. Consequently, a constitutive modeled equation named Singh model has been developed to predict the tensile and flexural strength of this novel CSP reinforced epoxy composite. Moreover, high resolution Raman spectrum shows that 40 % CSP reinforced epoxy composite has high dielectric constant to become an alternative material for capacitance whereas fractured surface morphology revealed that a strong bonding between novel CSP and epoxy polymer for the application as light weight composite materials in engineering.

  14. Seawater infiltration effect on thermal degradation of fiber reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mohd Haziq Izzuddin bin; Hassan, Mohamad Zaki bin; Ibrahim, Ikhwan; Rashidi, Ahmad Hadi Mohamed; Nor, Siti Fadzilah M.; Daud, Mohd Yusof Md

    2018-05-01

    Seawater salinity has been associated with the reduction of polymer structure durability. The aim of this study is to investigate the change in thermal degradation of fiber reinforced epoxy composite due to the presence of seawater. Carbon fiber, carbon/kevlar, fiberglass, and jute that reinforced with epoxy resin was laminated through hand-layup technique. Initially, these specimen was sectioned to 5×5 mm dimension, then immersed in seawater and distilled water at room temperature until it has thoroughly saturated. Following, the thermal degradation analysis using Differential Scanning Calorimetry (DSC), the thermic changes due to seawater infiltration was defined. The finding shows that moisture absorption reduces the glass transition temperature (Tg) of fiber reinforced epoxy composite. However, the glass transition temperature (Tg) of seawater infiltrated laminate composite is compareable with distilled water infiltrated laminate composite. The carbon fiber reinfored epoxy has the highest glass transition temperature out of all specimen.

  15. Comparison of Mode II and III Monotonic and Fatigue Delamination Onset Behavior for Carbon/Toughened Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Li, Jian; OBrien, T. Kevin; Lee, Shaw Ming

    1997-01-01

    Monotonic and fatigue tests were performed to compare the Mode II and III interlaminar fracture toughness and fatigue delamination onset for Tenax-HTA/R6376 carbon/toughened epoxy composites. The Mode II interlaminar fracture toughness and fatigue delamination onset were characterized using the end-notched flexure (ENF) test while the Mode III interlaminar fracture toughness and fatigue delamination onset were characterized by using the edge crack torsion (ECT) test. Monotonic tests show that the Mode III fracture toughness is higher than the Mode II fracture toughness. Both Mode II and III cyclic loading greatly increases the tendency for a delamination to grow relative to a single monotonically increasing load. Under fatigue loading, the Mode III specimen also has a longer life than the Mode II specimen.

  16. Chromium Ions Improve Moisure Resistance of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.; Stoakley, D. M.; Singh, J. J.; Sprinkle, D. R.

    1986-01-01

    Broad spectrum of thermosetting epoxy resins used on commercial and military aircraft, primarily as composite matrices and adhesives. In new technique, chromium-ion containing epoxy with improved resistance to moisture produced where chromium ions believed to prevent absorption of water molecules by coordinating themselves to hydroxyl groups on epoxy chain. Anticipated that improved epoxy formulation useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft. Improvement made without sacrifice in mechanical properties of polymer.

  17. Polyfunctional epoxies. I - Rubber-toughened brominated and nonbrominated formulations for graphite composites. II - Nonrubber versus rubber-toughened brominated formulations for graphite composites

    NASA Technical Reports Server (NTRS)

    Nir, Z.; Gilwee, W. J.; Kourtides, D. A.; Parker, J. A.

    1985-01-01

    A new trifunctional epoxy resin, Tris-(hydroxyphenyl) methane triglycidyl ether, is compared to a state-of-the-art tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM), in graphite composites. Rubber-toughened brominated formulations of the epoxy resin are compared to nonbrominated ones in terms of their mechanical performance, environmental stability, thermochemical behavior, and flame retardancy. It is shown that the new resin performs almost the same way as the TGDDM does, but has improved glass transition temperature and environmental properties. Brominated polymeric additives (BPA) of different molecular weights are tested as a Br source to flame retardant graphite epoxy composites. The optimal molecular weight of the BPA and its polymeric backbone length are derived and compared with a 10 percent rubber-toughened formulation of the epoxy resin. Results indicate that when the Br content in the graphite composite is increased without the use of rubber, the mechanical properties improved. The use of BPAs as tougheners for graphite composites is also considered.

  18. Evaluation of Carbon Composite Overwrap Pressure Vessels Fabricated Using Ionic Liquid Epoxies Project

    NASA Technical Reports Server (NTRS)

    Grugel, Richard

    2015-01-01

    The intent of the work proposed here is to ascertain the viability of ionic liquid (IL) epoxy based carbon fiber composites for use as storage tanks at cryogenic temperatures. This IL epoxy has been specifically developed to address composite cryogenic tank challenges associated with achieving NASA's in-space propulsion and exploration goals. Our initial work showed that an unadulterated ionic liquid (IL) carbon-fiber composite exhibited improved properties over an optimized commercial product at cryogenic temperatures. Subsequent investigative work has significantly improved the IL epoxy and our first carbon-fiber Composite Overwrap Pressure Vessel (COPV) was successfully fabricated. Here additional COPVs, using a further improved IL epoxy, will be fabricated and pressure tested at cryogenic temperatures with the results rigorously analyzed. Investigation of the IL composite for lower pressure liner-less cryogenic tank applications will also be initiated. It is expected that the current Technology Readiness Level (TRL) will be raised from about TRL 3 to TRL 5 where unambiguous predictions for subsequent development/testing can be made.

  19. Self-healable interfaces based on thermo-reversible Diels-Alder reactions in carbon fiber reinforced composites.

    PubMed

    Zhang, W; Duchet, J; Gérard, J F

    2014-09-15

    Thermo-reversible Diels-Alder (DA) bonds formed between maleimide and furan groups have been used to generate an interphase between carbon fiber surface and an epoxy matrix leading to the ability of interfacial self-healing in carbon:epoxy composite materials. The maleimide groups were grafted on an untreated T700 carbon fiber from a three step surface treatment: (i) nitric acid oxidization, (ii) tetraethylenepentamine amination, and (iii) bismaleimide grafting. The furan groups were introduced in the reactive epoxy system from furfuryl glycidyl ether. The interface between untreated carbon fiber and epoxy matrix was considered as a reference. The interfacial shear strength (IFSS) was evaluated by single fiber micro-debonding test. The debonding force was shown to have a linear dependence with embedded length. The highest healing efficiency calculated from the debonding force was found to be about 82% more compared to the value for the reference interface. All the interphases designed with reversible DA bonds have a repeatable self-healing ability. As after the fourth healing, they can recover a relatively high healing efficiency (58% for the interphase formed by T700-BMI which is oxidized for 60 min during the first treatment step). Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Tetraglycidyl epoxy resins and graphite fiber composites cured with flexibilized aromatic diamines

    NASA Technical Reports Server (NTRS)

    Delvigs, P.

    1986-01-01

    Studies were performed to synthesize new ether modified, flexibilized aromatic diamine hardeners for curing epoxy resins. The effect of moisture absorption on the glass transition temperatures of a tetraglycidyl epoxy, MY 720, cured with flexibilized hardeners and a conventional aromatic diamine was studied. Unidirectional composites, using epoxy-sized Celion 6000 graphite fiber as the reinforcement, were fabricated. The room temperature and 300 F mechanical properties of the composites, before and after moisture exposure, were determined. The Mode I interlaminar fracture toughness of the composites was characterized using a double cantilever beam technique to calculate the critical strain energy release rate.

  1. Thermal degradation behaviors and reaction mechanism of carbon fibre-epoxy composite from hydrogen tank by TG-FTIR.

    PubMed

    Zhang, Zhi; Wang, Changjian; Huang, Gai; Liu, Haoran; Yang, Shenlin; Zhang, Aifeng

    2018-05-28

    Thermal degradation behaviors and reaction mechanism of Carbon fibre-epoxy composite, obtained from Chinese widely applied hydrogen storage tank, were studied by thermogravimetry combined with Fourier transform infrared spectrometry at varying heating rates. The pyrolysis of carbon fibre-epoxy composite mainly occurs at 550-750 K. The average value of final residue is 72.42%. The calculated activation energies increase exponentially from 206.27 KJ/mol to 412.98 KJ/mol with the average value of 276.6 KJ/mol. The fourth reaction order model is responsible for the pyrolysis of carbon fibre-epoxy composite. The absorption spectra of the evolved gases provided the information that the main evolved products are H 2 O, CO 2 , CO (acid anhydride, ketone or aldehyde), ε- caprolactam, alcohols and phenol. Moreover, CO group > alcohols > phenol > ε- caprolactam > CO 2  > H 2 O. Epoxy is the main pyrolysis crude material in carbon fibre-epoxy composite. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Self-healing woven glass fabric/epoxy composites with the healant consisting of micro-encapsulated epoxy and latent curing agent

    NASA Astrophysics Data System (ADS)

    Yin, Tao; Zhou, Lin; Zhi Rong, Min; Qiu Zhang, Ming

    2008-02-01

    This paper reports a study of self-healing woven glass fabric reinforced epoxy composites. The healing agent was a two-component one synthesized in the authors' laboratory, which consisted of epoxy-loaded urea-formaldehyde microcapsules as the polymerizable binder and CuBr2(2-methylimidazole)4 (CuBr2(2-MeIm)4) as the latent hardener. Both the microcapsules and the matching catalyst were pre-embedded and pre-dissolved in the composites' matrix, respectively. When the microcapsules are split by propagating cracks, the uncured epoxy can be released into the damaged areas and then consolidated under the catalysis of CuBr2(2-MeIm)4 that was homogeneously distributed in the composites' matrix on a molecular scale. As a result, the cracked faces can be bonded together. The influence of the content of the self-healing agent on the composites' tensile properties, interlaminar fracture toughness and healing efficiency was evaluated. It was found that a healing efficiency over 70% relative to the fracture toughness of virgin composites was obtained in the case of 30 wt% epoxy-loaded microcapsules and 2 wt% latent hardener.

  3. Oxidation of boron nitride in an arc heated jet.

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.

    1971-01-01

    Two grades of hot pressed boron nitride and a boron nitride composite were subjected to oxidation tests in a 2.5 megawatt atmospheric arc jet. The results showed that fabrication and/or composition influenced thermal shock and oxidation resistance. Changes in surface structure and recession due to oxidation suggest correlation with specimen composition. The boron nitride composite reacted with the oxygen in the hot subsonic airstream to produce a glassy coating on the hot face surface.

  4. Technical assessment for quality control of resins

    NASA Technical Reports Server (NTRS)

    Gosnell, R. B.

    1977-01-01

    Survey visits to companies involved in the manufacture and use of graphite-epoxy prepregs were conducted to assess the factors which may contribute to variability in the mechanical properties of graphite-epoxy composites. In particular, the purpose was to assess the contributions of the epoxy resins to variability. Companies represented three segments of the composites industry - aircraft manufacturers, prepreg manufacturers, and epoxy resin manufacturers. Several important sources of performance variability were identified from among the complete spectrum of potential sources which ranged from raw materials to composite test data interpretation.

  5. Physical aging in graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1983-01-01

    Sub-Tg annealing has been found to affect the properties of graphite/epoxy composites. The network epoxy studied was based on the chemistry of tetraglycidyl 4,4'-diamino-diphenyl methane (TGDDM) crosslinked by 4,4'-diamino-diphenyl sulfone (DDS). Differential scanning calorimetry, thermal mechanical analysis, and solid-state cross-polarized magic-angle-spinning nuclear magnetic resonance spectroscopy have been utilized in order to characterize this process of recovery towards thermodynamic equilibrium. The volume and enthalpy recovery as well as the 'thermoreversibility' aspects of the physical aging are discussed. This nonequilibrium and time-dependent behavior of network epoxies are considered in view of the increasingly wide applications of TGDDM-DDS epoxies as matrix materials of structural composites in the aerospace industry.

  6. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry

    NASA Astrophysics Data System (ADS)

    Kaczmarek, K.; Langer, G.; Nehrke, G.; Horn, I.; Misra, S.; Janse, M.; Bijma, J.

    2015-03-01

    A number of studies have shown that the boron isotopic composition (δ11B) and the B / Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species-specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32- and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the δ11B and B / Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B / Ca increases with increasing B(OH)4- / HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B / Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B / Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrasekaran, S.; Liebig, W. V.; Mecklenberg, M.

    Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7–15 mg/cm 3 was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. Our present study investigates the fracture and failure of AG/epoxy composites and its energymore » absorption capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in K IC for AG/epoxy composites with 0.45 wt% of AG. Furthermore, our observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.« less

  8. Fiber-Reinforced Epoxy Composites and Methods of Making Same Without the Use of Oven or Autoclave

    NASA Technical Reports Server (NTRS)

    Barnell, Thomas J. (Inventor); Rauscher, Michael D. (Inventor); Stienecker, Rick D. (Inventor); Nickerson, David M. (Inventor); Tong, Tat H. (Inventor)

    2016-01-01

    Method embodiments for producing a fiber-reinforced epoxy composite comprise providing a mold defining a shape for a composite, applying a fiber reinforcement over the mold, covering the mold and fiber reinforcement thereon in a vacuum enclosure, performing a vacuum on the vacuum enclosure to produce a pressure gradient, insulating at least a portion of the vacuum enclosure with thermal insulation, infusing the fiber reinforcement with a reactive mixture of uncured epoxy resin and curing agent under vacuum conditions, wherein the reactive mixture of uncured epoxy resin and curing agent generates exothermic heat, and producing the fiber-reinforced epoxy composite having a glass transition temperature of at least about 100.degree. C. by curing the fiber reinforcement infused with the reactive mixture of uncured epoxy resin and curing agent by utilizing the exothermically generated heat, wherein the curing is conducted inside the thermally insulated vacuum enclosure without utilization of an external heat source or an external radiation source.

  9. High-performance fiber/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  10. Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing.

    PubMed

    Chen, Kaijuan; Kuang, Xiao; Li, Vincent; Kang, Guozheng; Qi, H Jerry

    2018-03-07

    3D printing of epoxy-based shape memory polymers with high mechanical strength, excellent thermal stability and chemical resistance is highly desirable for practical applications. However, thermally cured epoxy in general is difficult to print directly. There have been limited numbers of successes in printing epoxy but they suffer from relatively poor mechanical properties. Here, we present an ultraviolet (UV)-assisted 3D printing of thermally cured epoxy composites with high tensile toughness via a two-stage curing approach. The ink containing UV curable resin and epoxy oligomer is used for UV-assisted direct-ink write (DIW)-based 3D printing followed by thermal curing of the part containing the epoxy oligomer. The UV curable resin forms a network by photo polymerization after the 1st stage of UV curing, which can maintain the printed architecture at an elevated temperature. The 2nd stage thermal curing of the epoxy oligomer yields an interpenetrating polymer network (IPN) composite with highly enhanced mechanical properties. It is found that the printed IPN epoxy composites enabled by the two-stage curing show isotropic mechanical properties and high tensile toughness. We demonstrated that the 3D-printed high-toughness epoxy composites show good shape memory properties. This UV-assisted DIW 3D printing via a two-stage curing method can broaden the application of 3D printing to fabricate thermoset materials with enhanced tensile toughness and tunable properties for high-performance and functional applications.

  11. Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions

    DTIC Science & Technology

    2015-04-17

    Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions Anthony P. Shaw,*,† Giancarlo Diviacchi,‡ Ernest L. Black,‡ Jared D...have been demonstrated to produce thick white smoke clouds upon combustion. These compositions use powdered boron carbide (B4C) as a pyrotechnic...ignition and are safe to handle. KEYWORDS: Smoke, Obscurants, Pyrotechnics, Boron carbide, Sustainable chemistry ■ INTRODUCTION Visible obscuration

  12. Tourmaline mineralization in the Barberton greenstone belt, South Africa: early Archean metasomatism by evaporite-derived boron.

    PubMed

    Byerly, G R; Palmer, M R

    1991-05-01

    Tourmaline-rich rocks are common in the low-grade, interior portions of the Barberton greenstone belt of South Africa, where shallow-marine sediments and underlying altered basaltic and komatiitic lavas contain up to 50% tourmaline. The presence of tourmaline-bearing rip-up clasts, intraformational tourmaline pebbles and tourmaline-coated grains indicate that boron mineralization was a low-temperature, surficial process. The association of these lithologies with stromatolites, evaporites, and shallow-water sedimentary structures and the virtual absence of tourmaline in correlative deep-water facies rocks in the greenstone belt strengthens this model. Five tourmaline-bearing lithologic groups (basalts, komatiites, evaporite-bearing sediments, stromatolitic sediments, and quartz veins) are distinguished based on field, petrographic, and geochemical criteria. Individual tourmaline crystals within these lithologies show internal chemical and textural variations that reflect continued growth through intervals of change in bulk-rock and fluid composition accompanying one or more metasomatic events. Large single-crystal variations exist in Fe/Mg, Al/Fe, and alkali-site vacancies. A wide range in tourmaline composition exists in rocks altered from similar protoliths, but tourmalines in sediments and lavas have similar compositional variations. Boron-isotope analyses of the tourmalines suggest that the boron enrichment in these rocks has a major marine evaporitic component. Sediments with gypsum pseudomorphs and lavas altered at low temperatures by shallow-level brines have the highest delta 11B values (+2.2 to -1.9%); lower delta 11B values of late quartz veins (-3.7 to -5.7%) reflect intermediate temperature, hydrothermal remobilization of evaporitic boron. The delta 11B values of tourmaline-rich stromatolitic sediments (-9.8 and -10.5%) are consistent with two-stage boron enrichment, in which earlier marine evaporitic boron was hydrothermally remobilized and vented in shallow-marine or subaerial sites, mineralizing algal stromatolites. The stromatolite-forming algae preferentially may have lived near the sites of hydrothermal discharge in Archean times.

  13. The effects of aircraft fuel and fluids on the strength properties of Resin Transfer Molded (RTM) composites

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Dow, Marvin B.

    1993-01-01

    The resin transfer molding (RTM) process offers important advantages for cost-effective composites manufacturing, and consequently has become the subject of intense research and development efforts. Several new matrix resins have been formulated specifically for RTM applications in aircraft and aerospace vehicles. For successful use on aircraft, composite materials must withstand exposure to the fluids in common use. The present study was conducted to obtain comparative screening data on several state-ofthe-art RTM resins after environmental exposures were performed on RTM composite specimens. Four graphite/epoxy composites and one graphite/bismaleimide composite were tested; testing of two additional graphite epoxy composites is in progress. Zero-deg tension tests were conducted on specimens machined from eight-ply (+45-deg, -45-deg) laminates, and interlaminar shear tests were conducted on 32-ply 0-deg laminate specimens. In these tests, the various RTM resins demonstrated widely different strengths, with 3501-6 epoxy being the strongest. As expected, all of the matrix resins suffered severe strength degradation from exposure to methylene chloride (paint stripper). The 3501-6 epoxy composites exhibited about a 30 percent drop in tensile strength in hot, wet tests. The E905-L epoxy exhibited little loss of tensile strength (less than 8 percent) after exposure to water. The CET-2 and 862 epoxies as well as the bismaleimide exhibited reduced strengths at elevated temperature after exposure to oils and fuel. In terms of the percentage strength reductions, all of the RTM matrix resins compared favorably with 3501-6 epoxy.

  14. Epoxy composites based on inexpensive tire waste filler

    NASA Astrophysics Data System (ADS)

    Ahmetli, Gulnare; Gungor, Ahmet; Kocaman, Suheyla

    2014-05-01

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young's modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites.

  15. Comparison of Notch Strength between Gr/PEEK (APC-1 and APC-2) and Gr/Epoxy Composite Materials at Elevated Temperature.

    DTIC Science & Technology

    1985-12-01

    J ub. we Jr. Captain, USARt Z712 AFIT/GAE/AA/85D- 12 Iv COMPARISON OF NOTCH STRENGTH BETWEEN GR/PEEK (APC-1 AND APC-2) AND GR/EPOXY COMPOSITE ...85D-12 COMPARISON OF NOTCH STRENGTH BETWEEN GR/PEEK _ (APC-1 AND APC-2) AND GR/EPOXY COMPOSITE MATERIAL AT ELEVATED TEMPERATURE THESIS Presented to the...unlimited Preface In this experimental investigation, the reduction of strength for notched composite laminates of Aromatic Polymer Composite , APC-2

  16. Deformation and failure mechanisms of graphite/epoxy composites under static loading

    NASA Technical Reports Server (NTRS)

    Clements, L. L.

    1981-01-01

    The mechanisms of deformation and failure of graphite epoxy composites under static loading were clarified. The influence of moisture and temperature upon these mechanisms were also investigated. Because the longitudinal tensile properties are the most critical to the performance of the composite, these properties were investigated in detail. Both ultimate and elastic mechanical properties were investigated, but the study of mechanisms emphasized those leading to failure of the composite. The graphite epoxy composite selected for study was the system being used in several NASA sponsored flight test programs.

  17. Erosion wear response of epoxy composites filled with steel industry slag and sludge particles: A comparative study

    NASA Astrophysics Data System (ADS)

    Purohit, Abhilash; Satapathy, Alok

    2018-03-01

    In the field of composite research, use of industrial wastes such as slag and sludge particles as filler in wear resistant polymer composites has not been very common. Owing to the very high cost of conventional filler materials in polymer composites, exploring the possibility of using low cost minerals and industrial wastes for this purpose has become the need of the hour. In this context this work explores the possibility of such polymer composites filled with low cost industrial wastes and presents a comparison of mechanical characteristics among three types of epoxy based composites filled with Linz - Donawitz sludge (LD sludge), blast furnace slag (BF slag) and Linz - Donawitz slag (LD slag) respectively. A comparative study in regard to their solid particle erosion wear characteristics under similar test conditions is also included. Composites with different weight proportions (0, 5, 10, 15 and 20 wt. %) of LD sludge are fabricated by solution casting technique. Mechanical properties such as micro- hardness, tensile strength and flexural strength of three types of composites have been evaluated as per ASTM test standards and solid particle erosion wear test is performed following a design of experiment approach based on Taguchi’s orthogonal array. Five control factors (impact velocity, erodent size, filler content, impingement angle and erodent temperature) each at five levels are considered to conduct erosion wear tests. The test results for epoxy-LD sludge composites are compared with those of epoxy-BF slag and epoxy-LD slag composites reported by previous investigators. The comparison reveals that epoxy filled with LD sludge exhibits superior mechanical and erosion wear characteristics among the three types of composites considered in this study. This work also opens up a new avenue for value added utilization of an abundant industrial waste in the making of epoxy based functional composites.

  18. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, C.J.; Dorsey, G.F.; Havens, S.J.; Lopata, V.J.

    1998-03-10

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  19. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.

    1998-01-01

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  20. Development and Performance of Boron Carbide-Based Smoke Compositions

    DTIC Science & Technology

    2013-03-06

    DOI: 10.1002/prep.201200166 Development and Performance of Boron Carbide -Based Smoke Compositions Anthony P. Shaw,*[a] Jay C. Poret,[a] Robert A...volatilized and recondense to give smoke. Boron carbide was recognized as a pyrotechnic fuel many years ago, but it has since been overlooked. A 1961...Abstract : Pyrotechnic smoke compositions for visual ob- scuration containing boron carbide , potassium nitrate, po- tassium chloride, and various lubricants

  1. The prospects for composites based on boron fibers

    NASA Technical Reports Server (NTRS)

    Naslain, R.

    1978-01-01

    The fabrication of boron filaments and the production of composite materials consisting of boron filaments and organic or metallic matrices are discussed. Problem involving the use of tungsten substrates in the filament fabrication process, the protection of boron fibers with diffusion barrier cladings, and the application of alloy additives in the matrix to lessen the effects of diffusion are considered. Data on the kinetics of the boron fiber/matrix interaction at high temperatures, and the influence of the fiber/matrix interaction on the mechanical properties of the composite are presented.

  2. Effect of fiber fibrillation on impact and flexural strength of coir fiber reinforced epoxy hybrid composites

    NASA Astrophysics Data System (ADS)

    Mawardi, I.; Jufriadi; Hanif

    2018-03-01

    This study aims to develop fiber-reinforced epoxy resin composites. This study presents the effect of fiber fibrillation on the impact and flextural strength of the epoxy hybrid composite reinforced by coir fiber. Coir is soaked in 5% NaOH solution for 5 hours. Then fiber is rocessed using a blender of 2000 rpm density fibrillation. The length of time the fibrillation varied for 10, 20 and 30 minutes. Volume fraction of 30% fiber and matrix 70% composited. The composite uses a matrix of epoxy by hand lay up method. The implemented tests are impact and flexural tests. The test results show fiber fibrillation treatment can improve the composite mechanical properties. The highest impact and flexural strength, 24.45 kJ/m2 and 87.91 MPa were produced with fiber fibrillation for 10 minutes.

  3. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heczko, O., E-mail: heczko@fzu.cz; Drahokoupil, J.; Straka, L.

    2015-05-07

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni{sub 50.0}Mn{sub 28.5}Ga{sub 21.5} single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolutionmore » of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.« less

  4. Mechanical properties of kenaf composites using dynamic mechanical analysis

    NASA Astrophysics Data System (ADS)

    Loveless, Thomas A.

    Natural fibers show potential to replace glass fibers in thermoset and thermoplastic composites. Kenaf is a bast-type fiber with high specific strength and great potential to compete with glass fibers. In this research kenaf/epoxy composites were analyzed using Dynamic Mechanical Analysis (DMA). A three-point bend apparatus was used in the DMA testing. The samples were tested at 1 hertz, at a displacement of 10 ?m, and at room temperature. The fiber volume content of the kenaf was varied from 20% - 40% in 5% increments. Ten samples of each fiber volume fraction were manufactured and tested. The flexural storage modulus, the flexural loss modulus, and the loss factor were reported. Generally as the fiber volume fraction of kenaf increased, the flexural storage and flexural loss modulus increased. The loss factor remained relatively constant with increasing fiber volume fraction. Woven and chopped fiberglass/epoxy composites were manufactured and tested to be compared with the kenaf/epoxy composites. Both of the fiberglass/epoxy composites reported higher flexural storage and flexural loss modulus values. The kenaf/epoxy composites reported higher loss factor values. The specific flexural storage and specific flexural loss modulus were calculated for both the fiberglass and kenaf fiber composites. Even though the kenaf composites reported a lower density, the fiberglass composites reported higher specific mechanical properties.

  5. Energy-absorption capability and scalability of square cross section composite tube specimens

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Static crushing tests were conducted on graphite/epoxy and Kevlar/epoxy square cross section tubes to study the influence of specimen geometry on the energy-absorption capability and scalability of composite materials. The tube inside width-to-wall thickness (W/t) ratio was determined to significantly affect the energy-absorption capability of composite materials. As W/t ratio decreases, the energy-absorption capability increases nonlinearly. The energy-absorption capability of Kevlar epoxy tubes was found to be geometrically scalable, but the energy-absorption capability of graphite/epoxy tubes was not geometrically scalable.

  6. Evaluation of mechanical properties of hybrid fiber (hemp, jute, kevlar) reinforced composites

    NASA Astrophysics Data System (ADS)

    Suresha, K. V.; Shivanand, H. K.; Amith, A.; Vidyasagar, H. N.

    2018-04-01

    In today's world composites play wide role in all the engineering fields. The reinforcement of composites decides the properties of the material. Natural fiber composites compared to synthetic fiber possesses poor mechanical properties. The solution for this problem is to use combination of natural fiber and synthetic fiber. Hybridization helps to improve the overall mechanical properties of the material. In this study, hybrid reinforced composites of Hemp fabric/Kevlar fabric/Epoxy and Jute fabric/ Kevlar fabric/Epoxy composites are fabricated using Simple hand layup technique followed by Vacuum bagging process. Appropriate test methods as per standards and guidelines are followed to analyze mechanical behavior of the composites. The mechanical characteristics like tensile, compression and flexural properties of the hybrid reinforced composites are tested as per the ASTM standards by series of tensile test; compression test and three point bending tests were conducted on the hybrid composites. A quantitative relationship between the Hemp fabric/Kevlar fabric/Epoxy and Jute/ Kevlar fabric/Epoxy has been established with constant thickness.

  7. The effect of fibre loading and graphene on the mechanical properties of goat hair fibre epoxy composite

    NASA Astrophysics Data System (ADS)

    Jayaseelan, J.; Vijayakumar, K. R.; Ethiraj, N.; Sivabalan, T.; nallayan, W. Andrew

    2017-12-01

    Composite materials are heterogenous materials containing one or more solid phases. In recent years cost-effective composite making is an ideal task. Hence we have come out with a natural fibre composite, which contains goat hair and epoxy as a binding element, with the combination of Graphene as a main source of enhanced mechanical property. Fabrication of natural composite consists of five layers of goat hair sandwiched in epoxy matrix. These composites made are tested for mechanical properties including Tensile strength, Flexural strength, Inter laminar shear and Impact strength. The mechanical properties of the six composite sets are analyzed and reported.

  8. Enhancing the Mechanical Toughness of Epoxy-Resin Composites Using Natural Silk Reinforcements

    DOE PAGES

    Yang, Kang; Wu, Sujun; Guan, Juan; ...

    2017-09-20

    Strong and tough epoxy composites are developed using a less-studied fibre reinforcement, that of natural silk. Two common but structurally distinct silks from the domestic B. mori/Bm and the wild A. pernyi/Ap silkworms are selected in fabric forms. We show that the toughening effects on silk-epoxy composites or SFRPs are dependent on the silk species and the volume fraction of silk. Both silks enhance the room-temperature tensile and flexural mechanical properties of the composite, whereas the more resilient Ap silk shows a more pronounced toughening effect and a lower critical reinforcement volume for the brittle-ductile transition. Specifically, our 60 vol.%more » Ap-SFRP displays a three-fold elevation in tensile and flexural strength, as compared to pure epoxy resin, with an order of magnitude higher breaking energy via a distinct, ductile failure mode. Importantly, the 60 vol.% Ap-SFRP remains ductile with 7% flexural elongation at lower temperatures (-50 °C). Under impact, these SFRPs show significantly improved energy absorption, and the 60 vol.% Ap-SFRP has an impact strength some eight times that of pure epoxy resin. Lastly, the findings demonstrate both marked toughening and strengthening effects for epoxy composites from natural silk reinforcements, which presents opportunities for mechanically superior and "green" structural composites.« less

  9. Compression of Composite Materials: A Review,

    DTIC Science & Technology

    1987-11-01

    epoxy tension face, . and a plexiglass core under the specimen gage-section. A Kevlar /glass phenolic hybrid composite system was evaluated in the...epoxy [0116 specimens, S2/SP-250 7 glass/epoxy [0/±45/9012s specimens, Kevlar 285 weave/Cycom 4143 Aramid/epoxy specimens, unidirectional FP alumina...bundles tested erc- E-glass, T300 graphite, T700 graphite, P75 graphite, Kevlar 49, and FP alumina. " -1. They observed that bundle failure

  10. Microencapsulation of Polyfunctional Amines for Self-Healing of Epoxy-Based Composites

    DTIC Science & Technology

    2008-01-01

    MICROENCAPSULATION OF POLYFUNCTIONAL AMINES FOR SELF-HEALING OF EPOXY-BASED COMPOSITES David A. McIlroy*§, Ben J. Blaiszik,¥ Paul V. Braun... microcapsules containing an amine hardener (DEH-52, Dow Chemical) for use as the hardener in a 2-part epoxy healing system consisting of epoxy...microscope. Scanning electron microscopy was performed on a Philips XL30 ESEM-FEG instrument. Microencapsulation Procedure. 10 g of a 2:1 v/v

  11. Modified Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J.

    1984-01-01

    The properties of a rubber-modified experimental epoxy resin and a standard epoxy as composite matrices were studied. In addition, a brominated epoxy resin was used in varying quantities to improve the fire resistance of the composite. The experimental resin was tris-(hydroxyphenyl)methane triglycidyl ether, known as tris epoxy novolac (TEN). The standard epoxy resin used was tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM). The above resins were modified with carboxyl-terminated butadiene acrylonitrile (CTBN) rubber. It is concluded that: (1) modification of TEN resin with bromine gives better impact resistance than rubber modification alone; (2) 25% rubber addition is necessary to obtain significant improvement in impact resistance; (3) impact resistance increases with bromine content; (4) impact velocity does not significantly affect the energy absorbed by the test sample; (5) Tg did not decline with rubber modification; and (6) TEN resin had better hot/wet properties than TGDDM resin.

  12. Strengthening Performance of PALF-Epoxy Composite Plate on Reinforced Concrete Beams

    NASA Astrophysics Data System (ADS)

    Chin, Siew C.; Tong, Foo S.; Doh, Shu I.; Gimbun, Jolius; Ong, Huey R.; Serigar, Januar P.

    2018-03-01

    This paper presents the effective strengthening potential of pineapple leaves fiber (PALF)-epoxy composite plate on reinforced concrete (RC) beam. At first the PALF is treated with alkali (NaOH) and its morphology is observed via scanning electron microscope (SEM). The composite plates made of PALF and epoxy with fiber loading ranging from 0.1 to 0.4 v/v was tested for its flexural behaviour. The composite was then used for external RC beam strengthening. The structural properties of RC beams were evaluated and all the beams were tested under four-point bending. It was found that the flexural strength increased as the fiber volume ratio increases. The maximum flexural strength (301.94 MPa) was obtained at the fiber volume ratio of 40%. The beam strengthened with PALF-epoxy composite plate has a 7% higher beam capacity compared to the control beam. Cracks formed at the edge of the plate of PALF-strengthened beams resulted in diagonal cracking. Result from this work shows that the PALF-epoxy composite plate has the potential to be used as external strengthening material for RC beam.

  13. Enhanced microwave shielding and mechanical properties of high loading MWCNT-epoxy composites

    NASA Astrophysics Data System (ADS)

    Singh, B. P.; Prasanta; Choudhary, Veena; Saini, Parveen; Pande, Shailaja; Singh, V. N.; Mathur, R. B.

    2013-04-01

    Dispersion of high loading of carbon nanotubes (CNTs) in epoxy resin is a challenging task for the development of efficient and thin electromagnetic interference (EMI) shielding materials. Up to 20 wt% of multiwalled carbon nanotubes (MWCNTs) loading in the composite was achieved by forming CNT prepreg in the epoxy resin as a first step. These prepreg laminates were then compression molded to form composites which resulted in EMI shielding effectiveness of -19 dB for 0.35 mm thick film and -60 dB at for 1.75 mm thick composites in the X-band (8.2-12.4 GHz). One of the reasons for such high shielding is attributed to the high electrical conductivity of the order of 9 S cm-1 achieved in these composites which is at least an order of magnitude higher than previously reported results at this loading. In addition, an improvement of 40 % in the tensile strength over the neat resin value is observed. Thermal conductivity of the MWCNTs-epoxy composite reached 2.18 W/mK as compared to only 0.14 W/mK for cured epoxy.

  14. Evaluation of elastic properties and study on water absorption behavior of alumina filled jute-epoxy composites

    NASA Astrophysics Data System (ADS)

    Santosh, D. N.; Ravikumar, B. N.; Mahesh, B.; Vijayalaxmi, S. P.; Srinivas, Y. V.

    2018-04-01

    In this paper, the effect of filler content is studied on elastic properties and water absorption behavior for jute epoxy composite. For reinforcement the plain woven jute fabric is used. The bonding system consists of resin-epoxy and Hardener in the ratio 10:1 by weight. Alumina (average grain size of 30 µm) is used as filler. The effect of filler content on elastic properties and water absorption behavior studied by varying the filler content from 5%, 10%, 15% with respect to weight of epoxy. The open mould method used to fabricate the alumina filled jute-epoxy composite laminates. Tests were conducted according to ASTM standards. The evaluation assesment of elastic properties of alumina filled jute-epoxy composite materials have been analyzed by theoretically and experimentally. The speculated values are analyzed with those obtained from experimental to validate the calculated theoretically with rule of mixture procedure. Young's modulus and shear modulus were found to increase with the increase in the filler content upto 10 wt%, beyond which the modulii showed decreasing trend. Poisson's ratio was found to be continuously decreasing with the increase in the alumina filler content of jute-eposy composite. It was clearly observed that unfilled specimen has the highest saturated moisture content and 15% filled specimen has lowest value. As alumina filler content increases resistance to moisture absorption also increases. The water diffusion coefficient of composite was calculated using the diffusion coefficient equation. As filler content increases diffusion co-efficient decreases for alumina filled jute-epoxy composite.

  15. Molecular Modeling of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy

    NASA Astrophysics Data System (ADS)

    Radue, Matthew S.

    Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices. The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young's modulus, yield point, and Poisson's ratio are calculated and analyzed. The results demonstrate an increase in stiffness and yield strength with increasing resin functionality. Comparison between the network structures of distinct epoxies is further advanced by the Monomeric Degree Index (MDI). Experimental validation demonstrates the MD results correctly predict the relationship in Young's moduli for all epoxies modeled. Therefore, the ReaxFF is confirmed to be a useful tool for studying the mechanical behavior of epoxies. While epoxies have been well-studied using MD, there has been no concerted effort to model cured BMI polymers due to the complexity of the network-forming reactions. A novel, adaptable crosslinking framework is developed for implementing 5 distinct cure reactions of Matrimid-5292 (a BMI resin) and investigating the network structure using MD simulations. The influence of different cure reactions and extent of curing are analyzed on the several thermo-mechanical properties such as mass density, glass transition temperature, coefficient of thermal expansion, elastic moduli, and thermal conductivity. The developed crosslinked models correctly predict experimentally observed trends for various properties. Finally, the epoxies modeled (di-, tri-, and tetra-functionalresins) are simulated with embedded CNT to understand how the affinity to nanoparticles affects the mechanical response. Multiscale modeling techniques are then employed to translate the molecular phenomena observed to predict the behavior of realistic composites. The effective stiffness of hybrid composites are predicted for CNT/epoxy composites with randomly oriented CNTs, for CF/CNT/epoxy systems with aligned CFs and randomly oriented CNTs, and for woven CF/CNT/epoxy fabric with randomly oriented CNTs. The results indicate that in the CNT/epoxy systems the epoxy type has a significant influence on the elastic properties. For the CF/CNT/epoxy hybrid composites, the axial modulus is highly influenced by CF concentration, while the transverse modulus is primarily affected by the CNT weight fraction.

  16. Novel Formulations of Phase Change Materials—Epoxy Composites for Thermal Energy Storage

    PubMed Central

    Alvarez Feijoo, Miguel Angel

    2018-01-01

    This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (<10 wt %); however, given its mass, the enthalpy detected in the composites was reduced as their loading further increased. The conductive phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed. PMID:29373538

  17. Novel Formulations of Phase Change Materials-Epoxy Composites for Thermal Energy Storage.

    PubMed

    Arce, Maria Elena; Alvarez Feijoo, Miguel Angel; Suarez Garcia, Andres; Luhrs, Claudia C

    2018-01-26

    This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (<10 wt %); however, given its mass, the enthalpy detected in the composites was reduced as their loading further increased. The conductive phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed.

  18. Method of manufacture of atomically thin boron nitride

    DOEpatents

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  19. Epoxy composites based on inexpensive tire waste filler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmetli, Gulnare, E-mail: ahmetli@selcuk.edu.tr; Gungor, Ahmet, E-mail: ahmetli@selcuk.edu.tr; Kocaman, Suheyla, E-mail: ahmetli@selcuk.edu.tr

    2014-05-15

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young’s modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization ofmore » the composites.« less

  20. Compression failure mechanisms of single-ply, unidirectional, carbon-fiber composites

    NASA Technical Reports Server (NTRS)

    Ha, Jong-Bae; Nairn, John A.

    1992-01-01

    A single-ply composite compression test was used to study compression failure mechanisms as a function of fiber type, matrix type, and interfacial strength. Composites made with low- and intermediate-modulus fibers (Hercules AS4 and IM7) in either an epoxy (Hercules 3501-6) or a thermoplastic (ULTEM and LARC-TPI) matrix failed by kink banding and out-of-plane slip. The failures proceeded by rapid and catastrophic damage propagation across the specimen width. Composites made with high-modulus fibers (Hercules HMS4/3501-6) had a much lower compression strength. Their failures were characterized by kink banding and longitudinal splitting. The damage propagated slowly across the specimen width. Composites made with fibers treated to give low interfacial strength had low compression strength. These composites typically failed near the specimen ends and had long kink bands.

  1. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    PubMed

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K

    2014-11-18

    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.

  2. BN Bonded BN fiber article and method of manufacture

    DOEpatents

    Hamilton, Robert S.

    1981-08-18

    A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising a bonding compound selected from boron oxide and boric acid and a structural fiber selected from the group consisting of boron oxide, boron nitride and partially nitrided boron oxide fibers, heating the composition in an anhydrous gas to a temperature above the melting point of the compound and nitriding the resulting article in ammonia gas.

  3. Effects of silica-coated carbon nanotubes on the curing behavior and properties of epoxy composites

    DOE PAGES

    Li, Ao; Li, Weizhen; Ling, Yang; ...

    2016-02-22

    Multi-walled carbon nanotubes (MWCNTs) were coated with silica by a sol–gel method to improve interfacial bonding and dispersion of nanotubes in the diglycidyl ether of bisphenol A (DGEBA) matrix. TEM and FE-SEM measurements showed that the silica shell was successfully coated on the surface of r-MWCNTs (as-received MWCNTs), and that the dispersion of MWCNT@SiO 2 in the epoxy matrix and interfacial adhesion between MWCNTs and epoxy were improved through the silica shell formation. The effects of silica-coated multi-walled carbon nanotube (MWCNT@SiO 2) addition on the curing behavior of epoxy resin, and on the physical and thermomechanical properties of epoxy composites,more » were studied. FT-IR measurements of different blends at different curing times indicated that the curing reaction was accelerated with the presence of MWCNTs and increased with the content of MWCNT@SiO 2. DSC results confirmed that the value of activation energy decreased with the introduction of MWCNTs in the order of MWCNT@SiO 2 < r-MWCNTs < epoxy. It was found that the thermal conductivity of epoxy composites were significantly enhanced by incorporation of MWCNT@SiO 2, relative to composites with r-MWCNTs, while the values of the glass transition temperature slightly increased, and the high electrical resistivity of these composites was retained overall.« less

  4. Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi

    2017-04-01

    The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.

  5. Thermal Expansion and Swelling of Cured Epoxy Resin Used in Graphite/Epoxy Composite

    NASA Technical Reports Server (NTRS)

    Adamson, M. J.

    1979-01-01

    The thermal expansion and swelling of resin material as influenced by variations in temperature during moisture absorption is discussed. Comparison measurements using composites constructed of graphite fibers and each of two epoxy resin matrices are included. Polymer theory relative to these findings is discussed and modifications are proposed.

  6. Effects of carbon fiber surface characteristics on interfacial bonding of epoxy resin composite subjected to hygrothermal treatments

    NASA Astrophysics Data System (ADS)

    Li, Min; Liu, Hongxin; Gu, Yizhuo; Li, Yanxia; Zhang, Zuoguang

    2014-01-01

    The changes of interfacial bonding of three types of carbon fibers/epoxy resin composite as well as their corresponding desized carbon fiber composites subjecting to hygrothermal conditions were investigated by means of single fiber fragmentation test. The interfacial fracture energy was obtained to evaluate the interfacial bonding before and after boiling water aging. The surface characteristics of the studied carbon fiber were characterized using X-ray photoelectron spectroscopy. The effects of activated carbon atoms and silicon element at carbon fiber surface on the interfacial hygrothermal resistance were further discussed. The results show that the three carbon fiber composites with the same resin matrix possess different hygrothermal resistances of interface and the interfacial fracture energy after water aging can not recovery to the level of raw dry sample (irreversible changes) for the carbon fiber composites containing silicon. Furthermore, the activated carbon atoms have little impact on the interfacial hygrothermal resistance. The irreversible variations of interfacial bonding and the differences among different carbon fiber composites are attributed to the silicon element on the carbon fiber bodies, which might result in hydrolyzation in boiling water treatment and degrade interfacial hygrothermal resistance.

  7. Oxidation and protection of fiberglass-epoxy composite masts for photovoltaic arrays in the low earth orbital environment

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Ciancone, Michael L.; Paulsen, Phillip E.; Brady, Joyce A.

    1988-01-01

    The extent of degradation of fiberglass-epoxy composite masts of the Space Station solar array panel, when these are exposed to atomic oxygen environment of the low-earth orbit, was investigated in ground testing of fiberglass-epoxy composites in an RF plasma asher. In addition, several methods of protecting the composite structures were evaluated, including an aluminum braid covering, an In-Sn eutectic, and a silicone based paint. It was found that, during exposure, the epoxy at the surface of the composite was oxidized, exposing individual glass fibers which could easily be removed. The results of mass measurements and SEM examination carried out after thermal cycling and flexing of exposed composite samples indicated that coatings such as In-Sn eutectic may provide adequate protection by containing the glass fibers, even though mass loss still occurs.

  8. Adhesion at the interface in cured graphite fiber epoxy-amine resin composites

    NASA Technical Reports Server (NTRS)

    Needles, Howard L.; Alger, Kenneth W.; Okamoto, Robert

    1987-01-01

    The effect of high temperature curing on the interface between unsized or epoxy-sized graphite fiber tow and epoxy-amine resin was examined by scanning electron microscopy of compression and freeze fractured specimens. Little or no adhesion was found between the unsized graphite fiber tows and the epoxy-amine resin on curing at 165 C for 17 hrs. Epoxy-sized graphite fibers showed a similar lack of adhesion between the fiber tows and the epoxy-amine resin at 3 and 17 hr cures, although good penetration of the resin into the sized fiber tows had occurred. Interfacial bond strengths for the composites could not be effectively measured by compression fracture of specimens.

  9. Fabrication and characterization of epoxy/silica functionally graded composite material

    NASA Astrophysics Data System (ADS)

    Misra, N.; Kapusetti, G.; Pattanayak, D. K.; Kumar, A.

    2011-09-01

    Increased use of composites in aerospace and defense application induces the search for heat resistant material. In present study silica reinforced epoxy functionally graded material using quartz fabric is prepared with different thickness. The gradation in silica : epoxy matrix is maintained with one side pure epoxy to opposite side pure silica. Thermal and mechanical behaviour of the composites were studied. It was found that the temperature gradient of 350°C to 950°C could be maintained for 2 to 5 min if the thickness of insulating silica layer is increased from 0.5 mm to 16 mm. Mechanical properties such as flexural modulus and strength of FGM composites were also evaluated. Strength and modulus decreased with increase of insulating layer.

  10. Bonded composite to metal scarf joint performance in an aircraft landing gear drag strut. [for Boeing 747 aircraft

    NASA Technical Reports Server (NTRS)

    Howell, W. E.

    1974-01-01

    The structural performance of a boron-epoxy reinforced titanium drag strut, which contains a bonded scarf joint and was designed to the criteria of the Boeing 747 transport, was evaluated. An experimental and analytical investigation was conducted. The strut was exposed to two lifetimes of spectrum loading and was statically loaded to the tensile and compressive design ultimate loads. Throughout the test program no evidence of any damage in the drag strut was detected by strain gage measurements, ultrasonic inspection, or visual observation. An analytical study of the bonded joint was made using the NASA structural analysis computer program NASTRAN. A comparison of the strains predicted by the NASTRAN computer program with the experimentally determined values shows excellent agreement. The NASTRAN computer program is a viable tool for studying, in detail, the stresses and strains induced in a bonded joint.

  11. Probabilistic simulation of uncertainties in composite uniaxial strengths

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Stock, T. A.

    1990-01-01

    Probabilistic composite micromechanics methods are developed that simulate uncertainties in unidirectional fiber composite strengths. These methods are in the form of computational procedures using composite mechanics with Monte Carlo simulation. The variables for which uncertainties are accounted include constituent strengths and their respective scatter. A graphite/epoxy unidirectional composite (ply) is studied to illustrate the procedure and its effectiveness to formally estimate the probable scatter in the composite uniaxial strengths. The results show that ply longitudinal tensile and compressive, transverse compressive and intralaminar shear strengths are not sensitive to single fiber anomalies (breaks, intergacial disbonds, matrix microcracks); however, the ply transverse tensile strength is.

  12. High Strain-Rate and Temperature Effects on the Response of Composites

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2004-01-01

    The objective of the research is to expand the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, to include elevated temperature tests. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, strain rate and temperature dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into the development and testing of the epoxy resin at elevated temperatures. Two types of epoxy resins were tested in shear at high strain rates of about 700 per second and elevated temperatures of 50 and 80 C. The results show that the temperature significantly affects the response of epoxy.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zia-ul-Mustafa, M., E-mail: engr.ziamustafa@gmail.com; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.

    In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD)more » and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.« less

  14. Advanced Design Composite Aircraft (ADCA) Study. Volume I

    DTIC Science & Technology

    1976-11-01

    Aluminum Machined Paits 008 ’— Aluminum Honeycomb 001 - - Steel Machined Parts 0.08 - Titanium 0 66 Fiberglass 1 18 _ Boron Composite 0...Honeycomb 001 ~ Steel Machined Parti 0 09 | Titanium 056 Fi bei glass 037 r i Boron Composite 0 Graphite Composite 6 36 Total 81 2 31 7 42 1...1 Aluminum Machined Parts 006 - 2 1 Aluminum Honeycomb 001 Steel Machined Parts 007 - Trtamum 001 1 Frberglass 029 - Boron Composite 0

  15. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  16. Advanced Design Composite Aircraft

    DTIC Science & Technology

    1976-02-01

    been selected for ADCA applications. These are graphite (PAN)/ epoxy, graphite (PAN)/polyimide, Kevlar /epoxy, f ibergl ass/epoxy, and quartz...Aluminum Alloy Aluminum Alloy ACG (commercial grade) Nomex HRP Fiberglass/ Phenolic HRH Fiberglass/Polyimide Graphite/epoxy Graphi te/Polyimide

  17. International Conference Post Failure Analysis Techniques for Fiber Reinforced Composites Held in Dayton, Ohio on 1-3 July 1985

    DTIC Science & Technology

    1991-07-01

    Massachusetts "A Microscopy Study of Impact Damage on Epoxy-Matrix ..... . . . 8-1 Carbon Fiber Composites " D.J. Boll, W.D. Bascom and J.C. Weidner Hercules...ON EPOXY-MATRIX CARBON FIBER COMPOSITES D.J. Boll, W.D. Bascom and J.C. Weidner Hercules Aerospace Magna, Utah A Microscopy Study of Impact Damage on...Epoxy-Matrix Carbon Fiber Composites D. 3. Boll, W. D. Bascom, J. C. Weidner and W. J. Murri Hercules Aerospace Magna, Utah Abstract The damage

  18. Experimental-theoretical investigation of the vibration characteristics of rotating composite box beams

    NASA Astrophysics Data System (ADS)

    Chandra, Ramesh; Chopra, Inderjit

    1992-08-01

    The objective of the study was to predict the effect of elastic couplings on the free vibration characteristics of thin-walled composite box beams and to correlate the results with experimental data. The free vibration characteristics of coupled thin-walled composite beams under rotation were determined using the Galerkin method. The theoretical results were found to be in satisfactory agreement with experimental data obtained for graphite/epoxy, kevlar/epoxy, and glass/epoxy composite beams in an in-vacuo test facility at different rotational speeds.

  19. Preparation and Electrochemical Properties of Graphene/Epoxy Resin Composite Coating

    NASA Astrophysics Data System (ADS)

    Liao, Zijun; Zhang, Tianchi; Qiao, Sen; Zhang, Luyihang

    2017-11-01

    The multilayer graphene powder as filler, epoxy modified silicone resin as film-forming agent, anticorrosion composite coating has been created using sand dispersion method, the electrochemical performance was compared with different content of graphene composite coating and pure epoxy resin coating. The open circuit potential (OCP), potentiodynamic polarization curves (Tafel Plot) and electrochemical impedance spectroscopy (EIS) were tested. The test results showed that the anti-corrosion performance of multilayer graphene added has improved greatly, and the content of the 5% best corrosion performance of graphene composite coating.

  20. NASA space materials research

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Tompkins, S. S.; Sykes, G. F.

    1985-01-01

    The effect of the space environment on: (1) thermal control coatings and thin polymer films; (2) radiation stability of 250 F and 350 F cured graphite/epoxy composites; and (3) the thermal mechanical stability of graphite/epoxy, graphite/glass composites are considered. Degradation in mechanical properties due to combined radiation and thermal cycling is highlighted. Damage mechanisms are presented and chemistry modifications to improve stability are suggested. The dimensional instabilities in graphite/epoxy composites associated with microcracking during thermal cycling is examined as well as the thermal strain hysteresis found in metal-matrix composites.

  1. Nonlinear DC Conduction Behavior in Graphene Nanoplatelets/Epoxy Resin Composites

    NASA Astrophysics Data System (ADS)

    Yuan, Yang; Wang, Qingguo; Qu, Zhaoming

    2018-01-01

    Graphene nanoplatelets (GNPs)/Epoxy resin (ER) with a low percolation threshold were fabricated. Then the nonlinear DC conduction behavior of GNPs/ER composites was investigated, which indicates that dispersion, exfoliation level and conductivity of GNPs in specimens are closely related to the conduction of composites. Moreover, it could be seen that the modified graphene nanoplatelets made in this paper could be successfully used for increasing the electric conductivity of the epoxy resin, and the GNPs/ER composites with nonlinear conduction behavior have a good application prospects in the field of intelligent electromagnetic protection.

  2. Polymer composites containing nanotubes

    NASA Technical Reports Server (NTRS)

    Bley, Richard A. (Inventor)

    2008-01-01

    The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.

  3. Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins

    NASA Astrophysics Data System (ADS)

    Mu, Mulan; Wan, Chaoying; McNally, Tony

    2017-12-01

    The outstanding thermal conductivity (λ) of graphene and its derivatives offers a potential route to enhance the thermal conductivity of epoxy resins. Key challenges still need to be overcome to ensure effective dispersion and distribution of 2D graphitic fillers throughout the epoxy matrix. 2D filler type, morphology, surface chemistry and dimensions are all important factors in determining filler thermal conductivity and de facto the thermal conductivity of the composite material. To achieve significant enhancement in the thermal conductivity of epoxy composites, different strategies are required to minimise phonon scattering at the interface between the nano-filler and epoxy matrix, including chemical functionalisation of the filler surfaces such that interactions between filler and matrix are promoted and interfacial thermal resistance (ITR) reduced. The combination of graphitic fillers with dimensions on different length scales can potentially form an interconnected multi-dimensional filler network and, thus contribute to enhanced thermal conduction. In this review, we describe the relevant properties of different 2D nano-structured graphitic materials and the factors which determine the translation of the intrinsic thermal conductivity of these 2D materials to epoxy resins. The key challenges and perspectives with regard achieving epoxy composites with significantly enhanced thermal conductivity on addition of 2D graphitic materials are presented.

  4. Self-Repairing Mechanism of MUF/Epoxy Microcapsules for Epoxy Material

    NASA Astrophysics Data System (ADS)

    Ni, Zhuo; Lin, Yuhao; Zhou, Xiaobo

    2017-12-01

    In this paper, a post curing reaction for the microcapsule/epoxy composite material and the conditions of thermal treatment for self-healing process were studied by differential scanning calorimetry (DSC). The condition of thermal treatment for post curing (60°C, 2 hours) was employed to fully cure the epoxy composite. Damage mechanism for the epoxy material was demonstrated via data simulation and three-point bending experiment for the stress distribution reveals that micro-cracks are more likely to be generated on the central region in stress concentration area of two constrained boundaries and the numbers of micro-cracks are reduced from the central area to the two ends of the material. Self-repairing performances of MUF microcapsule/epoxy composite materials were characterized using both destructive bending tests and non-destructive DMA measurements. Self-healing efficiencies of the composites embedded 2% and 5% microcapsule content measured by DMA are 101% and 104% respectively which are close to those results of 104% and 113% correspondingly measured by bending tests. Crack formation and development, core material releasing for MUF microcapsules and physiochemical process of the self-repairing were investigated by using OM, fluorescent technique and infrared microscope. These provide detailed evidences and important information on self-healing mechanism of the microcapsule/epoxy self-repairing material.

  5. Role of electrochemically in-house synthesized and functionalized graphene nanofillers in the structural performance of epoxy matrix composites.

    PubMed

    Sahoo, Sumanta Kumar; Ray, Bankim Chandra; Mallik, Archana

    2017-06-21

    The present study focuses on the intriguing enhancement in the mechanical properties of an epoxy-based composite structure resulting from the incorporation of in-house synthesized functionalized graphene nanosheets (f-GNSs) as nanofillers. The f-GNSs were obtained by anionic electrochemical intercalation and exfoliation with 2 M H 2 SO 4 , HClO 4 , and HNO 3 protic electrolytes. The structural properties of the as-synthesized GNSs were analyzed by XRD and Raman spectroscopy. The (002) and (001) lattice planes of graphene and graphene oxide are observed at around 24.5° and 11° (2θ), respectively, in the XRD spectra. The characteristic peaks at around 1345, 1590, and 2700 cm -1 correspond to the D, G, and 2D bands of the GNSs in the Raman spectra. Quantification of the functional groups and sp 2 contents in the GNSs were further analyzed by XPS. Morphological characterization of the f-GNSs reveals that the exfoliated carbon sheets consist of 2-8 layers. The composites are then fabricated by addition of these f-GNSs nanofillers, and the effect of the wt% of the nanofillers on the mechanical properties of the composites is analyzed with the three-point bend test and fractography analysis through interfacial morphological analysis. The addition of 0.1 wt% of nitric-acid-exfoliated f-GNSs nanofiller results in maximum increases of 42.6% and 28.2% in the flexural strengths of neat epoxy resin and glass fiber/epoxy polymer composite structures, respectively. Similarly, the moduli increase by 33.5% and 57.7% in the neat epoxy resin and glass fiber/epoxy polymer composite structures, respectively. The effect of epoxy/f-GNSs interfacial bonding in the composite structure was studied by DSC analysis.

  6. Recent advances in lightweight, filament-wound composite pressure vessel technology

    NASA Technical Reports Server (NTRS)

    Lark, R. F.

    1977-01-01

    A review of recent advances is presented for lightweight, high performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single cycle burst and cyclic fatigue loading. Filament wound fiber/epoxy composite vessels were made from S glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessels structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all titanium pressure vessels. Significant findings in each area are summarized.

  7. Introducing cellulose nanocrystals in sheet molding compounds (SMC)

    Treesearch

    Amir Asadi; Mark Miller; Sanzida Sultana; Robert J. Moon; Kyriaki Kalaitzidou

    2016-01-01

    The mechanical properties of short glass fiber/epoxy composites containing cellulose nanocrystals (CNC) made using sheet molding compound (SMC) manufacturing method as well as the rheological and thermomechanical properties of the CNC-epoxy composites were investigated as a function of the CNC content. CNC up to 1.4 wt% were dispersed in the epoxy to produce the resin...

  8. The effect of moisture on the dynamic thermomechanical properties of a graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Sykes, G. F.; Burks, H. D.; Nelson, J. B.

    1977-01-01

    A study has been made of the effect of moisture absorption on the dynamic thermomechanical properties of a graphite/epoxy composite recently considered for building primary aircraft structures. Torsional braid analysis (TBA) and thermomechanical analysis (TMA) techniques were used to measure changes in the glass transition temperature (Tg) and the initial softening temperature (heat distortion temperature, HDT) of T-300/5209 graphite/epoxy composites exposed to room temperature water soak.

  9. Evaluation of ionic liquid epoxy carbon fiber composites in a cryogenic environment

    NASA Astrophysics Data System (ADS)

    Lyne, Christopher T.; Henry, Christopher R.; Kaukler, William F.; Grugel, R. N.

    2018-03-01

    A novel ionic liquid epoxy (ILE) was used to fabricate carbon fiber composite discs which were then subjected to biaxial strain testing in liquid nitrogen. The ILE composite showed a greater strain-to-failure at cryogenic temperatures when compared to a commercial epoxy. This result is likely an effect, as shown in micrographs, of the strong ILE bonding with the carbon fibers as well as it exhibiting plastic deformation at the fracture surface.

  10. Development and characterization of soy-based epoxy resins and pultruded FRP composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang

    This dissertation focuses on the development, manufacture and characterization of novel soy-based epoxy FRP composites. Use of alternative epoxy resin systems derived from a renewable resource holds potential for low cost raw materials for the polymer and composite industries. Epoxidized Allyl Soyate (EAS) and Epoxidized Methyl Soyate (EMS) were developed from soybean oil with two chemical modification procedures: transesterification and epoxidation. This research investigates the curing characteristics and thermal and mechanical properties of the neat soyate resin systems. The derived soyate resins have higher reactivity and superior performance compared to commercially available epoxidized soybean oil. An efficient two-step curing method was developed in order to utilize these soyate resins to their full potential. The epoxy co-resin systems with varied soyate resin content were successfully used to fabricate composite material through pultrusion. The pultrusion resin systems with 30 wt% soyate resins yielded improved, or comparable mechanical properties with neat commercial resins. A finite element analysis of the heat transfer and curing process was performed to study the processing characterization on glass/epoxy composite pultrusion. This model can be used to establish baseline process variables and will benefit subsequent optimization. This research demonstrates that soy-based resins, especially EAS, show considerable promise as an epoxy resin supplement for use in polymer and composite structural applications. The new products derived from soybean oil can provide competitive performance, low cost and environmental advantages.

  11. Micromachined High Frequency PMN-PT/Epoxy 1-3 Composite Ultrasonic Annular Array

    PubMed Central

    Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9 μm × 9 μm. The width of the kerf among pillars was ~ 5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm2 with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers e.g. 1D and 2D arrays. PMID:22119324

  12. Study on the electromagnetic properties of mwcnts/gf/epoxy composites

    NASA Astrophysics Data System (ADS)

    Yan, Zhao; Lu, Yuan; Duan, Yuexin

    2007-07-01

    In this paper, multiwalled carbon nanotubes (MWCNTs)/GF/epoxy composites were prepared by utilizing fabric of fiberglass to divisionalize the MWCNTs because MWCNTs are very difficult to disperse. Then the electromagnetic properties of MWCNTs/GF/epoxy composites with different contents of MWCNTs and the same layers of fiberglass or with same content of MWCNTs and different layers of fiberglass were studied respectively in electromagnetic wave band (8.2~12.4GHz). The results show that the dielectric property of MWCNTs/GF/epoxy composites can be improved along with increasing the content of MWCNTs while the magnetic conductivity is stay around the level of one (μ=1). Although the dielectric property is affected by the layers of fiberglass, it is not monotonic increasing or decreasing. Moreover, the number of ply does not impact the magnetic conductivity. Actually the real part value of the magnetic conductivity of MWCNTs/GF/epoxy composites is close to one (μ'=1) while the imaginary part is close to zero (μ"=0), and the value of them is unvariable in the whole electromagnetic wave band (8.2~12.4GHz).

  13. Compression failure mechanisms of composite structures

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Sohi, M.; Moon, S.

    1986-01-01

    An experimental and analytical study was conducted to delineate the compression failure mechanisms of composite structures. The present report summarizes further results on kink band formation in unidirectional composites. In order to assess the compressive strengths and failure modes of fibers them selves, a fiber bundle was embedded in epoxy casting and tested in compression. A total of six different fibers were used together with two resins of different stiffnesses. The failure of highly anisotropic fibers such as Kevlar 49 and P-75 graphite was due to kinking of fibrils. However, the remaining fibers--T300 and T700 graphite, E-glass, and alumina--failed by localized microbuckling. Compressive strengths of the latter group of fibers were not fully utilized in their respective composite. In addition, acoustic emission monitoring revealed that fiber-matrix debonding did not occur gradually but suddenly at final failure. The kink band formation in unidirectional composites under compression was studied analytically and through microscopy. The material combinations selected include seven graphite/epoxy composites, two graphite/thermoplastic resin composites, one Kevlar 49/epoxy composite and one S-glass/epoxy composite.

  14. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties.

    PubMed

    He, Yuxin; Yang, Song; Liu, Hu; Shao, Qian; Chen, Qiuyu; Lu, Chang; Jiang, Yuanli; Liu, Chuntai; Guo, Zhanhu

    2018-05-01

    The epoxy nanocomposites with ordered multi-walled carbon nanotubes (MWCNTs) were used to influence the micro-cracks resistance of carbon fiber reinforced epoxy (CF/EP) laminate at 77 K, Oxidized MWCNTs functionalized with Fe 3 O 4 (Fe 3 O 4 /O-MWCNTs) with good magnetic properties were prepared by co-precipitation method and used to modify epoxy (EP) for cryogenic applications. Fe 3 O 4 /O-MWCNTs reinforced carbon fiber epoxy composites were also prepared through vacuum-assisted resin transfer molding (VARTM). The ordered Fe 3 O 4 /O-MWCNTs were observed to have effectively improved the mechanical properties of epoxy (EP) matrix at 77 K and reduce the coefficient of thermal expansion (CTE) of EP matrix. The ordered Fe 3 O 4 /O-MWCNTs also obviously improved the micro-cracks resistance of CF/EP composites at 77 K. Compared to neat EP, the CTE of ordered Fe 3 O 4 /O-MWCNTs modified CF/EP composites was decreased 37.6%. Compared to CF/EP composites, the micro-cracks density of ordered Fe 3 O 4 /O-MWCNTs modified CF/EP composites at 77 K was decreased 37.2%. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Microwave-Assisted Curing of Silicon Carbide-Reinforced Epoxy Composites: Role of Dielectric Properties

    NASA Astrophysics Data System (ADS)

    Pal, Ranu; Akhtar, M. J.; Kar, Kamal K.

    2018-05-01

    In this work, the dielectric properties of epoxy-based composites are significantly improved with the help of the silicon carbide (SiC) filler at an operating frequency of 2.45 GHz to make them ideal candidates for microwave curing. The improvement is due to enhancement of the interfacial polarization because of the presence of the SiC filler. The dielectric properties are measured using the microwave cavity perturbation method. The cavity structure is simulated using the COMSOL@Multiphysics software to verify the measured data in terms of the resonant frequency. Finally, all the SiC-based composites including the neat epoxy resin are heated in the 2.45 GHz microwave oven at 300 W for 20 min. The thermal and mechanical properties of all the cured composites are measured, and the data are compared with their room temperature pre-cured counterparts. The dielectric properties of composite samples using SiC as a reinforcing agent in the epoxy are found to be substantially improved compared with those of the pure epoxy sample, which actually leads to better curing of these composite using the 2.45 GHz microwave system.

  16. Mechanical properties of epoxy composites with plasma-modified rice-husk-derived nanosilica

    NASA Astrophysics Data System (ADS)

    Hubilla, Fatima Athena D.; Panghulan, Glenson R.; Pechardo, Jason; Vasquez, Magdaleno R., Jr.

    2018-01-01

    In this study, we explored the use of rice-husk-derived nanosilica (nSiO2) as fillers in epoxy resins. The nSiO2 was irradiated with a capacitively coupled 13.56 MHz radio frequency (RF) plasma using an admixture of argon (Ar) and hexamethyldisiloxane (HMDSO) or 1,7-octadiene (OD) monomers. The plasma-polymerized nSiO2 was loaded at various concentrations (1-5%) into the epoxy matrix. Surface hydrophobicity of the plasma-treated nSiO2-filled composites increased, which is attributed to the attachment of functional groups from the monomer gases on the silica surface. Microhardness increased by at least 10% upon the inclusion of plasma-modified nSiO2 compared with pristine nSiO2-epoxy composites. Likewise, hardness increased with increasing loading volume, with the HMDSO-treated silica composite recording the highest increase. Elastic moduli of the composites also showed an increase of at least 14% compared with untreated nSiO2-filled composites. This work demonstrated the use of rice husk, an agricultural waste, as a nSiO2 source for epoxy resin fillers.

  17. Three-dimensional printing fiber reinforced hydrogel composites.

    PubMed

    Bakarich, Shannon E; Gorkin, Robert; in het Panhuis, Marc; Spinks, Geoffrey M

    2014-09-24

    An additive manufacturing process that combines digital modeling and 3D printing was used to prepare fiber reinforced hydrogels in a single-step process. The composite materials were fabricated by selectively pattering a combination of alginate/acrylamide gel precursor solution and an epoxy based UV-curable adhesive (Emax 904 Gel-SC) with an extrusion printer. UV irradiation was used to cure the two inks into a single composite material. Spatial control of fiber distribution within the digital models allowed for the fabrication of a series of materials with a spectrum of swelling behavior and mechanical properties with physical characteristics ranging from soft and wet to hard and dry. A comparison with the "rule of mixtures" was used to show that the swollen composite materials adhere to standard composite theory. A prototype meniscus cartilage was prepared to illustrate the potential application in bioengineering.

  18. Failure analysis of single-bolted joint for lightweight composite laminates and metal plate

    NASA Astrophysics Data System (ADS)

    Li, Linjie; Qu, Junli; Liu, Xiangdong

    2018-01-01

    A three-dimensional progressive damage model was developed in ANSYS to predict the damage accumulation of single bolted joint in composite laminates under in-plane tensile loading. First, we describe the formulation and algorithm of this model. Second, we calculate the failure loads of the joint in fibre reinforced epoxy laminated composite plates and compare it with the experiment results, which validates that our model can appropriately simulate the ultimate tensile strength of the joints and the whole process of failure of structure. Finally, this model is applied to study the failure process of the light-weight composite material (USN125). The study also has a great potential to provide a strong basis for bolted joints design in composite Laminates as well as a simple tool for comparing different laminate geometries and bolt arrangements.

  19. Rubberized, Brominated Epoxies

    NASA Technical Reports Server (NTRS)

    Gilwee, W.; Kourtides, D.; Parker, J.; Nir, Z.

    1985-01-01

    Graphite/epoxy composite materials made with resins containing bromine and rubber additives. New composites tougher and more resistant to fire. Flame resistance increased by introducing bromine via commercial brominated flame-retartant polymeric additives.

  20. Flight service evaluation of composite helicopter components

    NASA Technical Reports Server (NTRS)

    Rich, M. J.; Lowry, D. W.

    1983-01-01

    This first interim report presents the technical background for including environmental effects in the design of helicopter composite structures, and test results after approximately two year field exposure of components and panels. Composite structural components were removed from Sikorsky S-76 helicopters commercially operated in the Gulf Coast region of Louisiana. Fatigue tests were conducted for a graphite/epoxy tail rotor spar and static test for a graphite/epoxy and Kevlar/epoxy stabilizer. Graphite/epoxy and Kevlar/epoxy panels are being exposed to the outdoor environment in Stratford, Connecticut and West Palm Beach, Florida. For this reporting period the two year panels were returned, moisture measurements taken, and strength tests conducted. Results are compared with initial type certificate strengths for components and with initial laboratory coupon tests for the exposed panels. Comparisons are also presented with predicted and measured moisture contents.

  1. Flight service evaluation of composite helicopter components

    NASA Technical Reports Server (NTRS)

    Rich, M. J.; Lowry, D. W.

    1982-01-01

    This first interim report presents the technical background for including environmental effects in the design of helicopter composite structures, and test results after approximately two year field exposure of components and panels. Composite structural components were removed from Sikorsky S-76 helicopters commercially operated in the Gulf Coast region of Louisiana. Fatigue tests were conducted for a graphite/epoxy tail rotor spar and static test for a graphite/epoxy and Kevlar/epoxy stabilizer. Graphite/epoxy and Kevlar/epoxy panels are being exposed to the outdoor environment in Stratford, Connecticut and West Palm Beach, Florida. For this reporting period the two year panels were returned, moisture measurements taken, and strength tests conducted. Results are compared with initial type certificate strengths for components and with initial laboratory coupon tests for the exposed panels. Comparisons are also presented with predicted and measured moisture contents.

  2. Simultaneous/Selective Detection of Dopamine and Ascorbic Acid at Synthetic Zeolite-Modified/Graphite-Epoxy Composite Macro/Quasi-Microelectrodes

    PubMed Central

    Ilinoiu, Elida Cristina; Manea, Florica; Serra, Pier Andrea; Pode, Rodica

    2013-01-01

    The present paper aims to miniaturize a graphite-epoxy and synthetic zeolite-modified graphite-epoxy composite macroelectrode as a quasi-microelectrode aiming in vitro and also, envisaging in vivo simultaneous electrochemical detection of dopamine (DA) and ascorbic acid (AA) neurotransmitters, or DA detection in the presence of AA. The electrochemical behavior and the response of the designed materials to the presence of dopamine and ascorbic acid without any protective membranes were studied by cyclic voltammetry and constant-potential amperometry techniques. The catalytic effect towards dopamine detection was proved for the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode, allowing increasing the sensitivity and selectivity for this analyte detection, besides a possible electrostatic attraction between dopamine cation and the negative surface of the synthetic zeolite and electrostatic repulsion with ascorbic acid anion. Also, the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode gave the best electroanalytical parameters for dopamine detection using constant-potential amperometry, the most useful technique for practical applications. PMID:23736851

  3. Simultaneous/selective detection of dopamine and ascorbic acid at synthetic zeolite-modified/graphite-epoxy composite macro/quasi-microelectrodes.

    PubMed

    Ilinoiu, Elida Cristina; Manea, Florica; Serra, Pier Andrea; Pode, Rodica

    2013-06-03

    The present paper aims to miniaturize a graphite-epoxy and synthetic zeolite-modified graphite-epoxy composite macroelectrode as a quasi-microelectrode aiming in vitro and also, envisaging in vivo simultaneous electrochemical detection of dopamine (DA) and ascorbic acid (AA) neurotransmitters, or DA detection in the presence of AA. The electrochemical behavior and the response of the designed materials to the presence of dopamine and ascorbic acid without any protective membranes were studied by cyclic voltammetry and constant-potential amperometry techniques. The catalytic effect towards dopamine detection was proved for the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode, allowing increasing the sensitivity and selectivity for this analyte detection, besides a possible electrostatic attraction between dopamine cation and the negative surface of the synthetic zeolite and electrostatic repulsion with ascorbic acid anion. Also, the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode gave the best electroanalytical parameters for dopamine detection using constant-potential amperometry, the most useful technique for practical applications.

  4. Tensile strength of composite sheets with unidirectional stringers and crack-like damage: A brief report

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1984-01-01

    The residual strength of composite sheets with bonded composite stringers loaded in tension was determined. The results are summarized. About 50 graphite/epoxy composite panels with crack-like slots were monotonically loaded in tension to failure. Both sheet layup and stringer configuration were varied. The composite panels have considerable damage tolerance. The stringers arrested cracks that ran from the crack-like slots, and the residual strengths were considerably greater than those of unstiffened composite sheets. A stress-intensity factor analysis was developed to predict the failing strains of the stiffened panels. Using the analysis, a single design curve was produced for composite sheets with bonded stringers of any configuration.

  5. Ternary Polymeric Composites Exhibiting Bulk and Surface Quadruple-Shape Memory Properties.

    PubMed

    Buffington, Shelby Lois; Posnick, Benjamin M; Paul, Justine Elizabeth; Mather, Patrick T

    2018-06-19

    We report the design and characterization of a multiphase quadruple shape memory composite capable of switching between 4 programmed shapes, three temporary and one permanent. Our approach combined two previously reported fabrication methods by embedding an electrospun mat of PCL in a miscible blend of epoxy monomers and PMMA as a composite matrix. As epoxy polymerization occurred the matrix underwent phase separation between the epoxy and PMMA materials. This created a multiphase composite with PCL fibers and a two-phase matrix composed of phase-separated epoxy and PMMA. The resulting composite demonstrated three separate thermal transitions and amenability to mechanical programming of three separate temporary shapes in addition to one final, equilibrium shape. In addition, quadruple surface shape memory abilities are successfully demonstrated. The versatility of this approach offers a large degree of design flexibility for multi-shape memory materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of Automotive Composite Parts.

    PubMed

    Wang, Yiru; Liu, Wanshuang; Qiu, Yiping; Wei, Yi

    2018-04-27

    Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl)-2-ethyl-4-methylimidazol(EP-1C2E4MIM) system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high T g parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles.

  7. A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of Automotive Composite Parts

    PubMed Central

    Wang, Yiru; Qiu, Yiping; Wei, Yi

    2018-01-01

    Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl)-2-ethyl-4-methylimidazol(EP-1C2E4MIM) system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high Tg parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles. PMID:29702575

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gantayat, S., E-mail: subhra-gantayat@rediffmail.com; Rout, D.; Swain, S. K.

    The effect of the functionalization of multiwalled carbon nanotube on the structure and electrical properties of composites was investigated. Samples based on epoxy resin with different weight percentage of MWCNTs were prepared and characterized. The interaction between MWCNT & epoxy resin was noticed by Fourier transform infrared spectroscopy (FTIR). The structure of functionalized multiwalled carbon nanotube (f-MWCNT) reinforced epoxy composite was studied by field emission scanning electron microscope (FESEM). The dispersion of f-MWCNT in epoxy resin was evidenced by high resolution transmission electron microscope (HRTEM). Electrical properties of epoxy/f-MWCNT nanocomposites were measured & the result indicated that the conductivity increasedmore » with increasing concentration of f-MWCNTs.« less

  9. Energy absorption in composite materials for crashworthy structures

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Crash energy-absorption processes in composite materials have been studied as part of a research program aimed at the development of energy absorbing subfloor beams for crashworthy military helicopters. Based on extensive tests on glass/epoxy, graphite/epoxy, and Kevlar/epoxy composites, it is shown that the energy-absorption characteristics and crushing modes of composite beams are similar to those exhibited by tubular specimens of similar material and architecture. The crushing mechanisms have been determined and related to the mechanical properties of the constituent materials and specimen architecture. A simple and accurate method for predicting the energy-absorption capability of composite beams has been developed.

  10. The use of polyimide-modified aluminum nitride fillers in AlN@PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation

    PubMed Central

    Zhou, Yongcun; Yao, Yagang; Chen, Chia-Yun; Moon, Kyoungsik; Wang, Hong; Wong, Ching-ping

    2014-01-01

    Polymer modified fillers in composites has attracted the attention of numerous researchers. These fillers are composed of core-shell structures that exhibit enhanced physical and chemical properties that are associated with shell surface control and encapsulated core materials. In this study, we have described an apt method to prepare polyimide (PI)-modified aluminum nitride (AlN) fillers, AlN@PI. These fillers are used for electronic encapsulation in high performance polymer composites. Compared with that of untreated AlN composite, these AlN@PI/epoxy composites exhibit better thermal and dielectric properties. At 40 wt% of filler loading, the highest thermal conductivity of AlN@PI/epoxy composite reached 2.03 W/mK. In this way, the thermal conductivity is approximately enhanced by 10.6 times than that of the used epoxy matrix. The experimental results exhibiting the thermal conductivity of AlN@PI/epoxy composites were in good agreement with the values calculated from the parallel conduction model. This research work describes an effective pathway that modifies the surface of fillers with polymer coating. Furthermore, this novel technique improves the thermal and dielectric properties of fillers and these can be used extensively for electronic packaging applications. PMID:24759082

  11. Surface modification of aramid fibers by bio-inspired poly(dopamine) and epoxy functionalized silane grafting.

    PubMed

    Sa, Rina; Yan, Yan; Wei, Zhenhai; Zhang, Liqun; Wang, Wencai; Tian, Ming

    2014-12-10

    A novel biomimetic surface modification method for meta-aramid (MPIA) fibers and the improvement on adhesion with rubber matrix was demonstrated. Inspired by the composition of adhesive proteins in mussels, we used dopamine (DOPA) self-polymerization to form thin, surface-adherent poly(dopamine) (PDA) films onto the surface of MPIA fibers simply by immersing MPIA fibers in a dopamine solution at room temperature. An epoxy functionalized silane (KH560) grafting was then carried out on the surface of the poly(dopamine)-coated MPIA, either by a "one-step" or "two-step" method, to introduce an epoxy group onto the MPIA fiber surface. The surface composition and microstructure of the modified MPIA was characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results indicated successful grafting of KH560 on the PDA-coated MPIA surface. A single-fiber pull-out test was applied to evaluate the adhesion of MPIA fibers with the rubber matrix. Compared with the untreated MPIA fibers, the adhesion strength between the modified MPIA fibers by "one step" method with rubber matrix has an increase of 62.5%.

  12. Self-healing fiber-reinforced composite

    NASA Astrophysics Data System (ADS)

    Lee, Minwook; Yoon, Sam; Yarin, Alexander

    In the present work two parts of the healing agent (commercially available epoxy resin and hardener) are encapsulated in separate polymeric nanofibers. The fibers are generated by a single-step dual coaxial solution blowing. The core-shell fibers with the diameters in the 200-2600 nm range are encased in the PDMS (polydimethyl siloxane) matrix to form a self-healing composite material. Under fatigue conditions, the core-shell fibers inside the composite material are ruptured and the healing agents released into the surrounding matrix. Various fatigue conditions including repeated bending and stretching are used to damage the composites and the degree of self-healing is quantified after that. Also, an incision resembling a crack is pre-notched and crack propagation is studied. It is found that the presence of the self-healing agents in the fibers significantly retards crack propagation due to curing by the epoxy at the ruptured site. The stiffness of the composites is also measured for the samples containing self-healing fibers inside them before and after the fatigue tests. A novel theory of crack propagation is proposed, which explains the observed jump-like growth of sub-critical cracks. This work was supported by the International Collaboration Program funded by the Agency for Defense Development.

  13. Post-Crazing Stress Analysis of Glass-Epoxy Laminates.

    DTIC Science & Technology

    1979-05-01

    element Stress concentrations Thick-shell element b. Identiflers/Open-Ended Terms Thick-plate element Glass-epoxy Laminates Composite materials Failure...number) / Glass-Epoxy Angle Plys Finite Elements’ Laminates Shear Testing Isoparametric.,lement Composite Materials Compression Testing Doubly-Curved...with light weight. This favorable strength- weight ratio makes the material attractive for some flight structures as well as other machines and

  14. Properties of two composite materials made of toughened epoxy resin and high-strain graphite fiber

    NASA Technical Reports Server (NTRS)

    Dow, Marvin B.; Smith, Donald L.

    1988-01-01

    Results are presented from an experimental evaluation of IM7/8551-7 and IM6/18081, two new toughened epoxy resin, high strain graphite fiber composite materials. Data include ply-level strengths and moduli, notched tension and compression strengths and compression-after-impact assessments. The measured properties are compared with those of other graphite-epoxy materials.

  15. Permeability testing of composite material and adhesive bonds for the DC-XA composite feedline program

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    1995-01-01

    Hercules IM7/8552 carbon/epoxy and Hysol EA 9394 epoxy adhesive bonded between composite/titanium were tested for permeability after various numbers of thermal cycles between 100 C and liquid nitrogen (-196 C). The specimens were quenched from the 100 C temperature into liquid nitrogen to induce thermal shock into the material. Results showed that the carbon/epoxy system was practically impermeable even after 12 thermal cycles. The EA 9394 adhesive bondline was more permeable than the carbon/epoxy, but vacuum mixing minimized the permeability and kept it within allowable limits. Thermal cycling had little effect on the permeability values of the bondline specimens.

  16. Scheming of microwave shielding effectiveness for X band considering functionalized MWNTs/epoxy composites

    NASA Astrophysics Data System (ADS)

    Bal, S.; Saha, S.

    2016-02-01

    Present typescript encompasses anextraordinary electrical and mechanical behaviors of carboxylic (-COOH) functionalized multiwall carbon nanotube (MWNTs)/epoxy composites at low wt.% (0,5, 0,75, 1wt.%). Functionalization on the surface of the nanotube assists MWNTs in dispersing it into epoxy polymer in a respectable manner, Fabricated composites are exposed to different characterization techniques in order to examine the overall physical properties, Microwave shielding effectiveness (SE) for X band (8-12 GHz) and the flexural properties have been premeditated to predict the electrical and mechanical performances. It was found that the total SE of the nanocomposites was increased with the positive gradient of MWNT contents, The best result was recorded for 1 wt.% MWNT loading (SE of about 51,72 dB).In addition, incorporation of nanofillers enhanced the flexural modulus, flexural strength and micro-hardness of the resulting composites while comparing with neat epoxy, Nanocomposites with 0,75 wt,% MWNT loading demonstrated an incrementof 101% in modulus than that of neat epoxy, Theincrement in mechanical properties was due to achievement of good dispersion quality, effective bonding between MWNTs and epoxy polymer analyzed by micrographs of fracture surfaces

  17. Electrochemical detection and degradation of ibuprofen from water on multi-walled carbon nanotubes-epoxy composite electrode.

    PubMed

    Motoc, Sorina; Remes, Adriana; Pop, Aniela; Manea, Florica; Schoonman, Joop

    2013-04-01

    This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-walled carbon nanotubes-epoxy (AgZMWCNT) composites electrodes. The composite electrodes were obtained using two-roll mill procedure. SEM images of surfaces of the composites revealed a homogeneous distribution of the composite components within the epoxy matrix. AgZMWCNT composite electrode exhibited the better electrical conductivity and larger electroactive surface area. The electrochemical determination of ibuprofen (IBP) was achieved using AgZMWCNT by cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry and chronoamperometry. The IBP degradation occurred on both composite electrodes under controlled electrolysis at 1.2 and 1.75 V vs. Ag/AgCl, and IBP concentration was determined comparatively by differential-pulsed voltammetry, under optimized conditions using AgZMWCNT electrode and UV-Vis spectrophotometry methods to determine the IBP degradation performance for each electrode. AgZMWCNT electrode exhibited a dual character allowing a double application in IBP degradation process and its control.

  18. Ultrasonic characterization of the nonlinear elastic properties of unidirectional graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1987-01-01

    The theoretical treatment of linear and nonlinear elasticity in a unidirectionally fiber reinforced composite as well as measurements for a unidirectional graphite/epoxy composite (T300/5208) are presented. Linear elastic properties were measured by both ultrasonic and strain gage measurements. The nonlinear properties were determined by measuring changes in ultrasonic natural phase velocity with a pulsed phase locked loop interferometer as a function of stress and temperature. These measurements provide the basis for further investigations into the relationship between nonlinear elastic properties and other important properties such as strength and fiber-matrix interfacial stength in graphite/epoxy composites.

  19. Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)

    NASA Astrophysics Data System (ADS)

    Lee, Dongyoung; Lee, Dai Gil

    2016-09-01

    A carbon/epoxy composite bipolar plate is an ideal substitute for the brittle graphite bipolar plate for lightweight proton exchange membrane fuel cells (PEMFCs) because of its high specific strength and stiffness. However, conventional carbon/epoxy composite bipolar plates are not applicable for high-temperature PEMFCs (HT-PEMFCs) because these systems are operated at higher temperatures than the glass transition temperatures of conventional epoxies. Therefore, in this study, a cyanate ester-modified epoxy is adopted for the development of a carbon composite bipolar plate for HT-PEMFCs. The composite bipolar plate with exposed surface carbon fibers is produced without any surface treatments or coatings to increase the productivity and is integrated with a silicone gasket to reduce the assembly cost. The developed carbon composite bipolar plate exhibits not only superior electrical properties but also high thermo-mechanical properties. In addition, a unit cell test is performed, and the results are compared with those of the conventional graphite bipolar plate.

  20. Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the 'Green' composite.

    PubMed

    Barari, Bamdad; Omrani, Emad; Dorri Moghadam, Afsaneh; Menezes, Pradeep L; Pillai, Krishna M; Rohatgi, Pradeep K

    2016-08-20

    The development of bio-based composites is essential in order to protect the environment while enhancing energy efficiencies. In the present investigation, the plant-derived cellulose nano-fibers (CNFs)/bio-based epoxy composites were manufactured using the Liquid Composite Molding (LCM) process. More specifically, the CNFs with and without chemical modification were utilized in the composites. The curing kinetics of the prepared composites was studied using both the isothermal and dynamic Differential Scanning Calorimetry (DSC) methods. The microstructure as well as the mechanical and tribological properties were investigated on the cured composites in order to understand the structure-property correlations of the composites. The results indicated that the manufactured composites showed improved mechanical and tribological properties when compared to the pure epoxy samples. Furthermore, the chemically modified CNFs reinforced composites outperformed the untreated composites. The surface modification of the fibers improved the curing of the resin by reducing the activation energy, and led to an improvement in the mechanical properties. The CNFs/bio-based epoxy composites form uniform tribo-layer during sliding which minimizes the direct contact between surfaces, thus reducing both the friction and wear of the composites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Synthesis of improved phenolic and polyester resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.

    1980-01-01

    Thirty-seven cured phenolic resin compositions were prepared and tested for their ability to provide improved char residues and moisture resistance over state of the art epoxy resin composite matrices. Cyanate, epoxy novolac and vinyl ester resins were investigated. Char promoter additives were found to increase the anaerobic char yield at 800 C of epoxy novolacs and vinyl esters. Moisture resistant cyanate and vinyl ester compositions were investigated as composite matrices with Thornel 300 graphite fiber. A cyanate composite matrix provided state of the art composite mechanical properties before and after humidity exposure and an anaerobic char yield of 46 percent at 800 C. The outstanding moisture resistance of the matrix was not completely realized in the composite. Vinyl ester resins showed promise as candidates for improved composite matrix systems.

  2. Microstructure and Mechanical Behaviors of Titanium Matrix Composites Containing In Situ Whiskers Synthesized via Plasma Activated Sintering.

    PubMed

    Sun, Yi; Zhang, Jian; Luo, Guoqiang; Shen, Qiang; Zhang, Lianmeng

    2018-04-02

    In this paper, titanium matrix composites with in situ TiB whiskers were synthesized by the plasma activated sintering technique; crystalline boron and amorphous boron were used as reactants for in situ reactions, respectively. The influence of the sintering process and the crystallography type of boron on the microstructure and mechanical properties of composites were studied and compared. The densities were evaluated using Archimedes' principle. The microstructure and mechanical properties were characterized by SEM, XRD, EBSD, TEM, a universal testing machine, and a Vickers hardness tester. The prepared composite material showed a high density and excellent comprehensive performance under the PAS condition of 20 MPa at 1000 °C for 3 min. Amorphous boron had a higher reaction efficiency than crystalline boron, and it completely reacted with the titanium matrix to generate TiB whiskers, while there was still a certain amount of residual crystalline boron combining well with the titanium matrix at 1100 °C. The composite samples with a relative density of 98.33%, Vickers hardness of 389.75 HV, compression yield strength of up to 1190 MPa, and an ultimate compressive strength of up to 1710 MPa were obtained. Compared with the matrix material, the compressive strength of TC4 titanium alloy containing crystalline boron and amorphous boron was increased by 7.64% and 15.50%, respectively.

  3. Microstructure and Mechanical Behaviors of Titanium Matrix Composites Containing In Situ Whiskers Synthesized via Plasma Activated Sintering

    PubMed Central

    Luo, Guoqiang; Shen, Qiang; Zhang, Lianmeng

    2018-01-01

    In this paper, titanium matrix composites with in situ TiB whiskers were synthesized by the plasma activated sintering technique; crystalline boron and amorphous boron were used as reactants for in situ reactions, respectively. The influence of the sintering process and the crystallography type of boron on the microstructure and mechanical properties of composites were studied and compared. The densities were evaluated using Archimedes’ principle. The microstructure and mechanical properties were characterized by SEM, XRD, EBSD, TEM, a universal testing machine, and a Vickers hardness tester. The prepared composite material showed a high density and excellent comprehensive performance under the PAS condition of 20 MPa at 1000 °C for 3 min. Amorphous boron had a higher reaction efficiency than crystalline boron, and it completely reacted with the titanium matrix to generate TiB whiskers, while there was still a certain amount of residual crystalline boron combining well with the titanium matrix at 1100 °C. The composite samples with a relative density of 98.33%, Vickers hardness of 389.75 HV, compression yield strength of up to 1190 MPa, and an ultimate compressive strength of up to 1710 MPa were obtained. Compared with the matrix material, the compressive strength of TC4 titanium alloy containing crystalline boron and amorphous boron was increased by 7.64% and 15.50%, respectively. PMID:29614842

  4. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  5. Physical aging and its influence on the reliability of network epoxies and epoxy-matrix composites

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1983-01-01

    The matrix-dominated physical and mechanical properties of a carbon fiber reinforced epoxy composite and a neat epoxy resin were found to be affected by sub-Tg annealing in nitrogen and dark atmosphere. Postcured specimens of Thornel 300 carbon-fiber/Fiberite 934 epoxy as well as Fiberite 934 epoxy resin were quenched from above Tg and given annealing at 140 C, 110 C, or 80 C, for time up to one-hundred thousand minutes. No weight loss was observed during annealing at these temperatures. Significant variations were found in density, modulus, hardness, damping, moisture absorption ability, thermal expansivity. Moisture-epoxy interactious were also studied. The kinetics of aging as well as the molecular aggregation during this densification process were monitored by differential scanning calorimetry, dynamic mechanical analysis, density gradient column, microhardness tester, Instron, and solid-state nuclear magnetic resonance spectroscopy.

  6. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    NASA Astrophysics Data System (ADS)

    V. R., Arun prakash; Rajadurai, A.

    2016-10-01

    In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee's disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved when surface modified fiber was reinforced along with hard hematite particles. Thermal conductivity of epoxy increased with increase of hematite content in epoxy matrix.

  7. Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy

    NASA Astrophysics Data System (ADS)

    Compton, Brett G.; Hmeidat, Nadim S.; Pack, Robert C.; Heres, Maximilian F.; Sangoro, Joshua R.

    2018-03-01

    Recent developments in additive manufacturing have demonstrated the potential for thermoset polymer feedstock materials to achieve high strength, stiffness, and functionality through incorporation of structural and functional filler materials. In this work, graphene was investigated as a potential filler material to provide rheological properties necessary for direct-write three-dimensional (3D) printing and electrostatic discharge properties to the printed component. The rheological properties of epoxy/graphene mixtures were characterized, and printable epoxy/graphene inks formulated. Sheet resistance values for printed epoxy/graphene composites ranged from 0.67 × 102 Ω/sq to 8.2 × 103 Ω/sq. The flexural strength of printed epoxy/graphene composites was comparable to that of cast neat epoxy ( 80 MPa), suggesting great potential for these new materials in multifunctional 3D-printed devices.

  8. Multiple welding of long fiber epoxy vitrimer composites.

    PubMed

    Chabert, Erwan; Vial, Jérôme; Cauchois, Jean-Pierre; Mihaluta, Marius; Tournilhac, François

    2016-05-25

    Vitrimers appear as a new class of polymers that exhibit mechanical strength and are insoluble even at high temperatures, like thermosets, and yet, like thermoplastics, they are heat processable, recyclable and weldable. The question arises whether this welding property is maintained in composite materials made of more than 50 vol% of reinforcing fibers. In this paper, we quantitatively analyze the bond strength of epoxy vitrimer-based composite plates made by resin transfer molding and compare them to their non-vitrimer counterparts made of a standard thermoset epoxy. It is demonstrated that only epoxy vitrimer samples show substantial bond strength and the ability to be repeatedly welded thanks to the exchange reactions, which promote improved surface conformity and chemical bonding between the adherands at the joint interface. This opens the way towards joining composite parts without adhesives nor mechanical fasteners.

  9. Long-term influence of physical aging processes in epoxy matrix composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1981-01-01

    Selected mechanical properties of (plus or minus 45 degree sub 4s) graphite/epoxy composites were found to be affected by sub T sub g annealing. Postcured specimens of Thornel 300 graphite/Narmco 5208 epoxy were sub T sub G annealed at 413 K (140 C) for ca. 10 to the first through 10 to the fifth powers min., with a prior quenching from above T sub g. The ultimate tensile strength, strain-to-break, and toughness of the composite were found to decrease as a function of sub T sub g annealing time. The time-dependent change in properties can be explained on the basis of physical aging which is related to free volume changes in the non-equilibrium glassy state of network epoxies. The results imply possible changes in composite properties with service time.

  10. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development and flight evaluation of an advanced composite empennage component is presented. The recommended concept for the covers is graphite-epoxy hats bonded to a graphite-epoxy skin. The hat flare-out has been eliminated, instead the hat is continuous into the joint. The recommended concept for the spars is graphite-epoxy caps and a hybrid of Kevlar-49 and graphite-epoxy in the spar web. The spar cap, spar web stiffeners for attaching the ribs, and intermediate stiffeners are planned to be fabricated as a unit. Access hole in the web will be reinforced with a donut type, zero degree graphite-epoxy wound reinforcement. The miniwich design concept in the upper three ribs originally proposed is changed to a graphite-epoxy stiffened solid laminate design concept. The recommended configuration for the lower seven ribs remains as graphite-epoxy caps with aluminum cruciform diagonals. The indicated weight saving for the current advanced composite vertical fin configuration is 20.2% including a 24 lb growth allowance. The project production cost saving is approximately 1% based on a cumulative average of 250 aircraft and including only material, production labor, and quality assurance costs.

  11. Incendiary Devices for the in-situ Combustion of Crude Oil Slicks

    DTIC Science & Technology

    1983-01-01

    contiennent. Celles-cl se composent principalement d’un oxydant , le perchlorate d’ammonium, d’un carburant, une poudre m~tallique, et d’un liant...20.8 I- R T: 78% vt. R-45HT/22% wt. DDI-1410. 2- Epoxy: 85% vt. Epon 815/15% wt. Hysol 3543. 3- Solvent: ethyl alcohol . 4- F-ND: boron-potassium nitrate

  12. Curing of epoxy resins with 1-/di(2-chloroethoxyphosphinyl)methyl/-2,4- and -2,6-diaminobenzene

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, J. A.; Kourtides, D. A.

    1984-01-01

    Fire resistant compositions were prepared using 1-di(2-chloroethoxy-phosphinyl)methyl-2,4- and -2,6-diaminobenzene (DCEPD) as a curing agent for typical epoxy resins such as EPON 828 (Shell), XD 7342 (Dow), and My 720 (Ciba Geigy). In addition, compositions of these three epoxy resins with common curing agents such as m-phenylenediamine (MPD) or 4,4'-diaminodiphenylsulphone (DDS) were studied to compare their reactions with those of DCEPD. The reactivity of the three curing agents toward the epoxy resins, measured by differential calorimetry (DSC), was of the order MPD DCEPD DDS. The relatively lower reactivity of DCEPD toward epoxy resins was attributed to electronic effects.

  13. Curing of epoxy resins with 1-DI(2-chloroethoxyphosphinyl) methyl-2,4 and -2,6-diaminobenzene

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, J. A.; Kourtides, D. A.

    1983-01-01

    Fire resistant compositions were prepared using 1-di(2-chloroethoxy-phosphinyl)methyl-2,4- and -2,6-diaminobenzene (DCEPD) as a curing agent for typical epoxy resins such as EPON 828 (Shell), XD 7342 (Dow), and My 720 (Ciba Geigy). In addition, compositions of these three epoxy resins with common curing agents such as m-phenylenediamine (MPD) or 4,4'-diaminodiphenylsulphone (DDS) were studied to compare their reactions with those of DCEPD. The reactivity of the three curing agents toward the epoxy resins, measured by differential calorimetry (DSC), was of the order MPD DCEPD DDS. The relatively lower reactivity of DCEPD toward epoxy resins was attributed to electronic effects.

  14. Fabrication process scale-up and optimization for a boron-aluminum composite radiator

    NASA Technical Reports Server (NTRS)

    Okelly, K. P.

    1973-01-01

    Design approaches to a practical utilization of a boron-aluminum radiator for the space shuttle orbiter are presented. The program includes studies of laboratory composite material processes to determine the feasibility of a structural and functional composite radiator panel, and to estimate the cost of its fabrication. The objective is the incorporation of boron-aluminum modulator radiator on the space shuttle.

  15. Enhanced electromagnetic interference shielding properties of carbon fiber veil/Fe3O4 nanoparticles/epoxy multiscale composites

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Jun; Zhang, Bin; Wu, Qilei; Su, Xiaogang

    2017-12-01

    The multiscale approach has been adapted to enhance the electromagnetic interference shielding properties of carbon fiber (CF) veil epoxy-based composites. The Fe3O4 nanoparticles (NPs) were homogeneously dispersed in the epoxy matrix after surface modification by using silane coupling agent. The CF veil/Fe3O4 NPs/epoxy multiscale composites were manufactured by impregnating the CF veils with Fe3O4 NPs/epoxy mixture to prepare prepreg followed by vacuum bagging process. The electromagnetic interference shielding properties combined with the complex permittivity and complex permeability of the composites were investigated in the X-band (8.2-12.4 GHz) range. The total shielding effectiveness (SET) increases with increasing Fe3O4 NPs loadings and the maximum SET is 51.5 dB at low thickness of 1 mm. The incorporation of Fe3O4 NPs into the composites enhances the complex permittivity and complex permeability thus enhancing the electromagnetic wave absorption capability. The increased SET dominated by absorption loss SEA is attributed to the enhanced magnetic loss and dielectric loss generated by Fe3O4 NPs and multilayer construction of the composites. The microwave conductivity increases and the skin depth decreases with increasing Fe3O4 NPs loadings.

  16. Characterization of Thermal Behavior of Epoxy Composites Reinforced with Curaua Fibers by Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Barcelos, Mariana A.; Ribeiro, Carolina Gomes D.; Ferreira, Jordana; Vieira, Janaina da S.; Margem, Frederico M.; Monteiro, Sergio N.

    Epoxy composites reinforced with natural lignocellulosic fibers have, in recent times, been gaining attention in engineering areas as lighter and cheaper alternatives for traditional composites such as the "fiberglass". The curaua fiber is the one strongest today being considered as reinforcement of composites for automobile interior parts. In fact, several studies are currently being dedicated to curaua fiber composites since physical and mechanical properties are required for practical uses. In this work, the thermal behavior of epoxy composites reinforced with up to 30 % in volume of curaua fibers was investigated by differential scanning calorimetry, DSC. The results showed endothermic and exothermic events associated with water release and possible molecular chain amorphous transformation. Comparison with similar composites permitted to propose mechanism that explains this DSC thermal behavior.

  17. Overview and Brief History of the Boron Isotope Proxy for Past Seawater pH

    NASA Astrophysics Data System (ADS)

    Hoenisch, B.; Hemming, G.

    2007-05-01

    In 1992 Hemming and Hanson (GCA, vol. 56, p. 537-543) showed that a variety of modern marine carbonates revealed a boron isotopic composition close to the isotopic composition of dissolved borate at modern seawater pH, suggesting this was the boron species preferentially adsorbed and incorporated into marine carbonates. With a constant offset between the trigonal and tetrahedrally coordinated boron species and a pH-dependent variation in their fractions, it appeared that this system would be sensitive to pH changes in the natural range of seawater. Accordingly, it was suggested that the boron isotope composition of marine carbonates is a proxy for past seawater pH. Subsequent culture studies with living planktic foraminifers and corals, as well as synthetic precipitation experiments confirmed that the boron isotopic composition follows the isotopic composition of borate across a wide range of seawater pH. In order to use the proxy with confidence, however, all other controls apart from pH need to be thoroughly understood. Recent laboratory and sediment experiments have demonstrated that vital effects and partial shell dissolution have the potential to modify the primary seawater pH signal recorded in the boron isotopic composition of planktic foraminifers. However it has also been shown that careful sample selection allows for avoiding these potential complications. A record of reconstructed surface seawater pH and estimated aqueous PCO2 shows a remarkable match between boron isotope based atmospheric pCO2 estimates and the Vostok ice core CO2 record. This convincingly demonstrates that boron isotopes in planktic foraminifers allow quantitative estimates of atmospheric pCO2 in the past, and confirms that glacial surface ocean pH was ~0.2 units higher compared to interglacial periods. We are going to review and discuss the achievements generated in Gil Hanson's lab over the past 15 years in the light of recent empirical measurements of the boron isotope fractionation between boric acid and borate in seawater.

  18. Fabrication and Characterization of Multi-Walled Carbon Nanotube (MWCNT) and Ni-Coated Multi-Walled Carbon Nanotube (Ni-MWCNT) Repair Patches for Carbon Fiber Reinforced Composite Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Brienne; Caraccio, Anne; Tate, LaNetra; Jackson, Dionne

    2011-01-01

    Multi-walled carbon nanotube (MWCNT)/epoxy and nickel-coated multi-walled carbon nanotube (Ni-MWCNT)/epoxy systems were fabricated into carbon fiber composite repair patches via vacuum resin infusion. Two 4 ply patches were manufactured with fiber orientations of [90/ 90/ 4590] and [0/90/ +45/ -45]. Prior to resin infusion, the MWCNT/Epoxy system and NiMWCNT/ epoxy systems were optimized for dispersion quality. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to determine the presence ofcarbon nanotubes and assess dispersion quality. Decomposition temperatures were determined via thermogravametric analysis (TGA). SEM and TGA were also used to evaluate the composite repair patches.

  19. Quantitative Study of Interface/Interphase in Epoxy/Graphene-Based Nanocomposites by Combining STEM and EELS.

    PubMed

    Liu, Yu; Hamon, Ann-Lenaig; Haghi-Ashtiani, Paul; Reiss, Thomas; Fan, Benhui; He, Delong; Bai, Jinbo

    2016-12-14

    A quantitative study of the interphase and interface of graphene nanoplatelets (GNPs)/epoxy and graphene oxide (GO)/epoxy was carried out by combining scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). The interphase regions between GNPs and epoxy matrix were clearly identified by the discrepancy of the plasmon peak positions in the low energy-loss spectra due to different valence electron densities. The spectrum acquisitions were carried out along lines across the interface. An interphase thickness of 13 and 12.5 nm was measured for GNPs/epoxy and GO/epoxy, respectively. The density of the GNPs/epoxy interphase was 2.89% higher than that of the epoxy matrix. However, the density of the GO/epoxy interphase was 1.37% lower than that of the epoxy matrix. The interphase layer thickness measured in this work is in good agreement with the transition layer theory, which proposed an area with modulus linearly varying across a finite width. The results provide an insight into the interphase for carbon-based polymer composites that can help to design the functionalization of nanofillers to improve the composite properties.

  20. Toughening Effect of Microscale Particles on the Tensile and Vibration Properties of S-Glass-Fiber-Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Erkliğ, A.; Bulut, M.; Fayzulla, B.

    2018-03-01

    The effect of borax, sewage sludge ash, silicon carbide, and perlite microparticles on the tensile, damping, and vibration characteristics of S-glass/epoxy composite laminates was examined Their damping and vibration properties were evaluated experimentally by using the dynamic modal analysis, identifying the response of the fundamental natural frequency to the type and weight content of the particulates. The results obtained showed that the introduction of specific amounts of such particulates into the matrix of S-glass/epoxy composite noticeably improved its mechanical properties.

  1. Evaluation of Nanomaterial Approaches to Damping in Epoxy Resin and Carbon Fiber/Epoxy Composite Structures by Dynamic Mechanical Analysis

    NASA Technical Reports Server (NTRS)

    Miller, G.; Heimann, Paula J.; Scheiman, Daniel A.; Duffy, Kirsten P.; Johnston, J. Chris; Roberts, Gary D.

    2013-01-01

    Vibration mitigation in composite structures has been demonstrated through widely varying methods which include both active and passive damping. Recently, nanomaterials have been investigated as a viable approach to composite vibration damping due to the large surface available to generate energy dissipation through friction. This work evaluates the influence of dispersed nanoparticles on the damping ratio of an epoxy matrix. Limited benefit was observed through dispersion methods, however nanoparticle application as a coating resulting in up to a three-fold increase in damping.

  2. Structural Assessment of Tungsten-Epoxy Bonding in Spacecraft Composite Enclosures with Enhanced Radiation Protection

    NASA Astrophysics Data System (ADS)

    Kanerva, M.; Koerselman, J. R.; Revitzer, H.; Johansson, L.-S.; Sarlin, E.; Rautiainen, A.; Brander, T.; Saarela, O.

    2014-06-01

    Spacecraft include sensitive electronics that must be protected against radiation from the space environment. Hybrid laminates consisting of tungsten layers and carbon- fibre-reinforced epoxy composite are a potential solution for lightweight, efficient, and protective enclosure material. Here, we analysed six different surface treatments for tungsten foils in terms of the resulting surface tension components, composition, and bonding strength with epoxy. A hydrofluoric-nitric-sulfuric-acid method and a diamond-like carbon-based DIARC® coating were found the most potential surface treatments for tungsten foils in this study.

  3. Electrosprayed Multi-Core Alginate Microcapsules as Novel Self-Healing Containers

    NASA Astrophysics Data System (ADS)

    Hia, Iee Lee; Pasbakhsh, Pooria; Chan, Eng-Seng; Chai, Siang-Piao

    2016-10-01

    Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5-100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed.

  4. Electrosprayed Multi-Core Alginate Microcapsules as Novel Self-Healing Containers.

    PubMed

    Hia, Iee Lee; Pasbakhsh, Pooria; Chan, Eng-Seng; Chai, Siang-Piao

    2016-10-03

    Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5-100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed.

  5. Electrosprayed Multi-Core Alginate Microcapsules as Novel Self-Healing Containers

    PubMed Central

    Hia, Iee Lee; Pasbakhsh, Pooria; Chan, Eng-Seng; Chai, Siang-Piao

    2016-01-01

    Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5–100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed. PMID:27694922

  6. Epoxy composites coating with Fe3O4 decorated graphene oxide: Modified bio-inspired surface chemistry, synergistic effect and improved anti-corrosion performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yingqing; Zhang, Jieming; Wan, Xinyi; Long, Zhihang; He, Shuangjiang; He, Yi

    2018-04-01

    To obtain graphene or graphene derivatives based epoxy composite coatings with high anti-corrosion performance, the morphology of nanostructures, dispersion, and interfacial adhesion are key factors that need to be considered. We here demonstrated the bio-inspired co-modification of graphene oxide/Fe3O4 hybrid (GO-Fe3O4@ poly (DA+KH550)) and its synergistic effect on the anti-corrosion performance of epoxy coating. For this purpose, graphene oxide/Fe3O4 hybrid obtained from hydrothermal route was modified by self-polymerization between dopamine and secondary functional monomer (KH550), which led to the modified bio-inspired surface functionalization. This novel modified bio-inspired functionalization was quite distinct from conventional surface modification or decoration. Namely, abundant amino groups were introduced by modified bio-inspired functionalization, which allowed the graphene oxide/Fe3O4 hybrid to disperse well in epoxy resin and enhanced the interfacial adhesion between modified nanofiller and epoxy resin through chemical crosslinking reaction. The electrochemical impedance spectroscopy (EIS) test revealed that anti-corrosive performance of epoxy coatings was significantly enhanced by addition of 0.5 wt% modified bio-inspired functionalized GO-Fe3O4 hybrid compared with neat epoxy and other nanofillers/epoxy composite coatings. Moreover, the micro-hardness of epoxy coating was enhanced by 71.8% compared with pure epoxy coating at the same loading content. In addition, the anticorrosion mechanism of GO-Fe3O4@poly (DA+KH550) was tentatively discussed.

  7. Graphite/epoxy composite adapters for the Space Shuttle/Centaur vehicle

    NASA Technical Reports Server (NTRS)

    Kasper, Harold J.; Ring, Darryl S.

    1990-01-01

    The decision to launch various NASA satellite and Air Force spacecraft from the Space Shuttle created the need for a high-energy upper stage capable of being deployed from the cargo bay. Two redesigned versions of the Centaur vehicle which employed a graphite/epoxy composite material for the forward and aft adapters were selected. Since this was the first time a graphite/epoxy material was used for Centaur major structural components, the development of the adapters was a major effort. An overview of the composite adapter designs, subcomponent design evaluation test results, and composite adapter test results from a full-scale vehicle structural test is presented.

  8. FEM Analysis of Glass/Epoxy Composite Based Industrial Safety Helmet

    NASA Astrophysics Data System (ADS)

    Ram, Khushi; Bajpai, Pramendra Kumar

    2017-08-01

    Recently, the use of fiber reinforced polymer in every field of engineering (automobile, industry and aerospace) and medical has increased due to its distinctive mechanical properties. The fiber based polymer composites are more popular because these have high strength, light in weight, low cost and easily available. In the present work, the finite element analysis (FEA) of glass/epoxy composite based industrial safety helmet has been performed using solid-works simulation software. The modeling results show that glass fiber reinforced epoxy composite can be used as a material for fabrication of industrial safety helmet which has good mechanical properties than the existing helmet material.

  9. Materials Research in Support of Superconducting Machinery - II

    DTIC Science & Technology

    1974-10-01

    iwiRnai«.|UiipWiw .mm i MARTIN MARIETTA AEROSPACE, DENVER DIVISION Study of Fracture Behavior of Metals for Superconducting Applications...into design use by compiling and publishing what literature data are available and assessing what properties need further study . The first year’s...non-metal base composites, including B-epoxy, C-epoxy and polyimide, PRD 49-epoxy, borsic-Al, Steel-Al. Screening study of composites for torque

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ao; Li, Weizhen; Ling, Yang

    Multi-walled carbon nanotubes (MWCNTs) were coated with silica by a sol–gel method to improve interfacial bonding and dispersion of nanotubes in the diglycidyl ether of bisphenol A (DGEBA) matrix. TEM and FE-SEM measurements showed that the silica shell was successfully coated on the surface of r-MWCNTs (as-received MWCNTs), and that the dispersion of MWCNT@SiO 2 in the epoxy matrix and interfacial adhesion between MWCNTs and epoxy were improved through the silica shell formation. The effects of silica-coated multi-walled carbon nanotube (MWCNT@SiO 2) addition on the curing behavior of epoxy resin, and on the physical and thermomechanical properties of epoxy composites,more » were studied. FT-IR measurements of different blends at different curing times indicated that the curing reaction was accelerated with the presence of MWCNTs and increased with the content of MWCNT@SiO 2. DSC results confirmed that the value of activation energy decreased with the introduction of MWCNTs in the order of MWCNT@SiO 2 < r-MWCNTs < epoxy. It was found that the thermal conductivity of epoxy composites were significantly enhanced by incorporation of MWCNT@SiO 2, relative to composites with r-MWCNTs, while the values of the glass transition temperature slightly increased, and the high electrical resistivity of these composites was retained overall.« less

  11. Production and Characterization of Bulk MgB2 Material made by the Combination of Crystalline and Carbon Coated Amorphous Boron Powders

    NASA Astrophysics Data System (ADS)

    Hiroki, K.; Muralidhar, M.; Koblischka, M. R.; Murakami, M.

    2017-07-01

    The object of this investigation is to reduce the cost of bulk production and in the same time to increase the critical current performance of bulk MgB2 material. High-purity commercial powders of Mg metal (99.9% purity) and two types of crystalline (99% purity) and 16.5 wt% carbon-coated, nanometer-sized amorphous boron powders (98.5% purity) were mixed in a nominal composition of MgB2 to reduce the boron cost and to see the effect on the superconducting and magnetic properties. Several samples were produced mixing the crystalline boron and carbon-coated, nanometer-sized amorphous boron powders in varying ratios (50:50, 60:40, 70:30, 80:20, 90:10) and synthesized using a single-step process using the solid state reaction around 800 °C for 3 h in pure argon atmosphere. The magnetization measurements exhibited a sharp superconducting transition temperature with T c, onset around 38.6 K to 37.2 K for the bulk samples prepared utilizing the mixture of crystalline boron and 16.5% carbon-coated amorphous boron. The critical current density at higher magnetic field was improved with addition of carbon-coated boron to crystalline boron in a ratio of 80:20. The highest self-field Jc around 215,000 A/cm2 and 37,000 A/cm2 were recorded at 20 K, self-field and 2 T for the sample with a ratio of 80:10. The present results clearly demonstrate that the bulk MgB2 performance can be improved by adding carbon-coated nano boron to crystalline boron, which will be attractive to reduce the cost of bulk MgB2 material for several industrial applications.

  12. Priority compositions of boron carbide crystals obtained by self-propagating high-temperature synthesis

    NASA Astrophysics Data System (ADS)

    Ponomarev, V. I.; Konovalikhin, S. V.; Kovalev, I. D.; Vershinnikov, V. I.

    2015-09-01

    Splitting of reflections from boron carbide has been found for the first time by an X-ray diffraction study of polycrystalline mixture of boron carbide В15- х С х , (1.5 ≤ x ≤ 3) and its magnesium derivative C4B25Mg1.42. An analysis of reflection profiles shows that this splitting is due to the presence of boron carbide phases of different compositions in the sample, which are formed during crystal growth. The composition changes from В12.9С2.1 to В12.4С2.6.

  13. Repair of through thickness corrosion/leaking defects in corroded pipelines using Fiber Reinforced Polymer overwrap

    NASA Astrophysics Data System (ADS)

    Nitheesh Kumar, P.; Khan, Vishwas Chandra; Balaganesan, G.; Pradhan, A. K.; Sivakumar, M. S.

    2018-04-01

    The present study is concerned with the repair of through thickness corrosion or leaking defects in metallic pipelines using a commercially available metallic seal and glass/epoxy composite. Pipe specimens are made with three different types of most commonly occurring through thickness corrosion/leaking defects. The metallic seal is applied over the through thickness corrosion/leaking defect and it is reinforced with glass/epoxy composite overwrap. The main objective of the metallic seal is to arrest the leak at live pressure. After reinforcing the metallic seal with glass/epoxy composite overwrap, the repaired composite wrap is able to sustain high pressures. Burst test is performed for different configurations of metallic seal and optimum configuration of metallic seal is determined. The optimum configurations of metallic seal for three different types of through thickness corrosion/leaking defects are further reinforced with glass/epoxy composite wrap and experimental failure pressure is determined by performing the burst test. An analytical model as per ISO 24817 has been developed to validate experimental results.

  14. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    DOEpatents

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  15. Multi-Functional BN-BN Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Bryant, Robert G. (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Gibbons, Luke (Inventor); Lowther, Sharon (Inventor); Thibeault, Sheila A. (Inventor); Fay, Catharine C. (Inventor)

    2017-01-01

    Multifunctional Boron Nitride nanotube-Boron Nitride (BN-BN) nanocomposites for energy transducers, thermal conductors, anti-penetrator/wear resistance coatings, and radiation hardened materials for harsh environments. An all boron-nitride structured BN-BN composite is synthesized. A boron nitride containing precursor is synthesized, then mixed with boron nitride nanotubes (BNNTs) to produce a composite solution which is used to make green bodies of different forms including, for example, fibers, mats, films, and plates. The green bodies are pyrolized to facilitate transformation into BN-BN composite ceramics. The pyrolysis temperature, pressure, atmosphere and time are controlled to produce a desired BN crystalline structure. The wholly BN structured materials exhibit excellent thermal stability, high thermal conductivity, piezoelectricity as well as enhanced toughness, hardness, and radiation shielding properties. By substituting with other elements into the original structure of the nanotubes and/or matrix, new nanocomposites (i.e., BCN, BCSiN ceramics) which possess excellent hardness, tailored photonic bandgap and photoluminescence, result.

  16. Cooperative program for design, fabrication, and testing of graphite/epoxy composite helicopter shafting

    NASA Technical Reports Server (NTRS)

    Wright, C. C.; Baker, D. J.; Corvelli, N.; Thurston, L.; Clary, R.; Illg, W.

    1971-01-01

    The fabrication of UH-1 helicopter tail rotor drive shafts from graphite/epoxy composite materials is discussed. Procedures for eliminating wrinkles caused by lack of precure compaction are described. The development of the adhesive bond between aluminum end couplings and the composite tube is analyzed. Performance tests to validate the superiority of the composite materials are reported.

  17. Optimization of Composite Material System and Lay-up to Achieve Minimum Weight Pressure Vessel

    NASA Astrophysics Data System (ADS)

    Mian, Haris Hameed; Wang, Gang; Dar, Uzair Ahmed; Zhang, Weihong

    2013-10-01

    The use of composite pressure vessels particularly in the aerospace industry is escalating rapidly because of their superiority in directional strength and colossal weight advantage. The present work elucidates the procedure to optimize the lay-up for composite pressure vessel using finite element analysis and calculate the relative weight saving compared with the reference metallic pressure vessel. The determination of proper fiber orientation and laminate thickness is very important to decrease manufacturing difficulties and increase structural efficiency. In the present work different lay-up sequences for laminates including, cross-ply [ 0 m /90 n ] s , angle-ply [ ±θ] ns , [ 90/±θ] ns and [ 0/±θ] ns , are analyzed. The lay-up sequence, orientation and laminate thickness (number of layers) are optimized for three candidate composite materials S-glass/epoxy, Kevlar/epoxy and Carbon/epoxy. Finite element analysis of composite pressure vessel is performed by using commercial finite element code ANSYS and utilizing the capabilities of ANSYS Parametric Design Language and Design Optimization module to automate the process of optimization. For verification, a code is developed in MATLAB based on classical lamination theory; incorporating Tsai-Wu failure criterion for first-ply failure (FPF). The results of the MATLAB code shows its effectiveness in theoretical prediction of first-ply failure strengths of laminated composite pressure vessels and close agreement with the FEA results. The optimization results shows that for all the composite material systems considered, the angle-ply [ ±θ] ns is the optimum lay-up. For given fixed ply thickness the total thickness of laminate is obtained resulting in factor of safety slightly higher than two. Both Carbon/epoxy and Kevlar/Epoxy resulted in approximately same laminate thickness and considerable percentage of weight saving, but S-glass/epoxy resulted in weight increment.

  18. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Schemitsch, Emil H; Zdero, Rad; Bougherara, Habiba

    2013-04-01

    This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composite material had a "sandwich structure", in which two thin sheets of CF/epoxy were attached to each outer surface of the flax/epoxy core, which resulted in a unique structure compared to other composite plates for bone plate applications. Mechanical properties were determined using tension, three-point bending, and Rockwell hardness tests. Also, scanning electron microscopy (SEM) was used to characterize the failure mechanism of specimens in tension and three-point bending tests. The results of mechanical tests revealed a considerably high ultimate strength in both tension (399.8MPa) and flexural loading (510.6MPa), with a higher elastic modulus in bending tests (57.4GPa) compared to tension tests (41.7GPa). The composite material experienced brittle catastrophic failure in both tension and bending tests. The SEM images, consistent with brittle failure, showed mostly fiber breakage and fiber pull-out at the fractured surfaces with perfect bonding at carbon fibers and flax plies. Compared to clinically-used orthopaedic metal plates, current CF/flax/epoxy results were closer to human cortical bone, making the material a potential candidate for use in long bone fracture fixation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Bisimide amine cured epoxy /IME/ resins and composites. II - Ten-degree off-axis tensile and shear properties of Celion 6000/IME composites

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1982-01-01

    Bisimide amines (BIAs), which are presently used as curing agents in a state-of-the-art epoxy resin, are oligomeric and polymeric mixtures. A series of composites consisting of the novel BIA-cured epoxy resin reinforced with Celion 6000 graphite fibers were fabricated and evaluated, and the ten-degree, off-axis uniaxial tensile and shear properties of these composites were determined. The use of the intralaminar shear strain-to-failure was used in the calculation of resin shear strain-to-failure. Study results indicate that several of these novel composite systems exhibit shear strain properties that are superior to those of the control composite system of the present experiments, which employed a sulfone curing agent.

  20. Polymeric Additives For Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.

    1990-01-01

    Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.

  1. Effects of Styrene-Acrylic Sizing on the Mechanical Properties of Carbon Fiber Thermoplastic Towpregs and Their Composites.

    PubMed

    Bowman, Sean; Jiang, Qiuran; Memon, Hafeezullah; Qiu, Yiping; Liu, Wanshuang; Wei, Yi

    2018-03-01

    Thermoplastic towpregs are convenient and scalable raw materials for the fabrication of continuous fiber-reinforced thermoplastic matrix composites. In this paper, the potential to employ epoxy and styrene-acrylic sizing agents was evaluated for the making of carbon fiber thermoplastic towpregs via a powder-coating method. The protective effects and thermal stability of these sizing agents were investigated by single fiber tensile test and differential scanning calorimetry (DSC) measurement. The results indicate that the epoxy sizing agent provides better protection to carbon fibers, but it cannot be used for thermoplastic towpreg processing due to its poor chemical stability at high temperature. The bending rigidity of the tows and towpregs with two styrene-acrylic sizing agents was measured by cantilever and Kawabata methods. The styrene-acrylic sized towpregs show low torque values, and are suitable for further processing, such as weaving, preforming, and winding. Finally, composite panels were fabricated directly from the towpregs by hot compression molding. Both of the composite panels show superior flexural strength (>400 MPa), flexural modulus (>63 GPa), and interlaminar shear strength (>27 MPa), indicating the applicability of these two styrene-acrylic sizing agents for carbon fiber thermoplastic towpregs.

  2. Structural health monitoring of glass/epoxy composite plates with MEMS PMN-PT sensors

    NASA Astrophysics Data System (ADS)

    Simon, Brenton R.; Tang, Hong-Yue; Horsley, David A.; La Saponara, Valeria; Lestari, Wahyu

    2009-03-01

    Sensors constructed with single-crystal PMN-PT, i.e. Pb(Mg1/3Nb2/3)O3-PbTiO3 or PMN, are developed in this paper for structural health monitoring of composite plates. To determine the potential of PMN-PT for this application, glass/epoxy composite specimens were created containing an embedded delamination-starter. Two different piezoelectric materials were bonded to the surface of each specimen: PMN-PT, the test material, was placed on one side of the specimen, while a traditional material, PZT-4, was placed on the other. A comparison of the ability of both materials to transmit and receive an ultrasonic pulse was conducted, with the received signal detected by both a second surface-bonded transducer constructed of the same material, as well as a laser Doppler vibrometer (LDV) analyzing the same location. The optimal frequency range of both sets of transducers is discussed and a comparison is presented of the experimental results to theory. The specimens will be fatigued until failure with further data collected every 3,000 cycles to characterize the ability of each material to detect the growing delamination in the composite structure. This additional information will be made available during the conference.

  3. Mechanical properties of functionalised CNT filled kenaf reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Sapiai, Napisah; Jumahat, Aidah; Mahmud, Jamaluddin

    2018-04-01

    This paper aims to study the effect of functionalised carbon nanotubes (CNT) on mechanical properties of kenaf fibre reinforced polymer composites. The CNT was functionalised using acid mixtures of H2SO4:HNO3 and 3-Aminopropyl Triethoxysilane before it was incorporated into epoxy resin. Three different types of CNT were used, i.e. pristine (PCNT), acid-treated (ACNT) and acid-silane treated (SCNT), to fabricate kenaf composite. Three different filler contents were mixed in each composite system, i.e. 0.5, 0.75 and 1.0 wt%. The functionalised CNT was characterized using x-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and Transmission Electron Microscopy (TEM). Tensile, flexural and Izod impact tests were conducted in order to evaluate the effect of CNT contents and surface treatment of mechanical properties of kenaf composites. It was observed that the inclusion of 1 wt% acid-silane treated CNT improved the tensile, flexural and impact strengths of kenaf/epoxy composite by 43.30%, 21.10%, and 130%, respectively. Silane modification had been proven to be beneficial in enhancing the dispersibility and reducing agglomeration of CNT in the epoxy matrix.

  4. The application of epoxy resin coating in grounding grid

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Chen, Z. R.; Xi, L. J.; Wang, X. Y.; Wang, H. F.

    2018-01-01

    Epoxy resin anticorrosion coating is widely used in grounding grid corrosion protection because of its wide range of materials, good antiseptic effect and convenient processing. Based on the latest research progress, four kinds of epoxy anticorrosive coatings are introduced, which are structural modified epoxy coating, inorganic modified epoxy coating, organic modified epoxy coating and polyaniline / epoxy resin composite coating. In this paper, the current research progress of epoxy base coating is analyzed, and prospected the possible development direction of the anti-corrosion coating in the grounding grid, which provides a reference for coating corrosion prevention of grounding materials.

  5. Thermal Analysis by Numerical Methods of Debonding Effects near the Crack Tip under Composite Repairs

    NASA Astrophysics Data System (ADS)

    Tsamasphyros, G. J.; Kanderakis, G. N.; Marioli-Riga, Z. P.

    2003-05-01

    Composite patch repair of metallic structures has become a rapidly grown technology in the aerospace field due to the demand for significant increases in the useful life of both military and civilian aircraft. This has led to significant advances overall in the repair technology of cracked metallic structures. Adhesively bonded composite reinforcements offer remarkable advantages such as mechanical efficiency, repair time, cost reduction, high structural integrity, repair inspectability, damage tolerance to further causes of future strains, anticorrosion and antifretting properties. However, because of the different nature and properties of the materials that form a repair (metals, composites, adhesives), side-effects may occur: debonding due to high stress concentration in the vicinity of the crack, thermal residual stresses because of different thermal expansion coefficients of the adherents, etc. In this paper a three-dimensional finite elements analysis of the area around a patch repaired crack of a typical aircraft fuselage is performed, taking into account both the properties and the geometry of the involved materials. Examined in this case are 2024-T3 aluminum alloy as base material, FM-73 as the adhesive system and F4/5521 boron/epoxy prepreg as the patch material. Through the thickness stresses near the crack tip and along the patch edges with and without temperature effects are calculated and debonding near the crack tip is examined. Finally, the calculated results are compared with existing theories.

  6. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a “sandwich structure” as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50–55% of ultimate tensile strength). The dynamic modulus (E⁎) was found to stay almost constant at 47 GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials.

  7. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a "sandwich structure" as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50-55% of ultimate tensile strength). The dynamic modulus (E(⁎)) was found to stay almost constant at 47GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Improvement of Mechanical and Dielectric Properties of Epoxy Resin Using CNTs/ZnO Nanocomposite.

    PubMed

    Vu, Pham Gia; Truc, Trinh Anh; Chinh, Nguyen Thuy; Tham, Do Quang; Trung, Tran Huu; Oanh, Vu Ke; Hang, To Thi Xuan; Olivier, Marjorie; Hoang, Thai

    2018-04-01

    In this study, carbon nanotubes (CNTs)/ZnO composites had been prepared using the sol-gel method and then incorporated into an epoxy resin for reinforcement of mechanical and electrical properties. Fourier Transform Infrared (FTIR), X-ray diffraction (XRD) Field Emission Scanning Electron Microscope (FE-SEM) analyses show that the ZnO nanoparticles deposited on CNTs were crystallized in a hexagonal wurtzite structure. Average particle size of ZnO deposited on the CNT was about 8 nm. The mechanical and dielectric properties of epoxy containing CNTs/ZnO were investigated in comparison to epoxy resin and epoxy resin containing only CNT or ZnO nanoparticles. The results indicated that tensile strength and elongation at break of the nanocomposite were substantially improved with the presence of CNTs/ZnO at the equal volume. The DSC analysis associate with the dielectric results shows that the behavior of epoxy/CNTs/ZnO is identical to epoxy/ZnO composite, and the CNTs is essential to the distributed arrangement of ZnO in the epoxy resin.

  9. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1981-01-01

    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.

  10. Influence of soil solution cation composition on boron adsorption by soils

    USDA-ARS?s Scientific Manuscript database

    Boron (B) adsorption on five arid-zone soil samples from California was investigated as a function of solution pH (4-10) and cation composition (Na, Ca, or Mg). Boron adsorption increased with increasing solution pH, reached an adsorption maximum near pH 9, and decreased with further increases with...

  11. Boron Nitride Nanotubes-Reinforced Glass Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam; Hurst, Janet B.; Choi, Sung R.

    2005-01-01

    Boron nitride nanotubes of significant lengths were synthesized by reaction of boron with nitrogen. Barium calcium aluminosilicate glass composites reinforced with 4 weight percent of BN nanotubes were fabricated by hot pressing. Ambient-temperature flexure strength and fracture toughness of the glass-BN nanotube composites were determined. The strength and fracture toughness of the composite were higher by as much as 90 and 35 percent, respectively, than those of the unreinforced glass. Microscopic examination of the composite fracture surfaces showed pullout of the BN nanotubes. The preliminary results on the processing and improvement in mechanical properties of BN nanotube reinforced glass matrix composites are being reported here for the first time.

  12. Microstructure and Strain Rate Effects on the Mechanical Behavior of Particle Reinforced Epoxy-Based Reactive Materials

    DTIC Science & Technology

    2011-12-01

    LIST OF TABLES 2.1 Experimentally measured mechanical properties of pure epoxy and Ni+ Al powder -reinforced composites...for the same quantity of Cu , Ni, and Al deposited . Figure taken from [31]. stronger reactivity of Cu with metals also caused clusters to form. In the...Experimentally measured mechanical properties of pure epoxy and Ni+ Al powder -reinforced composites. Table data is from [14] Material Density Measured E

  13. Thermal coatings for titanium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  14. Solidifying process and flame retardancy of epoxy resin cured with boron-containing phenolic resin

    NASA Astrophysics Data System (ADS)

    Deng, Peng; Shi, Yan; Liu, Yuansen; Liu, Yuan; Wang, Qi

    2018-01-01

    For the sake of improving the charring performance and flame retardancy of epoxy resin (EP), boron-containing phenolic resin (BPR) instead of a conventional curing agent, linear phenolic resin (LPR) was employed to cure EP. Of several possible chemical structures for BPR, the existence of benzyl hydroxy groups in BPR chains has been confirmed using 1H nuclear magnetic resonance spectroscopy. The resonance of these groups may reasonably explain the higher curing reactivity of BPR-cured EP than that of LPR-cured EP. Thermogravimetric analysis, observation of the morphologies of the char residues and X-ray photoelectron spectroscopic were performed to characterize the charring process. Due to the presence of B2O3 produced on the char surface from decomposition of phenyl borates and the facile high self-crosslinking reaction of BPR, a more continuous and stronger char barrier was formed for BPR-cured EP compared to that for the LPR-cured EP system. Therefore the former exhibited much better flame retardancy. In addition, BPR-cured EP also displayed better dynamic mechanical properties, than those observed for LPR-cured EP. It is not subject to the significant lowering the glass transition temperature of the polymer which accompanies curing with LPR. This suggests that BPR cured resin may meet the requirement for utilization at high temperature.

  15. Functionalizing CNTs for Making Epoxy/CNT Composites

    NASA Technical Reports Server (NTRS)

    Chen, Jian; Rajagopal, Ramasubramaniam

    2009-01-01

    Functionalization of carbon nanotubes (CNTs) with linear molecular side chains of polyphenylene ether (PPE) has been shown to be effective in solubilizing the CNTs in the solvent components of solutions that are cast to make epoxy/CNT composite films. (In the absence of solubilization, the CNTs tend to clump together instead of becoming dispersed in solution as needed to impart, to the films, the desired CNT properties of electrical conductivity and mechanical strength.) Because the PPE functionalizes the CNTs in a noncovalent manner, the functionalization does not damage the CNTs. The functionalization can also be exploited to improve the interactions between CNTs and epoxy matrices to enhance the properties of the resulting composite films. In addition to the CNTs, solvent, epoxy resin, epoxy hardener, and PPE, a properly formulated solution also includes a small amount of polycarbonate, which serves to fill voids that, if allowed to remain, would degrade the performance of the film. To form the film, the solution is drop-cast or spin-cast, then the solvent is allowed to evaporate.

  16. Hydrogen storage compositions

    DOEpatents

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  17. The effect of BaM/PANI composition with epoxy paint matrix on single and double layers coating with spray coating method for radar absorbing materials applications

    NASA Astrophysics Data System (ADS)

    Widyastuti, Fajarin, Rindang; Pratiwi, Vania Mitha; Kholid, Rifki Rachman; Habib, Abdulloh

    2018-04-01

    In this study, RAM composite has been succesfully synthesized by mixing BaM as magnetic materials and PANI as conductive materials. BaM and PANI materials were prepared separately by solid state method and polymerization method, respectively. To investigated the presence of BaM phase and magnetic property of the as prepared BaM, XRD pert PAN analytical and VSM 250 Dexing Magnet were employed. Inductance Capacitance Resistance technique was carried out to measure electrical conductivity of the synthesized PANI materials. In order to further characterized the structural features of BaM and PANI, SEM-EDX FEI 850 and FTIR characterizations were conducted. RAM composite was prepared by mixing BaM and PANI powders with ultrasonic cleaner. Afterwards, VNA (Vector Network Analyzer) characterization was carried out to determine reflection loss value of RAM by applying mixed RAM composite and epoxy paint on aluminum plate using spray gun. Microscopic characterization was employed to investigated the distribution of RAM particles on the substrate. It was found that reflection loss value as low as -27.153 dB was achieved when applied 15 wt% BaM/PANi composite at 100.6 µm thickness. In addition, the absorption of electromagnetic waves value increase as the addition of RAM composite composition increases.

  18. Curing agent for polyepoxides and epoxy resins and composites cured therewith. [preventing carbon fiber release

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D. (Inventor)

    1981-01-01

    A curing for a polyepoxide is described which contains a divalent aryl radical such as phenylene a tetravalent aryl radical such as a tetravalent benzene radical. An epoxide is cured by admixture with the curing agent. The cured epoxy product retains the usual properties of cured epoxides and, in addition, has a higher char residue after burning, on the order of 45% by weight. The higher char residue is of value in preventing release to the atmosphere of carbon fibers from carbon fiber-epoxy resin composites in the event of burning of the composite.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Kang; Wu, Sujun; Guan, Juan

    Strong and tough epoxy composites are developed using a less-studied fibre reinforcement, that of natural silk. Two common but structurally distinct silks from the domestic B. mori/Bm and the wild A. pernyi/Ap silkworms are selected in fabric forms. We show that the toughening effects on silk-epoxy composites or SFRPs are dependent on the silk species and the volume fraction of silk. Both silks enhance the room-temperature tensile and flexural mechanical properties of the composite, whereas the more resilient Ap silk shows a more pronounced toughening effect and a lower critical reinforcement volume for the brittle-ductile transition. Specifically, our 60 vol.%more » Ap-SFRP displays a three-fold elevation in tensile and flexural strength, as compared to pure epoxy resin, with an order of magnitude higher breaking energy via a distinct, ductile failure mode. Importantly, the 60 vol.% Ap-SFRP remains ductile with 7% flexural elongation at lower temperatures (-50 °C). Under impact, these SFRPs show significantly improved energy absorption, and the 60 vol.% Ap-SFRP has an impact strength some eight times that of pure epoxy resin. Lastly, the findings demonstrate both marked toughening and strengthening effects for epoxy composites from natural silk reinforcements, which presents opportunities for mechanically superior and "green" structural composites.« less

  20. Durability of Intercalated Graphite Epoxy Composites in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Davidson, Michelle L.; Shively, Rhonda

    1996-01-01

    The electrical conductivity of graphite epoxy composites can be substantially increased by intercalating (inserting guest atoms or molecules between the graphene planes) the graphite fibers before composite formation. The resulting high strength, low density, electrically conducting composites have been proposed for EMI shielding in spacecraft. Questions have been raised, however, about their durability in the space environment, especially with respect to outgassing of the intercalates, which are corrosive species such as bromine. To answer those concerns, six samples of bromine intercalated graphite epoxy composites were included in the third Evaluation of Oxygen Interaction with Materials (EOIM-3) experiment flown on the Space Shuttle Discovery (STS-46). Changes in electrical conductivity, optical reflectance, surface texture, and mass loss for SiO2 protected and unprotected samples were measured after being exposed to the LEO environment for 42 hours. SiO2 protected samples showed no degradation, verifying conventional protection strategies are applicable to bromine intercalated composites. The unprotected samples showed that bromine intercalation does not alter the degradation of graphite-epoxy composites. No bromine was detected to have been released by the fibers allaying fears that outgassing could be disruptive to the sensitive electronics the EMI shield is meant to protect.

  1. Dielectric response of high permittivity polymer ceramic composite with low loss tangent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subodh, G.; 1.Physikalisches Institut, Universitat Stuttgart, Pfaffenwaldring 57, Stuttgart 70550; Deepu, V.

    2009-08-10

    The present communication investigates the dielectric response of the Sr{sub 9}Ce{sub 2}Ti{sub 12}O{sub 36} ceramics loaded high density polyethylene and epoxy resin. Sr{sub 9}Ce{sub 2}Ti{sub 12}O{sub 36} ceramic filled polyethylene and epoxy composites were prepared using hot blending and mechanical mixing, respectively. 40 vol % ceramic loaded polyethylene has relative permittivity of 12.1 and loss tangent of 0.004 at 8 GHz, whereas the corresponding composite using epoxy as matrix has permittivity and loss tangent of 14.1 and 0.022, respectively. The effective medium theory fits relatively well for the observed permittivity of these composites.

  2. Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes.

    PubMed

    Guner, Selen N Gurbuz; Dericioglu, Arcan F

    2016-12-05

    Nacre-mimetic epoxy matrix composites reinforced with readily available micron-sized high aspect ratio C-glass flakes were fabricated by a relatively simple, single-step, scalable, time, cost and man-power effective processing strategy: hot-press assisted slip casting (HASC). HASC enables the fabrication of preferentially oriented two-dimensional inorganic reinforcement-polymer matrix bulk lamellar composites with a micro-scale structure resembling the brick-and-mortar architecture of nacre. By applying the micro-scale design guideline found in nacre and optimizing the relative volume fractions of the reinforcement and the matrix as well as by anchoring the brick-and-mortar architecture, and tailoring the interface between reinforcements and the matrix via silane coupling agents, strong, stiff and tough bio-inspired nacre-mimetic bulk composites were fabricated. As a result of high shear stress transfer lengths and effective stress transfer at the interface achieved through surface functionalization of the reinforcements, fabricated bulk composites exhibited enhanced mechanical performance as compared to neat epoxy. Furthermore, governed flake pull-out mode along with a highly torturous crack path, which resulted from extensive deflection and meandering of the advancing crack around well-aligned high aspect ratio C-glass flakes, have led to high work-of-fracture values similar to nacre.

  3. Experimental data on the properties of natural fiber particle reinforced polymer composite material.

    PubMed

    Chandramohan, D; Presin Kumar, A John

    2017-08-01

    This paper presents an experimental study on the development of polymer bio-composites. The powdered coconut shell, walnut shells and Rice husk are used as reinforcements with bio epoxy resin to form hybrid composite specimens. The fiber compositions in each specimen are 1:1 while the resin and hardener composition 10:1 respectively. The fabricated composites were tested as per ASTM standards to evaluate mechanical properties such as tensile strength, flexural strength, shear strength and impact strength are evaluated in both with moisture and without moisture. The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under mechanical loads. However it is found that the incorporation of walnut shell and coconut shell fibre can improve the properties.

  4. Synergistic effects of mica and wollastonite fillers on thermal performance of intumescent fire retardant coating

    NASA Astrophysics Data System (ADS)

    Zia-ul-Mustafa, M.; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.; Aziz, Hammad

    2015-07-01

    In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.

  5. Thermodynamics of Boron Removal from Silicon Using CaO-MgO-Al2O3-SiO2 Slags

    NASA Astrophysics Data System (ADS)

    Jakobsson, Lars Klemet; Tangstad, Merete

    2018-04-01

    Slag refining is one of few metallurgical methods for removal of boron from silicon. It is important to know the thermodynamic properties of boron in slags to understand the refining process. The relation of the distribution coefficient of boron to the activity of silica, partial pressure of oxygen, and capacity of slags for boron oxide was investigated. The link between these parameters explains why the distribution coefficient of boron does not change much with changing slag composition. In addition, the thermodynamic properties of dilute boron oxide in CaO-MgO-Al2O3-SiO2 slags was determined. The ratio of the activity coefficient of boron oxide and silica was found to be the most important parameter for understanding changes in the distribution coefficient of boron for different slags. Finally, the relation between the activity coefficient of boron oxide and slag structure was investigated. It was found that the structure can explain how the distribution coefficient of boron changes depending on slag composition.

  6. Osteogenesis and cytotoxicity of a new Carbon Fiber/Flax/Epoxy composite material for bone fracture plate applications.

    PubMed

    Bagheri, Zahra S; Giles, Erica; El Sawi, Ihab; Amleh, Asma; Schemitsch, Emil H; Zdero, Radovan; Bougherara, Habiba

    2015-01-01

    This study is part of an ongoing program to develop a new CF/Flax/Epoxy bone fracture plate to be used in orthopedic trauma applications. The purpose was to determine this new plate's in-vitro effects on the level of bone formation genes, as well as cell viability in comparison with a medical grade metal (i.e. stainless steel) commonly employed for fabrication of bone plates (positive control). Cytotoxicity and osteogenesis induced by wear debris of the material were assessed using Methyl Tetrazolium (MTT) assay and reverse transcription polymerase chain reaction (RT-PCR) for 3 osteogenesis specific gene markers, including bone morphogenetic proteins (BMP2), runt-related transcription factor 2 (Runx2) and Osterix. Moreover, the Flax/Epoxy and CF/Epoxy composites were examined separately for their wettability properties by water absorption and contact angle (CA) tests using the sessile drop technique. The MTT results for indirect and direct assays indicated that the CF/Flax/Epoxy composite material showed comparable cell viability with no cytotoxicity at all incubation times to that of the metal group (p≥0.05). Osteogenesis test results showed that the expression level of Runx2 marker induced by CF/Flax/Epoxy were significantly higher than those induced by metal after 48 h (p=0.57). Also, the Flax/Epoxy composite revealed a hydrophilic character (CA=68.07°±2.05°) and absorbed more water up to 17.2% compared to CF/Epoxy, which reached 1.25% due to its hydrophobic character (CA=93.22°±1.95°) (p<0.001). Therefore, the new CF/Flax/Epoxy may be a potential candidate for medical applications as a bone fracture plate, as it showed similar cell viability with no negative effect on gene expression levels responsible for bone formation compared to medical grade stainless steel. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    NASA Technical Reports Server (NTRS)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  8. Rail Shear and Short Beam Shear Properties of Various 3-Dimensional (3-D) Woven Composites

    DTIC Science & Technology

    2016-01-01

    the preforms. It is a low- viscosity 2-phased toughened epoxy resin system consisting of part A (resin mixture of diglycidylether epoxy toughener...Delamination resistant laminates by Z-fiber pinning. Composites: Part A. 2005;36:55–64. 6. Clay S, Pommer A. Z-pin stubble technology advanced research...characterization of montmorillonite clay -filled SC-15 epoxy. Materials Letters. 2006;60:869–873. Approved for public release; distribution is

  9. Nano-Composites: Relationships Between Nano-Structure and Mechanical Properties: Phase II

    DTIC Science & Technology

    2006-01-01

    was pre-reacted with the DEGBA resin to give a 40 wt.% CTBN -epoxy adduct: ‘Albipox 1000’ from Hanse Chemie, Geesthacht, Germany. The curing agent was...not lead to a decrease in the modulus of the composite. Nor does it lead to a significant increase in the viscosity of the epoxy resin , which would...preclude the use of low-cost manufacturing routes, such as a vacuum-assisted resin -transfer moulding (VARTM) process. Keywords Epoxy

  10. Self-consuming materials

    DOEpatents

    Thoma, Steven G.; Grubelich, Mark C; Celina, Mathias C.; Vaughn, Mark R.; Knudsen, Steven D.

    2017-05-23

    A self-consuming structure is disclosed that is formed from a self-consuming composition based on an epoxy or polyurethane having fuel and/or oxidizer molecularly dispersed and/or as particulates in the epoxy or polyurethane. The composition may be used to form self-consuming structural components.

  11. BN Bonded BN fiber article from boric oxide fiber

    DOEpatents

    Hamilton, Robert S.

    1978-12-19

    A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising boron oxide fibers and boric acid, heating the composition in an anhydrous gas to a temperature above the melting point of the boric acid and nitriding the resulting article in ammonia gas.

  12. Optimization of epoxy-aluminium composites used in cryosorption pumps by thermal conductivity studies from 4.5 K to 300 K

    NASA Astrophysics Data System (ADS)

    Verma, R.; Shivaprakash, N. C.; Kasthurirengan, S.; Behera, U.

    2017-12-01

    Cryosorption pump is a capture vacuum pump which retains gas molecules by chemical or physical interaction on their internal surfaces when cooled to cryogenic temperatures. Cryosorption pumps are the only solution in nuclear fusion systems to achieve high vacuum in the environment of hydrogen and helium. An important aspect of this development is the proper adhesion of the activated carbons on the metallic panels using a high thermal conductivity and high bonding strength adhesive. Typical adhesives used are epoxy based. The thermal conductivity of the adhesive can be improved by using fine aluminium powder as the filler in the base epoxy matrix. However, the thermal conductivity data of such epoxy-aluminium composites is not available in literature. Hence, we have measured the thermal conductivities of the above epoxy-aluminium composites (with varied volume fraction of aluminium in epoxy) in the temperature range from 4.5 K to 300 K using a G-M cryocooler based thermal conductivity experimental set-up. The experimental results are discussed in this paper which will be useful towards the development of cryosoprtion pumps with high pumping speeds.

  13. Enhancement of mechanical and electrical properties of continuous-fiber-reinforced epoxy composites with stacked graphene

    PubMed Central

    Shepelev, Olga; Kenig, Samuel

    2017-01-01

    Impregnation of expandable graphite (EG) after thermal treatment with an epoxy resin containing surface-active agents (SAAs) enhanced the intercalation of epoxy monomer between EG layers and led to further exfoliation of the graphite, resulting in stacks of few graphene layers, so-called “stacked” graphene (SG). This process enabled electrical conductivity of cured epoxy/SG composites at lower percolation thresholds, and improved thermo-mechanical properties were measured with either Kevlar, carbon or glass-fiber-reinforced composites. Several compositions with SAA-modified SG led to higher dynamic moduli especially at high temperatures, reflecting the better wetting ability of the modified nanoparticles. The hydrophilic/hydrophobic nature of the SAA dictates the surface energy balance. More hydrophilic SAAs promoted localization of the SG at the Kevlar/epoxy interface, and morphology seems to be driven by thermodynamics, rather than the kinetic effect of viscosity. This effect was less obvious with carbon or glass fibers, due to the lower surface energy of the carbon fibers or some incompatibility with the glass-fiber sizing. Proper choice of the surfactant and fine-tuning of the crosslink density at the interphase may provide further enhancements in thermo-mechanical behavior. PMID:29046838

  14. Enhancement of mechanical and electrical properties of continuous-fiber-reinforced epoxy composites with stacked graphene.

    PubMed

    Naveh, Naum; Shepelev, Olga; Kenig, Samuel

    2017-01-01

    Impregnation of expandable graphite (EG) after thermal treatment with an epoxy resin containing surface-active agents (SAAs) enhanced the intercalation of epoxy monomer between EG layers and led to further exfoliation of the graphite, resulting in stacks of few graphene layers, so-called "stacked" graphene (SG). This process enabled electrical conductivity of cured epoxy/SG composites at lower percolation thresholds, and improved thermo-mechanical properties were measured with either Kevlar, carbon or glass-fiber-reinforced composites. Several compositions with SAA-modified SG led to higher dynamic moduli especially at high temperatures, reflecting the better wetting ability of the modified nanoparticles. The hydrophilic/hydrophobic nature of the SAA dictates the surface energy balance. More hydrophilic SAAs promoted localization of the SG at the Kevlar/epoxy interface, and morphology seems to be driven by thermodynamics, rather than the kinetic effect of viscosity. This effect was less obvious with carbon or glass fibers, due to the lower surface energy of the carbon fibers or some incompatibility with the glass-fiber sizing. Proper choice of the surfactant and fine-tuning of the crosslink density at the interphase may provide further enhancements in thermo-mechanical behavior.

  15. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites

    NASA Astrophysics Data System (ADS)

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-03-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3-/I-) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization.

  16. Mechanical Property Analysis on Sandwich Structured Hybrid Composite Made from Natural Fibre, Glass Fibre and Ceramic Fibre Wool Reinforced with Epoxy Resin

    NASA Astrophysics Data System (ADS)

    Bharat, K. R.; Abhishek, S.; Palanikumar, K.

    2017-06-01

    Natural fibre composites find wide range of applications and usage in the automobile and manufacturing industries. They find lack in desired properties, which are required for present applications. In current scenario, many developments in composite materials involve the synthesis of Hybrid composite materials to overcome some of the lacking properties. In this present investigation, two sandwich structured hybrid composite materials have been made by reinforcing Aloe Vera-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and Sisal fibre-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and its mechanical properties such as Tensile, Flexural and Impact are tested and analyzed. The test results from the two samples are compared and the results show that sisal fibre reinforced hybrid composite has better mechanical properties than aloe vera reinforced hybrid composite.

  17. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Alver, Ü.; Tanrıverdi, A.

    2016-08-01

    In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  18. Genesis of Infrared Decoy Flares: The Early Years from 1950 into the 1970s. First Edition

    DTIC Science & Technology

    2009-01-26

    Ignition is by a pull wire igniter. The ignition strip is made from composition PL 6239. The original grain consists of composition PL 6239. Based...products in the visible, namely boron dioxide and beryllium oxide. In the infrared, they observed carbon monoxide and carbon dioxide selective emissions...and emissions at the infrared wavelengths of 5.4µm and 5.9µm that they attributed to boron hydride oxide, boron oxide hydroxide, and boron monoxide

  19. Toughening reinforced epoxy composites with brominated polymeric additives

    NASA Technical Reports Server (NTRS)

    Nir, Z. (Inventor); Gilwee, W. J., Jr. (Inventor)

    1985-01-01

    Cured polyfunctional epoxy resins including tris(hydroxyphenyl)methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy-terminated butadiene-acrylonitrile rubber is optionally present in the pre-cure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon-reinforced composites, of these resins are disclosed and shown to have improved toughness.

  20. Toughening reinforced epoxy composites with brominated polymeric additives

    NASA Technical Reports Server (NTRS)

    Nir, Z.; Gilwee, W. J., Jr. (Inventor)

    1985-01-01

    Cured polyfunctional epoxy resins including tris (hydroxyphenyl) methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy terminated butadiene acrylonitrile rubber is optionally present in the precure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon reinforced composites, of these resins are disclosed and shown to have improved toughness.

  1. Thermo-viscoelastic response of graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Lin, Kuen; Hwang, I. H.

    1988-01-01

    The thermo-viscoelastic behavior of composite material is studied analytically using a special finite-element formulation. Numerical results on stress and deformation histories are obtained for both unnotched and notched graphite/epoxy composites subjected to mechanical and thermal spectrum loads. The results indicate that time-dependent effects are important in composites with matrix-dominated layup orientations. Such effects also strongly depend on the specific environment condition and load spectrum applied.

  2. Multifunctional curing agents and their use in improving strength of composites containing carbon fibers embedded in a polymeric matrix

    DOEpatents

    Vautard, Frederic; Ozcan, Soydan

    2017-04-11

    A functionalized carbon fiber having covalently bound on its surface a sizing agent containing epoxy groups, at least some of which are engaged in covalent bonds with crosslinking molecules, wherein each of said crosslinking molecules possesses at least two epoxy-reactive groups and at least one free functional group reactive with functional groups of a polymer matrix in which the carbon fiber is to be incorporated, wherein at least a portion of said crosslinking molecules are engaged, via at least two of their epoxy-reactive groups, in crosslinking bonds between at least two epoxy groups of the sizing agent. Composites comprised of these functionalized carbon fibers embedded in a polymeric matrix are also described. Methods for producing the functionalized carbon fibers and composites thereof are also described.

  3. Source of boron in the Palokas gold deposit, northern Finland: evidence from boron isotopes and major element composition of tourmaline

    NASA Astrophysics Data System (ADS)

    Ranta, Jukka-Pekka; Hanski, Eero; Cook, Nick; Lahaye, Yann

    2017-06-01

    The recently discovered Palokas gold deposit is part of the larger Rompas-Rajapalot gold-mineralized system located in the Paleoproterozoic Peräpohja Belt, northern Finland. Tourmaline is an important gangue mineral in the Palokas gold mineralization. It occurs as tourmalinite veins and as tourmaline crystals in sulfide-rich metasomatized gold-bearing rocks. In order to understand the origin of tourmaline in the gold-mineralized rocks, we have investigated the major element chemistry and boron isotope composition of tourmaline from three areas: (1) the Palokas gold mineralization, (2) a pegmatitic tourmaline granite, and (3) the evaporitic Petäjäskoski Formation. Based on textural evidence, tourmaline in gold mineralization is divided into two different types. Type 1 is located within the host rock and is cut by rock-forming anthophyllite crystals. Type 2 occurs in late veins and/or breccia zones consisting of approximately 80% tourmaline and 20% sulfides, commonly adjacent to quartz veins. All the studied tourmaline samples belong to the alkali-group tourmaline and can be classified as dravite and schorl. The δ11B values of the three localities lie in the same range, from 0 to -4‰. Tourmaline from the Au mineralization and from the Petäjäskoski Formation has similar compositional trends. Mg is the major substituent for Al; inferred low Fe3+/Fe2+ ratios and Na values (<0.8 atoms per formula unit (apfu)) of all tourmaline samples suggest that they precipitated from reduced, low-salinity fluids. Based on the similar chemical and boron isotope composition and the Re-Os age of molybdenite related to the tourmaline-sulfide-quartz veins, we propose that the tourmaline-forming process is a result of a single magmatic-hydrothermal event related to the extensive granite magmatism at around 1.79-1.77 Ga. Tourmaline was crystallized throughout the hydrothermal process, which resulted in the paragenetic variation between type 1 and type 2. The close association of tourmaline and gold suggests that the gold precipitated from the same boron-rich source as tourmaline.

  4. Structural Performance of a Compressively Loaded Foam-Core Hat-Stiffened Textile Composite Panel

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Dexter, Benson H.

    1996-01-01

    A structurally efficient hat-stiffened panel concept that utilizes a structural foam as a stiffener core material has been designed and developed for aircraft primary structural applications. This stiffener concept is fabricated from textile composite material forms with a resin transfer molding process. This foam-filled hat-stiffener concept is structurally more efficient than most other prismatically stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The panel design is based on woven/stitched and braided graphite-fiber textile preforms, an epoxy resin system, and Rohacell foam core. The structural response of this panel design was evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimen tests suggest that this structural concept responds to loading as anticipated and has excellent damage tolerance characteristics compared to a similar panel design made from preimpregnated graphite-epoxy tape material.

  5. Fatigue degradation in compressively loaded composite laminates. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Ramkumar, R. L.

    1981-01-01

    The effect of imbedded delaminations on the compression fatigue behavior of quasi-isotropic, T300/5208, graphite/epoxy laminates was investigated. Teflon imbedments were introduced during panel layup to create delaminations. Static and constant amplitude (R=10, omega = 10 Hz) fatigue tests were conducted. S-N data and half life residual strength data were obtained. During static compression loading, the maximum deflection of the buckled delaminated region was recorded. Under compression fatigue, growth of the imbedded delamination was identified as the predominant failure mode in most of the test cases. Specimens that exhibited others failures had a single low stiffness ply above the Teflon imbedment. Delamination growth during fatigue was monitored using DIB enhanced radiography. In specimens with buried delaminations, the dye penetrant (DIB) was introduced into the delaminated region through a minute laser drilled hole, using a hypodermic needle. A low kV, microfocus, X-ray unit was mounted near the test equipment to efficiently record the cyclic growth of buried delaminations on Polaroid film.

  6. Innovative Chemical Process for Recycling Thermosets Cured with Recyclamines® by Converting Bio-Epoxy Composites in Reusable Thermoplastic—An LCA Study

    PubMed Central

    Banatao, Diosdado R.; Pastine, Stefan J.

    2018-01-01

    An innovative recycling process for thermoset polymer composites developed by Connora Technologies (Hayward, CA, USA) was studied. The process efficacy has already been tested, and it is currently working at the plant level. The main aspect investigated in the present paper was the environmental impact by means of the Life Cycle Assessment (LCA) method. Because of the need to recycle and recover materials at their end of life, the Connora process creates a great innovation in the market of epoxy composites, as they are notoriously not recyclable. Connora Technologies developed a relatively gentle chemical recycling process that induces the conversion of thermosets into thermoplastics. The LCA demonstrated that low environmental burdens are associated with the process itself and, furthermore, impacts are avoided due to the recovery of the epoxy-composite constituents (fibres and matrix). A carbon fibre (CF) epoxy-composite panel was produced through Vacuum Resin Transfer Moulding (VRTM) and afterwards treated using the Connora recycling process. The LCA results of both the production and the recycling phases are reported. PMID:29495571

  7. Elevated temperature properties of boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Sullivan, P. G.

    1978-01-01

    The high temperature properties of boron/aluminum composites, fabricated by an air diffusion bonding technique utilizing vacuum-bonded monolayer tape are reported. Seventeen different combinations of matrix alloy, reinforcement diameter, reinforcement volume percent, angle-ply and matrix enhancement (i.e. titanium cladding and interleaves) were fabricated, inspected, and tested. It is shown that good to excellent mechanical properties could be obtained for air-bonded boron/aluminum composites and that these properties did not decrease significantly up to a test temperature of at least 260 C. Composites made with 8 mil B/W fiber show a much greater longitudinal strength dependence on volume percent fiber than composites made with 5.6 mil fiber. The addition of titanium caused difficulties in composite bonding and yielded composites with reduced strength.

  8. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.

    PubMed

    Hakki, Sema S; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Kerimoglu, Ulku; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H

    2013-04-01

    An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Durability of self-healing woven glass fabric/epoxy composites

    NASA Astrophysics Data System (ADS)

    Yin, Tao; Rong, Min Zhi; Zhang, Ming Qiu; Zhao, Jian Qing

    2009-07-01

    In this work, the durability of the healing capability of self-healing woven glass fabric/epoxy laminates was investigated. The composites contained a two-component healing system with epoxy-loaded urea-formaldehyde microcapsules as the polymerizable binder and CuBr2(2-methylimidazole)4 (CuBr2(2-MeIm)4) as the latent hardener. It was found that the healing efficiency of the laminates firstly decreased with storage time at room temperature, and then leveled off for over two months. By means of a systematic investigation and particularly verification tests with dynamic mechanical analysis (DMA), diffusion of epoxy monomer from the microcapsules due to volumetric contraction of the composites during manufacturing was found to be the probable cause. The diffusing sites on the microcapsules were eventually blocked because the penetrated resin was gradually cured by the remnant amine curing agent in the composites' matrix, and eventually the healing ability was no longer reduced after a longer storage time. The results should help to develop approaches for improving the service stability of the laminates.

  10. An investigation of sustainable and recyclable composites for structural applications

    NASA Astrophysics Data System (ADS)

    Moller, Johannes Paul

    Motivated by the need for more sustainable materials in general and the issues concerning the life cycle of wind turbine blades in particular, the focus of this research work is to better understand what is needed to create high-performance bio-epoxy composites, and to explore their repair and recycling. To further these ends, glass fiber reinforced composites were manufactured using an epoxidized linseed oil (ELO) based matrix cured with various anhydride curatives and catalysts. Based on mechanical properties measurements of these materials, ELO cured with methyltetrahydrophthalic anhydride (MTHPA) and catalyzed with 2-ethyl-4-methylimidazole (2E4MI) yielded the best performance among all fou iulations tested, and avoided the void foiniation issues associated with the use of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a catalyst. In addition to the mechanical characterization of the composite, the applicability and processability of a range of bio-epoxy formulations was evaluated in the context of for vacuum-assisted resin transfer molding (VARTM). In particular, a new methodology for assessing the infusability of a resin was developed and the bioepoxy formulations were demonstrated to be more amenable to resin infusion than a conventional control. Having demonstrated the potential for bio-based resins to produce more sustainable high-performance composites, further studies were carried out to address end-of-life issues. Here different approaches for healing and recycling of epoxy vitrimers (epoxies rendered reworkable by the inclusion of a transesterification catalyst) and their composites were introduced and proof-of-concept experiments were performed. By exposing a fractured glass fiber epoxy vitrimer composite to elevated temperatures and pressure for times on the order often minutes, a healing efficiency of 55% was achieved. Additionally, two different recycling approaches were explored. First, mechnical recycling (grinding followed by reconsolidation via compression molding) was successfully demonstrated for epoxy vitrimers and epoxy vitrimer composites. Dynamic thermomechanical and quasi-static tensile data vs. particle size indicate that the finest powder yielded the best results. In addition to mechanical recycling, a new approach to chemical recycling via fiber reclamation was introduced. Here, removal of the matrix was achieved via high temperature transesterification of the resin in a large excess of an alcohol solvent, and new continuously reinforced composites were succesfully prepared from the reclaimed fibers.

  11. Thermo-mechanical properties of high aspect ratio silica nanofiber filled epoxy composites

    NASA Astrophysics Data System (ADS)

    Ren, Liyun

    The optimization of thermo-mechanical properties of polymer composites at low filler loadings is of great interest in both engineering and scientific fields. There have been several studies on high aspect ratio fillers as novel reinforcement phase for polymeric materials. However, facile synthesis method of high aspect ratio nanofillers is limited. In this study, a scalable synthesis method of high aspect ratio silica nanofibers is going to be presented. I will also demonstrate that the inclusion of high aspect ratio silica nanofibers in epoxy results in a significant improvement of epoxy thermo-mechanical properties at low filler loadings. With silica nanofiber concentration of 2.8% by volume, the Young's modulus, ultimate tensile strength and fracture toughness of epoxy increased ~23, ~28 and ~50%, respectively, compared to unfilled epoxy. At silica nanofiber volume concentration of 8.77%, the thermal expansion coefficient decreased by ˜40% and the thermal conductivity was improved by ˜95% at room temperature. In the current study, the influence of nano-sized silica filler aspect ratio on mechanical and thermal behavior of epoxy nanocomposites were studied by comparing silica nanofibers to spherical silica nanoparticles (with aspect ratio of one) at various filler loadings. The significant reinforcement of composite stiffness is attributed to the variation of the local stress state in epoxy due to the high aspect ratio of the silica nanofiber and the introduction of a tremendous amount of interfacial area between the nanofillers and the epoxy matrix. The fracture mechanisms of silica nanofiber filled epoxy were also investigated. The existence of high aspect ratio silica nanofiber promotes fracture energy dissipation by crack deflection, crack pinning as well as debonding with fiber pull-out leading to enhanced fracture toughness. High aspect ratio fillers also provide significant reduction of photon scattering due to formation of a continuous fiber network within the composite. The resulting silica nanofiber filled epoxy would be widely applicable as underfill and encapsulant in advanced electronic packaging industry because of its electrically insulating, low cost and ease of processability.

  12. Lightweight sheet molding compound (SMC) composites containing cellulose nanocrystals

    Treesearch

    Amir Asadi; Mark Miller; Arjun V. Singh; Robert J. Moon; Kyriaki Kalaitzidou

    2017-01-01

    A scalable technique was introduced to produce high volume lightweight composites using sheet molding compound (SMC) manufacturing method by replacing 10 wt% glass fibers (GF) with a small amount of cellulose nanocrystals (CNC). The incorporation of 1 and 1.5 wt% CNC by dispersing in the epoxy matrix of short GF/epoxy SMC composites with 25 wt% GF content (25GF/CNC-...

  13. Exploiting colloidal interfaces to increase dispersion, performance, and pot-life in cellulose nanocrystal/waterborne epoxy composites

    Treesearch

    Natalie Girouard; Gregory T. Schueneman; Meisha L. Shofner; J. Carson Meredith

    2015-01-01

    In this study, cellulose nanocrystals (CNCs) are incorporated into a waterborne epoxy resin following two processing protocols that vary by order of addition. The processing protocols produce different levels of CNC dispersion in the resulting composites. The more homogeneously dispersed composite has a higher storage modulus and work of fracture at temperatures less...

  14. Moisture Absorption of Epoxy Matrix Composites Immersed in Liquids and in Humid Air.

    DTIC Science & Technology

    1979-10-01

    Eq. 4). -34- TEMPERATURE, T (K) 165 40 350 300 Neat ResinA / Fit to Data 0\\ 0 o Composite Calculated 0- Data Delasi and Whiteside (1977) 168 AS/3501...moisture ab - sorption characteristics of T300/1034, AS/3501-5 and T300/5208 graphite-epoxy composites. 1) Material immersed in liquid at temperatures 300 to

  15. Effect of reaction time and polyethylene glycol monooleate-isocyanate composition on the properties of polyurethane-polysiloxane modified epoxy

    NASA Astrophysics Data System (ADS)

    Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad

    2017-11-01

    Polyurethane-polysiloxane modified epoxy based on polyethylene glycol monooleate (PSME-PEGMO) was synthesized. Polyethylene glycol monooleate (PEGMO) for the synthesis of PSME-GMO was synthesized via esterification between oleic acid and polyethylene glycol by using sodium hydroxide as catalyst. Synthesis of PSME-PEGMO was conducted by reacting epoxy, isocyanate, PEGMO, and polysiloxane (hydrolyzed and condensable 3-glycidyloxypropyltrimethoxysilane) simultaneously in one step. This synthesis was carried out by varied the reaction time (1, 2, 3 hours), PEGMO-isocyanate composition (PI composition: 10 and 20 % toward epoxy), and isocyanate/PEGMO ratio (NCO/OH ratio: 1.5 and 2.5). Characterization of PSME-PEGMO was conducted by determining the isocyanate conversion, viscosity analysis, mechanical properties (tensile strength and elongation at break) and thermal analysis using thermogravimetric analysis (TGA). The data show that the PI composition and NCO/OH ratio does not affect the isocyanate conversion linearly. The viscosity of PSME-PEGMO product at ratio and composition variation show has tended to increase with increasing of reaction time. The highest tensile strength and elongation at break PSME-PEGMO was shown by PI composition 20%, NCO/OH ratio 2.5 and reaction time 3 hours.

  16. Recent advances in lightweight, filament-wound composite pressure vessel technology

    NASA Technical Reports Server (NTRS)

    Lark, R. F.

    1977-01-01

    A review of recent advances is presented for lightweight, high-performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single-cycle burst and cyclic fatigue loading. Filament-wound fiber/epoxy composite vessels were made from S-glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessel structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all-titanium pressure vessels. Significant findings in each area are summarized including data from current NASA-Lewis Research Center contractual and in-house programs.

  17. Kevlar 49/Epoxy COPV Aging Evaluation

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Salem, Jonathan L.; Thesken, John C.; Russell, Richard W.; Littell, Justin; Ruggeri, Charles; Leifeste, Mark R.

    2008-01-01

    NASA initiated an effort to determine if the aging of Kevlar 49/Epoxy composite overwrapped pressure vessels (COPV) affected their performance. This study briefly reviews the history and certification of composite pressure vessels employed on NASA Orbiters. Tests to evaluate overwrap tensile strength changes compared 30 year old samples from Orbiter vessels to new Kevlar/Epoxy pressure vessel materials. Other tests include transverse compression and thermal analyses (glass transition and moduli). Results from these tests do not indicate a noticeable effect due to aging of the overwrap materials.

  18. Fabrication and characterization of amine terminated poly(arylene ether sulfone) modified epoxy-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Cecere, James A.; Senger, James S.; Mcgrath, James E.; Steiner, Paul A.; Wong, Raymond S.

    1987-01-01

    Multifunctional epoxy resin networks were chemically modified with thermoplastic amine terminated poly(arylene ether sulfones) of controlled molecular weights. This system was then examined as both neat resin and as a matrix resin for carbon fiber composites. The neat resin displayed a significant increase in both fracture toughness and energy release rate values. This was attributed to the altered morphology, which could be varied from particles of polysulfone in an epoxy matrix to that of a quasi-continuous polysulfone phase.

  19. Boron doping effect on the interface interaction and mechanical properties of graphene reinforced copper matrix composite

    NASA Astrophysics Data System (ADS)

    Fang, Bingcheng; Li, Jiajun; Zhao, Naiqin; Shi, Chunsheng; Ma, Liying; He, Chunnian; He, Fang; Liu, Enzuo

    2017-12-01

    In order to explore an efficient way of modifying graphene to improve the Cu/graphene interfacial bonding and remain the excellent mechanical and physical properties of graphene, the interaction between Cu and the pristine, atomic oxygen functionalized and boron- or nitrogen-doped graphene with and without defects was systematically investigated by density functional theory calculation. The electronic structure analysis revealed that the chemically active oxygen can enhance the binding energy Eb of Cu with graphene by forming strong covalent bonds, supporting the experimental study suggesting an vital role of intermediate oxygen in the improvement of the mechanical properties of graphene/Cu composites. Due to the strong hybridization between Cu-3d electron states and the 2p states of both boron and carbon atoms, the boron-doping effect is comparable to or even better than the chemical bridging role of oxygen in the reduced graphene oxide reinforced Cu matrix composite. Furthermore, we evidenced an enhancement of mechanical properties including bulk modulus, shear modulus and Young modulus of graphene/Cu composite after boron doping, which closely relates to the increased interfacial binding energy between boron-doped graphene and Cu surfaces.

  20. Dynamic Loading Characteristics in Metals and Composites

    DTIC Science & Technology

    2009-12-01

    Armenakas and Sciammarella [6] reported experimental findings on the mechanical properties of glass fiber reinforced epoxy plates subjected to high rates... Sciammarella [6] Glass/epoxy Decrease Increase Decrease - Lifshitz [7] Angle ply glass/epoxy Increase Independent Independent - Daniel et al...Armenakas, and C. A. Sciammarella , “Response of glass-fiber-reinforced epoxy specimens to high rates of tensile loading,” Experimental Mechanics, vol

  1. Use of graphite epoxy composites in the Solar-A Soft X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Jurcevich, B. K.; Bruner, M. E.

    1990-01-01

    This paper describes the use of composite materials in the Soft X-Ray Telescope (SXT). One of the primary structural members of the telescope is a graphite epoxy metering tube. The metering tube maintains the structural stability of the telescope during launch as well as the focal length through various environmental conditions. The graphite epoxy metering tube is designed to have a negative coefficient of thermal expansion to compensate for the positive expansion of titanium structural supports. The focus is maintained to + or - 0.001 inch by matching the CTE of the composite tube to the remaining structural elements.

  2. Effect of space exposure of some epoxy matrix composites on their thermal expansion and mechanical properties (A0138-8)

    NASA Technical Reports Server (NTRS)

    Jabs, Heinrich

    1992-01-01

    Assessments of the behavior of the carbon/epoxy composites in space conditions are described. After an exposure of five years, the mechanical characteristics and the coefficient of thermal expansion are measured and compared to reference values.

  3. NEUTRONIC REACTOR FUEL COMPOSITION

    DOEpatents

    Thurber, W.C.

    1961-01-10

    Uranium-aluminum alloys in which boron is homogeneously dispersed by adding it as a nickel boride are described. These compositions have particular utility as fuels for neutronic reactors, boron being present as a burnable poison.

  4. Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading

    NASA Astrophysics Data System (ADS)

    Shokrieh, Mahmood M.; Memar, Mahdi

    2010-04-01

    The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.

  5. Development of design data for graphite reinforced epoxy and polyimide composites

    NASA Technical Reports Server (NTRS)

    Scheck, W. G.

    1974-01-01

    Processing techniques and design data were characterized for a graphite/epoxy composite system that is useful from 75 K to 450 K, and a graphite/polyimide composite system that is useful from 75 K to 589 K. The Monsanto 710 polyimide resin was selected as the resin to be characterized and used with the graphite fiber reinforcement. Material was purchased using the prepreg specification for the design data generation for both the HT-S/710 and HM-S/710 graphite/polyimide composite system. Lamina and laminate properties were determined at 75 K, 297 K, and 589 K. The test results obtained on the skin-stringer components proved that graphite/polyimide composites can be reliably designed and analyzed much like graphite/epoxy composites. The design data generated in the program includes the standard static mechanical properties, biaxial strain data, creep, fatigue, aging, and thick laminate data.

  6. Tensile properties of interwoven hemp/PET (Polyethylene Terephthalate) epoxy hybrid composites

    NASA Astrophysics Data System (ADS)

    Ahmad, M. A. A.; Majid, M. S. A.; Ridzuan, M. J. M.; Firdaus, A. Z. A.; Amin, N. A. M.

    2017-10-01

    This paper describes the experimental investigation of the tensile properties of interwoven Hemp/PET hybrid composites. The effect of hybridization of hemp (warp) with PET fibres (weft) on tensile properties was of interest. Hemp and PET fibres were selected as the reinforcing material while epoxy resin was chosen as the matrix. The interwoven Hemp/PET fabric was used to produce hybrid composite using a vacuum infusion process. The tensile test was conducted using Universal Testing Machine in accordance to the ASTM D638. The tensile properties of the interwoven Hemp/PET hybrid composite were then compared with the neat woven hemp/epoxy composite. The results show that the strength of hemp/PET with the warp direction was increased by 8% compared to the neat woven hemp composite. This enhancement of tensile strength was due to the improved interlocking structure of interwoven Hemp/PET hybrid fabric.

  7. Progressive fracture of fiber composites

    NASA Technical Reports Server (NTRS)

    Irvin, T. B.; Ginty, C. A.

    1983-01-01

    Refined models and procedures are described for determining progressive composite fracture in graphite/epoxy angleplied laminates. Lewis Research Center capabilities are utilized including the Real Time Ultrasonic C Scan (RUSCAN) experimental facility and the Composite Durability Structural Analysis (CODSTRAN) computer code. The CODSTRAN computer code is used to predict the fracture progression based on composite mechanics, finite element stress analysis, and fracture criteria modules. The RUSCAN facility, CODSTRAN computer code, and scanning electron microscope are used to determine durability and identify failure mechanisms in graphite/epoxy composites.

  8. Fatigue evaluation of composite-reinforced, integrally stiffened metal panels

    NASA Technical Reports Server (NTRS)

    Dumesnil, C. E.

    1973-01-01

    The fatigue behavior of composite-reinforced, integrally stiffened metal panels was investigated in combined metal and composite materials subjected to fatigue loading. The systems investigated were aluminum-graphite/epoxy, and aluminum-S glass/epoxy. It was found that the composite material would support the total load at limit stress after the metal had completely failed, and the weight of the composite-metal system would be equal to that of an all metal system which would carry the same total load at limit stress.

  9. Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings

    NASA Astrophysics Data System (ADS)

    Ghauri, Faizan Ali; Raza, Mohsin Ali; Saad Baig, Muhammad; Ibrahim, Shoaib

    2017-12-01

    This work aims to determine the effect of graphene oxide (GO) and reduced graphene oxide (rGO) incorporation as filler on the corrosion protection ability of epoxy coatings in saline media. GO was derived from graphite powder following modified Hummers’ method, whereas rGO was obtained after reduction of GO with hydrazine solution. About 1 wt.% of GO or rGO were incorporated in epoxy resin by solution mixing process followed by ball milling. GO and rGO-based epoxy composite coatings were coated on mild steel substrates using film coater. The coated samples were characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests after 1 and 24 h immersion in 3.5% NaCl. The results suggested that GO-based epoxy composite coatings showed high impedance and low corrosion rate.

  10. Ultratough single crystal boron-doped diamond

    DOEpatents

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  11. Preparation and properties studies of UV-curable silicone modified epoxy resin composite system.

    PubMed

    Yu, Zhouhui; Cui, Aiyong; Zhao, Peizhong; Wei, Huakai; Hu, Fangyou

    2018-01-01

    Modified epoxy suitable for ultraviolet (UV) curing is prepared by using organic silicon toughening. The curing kinetics of the composite are studied by dielectric analysis (DEA), and the two-phase compatibility of the composite is studied by scanning electron microscopy (SEM). The tensile properties, heat resistance, and humidity resistance of the cured product are explored by changing the composition ratio of the silicone and the epoxy resin. SEM of silicone/epoxy resin shows that the degree of cross-linking of the composites decreases with an increase of silicone resin content. Differential thermal analysis indicates that the glass transition temperature and the thermal stability of the composites decrease gradually with an increase of silicone resin content. The thermal degradation rate in the high temperature region, however, first decreases and then increases. In general, after adding just 10%-15% of the silicone resin and exposing to light for 15 min, the composite can still achieve a better curing effect. Under such conditions, the heat resistance of the cured product decreases a little. The tensile strength is kept constant so that elongation at breakage is apparently improved. The change rate after immersion in distilled water at 60°C for seven days is small, which shows excellent humidity resistance.

  12. Study on voids of epoxy matrix composites sandwich structure parts

    NASA Astrophysics Data System (ADS)

    He, Simin; Wen, Youyi; Yu, Wenjun; Liu, Hong; Yue, Cheng; Bao, Jing

    2017-03-01

    Void is the most common tiny defect of composite materials. Porosity is closely related to composite structure property. The voids forming behaviour in the composites sandwich structural parts with the carbon fiber reinforced epoxy resin skins was researched by adjusting the manufacturing process parameters. The composites laminate with different porosities were prepared with the different process parameter. The ultrasonic non-destructive measurement method for the porosity was developed and verified through microscopic examination. The analysis results show that compaction pressure during the manufacturing process had influence on the porosity in the laminate area. Increasing the compaction pressure and compaction time will reduce the porosity of the laminates. The bond-line between honeycomb core and carbon fiber reinforced epoxy resin skins were also analyzed through microscopic examination. The mechanical properties of sandwich structure composites were studied. The optimization process parameters and porosity ultrasonic measurement method for composites sandwich structure have been applied to the production of the composite parts.

  13. Monitoring Damage Propagation in Glass Fiber Composites Using Carbon Nanofibers.

    PubMed

    Al-Sabagh, Ahmed; Taha, Eman; Kandil, Usama; Nasr, Gamal-Abdelnaser; Reda Taha, Mahmoud

    2016-09-10

    In this work, we report the potential use of novel carbon nanofibers (CNFs), dispersed during fabrication of glass fiber composites to monitor damage propagation under static loading. The use of CNFs enables a transformation of the typically non-conductive glass fiber composites into new fiber composites with appreciable electrical conductivity. The percolation limit of CNFs/epoxy nanocomposites was first quantified. The electromechanical responses of glass fiber composites fabricated using CNFs/epoxy nanocomposite were examined under static tension loads. The experimental observations showed a nonlinear change of electrical conductivity of glass fiber composites incorporating CNFs versus the stress level under static load. Microstructural investigations proved the ability of CNFs to alter the polymer matrix and to produce a new polymer nanocomposite with a connected nanofiber network with improved electrical properties and different mechanical properties compared with the neat epoxy. It is concluded that incorporating CNFs during fabrication of glass fiber composites can provide an innovative means of self-sensing that will allow damage propagation to be monitored in glass fiber composites.

  14. Curing kinetics and thermomechanical properties of latent epoxy/carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Dalle Vacche, S.; Michaud, V.; Demierre, M.; Bourban, P.-E.; Månson, J.-A. E.

    2016-07-01

    In this work, resins based on diglycidyl ether of bisphenol A (DGEBA) epoxy and a latent hardener, dicyandiamide (DICY), as well as carbon fiber (CF) composites based on them, were prepared with three commercial accelerators: a methylene bis (phenyl dimethyl urea), a cycloaliphatic substituted urea, and a modified polyamine. The curing kinetics of the three DGEBA/DICY/accelerator systems were investigated by chemorheology and differential scanning calorimetry (DSC), in isothermal and over temperature change conditions. Differences in the reaction onset temperature, and in the glass transition temperature (Tg) were highlighted. For curing of thick resin samples, a slow curing cycle at the lowest possible temperature was used, followed by high temperature (160 - 180 °C) post-curing. Indeed, fast curing at higher temperatures caused the formation of hot spots and led to local burning of the samples. The obtained thermomechanical properties, assessed by ultimate tensile testing and dynamic mechanical analysis (DMA) in single cantilever configuration, were all in the expected range for epoxy resins, with tensile moduli close to 3 GPa and Tg > 140 °C. The longterm stability of these resins at room temperature was verified by DSC. Composite samples were prepared by hand lay-up by manually impregnating four layers of 5-harness satin CF textile, and curing in vacuum bag. Impregnation quality and void content were assessed by optical microscopy. The flexural properties of the post-cured composites were assessed by three-point bending test at room temperature and showed no relevant differences, all composites having bending moduli of 45 - 50 GPa. Finally, composites cured with a faster high temperature curing cycle (20 min at 140 °C) were prepared with the DGEBA/DICY/ methylene bis (phenyl dimethyl urea) system, obtaining similar properties as with the slower curing cycle, showing that the prepreg system allowed more flexibility in terms of curing cycle than the bulk resin samples.

  15. Flexible neutron shielding composite material of EPDM rubber with boron trioxide: Mechanical, thermal investigations and neutron shielding tests

    NASA Astrophysics Data System (ADS)

    Özdemir, T.; Güngör, A.; Reyhancan, İ. A.

    2017-02-01

    In this study, EPDM and boron trioxide composite was produced and mechanical, thermal and neutron shielding tests were performed. EPDM rubber (Ethylene Propylene Diene Monomer) having a considerably high hydrogen content is an effective neutron shielding material. On the other hand, the materials containing boron components have effective thermal neutron absorption crossection. The composite of EPDM and boron trioxide would be an effective solution for both respects of flexibility and effectiveness for developing a neutron shielding material. Flexible nature of EPDM would be a great asset for the shielding purpose in case of intervention action to a radiation accident. The theoretical calculations and experimental neutron absorption tests have shown that the results were in parallel and an effective neutron shielding has been achieved with the use of the developed composite material.

  16. Experimental Investigation on Mechanical and Thermal Properties of Marble Dust Particulate-Filled Needle-Punched Nonwoven Jute Fiber/Epoxy Composite

    NASA Astrophysics Data System (ADS)

    Sharma, Ankush; Patnaik, Amar

    2018-03-01

    The present investigation evaluates the effects of waste marble dust, collected from the marble industries of Rajasthan, India, on the mechanical properties of needle-punched nonwoven jute fiber/epoxy composites. The composites with varying filler contents from 0 wt.% to 30 wt.% marble dust were prepared using vacuum-assisted resin-transfer molding. The influences of the filler material on the void content, tensile strength, flexural strength, interlaminar shear strength (ILSS), and thermal conductivity of the hybrid composites have been analyzed experimentally under the desired optimal conditions. The addition of marble dust up to 30 wt.% increases the flexural strength, ILSS, and thermal conductivity, but decreases the tensile strength. Subsequently, the fractured surfaces of the particulate-filled jute/epoxy composites were analyzed microstructurally by field-emission scanning electron microscopy.

  17. Modelling Behaviour of a Carbon Epoxy Composite Exposed to Fire: Part I-Characterisation of Thermophysical Properties.

    PubMed

    Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge

    2017-05-04

    Thermophysical properties of a carbon-reinforced epoxy composite laminate (T700/M21 composite for aircraft structures) were evaluated using different innovative characterisation methods. Thermogravimetric Analysis (TGA), Simultaneous Thermal analysis (STA), Laser Flash analysis (LFA), and Fourier Transform Infrared (FTIR) analysis were used for measuring the thermal decomposition, the specific heat capacity, the anisotropic thermal conductivity of the composite, the heats of decomposition and the specific heat capacity of released gases. It permits to get input data to feed a three-dimensional (3D) model given the temperature profile and the mass loss obtained during well-defined fire scenarios (model presented in Part II of this paper). The measurements were optimised to get accurate data. The data also permit to create a public database on an aeronautical carbon fibre/epoxy composite for fire safety engineering.

  18. Natural Mallow Fiber-Reinforced Epoxy Composite for Ballistic Armor Against Class III-A Ammunition

    NASA Astrophysics Data System (ADS)

    Nascimento, Lucio Fabio Cassiano; Holanda, Luane Isquerdo Ferreira; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Gomes, Alaelson Vieira; Lima, Édio Pereira

    2017-10-01

    Epoxy matrix composites reinforced with up to 30 vol pct of continuous and aligned natural mallow fibers were for the first time ballistic tested as personal armor against class III-A 9 mm FMJ ammunition. The ballistic efficiency of these composites was assessed by measuring the dissipated energy and residual velocity after the bullet perforation. The results were compared to those in similar tests of aramid fabric (Kevlar™) commonly used in vests for personal protections. Visual inspection and scanning electron microscopy analysis of impact-fractured samples revealed failure mechanisms associated with fiber pullout and rupture as well as epoxy cracking. As compared to Kevlar™, the mallow fiber composite displayed practically the same ballistic efficiency. However, there is a reduction in both weight and cost, which makes the mallow fiber composites a promising material for personal ballistic protection.

  19. Numerical model for an epoxy beam reinforced with superelastic shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Viet, N. V.; Zaki, W.; Umer, R.

    2018-03-01

    We present a numerical solution for a smart composite beam consisting of an epoxy matrix reinforced with unidirectional superelastic shape memory alloy (SMA) fibers with uniform circular cross section. The beam is loaded by a tip load, which is then removed resulting in shape recovery due to superelasticity of the SMA wires. The analysis is carried out considering a representative volume element (RVE) of the beam consisting of one SMA wire embedded in epoxy. The analytical model is developed for a superelastic SMA/epoxy composite beam subjected to a complete loading cycle in bending. Using the proposed model, the moment-curvature profile, martensite volume fraction variation, and axial stress are determined. The results are validated against three-dimensional finite element analysis (3D FEA) for the same conditions. The proposed work is a contribution toward better understanding of the bending behavior of superelastic SMA-reinforced composites.

  20. Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties

    NASA Astrophysics Data System (ADS)

    Yao, Yongtao; Wang, Jingjie; Lu, Haibao; Xu, Ben; Fu, Yongqing; Liu, Yanju; Leng, Jinsong

    2016-01-01

    A novel and facile strategy was proposed to construct a thermosetting/thermoplastic system with both shape memory and self-healing properties based on commercial epoxy resin and poly(ɛ-caprolactone)-PCL. Thermoplastic material is capable of re-structuring and changing the stiffness/modulus when the temperature is above melting temperature. PCL microfiber was used as a plasticizer in epoxy resin-based blends, and served as a ‘hard segment’ to fix a temporary shape of the composites during shape memory cycles. In this study, the electrospun PCL membrane with a porous network structure enabled a homogenous PCL fibrous distribution and optimized interaction between fiber and epoxy resin. The self-healing capability is achieved by phase transition during curing of the composites. The mechanism of the shape memory effect of the thermosetting (rubber)/thermoplastic composite is attributed to the structural design of the thermoplastic network inside the thermosetting resin/rubber matrix.

  1. Comparison of hand laid-up tape and filament wound composite cylinders and panels with and without impact damage

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Lopez, Osvaldo F.

    1991-01-01

    Experimentally determined axial compressive failure loads, strains and failure modes of composite flat panels and cylinders are presented. A comparison of two types of filament wound flat graphite-epoxy panels indicates that the winding pattern can influence structural response. A comparison of hand laid-up tape and filament wound composite cylinders indicates that fabrication method may not significantly influence the failure mode or average failure strain of thick-walled (radius-to-thickness ratio less than 15) graphite-epoxy cylinders. The interaction of manufacturing-induced features (fiber cross-overs) and low-speed impact damage for graphite-epoxy specimens is also presented. Filament would flat panels with many fiber cross-overs exhibited lower failure strains than filament wound panels without fiber cross-overs for all impact speeds examined. Graphite-thermoplastic cylinders exhibited a significantly different failure mode from the graphite-epoxy cylinders.

  2. Application of In Situ Fiberization for fabrication of improved strain isolation pads and graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Seibold, R. W.; Basiulis, D. I.

    1982-01-01

    The feasibility of applying the in situ fiberization process to the fabrication of strain isolation pads (SIP) for the Space Shuttle and to the fabrication of graphite-epoxy composites was evaluated. The ISF process involves the formation of interconnected polymer fiber networks by agitation of dilute polymer solutions under controlled conditions. High temperature polymers suitable for SIP use were fiberized and a successful fiberization of polychloro trifluoroethylene, a relatively high melting polymer, was achieved. Attempts to fiberize polymers with greater thermal stability were unsuccessful, apparently due to characteristics caused by the presence of aromaticity in the backbone of such materials. Graphite-epoxy composites were fabricated by interconnecting two dimensional arrays of graphite fiber with polypropylene IS fibers with subsequent epoxy resin impregnation. Mechanical property tests were performed on laminated panels of this material to evaluate intralaminar and interlaminar shear strength, and thus fracture toughness. Test results were generally unpromising.

  3. Development of a heterogeneous laminating resin system

    NASA Technical Reports Server (NTRS)

    Biermann, T. F.; Hopper, L. C.

    1985-01-01

    The factors which effect the impact resistance of laminating resin systems and yet retain equivalent performance with the conventional 450 K curing epoxy matrix systems in other areas were studied. Formulation work was conducted on two systems, an all-epoxy and an epoxy/bismaleimide, to gain fundamental information on the effect formulation changes have upon neat resin and composite properties. The all-epoxy work involved formulations with various amounts and combinations of eight different epoxy resins, four different hardeners, fifteen different toughening agents, a filler, and a catalyst. The epoxy/bismaleimide effort improved formulations with various amounts and combinations of nine different resins, four different hardeners, eight different toughening agents, four different catalysts, and a filler. When a formulation appeared to offer the proper combination of properties required for a laminating resin Celion 3K-70P fabric was prepregged. Initial screening tests on composites primarily involved Gardner type impact and measurement of short beam shear strengths under dry and hot/wet conditions.

  4. Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Hinkley, J.A.; Clancy, T.C.; Frankland, S.J.V.

    2009-01-01

    Atomistic models of epoxy polymers were built in order to assess the effect of structure at the nanometer scale on the resulting bulk properties such as elastic modulus and thermal conductivity. Atomistic models of both bulk polymer and carbon nanotube polymer composites were built. For the bulk models, the effect of moisture content and temperature on the resulting elastic constants was calculated. A relatively consistent decrease in modulus was seen with increasing temperature. The dependence of modulus on moisture content was less consistent. This behavior was seen for two different epoxy systems, one containing a difunctional epoxy molecule and the other a tetrafunctional epoxy molecule. Both epoxy structures were crosslinked with diamine curing agents. Multifunctional properties were calculated with the nanocomposite models. Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between the carbon nanotube and the surrounding epoxy matrix. These estimated values were used in a multiscale model in order to predict the thermal conductivity of a nanocomposite as a function of the nanometer scaled molecular structure.

  5. Woven graphite epoxy composite test specimens with glass buffer strips

    NASA Technical Reports Server (NTRS)

    Bonnar, G. R.; Palmer, R. J.

    1982-01-01

    Woven unidirectional graphite cloth with bands of fiberglass replacing the graphite in discrete lengthwise locations was impregnated with epoxy resin and used to fabricate a series of composite tensile and shear specimens. The finished panels, with the fiberglass buffer strips, were tested. Details of the fabrication process are reported.

  6. Applications of Fourier transform infrared spectroscopy to quality control of the epoxy matrix

    NASA Technical Reports Server (NTRS)

    Antoon, M. K.; Starkey, K. M.; Koenig, J. L.

    1979-01-01

    The object of the paper is to demonstrate the utility of Fourier transform infrared (FT-IR) difference spectra for investigating the composition of a neat epoxy resin, hardener, and catalysts. The composition and degree of cross-linking of the cured matrix is also considered.

  7. Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters.

    PubMed

    Torre, A La; Åhlgren, E H; Fay, M W; Ben Romdhane, F; Skowron, S T; Parmenter, C; Davies, A J; Jouhannaud, J; Pourroy, G; Khlobystov, A N; Brown, P D; Besley, E; Banhart, F

    2016-08-11

    We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling. Computational modelling showed that the domes exhibit a nanotube-like structure with flat circular caps and that their stability was comparable to that of a single boron nitride layer.

  8. Optimum design of structures of composite materials in response to aerodynamic noise and noise transmission

    NASA Technical Reports Server (NTRS)

    Yang, J. C. S.; Tsui, C. Y.

    1977-01-01

    Elastic wave propagation and attenuation in a model fiber matrix was investigated. Damping characteristics in graphite epoxy composite materials were measured. A sound transmission test facility suitable to incorporate into NASA Ames wind tunnel for measurement of transmission loss due to sound generation in boundary layers was constructed. Measurement of transmission loss of graphite epoxy composite panels was also included.

  9. Absorption Of Crushing Energy In Square Composite Tubes

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1992-01-01

    Report describes investigation of crash-energy-absorbing capabilities of square-cross-section tubes of two matrix/fiber composite materials. Both graphite/epoxy and Kevlar/epoxy tubes crushed in progressive and stable manner. Ratio between width of cross section and thickness of wall determined to affect energy-absorption significantly. As ratio decreases, energy-absorption capability increases non-linearly. Useful in building energy-absorbing composite structures.

  10. Creep-rupture of polymer-matrix composites. [graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.; Griffith, W. I.; Morris, D. H.

    1980-01-01

    An accelerated characterization method for resin matrix composites is reviewed. Methods for determining modulus and strength master curves are given. Creep rupture analytical models are discussed as applied to polymers and polymer matrix composites. Comparisons between creep rupture experiments and analytical models are presented. The time dependent creep rupture process in graphite epoxy laminates is examined as a function of temperature and stress level.

  11. Glass/Epoxy Door Panel for Automobiles

    NASA Technical Reports Server (NTRS)

    Bauer, J. L. JR.

    1985-01-01

    Lightweight panel cost-effective. Integrally-molded intrusion strap key feature of composite outer door panel. Strap replaces bulky and heavy steel instrusion beam of conventional door. Standard steel inner panel used for demonstration purposes. Door redesigned to exploit advantages of composite outer panel thinner. Outer panel for automobilie door, made of glass/epoxy composite material, lighter than conventional steel door panel, meets same strength requirements, and less expensive.

  12. Effects of foliar boron application on seed composition, cell wall boron, and seed delta 15N and delta 13C isotopes in soybean are influenced by water stress

    USDA-ARS?s Scientific Manuscript database

    Although the effect of foliar boron (B) application on yield and quality is well established for crops, limited information and controversial results still exist on the effects of foliar B application on soybean seed composition (seed protein, oil, fatty acids, and sugars). The objective of this res...

  13. The Charging of Composites in the Space Environment

    NASA Technical Reports Server (NTRS)

    Czepiela, Steven A.

    1997-01-01

    Deep dielectric charging and subsequent electrostatic discharge in composite materials used on spacecraft have become greater concerns since composite materials are being used more extensively as main structural components. Deep dielectric charging occurs when high energy particles penetrate and deposit themselves in the insulating material of spacecraft components. These deposited particles induce an electric field in the material, which causes the particles to move and thus changes the electric field. The electric field continues to change until a steady state is reached between the incoming particles from the space environment and the particles moving away due to the electric field. An electrostatic discharge occurs when the electric field is greater than the dielectric strength of the composite material. The goal of the current investigation is to investigate deep dielectric charging in composite materials and ascertain what modifications have to be made to the composite properties to alleviate any breakdown issues. A 1-D model was created. The space environment, which is calculated using the Environmental Workbench software, the composite material properties, and the electric field and voltage boundary conditions are input into the model. The output from the model is the charge density, electric field, and voltage distributions as functions of the depth into the material and time. Analysis using the model show that there should be no deep dielectric charging problem with conductive composites such as carbon fiber/epoxy. With insulating materials such as glass fiber/epoxy, Kevlar, and polymers, there is also no concern of deep dielectric charging problems with average day-to-day particle fluxes. However, problems can arise during geomagnetic substorms and solar particle events where particle flux levels increase by several orders of magnitude, and thus increase the electric field in the material by several orders of magnitude. Therefore, the second part of this investigation was an experimental attempt to measure the continuum electrical properties of a carbon fiber/epoxy composite, and to create a composite with tailorable conductivity without affecting its mechanical properties. The measurement of the conductivity and dielectric strength of carbon fiber/epoxy composites showed that these properties are surface layer dominated and difficult to measure. In the second experimental task, the conductivity of a glass fiber/epoxy composite was increased by 3 orders of magnitude, dielectric constant was increased approximately by a factor of 16, with minimal change to the mechanical properties, by adding conductive carbon black to the epoxy.

  14. Radio frequency shielding behaviour of silane treated Fe2O3/E-glass fibre reinforced epoxy hybrid composite

    NASA Astrophysics Data System (ADS)

    Arun prakash, V. R.; Rajadurai, A.

    2016-10-01

    In this work, radio frequency shielding behaviour of polymer (epoxy) matrixes composed of E-glass fibres and Fe2O3 fillers have been studied. The principal aim of this project is to prepare suitable shielding material for RFID application. When RFID unit is pasted on a metal plate without shielding material, the sensing distance is reduced, resulting in a less than useful RFID system. To improve RF shielding of epoxy, fibres and fillers were utilized. Magnetic behaviour of epoxy polymer composites was measured by hysteresis graphs (B-H) followed by radio frequency identifier setup. Fe2O3 particles of sizes 800, 200 and 100 nm and E-glass fibre woven mat of 600 g/m2 were used to make composites. Particle sizes of 800 nm and 200 nm were prepared by high-energy ball milling, whereas particles of 100 nm were prepared by sol-gel method. To enhance better dispersion of particles within the epoxy matrix, a surface modification process was carried out on fillers by an amino functional coupling agent called 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized Fe2O3 particles were characterized by XRD and FTIR spectroscopy analysis. Variable quantity of E-glass fibre (25, 35, and 45 vol%) was laid down along with 0.5 and 1.0 vol% of 800, 200, and 100 nm size Fe2O3 particles into the matrix, to fabricate the hybrid composites. Scanning electron microscopy and transmission electron microscopy images reveal the shape and size of Fe2O3 particles for different milling times and particle dispersion in the epoxy matrix. The maximum improved sensing distance of 45.2, 39.4 and 43.5 % was observed for low-, high-, and ultra-high radio frequency identifier setup along with shielding composite consist of epoxy, 1 vol% 200 nm Fe2O3 particles and 45 vol% of E-glass fibre.

  15. Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Landingham, Richard L.

    1988-01-01

    A chemical pretreatment method is used to produce boron carbide-, boron-, and boride-reactive metal composites by an infiltration process. The boron carbide or other starting constituents, in powder form, are immersed in various alcohols, or other chemical agents, to change the surface chemistry of the starting constituents. The chemically treated starting constituents are consolidated into a porous ceramic precursor which is then infiltrated by molten aluminum or other metal by heating to wetting conditions. Chemical treatment of the starting constituents allows infiltration to full density. The infiltrated precursor is further heat treated to produce a tailorable microstructure. The process at low cost produces composites with improved characteristics, including increased toughness, strength.

  16. Mechanical properties and strengthening mechanism of epoxy resin reinforced with nano-SiO2 particles and multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Xiao, Chufan; Tan, Yefa; Yang, Xupu; Xu, Ting; Wang, Lulu; Qi, Zehao

    2018-03-01

    Nano-SiO2 particles and MWCNTs were used to reinforce the EPs. The mechanical properties of the composites and the strengthening mechanisms of nano-SiO2 and MWCNTs on the mechanical properties of epoxy composites were studied. The results show that the mechanical properties of the reinforced epoxy composites are greatly improved. Especially, nano-SiO2/MWCNTs/EP composites exhibit the most excellent mechanical properties. The synergistic strengthening mechanisms of nano-SiO2 and MWCNTs on the EP are the micro plastic deformation effect, micro-cracks and their divarication effect, and the pull-out effect of MWCNTs in EP matrix, which can reduce the extent of stress concentration and absorb more energy.

  17. The effects on tensile, shear, and adhesive mechanical properties when recycled epoxy/fiberglass is used as an alternative for glass microballoons in fiberglass foam core sandwiches

    NASA Astrophysics Data System (ADS)

    Wilson, Dru Matthew

    The problem of this study was to determine whether fiberglass foam core sandwiches made with recycled epoxy/fiberglass have equal or better flatwise tension, shear, and peel (adhesion) mechanical properties when compared with composite sandwiches made with industry standard glass microballoons. Recycling epoxy/fiberglass could save money by: (1) reusing cured composite materials, (2) consuming less virgin composite materials, (3) spending less on transportation and disposing of unusable composites, and (4) possibly enabling companies to sell their recycled composite powder to other manufacturers. This study used three mechanical property tests, which included: flatwise tensile test, shear test, and peel (adhesion) test. Each test used 300 samples for a combined total of 900 sandwich test samples for this study. A factorial design with three independent variables was used. The first variable, filler type, had three levels: no filler, microballoon filler, and recycled epoxy/fiberglass filler. The second variable, foam density, had four levels: 3 lb/ft³, 4 lb/ft³, 5 lb/ft³, and 6 lb/ft³. The third variable, filler percentage ratio, had eight levels: 0%, 10%, 20%, 30%, 40%, 50%, 60%, and 70%. The results of this study revealed two primary conclusions. The first conclusion was that sandwich test panels produced with recycled epoxy/fiberglass powder were equal or significantly better in tensile, shear, and peel (adhesion) strength than sandwiches produced with hollow glass microballoons. The second conclusion was that sandwich test panels produced with recycled epoxy/fiberglass powder were equal or significantly lighter in weight than sandwiches produced with hollow glass microballoons.

  18. Compatibility of the Radio Frequency Mass Gauge with Graphite-Epoxy Composite Tanks

    NASA Technical Reports Server (NTRS)

    Zimmerli, G. A.; Mueller, C. H.

    2015-01-01

    The radio frequency mass gauge (RFMG) is a low-gravity propellant quantity gauge being developed at NASA for possible use in long-duration space missions utilizing cryogenic propellants. As part of the RFMG technology development process, we evaluated the compatibility of the RFMG with a graphite-epoxy composite material used to construct propellant tanks. The key material property that can affect compatibility with the RFMG is the electrical conductivity. Using samples of 8552/IM7 graphite-epoxy composite, we characterized the resistivity and reflectivity over a range of frequencies. An RF impedance analyzer was used to characterize the out-of-plane electrical properties (along the sample thickness) in the frequency range 10 to 1800 MHZ. The resistivity value at 500 MHz was 4.8 ohm-cm. Microwave waveguide measurements of samples in the range 1.7 - 2.6 GHz, performed by inserting the samples into a WR-430 waveguide, showed reflectivity values above 98%. Together, these results suggested that a tank constructed from graphite/epoxy composite would produce good quality electromagnetic tank modes, which is needed for the RFMG. This was verified by room-temperature measurements of the electromagnetic modes of a 2.4 m diameter tank constructed by Boeing from similar graphite-epoxy composite material. The quality factor Q of the tank electromagnetic modes, measured via RF reflection measurements from an antenna mounted in the tank, was typically in the range 400 less than Q less than 3000. The good quality modes observed in the tank indicate that the RFMG is compatible with graphite-epoxy tanks, and thus the RFMG could be used as a low-gravity propellant quantity gauge in such tanks filled with cryogenic propellants.

  19. Evaluation of composite flattened tubular specimen. [fatigue tests

    NASA Technical Reports Server (NTRS)

    Liber, T.; Daniel, I. M.

    1978-01-01

    Flattened tubular specimens of graphite/epoxy, S-glass/epoxy, Kevlar-49/epoxy, and graphite/S-glass/epoxy hybrid materials were evaluated under static and cyclic uniaxial tensile loading and compared directly with flat coupon data of the same materials generated under corresponding loading conditions. Additional development for the refinement of the flattened specimen configuration and fabrication was required. Statically tested graphite/epoxy, S-glass/epoxy, and Kevlar 49/epoxy flattened tube specimens exhibit somewhat higher average strengths than their corresponding flat coupons. Flattened tube specimens of the graphite/S-glass/epoxy hybrid and the graphite/epoxy flattened tube specimens failed in parasitic modes with consequential lower strength than the corresponding flat coupons. Fatigue tested flattened tube specimens failed in parasitic modes resulting in lower fatigue strengths than the corresponding flat coupons.

  20. Structure and energetics of carbon, hexagonal boron nitride, and carbon/hexagonal boron nitride single-layer and bilayer nanoscrolls

    NASA Astrophysics Data System (ADS)

    Siahlo, Andrei I.; Poklonski, Nikolai A.; Lebedev, Alexander V.; Lebedeva, Irina V.; Popov, Andrey M.; Vyrko, Sergey A.; Knizhnik, Andrey A.; Lozovik, Yurii E.

    2018-03-01

    Single-layer and bilayer carbon and hexagonal boron nitride nanoscrolls as well as nanoscrolls made of bilayer graphene/hexagonal boron nitride heterostructure are considered. Structures of stable states of the corresponding nanoscrolls prepared by rolling single-layer and bilayer rectangular nanoribbons are obtained based on the analytical model and numerical calculations. The lengths of nanoribbons for which stable and energetically favorable nanoscrolls are possible are determined. Barriers to rolling of single-layer and bilayer nanoribbons into nanoscrolls and barriers to nanoscroll unrolling are calculated. Based on the calculated barriers nanoscroll lifetimes in the stable state are estimated. Elastic constants for bending of graphene and hexagonal boron nitride layers used in the model are found by density functional theory calculations.

Top